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ABSTRACT

A RECURSIVE LEAST SQUARES TRAINING APPROACH FOR CONVOLUTIONAL

NEURAL NETWORKS

This thesis aims to come up with a fast method to train convolutional neural networks (CNNs)

using the application of the recursive least squares (RLS) algorithm in conjunction with the back-

propagation learning. In the training phase, the mean squared error (MSE) between the actual and

desired outputs is iteratively minimized. The recursive updating equations for CNNs are derived

via the back-propagation method and normal equations. This method does not need the choice of

a learning rate and hence does not suffer from speed-accuracy trade-off. Additionally, it is much

faster than the conventional gradient-based methods in a sense that it needs less epochs to converge.

The learning curves of the proposed method together with those of the standard gradient-based

methods using the same CNN structure are generated and compared on the MNIST handwritten

digits and Fashion-MNIST clothes databases. The simulation results show that the proposed RLS-

based training method requires only one epoch to meet the error goal during the training phase

while offering comparable accuracy on the testing data sets.
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Chapter 1

Introduction

1.1 Problem Statement and Motivations

Since the back-propagation learning was successfully implemented on multi-layer feedforward

neural networks [1], they have been widely used in many machine learning problems. Based on

the back-propagation algorithm and the gradient-based approaches, other types of neural networks,

such as convolutional neural networks (CNNs) [2, 3] and recurrent neural networks (RNNs) [4],

were developed. In back-propagation neural networks (BPNNs), each layer is fully connected to

the next layer via synaptic weights and non-linear activations at neurons (nodes). For training

BPNNs or updating the weights, a cost function is formed and then the errors between the desired

output and the actual output are back-propagated layer-by-layer through these weights. In CNNs,

the convolutional layers are connected via filter weights followed by pooling operation (down-

sampling), and the final fully connected layer. The filters have shared weights among the neurons

of the previous layer to reduce the number of parameters in the networks. Pooling operation also

shrinks the size of images without any additional parameters. The final fully connected layers are

similar to those of the standard BPNNs. For training CNNs, the errors are back-propagated through

the weights of the fully connected layers, the pooling and the convolutional layers one-by-one. To

accomplish this, up-sampling is performed on every pooling layer to back-propagate the errors

to the corresponding convolutional layer. Then all the parameters in the network can be updated

using the back-propagated errors much like the standard BPNNs.

CNNs have particularly been playing an important role in image recognition problems since

they have the advantage of being invariant to scaling and translation [2, 3, 5]. Figure 1.1 shows

an example of CNNs, called LeNet-5 [5], which was designed for object recognition from 32×32

grayscale input images (single channel). There are two convolutional layers in LeNet-5 with 6 and

16 sets of shared filter weights in each and hence the same amount of feature maps with size 28×28
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Figure 1.1: An example of CNNs: LeNet-5.

and pooled feature maps with size 10×10 at each layer. The shared weights in the convolutional

layers allow the network to extract the more important topology of the objects, e.g., edges, cor-

ners, and relative locations, rather than the exact location information [2, 3, 6]. By going through

the convolutional layers, the high-level feature representations with their spatial information from

the input images can be extracted. At the second convolutional layer of LeNet-5, the feature repre-

sentations become more abstract features of the input image. Also, distortions and translations can

always happen in images. The pooling layers after the convolutional layers can overcome them by

reducing the resolution of the images [5] as well as the sensitivity of scaling, shifting, and distor-

tion [7]. In LeNet-5, each convolutional layer is followed by a pooling layer and the feature maps

at the convolutional layers are down-sampled with a 2×2 window. The pooling layers introduce

the translation-invariance and reduce the size of the feature maps and hence less required number

of parameters in the next layer. Finally, at the second pooling layer in LeNet-5, all the neurons are

flattened and connected to a two-hidden-layer BPNN with 120 nodes and 80 nodes followed by 10

output neurons.

Examples of the pooled feature maps are shown in Figure 1.2. The image of digit 3 in Figure

1.2 (a) from the MNIST handwritten digit dataset was propagated to a well-trained LeNet-5. After

the input image was convolved with 6 filters at the first convolutional layer and passed through the

pooling operation, 6 pooled feature maps were extracted as shown in Figure 1.2 (b). It can be
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(a) Input image with

size 32×32.

(b) Pooled feature maps after the first layer. Each

pooled feature map is of size 14×14 pixels.

(c) Pooled feature maps after the

second layer. Each pooled feature

map is of size 4×4 pixels.

Figure 1.2: Examples of the pooled feature maps from LeNet-5 where the input image is a digit 3 from the

MNIST dataset. The digit 3 can be roughly observed in the extracted pooled feature maps at the first layer.

But the pooled feature maps become abstract at the second layer.

observed that each pooled feature map captured different low-level features while still preserving

the shape of digit 3. These pooled feature maps were then applied to the second convolutional layer

with 16 sets of filters and the resultant feature maps were pooled leading to the results shown in

Figure 1.2 (c). As can be noted that these pooled feature maps at the second layer became higher-

level and more abstract. Consequently, the shapes or the outlines of the digit 3 were no longer as

obvious as those at the first layer. Comparing with the size of the input image, i.e. 32× 32 = 1024

pixels, the total number of the pixels in these extracted pooled feature maps is only 16×5×5 = 400

pixels. Thus, the following fully connected layer will have a much smaller number of parameters.

The problem of designing and training CNNs is challenging in a sense that there is room to im-

prove the performance in both training speed and overall accuracy for a given problem. Recursive
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least squares (RLS) algorithm [8–10] is a well-known adaptive algorithm with fast convergence

property and has successfully been implemented for the BPNNs [11, 12]. Results in these papers

showed that, compared with the conventional techniques, the RLS-based training approach not

only significantly reduced the total number of training iterations, but also achieved high accuracy

on the testing data. However, this fast training approach has not yet been explored for CNNs. The

reason being the difficulties in deriving the error back-propagation at the convolutional and the

pooling layers of CNNs and writing the normal equations in the RLS form.

To this end, this thesis focuses on extending the RLS-based learning to CNNs and similar

networks. The training method is designed with the goal that the trained CNNs can not only achieve

a comparable accuracy with state-of-the-art training methods, but also provide better convergence

and more efficient implementation.

1.2 Literature Review

As far as the training algorithms for CNNs are concerned, stochastic gradient descent (SGD)

[2, 3, 5, 13] has shown its effectiveness and wild usage in such optimization problems. SGD is

able to converge even when the loss function is not fully differentiable everywhere [13], in which

case the gradient is infinity or doesn’t exist. Unlike batch gradient descent, which updates the

unknown parameters after going through all the training samples once, SGD updates the networks’

parameters after every training sample. Thus, overall it is faster than batch gradient descent and

more suitable for online learning [14]. For massive neural networks or highly redundant training

data, Tieleman & Hinton [15] showed that the mini-batch training is more preferable than the

online SGD or full batch gradient descent. The mini-batch gradient descent compromises between

SGD and batch gradient descent and updates the unknown parameters every mini-batch of training

samples. As a result, less computation is required for training as indicated in [15], and the variance

of the weights is reduced hence better convergence property [14]. Besides SGD algorithm, among

other efficient and iterative approach is Root Mean Square Propagation (RMSProp) [15], which

utilizes the moving average of the squared gradients to adapt the learning rate in order to speed
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up the training. It outperforms the non-adaptive SGD and the SGD with momentum [16], and

also works well in online and non-stationary learning environments [17]. However, RMSProp

lacks bias-correction and momentum, in which case the uncorrected bias results in a large step size

and possibility of divergence [14]. Adaptive moment estimation (or Adam) [18], which combines

RMSProp with bias-correction and momentum, estimates the first and the second order moments to

compute learning rates for different parameters. With the added bias correction, Adam outperforms

RMSProp towards the end of optimization as the gradients of the parameters become sparser (e.g.,

the gradient vectors from the ReLU activation function [19]), which benefits Adam by giving faster

convergence rate than SGD and RMSProp [14, 18]. Nevertheless, it has been shown that both

RMSProp and Adam have a poor generalization ability compared to SGD [20]. They work well

in the initial portion of the training phase but get worse toward the later stages of training [20].

In addition, when training deep neural networks, RMSProp and Adam may diverge due to the

exponential moving average used in them [21, 22].

In [11], a fast and recursive learning algorithm for BPNNs was developed using RLS adaptive

algorithm. However, they assumed the threshold-logic non-linearity and further the method was

applied to standard BPNNs. A more general RLS-based training approach for BPNNs was later

developed in [12], which was shown to be more efficient than the conventional training methods.

The fast convergence property of RLS algorithm can be made use of to speed up the training of

other networks like CNNs. On the other hand, introducing more general non-linearity in activation

functions and mini-batch training could potentially improve the performance of networks.

1.3 Contributions of the Present Work

The main contributions of this work include: (a) development of a more general recursive learn-

ing rule for neural networks with mini-batch extension, (b) application of the proposed RLS-based

learning rule for CNNs and the study of its computational complexity and (c) the performance

analysis of the proposed method on two datasets, namely MNIST and Fashion-MNIST. The key
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contribution of this work is to develop the detailed derivation of the general RLS-based learning

rule for CNNs and similar networks used in machine learning problems.

In order to introduce the proposed RLS-based method, a detailed review of CNNs and three

main training approaches, i.e., SGD [5], RMSProp [15] and Adam [18], are first presented. The

review of CNNs includes the explicit forward-pass equations for the convolutional layers, the pool-

ing layers, and the fully connected layers. We then show how the back-propagation learning can

be extended to CNNs. Next, we apply the RLS learning rule to CNNs and present the derivation of

the recursive updating equations for the convolutional layers and the final fully connected layers.

The proposed RLS-based approach on CNNs is then extended to the mini-batch case and com-

pared with other three main learning approaches in terms of their computational complexity and

convergence speeds. After that, the proposed RLS-based training method is implemented on two

datasets to evaluate the accuracy and convergence speed performance. Finally, observations and

conclusions are made based on the simulation results.

1.4 Thesis Organization

This thesis is organized as follows: In Chapter 2, a full review of the CNN structure and the

three aforementioned training approaches are presented. The review includes forward pass and the

calculation of the gradients of the unknown parameters via error back-propagation method. The

updating equations for each approach are then given. Chapter 3 provides the general RLS learning

and its application to CNNs. For training CNNs recursively, the derivation follows those in Chapter

2 and the recursive updating equations for each unknown parameter are obtained. Furthermore, the

recursive updating equations for mini-batch are derived explicitly and the computational complex-

ity is analyzed. Chapter 4 presents the implementation results and analysis of the trained CNNs

using the proposed RLS-based method on two datasets, i.e., MNIST and Fashion-MNIST. Finally,

in Chapter 5, conclusions on the proposed method are made and some potential future works are

discussed.
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Chapter 2

Review of Convolutional Neural Networks and

Training Approaches

2.1 Introduction

Image recognition using large fully connected conventional multi-layer back-propagation neu-

ral networks (BPNNs) needs massive number of parameters to be found during the learning phase.

Training of such a large network with a huge number of parameters requires an overwhelmingly

large training dataset and hence increased computational costs. Additionally, large BPNNs with a

huge number of parameters generally lead to poor generalization performance on the unseen data.

Also, the objects of interest can be anywhere in the images and have different sizes. Although the

images can be scaled and centered, this pre-processing cannot always be perfect. Thus, in order

to train a BPNN successfully, the training samples need to cover every possible location of the

objects in the images. Besides, spatially adjacent pixels are highly correlated. Therefore, when the

images are reshaped into vectors and applied as the input to BPNNs, the topology of the objects is

completely lost.

On the contrary, convolutional neural networks (CNNs) use a weight-sharing scheme to reduce

the number of parameters. These shared weights can be regarded as filter taps, and the filtered

images (called feature maps) are the convolution results of the input images with the filter taps.

Another benefit of CNNs is that, the spatial information can be made use of, thus the properties

of the objects (e.g., edges, corners) can be retained. After the convolutions are done or the feature

maps have been extracted, the most crucial information is the relative location to other features

rather than the exact location in the image [7]. In other words, the precise positions wouldn’t be

needed to identify the pattern as they may confuse the network since the positions might vary for

different features. On the other hand, as indicated in [3], the higher level the features are, the lesser
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precise location information is need for classification purposes. Moreover, the reduced precision

is even advantageous because with the high precision, a slight distortion or translation would be

a detriment to the representation. The pooling layers in CNNs can reduce the precise position of

the feature maps by performing pooling operations to obtain the pooled feature maps. As a result,

the resolutions of the feature maps are reduced so the networks become less sensitive to the shifts

and distortion. In this way, one can note the similarity between the CNN and the filter banks in the

discrete wavelet transform (DWT) [23,24]. They both use filters to extract information of the input

and sub-sample the filtered results to obtain feature maps or detail coefficients. But CNNs use

training to find the optimal filter parameters while the filters in the wavelet transform are generally

pre-defined.

In this chapter, we review the CNNs forward and backward passes. First, the forward pass

equations for convolutional, pooling and fully connected layers are provided. Then, the existing

gradient-based training approaches for CNNs that use error back-propagation are presented. In

particular, we review the three main training approaches, including stochastic gradient descent

(SGD) [2,3,5,13], root mean square propagation (RMSProp) [15], and adaptive moment estimation

(Adam) [18] and their properties and pros and cons.

2.2 CNN Forward Pass

In this section, the forward pass operations of the CNNs are reviewed. Starting from the in-

put image, we propagate it through multiple convolutional and pooling layers to extract low-,

intermediate- and high-level features. Each convolutional layer has a set of filters that generate

filtered outputs via local convolution operation. Then, two types of pooling functions may be used

to sub-sample the output of each convolutional layer.

A CNN and its layers were shown in Figure 1.1. Given a grayscale input image (single channel

case), the convolution is performed using a set of filters and an activation function to extract the

features from the input image. Consequently, the total number of such feature maps is equal to

the number of filters in the first layer. However, if the input is a color image (red, green, and blue
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channels), the convolution and activation can still be performed to all the channels independently,

and then the results are combined to yield a decision on the color image.

After the convolution and non-linear activation operations, the pooling layer sub-samples each

filtered feature map from the previous layer, resulting in smaller size pooled feature maps. This

pooling layer doesn’t require any weights but reduces the resolution and the size of the feature

maps. The outputs (or pooled feature maps) from the first pooling layer are applied as inputs to

the next convolutional layer and this process is repeated layer-by-layer until the last pooling layer,

the outputs of which are applied to a fully connected network for final decision-making. Note that

while the size of the pooled feature maps at the last pooling layer is much smaller than the size

of the original input image, the total number of the pooled feature maps becomes larger than the

number of them at the previous layers.

The outputs of the last layer are flattened before applying them to the final fully connected

layer. Although only two fully connected layers are shown in Figure 1.1, more fully connected

layers can be added between the flattened layer and the output layer. During the training phase,

the outputs of the fully connected layer are used along with the desired (target) output values to

generate the mean squared error (MSE) cost function for minimization.

2.2.1 Convolutional and Pooling Layers

In this section, we derive the convolution and pooling equations for the lth layer where l ∈

[1, L]. Suppose there are A pooled feature maps at the (l − 1)th layer and B feature maps of size

I × I and pooled feature maps of size J ×J at the lth layer, the detailed connections between them

are shown in Figure 2.1.

For t ∈ [1, T ], a ∈ [1, A], b ∈ [1, B], i ∈ [1, I2], at the training sample t, let net
(l)
b,i(t) be the

convolution sum result before the activation function of the ith pixel in the bth feature map at the lth

layer, vector z
(l−1)
a,i (t) be the vectorized ith input image block from the ath pooled feature map at

the (l− 1)th layer, and vector k
(l)
a,b(t) ∈ R

Kl be the filter coefficients including the bias term, which

filters the ath pooled feature map at the (l − 1)th pooling layer to yield the bth feature map at the lth

9



Figure 2.1: Connections between (l − 1)th and l
th layers in CNN. The filter k

(l)
a,b convolves the a

th pooled

feature map at (l− 1)th pooling layer to yield the bth feature map (after activation function) at the lth convo-

lutional layer. The feature maps are then pooled by a moving mask S leading to the pooled feature maps.

convolutional layer with Kl being the size of the filter including the bias. Let f(.) be the activation

function at nodes, then we have

net
(l)
b,i(t) =

A
∑

a=1

z
(l−1)
a,i

T
(t)k

(l)
a,b(t), (2.1)

and

c
(l)
b,i(t) = f(net

(l)
b,i(t)), (2.2)

where c
(l)
b,i(t) is the resultant ith pixel of the bth feature map at the lth convolutional layer. For l = 1,

i.e., the first convolutional layer, and A = 1 for the first layer (1 channel), z
(0)
1,i (t) is the vectorized

ith block of the tth training image.
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The pooling operation follows the local convolution operations performed at the convolutional

layer. The pooling functions could be either max pooling, averaging, and sub-sampling operations.

For i1, i2 ∈ [1, I], j1, j2 ∈ [1, J ], if the pooling mask of size S1× S2 is denoted by S , then the max

pooling is given by

z
(l)
b,(j1,j2)

(t) = max
i1,i2∈S

{c
(l)
b,(i1,i2)

(t)}, (2.3)

and the average pooling is given by

z
(l)
b,(j1,j2)

(t) =
1

|S|

∑∑

i1,i2∈S

c
(l)
b,(i1,i2)

(t), (2.4)

where c
(l)
b,(i1,i2)

(t) and z
(l)
b,(j1,j2)

(t) are the tripled-indexed (i1, i2)
th and (j1, j2)

th pixels in the bth fea-

ture map and pooled feature map at lth layer, |S| is the cardinality of S . Typically, S is of size

2-by-2 and moves across the feature maps. Note that here we used tripled-indexed notation. How-

ever, the resulting triple indexing images c
(l)
b,(i1,i2)

(t) and z
(l)
b,(j1,j2)

(t) can be reshaped into double

indexing c
(l)
b,i(t) and z

(l)
b,j(t) by i = I(i1 − 1) + i2, j = J(j1 − 1) + j2.

Finally, the pooled feature maps at the lth become the inputs to the (l+1)th convolutional layer

to produce the feature maps and the corresponding pooled feature maps. This procedure can be

repeated until the last convolutional and pooling layers, the output of which are flattened into 1-D

array before applying to the fully connected layer.

2.2.2 Fully Connected Layer and Cost Function

Let y be the input vector including the bias term of the fully connected layer and suppose there

are M feature maps and pooled feature maps of size N ×N at the last convolutional and pooling

layer. Define h := N2(m − 1) + n where n ∈ [1, N2], m ∈ [1,M ], then the hth element yh of

vector y is

yh(t) = z(L)m,n(t), (2.5)

where z
(L)
m,n(t) is the nth pixel of the mth pooled feature map at the last pooling layer. In addition,

let yMN2+1(t) = 1 for the convenience of vector product with the bias term in the weight vectors.

11



If we define F (.) to be the concatenating operator, then we can write

y(t) = F ({z(L)m,n(t)}m=1,··· ,M, n=1,··· ,N2). (2.6)

As for the reverse process, given y ∈ R
MN2+1, we first delete the last term 1, then for the other

elements,

z(L)m,n(t) = F−1
m,n(y(t)) = yN2(m−1)+n(t),m ∈ [1,m], n ∈ [1, N2]. (2.7)

For the output of the fully connected layer with total of P nodes, the aggregated input to node

p ∈ [1, P ] is

net(L+1)
p (t) = yT (t)wp(t), (2.8)

where wp(t) ∈ R
MN2+1 is the weight vector including the bias term. Also, the output of the node

p is

o(L+1)
p (t) = f(net(L+1)

p (t)). (2.9)

Once the aggregated output o
(L+1)
p (t)’s are generated, we can form the cost function which is

minimized (or maximized) during the training to find the unknown filter weights of the convolu-

tional layers as well as the weights of the fully connected layer. Suppose the desired output of the

pth neuron is dp(t). The cost function, that is commonly used to train BPNNs or CNNs, is the mean

squared error (MSE) between the desired output dp(t) and the actual ones o
(L+1)
p (t), i.e., after T

iterations,

J (T ) :=
1

2T

T
∑

t=1

P
∑

p=1

(dp(t)− o(L+1)
p (t))2 =

1

2T

T
∑

t=1

P
∑

p=1

e(L+1)
p

2
(t), (2.10)

where

e(L+1)
p (t) := dp(t)− o(L+1)

p (t). (2.11)

This cost function is minimized to yield (ideally) minimal MSE estimate of the network pa-

rameters. Alternatively, we can write the cost function as

12



J (T ) =
1

T

T
∑

t=1

L(t), (2.12)

where

L(t) :=
1

2

P
∑

p=1

e(L+1)
p

2
(t). (2.13)

Thus, L(t) is the sum squared error (SSE) over the single training sample t. Minimizing this

cost function corresponds to iterative online learning vs. the "batch learning" in the former case.

We will use the cost function in (2.13) to devise different learning algorithms for CNNs along with

the error back-propagation, which are described next.

2.3 Error Back-Propagation of CNN

This section demonstrates how to update the unknown parameters of CNN via minimizing the

cost function in (2.13) and error back-propagation method [1, 2, 25]. As far as the gradient-based

methods are concerned, we need to derive the explicit equations for the partial derivatives of the

cost function L(t) in (2.13) w.r.t. the weight vectors of the fully connected layer and those of the

convolutional layers.

Starting from the fully connected layer, taking the partial derivative of L(t) w.r.t. wp(t), using

equations in (2.8), (2.9), (2.11) and (2.13), and applying the chain rule, we obtain

∂L(t)

∂wp(t)
=

∂e
(L+1)
p (t)

∂wp(t)
e(L+1)
p (t)

= [
∂e

(L+1)
p (t)

∂o
(L+1)
p (t)

∂o
(L+1)
p (t)

∂net
(L+1)
p (t)

∂net
(L+1)
p (t)

∂wp(t)
]e(L+1)

p (t)

= −f ′(net(L+1)
p (t))y(t)e(L+1)

p (t)

= −f ′(net(L+1)
p (t))y(t)(dp(t)− f(yT (t)wp(t)), (2.14)

where f ′(.) is the first-order derivative of the activation function.

Next, we back-propagate the errors to the input nodes of the fully connected layer through the

weight vector. To do that, we find the partial derivative of L(t) w.r.t. the input vector of the fully
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connected layer,

∂L(t)

∂y(t)
=

P
∑

p=1

∂e
(L+1)
p (t)

∂y(t)
e(L+1)
p (t)

= −
P
∑

p=1

f ′(net(L+1)
p (t))wp(t)e

(L+1)
p (t). (2.15)

Figure 2.2: Error back-propagation from the fully connected layer to the last convolutional and the pooling

layers. The back-propagated errors from the fully connected layer are first reshaped and then upsampled.

We then back-propagate the error to the (L− 1)th pooling layer.

However,
∂L(t)
∂y(t)

is in the form of a flattened long vector from the fully connected layer. Recall

that there are M feature maps of size W ×W and pooled feature maps of size N × N at the last

convolutional and pooling layers, respectively as shown in Figure 2.2. Thus, we need to reshape it

back as M pooled feature maps of size N × N . According to the reverse concatenation operator

in (2.7), the partial derivative of L(t) w.r.t. the nth pixel in the mth pooled feature map
∂L(t)

∂z
(L)
m,n(t)

is

∂L(t)

∂z
(L)
m,n(t)

= F−1
m,n(

∂L(t)

∂y(t)
),m ∈ [1,m], n ∈ [1, N2]. (2.16)
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where
∂L(t)
∂y(t)

can be obtained via (2.15).

Now, the errors are back-propagated to the Lth pooling layer. Since the pooled feature maps

are sub-sampled from the feature maps, the partial derivatives of L(t) w.r.t. the pixels in the

convolutional layer can be obtained by upsampling the partial derivatives of L(t) w.r.t. the pixels

in the pooled feature maps.

Specifically, we first reshape
∂L(t)

∂z
(L)
m,n(t)

into the triple-indexed form with the (n1, n2)
th pixel

∂L(t)

∂z
(L)
m,(n1,n2)

(t)
using n = N(n1 − 1) + n2, where n1, n2 ∈ [1, N ]. Recall that the pooling mask

S is of size S1×S2. Then, the partial derivative of L(t) w.r.t. the (w1, w2)
th pixel in the mth feature

map
∂L(t)

∂c
(L)
m,(w1,w2)

(t)
is

∂L(t)

∂c
(L)
m,(w1,w2)

(t)
=

∂L(t)

∂z
(L)
m,(⌈w1/S1⌉,⌈w2/S2⌉

(t)
, w1, w2 ∈ [1,W ], (2.17)

where ⌈.⌉ denotes the ceiling function. Finally, the tripled-indexed
∂L(t)

∂c
(L)
m,(w1,w2)

(t)
can be reshaped

back to the double-indexed form for the convenience of the next derivation using w = W (w1 −

1) + w2. If we define upsample(.) operator to be the upsampling and reshaping process above,

then we can write

∂L(t)

∂c
(L)
m,w(t)

= upsample(
∂L(t)

∂z
(L)
m,n(t)

), n ∈ [1, N2], w ∈ [1,W 2]. (2.18)

where
∂L(t)

∂z
(L)
m,n(t)

can be found using (2.16).

Now, we are ready to find the partial derivative of L(t) w.r.t. the filter vector k
(L)
q,m(t), which

connects the qth, q ∈ [1, Q], pooled feature map at the (L− 1)th layer to yield the mth, m ∈ [1,M ],

feature map at the Lth layer. To demonstrate it, we write down the forward pass equations from the

(L− 1)th pooling layer to the Lth convolutional layer

net(L)m,w(t) =

Q
∑

q=1

z(L−1)
q,w

T
(t)k(L)

q,m(t), (2.19)
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where z
(L−1)
q,w (t) is the vectorized block of the qth pooled feature map at (L− 1)th pooling layer for

the wth pixel of the feature maps at the Lth layer. Also,

c(L)m,w(t) = f(net(L)m,w(t)). (2.20)

Because of the difficulty in expressing the reshaped and upsampled back-propagated errors in a

close form, we make use of the chain rule, and consider c
(L)
m,w(t)’s as intermediate variables to find

the partial derivative of L(t) w.r.t. k
(L)
q,m(t). Note all m ∈ [1,M ], there are MW 2 such variables in

total. Thus, we can write

∂L(t)

∂k
(L)
q,m(t)

=
M
∑

m′=1

W 2
∑

w=1

∂L(t)

∂c
(L)
m′,w(t)

∂c
(L)
m′,w(t)

∂k
(L)
q,m(t)

=
W 2
∑

w=1

∂L(t)

∂c
(L)
m,w(t)

∂c
(L)
m,w(t)

∂k
(L)
q,m(t)

=
W 2
∑

w=1

∂L(t)

∂c
(L)
m,w(t)

∂c
(L)
m,w(t)

∂net
(L)
m,w(t)

∂net
(L)
m,w(t)

∂k
(L)
q,m(t)

=
W 2
∑

w=1

∂L(t)

∂c
(L)
m,w(t)

f ′(net(L)m,w(t))z
(L−1)
q,w (t). (2.21)

where
∂L(t)

∂c
(L)
m,w(t)

can be calculated using (2.18). The summation over all M feature maps can be

reduced to the mth feature map in the second line since k
(L)
q,m(t) only leads to the mth feature map

and does not connect to other feature maps.

Finally, we back-propagate the error from the Lth convolutional layer to the (L − 1)th pooling

layer thought the filters, so that we can derive the error back-propagation at the (L− 1)th layer. To

do this, we first find the partial derivative of L(t) w.r.t. the input block z
(L−1)
q,w (t) by considering

c
(L)
m,w(t)’s as the intermediate variables. This gives
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∂L(t)

∂z
(L−1)
q,w (t)

=
M
∑

m=1

W 2
∑

w′=1

∂L(t)

∂c
(L)
m,w′(t)

∂c
(L)
m,w′(t)

∂z
(L−1)
q,w (t)

=
M
∑

m=1

∂L(t)

∂c
(L)
m,w(t)

∂c
(L)
m,w(t)

∂z
(L−1)
q,w (t)

=
M
∑

m=1

∂L(t)

∂c
(L)
m,w(t)

∂c
(L)
m,w(t)

∂net
(L)
m,w(t)

∂net
(L)
m,w(t)

∂z
(L−1)
q,w (t)

=
M
∑

m=1

∂L(t)

∂c
(L)
m,w(t)

f ′(net(L)m,w(t))k
(L)
q,m(t). (2.22)

where
∂L(t)

∂c
(L)
m,w(t)

can be calculated using (2.18). Note that the summation over all W 2 pixels is

reduced to the wth pixels only in each feature map because z
(L−1)
q,w (t) only leads to c

(L)
m,w(t).

Then,
∂L(t)

∂z
(L−1)
q,w (t)

is reshaped into a block at wth location, i.e., the location of the input block

corresponding to the reshaped vector z
(L−1)
q,w (t). Furthermore, after doing it for all w values, the

partial derivatives of L(t) w.r.t. the pixels in the qth pooled feature map at the (L − 1)th pooling

layer can be obtained by summing over all W 2 blocks. Finally, by doing it for all q values, the

errors are back-propagated from the Lth convolutional layer to the (L− 1)th pooling layer, and the

error back-propagation is ready to be applied to the (L− 1)th layer.

Next, we focus on the error back-propagation from lth layer, l ∈ [1, L − 1], to (l − 1)th layer

as shown in Figure 2.3. Suppose the errors have been back-propagated to the lth pooling layer. In

other words,
∂L(t)

∂z
(l)
b,j

(t)
’s have been obtained, b ∈ [1, B], j ∈ [1, J2]. According to the upsample(.)

operator defined in (2.18), the partial derivative of L(t) w.r.t. the ith pixel of the bth feature map is

∂L(t)

∂c
(l)
b,i(t)

= upsample(
∂L(t)

∂z
(l)
b,j(t)

), i ∈ [1, I2]. (2.23)

By doing it for all i and b values, the errors can be back-propagated to the lth convolutional

layer and we have all
∂L(t)

∂c
(l)
b,i

(t)
’s.

Next, we derive the partial derivative of L(t) w.r.t. k
(l)
a,b(t). Similar to the derivation for the Lth

layer, we consider c
(l)
b,i(t)’s as in total of BI2 intermediate variables and use the chain rule, i.e.,
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Figure 2.3: Error back-propagation at the l
th layer. Errors at the (l+ 1)th convolutional layer are first back-

propagated through the filters at this layer to the l
th pooling layer, then upsampled to the l

th convolutional

layer. Finally, they back-propagation to the (l − 1)th pooling layer through the filters at lth layer. All the

nodes involving k
(l)
a,b(t) are colored as orange.

∂L(t)

∂k
(l)
a,b(t)

=
B
∑

b′=1

I2
∑

i=1

∂L(t)

∂c
(l)
b′,i(t)

∂c
(l)
b′,i(t)

∂k
(l)
a,b(t)

=
I2
∑

i=1

∂L(t)

∂c
(l)
b,i(t)

∂c
(l)
b,i(t)

∂k
(l)
a,b(t)

=
I2
∑

i=1

∂L(t)

∂c
(l)
b,i(t)

∂c
(l)
b,i(t)

∂net
(l)
b,i(t)

∂net
(l)
b,i(t)

∂k
(l)
a,b(t)

=
I2
∑

i=1

∂L(t)

∂c
(l)
b,i(t)

f ′(net
(l)
b,i(t))z

(l−1)
a,i (t), (2.24)

where
∂L(t)

∂c
(l)
b,i

(t)
can be calculated using (2.23). Again, the summation over B is reduced to b because

k
(l)
a,b(t) only leads to the bth feature map and doesn’t connect to other feature maps. Also, z

(l−1)
a,i (t)

is the vectorized block of the ath pooled feature map at (l − 1)th pooling layer for the ith pixel of
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the lth-layer feature maps. Note that the partial derivative of L(t) w.r.t. k
(L)
q,m(t) in (2.21) can be

merged here. Therefore, for the next updating methods, we only focus on (2.24) and l ∈ [1, L].

Finally, if the lth layer is not the first layer of CNN, we need to back-propagate the error from

the lth convolutional layer to the (l − 1)th pooling layer through the filters, so that the error back-

propagation can be derived at the (l−1)th layer. This is done in a similar manner as for the previous

case. This error back-propagation procedure can be repeated until the first layer to find the partial

derivatives of L(t) w.r.t. all the parameters in CNN.

Although we have derived
∂L(t)

∂k
(l)
a,b

(t)
in (2.24), it is difficult to write it in a close form or expand

∂L(t)

∂c
(l)
b,i

(t)
explicitly due to the changed indices from upsampling operator, the block summation in the

back-propagation from the (l+1)th convolutional layer to the lth pooling layer, etc. Thus, it is more

convenient to back-propagate the errors layer-by-layer and eventually find
∂L(t)

∂k
(l)
a,b

(t)
. Furthermore,

in the next section, we will introduce how to update these parameters of the convolutional and

the fully connected layers based on the partial derivatives w.r.t. them but without expanding them

explicitly.

2.4 Training Methods for CNN

After obtaining the partial derivatives of the cost function w.r.t. the unknown parameter vectors

in (2.14) and (2.24), we can make use of them and derive the updating equations for training CNN

using different methods. In this section, three main learning methods are reviewed, including

stochastic gradient descent (SGD) [2,3,5,13], root mean square propagation (RMSProp) [15], and

the adaptive moment estimation (Adam) [18]. All these methods need to initialize the parameters

randomly at the beginning of the training, and assign a proper learning rate, which is denoted by η

in this section. The updating equations are given without expanding the explicit forms of the partial

derivatives of L(t) w.r.t. the unknown parameter vectors due to the reason mentioned above. In

addition, these updating equations can be implemented for multiple epochs until convergence.
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2.4.1 Stochastic Gradient Descent and Momentum Methods

Stochastic gradient descent (SGD) [2, 3, 5, 13] is the most commonly used method for training

CNNs and BPNNs, which updates the networks’ parameters after the application of each training

sample hence enabling online learning. For t ∈ [1, T ], the updating equations for the parameters

of the final fully connected layer and the lth convolutional layer are, respectively

wp(t) = wp(t− 1)− η
∂L(t)

∂wp(t)
, p ∈ [1, P ], (2.25)

k
(l)
a,b(t) = k

(l)
a,b(t− 1)− η

∂L(t)

∂k
(l)
a,b(t)

, a ∈ [1, A], b ∈ [1, B], l ∈ [1, L]. (2.26)

The initial wp(0), k
(l)
a,b(0) are initialized randomly. Same initialization is done for the next two

methods as well.

To accelerate the convergence of SGD, a momentum term can be added to the SGD updating

equation [14]. If γ denotes the momentum factor, then the updating equations of the SGD with

the momentum term for the parameters of the final fully connected layer and the lth convolutional

layer become,

Θ(L+1)
p (t) = γΘ(L+1)

p (t− 1) + η
∂L(t)

∂wp(t)
, (2.27)

wp(t) = wp(t− 1)−Θ(L+1)
p (t), (2.28)

Θ
(l)
a,b(t) = γΘ

(l)
a,b(t− 1) + η

∂L(t)

∂k
(l)
a,b(t)

, (2.29)

k
(l)
a,b(t) = k

(l)
a,b(t− 1)−Θ

(l)
a,b(t), (2.30)

respectively, where Θ
(L+1)
p (0) and Θ

(l)
a,b(0) can be initialized to zero vectors. The momentum factor

γ can be set to 0.9 as recommended in [14]. One can notice that when γ = 0, the updating

equations become the standard SGD updating.
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2.4.2 RMSProp Method

RMSProp [15] introduces the moving average of the squared gradients (elementwise squared

for vectors) into the updating equations. It is also well-known for its online and non-stationary

learning abilities [17]. For p ∈ [1, P ], a ∈ [1, A], and b ∈ [1, B], l ∈ [1, L], the weight up-

dating equations for the final fully connected layer, and the lth convolutional layer of CNN are,

respectively

M (L+1)
p (t) = βM (L+1)

p (t− 1) + (1− β)(
∂L(t)

∂wp(t)
)2, (2.31)

wp(t) = wp(t− 1)−
η

√

M
(L+1)
p (t)

∂L(t)

∂wp(t)
, (2.32)

M
(l)
a,b(t) = βM

(l)
a,b(t− 1) + (1− β)(

∂L(t)

∂k
(l)
a,b(t)

)2, (2.33)

k
(l)
a,b(t) = k

(l)
a,b(t− 1)−

η
√

M
(l)
a,b(t)

∂L(t)

∂k
(l)
a,b(t)

, (2.34)

where M
(L+1)
p (t) and M

(l)
a,b(t) are the moving average of the squared gradients, which can be ini-

tialized as numbers close to zero, and β is known as the discounting factor which determines the

weights in the convex-combinations in (2.31) and (2.33). The recommended choice for β = 0.9

[15].

2.4.3 Adam Method

Adam [18] combines RMSProp with bias-correction and momentum terms, and estimates the

first- and the second-order moments of the unknown parameters’ gradients to compute learning

rates for different parameters via scaling the learning rate by the squared gradients (elementwise

squared for vectors) of the unknown parameters. According to [18], for p ∈ [1, P ], a ∈ [1, A], and

b ∈ [1, B], the updating equations for the final fully connected layer, and the lth convolutional layer

l of CNN are, respectively

M (L+1)
p (t) = β1M

(L+1)
p (t− 1) + (1− β1)

∂L(t)

∂wp(t)
, (2.35)
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V (L+1)
p (t) = β2V

(L+1)
p (t− 1) + (1− β2)(

∂L(t)

∂wp(t)
)2, (2.36)

M̂ (L+1)
p (t) =

M
(L+1)
p (t)

1− βt
1

, (2.37)

V̂ (L+1)
p (t) =

V
(L+1)
p (t)

1− βt
2

, (2.38)

wp(t) = wp(t− 1)− η
M̂

(L+1)
p (t)

√

V̂
(L+1)
p (t) + ǫ

, (2.39)

M
(l)
a,b(t) = β1M

(l)
a,b(t− 1) + (1− β1)

∂L(t)

∂k
(l)
a,b(t)

, (2.40)

V
(l)
a,b (t) = β2V

(l)
a,b (t− 1) + (1− β2)(

∂L(t)

∂k
(l)
a,b(t)

)2, (2.41)

M̂
(l)
a,b(t) =

M
(l)
a,b(t)

1− βt
1

, (2.42)

V̂
(l)
a,b (t) =

V
(l)
a,b (t)

1− βt
2

, (2.43)

k
(l)
a,b(t) = k

(l)
a,b(t− 1)− η

M̂
(l)
a,b(t)

√

V̂
(l)
a,b (t) + ǫ

, (2.44)

where M
(L+1)
p (t) and M

(l)
a,b(t) are the estimated first-order moment of gradients; V

(L+1)
p (t) and

V
(l)
a,b (t) are the estimated second-order moment of gradients [18]. They can be initialized as zero at

the beginning of the training. M̂
(L+1)
p (t) and M̂

(l)
a,b(t) are the bias-corrected first-order moment of

gradients; V̂
(L+1)
p (t) and V̂

(l)
a,b (t) are the bias-corrected second-order moment of gradients. Finally,

β1 and β2 are the exponential decay rates, which are less than 1 and control the exponential decay

rates of the moving averages, i.e., the first- and the second-order moment of gradients. In addition,

they can be regarded as the convex-combination of the first- and second-order moments with the

squared gradients; and ǫ is a small number added for numerical stability. The superscript t in βt
1 and

βt
2 implies raising to power t, i.e., the denominators of (2.37), (2.38), (2.42) and (2.43) approach
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1 as learning progresses, which implies less bias correction for the moment of gradients and more

unbiased estimation. As recommend in [18], β1 can be set to 0.9 and β2 can be set to 0.999.

To see how the bias is corrected [18], as an example let vw(t) be the second-order moment of

the weight vector wp(t). The exponential second-order moving average is

vw(t) = β2vw(t− 1) + (1− β2)(
∂L(t)

∂wp(t)
)2, (2.45)

which can be written as a function of the gradients at all previous training samples:

vw(t) = (1− β2)
t

∑

τ=1

βt−τ
2 (

∂L(τ)

∂wp(τ)
)2. (2.46)

In order to know how the expection of the exponential second-order moving average E[vw(t)]

relates to the true second-order moment E[( ∂L(t)
∂wp(t)

)2], so that we can correct the difference between

them, we take E[.] on both sides, and assume that the accumulated exponential second-order mov-

ing average up to sample t can be approximated in terms of the exponential second-order moving

average at sample t, i.e.,

E[vw(t)] = E[(1− β2)
t

∑

τ=1

βt−τ
2 (

∂L(τ)

∂wp(τ)
)2]

= E[(
∂L(t)

∂wp(t)
)2](1− β2)

t
∑

τ=1

βt−τ
2 + ξ

= E[(
∂L(t)

∂wp(t)
)2](1− βt

2) + ξ. (2.47)

where ξ is the approximation error. Now, if E[( ∂L(t)
∂wp(t)

)2] is stationary, then ξ = 0; otherwise ξ can

be kept small by choosing proper β2 such that the assigned weight (1−β2) to the squared gradients

in (2.45) is small. At the same time, we divide by (1−βt
2) on both sides to correct the initialization

bias as,

E[vw(t)]

1− βt
2

= E[(
∂L(t)

∂wp(t)
)2] +

ξ

1− βt
2

, (2.48)
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which is corresponding to the bias correction in (2.38) and (2.43). Analogous derivation can be

done for the first-order moment of gradients and the filter weights k
(l)
a,b(t).

2.5 Conclusion

In this chapter, we reviewed the details of convolutional neural network forward and backward

passes as well as three training approaches. The derivation of the learning equations in this thesis

is based on the mean squared error (MSE) as the cost function. There are, however, other choices

for the cost function, e.g, cross-entropy [26, 27]. Although MSE is more robust to the most opti-

mization scenarios, cross-entropy can lead to faster convergence and more optimal minima [28] as

well as better posterior probability estimation of the training samples [29]. The adopted learning

methods require obtaining the gradient of the cost function w.r.t. each unknown parameter vectors

to be used in the error back-propagation. Also, some learning parameters such as learning rates

need to be assigned in advance. The three covered training methods in this chapter are the most

commonly used ones nowadays. However, all of them are searching methods, which means they

have issues with local minima and trade-off between the speed of convergence and accuracy. In-

spired by these issues, we introduce recursive least squares (RLS) learning for CNNs in the next

chapter, which doesn’t have the local minima or the speed-accuracy trade-off issues.
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Chapter 3

Recursive Least Squares Learning for CNNs

3.1 Introduction

Recursive least squares (RLS) algorithm [8–10] is an adaptive algorithm to solve the least

squares (LS) problem for transversal filter weights (taps) [8]. Generally, given the LS estimate of

the weight vector of the filter at the time t, we would like to estimate the weight vector at time t+1

recursively based upon limited memory on the past data.

The RLS algorithm was developed to solve the convergence speed-accuracy trade-off problem

of the standard least mean squares (LMS) [8–10] type algorithms. That is, the RLS algorithm

provides much faster convergence property while it does not suffer from misadjustment issues

[8–11]. However, the price to pay is the increased computational cost of the RLS algorithm [8–10].

In this chapter, a RLS-based training method is developed to train the unknown parameters

of convolutional neural networks (CNNs). The chapter is organized as follows. In Section 3.2,

the recursive learning rule is applied to CNNs by finding the recursive updating equations for the

unknown parameter vectors. Then, Section 3.3 extends the learning rule to the mini-batch case,

where the updating of the unknown parameters is based upon a mini-batch of samples instead of

a single sample at a time. Section 3.4 presents the analysis of the computational complexity of

the proposed RLS-based training approach and its comparison with the commonly used training

methods including SGD, RMSProp and Adam covered in Chapter 2. Finally, the conclusion of the

proposed RLS-based training approach is made in Section 3.5.

3.2 Training CNN using Recursive Least Squares

The derivation of the RLS algorithm in [8–10] starts from the partial derivatives of the cost

function w.r.t. the unknown parameters and solving the normal equations recursively. This is

done by re-writing the normal equations in terms of the correlation matrices and cross-correlation
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vectors and find the innovations and the gain matrices for RLS updating [8–11]. However, the re-

cursive updating for the convolutional layers in CNN require a variation of RLS derivation different

than those in [8–11]. This RLS variant is derived in this thesis.

In this section, we first give a summary of the forward pass equations in CNN. After that, we

modify the mean squared error (MSE) cost function in (2.10) so that the obtained normal equations

can be expressed in terms of the sample correlation matrices and the sample cross-correlation

vectors for RLS updating. Next, we take the partial derivatives of the modified cost function w.r.t.

each parameter vector in the convolutional and the fully connected layers of a CNN. Although

the modified cost function is different than the cost function defined in Chapter 2, most of the

calculation follows the same procedure. We then obtain the normal equations and re-write them

in terms of the correlation matrices and cross-correlation vectors over the past and present data

samples. Finally, we find the recursive updating equation for each parameter vector.

3.2.1 Summary of Forward Pass Equations

Here, for the sake of continuity, we summarize the forward pass equations of CNN presented

in Chapter 2. For t ∈ [1, T ], a ∈ [1, A], b ∈ [1, B], i ∈ [1, I2], l ∈ [1, L], at the training sample t,

the convolution sum net
(l)
b,i(t) before the activation function is

net
(l)
b,i(t) =

A
∑

a=1

z
(l−1)
a,i

T
(t)k

(l)
a,b(t), (3.1)

and

c
(l)
b,i(t) = f(net

(l)
b,i(t)), (3.2)

where c
(l)
b,i(t) is the ith pixel of the bth feature map at the lth convolutional layer; z

(l−1)
a,i (t) is the

vectorized ith input image block from the ath pooled feature map at the (l− 1)th layer; k
(l)
a,b(t) is the

filter weight vector from the ath pooled feature map at the (l − 1)th pooling layer to the bth feature

map at the lth convolutional layer; f(.) is the activation function. These forward pass process

details of CNN are shown in Figure 2.2.1.
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The pooling operation follows the local convolution operations performed at the convolutional

layer. We reshape the pixels c
(l)
b,i(t) to c

(l)
b,(i1,i2)

(t) using i = I(i1 − 1) + i2. The reshaping is

necessary since we are using 2-dimensional moving masks here. Let S denote the pooling mask

of size S1 × S2. For i1, i2 ∈ [1, I], j1, j2 ∈ [1, J ], we can then use either max pooling given by

z
(l)
b,(j1,j2)

(t) = max
i1,i2∈S

{c
(l)
b,(i1,i2)

(t)}, (3.3)

or the average pooling given by

z
(l)
b,(j1,j2)

(t) =
1

|S|

∑∑

i1,i2∈S

c
(l)
b,(i1,i2)

(t), (3.4)

where z
(l)
b,(j1,j2)

(t) is the (j1, j2)
th pixels in the bth pooled feature map at lth layer; |S| is the cardinality

of S . The pixel s
(l)
b,(j1,j2)

(t) can be reshaped into double indexing z
(l)
b,j(t) by j = J(j1 − 1) + j2.

Here, we reshape it back for the convenience of the concatenating operator for the fully connected

layer.

Next, according to the concatenating operator F (.) defined in Chapter 2, we have the input y(t)

of the fully connected layer as

y(t) = F ({z(L)m,n(t)}m=1,··· ,M, n=1,··· ,N2). (3.5)

where z
(L)
m,n(t) is the nth pixels in the mth pooled feature map at Lth layer.

The weighted sum and the output of the pth node net
(L+1)
p (t) and o

(L+1)
p (t), p ∈ [1, P ], at the

fully connected layer are, respectively

net(L+1)
p (t) = yT (t)wp(t), (3.6)

and

o(L+1)
p (t) = f(net(L+1)

p (t)). (3.7)
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We will modify the MSE cost function defined in (2.10) and find the error back-propagation

based on the modified cost function in the next subsection.

3.2.2 Error Back-Propagation with the Modified Weighted Cost Function

To apply RLS algorithm to CNNs, we first modify the MSE cost function in (2.10) for iteration

t as

J̃ (t) :=
1

2t

t
∑

τ=1

λt−τ

P
∑

p=1

(δ(L+1)
p (τ)− net(L+1)

p (τ))2 =
1

2t

t
∑

τ=1

λt−τ

P
∑

p=1

ẽ(L+1)
p

2
(τ), (3.8)

where 0 < λ ≤ 1 is called the forgetting factor [8], ẽ
(L+1)
p (τ) := δ

(L+1)
p (τ) − net

(L+1)
p (τ), and

δ
(L+1)
p (τ) := f−1(dp(τ)).

In other words, the modified weighted MSE cost function is defined before the activation func-

tion f(.) between the desired value δ
(L+1)
p (τ) and the actual weight sum net

(L+1)
p (τ) of each neuron

p, p ∈ [1, P ]. In practice, if f−1(dp(τ)) goes to infinite when dp(τ) = 1, then f−1(dp(τ)) can be

specified as a large number. Also, the modified weighted MSE cost function can be written in

terms of the sum squared error (SSE) cost function L̃(τ) at each single training sample as

J̃ (t) =
1

t

t
∑

τ=1

λt−τ L̃(τ), (3.9)

where

L̃(τ) :=
1

2

P
∑

p=1

ẽ(L+1)
p

2
(τ). (3.10)

Based on this modification and the derivation of
∂L(t)
∂wp(t)

in (2.14), the partial derivative of the

modified cost function J̃ (t) w.r.t. the weight vector wp(t) after iteration t is
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∂J̃ (t)

∂wp(t)
=

1

t

t
∑

τ=1

λt−τ ∂ẽ
(L+1)
p (τ)

∂wp(t)
ẽ(L+1)
p (τ)

= −
1

t

t
∑

τ=1

λt−τy(τ)ẽ(L+1)
p (τ)

= −
1

t

t
∑

τ=1

λt−τy(τ)(δ(L+1)
p (τ)− yT (τ)wp(t)). (3.11)

Note that here we are using the most current estimate of the weight vector wp(t) even for

all previous τ ∈ [1, t − 1]. The errors are then back-propagated to the input nodes of the fully

connected layer through the weight vector wp(t). Next, we compute
∂L̃(τ)
∂y(τ)

as in Chapter 2, i.e.,

∂L̃(τ)

∂y(τ)
=

P
∑

p=1

∂ẽ
(L+1)
p (τ)

∂y(τ)
ẽ(L+1)
p (τ)

=
P
∑

p=1

[
∂ẽ

(L+1)
p (τ)

∂net
(L+1)
p (τ)

∂net
(L+1)
p (τ)

∂y(τ)
]ẽ(L+1)

p (τ)

= −
P
∑

p=1

wp(t)ẽ
(L+1)
p (τ). (3.12)

The error back-propagated from the fully connected layer to the Lth pooling layer remains the

same except they are based on the modified cost function L̃(τ), i.e.,

∂L̃(τ)

∂z
(L)
m,n(τ)

= F−1
m,n(

∂L̃(τ)

∂y(τ)
),m ∈ [1,m], n ∈ [1, N2], (3.13)

where
∂L̃(τ)
∂y(τ)

can be obtained using (3.12).

Once the errors have been back-propagated to the Lth pooling layers, same error back-propagation

can be applied to the previous layers for the feature maps and the pooled feature maps except using

the modified cost function L̃(τ). That is, for the lth convolutional layer, l ∈ [1, L],

∂L̃(τ)

∂c
(l)
b,i(τ)

= upsample(
∂L̃(τ)

∂z
(l)
b,j(τ)

), i ∈ [1, I2], j ∈ [1, J2], b ∈ [1, B], (3.14)

29



where
∂L̃(τ)

∂z
(l)
b,j

(τ)
can be derived layer-by-layer using the same process as in Chapter 2. Also,

∂J̃ (t)

∂k
(l)
a,b

(t)
,

a ∈ [1, A], can be derived using

∂J̃ (t)

∂k
(l)
a,b(t)

=
1

t

t
∑

τ=1

λt−τ ∂L̃(τ)

∂k
(l)
a,b(t)

=
1

t

t
∑

τ=1

λt−τ

I2
∑

i=1

∂L̃(τ)

∂c
(l)
b,i(τ)

∂c
(l)
b,i(τ)

∂net
(l)
b,i(τ)

∂net
(l)
b,i(τ)

∂k
(l)
a,b(t)

=
1

t

t
∑

τ=1

λt−τ

I2
∑

i=1

∂L̃(τ)

∂c
(l)
b,i(τ)

f ′(net
(l)
b,i(τ))z

(l−1)
a,i (τ), (3.15)

where
∂L̃(τ)

∂c
(l)
b,i

(τ)
can be found using (3.14). With the partial derivatives of the modified cost function

w.r.t. the unknown parameters in CNN, we are now ready to derive the RLS updating rule for each

weight vector, which is introduced next.

3.2.3 RLS Updating Rule for the Fully Connected Layer

This section demonstrates how to find the RLS updating rule for the fully connected layer.

This is done by first setting the partial derivatives of the cost function w.r.t. weight vectors to zero

and obtaining the normal equations. Then, we re-write these equations in terms of the correlation

matrix and cross-correlation vector, which will match the forms of the sample correlation matrices

and the sample cross-correlation vector in the general RLS learning rule [8–10].

We first set the partial derivative of the modified cost function w.r.t. the weight vector at the

fully connected layer in (3.11) to zero, which gives

∂J̃ (t)

∂wp(t)
= −

1

t

t
∑

τ=1

λt−τy(τ)(δ(L+1)
p (τ)− yT (τ)wp(t)) = 0. (3.16)

Now, define the weighted sample correlation matrix and cross-correlation vector of the fully

connected layer as

R(L+1)(t) :=
t

∑

τ=1

λt−τy(τ)yT (τ), (3.17)

and
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∆(L+1)
p (t) :=

t
∑

τ=1

λt−τy(τ)δ(L+1)
p (τ), (3.18)

respectively. Thus, the normal equation of the fully connected layer becomes

R(L+1)(t)wp(t) = ∆(L+1)
p (t). (3.19)

From the definitions in (3.17) and (3.18), it is clear that we have the following recursive equa-

tions for R(L+1)(t) and ∆
(L+1)
p (t):

R(L+1)(t) = λR(L+1)(t− 1) + y(t)yT (t), (3.20)

and

∆(L+1)
p (t) = λ∆(L+1)

p (t− 1) + y(t)δ(L+1)
p (t), p ∈ [1, P ]. (3.21)

Assuming R(L+1)−1
(t) exists, the updating equation for wp(t) becomes

wp(t) = R(L+1)−1
(t)∆(L+1)

p (t)

= R(L+1)−1
(t)[λ∆(L+1)

p (t− 1) + δ(L+1)
p (t)y(t)]

= R(L+1)−1
(t){λ

1

λ
[R(L+1)(t)− y(t)yT (t)]wp(t− 1) + δ(L+1)

p (t)y(t)}

= wp(t− 1) + P (L+1)(t)y(t)ẽ(L+1)
p (t), (3.22)

where ẽ
(L+1)
p (t) := δ

(L+1)
p (t)− net

(L+1)
p (t), and P (L+1)(t) := R(L+1)−1

(t).

However, one thing left here is to come up with a recursive equation for the matrix R(L+1)−1
(t)

or P (L+1)(t). As with the standard RLS method [8–10], we use the matrix inversion lemma [30],

which yields

R(L+1)(t)−1 =
1

λ
R(L+1)−1

(t− 1)−
1

λ

R(L+1)−1
(t− 1)y(t)yT (t)R(L+1)−1

(t− 1)

λ+ yT (t)R(L+1)−1
(t− 1)−1y(t)

, (3.23)
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or

P (L+1)(t) =
1

λ
[I − P (L+1)(t− 1)

y(t)yT (t)

λ+ yT (t)P (L+1)(t− 1)y(t)
]P (L+1)(t− 1). (3.24)

Define

G(L+1)(t) :=
P (L+1)(t− 1)y(t)

λ+ yT (t)P (L+1)(t− 1)y(t)
. (3.25)

Thus, we get

P (L+1)(t) =
1

λ
[I −G(L+1)(t)yT (t)]P (L+1)(t− 1), (3.26)

which is the recursive equation for P (L+1)(t) with initial matrix P (L+1)(0) = I .

3.2.4 RLS Updating Rule for the Convolutional Layers

Next, we derive the updating rule for the lth convolutional layer, where l ∈ [1, L]. To achieve

this, we need to find the sample correlation matrix and cross-correlation vector as well as the

normal equation of the filter weights. Assuming that the errors have been back-propagated to the

feature maps at the lth convolutional layer, we define

e
(l)
b,i(τ) :=

∂L̃(τ)

∂c
(l)
b,i(τ)

f ′(net
(l)
b,i(τ)), b ∈ [1, B], i ∈ [1, I2], (3.27)

which is the back-propagated error at ith pixel of bth feature map before the activation function. We

also define

δ
(l)
b,i(τ) := net

(l)
b,i(τ) + e

(l)
b,i(τ), (3.28)

which is the desired value before the activation function. Then, we can re-write (3.15) as, for

a ∈ [1, A], b ∈ [b, B],
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∂J̃ (t)

∂k
(l)
a,b(t)

=
1

t

t
∑

τ=1

λt−τ

I2
∑

i=1

z
(l−1)
a,i (τ)(δ

(l)
b,i(τ)− net

(l)
b,i(τ))

=
1

t

t
∑

τ=1

λt−τ

I2
∑

i=1

z
(l−1)
a,i (τ)(δ

(l)
b,i(τ)−

A
∑

a′=1

z
(l−1)
a′,i

T
(τ)k

(l)
a′,b(t))

=
1

t

t
∑

τ=1

λt−τ

I2
∑

i=1

z
(l−1)
a,i (τ)(δ

(l)
b,i(τ)− µ

(l)
i,a,b(τ)− z

(l−1)
a,i

T
(τ)k

(l)
a,b(t)), (3.29)

where

µ
(l)
i,a,b(τ) :=

A
∑

a′=1
a′ 6=a

z
(l−1)
a′,i

T
(τ)k

(l)
a′,b(t). (3.30)

Then, setting
∂J̃ (t)

∂k
(l)
a,b

(t)
to zero, we have normal equation

∂J̃ (t)

∂k
(l)
a,b(t)

=
1

t

t
∑

τ=1

λt−τ

I2
∑

i=1

z
(l−1)
a,i (τ)(δ

(l)
b,i(τ)− µ

(l)
i,a,b(τ)− z

(l−1)
a,i

T
(τ)k

(l)
a,b(t)) = 0. (3.31)

Now, we define the weighted sample correlation matrix and cross-correlation vector at the lth

convolutional layer as

R(l)
a (t) :=

t
∑

τ=1

λt−τ

I2
∑

i=1

z
(l−1)
a,i (τ)z

(l−1)
a,i

T
(τ), (3.32)

and

∆
(l)
a,b(t) :=

t
∑

τ=1

λt−τ

I2
∑

i=1

z
(l−1)
a,i (τ)(δ

(l)
b,i(τ)− µ

(l)
i,a,b(τ)), (3.33)

respectively. Thus, the normal equation of the lth convolutional layer becomes

R(l)
a (t)k

(l)
a,b(t) = ∆

(l)
a,b(t), a ∈ [1, A], b ∈ [b, B]. (3.34)

In addition, the weighted sample correlation matrix and cross-correlation vector at the training

sample t can be expressed as

R(l)
a (t) = λR(l)

a (t− 1) +
I2
∑

i=1

z
(l−1)
a,i (t)z

(l−1)
a,i

T
(t), (3.35)
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and

∆
(l)
a,b(t) = λ∆

(l)
a,b(t− 1) +

I2
∑

i=1

z
(l−1)
a,i (t)(δ

(l)
b,i(t)− µ

(l)
i,a,b(t)). (3.36)

Using a similar process as before and assuming R
(l)
a (t)−1 exists, the updating equation for

k
(l)
a,b(t) is

k
(l)
a,b(t) = R(l)

a (t)−1∆
(l)
a,b(t)

= R(l)
a (t)−1[λ∆

(l)
a,b(t− 1) +

I2
∑

i=1

(δ
(l)
b,i(t)− µ

(l)
i,a,b(t))z

(l−1)
a,i (t)]

= R(l)
a (t)−1{λ

1

λ
[R(l)

a (t)−
I2
∑

i=1

z
(l−1)
a,i (t)z

(l−1)
a,i

T
(t)]k

(l)
a,b(t− 1)

+
I2
∑

i=1

[δ
(l)
b,i(t)− µ

(l)
i,a,b(t)]z

(l−1)
a,i (t)}

= k
(l)
a,b(t− 1) + P (l)

a (t){
I2
∑

i=1

z
(l−1)
a,i (t)[δ

(l)
b,i(t)− µ

(l)
i,a,b(t)− z

(l−1)
a,i

T
(t)k

(l)
a,b(t− 1)]}, (3.37)

where P
(l)
a (t) := R

(l)
a

−1
(t). Again, we seek a recursive equation for P

(l)
a (t). To achieve this, we

can re-write R
(l)
a (t) for the lth convolutional layer in (3.35) as

R(l)
a (t) = λR(l)

a (t− 1) +
I2
∑

i=1

Z
(l−1)
a,i (t), (3.38)

where Z
(l−1)
a,i (t) := z

(l−1)
a,i (t)z

(l−1)
a,i

T
(t). Alternatively, we define the summation over the first i

terms of Z
(l)
a,i(t), i ∈ [1, I2], as

R
(l)
a,i+1(t) := λR(l)

a (t− 1) +
i

∑

i′=1

Z
(l−1)
a,i′ (t). (3.39)

It should be noted that R
(l)
a (t) = R

(l)

a,I2+1(t). Equation (3.39) can also be written in a recursive

form as
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R
(l)
a,i+1(t) = R

(l)
a,i(t) + Z

(l−1)
a,i (t), (3.40)

with the initial R
(l)
a,1(t) = λR

(l)
a (t − 1). Next, let us define P

(l)
a,i (t) := R

(l)
a,i

−1
(t). Thus, we have

P
(l)
a (t) = R

(l)
a

−1
(t) = R

(l)−1

a,I2+1(t) = P
(l)

a,I2+1(t), and P
(l)
a,1(t) = R

(l)
a,1

−1
(t) = 1

λ
R

(l)
a

−1
(t − 1) =

1
λ
P

(l)
a (t− 1).

Again, as before we apply the matrix inversion lemma [30] to (3.40), which yields

P
(l)
a,i+1(t) = [I −G

(l)
a,i(t)z

(l−1)
a,i

T
(t)]P

(l)
a,i (t), (3.41)

where

G
(l)
a,i(t) :=

P
(l)
a,i (t)z

(l−1)
a,i (t)

1 + z
(l−1)
a,i

T
(t)P

(l)
a,i (t)z

(l−1)
a,i (t)

. (3.42)

Note we have two recursive equations here: one is over index i; and the other one is over time t.

To find P
(l)
a (t) at time t, we need to run the recursive equation (3.41) over index i for I2 iterations.

After all I2 recursions, we obtain P
(l)
a (t) = P

(l)

a,I2+1(t). The forgetting factor λ enters into the

recursive equation when we drive the recursive equation from time t − 1 to time t, i.e., when we

initialize P
(l)
a,1(t) = 1

λ
P

(l)
a (t − 1). At the beginning of the training, P

(l)
a,1(0) can be initialized as

the identity matrix. The key steps for training CNNs using the developed RLS method with single

batch are summarized in Algorithm 1.

Moreover, in this thesis, we apply the matrix inversion lemma [30] to (3.43) recursively to

solve for the inverse. This recursive calculation can also be derived using the inverse of the sum of

matrices theorem presented in [31].

3.3 Mini-Batch Extension

To introduce a balance point between the stochastic gradient descent and the batch gradient

descent, the mini-batch gradient descent was proposed in [15, 32, 33]. The mini-batch gradient

descent presents a trade-off between the robust convergence and the computational efficiency by
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Algorithm 1 Single Batch RLS training for CNN

Require: Training image and label pairs (z, d), activation function f(.), forgetting factor λ.

1: Initialize: weight vectors at fully connected layer wp, filter vectors at convolutional layer k
(l)
a,b.

2: while not the end of epoch or error goal is not reached do

3: Initialize P (L+1) and P
(l)
a as identity matrices, ∀l ∈ [1, L], a ∈ [1, A]

4: while not the end of the training data do

5: for p ∈ [1, P ], l ∈ [1, L], a ∈ [1, A], b ∈ [1, B], i ∈ [1, I2] do

6: z
(l−1)
a,i , net

(l)
b,i,y, net

(L+1)
p , dp ← feedforward(z, d) ⊲ Forward Pass

7:
∂L̃

∂c
(l)
b,i

← backpropagate(z, d) ⊲ Back-Propagation

8: end for

9: G(L+1) ←
P (L+1)y

λ+ yTP (L+1)y
⊲ Update wp

10: P (L+1) ←
1

λ
[I −G(L+1)yT ]P (L+1)

11: for p ∈ [1, P ] do

12: δ
(L+1)
p ← f−1(dp)

13: ẽ
(L+1)
p ← δ

(L+1)
p − net

(L+1)
p

14: wp ← wp + P (L+1)yẽ
(L+1)
p

15: end for

16: for l ∈ [1, L], a ∈ [1, A], b ∈ [1, B], i ∈ [1, I2] do ⊲ Update k
(l)
a,b

17: e
(l)
b,i ←

∂L̃

∂c
(l)
b,i

f ′(net
(l)
b,i)

18: δ
(l)
b,i ← net

(l)
b,i + e

(l)
b,i

19: µ
(l)
i,a,b ←

∑A
a′=1
a′ 6=a

z
(l−1)
a′,i

T
k
(l)
a′,b

20: P
(l)
a,1 ←

1
λ
P

(l)
a

21: G
(l)
a,i ←

P
(l)
a,iz

(l−1)
a,i

1 + z
(l−1)
a,i

T
P

(l)
a,iz

(l−1)
a,i

22: P
(l)
a,i+1 ← [I −G

(l)
a,iz

(l−1)
a,i

T
]P

(l)
a,i

23: P
(l)
a ← P

(l)

a,I2+1

24: k
(l)
a,b ← k

(l)
a,b + P

(l)
a {

∑I2

i=1 z
(l−1)
a,i [δ

(l)
b,i − µ

(l)
i,a,b − z

(l−1)
a,i

T
k
(l)
a,b]}

25: end for

26: end while

27: end while
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updating the parameters after each mini-batch number of samples. It has been shown in [33] that a

small batch size can improve the generalization ability and has a smaller computational memory.

Inspired from this idea, a general mini-batch RLS training is developed in this section, and applied

to weight updating in CNNs.

3.3.1 RLS Updating Rules for Mini-Batch CNN Training

Let D be the mini-batch size and T be the total number of training samples as before. Then,

the unknown parameters are updated every D samples and therefore the total count of the updating

is T̃ = T
D

(here, we assume T is divisible by D). The weighted sample correlation matrix and

the sample cross-correlation vector are also updated every D samples, i.e., total of T̃ update times.

Let us define the weighted sample correlation matrix R̃(t̃) and the sample cross-correlation vector

∆̃(t̃) at time t̃ over D mini-batch of samples as,

R̃(t̃) := λR̃(t̃− 1) +
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

zi(τ)z
T
i (τ), (3.43)

and

∆̃(t̃) := λ∆̃(t̃− 1) +
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

δi(τ)zi(τ), (3.44)

recursively. Note that each sample has total of I2 input vectors zi(τ), i ∈ [1, I2]. Also, we drop the

indices of layers and feature maps to derive the general updating equation first, as well as added

tildes in the notation to distinguish these from the single batch case. In addition, let k(t̃) and

k(t̃ − 1) be the parameter vectors at mini-batch times t̃ and t̃ − 1, respectively. Thus, the normal

equations for these are:

∆̃(t̃) = R̃(t̃)k(t̃), (3.45)

and

∆̃(t̃− 1) = R̃(t̃− 1)k(t̃− 1). (3.46)

As before, we re-write R̃(t̃− 1) in terms of R̃(t̃), i.e.,
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∆̃(t̃− 1) = R̃(t̃− 1)k(t̃− 1) =
1

λ
[R̃(t̃)−

Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

zi(τ)z
T
i (τ)]k(t̃− 1). (3.47)

Then, assuming R̃−1(t̃) exists, we get

k(t̃) = R̃−1(t̃)∆̃(t̃) = P̃ (t̃)∆̃(t̃)

= R̃−1(t̃)[λ∆̃(t̃− 1) +
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

δi(τ)zi(τ)]

= R̃−1(t̃){λ
1

λ
[R̃(t̃)−

Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

zi(τ)z
T
τ (t)]k(t̃− 1) +

Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

δi(τ)zi(τ)}

= k(t̃− 1) + P̃ (t̃)[
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

δi(τ)zi(τ)− (
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

zi(τ)z
T
i (τ))k(t̃− 1)]

= k(t̃− 1) + P̃ (t̃){
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

zi(t)[δi(t)− zT
i (t)k(t̃− 1)]}.

(3.48)

Thus, for each update,
∑I2

i=1 zi(t)z
T
i (t) and

∑I2

i=1 δi(t)zi(t) are summed over all D samples.

However, P̃ (t̃) still needs to be calculated every sample like before regardless of the mini-batch.

Finally, the unknown parameter k(t̃) is updated every D samples as well.

Now, using the above general RLS mini-batch updating equation, for t̃ ∈ [1, T̃ ], T̃ = T
D

, the

updating equation with mini-batch D of the weight vectors at the fully connected layer in CNN is

wp(t̃) = wp(t̃− 1) + P̃ (L+1)(t̃){
Dt̃
∑

τ=Dt̃−D+1

y(τ)[δ(L+1)
p (t)− yT (τ)wp(t̃− 1)]}. (3.49)

For matrix P̃ (L+1)(t̃), we can apply the matrix inversion lemma [30] to (3.43) recursively again.

That is, for τ ∈ [Dt̃−D + 1, Dt̃],

G̃(L+1)
τ (t̃) =

P̃
(L+1)
τ (t̃)y(τ)

1 + yT (τ)P̃
(L+1)
τ (t̃)y(τ)

, (3.50)
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and the recursive equation for matrix P̃
(L+1)
τ+1 (t̃) is

P̃
(L+1)
τ+1 (t̃) = [I − G̃(L+1)

τ (t)yT (τ)]P̃ (L+1)
τ (t̃). (3.51)

Note that the recursive equation in (3.51) is over index τ instead of t̃. At the first recursion,

P̃
(L+1)

Dt̃−D+1
(t̃) is initialized as P̃

(L+1)

Dt̃−D+1
(t̃) = 1

λ
P̃ (L+1)(t̃ − 1). And at the last recursion, we obtain

P̃ (L+1)(t̃) = P̃
(L+1)

Dt̃+1
(t̃). At the beginning of the training, P (L+1)(0) can be initialized as identity

matrix.

For the filter weight vector k
(l)
a,b(t̃) at the lth convolutional layer, the t̃th update of k

(l)
a,b(t̃) is

k
(l)
a,b(t̃) = k

(l)
a,b(t̃− 1) + P̃ (l)

a (t̃){
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

z
(l−1)
a,i (τ)[δ

(l)
b,i(τ)− µ

(l)
i,a,b(τ)− z

(l−1)
a,i

T
(τ)k

(l)
a,b(t̃− 1)]},

(3.52)

where

µ
(l)
i,a,b(τ) :=

A
∑

a′=1
a′ 6=a

z
(l−1)
a′,i (τ)Tk

(l)
a′,b(t̃)). (3.53)

Similarly, we can use the matrix inversion lemma [30] recursively again for calculating P̃
(l)
a (t̃).

We first write R̃
(l)
a (t̃) as

R̃(l)
a (t̃) = λR̃(l)

a (t̃− 1) +
Dt̃
∑

τ=Dt̃−D+1

I2
∑

i=1

z
(l−1)
a,i (τ)z

(l−1)
a,i

T
(τ)

= λR̃(l)
a (t̃− 1) +

DI2
∑

τ ′=1

z(l−1)
a (τ ′)z(l−1)

a

T
(τ ′). (3.54)

Then , for τ ′ ∈ [1, DI2], the recursive updating equations for P̃
(l)
a,τ ′(t̃) are

G̃
(l)
a,τ ′(t̃) =

P̃
(l)
a,τ ′(t̃)z

(l−1)
a (τ ′)

1 + z
(l−1)
a

T
(τ ′)P̃

(l)
a,τ ′(t̃)z

(l−1)
a (τ ′)

, (3.55)
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and

P̃
(l)
a,τ ′+1(t̃) = [I −

1

λ
G̃

(l)
a,τ ′(t̃)z

(l−1)
a

T
(τ ′)]P̃

(l)
a,τ ′(t̃). (3.56)

When τ ′ = 1, we initialize P̃
(l)
a,1(t̃) = 1

λ
P̃

(l)
a (t̃ − 1). And at the last recursion, we obtain

P̃
(l)
a (t̃) = P̃

(l)

a,DI2+1(t̃). At the beginning of the training, P̃
(l+1)
a (0) can be initialized as identity

matrix. The main steps for training CNN using the developed RLS method with the mini-batch D

are summarized in Algorithm 2. In (3.52), for each update, we take the summation over DI2 terms

and multiply it by P̃
(l)
a (t̃). Therefore, in Algorithm 2, we introduce variables batch_sum

(L+1)
p

and batch_sum
(l)
a,b, p ∈ [1, P ], l ∈ [1, L], a ∈ [1, A], b ∈ [1, B], to improve the computational

efficiency.

3.4 Computational Complexity Analysis

In this section, the computational complexity of the proposed RLS-based training approach as

well as the three training approaches reviewed in Chapter 2 is analyzed. Here, the computational

complexity of the forward pass is ignored since all methods do the same forward propagation. In

addition, the analysis is based the same CNN structure and single batch training. Recall that the

dimension of the weight vector (including bias) wp at the fully connected layer is H , the dimension

of the filter weight vector (including bias) k
(l)
a,b at the lth convolutional layer is Kl, and the size of

the lth-layer feature maps is I × I . The computational complexity for each training approach is

compared and summarized in Table 3.1.

Table 3.1: Summary of the Computational Complexity.

Proposed Method SGD Adam RMSprop

wp O(H2) O(H) O(H) O(H)

k
(l)
a,b O(I2K2

l ) O(Kl) O(Kl) O(Kl)
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Algorithm 2 Mini-Batch RLS training for CNN

Require: Total of T training data pairs (z, d), activ. func. f(.), forgetting factor λ, mini-batch D.

1: Initialize: weight vectors at fully connected layer wp, filter vectors at convolutional layer k
(l)
a,b.

2: while not the end of epoch or error goal is not reached do

3: Initialize P̃ (L+1) and P̃
(l)
a as identity matrices, ∀l ∈ [1, L], a ∈ [1, A]

4: for batch t̃ ∈ [1, T̃ = T/D] do

5: for p ∈ [1, P ], l ∈ [1, L], a ∈ [1, A], b ∈ [1, B] do

6: P̃
(L+1)

Dt̃−D+1
← 1

λ
P̃ (L+1)

7: P̃
(l)
a,1 ←

1
λ
P̃

(l)
a

8: batch_sum
(L+1)
p ← 0

9: batch_sum
(l)
a,b ← 0

10: for training sample zτ , τ ∈ [Dt̃−D + 1, Dt̃], i ∈ [1, I2], τ ′ ∈ [1, DI2], do

11: z
(l−1)
a,i , net

(l)
b,i, z

(l−1)
a,τ ′ ,yτ , net

(L+1)
p , dp ← feedforward(z, d) ⊲ Forward Pass

12:
∂L̃

∂c
(l)
b,i

← backpropagate(z, d) ⊲ Back-Propagation

13: G̃
(L+1)
τ ←

P̃
(L+1)
τ yτ

1 + yT
τ P̃

(L+1)
τ yτ

⊲ Prepare for updating wp

14: P̃
(L+1)
τ+1 ← [I − G̃

(L+1)
τ yT

τ ]P̃
(L+1)
τ

15: δ
(L+1)
p ← f−1(dp)

16: batch_sum
(L+1)
p ← batch_sum

(L+1)
p + yτ (δ

(L+1)
p − yT

τ wp)

17: G̃
(l)
a,τ ′ ←

P̃
(l)
a,τ ′z

(l−1)
a,τ ′

1 + z
(l−1)
a,τ ′

T
P̃

(l)
a,τ ′z

(l−1)
a,τ ′

⊲ Prepare for updating k
(l)
a,b

18: P̃
(l)
a,τ ′+1 ← [I − G̃

(l)
a,τ ′z

(l−1)
a,τ ′

T
]P̃

(l)
a,τ ′

19: δ
(l)
b,i ← net

(l)
b,i +

∂L̃

∂c
(l)
b,i

f ′(net
(l)
b,i)

20: µ
(l)
i,a,b ←

∑A
a′=1
a′ 6=a

z
(l−1)
a′,i

T
k
(l)
a′,b

21: batch_sum
(l)
a,b ← batch_sum

(l)
a,b + z

(l−1)
a,τ ′ (δ

(l)
b,i − µ

(l)
i,a,b − z

(l−1)
a,τ ′

T
k
(l)
a,b)

22: end for

23: P̃ (L+1) ← P̃
(L+1)

Dt̃+1

24: P̃
(l)
a ← P̃

(l)

a,DI2+1

25: wp ← wp + P̃ (L+1)batch_sum
(L+1)
p

26: k
(l)
a,b ← k

(l)
a,b + P̃

(l)
a batch_sum

(l)
a,b

27: end for

28: end for

29: end while
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For the fully connected layer, updating P (L+1)(t) in (3.26) and the weight vectors in (3.22) re-

quires the multiplications of H×H matrices and H-dimensional vectors. Thus, the computational

complexity for calculating the weight vector wp at the fully connected layer is O(H2). For the lth

convolutional layer, calculating P
(l)
a (t) in (3.41) and (3.42) requires the multiplications of matrices

and vectors for I2 times, while updating k
(l)
a,b(t) in (3.37) only requires multiplication of matrices

and vectors once. Since the size of the matrices are Kl×Kl and the vectors are Kl-dimensional in

these equations, the computational complexity for the lth convolutional layer is O(I2K2
l ).

From the updating equations in Section 2.4, we can also obtain the computational complexities

of SGD, RMSProp, and Adam. Since the updating equations of the SGD only involve calculating

the gradient of each parameter, the computational complexities for wp and k
(l)
a,b are O(H) and

O(Kl), respectively. For the RMSProp and the Adam, the updating equations need to calculate not

only the gradient of each parameters, but also the H-dimensional and the Kl-dimensional element-

wise square of the gradients once for both. Thus, the computational complexities of wp and k
(l)
a,b

are O(H) and O(Kl), respectively.

In comparison, one can notice that the price to pay for the fast convergence property of the

propose RLS-based method is the high computational complexity. The other three methods have

low computational complexity but do not converge as fast as the RLS-based method. This analysis

also gives suggestions on how to design the CNN structure when using the RLS-based approach.

That is, for the fully connected layer, reducing the number of nodes can decrease the computational

complexity. As for the convolutional layers, decreasing the size of filters Kl would result in lager

size of feature maps, i.e., smaller Kl but lager I2 in O(I2K2
l ). Thus, one needs to consider the

computational complexity of the convolutional layer and finds a balance point between the size of

the filters Kl and the size of the I × I feature maps.

3.5 Conclusion

In this chapter, we introduced a new RLS-based training approach for the convolutional neu-

ral networks. The unknown parameters are updated recursively for every new training sample.
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A mini-batch version of the algorithm was also developed. Although the proposed method has a

much higher computational complexity than SGD, RMSProp and Adam, it converges much faster

than these conventional methods. It must be mentioned that the updating equations for the convolu-

tional layers present a new extension of the standard RLS algorithm for neural networks. Finally,

although the RLS method has fast convergent property, the speed of the training CNNs using

the proposed approach still needs to be determined experimentally by considering the number of

needed epochs to converge and the computational cost of a single epoch. In the next chapter, we

will implement the proposed on two datasets to determine the convergent speed and computational

complexity numerically and compare them with those of the algorithms in Chapter 2.
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Chapter 4

Implementations

4.1 Introduction

Since the error back-propagation and the gradient-based training methods were developed for

the convolutional neural network (CNNs), they have achieved excellent performance in many ap-

plications, including but not limited to document recognition [34], digits recognition [2,3,5], facial

recognition [35], weather prediction [36,37], and even for 1-dimensional acoustic data and speech

recognition [38,39]. For example, the task of digits recognition is to determine the individual digits

from the handwritten digit images, which is considered as an benchmark for comparing different

classifiers and training methods. For digits recognition, a well-trained CNN reached over 98%

accuracy using LeNet-5 on MNIST dataset in [5].

In this chapter, the proposed RLS-based training algorithm was implemented and evaluated

on two datasets. One is MNIST dataset [5]; the other one is Fashion-MNIST dataset [40]. First,

the two datasets were introduced briefly. Then, the structure of the CNNs for each dataset was

described and the CNNs were trained using the proposed RLS-based method. The performance

of the proposed method was evaluated in terms of the training convergent speed, validation, and

overall testing accuracy on the two datasets. Comparison with other training approaches men-

tioned in Chapter 2, including stochastic gradient descent (SGD) with momentum [2,3,5,13], root

mean square propagation (RMSProp) [15], and adaptive moment estimation (Adam) [18], was also

provided. Finally, the results were analyzed and the conclusion was made for the proposed method.

Chapter organization is as follows. In Section 4.2, MNIST and MNIST-Fashion datasets are

introduced briefly. Section 4.3 sets up the structure of CNN for training. Section 4.4 provides

the implementation results, observations, and performance evaluation of the proposed RLS-based

training approach for CNNs. Finally, in Section 4.5, conclusions of the proposed approach are
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made based on the implementations, and potential improvements for the proposed method are

came up with.

4.2 Dataset Description and Preparations

4.2.1 MNIST

MNIST is a handwritten digit database [5] and commonly used for image classification prob-

lems. This database includes 70,000 samples of single digit images from 0 to 9, in which the pixel

values are from 0 to 255. The digit images in this database are gray-scale and have already been

centered and fit into the proper size of 28× 28 pixels, where the 24× 24 centered digit sub-images

are 4 pixel zero-padded on each side of the sub-images. Some digit examples of these images from

the MNIST dataset are shown in Figure 4.1.

Figure 4.1: Some example images in the MNIST dataset. The labels of digits are at very left column.

In this simulation, a subset of the database consisting of 20,000 uniformly distributed samples

(i.e., each class has same number of samples), was chosen for training CNNs. The validation and
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testing subsets contained 20,000 and 10,000 samples, respectively. The image pixel values of all

subsets were normalized between 0 and 1 before being applied to CNNs.

4.2.2 Fashion-MNIST

Fashion-MNIST database [40] is another image database for classification problems, in which

the objects are fashion items from 10 classes, including T-shirt, dress, sneaker and other fashion

products. For better generalization ability, the items in Fashion-MNIST cover different groups:

men, women, kids and unisex. The item pictures were first taken by professional photographers

in a light-gray background. Particularly, white-color items are exclusive in the dataset due to the

low contrast to the background. Then, the item pictures were trimmed, centered, gray-scaled and

finally padded to generate the Fashion-MNIST database. This Fashion-MNIST dataset is consid-

ered to serve as a replacement for the original MNIST dataset for benchmarking machine learning

algorithms because, as indicated in [40], MNIST has been overused and is not representative for

modern image classification problems.

Figure 4.2: Some example images in the Fashion-MNIST dataset. The labels are at very left column.
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Fashion-MNIST database consists of 70,000 samples. Each sample image is of size 28 × 28

and the pixel values are from 0 to 255. Some examples of these fashion items are shown in Figure

4.2. In this simulation, a subset of the database consisting of 20,000 uniformly distributed samples

(i.e., each class has same number of samples), was chosen for training the CNNs. The validation

and testing subsets contained 20,000 and 10,000 samples, respectively. All the samples were pre-

processed by normalizing the pixel values between 0 and 1.

4.3 CNN Structure

Figure 4.3: The CNN structure used on the MNIST and the Fashion-MNIST.

In this thesis, CNNs with the same structure was implemented for both MNIST and Fashion-

MNIST datasets. Specifically, a CNN with two convolutional and two pooling layers, and one

fully connected layer was implemented as shown in Figure 4.3. At the first convolutional layer, it

contains 32 filters of size 5×5 and 32 feature maps of size 24 × 24, average pooled using a 2 × 2

mask and followed by 32 pooled feature maps of size 12 × 12 at the first pooling layer connected

in pairs to each first-layer feature map. Then, the first-layer pooled feature maps become inputs

and are applied to the second convolutional layer. There are 64 feature maps of size 8 × 8 at the

second convolutional layer, hence in total of 32 × 64 = 2, 048 filters of size 5×5, followed by 64

pooled feature maps of size 4 × 4 at the second pooling layer using an average pooling mask of

size 2 × 2. Finally, the neurons at the second pooling layer were flattened into a long layer with
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1024 units, followed by a fully connected output layer with 10 units. The activation function in

each neuron was set to the sigmold function.

In this implementation, the unknown parameters in CNN were randomly initialized using a

uniform distribution between −0.1 and 0.1. Matrices P (1)(0), P
(2)
a (0), a ∈ [1, 32], and P (3)(0) in

(3.26) and (3.41) were initialized as identity matrices. The large number specified for the inverse

of the sigmoid function in (3.8) was set to 5. The forgetting factor and the batch size both were set

to 1.

To make the comparison fair all the training methods including SGD with the momentum term,

RMSProp, Adam, and our proposed RLS algorithm used exactly the same CNN structure, training,

validation and testing data subsets, average sum squared error cost function, weight initialization,

and learning rate 0.002. For the SGD the momentum factor was set to 0.9. For Adam, the ex-

ponential decay rates for the first and second moment estimates β1 and β2 were 0.9 and 0.999,

respectively. For RMSProp, the discounting factor β was 0.9. The presented learning curves and

validation curves on the training data and accuracy on the testing data were obtained by averaging

over ten simulation results.

4.4 Results and Observations

4.4.1 MNIST

The constructed CNNs were trained and validated over 20,000 training samples and 20,000

validation samples on MNIST dataset for 30 epochs. At each epoch, the average MSEs over all

output nodes on training and validation samples were computed. The learning curves were formed

by plotting these average MSEs of training and validation samples at each epoch, which are shown

in Figures 4.4 (a), (b), (c), and (d) for the proposed RLS method, SGD with momentum,

RMSProp, and Adam, respectively. The convergent error goal was 0.005 as the red dashed lines

show in Figure 4.4, and the convergent epoch was determined for each method once the training

average MSE was below the error goal. The performance of each method was compared in terms of
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the convergent epochs on the training set and the average correct classification rates on the testing

set, which are summarized in Table 4.1.
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(b) SGD with Momentum.
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(c) RMSProp.
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(d) Adam.

Figure 4.4: Learning curves from different approaches on MNIST. The proposed RLS-based approach

converged after only one epoch.

As can be seen from Figure 4.4 and Table 4.1, all methods did not cause the overfitting issue

according to the validation curves, while SGD did not reach the error goal within 30 epochs. As

far as the testing accuracy’s concerned, the proposed RLS-based method still reached a notable

accuracy, which was approximately 1% lower than the best accuracy from Adam and only slightly
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Table 4.1: Performance comparison of the proposed method and other methods on the MNIST dataset.

Proposed Method SGD with Momentum RMSProp Adam

Convergent Epoch 1 >30 9 2

Testing Accuracy 97.1 94.8 97.3 98.6

lower than the accuracy from RMSProp method. Additionally, although the proposed RLS-based

training method did not achieve the classification higher than those of RMSProp or Adam, it con-

verged after just one epoch, versus at least 2 epochs for other methods.

Finally, the average confusion matrix of each approach is displayed in Figures 4.5 (a), (b), (c),

and (d), respectively. The diagonal elements indicate the correct accuracy of each class, and off-

diagonal elements exhibit the mis-classification rate. All the classification rates were rounded to

preserve 2 decimals. It can be found that the proposed RLS-based approach struggled in classifying

digit 4 against 9 as the correct classification rate for digit 4 was 0.95 and mis-classification rate for

digit 4 from digit 9 was 0.03.

In addition, for the proposed RLS-based method, let P (2) be the sum matrix of P
(2)
a , a ∈ [1, 32],

over all 32 matrices. Then, the Frobenius norms of P (1), P (2), and P (3) versus the number of

iterations in the first epoch were plotted in Figures 4.6 (a), (b), and (c), respectively. These plots

indicate that P (1) and P (2) at the first and the second convolutional layers converged within the

first 1,000 iterations and became sparse after converging since their elements were close to zero.

However, P (3) at the fully connected layer required more than 15,000 samples to converge.

These plots suggested potential improvements, i.e., a two-phase training scheme for the pa-

rameters at the convolutional layer using the proposed RLS-based method, and fast matrix-vector

multiplication for symmetric and sparse matrices [41–43]. Namely, in the first phase of an epoch,

we train the filter vectors at the lth convolutional layer, l ∈ [1, L], until t̂(l) iterations, 1 < t̂(l) < T .

After t̂(l) iterations, we stop updating matrix P
(l)
a since it has been convergent, and we only need

to update the weight vectors. That is, let P̂
(l)
a = P

(l)
a (t̂(l)), then for t > t̂, P

(l)
a (t) = P̂ (l). For
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Figure 4.5: Confusion matrices from different approaches on the MNIST testing set. The classification

rates are rounded to preserve 2 decimals. The proposed RLS-based approach struggled in classifying digit

4 against 9.

example, t̂(l) can be set to 1,000 for both convolutional layers on the MNIST dataset. Meanwhile,

P̂
(l)
a is a symmetric and sparse matrix. The standard matrix-vector multiplication can be replaced
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Figure 4.6: The Frobenius norms of P (1), P (2) and P
(3) at the first and the second convolutional layers,

and the fully convolutional layer, respectively.

with the fast matrix-vector multiplication for symmetric and sparse matrices presented in [41–43].

This two-phase training scheme with fast matrix-vector multiplication for symmetric and sparse

matrices can reduce the computational cost of the RLS-based training approach since the heaviest

computational costs are from recursively computing P
(l)
a in (3.41). However, t̂(l) requires to be

determined by plotting the Frobenius norm of P
(l)
a and assigned an proper number for which the

norm is convergent.

It should be noticed that as t → T , matrices P (1), P (2) and P (3) decreased because R(1), R
(2)
a

and R(3) were added up as the new training sample came. Taking the inverse of them would

result in P (1), P
(2)
a and P (3) decreasing. For the next epoch, if P (1), P

(2)
a and P (3) start with the

values from the previous epoch, then the unknown parameters will not change too much. This was

redeemed by re-setting P (1), P
(2)
a and P (3) as identity matrices at the beginning of each epoch.

Otherwise, the weight vectors will not be updated too much due to P
(l)
a is close to zero.

4.4.2 Fashion-MNIST

A CNN with the same structure for the MNIST dataset were trained on 20,000 Fashion-MNIST

training samples and validated on 20,000 validation samples. The average MSEs of each method

were calculated on training and validation samples at each epoch. The learning curves are shown in

Figures 4.7 (a), (b), (c), and (d) for the proposed RLS method, SGD with momentum, RMSProp,

and Adam, respectively. The training was run 30 epochs and the convergent error goal was set to
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(a) Proposed RLS Approach.
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(b) SGD with Momentum.
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(c) RMSProp.
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(d) Adam.

Figure 4.7: Learning curves from different approaches on Fashion-MNIST dataset.

0.02 as the red dashed lines show in Figure 4.4. The convergent epoch the training set and the

correct classification rate on the testing set of each method were summarized in Table 4.2.

Table 4.2: Performance comparison of the proposed method and other methods on Fashion-MNIST dataset.

Proposed Method SGD with Momentum RMSProp Adam

Convergent Epoch 1 >30 21 4

Testing Accuracy 85.6 79.1 86.7 88.5
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Figure 4.8: Confusion matrices from different approaches on Fashion-MNIST testing set. The classification

rates are rounded to preserve 2 decimals.

It can be observed that, the proposed RLS-based training method did not outperform RMSProp

or Adam as far as the testing accuracy’s concerned, but it retained the fast convergent property,

which converged after one epoch. Finally, the average confusion matrix of each approach is pre-

sented in Figures 4.8 (a), (b), (c), and (d), respectively. The elements in them were normalized
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and 2-decimal rounded to indicate the classification rates. From Figure 4.8, one can conclude

that the most difficult class in Fashion-MNIST is the class "shirt", the reason being that shirts are

naturally similar to other clothes, e.g., classes "T-shirt", "pullover", and "coat".

Furthermore, for the proposed RLS-based method, we found P (2) by taking the sum of P
(2)
a ,

a ∈ [1, 32], over all 32 matrices. The Frobenius norms of P (1), P (2), and P (3) versus the number

of iterations in the first epoch were plotted in Figures 4.9 (a), (b), and (c), respectively. These

plots indicate that P (1) and P
(2)
a at the first and the second convolutional layers retained their

fast convergent property by converging significantly fast within 1,000 samples and became sparse

after converging, whereas P (3) needed more than 15,000 sample to converge. Again, a two-phase

training scheme of the proposed method with fast matrix-vector multiplication for symmetric and

sparse matrices on the Fashion-MNIST dataset can help improve the computational efficiency.

Also, the issue of elements in P (1) and P (2) decreasing rapidly to zero was redeemed by re-setting

them as identity matrices at each beginning of epoch.
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Figure 4.9: The Frobenius norms of P (1), P (2) and P
(3) at the first and the second convolutional layers,

and the fully convolutional layer, respectively.

4.5 Conclusion

This chapter presents the implementation results of the proposed RLS-based approach as well

as other benchmark approaches on the MNIST and the Fashion-MNIST datasets. First, the fast con-
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vergent property of the proposed RLS-based approach has been shown since it converged within a

single epoch on both datasets. Then, the proposed approach outperformed SGD with momentum

dominantly, and achieved comparable testing accuracy with these of Adam and RMSProp. How-

ever, the proposed method struggled with the computational complexity as Section 3.4 motioned.

Although it only needed one epoch to converge, it took much more computational efforts going

through for one epoch. Other methods, Adam for example, needed multiple epoch to converge but

took less computation cost to go through one epoch. A trade-off needs to be considered here for

practical implementation. In addition, matrix P
(l)
a (t) in (3.41) at the convolutional layers converged

significantly fast. An advanced two-phase training scheme can improve the training efficiency. In

the first phase, we train the weight vectors at the convolutional layers recursively as usual. When

P
(l)
a (t) converges, we fix P

(l)
a (t) and enter the second phase of training, where we only update

the weight vectors based on the fixed P
(l)
a (t). Moreover, for the proposed RLS-based method,

all the matrices in the recursive equations for the fully connected layer and the convolutional lay-

ers are symmetric matrices. Once P
(l)
a (t) converges and becomes sparse, a fast matrix-vector

multiplication for symmetric and sparse matrices algorithm can be implemented to improve the

efficiency [41–43]. This scheme prevents the computational waste in a sense that it saves massive

computational resources to update P
(l)
a (t) at the convolutional layers after it converges.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, a recursive least squares (RLS) training algorithm is proposed for convolutional

neural network (CNNs) in the hope that the RLS algorithm can speed up the training of the un-

known parameters in CNNs. This is done by first computing the inverse of the accumulating

weighted correlation matrices with the newly coming training samples, where the inverse compu-

tation is performed by applying the matrix inversion lemma [30] recursively. Then, the unknown

parameters of CNNs are updated in terms of the inverse of the weighted sample correlation matrix

and the newly coming samples. One benefit of the proposed approach is, unlike other conven-

tional approaches that rely on the gradient descent algorithm, e.g., stochastic gradient descent

(SGD) [2, 3, 5, 13], root mean square propagation (RMSProp) [15], and adaptive moment estima-

tion (Adam) [18], the RLS-based learning does not need any learning rate to be specified, which

avoids an improper learning rate resulting in mis-adjustment around the minimum.

In summary, the implementation results reveal that the proposed RLS-based training approach

outperformed SGD with momentum in terms of convergent speed and overall testing accuracy on

the MNIST handwritten digit and the Fashion-MNIST datasets. Also, with achieving comparable

testing accuracy with those of RMSProp and Adam, the proposed RLS-based training method

converged after one epoch, which was faster than any other traditional gradient-based updating

method. Finally, the confusion matrices of these four methods on the testing set of Fashion-MNIST

indicate that, overall they classified fashion items successfully but struggled with distinguishing

”shirt” from ”T-shirt”, ”pullover”, and ”coat”.

Regardless of the effectiveness and the fast convergent property of the proposed RLS-based ap-

proach, some improvements can still be done to enhance the performance of the proposed approach

for training CNNs, which will be introduced in the next section.
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5.2 Future Work

Although the trained CNNs using RLS-based method have achieved good results, some exten-

sions can still be taken into consideration to improve the performance. The potential extensions

are

• A two-phase training scheme.

• Efficient matrix multiplication for symmetric and sparse matrix.

• Advance version of RLS.

• Dynamic node creation.

• Implementation on other types of neural networks, e.g., recurrent neural networks (RNNs).

Two-Phase Training Scheme: The implementation on the MNIST and the Fashion-MNIST

datasets has shown that, for the proposed RLS-based training approach, matrix P
(l)
a (t) in (3.41)

converged significantly fast. Thus, a two-phase training scheme for the convolutional layers can

improve the computational efficiency. Specifically, in the first phase, we train the weight vectors at

the convolutional layers recursively as usual. After a certain number of iterations and when P
(l)
a (t)

converges, we fix P
(l)
a (t) and enter the second phase of training, where we stop updating P

(l)
a (t) and

only update the weight vectors based on the fixed P
(l)
a (t). Since most computational complexity

for the proposed RLS-based approach is from recursively calculating P
(l)
a , this two-phase training

scheme can reduce the computational cost of the proposed approach.

Efficient Matrix Multiplication: All the matrices in the recursive equations for the weight

vectors are symmetric matrices. Also, the implementation on the MNIST and the Fashion-MNIST

showed that matrices P
(l)
a ’s became sparse once they converged. Thus, in the second phase of the

proposed two-phase training scheme above, we can implement a fast matrix-vector multiplication

for symmetric and sparse matrices algorithm presented in [41–43], instead of using the standard

matrix multiplication. It can reduce the computational complexity so to speed up the training

process.
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Advance Version of RLS: This thesis uses the standard RLS algorithm. However, it can be re-

placed by some fast RLS algorithms to save the computational resource, e.g., fast transversal filter

(FTF) algorithm [44]. The FTF algorithm can be regarded as the combination of four transversal

filters for forward and backward prediction errors, gain-vector computation, and joint-process es-

timation. It has shown effectiveness in reducing computational cost and retaining fast convergent

property. However, the FTF algorithm has instability issue when implemented in finite-precision

arithmetic [8].

Dynamic node creation: A certain structure of CNN was implemented in this thesis, while

the setup structure may not be the most optimal, although the change of network structure may

not improve the performance necessarily. One strategy is to use dynamic node creation technique

[45–47]. Namely, the CNNs will learn from the data and setup the optimal structure for themselves.

The approaches in [45–47] update weight vectors and create nodes simultaneous, and provide an

optimal or near optimal new topology in the sense that the mean squared error is minimized for

new topology.

Other Neural Networks: Although the RLS-based training approach has been presented and

shows its effectiveness in this thesis, it can also be applied to other types of neural networks, e.g.,

RNNs, in the hope that the RLS-based training approach will retain the fast convergent property.

However, the derivation of the RLS algorithm starts from the normal equations of the unknown

parameters in neural networks. Therefore, the exploitation of the RLS algorithm for neural network

requires the a detailed forward and back-propagation derivations.
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