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ABSTRACT

A FOURTH-ORDER FINITE VOLUME ALGORITHMWITH ADAPTIVE MESH

REFINEMENT IN SPACE AND TIME FOR MULTI-FLUID PLASMA MODELING

Improving our fundamental understanding of plasma physics using numerical methods is piv-

otal to the advancement of science and the continual development of cutting-edge technologies

such as nuclear fusion reactions for energy production or the manufacturing of microelectronic

devices. An elaborate and accurate approach to modeling plasmas using computational fluid dy-

namics (CFD) is the multi-fluid method, where the full set of fluid mechanics equations are solved

for each species in the plasma simultaneously with Maxwell’s equations in a coupled fashion. Nev-

ertheless, multi-fluid plasma modeling is inherently multiscale and multiphysics, presenting signif-

icant numerical and mathematical stiffness. This research aims to develop an efficient and accurate

multi-fluid plasma model using higher-order, finite-volume, solution-adaptive numerical methods.

The algorithm developed herein is verified to be fourth-order accurate for electromagnetic sim-

ulations as well as those involving fully-coupled, multi-fluid plasma physics. The solutions to

common plasma test problems obtained by the algorithm are validated against exact solutions and

results from literature. The algorithm is shown to be robust and stable in the presence of com-

plex solution topology and discontinuities, such as shocks and steep gradients. The optimizations

in spatial discretization provided by the fourth-order algorithm and adaptive mesh refinement are

demonstrated to improve the solution time by a factor of 10 compared to lower-order methods on

fixed-grid meshes. This research produces an advanced, multi-fluid plasma modeling framework

which allows for studying complex, realistic plasmas involving collisions and practical geometries.
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Chapter 1

Introduction

Plasma is the most common form of visible matter in the Universe. Throughout the cosmos,

vast clouds of plasma form in the medium that exists between stars and galaxies. Nuclear fusion

reactions within stars sustain hot, dense plasmas. Our planet is encircled by a region of dense, cold

plasma within the magnetosphere. All modern electronic and micro-electromechanical devices

are dependent on low-temperature, industrial plasmas and the nanometer-scale manufacturing pro-

cesses they enable. And, in the near future, it is likely that magnetically-confined, high-temperature

plasmas will enable nuclear fusion to become a sustainable, long-term source of energy and elec-

tricity on planet Earth. Yet, despite its prevalence, plasma is also the least understood state of

matter.

1.1 Motivation

Often, plasma based technology is exceedingly complex and expensive; fusion reactors and

semiconductor processing tools are two examples. In these situations, a trial and error or iter-

ative approach to development is not time-efficient or economically viable. The ability to use

computational methods to predict the characteristics of plasmas holds the potential to rapidly and

cost-effectively converge upon an optimized solution of operating parameters or configurations of

equipment. Indeed, advancing predictive method capabilities for plasma has been identified as one

of the topics crucial to speeding advancements in low-temperature plasma science that so greatly

benefits society [1]. However, the idiosyncrasies which make plasma so compelling and unique also

confound its simulation.

Plasmas span nearly inconceivable ranges of densities, temperatures, and length scales. Clouds

of interstellar plasma cover millions of light-years in length (1022 m), and here on Earth, micro-arc

plasmas created in labs are measured on the micron length scale (10−6 m). The number densities of

plasmas in the cores of stars and in confined fusion reactions can reach values of 1030 m−3, while
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some interstellar and magnetosphere plasmas have number densities as low as 103 m−3. Within this

prodigious breadth, there is a surprisingly large collection of plasmas which adhere to the require-

ments of continuum mechanics, and models based on fluid mechanics are an effective method of

simulating these plasmas.

The magnetohydrodynamics (MHD) approach is a common, fluid-based approximation of plas-

mas and has been studied extensively for more than half a century [2]. The classic, Ideal MHD

model assumes that the plasma behaves as a single fluid, which simplifies the computations, but

also fails to capture some of the more complex physics that occur in plasmas such as the Hall and

diamagnetic effects. More complex formulations of MHD have been developed, including the re-

sistive MHD and two fluid MHD methods [3], which increase the accuracy and complexity of the

models. Another approach to modeling plasmas as fluids is the multi-fluid model, which is becom-

ing increasingly popular in recent years as computing hardware improvements are enabling more

complex algorithms. In the multi-fluid plasma model, each species within the plasma is modeled

separately. The full set of fluid mechanics equations are solved for each fluid simultaneously along

with the governing equations of electromagnetism (Maxwell’s equations). The fluids interact with

each other through collisions and with the electric and magnetic fields through source terms in the

fluid and electromagnetic equations.

The complexity and increased physical accuracy of the multi-fluid approach further exacerbates

the mathematical and numerical stiffness inherent in plasma simulations due to vast disparities

in length and time scales. One technique in numerical modeling that very effectively mitigates

stiffness is adaptive mesh refinement (AMR). AMR has been applied to MHD models of plasmas

with great success [4ś10]. However, there is currently a scarcity of research on applying AMR to the

multi-fluid model; arguably where AMR would provide the most benefit.

In addition, the use of a high-order method can reduce the numerical error compared to a so-

lution obtained using a low-order method with the same mesh resolution. Increasing the order of

accuracy for a finite-volume algorithm is complex and requires more computations per time step

compared to a lower-order method. However, this additional computational cost is offset by the
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increase in computation per unit memory. Increasing the order of accuracy improves the accuracy

per unit memory and makes better use of modern computer architectures. The present research

is motivated by the development of an efficient and accurate numerical algorithm for multi-fluid

plasma modeling.

1.2 Models of Plasma

Plasma is a state of matter, similar in some ways to a mixture of multiple gases, but plasmas are

typically hotter than gases. In plasmas, each component of the mixture is referred to as a łspecies,ž

much like in studies involving gaseous reactions or combustion. One of the defining properties of

plasmas is that one or more of these species are comprised of electrically charged particles, such as

electrons or ions. However, having clouds of charged particles does not alone define a plasma. To

be considered a plasma, the charged particles must be close enough, spatially, that any one particle

influences many nearby charged particles; this interaction is referred to as łcollective behavior.ž

The Debye length is a fundamental parameter of plasmas, and it is a function of the electron number

density, ne, and temperature, Te,

λD =

(

ϵ0kBTe

q2ene

) 1
2

, (1.1)

where ϵ0 is the permittivity of free space, kB is the Boltzmann constant, and qe is the electron

charge. A requirement for plasma to exhibit collective behavior is that the number of particles in a

sphere with radius λD must be significantly greater than unity:

ND ≡ ne
4π

3
λ3

D ≫ 1. (1.2)

A plasma is also quasi-neutral, meaning it has approximately the same number of positively-

charged as negatively-charged particles, thus a near-zero net charge (with the rare exception of

non-neutral plasmas [11] created in laboratory settings). Quasi-neutrality occurs when the Debye

length is much smaller than the plasma bulk geometry. Finally, the mean time between electron-
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neutral collisions must be long compared to the oscillations of electron density within the plasma

(commonly referred to as the plasma frequency). When selecting a model approach for plasma,

one must consider the goals and limitations of the simulation Ð such as accuracy or computing

resources Ð but also the physics of the problem.

The Knudsen number,Kn = λ/L, is a dimensionless parameter used to characterize a gaseous

system. It is the ratio between the gas particle mean free path (λ) and a representative length scale

of the system (L). The Knudsen number is used to determine whether a plasma can be modeled

using a fluid-based method or if a kinetic (statistical) method is required. When the mean free path

is on the same scale as or larger than the representative size of the plasma (Kn ≥ 1), the particles

in the system are unable to attain thermodynamic equilibrium and models of these plasmas require

methods involving kinetic theory. However, when the mean free path is much smaller than the

characteristic size of the system (Kn ≪ 1), the particles in the plasma will experience sufficient

collisions to reach a state near thermodynamic equilibrium. In these situations, the continuum

assumptions are valid and the plasma can be modeled using a fluid-based method.

1.2.1 Kinetic Models

In general, models which account for particle positions and velocities in a plasma are referred

to as kinetic models. While it is technically possible to compute the evolution of and interaction

between individual particles, these types of models quickly become infeasible for any practical,

macroscopic size domain, even on the most powerful computing hardware, where the number of

particles n ≫ 1020. A popular compromise to a full particle model is a technique referred to as

particle in cell (PIC), where many like-particles are lumped together in an attempt to reduce the

total particle count without adversely changing the macroscopic properties of the plasma. As an

alternative to particle models, a statistical accounting of the particles in the system can be consid-

ered, solving instead for the particles’ distribution function. The fundamental equation describing

the time-evolution of a plasma species distribution in 6-dimensional phase space (x⃗, v⃗) is the Boltz-
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mann equation:

∂fα
∂t

+ v⃗α · ∇⃗xfα +
F⃗

mα

· ∇⃗vfα =

(

∂fα
∂t

)

c

, (1.3)

where fα (x⃗, v⃗) is the particle distribution for each plasma species α, F⃗ is the force acting on the

particles, ∇⃗x is the gradient in x⃗ space, ∇⃗v is the gradient in v⃗ (velocity) space, and the subscript c

in (∂fα/∂t)c indicates that this term accounts changes to fα due to collisions. If the body force F⃗

is entirely electromagnetic (i.e. Lorentz force), then the Boltzmann equation can be written as:

∂fα
∂t

+ v⃗α · ∇⃗xfα +
qα
mα

(

E⃗ + v⃗α × B⃗
)

· ∇⃗vfα =

(

∂fα
∂t

)

c

. (1.4)

Even simplified kinetic models such as PIC or solutions to the Boltzmann equation carry a sig-

nificant computational expense. Thus, when the properties of the plasma allow, there is a strong

motivation to develop and use continuum, fluids-based models.

1.2.2 Fluid-Based Models

Magnetohydrodynamics (MHD) studies the dynamics of fluids which are electrically conduc-

tive. The original, classical model of magnetohydrodynamics is referred to as Ideal MHD and it

models the plasma as a single fluid. The Ideal MHD model solves the continuity equation (1.5),
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the momentum equation (1.6) and Ampere’s Law assuming no electric fields (1.7):

∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0, (1.5)

∂ρu⃗

∂t
+ ∇⃗ ·

(

ρu⃗⊗ u⃗+ p
⃗⃗
I
)

= − 1

µ0

B⃗ ×
(

∇⃗ × B⃗
)

, (1.6)

∂B⃗

∂t
= ∇⃗ ×

(

u⃗× B⃗
)

, (1.7)

d

dt

(

p

ργ

)

= 0, (1.8)

∇⃗ · B⃗ = 0. (1.9)

The model is closed by assuming an equation of state, typically a adiabatic ideal gas is assumed

(1.8), andmeasures are taken to ensure the preservation of Gauss’s law (1.9). The relative simplicity

of the Ideal MHD model has enabled the successful and efficient simulation of many important

plasmas, such as solar wind and magnetosphere; however, there are some limitations to the single-

fluid, Ideal MHD model. Strictly speaking, the Ideal MHD model is only applicable when the

plasma is strongly collisional and the particle distributions are Maxwellian. Ideal MHD does not

allow for electric fields and therefore the plasma is considered to have zero resistance. Due to the

infinite electric conductivity of the plasma, the magnetic field topology is frozen into the fluid and

is forced to move along with it [12]. Because of the simplifying assumptions of this model, it only

applies to smooth, slowly-evolving plasmas and does not resolve spatial detail on the level of the

Debye length or skin depth, nor does it resolve temporal detail on the scale of the ion gyration

or plasma frequency. Ideal MHD is unable to reproduce plasma phenomenon such as magnetic

reconnection, the Hall effect (or more generally, charge separation and the resulting electric fields

that develop), and the diamagnetic effect [3,13].

A number of improvements to the Ideal MHD model have been proposed. The resistive or

dissipative MHD approach allows for non-zero electron diffusivity by accounting for friction be-

tween the electron and ion fluids, which allows the magnetic field topology to break from the fluid
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flow [3,14]. Various approaches of an łextendedž MHD have been developed to include higher-order

terms in the equations to account for effects such as electron pressure gradients, finite Larmor radii,

or separate electron inertia [15]. Hall MHD is an extension of classical MHD which includes a Hall

current term and is able to account for electric fields [16]. Two-fluid MHD takes traditional, single-

fluidMHDa step closer to a full, multi-fluidmodel by considering separately the inertia of electrons,

therefore allowing for the evolution of electric fields and a more complete set of electromagnetic

equations [4]. However, as the modeled physics trend towards realism, there is a growing disparity

in length and time scales in the model and a resulting increase in the numerical and mathematical

stiffness of the problem. When separate equations are solved for electrons and ions, the inertial

timescales differ by three or more orders of magnitude due to the differences in particle mass.

One methodÐ used in both academic and commercial codes Ð to handle the timescale dispar-

ity is referred to as the hybrid modeling (HM) approach. The physical processes are compartmen-

talized into modules, each with their own inputs, outputs, and algorithms. The modules are then

combined using time-slicing techniques, where one module is executed while either holding inputs

from other modules constant or varying the inputs in a prescribed manner. HM often addresses the

high spatial gradient and boundary condition complexity from the plasma sheath by including a

separate, analytical sheath model; this allows the remaining spatial domain to be comprised of a

more uniform, lower-density grid or mesh [4,17]. HM trades accuracy in order to achieve efficient

computation on individual computers. Most existing, HM-type plasma codes are developed to run

on individual computer nodes or cores, and are limited to fixed, predefined spatial discretization

grids.

In contrast to themethods of magnetohydrodynamics and hybridmodels, themulti-fluidmethod

of plasma modeling requires solving the equations of fluid motion, for each species in the plasma,

self-consistently with Maxwell’s equations; the fluid and electromagnetic equations are coupled

through their source terms. Clearly this approach adds complexity and requires more computational

resources than the aforementionedMHDmodels, but the advantages are numerous. The multi-fluid

model allows separate motion for all species in the plasma, and therefore captures local disruptions
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in neutrality which result in electric fields and complex, high frequency (both spatial and temporal)

waves.

A five-moment formulation of the multi-fluid plasma model has been studied extensively by

Shumlak, Loverich, and Hakim [18ś20] on fixed grids with 2nd and 3rd-order accurate schemes; their

work characterizes the multi-fluid approach to plasma modeling and demonstrates advantages over

a more traditional MHD method. Authors Abgrall and Kumar [21] provide a similar, 5-moment,

two-fluid plasma model, with an implicit treatment of the source terms and explicit treatment for

fluxes. Balsara et al. [22] have proposed a two-fluid plasma model with a novel method of ensuring

the divergence conditions in the electromagnetic equations (Gauss’s laws) are maintained, along

with a multidimensional Riemann solver for their plasma model. Huang, et al. [23] have applied a 6-

moment derivation of the Boltzmann equation to themulti-fluid plasmamodel, with a point-implicit

discretization of the source terms and anisotropic pressure terms. Recently, Ghosh et al. [24] have

introduced a multi-fluid model called Euclid. In addition to solving the fluid and electromagnetic

equations, Euclid also handles collisions between fluids, including neutral fluids.

There are few existing methods which focus on spatial discretization strategies to cope with this

inherit stiffness. The present work introduces adaptive mesh refinement together with a high-order,

finite-volume algorithm for multi-fluid plasma modeling, resulting in a new, adaptive, computa-

tional framework for future engineering applications. For plasma modeling with a fixed, struc-

tured, spatial grid, there are two compromises: either the grid is extremely fine in order to resolve

the plasma sheath, or the grid is coarse to promote computational efficiency while relying on a

less-accurate sheath model approximation for the material surface boundary conditions. On the

other hand, adaptive mesh refinement (AMR) can achieve both computational efficiency as well

as highly refined and accurate results in areas with high gradients. By putting more computational

grid where the gradients are strongest and leaving the grid coarse where the solution is more quies-

cent, AMR improves numerical accuracy while simultaneously reducing memory and decreasing

solution run-time.
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1.3 Objectives

The principal goal of the present work is to apply cutting-edge, numerical algorithms in the

development of a novel, multi-fluid type model of plasma physics. To achieve this goal, a multi-

fluid plasma model is incorporated into Chord [25ś30], the fluid dynamics solver developed by the

CFD and Propulsion Laboratory at Colorado State University. Chord is a numerical solver for

gaseous fluid flows based on a higher-order, finite-volume method with adaptive mesh refinement.

The primary objectives are defined as follows:

• Expand Chord to allow for multiple fluids, each with their own thermodynamic, transport,

and electromagnetic properties;

• Integrate an electromagnetic solver into Chord;

• Develop a separate Riemann solver to resolve and compute the electromagnetic flux;

• Extend the fluid physics and boundary conditions in Chord to allow for modeling of plasma;

• Study solution-stabilizing methods for the fourth-order spatial reconstruction algorithm and

their application to plasma problems with complex physics such as shocks, discontinuities,

and steep gradients;

• Verify and validate the multi-fluid algorithm using standard test cases from literature;

• Apply adaptive mesh refinement to plasma simulations and explore various refinement strate-

gies and the result on computational performance.

Any new numerical algorithm should be verified to ensure the resulting error and order of ac-

curacy match the intention and design of the algorithm. The electromagnetic solver is first verified

independently to be fourth-order accurate, and then the full physics of the multi-fluid model is also

verified to be fourth-order accurate for problems with smooth solutions. Furthermore, it is essential

to validate the solutions produced by an algorithm. As such, the multi-fluid model in Chord is used

to solve electromagnetic and plasma test cases with exact solutions, so the results can be compared.
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Finally, the algorithm in Chord is applied to common plasma problems from the literature, such as

a magnetic shock tube, a plasma explosion, and the GEM magnetic reconnection problem, in or-

der to study the enhancements provided by adaptive mesh refinement and the higher-order spatial

reconstruction scheme.

1.4 Dissertation Organization

The structure of this dissertation is as follows. Chapter 1 has provided some background on

plasma and plasma modeling techniques, including the focus and objectives of the present work. In

Chapter 2, the details of the multi-fluid plasma model are provided, including governing equations.

The numerical method used to solve the multi-fluid model is presented in Chapter 3. Chapters 4 ś 5

provide verification and validation evidence for the multi-fluid plasma model in Chord. Results of

the multi-fluid algorithm in Chord applied to common plasma test problems are given in Chapter 6,

with a discussion of solution-stabilizing methods as well as performance enhancements provided

by AMR and the higher-order spatial reconstruction method. Finally, Chapter 7 wraps-up this

dissertation with some concluding remarks, a summary of original contributions, and thoughts on

future work and direction.
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Chapter 2

The Multi-Fluid Plasma Model

The intent of this section is to lay the general mathematical framework for the development of

a multi-fluid plasma model. The governing equations presented here are applicable to any plasma

which can be described by continuum mechanics. To develop the mathematical model, the follow-

ing assumptions are made:

• The gas density is low enough to ensure the mean free path is large compared to the distance

of effective intermolecular forces. This assumption implies molecular chaos in the treatment

of collisions Ð velocities of colliding particles are assumed to be statistically independent

Ð and therefore assumes irreversibility of the Boltzmann equation.

• The mean free path is short compared to the dimensions of the spatial domain; that is, the

Knudsen Number, Kn = λ
L
, is less than unity.

• Time, location, and particle velocity are independent variables in the phase space distribution

function.

• Body forces acting on the charged plasma species are entirely electromagnetic.

In the multi-fluid approach to plasma modeling, a separate set of fluid equations are solved for

each fluid species in the plasma simultaneously with the equations of electromagnetism. Lorentz

forces act upon charged fluid species, and the movement and density of these charged species affect

the electric current and charge density. This interaction between the fluid and electromagnetic

equations is ascribed to the source terms of the respective equations.

2.1 Fluid Equations

The governing equations of fluid mechanics in plasma are a set of partial differential equations

(PDEs) describing the conservation of mass, momentum, and energy. These equations correspond
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to moments of the Boltzmann equation. The lowest, or zeroth, moment is obtained by integrat-

ing equation the Boltzmann equation (1.4) over velocity space [31ś34]. The result is the continuity

equation,

∂ρα
∂t

+ ∇⃗ · (ραu⃗α) =

(

∂ρα
∂t

)

c

, (2.1)

expressed in terms of mass density ρα and mass flux (or momentum density) ραu⃗α, where the

subscript α represents a specific fluid species. The right side of the continuity equation, (∂ρα/∂t)c,

represents contributions to the species density due to collisions (reactions) within the plasma. The

collisional terms will be discussed subsequently. Plasmas are often characterized by the species

number density, nα. Number density is related to the mass density by ρα = mαnα, where mα is

the particle mass of species α.

To obtain an equation for ραu⃗α, the first moment of the Boltzmann equation is found by mul-

tiplying (1.4) by mαu⃗α and integrating over velocity space
[31]. The result is the fluid momentum

equation,

∂ραu⃗α

∂t
+ ∇⃗ ·

(

ραu⃗α ⊗ u⃗α + pα
⃗⃗
I
)

=

∇⃗ · ⃗⃗τ + qα
ρα
mα

(

E⃗ + u⃗α × B⃗
)

−
∑

β

R⃗αβ +

(

∂ραu⃗α

∂t

)

c

, (2.2)

where E⃗ and B⃗ are the electric and magnetic fields, respectively, pα
⃗⃗
I is the static pressure tensor,

⃗⃗τα is the viscous stress tensor, qα is the particle charge of species α, mα is the particle mass of

species α, and R⃗αβ represents the momentum transfer due to elastic collisions between species α

and each of the other species in the plasma, β. The term u⃗α ⊗ u⃗α represents a dyadic product,

and the operation results in a dyad or second-rank tensor. The last term on the right side of the

momentum equation, (∂ραu⃗α/∂t)c, describes contributions to the momentum change of species α

from inelastic collisions with other species in the plasma.
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The second moment of the Boltzmann equation is obtained by multiplying the Boltzmann equa-

tion (1.4) by 1

2
mαu

2
α and integrating over velocity space. The integration and some rearrangement

yield the fluid energy equation for plasma species α, expressed in divergence form:

∂ραeα
∂t

+ ∇⃗ ·
[

ραu⃗α

(

eα +
pα
ρα

)]

=

∇⃗ ·
(

⃗⃗τ · u⃗α

)

− ∇⃗ · ϕ⃗α + qα
ρα
mα

(

u⃗α · E⃗
)

+ u⃗α ·
(

∑

β

R⃗αβ

)

+

(

∂ραeα
∂t

)

c

, (2.3)

where the total specific energy for a thermally-perfect fluid is defined by:

eα ≡ hα − pα
ρα

+
1

2
u⃗α · u⃗α. (2.4)

In the energy equation (2.3), the term pα is the static pressure, ϕ⃗α is the heat flux vector, and hα

is the enthalpy. The energy density addition rate for species α due to reactions within the plasma,

(∂ραeα/∂t)c will be described in Section 2.3.2.

Equations (2.1) ś (2.3) represent the full, fundamental equations of fluid motion in the multi-

fluid plasma model. These equations are retained for future use and reference; however, most of

the present work focuses on a subset of these equations. Specifically, the equations are simplified

to handle collisionless, inviscid plasma fluids. As a result, the simplified subset of fluid equations

used throughout most of this dissertation are as follows,

∂ρα
∂t

+ ∇⃗ · (ραu⃗α) = 0, (2.5)

∂ραu⃗α

∂t
+ ∇⃗ ·

(

ραu⃗α ⊗ u⃗α + pα
⃗⃗
I
)

= qα
ρα
mα

(

E⃗ + u⃗α × B⃗
)

, (2.6)

∂ραeα
∂t

+ ∇⃗ ·
[

ραu⃗α

(

eα +
pα
ρα

)]

= qα
ρα
mα

(

u⃗α · E⃗
)

. (2.7)
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2.2 Electromagnetic Equations

Electromagnetic (EM) fields influence the motion of charged fluid species in the plasma through

the Lorentz force terms in the momentum equation (2.2). In the energy equation (2.3) the electric

field contributes work to charged species. Simultaneously, movement of charged fluids within

the plasma affects the distribution of charge and current density, changing the evolution of the

electromagnetic fields. This collective behavior of plasmas is described by Maxwell’s equations.

2.2.1 Classical Form

A classical representation of Maxwell’s equations is as follows:

ϵ0µ0

∂E⃗

∂t
= ∇⃗ × B⃗ − µ0j⃗, (2.8)

∇⃗ · B⃗ = 0, (2.9)

∂B⃗

∂t
= −∇⃗ × E⃗, (2.10)

∇⃗ · E⃗ =
1

ϵ0
ρq, (2.11)

where B⃗ is the magnetic field, E⃗ is the electric field, j⃗ is the electric current density, and ρq is the

electric charge density.

2.2.2 Hyperbolic-Only Formulation

The divergence relations imposed by equations (2.9) and (2.11) overconstrain the problem and

can result in numerical error or instability. There are multiple approaches to handling this overcon-

straint. The method used in the present work involves introducing divergence correction potentials
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to form purely hyperbolic equations [23,33ś38], which take the following form

ϵ0µ0

∂E⃗

∂t
− ∇⃗ × B⃗ + χE∇Φ = −µ0j⃗, (2.12)

ϵ0µ0

χB

∂Ψ

∂t
+ ∇⃗ · B⃗ = 0, (2.13)

∂B⃗

∂t
+ ∇⃗ × E⃗ + χB∇Ψ = 0, (2.14)

1

χE

∂Φ

∂t
+ ∇⃗ · E⃗ =

1

ϵ0
ρq, (2.15)

where Ψ and Φ are included as correction potentials, used to absorb any divergence errors. The

dimensionless, positive, constants χB and χE determine the speed at which the divergence errors

propagate out of the problem domain; they are scalar multipliers on the wave speed of the electro-

magnetic wave propagation (i.e. the speed of light, c = 1/
√
ϵ0µ0). These constants are typically

set to values slightly greater than one in order to convect error out of the domain faster than the

information wave speed without significantly increasing numerical stiffness [34,36,38].

2.3 Model Closure

To close the more general, mathematical model of a multi-fluid plasma, the collision terms in

the system of governing equations must be modeled, an equation of state for the fluid equations

must be assumed, and the coupling between fluid and electromagnetic equations needs to be closed

by defining the EM source terms. In addition, the following assumptions are applied in order to sim-

plify the system and allow the present work to focus on enabling the high-order, solution-adaptive,

finite-volume, computational framework for plasma modeling. Specifically, the assumptions are:

• A Maxwellian electron energy distribution is assumed for each fluid.

• Local thermodynamic equilibrium is assumed within each fluid.

• Each plasma species (fluid) is treated as a thermally perfect, ideal gas.
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• The hyperbolic-only formulation of Maxwell’s equations will be used; this simplifies the

system of governing equations and facilitates adaptation into the numerical model.

2.3.1 Coupling of the Fluid and Electromagnetic Equations

In the multi-fluid plasma model, electric current density and charge density are related to the

fluid terms as follows:

j⃗ =
∑

α

qα
ραu⃗α

mα

(2.16)

ρq =
∑

α

qα
ρα
mα

. (2.17)

Electric and magnetic fields in the plasma modify the motion of charged fluid species through the

Lorentz force terms in the momentum equation (2.2). In the fluid energy equation (2.3), the electric

field supplies work to charged species. Concurrently within the plasma, movement of charged

fluids affect the distribution of electric charge and current density, influencing the evolution of the

electromagnetic fields

2.3.2 Collisions

As previously discussed, electromagnetic fields can provide a strong, long-range influence to

the motion and energy transport of charged, plasma species. However, shorter-range interactions

(collisions) with other plasma constituents can also have a significant effect on the evolution of

a plasma: particles may exchange momentum or energy, neutral particles may become ionized,

ionized particles may become neutral, and particles may transfer charge. Furthermore, in more

complex and/or molecular gases, collisions may result in molecular dissociation, recombination,

negative ions, vibrational and rotational excitation, and more.

Total momentum and energy are both conserved during collision events. Electrons and fully-

stripped ions carry only kinetic energy. Atoms and partially-stripped ions have internal energy

levels which can be excited, quenched, or ionized; these events correspond to changes in the parti-
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cle’s potential energy. It is the total energy Ð the sum of potential and kinetic fractions Ð that is

conserved in a collision.

Collisions that do not result in an exchange of internal energy are referred to as łelasticž. In

these cases, the sum of kinetic energies is conserved. The transfer of momentum from elastic

collisions manifests as a frictional drag term,
∑

β R⃗αβ , in Equations (2.2) and (2.3). The rate of

momentum transfer between species α and β is modeled as:

R⃗αβ =
mαmβ

mα +mβ

nαναβ (u⃗α − u⃗β) , (2.18)

where ναβ is the collision frequency between species α and β and nα = ρα/mα. Because these

momentum transfer collisions are purely elastic, the inverse reaction rate must be R⃗βα = −R⃗αβ .

The inter-species momentum transfer rate is R⃗αα = 0. Instead, the frictional drag within a species

is represented by the viscous stress tensor ⃗⃗τ in the fluid Equations (2.2) and (2.3).

When kinetic energy is not conserved during a collision, then the potential energy of one or

more of the species involved must change. These processes are referred to as łinelastic," and result

in ionization, recombination, excitation, quenching, dissociation, or charge exchange. The trans-

fer of momentum and energy between species due to inelastic collisions is accounted for by the

(∂ραu⃗α/∂t)c and (∂ραeα/∂t)c source terms in Equations (2.2) and (2.3), respectfully. The produc-

tion and destruction of species from inelastic collisions is represented in the continuity equation

(2.1), as (∂ρα/∂t)c

The inelastic collision reaction rates are calculated by utilizing the BhatnagarśGrossśKrook

(BGK) collision operator to arrive at a discrete expression for the collisional source component of

the Boltzmann equation (1.4) [39]. The corresponding source terms in the continuity, momentum,
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and energy equations are as follows:

(ρα
∂t

)

c
=
∑

β

mαrαβ, (2.19)

(

ραu⃗α

∂t

)

c

=
∑

β|rαβ<0

mαuαrαβ +
∑

β|rαβ>0

mαuβrαβ, (2.20)

(ραeα
∂t

)

c
=

∑

β|rαβ<0

eαrαβ +
∑

β|rαβ>0

eβrαβ, (2.21)

Each individual rαβ term has a positive sign if the reaction results in a production of species α

or a negative sign if the reaction destroys particles of species α. For each reaction (collisional

process), the reaction rate is calculated as the product of the reaction rate coefficient kαβ and the

densities of the reactants. For a simple model involving only 2-body collisions, the reaction rates

are determined by:

rαβ = kαβnαnβ. (2.22)

The reaction rate coefficients, kαβ , for many plasma reactions can be found in literature. Or,

if the temperature (energy) dependent collision cross sections are known, and the electron energy

distribution function is known or assumed, one can integrate the product of the collision cross

section, σαβ and the electron velocity over the electron energy distribution function to determine

the reaction rate coefficient for electron scattering events:

kαβ = ⟨σαβuβ⟩ =

∞
∫

0

σαβuβfβdeβ

∞
∫

0

fβdeβ

, (2.23)

where, in this case, β represents the electron species, and fβ is the electron energy distribution

function.
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In the present work, only a preliminary, rudimentary treatment of collisions has been developed,

requiring predetermined reactions and rate coefficients to be supplied by the user. Furthermore, all

of the test cases presented in this dissertation assume a collisionless plasma, so it is not necessary

to consider the contribution of collisions in the source terms of the governing equations. How-

ever, long-term, beyond the scope of the present work, it is our intention to incorporate a routine

into Chord for calculating collision rate coefficients dynamically, based on the species energy and

collision cross section tables.

2.3.3 Equation of State

The definition of total energy depends on the equation of state. In most of the present work, we

assume a compressible, calorically-perfect ideal gas, with total energy density modeled as

ραeα ≡ 1

2
ρα (u⃗α · u⃗α) +

pα
γα − 1

, (2.24)

where γα is the ratio of specific heats for fluid α. However, when exploring higher-temperature

extensions to the thermophysical gasmodels in Chord, the fluids are assumed to behave as thermally

perfect, ideal gases, where the relationship between fluid species pressure and temperature are

described by the Ideal Gas Law

pα = RαραTα, (2.25)

whereRα represents the specific gas constant. Furthermore, in a thermally-perfect gas, the specific

heat and enthalpy are temperature-dependent properties.

hα = hα (Tα) Cpα =

(

dh

dT

)

α

(2.26)
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Chapter 3

Numerical Method

The multi-fluid plasma model presented here is built upon the computational framework

Chord [25ś30], our in-house computational fluid dynamics (CFD) code. This framework provides a

highly parallel, fourth-order accurate, solution-adaptive, finite-volume CFD algorithm. Currently,

Chord solves transient, compressible, viscous, gaseous fluid flows, with or without chemical reac-

tions. Chord achieves superior accuracy and parallel performance for simulations of fluid physics

where flows exhibit multi-scale behavior, such as turbulence, combustion, shock, or plasma. Adap-

tive mesh refinement allows for under-resolved gradients in the solution to be identified and the

mesh to be locally refined in these zones, without needless and inefficient refinement in smooth

regions of the domain. These refined mesh patches are subcycled relative to the coarser patches

in order to preserve time synchronization and stability at the refined level(s). Higher-order spatial

reconstruction methods are inherently prone to oscillations near discontinuities. To mitigate this

risk, Chord employs a number of numerical stabilization methods, which will be discussed below.

The high-order, finite-volume method (FVM) can produce solutions to smooth flows much

faster than low-order schemes, to the same level of accuracy. Finite-volumemethods are well-suited

for problems with discontinuities and naturally satisfy the conservation property. The solution-

stabilizing and conservation-preserving nature of the FVM has also been shown to be an accurate

and efficient tool for solving the electromagnetic field equations [35ś37,40,41].

3.1 Conservative Form of the Governing Equations

For the convenience of algorithm implementation, the aforementioned governing equations of

the multi-fluid plasma model Ð fluid Equations (2.5) ś 2.7 and electromagnetic Equations (2.12)
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ś 2.15 Ð can be written in conservative form, arranged in the following convention:

∂U

∂t
+ ∇⃗ · F⃗ = ∇⃗ · G⃗+ S. (3.1)

In this equation, U is the vector of solution variables: an amalgamation of the conserved terms

from the fluid equations for each species and the conserved terms from the electromagnetic equa-

tions. F⃗ is a dyadic tensor of inviscid (hyperbolic) flux terms, G⃗ is a dyadic tensor of viscous (ellip-

tic) flux terms and S is a vector of source terms. The number of fluid species in themodel determines

the length of the vectors. In Cartesian coordinates, for two species, i (ions) and e (electrons), using

the hyperbolic-only formation ofMaxwell’s equations, the solution vectorU is arranged as follows:

U = [ρi, ρiui x, ρiui y, ρiui z, ρiei, ρe, ρeue x, ρeue y, ρeue z, ρeee,

Ex, Ey, Ez,Ψ, Bx, By, Bz,Φ]
T . (3.2)

It is worth noting that the above solution vector applies regardless of the number of spatial dimen-

sions modeled. This treatment is used because of the cross-product operations in the momentum

equation (2.2) and Maxwell’s equations (2.12) and (2.14) reference perpendicular vector compo-

nents. In three dimensions, flux is computed in each direction, x, y, and z. In two dimensions,

flux is only computed in the x and y directions; the z-components of the vector-based solution

terms may still evolve due to influence from their source terms, but there is no flux computed in

the z-direction. Finally, in one dimension, flux is computed in the x direction only, and the y and z

components of the vector based solution terms are influenced only by their source terms. Examples

of the full vectors and tensors in Equation (3.1) are provided in Appendix A.

3.2 Higher-Order Reconstruction

The finite-volume method of solving a partial differential equation is based on discrete approxi-

mation to the integral equation over control volumes. Essentially, the divergence theorem is applied

21



to replace the volume integrals by surface integrals over the control volume boundaries, and then

the boundary integrals are approximated using quadratures. The discretized solution in space is an

average of the solution, U, over a control volume i.

Our finite-volume method is based on cell-centers. The computational grid is Cartesian, which

facilitates the use of adaptivemesh refinement. Cells are indexed by an integer vector (i0, ..., iD−1) =

i ∈ Z
D and the faces by i± 1

2
e
d, where ed is a unit vector in direction d. Integrating Equation (3.1)

(neglecting the viscous terms, G⃗, for simplicity) over a control volume, Vi, gives

∂

∂t

∫

V

U dV +

∫

V

(

∇⃗ · F⃗− S
)

dV = 0 . (3.3)

Applying Gauss’s divergence theorem to Equation (3.3) over the control volume of cell i, as shown

in Figure 3.1, results in the semi-discrete form as

d⟨U⟩i
dt

=− 1

V

D−1
∑

d=0

(

⟨F⃗⟩
i+

1
2
ed

− ⟨F⃗⟩
i− 1

2
ed

)

+⟨S⟩i, (3.4)

where the integral quantity in a cell is defined by ⟨U⟩ ≡ 1

V

∫

V
UdV .

U
n
i,j

(i, j)

⟨F⃗⟩n
i+ 1

2
,j

⟨F⃗⟩n
i− 1

2
,j

⟨F⃗⟩n
i,j− 1

2

⟨F⃗⟩n
i,j+ 1

2

Figure 3.1: Illustration of a finite-volume method on a 2D Cartesian control volume
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The order of accuracy for a FVM is dependent on the spatial discretization scheme used to

compute fluxes on the bounding surfaces of the control volume. Chord uses a fourth-order, center-

differencing method for reconstructing the face-averaged quantities and the face-averaged gradi-

ents, which are subsequently used for hyperbolic and elliptic flux evaluation. However, where

strong discontinuities or shock waves are present, the hyperbolic flux is then evaluated based on

the upwind scheme by solving a Riemann problem at each cell face. A piecewise parabolic method

(PPM) limiter, as modified by McCorquodale and Colella [42], is used in the present implementation

of Chord. Additionally, a slope flattening algorithm and optional, artificial viscosity can be added to

the solution procedure to further stabilize problems with sharp discontinuities or when only inertial

(hyperbolic) physics are being solved for. For more detail on the spatial discretization, interested

readers are referred to previous publications on Chord [25ś30].

3.3 Flux Evaluation

As a result of the numerical quadrature, two different values of the flux for a solution quantity

may be obtained at a cell-face in a given coordinate direction due to the use of two different stencils

during the reconstruction process. To resolve the discontinuity, a Riemann problem at each face is

solved.

3.3.1 Convolution and Deconvolution

The spatial terms on the right side of Equation (3.4), ⟨F⃗⟩
i± 1

2
ed
, are evaluated using the cell-

averaged conserved solution terms, ⟨U⟩i. However, the exact computational process involves a

sequence of operations, converting U to primitive variables,W, which are eventually used for the

calculation of ⟨F⃗⟩
i± 1

2
ed
. For the fluid equations, the conserved variables U = [ρα, ραu⃗α, ραeα] are

converted to primitive variablesW = [ρα, u⃗α, pα]. Readers interested in the exact details of this

process are referred to previous, in-depth publications [27,42]. For reference, a simple overview of the

transformation between cell-averaged conserved variables and face-averaged primitive variables is

as follows:
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1. Convert the cell-averaged solution variables ⟨U⟩ to cell-averaged primitive variables ⟨W⟩;

2. Interpolate the cell-averaged primitive variables ⟨W⟩ to face-averaged primitive variables

⟨W⟩
i± 1

2
ed
using a fourth-order accurate reconstruction;

3. Compute face-centered primitive variables W
i± 1

2
ed
from the face-averaged primitive vari-

ables ⟨W⟩
i± 1

2
ed
;

4. Compute the face-average fluxes ⟨F⃗⟩
i± 1

2
ed
using both the face-average and face-centered

primitive variables.

These convolution and deconvolution operations to switch between conservative and primitive vari-

ables are only performed for the fluid equations. The electromagnetic equation algorithm uses con-

servative variables U =
[

E⃗,Ψ, B⃗,Φ
]

for the flux, limiter, and Riemann solution calculations, and

therefore a transformation to primitive variables is unnecessary.

3.3.2 Riemann Solvers

In the multi-fluid plasma model, we consider a Harten-Lax-van Leer contact wave (HLLC)

method [41,43ś45] to approximate a solution to the Riemann problem (initial value problem). In an

improvement to the HLL scheme, the HLLC method restores the full wave structure inside the

Riemann łfanž by replacing the single averaged state of the HLL scheme with two approximate

states, U∗
L and U

∗
R. These states are separated by a contact wave in the middle, which is assumed

to have a constant speed. The waves and states in the HLLC method are depicted in the Riemann

fan illustration in Figure 3.2.
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Figure 3.2: Riemann fan diagram for the HLLC metohd

The solution on the x/t = 0 axis is written as

U (0, t) =















































UL if λL ≥ 0,

U∗
L if λL ≤ 0 ≤ λ∗,

U∗
R if λ∗ ≤ 0 ≤ λR,

UR if λR ≤ 0,

(3.5)

where λL is the minimum characteristic wave speed, λR is the maximum wave speed, and λ
∗ is the

contact wave speed. Consequently, the corresponding fluxes are

F (0, t) =















































FL if λL ≥ 0,

F∗L if λL ≤ 0 ≤ λ∗,

F∗R if λ∗ ≤ 0 ≤ λR,

FR if λR ≤ 0.

(3.6)

Resolving the full wave structure of the Riemann fan is necessary if using a single Riemann solver

for the full, multi-fluid governing equations. However, in the work presented herein, separate Rie-

mann solvers are used for the fluid equations and the electromagnetic equations. The fluid Riemann

solver for non-reacting fluids is based on the method originally designed by Colella [46], while for
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reacting flows the exact solution is solved for [47]. The HLLC method is applied only to the elec-

tromagnetic terms, which significantly simplifies the wave structure because the EM wave speeds

are constant. The wave speeds for the electromagnetic physics are determined by solving for the

eigenvalues of the flux Jacobian, ∂F/∂U, and are written as

Λ = [−χBc, χBc,−χEc, χEc,−c,−c, c, c]T . (3.7)

In a homogeneous medium, one can assume continuity of every conserved electromagnetic variable

across the cell interface (contact wave). As previous authors [35,38,45] have noted, the assumption

of interfacial continuity for all conserved variables results in the HLLC fluxes reverting into the

Godunov flux equations. This simplified flux calculation, shown in Equation (3.8), is the method

we have used in the present work because it suffices for the test cases considered in this paper.

However, the full, HLLC Riemann solver algorithm is retained for future work involving domain

discontinuities and heterogeneous medium. Also in future work, we may consider using a single

Riemann solver for both fluid and EM equations.

Fd =






















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




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




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
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χE
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(

c
(
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)

+ c2 (ΦR + ΦL)
)

1

2

(

c
(

Ed1
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R

)

+ c2
(

Bd2
R +Bd2

L

))

1

2

(

c
(

Ed2
L − Ed2

R

)

− c2
(

Bd1
R +Bd1

L

))

χB

2

(

c (ΨL −ΨR) + c2
(
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R +Bd

L

))

χB

2

(

c
(
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)

1

2

(

c
(
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(
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1
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(

c
(
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(
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. (3.8)
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In the above equation, Fd is the electromagnetic flux computed on a face normal to direction d, and

d1 and d2 are the directions tangent to the face; for example, in a 3D Cartesian coordinate system,

if d = 0 or x, then d1 = 1 or y and d2 = 2 or z.

3.4 Boundary Conditions

Boundary conditions are required to fully define the computational domain. A well-posed

boundary condition approach takes into account the direction of wave propagation and the theory

of characteristics. Our approach involves prescribing artificial or ghost states outside the domain

boundary and using the Riemann solver to resolve the discontinuity on the physical boundary face

between the interiorly-interpolated state and the exteriorly-prescribed state.

3.4.1 Zero-Gradient

An open boundary condition implies the solution information is allowed to leave the domain,

ideally without reflection. One approximation of an open boundary condition is to prescribe a

zero-gradient of the conservative variables at the boundaries, ∂s, that is:

∇U
∣

∣

∂s
· ed = 0, (3.9)

along the normal of the boundary curve or surface. In its simplest form, a 1st-order accurate,

zero-gradient boundary condition is implemented by setting the ghost cells values to the boundary-

adjacent interior cell values.

3.4.2 Perfect Electrical Conductor

A common boundary condition for the electromagnetic equations is a perfectly electrically con-

ducting (PEC) wall. On a surface with perfect electrical conduction, there are no transverse electric

fields, and thus, the normal component of the magnetic field is also zero. When utilizing diver-

gence cleaning potentials in the electromagnetic equations to propagate error out of the domain, the

boundary conditions for these values need to be prescribed accordingly. A Neumann type boundary
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condition is utilized for the scalar potential Ψ because a Dirichlet boundary is incompatible with

the characteristic theory [36]. Written numerically, the definition of a PEC boundary is

e
d × E⃗∗ = 0, (3.10)

∂Ψ∗

∂d
= 0, (3.11)

e
d · B⃗∗ = 0, (3.12)

Φ∗ = 0, (3.13)

where the terms with superscripts * refer to the state on the boundary face and ed is the outward

normal unit vector (in direction d) at the face. Accordingly, the exterior ghost states for the PEC

boundary on a Cartesian mesh are
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where the superscripts + and− refer to the faces outside and inside the domain, respectively [36,38].
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3.4.3 Silver-Müller Absorbing Boundary Condition

ASilver -Müller absorbing boundary condition (ABC) can artificially truncate the domain with-

out reflecting parasitic information to the interior.

(

E⃗∗ − B⃗∗ × e
d
)

× e
d =

(

E⃗inc − B⃗inc × e
d
)

× e
d, (3.15)

∂Ψ∗

∂d
= 0, (3.16)

Φ∗ = 0, (3.17)

where E⃗inc and B⃗inc are given fields along the boundary. The computation method of the ABC

boundary is the same as the PEC boundary, but with different prescribed, exterior ghost states
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. (3.18)

3.5 Time Marching Method

Chord is equipped with multiple time-stepping methods, including the standard 4th-order, ex-

plicit, Runge-Kutta method (RK4) as well semi-implicit approaches such as a 4th-order additive

Runge-Kutta method (ARK4). For the present work, the standard, explicit RK4 method is used.
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The general form of the standard RK4 method is as follows

Ûn+1/2 = Un +
∆t

2
U ′

n (3.19)

Ũn+1/2 = Un +
∆t

2
Û

′

n+1/2 (3.20)

Ūn+1 = Un +∆tŨ
′

n+1/2 (3.21)

Un+1 = Un +
∆t

6

[

U ′
n + 2

(

Û
′

n+1/2 + Ũ
′

n+1/2

)

+ Ū
′
n+1

]

. (3.22)

In explicit methods, it is necessary to resolve the fastest-propagating information and physical

oscillations within the plasma. In the multi-fluid plasma model, typically the fastest wave speed is

the speed of light, c, or potentially the divergence error propagation rates, χB c or χE c, if one is

using the hyperbolic-only electromagnetic equations.

As pointed out in previous papers [19,34] on the multi-fluid plasma model, it is also critical to

resolve the oscillations attributed to cyclotron and plasma frequencies. Therefore, the explicit time

step specification in Chord adheres to the following criteria:

∆tmax = min

[

CFL

(

∆x

cs α
,

∆x

cs α + ux α

,
∆x

c
,
∆x

χBc
,
∆x

χEc

)

,
0.5

ωc α

,
0.5

ωp α

]

, (3.23)

where∆t is the time step,∆x is the grid spacing, each species α sound speed is cs α =
√

γα
pα
ρα
, the

cyclotron frequency is ωc α = qα
∥B⃗∥
mα
, and the plasma frequency is ωp α =

√

nαq2α
ϵ0mα

. The dimension-

less parameter CFL refers to the Courant number. The values of 0.5 appearing in Equation (3.23)

are used to satisfy the criterion of the NyquistśShannon sampling theorem.

3.6 Adaptive Mesh Refinement

It is common for plasmas to experience localized, sharp discontinuities and shocks in response

to perturbations. Even in cases of steady, relatively placid plasmas such as glow discharges used in

industrial plasmas, the plasma sheath presents steep gradients and hyper-local regions with abrupt
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changes in density. Large disparities in length scale like this drive significant mathematical stiffness

in numerical simulations of these plasmas. Adaptive mesh refinement has the potential to mitigate

the stiffness by adapting resolutions locally to the scales of the solution.

AMR adjusts the mesh-resolution in response to the solution, increasing resolution in regions

where the solution variables are discontinuous or feature strong, under-resolved gradients, and

coarsening the mesh in quiescent or smooth regions to improve computational efficiency. AMR is

provided in Chord by use of the Chombo library [48]. Our multi-fluid plasma model is constructed

to leverage and incorporate AMR; however, the present work makes no modifications to the AMR

framework. The brief review of AMR presented herein serves only to provide an overview of

the technology. For more detail, interested readers are referred to previous publications on the

implementation of AMR in Chord [27,49].

Figure 3.3 illustrates a structured AMR grid in 2Dwith 2 levels of refinement using a refinement

ratio of 2 between levels. In the AMR process, identifying or łtaggingž cells for refinement is a

fundamental aspect of the algorithm. Some common methods include those based on solution

values or gradients, vorticity, or geometry properties. For the present work, we utilize tagging

methods based on solution variable values and also based on a computed, relative gradient:

∇rel =
Wi+1 −Wi−1

Wi+1 +Wi−1

, (3.24)

where W represents some solution variable, and the subscript i refers to the cell indexing along

a coordinate direction. Furthermore, the AMR refinement ratio can be specified for each level of

refinement.

When the mesh is refined and the cells are divided into smaller sizes, the integration time step

in those finer cells also requires refinement to maintain solution stability. In a process called sub-

cycling, finer mesh patches are integrated in time multiple times compared to the coarser mesh

regions, in order to preserve time synchronization. During this process, ghost cells need to be filled

at AMR interfaces by interpolation from the next coarser mesh level. Subcycling requires that

the finer mesh patches are solved at an intermediate time relative to the coarser patches; the in-
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terpolation from coarse to fine patches is accomplished using a łDense Outputž time interpolation

scheme [50]. During integration of the coarse mesh from time tn to tn+1 using the RK4 method, the

intermediate stage values are stored for use in time interpolation. Then, the finer mesh is integrated

over the same interval with multiple time steps, as illustrated in Figure 3.4. At each RK4 stage of

each time step, the coarser solution is interpolated in time (and space) to fill the ghost cells at the

AMR boundaries on the finer mesh. More details and rigorous explanations of time stepping with

AMR in Chord are available in previous publications from our lab [25ś30,50ś52]

Ω0

Ω1

Ω2

Figure 3.3: Illustration of adaptivemesh refine-

ment on a 2D Cartesian mesh. The labels Ω0,

Ω1, and Ω2 represent the progressively higher-

resolution meshes, applied selectively to sub-

sets of the domain. In this illustration, the re-

finement ratio between each level is 2. The

boxes outlined in thicker black borders repre-

sent the decomposition of the domain into a dis-

joint union of boxes for parallel computing. The

dashed lines represent ghost cells in which the

values are interpolated from the coarser mesh.

Ω
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Ω
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Ω
2

∆t
4
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∆t
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Figure 3.4: Subcycling allows finer grids

to be integrated in time using interpolated

data from the next coarser grid to fill ghost

cells at the AMR boundaries, indicated by

the dashed gray lines. In this example,

there are two levels of grid refinement,

with a refinement ratio of 2 between each

level; thus, the timestep is halved as each

successfully refined level is subcycled.

3.7 Solution-Stabilizing Methods

A fourth-order accurate reconstruction of the solution in space is inherently prone to oscillatory

behavior in the fluid equations near discontinuities. During reconstruction of the face values in

our finite volume method, a limiter is employed to suppress oscillations near shocks and under-
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resolved gradients. The limiter locally reduces the order of accuracy in these regions. However, in

extreme cases, such as those involving strong shocks or locally varying source terms from reactions

or electromagnetic fields, further solution-stabilizing techniques are sometimes required. In this

section we discuss some of these techniques, including artificial viscosity, face value limiting, a

higher-order clipping algorithm for use with AMR, and face construction order reduction.

3.7.1 Artificial Viscosity

In the fluid equations, it is sometimes necessary to add artificial (numerical) dissipation in order

to suppress oscillations near discontinuities. In Chord, this is accomplished by introducing an mod-

erate, modifiable, artificial viscosity into the fluid equations in the vicinity of shocks. The artificial

viscosity is calculated based on the conservative solution variable gradients and the divergence of

fluid velocity, and the magnitude is adjusted through two user-defined coefficients. Application

of artificial viscosity to the solution is analogous to incrementing the total flux by some relatively

small amount. In regions of smooth flow, the artificial viscosity makes an O (∆x4) contribution

to the solution (where ∆x is the grid spacing), preserving the fourth-order accuracy [42]. Artifi-

cial viscosity, if enabled, is only applied to the fluid equations in Chord, not the electromagnetic

equations.

3.7.2 High-Order Adaptive Clipping-and-Redistribution

When using AMR with a fourth-order accurate reconstruction scheme, newly refined patches

are prone to oscillations when proximal to non-smooth solution features. These oscillations can

create new extrema and unphysical states when stiff sources are present, which may destabilize a

solution. The high-order adaptive clipping-and-redistribution (HO-ACR)method is used to prevent

local extrema in these newly refined regions by enforcing adaptively-determined solution bounds.

This allows for more robust application of AMR bymaintaining stable solutions where non-smooth

features are refined or cross AMR interfaces. In addition to preserving fourth-order accuracy in

smooth regions, this method maintains solution conservation, requires no predetermined limits,

and is non-invasive. An example of the HO-ACR algorithm is show in Figure 3.5. An in-depth
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explanation and verification of the HO-ACR algorithm can be found in the paper by Overton-Katz

et al [53].

0

0.5

1

x

Step

Fine Coarse HO-ACR Bounds

0

0.5

1

x

Smooth Step

⟨U⟩

Figure 3.5: 1D interpolation showing the HO-ACR method on Cartesian grids. The interpolation is 4th-

order and conservative using a 5-point centered stencil. The x axis shows the coarse cells, and y axis the
4th-order cell-averaged values of the solution. Yellow lines indicate coarse solution values, green lines the

coarse to fine interpolation, and blue lines the interpolation with addition of the HO-ACR method. Gray

lines show the bounding envelope used by the HO-ACR method for non-smooth regions [53].

3.7.3 Face Value Limiting

The standard limiting approach used in Chord is a high-order extension of the PPM limiter

recommended byMcCorquodale and Colella [42]. This PPM-based limiter can be organized as three

separate steps: limit the face value interpolation, limit the parabolic interpolant construction with

consideration for smooth extrema, and apply slope flattening to the interpolants. The first step,

face value limiting (FVL), is typically not applied because it can result in excessive dissipation [42].

However, in simulations involving strong shocks and discontinuities, FVL can help stabilize an

otherwise unstable or oscillatory solution. The FVL algorithm integrated into Chord is based on the

fourth-order FVL method proposed by Colella and Sekora [54], and the integration of FVL replaces

the fourth-order face interpolation in the default PPM limiter. Readers interested in the details of

the FVL algorithm in Chord are referred to the paper by Owen et al [52].
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3.7.4 Face Construction Order Reduction

The face construction order reduction (FCOR) method in Chord is used to selectively modify

the order of accuracy of the primitive values used during the construction and limiting of face

values. Three conditions are monitored to see if FCOR is necessary. The first check at the cell face

involves comparing the difference between the linear face construction using fourth-order average

values and second-order values. The second check evaluates the normalized difference between

the undivided, second-order face derivatives. The tolerances for both tests are determined through

numerical experimentation conducted by Owen et al [52]. The final check considers the tolerance

from the nonlinear solver in Chord, and it is performed to ensure FCOR is not applied in regions

where round-off error becomes significant. If all three conditions are met, the face values are

constructed based on the second-order, primitive state instead of the default, fourth-order state [52].
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Chapter 4

Verification

The fluids solver in Chord has already been extensively verified and validated, but the capabil-

ity to solve Maxwell’s equations is a new addition to Chord by the present study. Therefore, prior

to studying the full, complex physics of the multi-fluid plasma model, it is prudent to indepen-

dently validate the electromagnetic solver against a known solution. For this, a three-dimensional,

plane-polarized, electromagnetic wave problem with periodic boundary conditions is used. Next,

the solution accuracy of the full, multi-fluid plasma model with coupling between the fluid and

electromagnetic physics is verified using a one-dimensional, electron acoustic wave problem. Test

cases with exact solutions are chosen to provide both verification and validation of the multi-fluid

algorithm.

4.1 Three Dimensional Plane-Polarized Electromagnetic Wave

in Vacuum

In this problem, a plane-polarized electromagnetic wave propagates across a three dimensional,

vacuum domain with Cartesian coordinates of [0.0, 1.0] m in each direction as illustrated in Fig-

ure 4.1. Periodic boundary conditions are used so the accuracy of the 4th-order interior scheme can

be verified. The exact, electric and magnetic fields are given by the following equations [22]:

E⃗ (x, y, z, t) = cos
[

2π
(

x+ y + z − c
√
3 t
)]

(

0x̂− 1√
2
ŷ +

1√
2
ẑ

)

(4.1)

B⃗ (x, y, z, t) = cos
[

2π
(

x+ y + z − c
√
3 t
)]

(

√

2

3
x̂− 1√

6
ŷ − 1√

6
ẑ

)

(4.2)
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where x̂, ŷ, and ẑ are the components of the E⃗ and B⃗ vectors in directions x, y, z. The test case is

solved over a range of mesh sizes, all to a final time of 1.2 ns. At the end of each simulation, the

numerical solution is compared to the exact solution. The corresponding errors are evaluated using

L1, L2, and L∞ norms. Figure 4.2 shows the rate of error reduction with increasing mesh size;

clearly, the slopes converge towards -4.0, verifying the fourth-order algorithm. Further, Table 4.1

lists the data for Figure 4.2, including the sequence of grids used, the error norms for both electric

and magnetic field components, and error reduction rates between two consecutive mesh sizes.

Figure 4.1: Three plane contour plot of variable Ez from the 3D electromagnetic wave test case, at time 1.2

ns.
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Figure 4.2: Grid convergence rate of L1, L2, and L∞ for variables Ez and Bz from the electromagnetic

wave test case, at time 1.2 ns.
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Table 4.1: Lp norms (where p = 1, 2,∞) of the electromagnetic solution errors for the 3D plane-polarized
electromagnetic wave test case at time 1.2 ns. The convergence rates are computed between consecutive
grid resolutions, demonstrating the 4th-order accuracy of the algorithm.

Lp 243 rate 323 rate 403 rate 483 rate 643

Ey

L1 2.83E-04 -3.73 9.69E-05 -3.99 3.98E-05 -4.19 1.85E-05 -4.09 5.71E-06

L2 3.14E-04 -3.72 1.07E-04 -3.98 4.42E-05 -4.19 2.06E-05 -4.09 6.34E-06

L∞ 4.40E-04 -3.71 1.52E-04 -3.98 6.24E-05 -4.19 2.91E-05 -4.09 8.96E-06

Ez

L1 2.83E-04 -3.73 9.69E-05 -3.99 3.98E-05 -4.19 1.85E-05 -4.09 5.71E-06

L2 3.14E-04 -3.72 1.07E-04 -3.98 4.42E-05 -4.19 2.06E-05 -4.09 6.34E-06

L∞ 4.40E-04 -3.71 1.52E-04 -3.98 6.24E-05 -4.19 2.91E-05 -4.09 8.96E-06

Bx

L1 3.27E-04 -3.73 1.12E-04 -3.99 4.60E-05 -4.19 2.14E-05 -4.09 6.60E-06

L2 3.62E-04 -3.72 1.24E-04 -3.98 5.10E-05 -4.19 2.37E-05 -4.09 7.32E-06

L∞ 5.08E-04 -3.71 1.75E-04 -3.98 7.20E-05 -4.19 3.35E-05 -4.09 1.04E-05

By

L1 1.63E-04 -3.73 5.59E-05 -3.99 2.30E-05 -4.19 1.07E-05 -4.09 3.30E-06

L2 1.81E-04 -3.72 6.21E-05 -3.98 2.55E-05 -4.19 1.19E-05 -4.09 3.66E-06

L∞ 2.54E-04 -3.71 8.75E-05 -3.98 3.60E-05 -4.19 1.68E-05 -4.09 5.18E-06

Bz

L1 1.63E-04 -3.73 5.59E-05 -3.99 2.30E-05 -4.19 1.07E-05 -4.09 3.30E-06

L2 1.81E-04 -3.72 6.21E-05 -3.98 2.55E-05 -4.19 1.19E-05 -4.09 3.66E-06

L∞ 2.54E-04 -3.71 8.75E-05 -3.98 3.60E-05 -4.19 1.68E-05 -4.09 5.18E-06
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4.2 1D Electron Acoustic Wave, One-Harmonic

A dispersion relation, derived from a linearizion of the multi-fluid plasma governing equations,

can be used to model an electron acoustic wave in a low-temperature, fully-ionized plasma [55]. The

dispersion relation is used to simulate the propagation of a finite, Fourier-series approximation of

an initial square wave perturbation in the electron fluid state [19]. Because the dispersion relation

provides an analytical solution, the electron acoustic wave test case is a good candidate to verify

the order of accuracy and validate the solution of the multi-fluid plasma model infrastructure in

Chord. This is a two-fluid problem: electrons (e) and ions (i). In this problem, the solution state,

Equation (3.2), is represented as background value (U0) plus a perturbation (U1):

U = U
0 +U

1. (4.3)

Only the inertial terms of the fluid equations are solved, no viscous or heat flux is considered. The

electron and ion fluids are both modeled using a calorically-perfect, ideal gas equation of state.

The speed of light is prescribed as c = 1, with a permittivity ϵ0 = 1. All solution state background

values (U0) are set to zero, with the following exceptions:

ρ0i = min
0

i

ρe0i =
P 0
i

γi − 1

ρ0e = men
0

e

ρe0e =
P 0
e

γe − 1
,
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where

mi = ∞,me = 1

n0

i = n0

e = 1

P 0

i = P 0

e = 1

γi = γe = 2.

In practice, a very large number is used for the ion mass; for example, mi = 1010. The perturbed

values (U1) are all zero with the following exceptions, which vary in time, t:

ρ1e =
N−1
∑

n=0

−ρ0e
u0

(2n+ 1)

kn
ωn

cos
(

knx− π

2
+ ωnt

)

u1

e =
N−1
∑

n=0

ρ0e
u0

(2n+ 1)
cos
(

knx− π

2
+ ωnt

)

P 1

e =
N−1
∑

n=0

−P 0

e γe
u0

(2n+ 1)

kn
ωn

cos
(

knx− π

2
+ ωnt

)

E1

x =
N−1
∑

n=0

n0

e

u0

(2n+ 1)

qe
ωnϵ0

cos (knx+ ωnt)

ρu1

e = ρ0eu
1

e

ρe1e =
P 1
e

γe − 1
+

1

2
ρ0e
(

u1

e

)2
,
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where

kn = 2π (2n+ 1)

ωn =

√

γe
P 0
e

ρ0e
k2
n + n0

e

q2e
ϵ0me

u0 = 1× 10−8.

The problem is initialized to the background values plus the perturbations at a time of t = 0.

The number of odd harmonics, N , considered determines the sharpness of the initial square wave

perturbation, as shown in Figure 4.3.
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u
1 e
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N = 100

Figure 4.3: Electron acoustic wave problem, initial perturbation to the electron velocity for various numbers

of odd harmonics, N

To verify the order of accuracy of the multi-fluid plasma solver in Chord, the smoother, single-

harmonic case is simulated in order to avoid utilization of the limiter which can affect the order

of accuracy. The simulation is repeated on increasing grid sizes, and the errors of the numerical
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results (relative to the exact solution) are analyzed. As shown in Table 4.2 and Figure 4.4, the Chord

solution is converging at an error reduction rate of −4, confirming the 4th-order accuracy of the

solver.

Table 4.2: Lp norms (where p = 1, 2,∞) of pertinent solution errors for the single-harmonic electron
acoustic wave test case at time 3. The convergence rates are computed between consecutive grid resolutions,

demonstrating the 4th-order accuracy of the algorithm.

Lp 32 rate 48 rate 64 rate 80 rate 96

L1 7.90E-12 -3.98 1.57E-12 -3.99 4.98E-13 -3.99 2.04E-13 -4.01 9.85E-14

L2 8.79E-12 -3.99 1.74E-12 -3.99 5.53E-13 -4.00 2.27E-13 -4.01 1.09E-13ρe

L∞ 1.24E-11 -3.99 2.47E-12 -3.99 7.83E-13 -3.99 3.22E-13 -3.97 1.56E-13

L1 1.67E-11 -3.98 3.32E-12 -3.99 1.05E-12 -4.00 4.31E-13 -3.99 2.08E-13

L2 1.86E-11 -3.99 3.68E-12 -3.99 1.17E-12 -3.99 4.79E-13 -3.99 2.31E-13ρux e

L∞ 2.62E-11 -3.99 5.20E-12 -3.99 1.65E-12 -3.99 6.78E-13 -3.99 3.27E-13

L1 1.58E-11 -3.98 3.14E-12 -3.99 9.96E-13 -4.00 4.08E-13 -4.00 1.97E-13

L2 1.76E-11 -3.99 3.49E-12 -3.99 1.11E-12 -4.00 4.53E-13 -4.00 2.19E-13ρee

L∞ 2.49E-11 -3.99 4.93E-12 -3.99 1.56E-12 -3.99 6.42E-13 -3.99 3.10E-13

L1 1.24E-11 -3.98 2.47E-12 -3.99 7.82E-13 -4.00 3.20E-13 -3.99 1.55E-13

L2 1.38E-11 -3.98 2.74E-12 -3.99 8.68E-13 -3.99 3.56E-13 -3.99 1.72E-13Ex

L∞ 1.95E-11 -3.99 3.86E-12 -3.99 1.23E-12 -3.99 5.03E-13 -3.98 2.44E-13
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Figure 4.4: Grid convergence rate of L1, L2, and L∞ for variables Ex and ρue from a 1-harmonic electron
acoustic wave test case at a normalized time of 3. Reference lines with slopes of -4 and -5 are shown adjacent

to the error plots to illustrate the 4th-order accurate convergence rate. The x-axis represents mesh size (cell
count), M, for each solution.
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Chapter 5

Validation

Validation of the multi-fluid plasma model in Chord is performed by solving plasma test prob-

lems in Chord and comparing the results to either exact solutions or to experimental data. First

we validate the fluid solver and solution-stabilizing features in Chord, as well as a monotonic ex-

trapolation scheme for thermophysical fluid properties, by solving a problem involving the rapid

expansion and cooling of a laser-initiated plasma kernel. Next, we independently validate the EM

solver in Chord by solving a 2D transmagnetic wave problem. Finally, we use Chord to simulate a

10-harmonic version of the electron acoustic wave to validate all the physics of the fully-coupled

multi-fluid plasma model.

5.1 Axisymmetric Plasma Kernel Expansion

The intention of this test case is to assess the stability of the multi-fluid algorithm framework

Ð a fourth-order accurate CFD code with AMR Ð for problems involving the temperature mag-

nitudes and spatial gradients encountered in plasmas. Furthermore, we seek to develop a solution

methodology and to compare our results against the literature.

Many plasmas and plasma systems are cylindrical in nature, and often the plasmas exhibit suf-

ficient azimuthal symmetry that the physics can be accurately represented with a 2D-axisymmetric

problem domain. These problems can be solved in the Cartesian coordinate system by analytically

rearranging the governing equations, resulting in source terms, S, which account for the axisym-

metric coordinate. A complete derivation of these geometric source terms can be found in CFD

textbooks [56].

Recent work on laser-initiated, plasma-enhance combustion [57] provides relevant test cases

for the initial developments of our multi-fluid plasma model. In one such example [57], the 2D-

axisymmetric shock expansion of an initial kernel or filament of high-energy gas is modeled and

compared to experimental data. Experimentally, the plasma kernel is created by overlapping a pre-
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Figure 5.1: An illustration of the laser-initiated plasma kernel problem domain for the test case

ionizing, ultra-violet (UV) laser pulse with a near-infrared (NIR) laser pulse to deposit energy to the

plasma, and the resulting shape is a symmetric, elliptical structure. In that study, the initial energy

kernel creation is not modeled. Instead, the numerical model begins approximately 500 ns after the

pulse. The compressible Navier-Stokes equations were solved, assuming a thermally-perfect ideal

gas equation of state. This simplified model does not account for any electrodynamics or charged

species; instead, the gas is assumed to be molecular Nitrogen in the ground state. In the present

study, we take a similar approach to numerical modeling of the plasma kernel evolution. The 2D-

axisymmetric problem domain and initial, high-energy kernel are illustrated in Figure 5.1. This is

the computational geometry and domain used in the present study.

5.1.1 Axisymmetric Governing Equations

In the discussion of this laser-plasma kernel test case, we revert to a more familiar nomenclature

for the fluid equations in order to be consistent with the reference literature, and also because the

more detailed nomenclature and formulation of the governing equations used in Chapters 2 and
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3 are better suited for problems involving multiple, charged species. Simplifying the governing

equations (3.1) in 2-D axisymmetric problem space, for a single, neutral species, results in the

following solution vector

U = [ρ, ρur, ρuz, ρe]
T , (5.1)

hyperbolic flux,

F⃗ =
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viscous (elliptical) flux,
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and source terms,

S = −1

r


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. (5.4)

In this simplified case of a single, neutral species, there are no source terms to account for col-

lisions or reactions. Instead, the vector of source terms (5.4) represents the transformation between
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the Cartesian coordinate version of the conservation equations and a 2D-axisymmetric coordinate

system.

5.1.2 Boundary Conditions and Initialization

The z axis in Figure 5.1 represents the symmetry axis (i.e. the axis of rotation). From a boundary

condition perspective, this z-axis edge of the 2D domain is modeled as a slip boundary. This

boundary treatment prescribes a zero velocity in the r direction, but does not inhibit or dictate the z

direction velocity, which is reconstructed from adjacent cells. The three other edges of the problem

domain are also modeled as slip wall boundaries; however, the domain is sized with the intention

that the shock propagation does not reach any boundaries within the time range of interest.

The 2D domain size is 16 mm in the r direction and 32 mm in the z direction (Figure 5.1).

The initial kernel of high-energy described in the reference [57] is 2 mm long (z direction) and has

a minor radius of 0.5mm (r direction) resulting in a length to width aspect ratio of 2:1. The shape

of the initial kernel is described as an ellipse superimposed on an elongated rectangle or diamond

shape. After the initial kernel shape is constructed, the pressure and temperature inside the kernel

are set to 2.2×107 Pa and 35,000K, respectively. Outside the kernel, the remainder of the domain

is initialized to 101,325 Pa and 300K. The only gas species considered in this test case is diatomic

Nitrogen, N2, in the ground state. Finally, a circular-averaging (pillbox) filter method is applied

to the problem domain, with a filter radius of 0.25 mm, to smooth the sharp discontinuities at the

kernel edges. A contour plot of the kernel initialization is shown in Figure 5.2.
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(a) Temperature, 0 µs, Thi

Tlo
≈ 100 (b) Pressure, 0 µs, Phi

Plo
≈ 200

Figure 5.2: Initial conditions for the high-energy laser-initiated plasma kernel. Spatial scaled is zoomed in

relative to the problem domain.

5.1.3 Transport and Thermodynamic Properties

The initial temperature in the high-energy kernel, 35,000 K, is far beyond any useful tables or

constitutive models for transport or thermodynamic coefficients of gases. In fact, at those tempera-

tures, the Nitrogen molecules would exhibit a significant level of dissociation into atomic Nitrogen

as well as thermal ionization. However, the goal of this work is to establish solution methods for

problems involving strong discontinuities commonly found in plasmas and laser excitations of gas,

so the chemical and charge complexities of the gas are neglected in the present study. Similar

assumptions were made in the reference literature [57].

Thermodynamic and transport data are based on the coefficients and polynomials published by

NASA Glenn Research Center [58]. For Nitrogen, these tables provide transport coefficients up to

15,000K and thermodynamic coefficients up to 20,000K. The polynomial for thermal conductivity

Ð based on coefficients at 15,000KÐ is monotonic and stable when extrapolated between 15,000

K ś 35,000 K, so the high-temperature coefficients for κ were used without modification inside

the high-temperature kernel. Some literature suggests the viscosity of Nitrogen at temperatures

between 15,000K ś 35,000K is relatively consistent [59], so in our model we have held the viscosity
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constant over this entire high-temperature range, based on the value of µ at 15,000 K. The results

of the ultra-high temperature transport property models are shown in Figure 5.3.
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Figure 5.3: Extrapolation model for ultra-high temperature transport properties

At temperature values above 15,000 K, the Prandtl number for air tends to remain approxi-

mately 0.3, so we assume this trend also applies for Nitrogen [59]. However, extending the specific

heat equation, Cp (T ) beyond the maximum temperature range from the NASA tables results in a

highly nonlinear relationship with temperature, and the resulting Cp values, combined with extrap-

olated values for µ and κ, yield Prandtl numbers that are excessively high. Therefore, a new model

for specific heat was constructed for temperatures above 20,000 K. This model assumes a linear

relationship with temperature, with a slope that approximately results in a Prandtl number of 0.3

over the temperature range of 20,000 ś 35,000 K. Results of the high-temperature thermodynamic

property extrapolation are shown in Figure 5.4.
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Figure 5.4: Extrapolation model for ultra-high temperature thermodynamic properties

5.1.4 Solution Methodology

For a significant duration of the transient solution, the majority of the problem domain is quies-

cent. In order to promote computational efficiency in these undisturbed regions, a coarse resolution

is specified for the top-level mesh. As the solution progresses, the decision on whether to refine the

mesh is based on pressure and density gradients. Cells are tagged for refinement if the gradients in

density or pressure spanning the cell exceed some predetermined threshold for each variable. For

the simulation presented here, the tagging thresholds of 0.1 ś 0.01 were found to provide a good

balance between refinement and solution efficiency. Also, in the current simulation, four levels of

mesh refinement were employed, each level with twice the mesh resolution as the previous level.

As a result, the cell sizes vary between 125 µm on the coarsest grid to approximately 8 µm on the

finest grid.

The standard fourth-order Runge-Kutta scheme is used to evolve the solution in time. To ensure

stability during the iterative solution, both convective and diffusive fluxes (and the corresponding

wave speeds), as well as the source terms need to be considered when determining a time step size.

Eigensystem analysis of the source term Jacobian matrix reveals maximum wave speeds of the
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radial velocity component, u. In the case of this laser-induced plasma kernel, it is the convective

wave speeds that dominate the propagation of error terms through the domain. Therefore, the time

step is determined at each iteration of the nonlinear solution, based on the maximum wave speed

of the hyperbolic flux terms and a prescribed CFL number. For the simulations presented in this

work, CFL numbers in the range 0.50-0.75 were used.

5.1.5 Results and Discussion

Themost volatile conditions in the simulation occur within 1.0µs, when the initial high pressure

region rapidly expands past the region of high temperature. Compression waves coalesce around

the perimeter, driving high density shock wave along the front of the expansion bubble. The leading

edge of the expansion bubble are where the gradients are highest, and the mesh is actively refined in

this region, as shown in Figure 5.5. Furthermore, having a highly-refined mesh along the surface of

the expansion bubble allows for the shock discontinuity to be captured with a sharp, non-oscillatory

edge, as shown in subfigure (b) of Figure 5.6. Additionally, line plots showing the pressure and

temperature values in the r direction, through the center of the kernel, are shown for multiple times

in Figure 5.6.

The transient response of the initial high-energy kernel in time is illustrated in Figure 5.7.

Around 4-5 µs, the high-temperature region begins to collapse inward along the z axis, rapidly

cooling the center, eventually producing a toroidal shape as shown in Figure 5.8. Also around 4-5

µs, the high-pressure has evacuated the initial kernel, leaving behind a region of high temperature

which is propagating on a slower time scale due to thermal diffusion. During this time, the density

inside the expansion bubble becomes lower than the surrounding conditions.

After the initial shock formation and rapid outward convection, the thermodynamic evolution

of the high-temperature kernel left behind occurs on a much slower timescale. As time progresses,

the simulation predicts a similar kernel structure compared to experimental results; however, the

temporal response of the simulation is roughly twice as slow as captured in the experimental results.

Clearly, this is due Ð at least in part Ð to the gross simplifications in physics we have made
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(a) Pressure, 0.1 µs (b) Pressure, 0.1 µs, zoomed in NE quadrant

Figure 5.5: Example of solution-adaptive mesh refinement, with tagging thresholds of 0.2 for both pressure

and density and 5 levels of AMR. Contour plots show pressure at 0.1 µs. Only one in four actual mesh lines
are shown in subfigure (a) to enhance clarity in the figure.
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Figure 5.6: Temporal evolution of high-energy kernel. Spatial scaled is zoomed in for temperature plot.

regarding the high-temperature properties and characteristics of the fluid. It will be interesting in

future work to include more relevant physics, accounting for the presence of charged, excited, and

atomic species.
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(a) Temperature, 1 µs (b) Temperature, 4 µs (c) Temperature, 15 µs (d) Temperature, 32 µs

(e) Pressure, 1 µs (f) Pressure, 4 µs (g) Pressure, 15 µs (h) Pressure, 32 µs

Figure 5.7: Simulation results at four steps. Spatial scale is zoomed in for temperature plots.
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(a) Experimental data, Schlieren pho-

tos [60]
(b) 2nd-order accurate CFD model,

synthetic Schlieren plots [57]
(c) Current work, density plots with a

diverging colormap

Figure 5.8: Comparing thermodynamic kernel evolution between the current work and results from literature
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5.2 2D Transmagnetic Wave

Another class of electromagnetic test cases with exact solutions are the various waveguide

modes: transverse magnetic (TM), transverse electric (TE), and transverse electromagnetic (TEM).

In particular, a TM wave simulation considered in previous literature [36] provides a relevant vali-

dation test for our current work. In this test case, a rectangular, two-dimensional plane represents

a cross-section of a waveguide. The domain size is Lx = 80 m and Ly = 40 m. The wavenumbers

are given by

a =
mπ

Lx

b =
nπ

Ly

, (5.5)

wherem = 8, n = 5. The net wave travels in the z direction, oscillating at the cutoff frequency, ω.

The exact solution for this problem is given by equations (5.6) ś (5.8),

Ez = ℜ(E0 sin(ax) sin(by)e
−jωt), (5.6)

Bx = ℜ(−j
b

ω
E0 sin(ax) cos(by)e

−jωt), (5.7)

By = ℜ(j a
ω
E0 cos(ax) sin(by)e

−jωt), (5.8)

where ℜ denotes the real component of the complex expressions, j is the imaginary unit, and E0 is

the initial electric field value (1 V/m in our test case).

The TM wave problem is modeled with PEC boundary conditions and initialized using the

analytical solution data at time t = 0. The divergence cleaning potentials are both initialized to

zero. The wave speed scalars used on the divergence cleaning potentials Ψ and Φ are λ = 1.0 and

χ = 0.0, respectively. The solution is advanced in time using a CFL number of 0.8 based on the

EM wave propagation speed (the speed of light).

The scalar electric field, Ez oscillates in time according to the analytical solution and numer-

ical damping of the magnitude is minimized by the 4th-order algorithm as shown in Figure 5.9.

Line samples of the simulation results at 75 ns compare well with the exact solution, as shown in
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Figure 5.10, and are also consistent with higher-order, numerical methods used in previous liter-

ature [36]. As the solution advances in time, the initial electric field gradients drive the evolution

of rotating magnetic fields (Figure 5.11). The shape and magnitudes of the magnetic fields are

symmetric and also appear to free from adverse affects from the physical boundary.

Figure 5.9: Transverse magnetic wave solution for scalar electric fieldEz withm = 8 and n = 5, at solution
time 75 ns on a 64× 32 mesh.
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Figure 5.10: Comparison of numerical results for the TM wave calculation on a 64× 32 mesh, withm = 8
and n = 5, at solution time 75 ns. Left plot shows Ez at y = 20 m and right plot shows Ez at x = 25 m.
The numerical results (black marks) show good agreement with the exact solution (solid lines).

Figure 5.11: Transverse magnetic wave solution for magnetic field B⃗ with m = 8 and n = 5, at solution
time 75 ns on a 64× 32 mesh.
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5.3 1D Electron Acoustic Wave, 10-Harmonics

To validate the solution produced by the multi-fluid plasma algorithm in Chord, the electron

acoustic problem from Section 4.2 is solved for a 10-harmonic (N = 10) case to a time of 3. The

numerical algorithm handles the initial discontinuity well and produces a solution that precisely

aligns with the exact solution, as shown in Figure 5.12.
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Figure 5.12: Electron acoustic wave results, 10-harmonic case, at a normalized time of 3. The solution from

Chord (lighter markers) is compared to the exact solution (darker, solid line). The plot on the left shows

electron velocity and the plot on the right shows the x-component of the electric field. The Chord solution

is using a 4th-order accurate algorithm with a fixed mesh size of 1024. The marker density for the Chord

solution has been reduced by a factor of 1/4 to improve clarity.
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Chapter 6

Simulation Results and Discussion

With a fully verified and validated algorithm, the next step is to compare simulations of com-

mon plasma tests cases in Chord with results from the literature. In the process, there are further

opportunities to explore AMR configurations and solution-stabilizing methods. The test cases con-

sidered herein are an electromagnetic refractive disk, a 1Dmagnetic shock tube, the GEMmagnetic

reconnection challenge problem, and a 2D plasma blast explosion problem.

6.1 Refractive Scattering of an Electromagnetic Pulse

We adapt a problem from Balsara et al. [61] to demonstrate spatially-varying material properties

in Chord and to test our implementation of zero-gradient boundary conditions on the electromag-

netic variables; this is a test of our electromagnetic solver only, not the full, multi-fluid plasma

model.

6.1.1 Problem Setup

In this problem, a compact electromagnetic pulsewith aGaussian taper travels obliquely through

a square, two-dimensional domain bound by [−7.0, 7.0] × [−7.0, 7.0] m. In the center of the do-

main is a dielectric disk with a radius of 0.75 m. The permeability in the domain is constant, set to

µ = µ0 = 4π × 10−7 NA−2, and a permittivity specified as

ϵ (x, y) = ϵ0

(

5.0− 4.0 tanh

(

√

x2 + y2 − 0.75

0.08

))

, (6.1)

where ϵ0 = 8.8542×10−12 Fm−1. Thus, the speed of light is also spatially varying, c = 1/
√

ϵ (x, y)µ.

In the lower left corner of the domain, an initial electromagnetic pulse is specified, with a Gaussian

taper in both transverse and longitudinal directions. The magnetic and electric field components of
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this initial pulse are specified as

Ex = c

(

w1 (y − b)C2 sin (C1)√
2 πw2

2

− C2 cos (C1)√
2

)

(6.2)

Ey = −c

(

w1 (x− a)C2 sin (C1)√
2 πw2

2

+
C2 cos (C1)√

2

)

(6.3)

Bz = C2 cos (C1)− w1

(x− a)C2 sin (C1)

πw2
2

, (6.4)

with the following substitution variables and model parameters

C1 = 2π
x+ y

w1

(6.5)

C2 = e
−(y−b)2−(x−a)2

w2
2 (6.6)

a = b = −2.5 m (6.7)

w1 = w2 = 1.5 m. (6.8)

All other solution variables are initialized to zero, including the divergence correction potentials

Φ and Ψ. The divergence correction wave speed scalars are set to χE = χB = 1.1. The mesh

is specified as 64 × 64 coarse grid cells, and AMR is applied to this problem, with 2 levels of

refinement and a refinement ratio of 2 between each level. Cells are tagged for refinement based

on the amplitude of theBz component, with a threshold of |Bz| ≥ 0.3. The initialized domain with

an illustration of the refractive disk are shown in Figure 6.1. A time step of 0.1 ns is used.

6.1.2 Results and Discussion

As the solution evolves in time, the electromagnetic pulse travels obliquely through the domain

at a 45 ◦ angle. When the pulse interacts with the higher-permittivity disk in the middle of the

domain, the pulse wavelength compresses and the wave velocity slows as it passes through the

circular disk, while the portions of the pulse outside of the refractive disk continue to propagate
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unimpeded. As a result, the waveform develops a wake around the disk, as shown in Figure 6.2.

Interaction with the refractive media also causes the generation of error in the divergence correction

term,Φ. Because the wave-speed scalarχE is greater than unity, the values ofΦ propagate and leave

the domain faster than the electric and magnetic field information. By tagging on the amplitude of

theBz component, the mesh is adaptively refined in and around the refractive disk, and areas of the

solution with steep gradients and higher detail are meshed with higher resolution. This adaptive

refinement is visualized in Figure 6.2. Mesh refinement based on waveform amplitude is effective

in this problem and provides improvements in computational efficiency compared to a fixed-size

mesh. However, a more robust tagging method might be based on wavelength instead of amplitude;

this type of tagging is not currently available in Chord, but is something we are considering for

future work.

Figure 6.1: Initialization of the z component of themagnetic field,Bz . Units are inT or kgA
−1 s−2. A circle

is superimposed on the plot to illustrate the refractive disk in the middle of the domain, with permittivity as

defined by Equation (6.1). The initial mesh is shown, with refinement triggered by the amplitude of the Bz

term.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Results from a Gaussian-tapered, electromagnetic pulse incident on a refractive disk, at various

times as indicated (in units of ns). The left column of plots show the magnitude of the magnetic field in units
of T or kgA−1 s−2, and the right column shows the magnitude of the divergence correction potential, Φ,
also in units of T or kgA−1 s−2.
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6.2 1D Magnetic Shock Tube

The classic, Brio-Wu magnetic shock tube problem [62] has been studied extensively using both

MHD and multi-fluid algorithms, which makes it a good candidate to demonstrate the capabilities

of Chord in resolving shock waves with efficiency and accuracy.

6.2.1 Problem Setup

The electron and ion fluids are both modeled using a calorically-perfect, ideal gas equation of

state with both γi = 5/3 and γe = 5/3, and similar to the previous test cases, only the inertial terms

of the fluid equation are considered. The speed of light is prescribed as c = 1, with a permittivity

ϵ0 = 1. A realistic ion to electron mass ratio is maintained,mi/me = 1836, and the ion and electron

charges are set to qi = −qe = 1. The problem is solved on a one-dimensional grid spanning a

nondimensionalized domain of x ∈ [0, 1]. There is an initial discontinuity in the domain at position

0.5, dividing the domain into left and right states, which are initialized with the following values:
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This problem uses 1st-order, zero-gradient boundary conditions. It has been previously demon-

strated that the ion inertial length factors significantly into the characteristics of the magnetic shock

tube solution [18ś20,23]; this is studied in the present work by varying the ion massmi.

6.2.2 Results and Discussion

An initial investigation was performed to understand the grid requirements for the various dis-

cretization algorithms in Chord; in particular, we were interested in comparing the grid require-

ments for the 4th-order and 2nd-order algorithms in Chord. To demonstrate the accuracy of the

Chord solution, the results are plotted along with a reference solution based on data provided by

Huang et al. [23]. As shown in Figure 6.3, the 4th-order algorithm in Chord requires roughly half the

cell count of the 2nd-order methods to produce an equivalent solution. Next, we explore applying

and configuring AMR to the magnetic shock tube case. For the same parameters as the fixed-mesh

simulations shown in Figure 6.3, a simulation is performed using the 2nd-order algorithm with 3

levels of adaptive mesh refinement. The grid spacing on the coarsest level corresponds to a grid

size of only 1024 cells (∆x ≈ 1 × 10−3). Refinement tagging is based on the relative gradient

of the electron fluid density, with a threshold value of 0.005. These settings result in an accurate

solution while maintaining a total cell count of only 2336 cells, a 3.5 times reduction in cell count

compared to the fixed-mesh requirement for the 2nd-order solution shown in Figure 6.3. For studies

shown in Figure 6.3 and Figure 6.4, the speed of light is set to c = 2 in order to match the settings

from the reference solution over the time frame considered. These initial simulations are only run

to an intermediate time, before the interior solution information reaches the boundaries, because

the 4th-order accurate interior scheme in Chord is not compatible with the 1st-order, zero-gradient

boundary conditions used. A higher-order, zero-gradient boundary condition is being developed

for Chord. In the meantime, the remainder of the magnetic shock tube results presented here utilize

the 2nd-order, PPM-limiter algorithm in Chord and a 1st-order, zero-gradient boundary conditions.

As previously mentioned, we vary the ion massmi to study the effects of scaling the ion inertial

length (ds i = c/ωp i) relative to the solution domain length. In Figure 6.5, the ion inertial length is
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slightly larger than the domain length. The ion fluid is nearly decoupled from the magnetic field,

and is much slower to respond than the electron fluid. The solution structure looks similar to that

of a neutral gas shock; however, there are some oscillations in the electron density (particularly for

x ∈ [0.0, 0.35]) due to coupling with the electromagnetic fields.

Figure 6.6 represents a case where the ion inertial length is about 4 times smaller than the

domain length. In this case, there is extensive, high-wavenumber content in the solution and the

resulting gradients from the oscillations have triggered adaptive mesh refinement over most of

the domain, as illustrated by the vertical mesh lines in the background of the plot. This level of

refinement is probably unnecessary except in regions of strong discontinuities, and this particular

case may benefit from a different tagging method. Regardless, the Chord solution agrees well with

the reference solution.

When the ion inertial length is ∼103 times smaller than the domain size, both electron and ion

fluids are strongly coupled to the electromagnetic fields. As shown in Figure 6.7, the solution struc-

ture starts to resemble that of the classic, MHD based solution [18,20,62], with one notable difference

from MHD: the multi-fluid solution is capable of capturing the dispersive waves originating in the

source terms which result from the high plasma frequency in this regime. In this case, the AMR

settings have produced an efficient refinement of the mesh; the solution is highly detailed near

shocks and dispersive oscillations, but the grid spacing is sufficiently coarsened in regions which

are more quiescent. The minimum time step requirements outlined in Section 3.5 are adhered to for

the magnetic shock tube cases discussed herein. However, the minimum grid size is also critical

to the accuracy of these simulations, as demonstrated in Figure 6.8. As the grid is coarsened, the

maximum wavenumber captured by the solution is reduced, and the solution becomes generally

smoother and less oscillatory.

Finally, we offer some preliminary performance characterization of various algorithms and

AMR settings in Chord for the magnetic shock tube problem. The results and simulation param-

eters are shown in Table 6.1. By enabling a lower overall cell count, the solutions using AMR

demonstrate significant improvements in computational time compared to fixed-grid solutions. The

66



higher-order solution allows a coarser mesh to be used, and AMR provides a reduction in total cell

count compared to a fixed, high-resolution grid; as a result, the 4th-order algorithm with 2 levels of

AMR achieved equivalent solution accuracy in only ∼ 30% of the time required by the 2nd-order

algorithm with a fixed, high-resolution grid.

Table 6.1: Comparing the computational efficiency of various solution methods in Chord. All rows represent

minimum grids required for an accurate solution to the magnetic shock tube problem with mi = 1. The
simulations are run to a partial solution time of t = 0.4 to avoid interaction with the boundaries, for reasons
discussed earlier. All cases are run with the same CFL number, 0.82. The AMR solutions use refinement
criteria based on electron density relative gradients with a threshold of 0.01. The values reported in the
Compute Time column represent normalized wall clock times for each solution. The absolute values of

computational CPU-hours aren’t currently germane because the algorithm has not yet been compiled in an

optimized, production environment.

Solver AMR

Levels

Coarse

Cells

Total

Cells

Coarse ∆x Coarse ∆t Compute

Time

2nd-order PPM 0 8192 8192 1.22× 10−4 1.0× 10−4 1.00

4th-order PPM 0 4096 4096 2.44× 10−4 2.0× 10−4 0.40

2nd-order PPM 2 2048 2656 4.88× 10−4 4.0× 10−4 0.27

4th-order PPM 2 1024 1512 9.77× 10−4 8.0× 10−4 0.29
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Figure 6.3: Magnetic shock tube results at a normalized time of 0.2 formi = 1. The solutions from Chord
(lighter markers) are compared to the reference solution (darker, dashed line) [23]. For these simulations, the

speed of light was set to c = 2 in order to match the settings of the reference solution. Results are shown
for both the 2nd-order and 4th-order accurate algorithms in Chord. The reference solution is 2nd-order. All

solutions use a fixed grid, with grid spacing as specified in the legend.
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Figure 6.4: Magnetic shock tube results at a normalized time of 0.2 for mi = 1 and c = 2. The solution
from Chord (lighter, circular markers) is compared to the reference solution (darker, dashed line) [23]. The

reference solution uses a fixed mesh spacing of 1.0× 10−4. The Chord solution uses AMR with 3 levels of

refinement and a coarse mesh spacing of 1 × 10−3. Mesh refinement was determined based on the relative

gradient values of the electron density, ρe, with a gradient threshold of 0.005. The adaptive mesh spacing in
Chord is displayed on the plot as thin, vertical lines (the mesh line density has been reduced by a factor of

1/8 to improve clarity).
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Figure 6.5: Magnetic shock tube results at a normalized time of 10 for mi = 1. The solution from Chord
(lighter, solid line) is compared to the reference solution (darker, dashed line) [23]. The reference solution uses

a fixed mesh spacing of 1.0× 10−4. The Chord solution uses AMR with 3 levels of refinement and a coarse

mesh spacing of 3.9 × 10−3. Mesh refinement was determined based on the relative gradient values of the

electron density, ρe, with a gradient threshold of 0.005. The adaptive mesh spacing in Chord is displayed on
the plot as thin, vertical lines (the mesh line density has been reduced by a factor of 1/8 to improve clarity).
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Figure 6.6: Magnetic shock tube results at a normalized time of 10 for mi = 1 × 10−1. The solution

from Chord (lighter, solid line) is compared to the reference solution (darker, dashed line) [23]. The reference

solution uses a fixed mesh spacing of 1.0× 10−4. The Chord solution uses AMR with 3 levels of refinement

and a coarse mesh spacing of 1.9 × 10−3. Mesh refinement was determined based on the relative gradient

values of the electron density, ρe, with a gradient threshold of 0.002. The adaptive mesh spacing in Chord
is displayed on the plot as thin, vertical lines (the mesh line density has been reduced by a factor of 1/16 to
improve clarity).
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Figure 6.7: Magnetic shock tube results at a normalized time of 10 for mi = 1 × 10−3. The solution

from Chord (lighter, solid line) is compared to the reference solution (darker, dashed line) [23]. The reference

solution uses a fixed mesh spacing of 1.0× 10−4. The Chord solution uses AMR with 2 levels of refinement

and a coarse mesh spacing of 2.4 × 10−4. Mesh refinement was determined based on the relative gradient

values of the electron density, ρe, with a gradient threshold of 0.002. The adaptive mesh spacing in Chord
is displayed on the plot as thin, vertical lines (the mesh line density has been reduced by a factor of 1/48 to
improve clarity).
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Figure 6.8: Magnetic shock tube results at a normalized time of 10 formi = 1× 10−3. The solution from

Chord is compared for four different mesh resolutions. Two levels of AMR refinement are used in all cases.

Mesh refinement was determined based on the relative gradient values of the electron density, ρe, with a
gradient threshold of 0.002. In all four cases, the plasma (electron) frequency drives the maximum time
step, so the same time step value of∆t = 2.5× 10−5 is used in each case.
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6.3 GEM Challenge Magnetic Reconnection Problem

Magnetic reconnection is a physical phenomenon occurring in some plasmas in which the topol-

ogy of the magnetic field is modified, and the resulting change in magnetic energy is absorbed by

the plasma via changes to the kinetic and thermal energy. We setup this simulation according to

the Geospace Environmental Modeling (GEM) Reconnection Challenge project, which was estab-

lished to study the discrepancy inmagnetic reconnection times between plasmamodels (particularly

single-fluid MHD models) and empirical observations [3].

6.3.1 Nondimensionalization

In accordance with the original definition of the GEM challenge problem [3], we nondimen-

sionalize spatially using the ion inertial length or skin depth ds i =
√

mi/ (niq2i µ0) using number

density ni = n0. Temporal nondimensionalization is performed using the ion cyclotron frequency

ωc i = qi∥B⃗∥/mi, with |B⃗| = B0. As a result, velocities are normalized by the Alfvén speed

vA = B0/
√
µ0n0mi (we neglect the contribution of electrons to the mass density for simplicity).

6.3.2 Domain & Boundary Conditions

The original GEM challenge problem is specified in a 2D domain on the x-z plane. In the

present work, we have translated the problem onto the x-y plane to be consistent with the coordi-

nates and nomenclature used in Chord. The GEM challenge problem is modeled in Chord as a 2D

domain spanning [0, Lx] × [0, Ly]. The x−boundaries are periodic, and the y−boundaries are set

as conducting (PEC) walls, as defined in Section 3.4.2.

6.3.3 Initial Conditions

The problem is initialized with a Harris current sheet with the following equilibrium magnetic

field profile:

B⃗0 = B0 tanh

(

y − Ly

2

κ

)

· ex, (6.10)
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where ex is a unit vector in the x direction. A perturbation is applied to the magnetic field to disturb

the equilibrium condition,

ζ (x, y) = ζ0 cos

(

2π
(

x− Lx

2

)

Lx

)

cos





π
(

y − Ly

2

)

Ly



 (6.11)

B⃗1 = −e
z ×∇ζ (x, y) , (6.12)

resulting in the following initialization of the magnetic field:

B⃗ = B⃗0 + B⃗1. (6.13)

Both divergence-correction potentials, Φ andΨ, are initialized to zero throughout the domain. The

original GEM problem seems to have been designed for MHD models; when applying the GEM

problem to the multi-fluid plasma model herein, decisions have to be made regarding initialization

of the electric current and electric field. A common treatment is to initialize the electric field to

zero

E⃗ = [0, 0, 0]T . (6.14)

It is also common to assume the initial electrical current is carried only by electrons and is based

solely on the equilibrium component of the magnetic field, B⃗0 [19,20,63], thus the initial electric cur-

rent density would be

j⃗ =
1

µ0

∇⃗ × B⃗0 = − B0

µ0κ
sech2

(

y − Ly

2

κ

)

· ez. (6.15)

These assumptions simplify the problem setup, but they are inconsistent. As a result, the intended

equilibrium condition is contravened and the incongruence may quickly destabilize the solution. A

more robust initialization would consider both the ion and electron contributions to electric current,
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and the initial, equilibrium electric field would be in balance with the fluid pressure and momentum

terms. Nevertheless, after numerical experiments, we have elected to use the simpler, popular

initialization of the current and electric field, Equation (6.14) and Equation (6.15), because it allows

more direct comparison to other multi-fluid simulations of the GEM challenge from literature, and

it is an interesting test of Chord’s capability of handling the initialization inconsistency. The initial

number density for both ion and electron fluids is

ni = ne = n0 sech
2

(

y − Ly

2

κ

)

+ n∞, (6.16)

thus the initial mass densities are

ρi = mini (6.17)

ρe = mene. (6.18)

Initial ion fluid momentum is prescribed as zero and the initial electron fluid momentum is deter-

mined from the electrical current density, j⃗. Consequently, the fluid momentum and velocity terms

are initialized as follows:

ρiu⃗i = [0, 0, 0]T (6.19)

ρeu⃗e =
me

qe
j⃗ (6.20)

u⃗i =
ρiu⃗i

ρi
(6.21)

u⃗e =
ρeu⃗e

ρe
. (6.22)
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Initial fluid temperatures are constant throughout the domain, and the fluid pressure is initialized as

pi = ni
B2

0

2µ0kBn0

(

1 + Te

Ti

) (6.23)

pe = pi
Te

Ti

. (6.24)

These equations are structured to include the ratio Te/Ti because this is a model input parameter.

Finally, the fluid energy density is initialized, based on the fluid pressure, density, and velocity, as

ρiei =
ρi
2
u⃗i · u⃗i +

pi
γi − 1

(6.25)

ρeee =
ρe
2
u⃗e · u⃗e +

pe
γe − 1

. (6.26)

6.3.4 Model Parameters

Most of the parameters for the simulation come from the original GEM problem definition [3].

The domain size is Lx = 8π and Ly = 4π. In normalized units, B0 = 1, ζ0 = 0.1, and n0 = 1.

The ratio of ion mass to electron mass is mi/me = 25, the ion mass is mi = 1, the temperature

ratio is Te/Ti = 0.2, and the background number density is n∞ = 0.2n0. The current sheet width

parameter is set to κ = 0.5. The specific heat ratios for each fluid are equal, γi = γe = 5/3.

Normalized fluid electric charge values are: qi = −qe = 1. The normalized Boltzmann constant is

specified as kB = 1. The original paper describing the GEM challenge did not specify the speed of

light, c. We prescribe the normalized light speed as c = 10vA, where vA = B0/
√
µ0n0mi. Finally,

we set µ0 = 1 and ϵ0 = 1/ (c2µ).

To demonstrate the solution-stabilizing efficacy of the methods described in Section 3.7, in

particular theHO-ACR and FCORmethods, we solve theGEMchallenge problemwith andwithout

these two methods enabled. The two simulations are otherwise identical. Both use a coarse mesh

size of 144×72. Two levels of AMR are specified, with a refinement ratio of 2 between each level.
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AMR tagging is based on relative gradients of the electron energy density, with a tagging threshold

of 0.18. A fixed time step of 5× 10−3 is specified at the coarse mesh level.

6.3.5 Results and Discussion

Two simulations are performed: one without using the stabilization techniques, and the other

using the HO-ACR and FCOR methods. Both solutions are initialized with the same AMR mesh

topology, as expected. Due to the nature of the problem, the solution starts off slowly and both

simulations are consistent. However, by a solution time of t = 5, in the simulation without the

HO-ACR and FCOR methods, we start to observe some nonphysical oscillations developing along

the horizontal boundary between the finest and next finest levels of AMR, as shown in Figure 6.9.

In contrast, the simulation using HO-ACR and FCOR does not produce any unexpected oscillations

at the AMR boundaries, as sown in Figure 6.10.

As the solution without numerical stabilization continues to evolve, the oscillations which orig-

inated at the boundaries between AMR levels propagate away from the AMR boundaries and begin

to contaminate the solution elsewhere in the domain, as shown in Figure 6.11. By a solution time

of t = 15, the simulation without HO-ACR and FCOR has become unstable and is near the point

of diverging, as shown in Figure 6.13. On the other hand, the simulation with numerical-stabilizing

methods HO-ACR and FCOR enabled continues to produce a stable and accurate solution, shown

in Figures 6.12 and 6.14.

For completeness, the solution to the simulation with HO-ACR and FCOR is shown at three

later time steps in Figure 6.15. Despite the dissipation provided by the solution-stabilizingmethods,

the simulation produces highly detailed and accurate results which compare well to the reference

literature [20,23,64]. It is interesting to note the development of a plasmoid-like feature along the

midplane at y = 2π, shown in Figure 6.15 panels (e) and (f). The dissipation in Chord is not

too strong as to suppress naturally occurring instabilities like this, and the plasmoid-like feature

convects outwards and eventually coalesces with the larger łislandž, as reported in literature [65,66].
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Figure 6.9: Electron density, ρe, at t = 5, for the case without the HO-ACR algorithm and without FCOR.
We see subtle oscillations beginning to develop near the center of the domain, originating at the horizontal

boundary between the finest and next finest mesh patches; this is in contrast to the plot in Figure 6.10. The

mesh shown here on half of the contour plot has been drawn with a 4× reduced resolution, to improve clarity.
On the right is a plot of ρe taken from a vertical line through the center of the domain, x = 4π.
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(b)
Figure 6.10: Electron density, ρe, at t = 5, for the case with the HO-ACR algorithm and with FCOR. No
unexpected oscillations are present and the solution evolution is stable. The mesh shown here on half of the

contour plot has been drawn with a 4× reduced resolution, to improve clarity. On the right is a plot of ρe
taken from a vertical line through the center of the domain, x = 4π.
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(b)
Figure 6.11: Electron density, ρe, at t = 10, for the case without the HO-ACR algorithm and without FCOR.
The oscillations which were first noticed in Figure 6.9 have started to propagate, corrupting the solution away

from the AMR boundaries; this is in contrast to the plot in Figure 6.12. The mesh shown here on half of the

contour plot has been drawn with a 4× reduced resolution, to improve clarity. On the right is a plot of ρe
taken from a vertical line through the center of the domain, x = 4π.
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(b)
Figure 6.12: Electron density, ρe, at t = 10, for the case with the HO-ACR algorithm and with FCOR. The
solution continues to evolve without unexpected oscillations. The mesh shown here on half of the contour

plot has been drawn with a 4× reduced resolution, to improve clarity. On the right is a plot of ρe taken from
a vertical line through the center of the domain, x = 4π.
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Figure 6.13: Electron density, ρe, at t = 15, for the case without the HO-ACR algorithm and without
FCOR. The oscillations in electron density have destabilized the solution, affecting other solution variables.

The solution does not progress much further in time than this, eventually diverging. Clearly the numerical-

stabilizing methods are required for this problem, as demonstrated in Figure 6.14. The mesh shown here on

half of the contour plot has been drawn with a 4× reduced resolution, to improve clarity. On the right is a
plot of ρe taken from a vertical line through the center of the domain, x = 4π.
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Figure 6.14: Electron density, ρe, at t = 15, for the case with the HO-ACR algorithm and with FCOR. The
solution continues to evolve without unexpected oscillations. The mesh shown here on half of the contour

plot has been drawn with a 4× reduced resolution, to improve clarity. On the right is a plot of ρe taken from
a vertical line through the center of the domain, x = 4π.
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With the solution-stabilizing methods well-characterized for this problem, the next step is to

compare an AMR solution with a solution on a fixed grid. Furthermore, the magnetic flux recon-

nection for the Chord solutions is compared in Figure 6.16 against the full particle based solution

and a classical, single-fluid MHD solution from the GEM Challenge description [3]. The Chord

solutions not only compare closely to the full particle solution, but there is also good consistency

between the solution obtained with AMR and the solution using a fixed, uniform grid. In Fig-

ure 6.17, the fixed-grid and AMR solutions from Chord are plotted side-by-side, for comparison.

The abrupt rise in computed magnetic flux in the Chord solution around times 28-30 are due to

the formation of the aforementioned plasmoid-like features, which appear in both the AMR and

fixed-grid solutions.

In Figure 6.17, the ion density is plotted side-by-side for both simulations, at various, normal-

ized solution times. For each plot, the grid is superimposed over the right half of the domain. The

AMR solution is using the relative gradient of electron energy density as a tagging criteria. For the

first half of the solution (t ≲ 20), when the electron energy density is still concentrated along the

initial current sheet, only about one third of the grid is refined; as a result these earlier time steps

require less computational effort and the AMR solution iterates much faster than the fixed-grid so-

lution. However, once the fluid jets start to emerge out of the X-point and shock waves begin to

propagate in the y direction, significant gradients in the electron energy density appear throughout

the domain, triggering mesh refinement. By the time t ≳ 32, the majority (sometimes all) of the

domain is fully-refined and the computational effort is the same as the fixed-grid case, which is

expected for such solution phenomena. Regardless, because of the improvements in computational

efficiency earlier in the solution, AMR is able to provide a 15% improvement in solution time

compared to the fixed-grid case.

82



(a) ρi, t = 20 (b) |B⃗|, t = 20

(c) ρi, t = 25 (d) |B⃗|, t = 25

(e) ρi, t = 30 (f) |B⃗|, t = 30

Figure 6.15: The solution evolution in time is shown for the case with the HO-ACR and FCOR algorithms

enabled. This simulation uses two levels of AMR and a coarse grid of 144× 72, with tagging based on the
electron energy density, ρeee. The left column shows the ion density, ρi, and the magnetic field magnitude
|B⃗| is shown on the right.
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Figure 6.16: Reconnectedmagnetic flux vs. time for the GEMChallenge case. For reference, the full particle

and classical, single-fluid MHD solutions from the original GEM challenge publication [3] are presented.

The Chord solutions agree well with the full particle solution. As anticipated, there is little difference in

reconnected magnetic flux between the fixed-grid and AMR solutions in Chord.

84



Figure 6.17: Chord solutions to the GEM reconnection problem, comparing the solution obtained with

AMR (left column) to that with a fixed, uniform mesh (right column). The plots show nondimensionalized

ion mass density ρi at various solution times. The AMR solution uses a coarse grid size of 144 × 72 cells
with two levels of adaptive refinement and a refinement ratio of 2. The fixed mesh solution uses a grid size

of 576 × 288. Both solutions use identical CFL numbers. The mesh at each time step is superimposed on
the right half of each plot, and the mesh resolution is reduced by a factor of 4 for visualization clarity. The

AMR solution uses refinement tagging based on the relative gradient of the electron energy density ρeee.
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6.4 Plasma Blast Explosion

Shock waves in a plasma can be distinctly different compared to purely hydrodynamic shocks

due to the enormous disparity in mass between various species and because of the influence on

charged species motion from electromagnetic fields. Not only are shock waves in plasmas an im-

portant and relevant phenomenon to study, but they also provide an excellent test of the stability

and robustness of our numerical algorithm. Furthermore, because the strong gradients and tren-

chant structure that develop around shock waves are often localized within the solution domain,

AMR can be a highly efficient tool to improve the computational efficiency.

Previously [64], we have used the multi-fluid plasma algorithm in Chord with AMR to solve a

1D magnetic shock tube problem. In the present work, we adapt a 2D plasma explosion problem

from the literature [67]. The 2D plasma explosion or blast test case is interesting because, despite

an initially symmetric discontinuity, the anisotropic, external magnetic field drives an asymmetric

solution structure to evolve. Cylindrical (2D) and spherical (3D) plasma explosion problems are

commonly used as test cases forMHDmodels, but there is a dearth of these types of problems being

solved by multi-fluid plasma models. Therefore, we also investigate the effects of unequal particle

mass between the electron and ion species, not resolvable with traditional, single-fluid, Ideal MHD

models.

6.4.1 Computational Configurations

The plasma blast problem is constructed on a 2D domain in the x-y plane, spanning
[

0, Lx

]

×
[

0, Ly

]

. The domain boundaries are set as zero-gradient or open boundaries, as defined in Sec-

tion 3.4.1. The plasma is initially neutral and homogeneous in density,

ni = ne = n0, (6.27)
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thus the initial mass densities are

ρi = mini (6.28)

ρe = mene. (6.29)

The fluid is initially motionless, with zero momentum

ρiu⃗i = [0, 0, 0]T (6.30)

ρeu⃗e = [0, 0, 0]T . (6.31)

(6.32)

There is a circular discontinuity in pressure, centered in the domain, with a radius of 0.1Lx. Inside

the circle, the fluid pressure is pi = pe = pin, and everywhere else pi = pe = pout. The fluid energy

density is initialized, based on the fluid pressure, density, and velocity, as

ρiei =
ρi
2
u⃗i · u⃗i +

pi
γi − 1

(6.33)

ρeee =
ρe
2
u⃗e · u⃗e +

pe
γe − 1

. (6.34)

The initial electric field is zero, and an external magnetic field with magnitude B0 is applied in the

y direction

E⃗ = [0, 0, 0]T (6.35)

B⃗ = [0, B0, 0]
T . (6.36)

Both divergence-correction potentials, Φ and Ψ, are initialized to zero throughout the domain.
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6.4.2 Model Parameters

The domain size is Lx = Ly = 12. In normalized units, B0 = 10, n0 = 1, and the ion mass is

mi = 1. Initially, we set the ratio of ion mass to electron mass to mi/me = 1, in order to validate

our results against the reference solution [67]. Subsequently, we set the ratio to mi/me = 25 (as

in the GEM problem) to explore the more complex and realistic physics that materialize in the

solution. The specific heat ratios for each fluid are equal, γi = γe = 5/3. Normalized fluid electric

charge values are: qi = −qe = 1. The initial pressure inside the circle is pin = 100 and everywhere

else pout = 1. We set µ0 = 1 and ϵ0 = 1/ (c2µ). As in our previous work [64] and in the GEM

problem, we follow the convention of setting the light speed to c = 10vA, which, for this problem,

results in vA = B0/
√
µ0n0mi = 10 and c = 100.

6.4.3 Results and Discussion

Our first goal with this test case is to validate the solution by Chord against the reference so-

lution. In their paper, Zachary et al [67] were testing a single-fluid, Ideal MHD model. For a more

direct comparison to the reference solution, we set the electron and ion particle masses equal to each

other,mi/me = 1. The authors of the reference solution appear to have used a fixed CFL number,

and their solution results were reported after 48 time steps. However, it’s not clear exactly what

solution time this corresponds to. In Chord, the problem was solved using a fixed time step and a

uniform grid of 160× 160. We find that a nondimensionalized solution time of t = 0.26 provides

results that very closely match the reference solution. As shown in the left column of Figure 6.18,

the contour lines in the solution by Chord have approximately the same topology as those in the

reference solution [67], and the shock structure in the Chord solution is similarly asymmetric, owing

to the influence of the externally applied magnetic field.

One advantage of the multi-fluid approach to plasma modeling is the ability to solve for the

electron and ion species separately, with different particle masses. To study this effect, we set the

mass ratio to mi/me = 25, and the results are shown in the right column of Figure 6.18. A mass

ratio of 25 was used to be consistent with the GEM problem also discussed herein, and because it
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helps alleviate some of the stiffness from using a realistic mass ratio of approximately 1836. We

immediately see the effects of the disparate species masses. When the particle masses are the same

(but opposite charge), the y component of the magnetic field forces opposite z component velocities

in the electrons and ions, resulting in a z component of the electric field, but there is no mechanism

for the development of an x or y component of the electric field. However, when the electrons

are lighter and more mobile than the ions, their increased velocity relative to the ions results in a

separation of charge, leading to the development of x and y components of the electric field, which

effectively łpullsž the ions in tow. As a result, the shape of the solution is even more asymmetric

compared to the case wheremi/me = 1.
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(a) Total fluid density,mi/me = 1 (b) Total fluid density,mi/me = 25

(c) Total fluid pressure,mi/me = 1 (d) Total fluid pressure,mi/me = 25

(e)Magnetic pressure,mi/me = 1 (f)Magnetic pressure,mi/me = 25

Figure 6.18: Plasma explosion results. The left column uses a mass ratio of mi/me = 1 and is used to
validate the Chord solution against the reference solution [67]. The right column uses a dissimilar mass ratio

of mi/me = 25 and highlights some of the enhanced detail and fidelity afforded by the multi-fluid plasma
model, compared to a traditional, single-fluid MHDmodel. Both simulations use uniform grids of 160×160
cells and a time step of∆t = 5× 10−4.
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Next, we compare the fourth-order algorithm with a second-order algorithm (also PPM-based)

in Chord. The advantage of higher-order reconstruction is that it often allows for similarly accurate

solutions but on coarser meshes compared to lower-order algorithms, as demonstrated previously

using a 1D magnetic shock tube problem [64]. We explore this potential by solving the plasma

blast problem on uniform, successively finer meshes, using both the fourth-order and second-order

algorithms. When analyzing the results, shown in Figure 6.19, we look for a difference in solution

detail between the second and fourth-order algorithm results in columns 1 and 2 (density) as well

as a difference in columns 3 and 4 (pressure). However, in this case, the fourth-order results and

second-order results appear to converge in detail and accuracy at roughly the same pace relative to

the mesh size. A more precise view of this behavior is shown in Figure 6.20, where density and

pressure data are extracted from the domain over a diagonal line between (0, 0) and (Lx, Ly); both

second-order and fourth-order algorithms appear to reach a mesh-independent solution between

mesh sizes 320×320 and 640×640. The explanation of this is actually straightforward: because the

solution is highly discontinuous around the shock circumference, the fourth-order reconstruction

is being reduced to second-order by the limiter. As a result, the fourth-order and second-order

algorithms in Chord produce very similar results for highly-discontinuous problems such as this

plasma blast case.

Finally, we explore the application of AMR to the plasma blast problem. In general, AMR

is a highly effective technique for improving the computational efficiency of problems like the

plasma blast case, where the domain is mostly quiescent and has only localized regions of steep

gradients and detailed solution structure. Previously, we demonstrated an improvement in solve

time by approximately 3× when applying AMR to a 1D magnetic shock tube problem [64]. In this

work, we propose a configuration of AMR settings that proves effective for the plasma blast case.

We start with a coarse grid size of 40 × 40 and use three levels of adaptive mesh refinement. A

ratio of 4 is used for the first level of refinement (starting from the coarsest), and a ratio of 2 is

used for the next two levels of refinement. Tagging criteria is established based on the relative

gradients of both the electron and ion energy density, ρeee and ρiei, respectively, with a gradient
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Figure 6.19: Comparing the mesh convergence trends between the second-order and fourth-order spatial

reconstruction algorithms by Chord. The left two columns show total mass density, and the right two show

total fluid pressure.
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threshold of 0.5. Results of this simulation are shown in Figures 6.21 ś 6.25. The relative difference

in fluid density and pressure between the solution with AMR and the solution on a uniform mesh

are plotted in Figure 6.24, illustrating how precisely these two solutions align. In Figure 6.25,

sub-figures (e) and (f) show the divergence cleaning potentials Ψ and Φ effectively accumulating

error in the solution and allowing the error to propagate out of the domain through the zero-gradient

boundary conditions. Furthermore, the improvements in compute time afforded by the use of AMR

were significant. As shown in Table 6.2, the plasma blast case with AMR solved approximately

10× faster than an equivalent uniform-mesh case with the same time step (∆t) and grid size (∆x)

at the finest level.

Table 6.2: Comparing the computational efficiency of various solution methods by Chord. The simulations

are run to a partial solution time of t = 0.4. All cases are run with the same CFL number, 0.4. The AMR
solutions use refinement criteria based on relative gradients of the electron and ion energy densities, with a

threshold of 0.5. The values reported in the Compute Time column represent normalized wall clock times
for each solution. The absolute values of computational CPU-hours are not currently apropos because the

algorithm has not yet been compiled in an optimized, production environment.

Solver AMR

Levels

Coarse Cells Refinement

Ratios

Coarse ∆x Coarse ∆t Compute

Time,

Normalized

2nd-order PPM 0 640× 640 ś 1.875×10−2 6.25× 10−5 0.68

4th-order PPM 0 640× 640 ś 1.875×10−2 6.25× 10−5 1.00

2nd-order PPM 3 40× 40 4− 2− 2 0.300× 100 1.00× 10−3 0.09

4th-order PPM 3 40× 40 4− 2− 2 0.300× 100 1.00× 10−3 0.12
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0 5 10 15
0

5

10

15

20

25

40
80

160
320
640

d

M

P

(d) Total fluid pressure, 4th-order

Figure 6.20: Comparing the mesh convergence trends between the second-order and fourth-order spatial

reconstruction algorithms by Chord. The data shown in these plots is extracted from a diagonal section

through the solution domain between points (0, 0) and (Lx, Ly). The top two plots show total mass density
(ρi + ρe), and the bottom two show total fluid pressure (pi + pe).

94



(a) AMR, t = 0.12 (b) Uniform Grid, t = 0.12

(c) AMR, t = 0.26 (d) Uniform Grid, t = 0.26

(e) AMR, t = 0.40 (f) Uniform Grid, t = 0.40

Figure 6.21: Total fluid density, ρi+ρe. Comparing the results of the solution with AMR (left column) with
the solution on a uniform-grid mesh of 640×640 (right column) at various times shown. Both solutions use a
fixed time step and the same CFL number based on the electromagnetic wave propagation speed. The AMR

solutions use refinement criteria based on relative gradients of the electron and ion energy densities, with a

threshold of 0.5. The mesh is shown on the right side of the domain in each plot, but the mesh resolution is
reduced by a factor of 4× to improve clarity.
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(a) AMR, t = 0.12 (b) Uniform Grid, t = 0.12

(c) AMR, t = 0.26 (d) Uniform Grid, t = 0.26

(e) AMR, t = 0.40 (f) Uniform Grid, t = 0.40

Figure 6.22: Total fluid pressure, pi+pe. Comparing the results of the solution with AMR (left column) with
the solution on a uniform-grid mesh of 640×640 (right column) at various times shown. Both solutions use a
fixed time step and the same CFL number based on the electromagnetic wave propagation speed. The AMR

solutions use refinement criteria based on relative gradients of the electron and ion energy densities, with a

threshold of 0.5. The mesh is shown on the right side of the domain in each plot, but the mesh resolution is
reduced by a factor of 4× to improve clarity.
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(a) AMR, t = 0.12 (b) Uniform Grid, t = 0.12

(c) AMR, t = 0.26 (d) Uniform Grid, t = 0.26

(e) AMR, t = 0.40 (f) Uniform Grid, t = 0.40

Figure 6.23: Magnetic pressure. Comparing the results of the solution with AMR (left column) with the

solution on a uniform-grid mesh of 640 × 640 (right column) at various times shown. Both solutions use a
fixed time step and the same CFL number based on the electromagnetic wave propagation speed. The AMR

solutions use refinement criteria based on relative gradients of the electron and ion energy densities, with a

threshold of 0.5. The mesh is shown on the right side of the domain in each plot, but the mesh resolution is
reduced by a factor of 4× to improve clarity.
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Figure 6.24: Plots of the relative difference between the solution with AMR and the solution on a uniform-

grid, at various times. The left column shows the relative difference in total mass density, and the relative

difference in total fluid pressure is plotted on the right. Both solutions use a fixed time step and the same

CFL number. The AMR solutions use refinement criteria based on relative gradients of the electron and ion

energy densities, with a threshold of 0.5. The AMR mesh is shown on the right side of the domain in each
plot, but the mesh resolution is reduced by a factor of 4× to improve clarity.
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(a) Electric Field, |E⃗| (b)Magnetic Field, |B⃗|

(c) Electric Current Density, |⃗j| (d) Electric Charge Density, ρq

(e) Divergence Correction, Φ (f) Divergence Correction, Ψ

Figure 6.25: Plots of various electromagnetic parameters from the solution at t = 0.4 with AMR.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This work presents the development of a higher-order, multi-fluid plasmamodel that is solution-

adaptive in both space and time. A number of solution-stabilizing methods are studied and char-

acterized, and the algorithm is demonstrated to be robust at handling the types of strong discon-

tinuities and oscillations common in plasmas. One of the defining advantages of the multi-fluid

plasma model over traditional, single-fluid, MHD methods is the ability of the multi-fluid model

to resolve high-frequency waves and the accompanying vast ranges in temporal and length scales

found in real plasmas. Multiple demonstrations of this effect are provided, including the magnetic

shock tube example and a 2D plasma explosion problem. The thermophysical material models for

both transport and thermodynamic properties have been extended to include monotonic extrapola-

tions for ultra-high temperature regimes which are beyond the temperature ranges in common fluid

properties tables. An HLLC-type Riemann solver is integrated for the electromagnetic equations

to resolve the discontinuities at the cell faces, including boundary faces, and compute the flux.

The algorithm has been demonstrated to be 4th-order accurate in both space and time for smooth

solutions. We have verified the order of accuracy and validated the code using 2D transmagnetic

wave, 3D plane-polarized wave, and electron acoustic wave test cases, all of which have exact

solutions. The multi-fluid plasma algorithm in Chord was also used to solve classic test problems

in plasma physics, a Brio-Wu style magnetic shock tube and the GEM Challenge magnetic recon-

nection problem. We have employed AMR to enable high-resolution, accurate solutions with a

demonstrated improvement in computational efficiency. In the magnetic shock tube problem, the

utilization of AMR leads to a 70% reduction in compute time, and in the plasma explosion case,

AMR reduces the solution time by 90%.
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7.2 Original Contributions

This research has resulted in novel contributions to the field of plasma modeling, namely:

• Established amulti-fluid plasma solver in a fourth-order, finite-volume numerical framework.

• Combined a fourth-order, finite-volume method using the PPM limiter and AMR to solve

Maxwell’s equations.

• Integrated a multi-fluid plasma model with AMR, and an investigation of AMR settings and

performance improvements from AMR have been characterized for common plasma test

problems.

• Tested solution-stabilizing methods when applying the fourth-order, multi-fluid plasma mod-

eling algorithm to problems involving under-resolved gradients, shocks, and other strong

discontinuities.

• Applied the new multi-fluid plasma modeling algorithm to solve challenging problems; for

example, the GEM magnetic reconnection challenge problem, a magnetic shock tube, and a

plasma blast problem.

7.3 Future Work

For most of the current work, a reduced version of our full, multi-fluid plasma model is uesd;

the model has been simplified to handle more basic, two-fluid, fully-ionized, collision-less plas-

mas. An obvious next step in this research will be to apply our model to more complex plasmas

and include collision mechanisms between the various species. This will open the door for many

applications and allow us to compare simulations in Chord with experimental results from real

plasmas. To enable the solution of practical problems, more advanced boundary conditions and

mesh handling capabilities should be explored. Chord has the ability to handle mapped structured

grids to accommodate complex geometries, but this functionality is not yet implemented for the

electromagnetics module. Furthermore, it is very compelling to compile the multi-fluid algorithm
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in Chord in an optimized, production type environment and perform very large, highly parallelized

simulations to better understand the scaling performance.

102



Bibliography

[1] Plasma Science: Advancing Knowledge in the National Interest. National Academies Press,

Washington, D.C., December 2007. ISBN 9780309109437. URL http://www.nap.edu/

catalog/11960.

[2] H. Alfvén. Existence of Electromagnetic-Hydrodynamic Waves. Nature, 150(3805):405ś

406, October 1942. ISSN 0028-0836, 1476-4687. doi: 10.1038/150405d0. URL https:

//www.nature.com/articles/150405d0.

[3] J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova,

Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett. Geospace Environmental Modeling

(GEM)Magnetic Reconnection Challenge. Journal of Geophysical Research: Space Physics,

106(A3):3715ś3719, March 2001. ISSN 01480227. doi: 10.1029/1999JA900449. URL

https://onlinelibrary.wiley.com/doi/10.1029/1999JA900449.

[4] Phillip Colella, Milo R Dorr, and Daniel D Wake. Numerical solution of plasma fluid equa-

tions using locally refined grids. Journal of Computational Physics, 152(2):550ś583, July

1999. ISSN 0021-9991. doi: 10.1006/jcph.1999.6245. URL http://www.sciencedirect.com/

science/article/pii/S0021999199962459.

[5] C. P. T. Groth, D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell. A Parallel Adaptive 3D

MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows. Space Science Reviews,

87(1/2):193ś198, 1999. ISSN 00386308. doi: 10.1023/A:1005136115563. URL http://link.

springer.com/10.1023/A:1005136115563.

[6] Clinton P. T. Groth, Darren L. De Zeeuw, Tamas I. Gombosi, and Kenneth G. Powell. Global

three-dimensional MHD simulation of a space weather event: CME formation, interplan-

etary propagation, and interaction with the magnetosphere. Journal of Geophysical Re-

search: Space Physics, 105(A11):25053ś25078, November 2000. ISSN 01480227. doi:

10.1029/2000JA900093. URL http://doi.wiley.com/10.1029/2000JA900093.

103



[7] T.I. Gombosi, D.L. DeZeeuw, C.P.T. Groth, and K.G. Powell. Magnetospheric configuration

for Parker-spiral IMF conditions: Results of a 3D AMRMHD simulation. Advances in Space

Research, 26(1):139ś149, January 2000. ISSN 02731177. doi: 10.1016/S0273-1177(99)

01040-6. URL https://linkinghub.elsevier.com/retrieve/pii/S0273117799010406.

[8] Dinshaw S. Balsara. Divergence-Free Adaptive Mesh Refinement for Magnetohydrody-

namics. Journal of Computational Physics, 174(2):614ś648, December 2001. ISSN

00219991. doi: 10.1006/jcph.2001.6917. URL https://linkinghub.elsevier.com/retrieve/pii/

S0021999101969177.

[9] S. Fromang, P. Hennebelle, and R. Teyssier. A high order Godunov scheme with constrained

transport and adaptive mesh refinement for astrophysical magnetohydrodynamics. Astronomy

& Astrophysics, 457(2):371ś384, October 2006. ISSN 0004-6361, 1432-0746. doi: 10.1051/

0004-6361:20065371. URL http://www.aanda.org/10.1051/0004-6361:20065371.

[10] I. A. Kryukov, S. N. Borovikov, N. V. Pogorelov, and G. P. Zank. A New, Three-dimensional,

Adaptive Mesh Refinement Code for Modeling Flows of Partially Ionized Plasma. In N. V.

Pogorelov, E. Audit, and G. P. Zank, editors, Numerical Modeling of Space Plasma Flows,

volume 385 of Astronomical Society of the Pacific Conference Series, page 265. Astronomical

Society of the Pacific Conference Series, April 2008.

[11] J. H.Malmberg and J. S. deGrassie. Properties of Nonneutral Plasma. Physical Review Letters,

35(9):577ś580, September 1975. ISSN 0031-9007. doi: 10.1103/PhysRevLett.35.577.

[12] H. Alfvén. Existence of Electromagnetic-Hydrodynamic Waves. Nature, 150(3805):405ś

406, October 1942. ISSN 0028-0836, 1476-4687. doi: 10.1038/150405d0. URL http://www.

nature.com/articles/150405d0.

[13] J. P. Freidberg. Ideal magnetohydrodynamic theory of magnetic fusion systems. Reviews of

Modern Physics, 54(3):801ś902, July 1982. ISSN 0034-6861. doi: 10.1103/RevModPhys.

54.801. URL https://link.aps.org/doi/10.1103/RevModPhys.54.801.

104



[14] W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss, and L. E. Sugiyama. Plasma

simulation studies using multilevel physics models. Physics of Plasmas, 6(5):1796ś1803,

May 1999. ISSN 1070-664X, 1089-7674. doi: 10.1063/1.873437.

[15] Eric C. D’Avignon, Philip J. Morrison, and Manasvi Lingam. Derivation of the Hall and

extended magnetohydrodynamics brackets. Physics of Plasmas, 23(6):062101, June 2016.

ISSN 1070-664X, 1089-7674. doi: 10.1063/1.4952641.

[16] E. A. Witalis. Hall Magnetohydrodynamics and Its Applications to Laboratory and Cosmic

Plasma. IEEE Transactions on Plasma Science, 14(6):842ś848, 1986. ISSN 0093-3813. doi:

10.1109/TPS.1986.4316632.

[17] Mark J. Kushner. Hybrid modelling of low temperature plasmas for fundamental inves-

tigations and equipment design. Journal of Physics D: Applied Physics, 42(19):194013,

2009. ISSN 0022-3727. doi: 10.1088/0022-3727/42/19/194013. URL http://stacks.iop.org/

0022-3727/42/i=19/a=194013.

[18] U. Shumlak and J. Loverich. Approximate Riemann solver for the two-fluid plasma

model. Journal of Computational Physics, 187(2):620ś638, May 2003. ISSN 00219991.

doi: 10.1016/S0021-9991(03)00151-7. URL https://linkinghub.elsevier.com/retrieve/pii/

S0021999103001517.

[19] John Loverich, Ammar Hakim, and Uri Shumlak. A Discontinuous Galerkin Method for

Ideal Two-Fluid Plasma Equations. Communications in Computational Physics, 9(2):240ś

268, February 2011. ISSN 1815-2406, 1991-7120. doi: 10.4208/cicp.250509.210610a. URL

http://arxiv.org/abs/1003.4542. arXiv: 1003.4542.

[20] A. Hakim, J. Loverich, and U. Shumlak. A high resolution wave propagation scheme for ideal

Two-Fluid plasma equations. Journal of Computational Physics, 219(1):418ś442, November

2006. ISSN 00219991. doi: 10.1016/j.jcp.2006.03.036. URL https://linkinghub.elsevier.

com/retrieve/pii/S0021999106001707.

105



[21] Remi Abgrall and Harish Kumar. Robust Finite Volume Schemes for Two-Fluid Plasma

Equations. Journal of Scientific Computing, 60(3):584ś611, September 2014. ISSN 0885-

7474, 1573-7691. doi: 10.1007/s10915-013-9809-6. URL http://link.springer.com/10.1007/

s10915-013-9809-6.

[22] DinshawS. Balsara, TakanobuAmano, SudipGarain, and JinhoKim. A high-order relativistic

two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and

a multidimensional riemann solver for electromagnetism. Journal of Computational Physics,

318:169ś200, aug 2016. doi: 10.1016/j.jcp.2016.05.006. URL https://doi.org/10.1016/j.jcp.

2016.05.006.

[23] Zhenguang Huang, Gábor Tóth, Bart van der Holst, Yuxi Chen, and Tamas Gombosi. A six-

moment multi-fluid plasma model. Journal of Computational Physics, 387:134ś153, June

2019. ISSN 00219991. doi: 10.1016/j.jcp.2019.02.023. URL https://linkinghub.elsevier.

com/retrieve/pii/S0021999119301408.

[24] D. Ghosh, T.D. Chapman, R.L. Berger, A. Dimits, and J.W. Banks. A multispecies, multifluid

model for laserśinduced counterstreaming plasma simulations. Computers & Fluids, 186:

38ś57, May 2019. ISSN 00457930. doi: 10.1016/j.compfluid.2019.04.012. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0045793019301227.

[25] X. Gao, S. M. J. Guzik, and P. Colella. A fourth-order boundary treatment for viscous fluxes

on cartesian grid finite-volume methods. AIAA 2014-1277, 52nd AIAA Aerospace Sciences

Meeting, 2014.

[26] X Gao and S. M. J. Guzik. A fourth-order scheme for the compressible Navier-Stokes equa-

tions. AIAA 2015-0298, 53rd AIAA Aerospace Sciences Meeting, 2015.

[27] S. M. Guzik, X. Gao, L. D. Owen, P. McCorquodale, and P. Colella. A freestream-preserving

fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement.

Computers and Fluids, 123:202ś217, 2015.

106



[28] S. M. Guzik, X. Gao, and C. Olschanowsky. A high-performance finite-volume algorithm

for solving partial differential equations governing compressible viscous flows on structured

grids. Computers and Mathematics with Applications, 72:2098ś2118, 2016.

[29] X. Gao, L. D. Owen, and S. M. J. Guzik. A parallel adaptive numerical method with general-

ized curvilinear coordinate transformation for compressible Navier-Stokes equations. Inter-

national Journal for Numerical Methods in Fluids, 82:664ś688, 2016.

[30] X. Gao, L. D. Owen, and S. M. Guzik. A high-order finite-volume method for combustion.

AIAA 2016-1808, 54th AIAA Aerospace Sciences Meeting, 2016.

[31] Francis F. Chen. Introduction to Plasma Physics and Controlled Fusion Third Edition.

Springer, third edition, 2016.

[32] M. A. Lieberman and Allan J. Lichtenberg. Principles of plasma discharges and materials

processing. Wiley-Interscience, Hoboken, N.J, 2nd ed edition, 2005. ISBN 978-0-471-72001-

0. OCLC: ocm56752658.

[33] U. Shumlak, R. Lilly, N. Reddell, E. Sousa, and B. Srinivasan. Advanced physics cal-

culations using a multi-fluid plasma model. Computer Physics Communications, 182(9):

1767ś1770, September 2011. ISSN 0010-4655. doi: 10.1016/j.cpc.2010.12.048. URL

http://www.sciencedirect.com/science/article/pii/S001046551100004X.

[34] E.M. Sousa and U. Shumlak. A blended continuous-discontinuous finite element method

for solving the multi-fluid plasma model. Journal of Computational Physics, 326:56ś75,

December 2016. ISSN 00219991. doi: 10.1016/j.jcp.2016.08.044. URL http://linkinghub.

elsevier.com/retrieve/pii/S0021999116304016.

[35] C.-D. Munz, P. Omnes, and R. Schneider. A godunov-type solver for the maxwell equations

with divergence cleaning. In E. F. Toro, editor, Godunov Methods, pages 647ś654. Springer

US, 2001. ISBN 978-1-4613-5183-2 978-1-4615-0663-8. doi: 10.1007/978-1-4615-0663-8\

_64. URL http://link.springer.com/chapter/10.1007/978-1-4615-0663-8_64.

107



[36] C.-D. Munz, P. Ommes, and R. Schneider. A three-dimensional finite-volume solver for the

maxwell equationswith divergence cleaning on unstructuredmeshes. Computer Physics Com-

munications, 130(1-2):83ś117, July 2000. ISSN 00104655. doi: 10.1016/S0010-4655(00)

00045-X. URL http://linkinghub.elsevier.com/retrieve/pii/S001046550000045X.

[37] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß. Divergence correc-

tion techniques for maxwell solvers based on a hyperbolic model. Journal of Computational

Physics, 161(2):484ś511, July 2000. ISSN 00219991. doi: 10.1006/jcph.2000.6507. URL

http://linkinghub.elsevier.com/retrieve/pii/S0021999100965070.

[38] Su Yan and Jian-Ming Jin. A continuity-preserving and divergence-cleaning algorithm based

on purely and damped hyperbolic maxwell equations in inhomogeneous media. Journal of

Computational Physics, 334:392ś418, apr 2017. doi: 10.1016/j.jcp.2017.01.012. URL https:

//doi.org/10.1016/j.jcp.2017.01.012.

[39] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. i. small

amplitude processes in charged and neutral one-component systems. Physical Review, 94

(3):511ś525, May 1954. doi: 10.1103/PhysRev.94.511. URL http://link.aps.org/doi/10.1103/

PhysRev.94.511.

[40] K. S. Yee and J. S. Chen. The finite-difference time-domain (fdtd) and the finite-volume time-

domain (fvtd) methods in solving maxwell’s equations. IEEE Transactions on Antennas and

Propagation, 45(3):354ś363, Mar 1997. ISSN 0018-926X. doi: 10.1109/8.558651.

[41] A. Mignone and G. Bodo. An hllc riemann solver for relativistic flows - ii. magnetohydro-

dynamics. Monthly Notices of the Royal Astronomical Society, 368(3):1040ś1054, 2006.

doi: 10.1111/j.1365-2966.2006.10162.x. URL http://dx.doi.org/10.1111/j.1365-2966.2006.

10162.x.

108



[42] P. McCorquodale and P. Colella. A high-order finite-volume method for conservation laws on

locally refined grids. Communications in Applied Mathematics and Computational Science,

6(1):1ś25, 2011.

[43] E. F. Toro, M. Spruce, andW. Speares. Restoration of the contact surface in the HLL-Riemann

solver. Shock Waves, 4(1):25ś34, July 1994. ISSN 0938-1287, 1432-2153. doi: 10.1007/

BF01414629. URL http://link.springer.com/10.1007/BF01414629.

[44] A. Mignone and G. Bodo. An hllc riemann solver for relativistic flows - i. hydrodynamics.

Monthly Notices of the Royal Astronomical Society, 364(1):126ś136, 2005. doi: 10.1111/j.

1365-2966.2005.09546.x. URL http://dx.doi.org/10.1111/j.1365-2966.2005.09546.x.

[45] S Miranda-Aranguren, M A Aloy, and T Rembiasz. An HLLC riemann solver for resistive

relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 476

(3):3837ś3860, feb 2018. doi: 10.1093/mnras/sty419. URL https://doi.org/10.1093/mnras/

sty419.

[46] P. Colella, D. T. Graves, N.D. Keen, T. J. Ligocki, D. F.Martin, P.W.McCorquodale, D.Modi-

ano, P.O. Schwartz, T.D. Sternberg, and B. Van Straalen. Chombo Software Package for

AMR Applications - Design Document. Lawrence Berkeley National Laboratory, 2009.

https://seesar.lbl.gov/anag/chombo/ChomboDesign-3.0.pdf.

[47] J.J Gottlieb and C.P.T Groth. Assessment of riemann solvers for unsteady one-dimensional

inviscid flows of perfect gases. Journal of Computational Physics, 78(2):437ś458, Octo-

ber 1988. ISSN 00219991. doi: 10.1016/0021-9991(88)90059-9. URL https://linkinghub.

elsevier.com/retrieve/pii/0021999188900599.

[48] M. Adams, P. Colella, D. T. Graves, J. N. Johnson, N. D. Keen, T. J. Ligocki, D. F. Mar-

tin, P. W. McCorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen.

Chombo software package for amr applications - design document. Lawrence Berkeley Na-

109



tional Laboratory Technical Report LBNL-6616E, Lawrence Berkeley National Laboratory,

December 2015. URL http://crd.lbl.gov/assets/pubs_presos/chomboDesign.pdf.

[49] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J.

Comput. Phys., 82(1):64ś84, May 1989.

[50] Joshua Christopher, Stephen M. Guzik, and Xinfeng Gao. High-order implicit-explicit addi-

tive runge-kutta schemes for numerical combustion with adaptive mesh refinement. Interna-

tional Journal for Numerical Methods in Fluids, 2022. doi: https://doi.org/10.1002/fld.5084.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.5084.

[51] L. D. Owen, S. M. Guzik, and X. Gao. A fourth-order finite-volume algorithm for com-

pressible flow with chemical reactions on mapped grids. In 23rd AIAA Computational Fluid

Dynamics Conference. AIAA Aviation Forum, 2017. AIAA 2017-4498.

[52] L. D. Owen, X. Gao, and S. M. Guzik. Techniques for improving monotonicity in a fourth-

order finite-volume algorithm solving shocks and detonations. Journal of Computational

Physics, 415, 2020.

[53] N. Overton-Katz, H. Johansen, X. Gao, and S.M.Guzik. Adaptive clipping-and-redistribution

algorithms for bounded and conservative high-order interpolations applied to discontinuous

and reactive flows. Accepted for publication, 2022.

[54] P. Colella and M. Sekora. A limiter for PPM that preserves accuracy at smooth extrema. J.

Comput. Phys., 227(15):7069ś7076, 2008.

[55] E. G. Broadbent. One-dimensional acoustic wave propagation in a plasma fluid in the near

field of an electrical disturbance. Proceedings of the Royal Society of London. Series A,

Mathematical and Physical Sciences, 311(1505):211ś243, 1969. ISSN 00804630. URL

http://www.jstor.org/stable/2416317.

110



[56] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.

Springer-Verlag Berlin Heidelberg, 3 edition, 2009. URL //www.springer.com/us/book/

9783540252023.

[57] Ciprian Dumitrache. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization. Dis-

sertation, Colorado State University, 2017.

[58] S. Gordon and B. J.McBride. Computer program for calculation of complex chemical equilib-

rium compositions, rocket performance, incident and reflective shocks, and chapman-jouget

detonations. Reference Publication 1311, NASA, 1994.

[59] Jerrold M. Yos. Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30,000

K. Technical Memorandum RAD-TM-63-7, Research and Advanced Development Division,

AVCO Corporation, Wilmington, Massachusetts, March 1963.

[60] M. Kono, K. Niu, T. Tsukamoto, and Y. Ujiie. Mechanism of flame kernel formation produced

by short duration sparks. Symp. Combust., 22:1643ś1649, 1988.

[61] Dinshaw S. Balsara, Allen Taflove, Sudip Garain, and Gino Montecinos. Computational

electrodynamics in material media with constraint-preservation, multidimensional riemann

solvers and sub-cell resolution ś part i, second-order FVTD schemes. Journal of Com-

putational Physics, 349:604ś635, nov 2017. doi: 10.1016/j.jcp.2017.07.024. URL https:

//doi.org/10.1016/j.jcp.2017.07.024.

[62] M Brio and C.C Wu. An upwind differencing scheme for the equations of ideal magne-

tohydrodynamics. Journal of Computational Physics, 75(2):400ś422, April 1988. ISSN

00219991. doi: 10.1016/0021-9991(88)90120-9. URL https://linkinghub.elsevier.com/

retrieve/pii/0021999188901209.

[63] DinshawS. Balsara, TakanobuAmano, SudipGarain, and JinhoKim. A high-order relativistic

two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and

a multidimensional Riemann solver for electromagnetism. Journal of Computational Physics,

111



318:169ś200, August 2016. ISSN 00219991. doi: 10.1016/j.jcp.2016.05.006. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0021999116301334.

[64] S. Polak and X. Gao. Fourth-order accurate numerical modeling of the multi-fluid plasma

equations with adaptive mesh refinement. Journal of Computational Physics, 2022. In review

for publication.

[65] M. A. Potter, P. K. Browning, and M. Gordovskyy. Forced magnetic reconnection and plas-

moid coalescence: I. Magnetohydrodynamic simulations. Astronomy & Astrophysics, 623:

A15, March 2019. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201833565. URL

https://www.aanda.org/10.1051/0004-6361/201833565.

[66] A. Alvarez Laguna, N. Ozak, A. Lani, H. Deconinck, and S. Poedts. Fully-implicit finite

volume method for the ideal two-fluid plasma model. Computer Physics Communications,

231:31ś44, October 2018. ISSN 00104655. doi: 10.1016/j.cpc.2018.05.006. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0010465518301590.

[67] Andrew L. Zachary, Andrea Malagoli, and Phillip Colella. A Higher-Order Godunov Method

for Multidimensional Ideal Magnetohydrodynamics. SIAM Journal on Scientific Computing,

15(2):263ś284, March 1994. ISSN 1064-8275, 1095-7197. doi: 10.1137/0915019. URL

http://epubs.siam.org/doi/10.1137/0915019.

112



Appendix A

Numerical Algorithm Data Structure

To reiterate the description of the data structure formation fromChapter 3, when the electromag-

netic physics are solved-of, the length of the solution vector is the same regardless of the number

of spatial dimensions modeled. This treatment is used because of the cross-product operations in

the momentum equation (2.2) and Maxwell’s equations (2.12) and (2.14) reference perpendicular

vector components. In three dimensions, flux is computed in each direction, x, y, and z. In two

dimensions, flux is only computed in the x and y directions; the z-components of the vector-based

solution terms may still evolve due to influence from their source terms, but there is no flux com-

puted in the z-direction. Finally, in one dimension, flux is computed in the x direction only, and the

y and z components of the vector based solution terms are influenced only by their source terms.
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A.1 Conservation Equation Terms, Multi-Fluid Plasma Model

Conserved solution terms for fluid species α, where α = 1 . . . N :
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Hyperbolic flux dyad for fluid species α, where α = 1 . . . N :
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The viscous (elliptical) flux dyad, for fluid species α, where α = 1 . . . N :
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Source terms for fluid species α, where α = 1 . . . N :
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