
THESIS

AUTOMATIC DETECTION OF CONSTRAINTS IN SOFTWARE DOCUMENTATION

Submitted by

Joy Ghosh

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2021

Master’s Committee:

Advisor: Laura Moreno Cubillos

Sudipto Ghosh

Leo Vijayasarathy



Copyright by Joy Ghosh 2021

All Rights Reserved



ABSTRACT

AUTOMATIC DETECTION OF CONSTRAINTS IN SOFTWARE DOCUMENTATION

Software documentation is an important resource when maintaining and evolving software, as

it supports developers in program understanding. To keep it up to date, developers need to verify

that all the constraints affected by a change in source code are consistently described in the doc-

umentation. The process of detecting all the constraints in the documentation and cross-checking

the constraints in the source code is time-consuming. An approach capable of automatically iden-

tifying software constraints in documentation could facilitate the process of detecting constraints,

which are necessary to cross-check documentation and source code.

In this thesis, we explore different machine learning algorithms to build binary classification

models that assign sentences extracted from software documentation to one of two categories:

constraints and non-constraints. The models are trained on a data set that consists of 368 manually-

tagged sentences from four open-source software systems. We evaluate the performance of the

different models (Decision tree, Naive Bayes, Support Vector Machine, Fine-tuned BERT) based

on precision, recall and F1-score. Our best model (i.e., a decision tree featuring bigrams) was able

to achieve 74.0% precision, 83.8% recall and an F1-score of 0.79. This suggests that our results

are promising and that it is possible to build machine learning based models for the automatic

detection of constraints in the software documentation.

ii



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Laura Moreno, for her continuous guidance and support.

Without her supervision, this thesis would not have been completed.

I would also like to thank Dr. Sudipto Ghosh for his input and feedback on the thesis. Thanks

to Dr. Leo Vijayasarathy for agreeing to be one of my thesis committee members.

I want to express my deepest gratitude to my wife and parents for their constant support

throughout graduate school, and to my friends, who helped me to cope up with my new life in

a different country.

iii



DEDICATION

I would like to dedicate this thesis to God Almighty.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Defining the term “Constraint” . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Building the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Building constraint classification models . . . . . . . . . . . . . . . . . . 10

2.4 Evaluating the performance of the models . . . . . . . . . . . . . . . . . . 23

2.5 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Testing the performance of the models with two strategies . . . . . . . . . 26

3.2 Strategy 1: Train and test the models on the same data set . . . . . . . . . 27

3.3 Strategy 2: Train and test the models on different data sets . . . . . . . . . 41

3.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Business Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Automatic detection and classification of business rules . . . . . . . . . . 64

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

v



LIST OF TABLES

2.1 Software systems used to build the data set . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Composition of the data used in the study. Proportions of constraints and non-constraints

with respect to sentences in analyzed section are shown in parenthesis. . . . . . . . . . 8

2.3 Composition of the training and testing data sets for each system. Proportions of

constraints and non-constraints with respect to data points in training/testing data set

are shown in parenthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 System-wise parameters of decision tree models with onegram embedding . . . . . . . 12

2.5 System-wise parameters of decision tree models with bigram embedding . . . . . . . . 13

2.6 System-wise parameters of decision tree models with n-gram (n={1,2}) embedding . . 13

2.7 System-wise parameters of best Naive Bayes models . . . . . . . . . . . . . . . . . . 13

2.8 System-wise parameters of best SVM models . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Accuracy, precision, recall and F1-score comparison between different models across

all systems for testing strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Accuracy, precision, recall and F1-score comparison between different models across

all systems for testing strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Partial taxonomy by Maalej and Ghaisas [1]. The sub-classes for which the authors

did not mention any definition have been omitted . . . . . . . . . . . . . . . . . . . . 67

4.2 New types of business rules proposed by Anish et al. [2]. Definitions are verbatim

from the original publication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



LIST OF FIGURES

2.1 Sample diagram of a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 SVM uses kernel trick to uplift the dimension of data points . . . . . . . . . . . . . . 15

2.3 Encoding procedure of the BERT algorithm . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Example of encoding procedure of the BERT algorithm . . . . . . . . . . . . . . . . . 17

2.5 Fine-tuned BERT optimized with Adam learning rate . . . . . . . . . . . . . . . . . . 21

2.6 Processing sentences before feeding into models . . . . . . . . . . . . . . . . . . . . . 22

3.1 Top four tokens used by decision tree with bigram in HttpCore data set . . . . . . . . . 36

3.2 Top four tokens used by decision tree with bigram in jEdit data set . . . . . . . . . . . 37

3.3 Top four tokens used by decision tree with bigram in Swarm data set . . . . . . . . . . 37

3.4 Top four tokens used by decision tree with bigram in ArgoUML data set . . . . . . . . 38

3.5 Top four tokens used by decision tree with bigram in “All Systems” data set . . . . . . 38

3.6 Precision trend of the decision tree model with unigram . . . . . . . . . . . . . . . . . 46

4.1 Constraint classification by Breaux and Antón [3] . . . . . . . . . . . . . . . . . . . . 48

4.2 Automatic extraction of Access Control Policies by Xiao et al. [4] . . . . . . . . . . . 52

4.3 Taxonomy of nonfunctional requirements by Sommerville [5] . . . . . . . . . . . . . . 53

4.4 Taxonomy of functional requirements by Sharma and Biswas [6] . . . . . . . . . . . . 56

4.5 Business rule taxonomy by Ross [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Business rule taxonomy by Weiden et al. [8] . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Automatic classification approach by Anish et al. [2]. . . . . . . . . . . . . . . . . . . 66

vii



Chapter 1

Introduction

Software maintenance can constitute up to 90% of the total cost of the whole software life cycle

[9]. Software documentation can help in reducing this cost by supporting software understanding,

which is essential when maintaining and evolving software. According to a study by Lethbridge

et al. [10], 61% of software engineers consider documentation as effective or extremely effective in

learning a new software system. The same study reports that 50% of software engineers consider

software documentation to be effective in solving system failures when other experienced team

members are unavailable for help.

In this thesis, we use the term software documentation to refer to various types of documents

describing different aspects of software, including requirements, internal or external design, and

usage instructions. Let us consider the next two scenarios, where software documentation can be

leveraged:

• A developer wants to find the package or class where a new feature should be implemented.

• A developer needs to update the implementation of a constraint (e.g., “Users must be above

18 years old” changes to “Users must be above 21 years old” due to a modification in a

government regulation).

A good software engineering practice is to implement a new feature into a package that contains

similar functionalities. In the first scenario, identifying existing features or constraints related to

the new feature in an architectural design document might hint where they are implemented, which

can help developers to decide the best location for the new feature. However, finding the location

of a constraint in source code is not always an easy task. In the second scenario, when a change in

a constraint is requested, a developer must search for the location of the concept (e.g., “minimum

age”) in the code and then make the necessary changes to solve the request. In more complex

cases, a change in a constraint can lead to changes in multiple parts of the source code.

1



In theory, developers could manually keep track of the code fragments that implement features

or constraints in a traceability link matrix (TLM), for example. In practice, this could work in new

software projects: as soon as a feature or constraint is implemented in a new location, it could be

added to the TLM. In existing projects, however, the task might not be that simple—the features or

constraints and their implementations must be identified by developers in existing documentation

(maybe outdated) and a large codebase. In any case, creating and maintaining traceability links is

an effort-consuming activity that is impacted by the resource limitations of software projects and

always-growing code bases. Under these circumstances, an approach that automatically tracks the

source code locations where a constraint is implemented can be helpful. Using this approach, a

developer could easily identify the code fragments that might be affected by a change. Ideally, the

approach should perform the following tasks:

• Automatically detect constraints in software documentation.

• Trace the constraints to their implementation in the source code.

In this thesis, we focus on the first task, i.e., automatically detecting constraints in software

documentation. We consider a constraint as a sentence that imposes some limitations on the de-

sign solution or implementation of a software system [11]. Any other sentence is considered as

a non-constraint. Based on these definitions, we formulate the constraint detection task as a bi-

nary classification problem: given a sequence of sentences from a software document, we want to

classify each sentence into one of two categories, namely constraint or non-constraint.

The second task, i.e., tracing the constraints to their implementation in source code, is left for

future work. As different kinds of constraints might be traced to source code in different ways,

for the second task we might need to characterize constraint types, which would require a more

complex classification system than a binary one. But the second task can leverage the output from

our proposed binary classification approach to differentiate constraints from non-constraints in

software documentation before tracing the constraints to the source code.

2



Instead of using pattern- or rule-driven approaches that require significant manual effort de-

voted to the syntactic analysis of constraints, we leveraged machine learning algorithms to build

binary classification models that are to determine whether a sentence is a constraint or not. To con-

struct the data set needed to train and validate the models, we used the documentation (e.g., user

manuals or guides, tutorials) of four open-source software (OSS) systems: HttpCore1, jEdit2,

Swarm3, and ArgoUML4. We selected OSS because we were unable to acquire documentation

of proprietary software for research purposes. Two coders independently analyzed sentences from

randomly selected sections of the collected OSS documentation and tagged them as constraints.

The untagged sentences were extracted later as non-constraints. After discussing and solving the

discrepancies, we used this coded data set as our ground truth to train and verify different machine

learning models derived from SVM, Decision Tree, Naive Bayes, and Fine-tuned BERT. Our data

set contained 167 constraint and 201 non-constraint sentences in total. Our best performing model

(a decision tree with bigrams) was able to achieve 74.0% precision and 83.8% recall in the con-

straint detection task.

To the best of our knowledge, ours is the first study on automatic detection of constraints in

the context of software documents. Similar studies have been conducted to automatically classify

requirements [12, 13, 14, 15] and business rules [16, 17, 2] in software documentation. Other

studies (e.g., [3]) have focused on automatic constraint classification of privacy and security rules

in the health sector.

1https://hc.apache.org/httpcomponents-core-4.4.x/index.html

2http://www.jedit.org/

3https://volcanoes.usgs.gov/software/swarm/index.shtml

4https://argouml.en.softonic.com/

3



Chapter 2

Methodology

The goal of our research is to automatically identify software constraints described in the docu-

mentation of software systems. As a first approach to achieve this goal, we formulate the detection

of constraints in software documents as a binary classification problem: given a sentence S ex-

tracted from a software documentation artifact, a classification model must assign S to one of two

categories: constraint or non-constraint.

In this study, we explore different machine learning algorithms to generate constraint classifica-

tion models. We use a machine learning based approach rather than a pattern-based or rule-building

approach because building such patterns or rules is a manual, effort-intensive and time-consuming

task. Instead, to build our machine learning based classification models, we only need a data set

consisting of constraint and non-constraint sentences for model training and testing. Although

building the data set is mandatory for both the pattern-based approach and the machine learning

based approach, the former requires extra manual effort to determine the patterns from the data set.

In this chapter, we describe the methodology we followed to build a constraint data set de-

rived from the collection and analysis of documentation of open-source software systems. We also

describe the machine learning algorithms and implementations that we leveraged to build our clas-

sification models, as well as the language models we selected for experimentation. At the end of

the chapter, we describe the metrics we use to compare the performance of the models and discuss

the threats to the validity of our study.

2.1 Defining the term “Constraint”

The first step in our study is to define what a constraint is in the context of software documenta-

tion. Different definitions for this concept can be found in the literature. The ISO/IEC/IEEE 29148

standard [11] defines a software constraint as an “externally imposed limitation on the system, its

design, or implementation or on the process used to develop or modify a system”. Similarly, Young

4



[18] defines a constraint as a “necessary attribute of a system that specifies legislative, legal, po-

litical, policy, procedural, moral, technology, or interface limitations”. Søberg et al. [19] refers

to software constraints as “rules and conventions commonly agreed to in a given programming

environment” (for example, variable naming conventions in the source code).

Considering the existing definitions, we explored diverse documentation artifacts to extrapolate

and get a hands-on understanding on what kind of sentences are considered as software constraints

in these documents. After analyzing existing definitions and diverse documentation artifacts we

built a working definition of constraints. For the purpose of this thesis, a constraint is a sentence

that conveys restrictions on design solutions or limitations on the implementation of features of

a software system. Some constraints apply to all requirements of a software system, and some

others are related to a specific requirement or set of requirements. In general, constraints reduce

the degree of freedom a developer has while building the system. For instance, a constraint can

restrict the technology stack a developer can use, as it can be observed in the next excerpt extracted

from the user manual5 of Swarm.

Example 2.1.1. “Swarm is platform independent (will run on any operating system) but requires

a graphical display and a Java Virtual Machine 1.8 or greater.”

Example 2.1.1 is a constraint because it conveys the following restrictions or limitations:

• The system is able to run on all the operating systems, which indicates technology stack

limitations.

• The system can not be used without a graphical display, which indicates hardware limita-

tions.

• The system needs Java Virtual Machine with a version of at least 1.8, which indicates tech-

nology stack limitations.

5https://volcanoes.usgs.gov/software/swarm/index.shtml

5



Table 2.1: Software systems used to build the data set

System name System description Analyzed document type System version

Swarm6 Seismic wave analysis tool User manual and reference guide 2.8.10

HttpCore7 Minimal HTTP client Tutorial book 4.4.5

jEdit8 Java based text editor User guide 5.5.0

ArgoUML9 UML diagramming application User manual 0.34

2.2 Building the data set

2.2.1 Subject systems and documentation

We used open-source software (OSS) systems as source of documentation to derive our data

set. Ideally, we would have also included documentation of enterprise or proprietary software to

strengthen the generalizability of our study. Unfortunately, it is difficult to obtain access to this kind

of resources due to privacy and copyright concerns. We further discuss this issue in Section 2.5.

The OSS systems and the type of documents we used in our experiment are listed in Table 2.1.

Three of these documents are user manuals, and one of them is a tutorial book. User manuals and

user guides contain instructions on how end-users should use software systems [20], but the latter

ones are meant to be more precise and concise than the former ones. Although the documentation

of jEdit is referred to as a user guide, it also contains interfaces and functionality of the software for

add-on developers. Add-ons are additional features that are developed by third-party developers to

enhance the functionality of a software.

2.2.2 Constraint coding

We followed deductive coding [21] to manually identify constraints in the subject documents.

Deductive coding is a top-down approach to code qualitative data, where a predefined set of codes

is applied to the data set. In our case, we had a single code, namely constraint.

6https://volcanoes.usgs.gov/software/swarm/index.shtml

7https://hc.apache.org/httpcomponents-core-4.4.x/index.html

8http://www.jedit.org/

9https:‘//argouml.en.softonic.com/

6



To facilitate the coding task, we utilized the Mitre Annotation Toolkit (MAT10). MAT offers

various features such as hand annotation, alignment, comparison and reconciliation of textual doc-

uments. We randomly selected sections of the documents to be manually analyzed (see Table 2.2).

These sections were independently and incrementally annotated by two coders.

To understand how the coders annotated the documents, let us consider the Example 2.1.1 from

Section 2.1. In this sentence, the segments in italics are considered constraints. From this example,

we can observe that:

• A part of a sentence can represent one constraint.

• One sentence can contain multiple constraints.

We asked the coders to annotate only the part of the sentence containing a constraint. However,

while preparing the training data set for the machine learning models, we took the whole sentence

as one data point to preserve the constraint’s context. The rationale behind this design decision is

twofold. First, similar classification models in the literature make use of sentences as data points

to build their models. Future studies using our data set might benefit from a uniform granularity

level for comparison. Second, the machine learning algorithms selected for our study might not

be well suited for segments of sentences as one data point. For example, BERT is considered a

language model. The BERT model we used in our study was pre-trained on the whole sentences

from the English language.

Once the coders completed their analysis of a document, they used MAT’s annotation alignment

to compare their annotated texts. Whenever a disagreement was identified, the coders solved it

through a discussion. In the cases where the coders were not able to reach a consensus, a third

person made the final decision for those data points.

10http://mat-annotation.sourceforge.net/

7



Table 2.2: Composition of the data used in the study. Proportions of constraints and non-constraints with

respect to sentences in analyzed section are shown in parenthesis.

System
Sentences

in document

Sentences

in analyzed

sections

Constraints

in analyzed

sections

Non-constraints

available in

analyzed sections

Non-constraints

extracted from

analyzed sections

SWARM 555 226 65 (28.8%) 161 (71.2%) 84

HttpCore 738 89 38 (42.7%) 51 (57.3%) 44

jEdit 2757 118 43 (36.4%) 75 (63.6%) 50

ArgoUML 8600 58 21 (36.2%) 37 (63.8%) 23

Total 12650 491 167 (34.1%) 324 (65.9%) 201

2.2.3 Data set consolidation

Using MAT, we generated a reconciled JSON file with the final annotations of the documents.

Then, we transformed it into a CSV file for better consumption in the next steps of our study. As

mentioned before, we considered the entire sentence containing a constraint as a data point in our

final data set, rather than just the part of the sentence mentioning the constraint.

The output from MAT provided us with sentences that contain at least one constraint. Nev-

ertheless, to train models for binary classification, we require an equal number of sentences that

do not contain any constraints. This is because a balanced training data set (i.e., a data set whose

classes have roughly an equal number of data points) results in better accuracy in machine learning

models [22]. The composition of the testing data set is different. Notice from Table 2.2 that the

distribution of constraints and non-constraints is not equal in the documentation we analyzed. To

ensure that the sample on which we evaluate our models truly represents the population (hence

strengthening the validity of our study), we must preserve this distribution in the testing data set.

The process that we followed to obtain an equal number of constraints and non-constraints for

the training data set, and to obtain the same ratio of constraints and non-constraints as in analyzed

sections in the testing data set is described in Algorithm 1.

To exemplify this process, let us consider the user manual of Swarm, which consists of 555

sentences (see Table 2.2). The coders analyzed 226 of these sentences and tagged 65 as constraints.

This means that there are 226− 65 = 161 non-constraints in the analyzed sections. We added 80%

8



Algorithm 1 Process followed to build the training and the test data set

1: for each system ∈ Subject Systems do

2: Assign 80% of constraints to the training data set

3: Extract an equal number of non-constraints and assign them to the training data set

4: Assign the rest of the constraints to the testing data set

5: Calculate the ratio of constraints and non-constraints in the analyzed sections

6: Extract and assign non-constraints to the test data set such that the ratio of constraints

and non-constraints in the test data set is similar to that of the analyzed sections.

7: end for

of the constraints to the training data set of Swarm, i.e., 52 sentences. The rest of the constraints

(i.e., 13 sentences) were added to the testing data set. We completed the training data set with

the same number of constraints it already contains (i.e., 52 sentences). For the testing data set,

we considered the proportions of constraints and non-constraints in the analyzed sections of the

Swarm user manual, i.e., 29% and 71% respectively. To maintain similar proportions, we added

32 non-constraints into the testing data set. Therefore, our training and testing data sets together

consist of 65 constraints and 84 non-constraints for Swarm.

The number and distribution of constraints and non-constraints for each software system are

shown in Table 2.2. Similarly, the number and distribution of constraints and non-constraints in

the training and testing data sets of each system are shown in Table 2.3.

Table 2.3: Composition of the training and testing data sets for each system. Proportions of constraints and

non-constraints with respect to data points in training/testing data set are shown in parenthesis.

System
Training data set Testing data set Total

data

pointsConstraints Non-constraints
Data

points
Constraints Non-constraints

Data

points

SWARM 52 (50%) 52 (50%) 104 13 (28.9%) 32 (71.1%) 45 149

HttpCore 30 (50%) 30 (50%) 60 8 (42.1%) 11 (57.9%) 19 82

jEdit 34 (50%) 34 (50%) 68 9 (36.0%) 16 (64.0%) 25 93

ArgoUML 16 (50%) 16 (50%) 32 5 (38.5%) 8 (61.5%) 13 44

Total 132 (50%) 132 (50%) 264 35 (34.7%) 67 (66.3%) 101 368

9



2.3 Building constraint classification models

We used the scikit-learn library [23] and Tensorflow [24] to build our classification models.

We explored different configurations of machine learning algorithms and encoding algorithms to

generate various classification models and select the best-performing model for our particular task.

2.3.1 Machine learning algorithms

We experimented with four machine learning algorithms (i.e., Decision Tree, Naive Bayes,

Support Vector Machine, and Fine-tuned BERT) to construct our constraint classification models.

We used the randomized search algorithm11 from the scikit learn library to search the hyperpa-

rameter space instead of grid search when tuning hyperparameters of decision tree, Naive Bayes

and SVM. Grid search tries every possible combination of values for the hyperparameters and is

slow relative to the randomized search. Randomized search tries out a number of random com-

binations of the parameters using a specified distribution. The combination that works the best is

selected as the best parameter setting.

A brief description of each of the machine learning algorithms and the used implementations

follows.

2.3.1.1 Decision trees

A decision tree (DT) is a combination of multiple conditional statements (also called nodes).

Each internal node in the tree can be thought of as a conditional statement. Thus, the path from root

to a leaf node represents a certain decision path. Decision trees are supervised learning methods

mainly used for classification tasks. They are supervised algorithms because they require to be

fed with the expected output while training the model. Figure 2.1 shows a sample diagram of a

decision tree.

11https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

10



value12
value11 value13

attribute1?

value21 value22

attribute2?

value31 value32

attribute3? class1

class2 class3 class3 class4

Figure 2.1: Sample diagram of a decision tree

We utilized the DecisionTreeClassifier12 class from the scikit learn library to generate the deci-

sion tree based classifiers. This implementation requires, among others, the following parameters:

• criterion. It indicates the objective function that will be used to measure the effect of splitting

a node into two nodes at the training phase. The value “gini” measures the effect of the split

by calculating the impurity of the node and the value “entropy” measures the effect of the

split by calculating the information gain.

• max_depth. It represents the maximum possible depth of the learned tree. A value of “None”

indicates no set restriction on the depth of the tree. The higher the depth of a tree is, the more

complex classification scheme the tree can learn in the training phase.

• min_samples_split. It indicates the minimum number of samples needed to split an internal

node of the tree. If the samples indicate different classes, the internal node will be divided

into two new nodes. A high value of min_samples_split indicates that the tree will be more

resistant to the noise in the training data set.

12https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

11



• min_samples_leaf. It indicates the minimum number of samples needed to create a new leaf

node. That node will represent that particular sample. A high value of min_samples_leaf

indicates that the tree will be more resistant to the noise in the training data set. The value of

min_samples_leaf can be as low as 1.

• max_features. It indicates the maximum number of features or attributes the model will use

to train itself. A value of “None” indicates the tree to learn from the maximum number of

available features from the data set.

• min_impurity_decrease. It indicates the minimum value of impurity decrease for a node to

be split into more nodes. If a data point can decrease the impurity of a node by a value

greater than the minimum value, the node will be split into two nodes. A lower value of

min_impurity_decrease indicates that a node will be split into two nodes even if there is a

smaller decrease in the impurity of the node. The value of min_impurity_decrease can be as

low as 0.

Table 2.4, 2.5 and 2.6 contain the tuned values of these hyper parameters for unigram, bigram

and unigram+bigram (i.e., n-gram where n = {1, 2}) embeddings respectively.

2.3.1.2 Naive-Bayes

A Naive-Bayes based model (NB) is a probabilistic classifier based on the Bayes’ theorem.

Bayes [25] first formulated this probability theorem in 1763 as:

Posterior =
Prior × likelihood

Evidence
,

Table 2.4: System-wise parameters of decision tree models with onegram embedding

System criterion max_depth min_samples_split min_samples_leaf max_features min_impurity_decrease

HttpCore entropy 100 4 1 80 0.01

jEdit gini 100 3 1 150 0.01

Swarm gini 200 4 1 None 0.01

ArgoUML entropy 200 4 3 80 0.01

All Systems entropy 200 4 1 80 0

12



Table 2.5: System-wise parameters of decision tree models with bigram embedding

System criterion max_depth min_samples_split min_samples_leaf max_features min_impurity_decrease

HttpCore entropy None 2 1 100 0

jEdit entropy 500 2 1 100 0

Swarm gini 100 4 1 50 0

ArgoUML entropy 100 2 1 150 0.01

All Systems gini None 4 1 20 0

Table 2.6: System-wise parameters of decision tree models with n-gram (n={1,2}) embedding

System criterion max_depth min_samples_split min_samples_leaf max_features min_impurity_decrease

HttpCore gini 500 2 1 100 0

jEdit entropy 50 4 1 150 0.01

Swarm gini None 2 1 100 0

ArgoUML entropy 50 2 2 80 0.01

All Systems gini 100 3 1 None 0

which can be translated into:

P (A|B) =
P (A)× P (B|A)

P (B)

P (A|B) represents the probability for the occurrence of an event A provided that event B

has already occurred. This is also called the posterior. P (A) represents the probability for the

occurrence of event A. NB uses this formula to classify an input analyzing the feature set. In our

thesis, P (A|B) can be translated into P (sentence contains constraint | featurei exists).

We used the multinomial variant13 of Naive Bayes from the scikit learn library for our experi-

ment. We chose this variant because it is well suited for text classification. The parameters relevant

to this implementation are the following:

Table 2.7: System-wise parameters of best Naive Bayes models

System
Onegram Bigram Ngram

alpha fit_prior alpha fit_prior alpha fit_prior

HttpCore 0.2 True 0 True 1 True

jEdit 0.05 True 0.2 False 0.2 True

Swarm 0 True 0 False 0.5 True

ArgoUML 0 True 0 True 0 True

All Systems 0.2 True 0 True 0.2 True

13https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

13



• alpha. This is the Laplace smoothing parameter. If a word from the testing data set is not

present in the training data set, the smoothing parameter helps to assign a small probabilistic

value to that word. The higher the value of alpha, the greater the smoothing operation will

be. The value of alpha can be as high as 1 and as low as 0.

• fit_prior. This parameter indicates whether the model should learn the class prior probabili-

ties. A value of “False” indicates that a uniform prior value will be used.

• class_prior. This parameter provides the prior probabilities of the classes to the model as

input. We used a value of “None” to let the model learn prior probabilities only from the

training data.

Table 2.7 shows the tuned values of these hyperparameters for our study.

2.3.1.3 Support Vector Machine

Support Vector Machine (SVM) [26] is also a supervised learning model. SVM was first in-

troduced by Boser et al. [27] and by Cortes and Vapnik [28]. SVM has an associated learning

algorithm that it uses to classify data points. In the training phase, the model tries to maximize or

minimize the output value of the learning algorithm for the given data points to find the best snap-

shot of itself. To do so, it builds a hyperplane that can separate data points from different classes.

If the data points are not separable by the hyperplane, SVM tries to uplift the dimension of the data

set. The process is called kernel tricks (see Figure 2.2). SVM then tries to place this hyperplane as

far as possible from the nearest data points, which in turn minimizes the generalization error.

The parameters relevant to the SVM algorithm are the following:

• C. It is a regularization parameter. A lower value of C indicates the presence of higher regu-

larization. Regularization tells the model to give less importance to the misclassifications in

order to reduce over-fitting.

14



SVM can not classify the data points linearly SVM uses kernel trick to convert data to higher
dimension and divides the data points linearly

Figure 2.2: SVM uses kernel trick to uplift the dimension of data points

• Kernel. It specifies the function which will be used as the kernel for the model. A nonlinear

data set is converted to a linear one in a higher dimension by passing the data points through

these kernel functions.

• Degree. It indicates the degree of the polynomial kernel function.

• Gamma. It is a coefficient for the kernel function.

The values of the parameters that gave us the best results are mentioned in Table 2.8.

2.3.1.4 Bidirectional Encoder Representations from Transformers (BERT)

BERT is a recent algorithm developed by Devlin et al. [29] at Google. Most of the previous text

encoding algorithms were unidirectional. As BERT is a transformer, it can learn textual contexts

and dependencies of each word in both directions (from left to right and from right to left). As

Table 2.8: System-wise parameters of best SVM models

System
Onegram Bigram Ngram

C Degree Gamma Kernel C Degree Gamma Kernel C Degree Gamma Kernel

HttpCore 146.834 6 0.025 rbf 24.648 1 0.039 rbf 24.151 1 0.113 rbf

jEdit 135.239 4 0.070 linear 12.476 1 0.011 linear 53.787 3 0.249 linear

Swarm 89.126 1 0.089 rbf 19.232 3 0.740 linear 114.641 4 0.045 rbf

ArgoUML 46.364 2 0.264 linear 102.390 1 0.034 linear 79.196 3 0.128 rbf

All Systems 128.498 5 0.013 rbf 57.758 3 0.025 rbf 186.938 4 0.039 rbf

15



a result, it has the potential to perform better than other encoding algorithms (e.g., Bi-LSTM).

Although BERT is more than an encoding algorithm, this is our focus in this subsection.

Bidirectional Encoder Representation from Transformers (BERT) is a transformer-based, context-

aware masked language model (MLM). Transformers in BERT contain only encoders (i.e., they do

not contain any decoder). It is also called a language model because it can be thought of as a

vector representation of a specific natural language. Each word from a natural language will have

a row and a column represented in a two-dimensional vector space. A cell in the vector space will

contain the probabilistic relation between two words (one word represented by the row of the cell

and another word represented by the column of the cell). This relation signifies the probability of

two words appearing together in a sentence. For this reason, BERT can differentiate the meaning

of homonyms, e.g., it can differentiate between playing in a “park” and “park”ing a car. BERT

learns about the context dependency bidirectionally (from left to right and from right to left) at the

same time. While pre-training the model for a language, each word is sent to the model masked

at a time. The model tries to guess the incoming word (using the probabilistic relations with the

surrounding words) and thus tries to improve itself by correcting any errors.

BERT is more popular than LSTM these days because LSTM takes a long time to train, whereas

BERT comes as a pre-trained model over the internet. Also, BERT is genuinely bidirectional as

it learns about the context dependency in both directions simultaneously. Even though LSTM has

a bidirectional variant called BiLSTM, it is not truly bidirectional. The BiLSTM model is trained

from left to right and from right to left separately and then concatenated at the end.

BERT uses softmax as an activation function. If there are values in the output layer of a machine

learning model, the softmax function will turn them into probabilities with a sum of 1.0. Softmax

will give higher (exponential) weight in the probability distribution of those bigger numbers.

softmax(zi) =
ezi

∫ K

j=1
ezj

The encoding part of the algorithm is shown in Figure 2.3. The example of this procedure is

shown in Figure 2.4 for the input sentence:

16



Divide the
sentence into

token
Sentence

Add special
tokens - CLS,

SEP

Map tokens to
the IDs

Pad or truncate
the tokens

Create Attention
mask

Figure 2.3: Encoding procedure of the BERT algorithm

Tokenize

If the headers aren't available, a length of -1 will be returned

2065 1996 20346 2015 4995 1005 1056 2800 1010 1037 3091 1997 1011 1015 2097 2022 2513 102101

if the header ##s aren ' t available , a length of - 1 will be returned

if the header ##s aren ' t available , a length of - 1 will be returned

Encode the tokens

CLS SEP

Add special characters - CLS and SEP

101 2065 1996

101 345 ...

101 324 ...

... ... 2513

... ... ...

... ... ...

102 0 0

553 102 0

... 423 102

Append to the 2D vector of IDs

Figure 2.4: Example of encoding procedure of the BERT algorithm

Example 2.3.1. “If the headers aren’t available, a length of -1 will be returned”.

First, each word of the sentence is divided into separate tokens. For the classification task, the

special tokens “CLS” and “SEP” are respectively added at the beginning and end of the sentence

to delimit it. Each word is then encoded to a unique ID. Since the lengths of sentences are different

in a language, padding is added to the end of the sentence. Later, all the sentences are added to a

2D grid.

BERT is still evolving. There is no built-in library yet for finer tuning specific to different

tasks. We built our models with both generic base BERT model and Fine-tuned BERT. The generic

base BERT is the smallest version of BERT (in terms of the number of internal parameters in the

17



model) available as pre-trained. Fine-tuned BERT models are constructed by tuning these internal

parameters with an optimization algorithm for a specific task.

We used Adam [30] as an added layer on top of the base BERT to fine tune the pre-trained

BERT model for the task of text classification. Resources14 are available on the Tensorflow website

to help in the fine tuning of the base BERT model for specific tasks.

Adam is an optimization algorithm that helps reconfigure the parameters of an algorithm by

running the model multiple times and moving the parameters in the directions that gives the best

result from the model. It uses adaptive learning rate and Stochastic gradient descent with mo-

mentum. We did not use the original large (in terms of the number of internal parameters in the

model) version of BERT, as it is quite extensive for our purposes and has a large set of parame-

ters. Optimizing those parameters with limited resources would have been challenging, although

it would have resulted in higher accuracy and precision values. Larger BERT models require a

significant amount of memory and CPU to be trained into a full-scale Fine-tuned BERT model.

We leveraged the Tensorflow 2 [24] framework to implement BERT in our experiments. We chose

the Small uncased BERT for the English language. This model was published by Turc et al. [31].

A later version of the model15 was released with Tensorflow 2. This is a small version of the orig-

inal BERT model with fewer parameters. Uncased version of BERT does not contain any accent

markers (markers on the alphabets of certain language for example, Latin language).

Even the smaller model used in our experiment had more than 110 million internal parameters.

The file size of the downloaded pre-trained model was 103.18 MB. The largest BERT model can

have up to 2.7 billion internal parameters. The file size of the biggest pre-trained model is 390.13

MB. Below we discuss different parameters of the BERT model.

• L. It indicates the number of hidden layers, i.e., the number of transformer blocks. L can

have a minimum value of 2 and a maximum value of 24. Our model used a value of 4 for L.

14https://www.tensorflow.org/text/tutorials/classify_text_with_bert

15https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1

18



• H. It indicates the size of each hidden layer. H can have a minimum value of 128 and a

maximum value of 1,024. Our model used a value of 512 for H .

• A. It indicates the number of attention heads per transformer layer. A can have a minimum

value of 2 and a maximum value of 16. Our model used a value of 8 for A.

We tried to run a slightly bigger model in our local machines, but it was consuming a significant

amount of resources to achieve a little increase in accuracy (1% - 1.5%). Therefore, we opted for

the smaller model.

Every machine learning model needs some level of hyperparameter tuning. The hyperparame-

ters associated with Fine-tuned BERT are listed below.

• Batch size. The authors of the BERT model [29] suggest the next values for the batch size:

8, 16, 32, 64, 128. We used a value of 32 for batch size at it was giving us the best accuracy

score.

• Learning rate. The authors [29] suggest the next values for learning rate16: 3×10−4, 1×10−4,

5× 10−5, 3× 10−5, 2× 10−5. They also suggest to use smaller values (in the range of 10−5)

while fine tuning for a text classification task. We used the value of 3 × 10−5, as it gave us

the best accuracy score.

• Epoch. It refers to the number of epochs needed to fine tune the BERT model, and it usually

differs from study to study. This parameter is also related to overfitting, a common phe-

nomenon in machine learning. It occurs when a model is trained on the training data set for

so long that it gets over aligned with the training data and becomes oversensitive to any noise

in the testing data set. When overfitting occurs, the training accuracy gradually increases and

the validation accuracy gradually decreases. Figure 2.5 shows the learning rate of Fine-tuned

BERT for all the systems in our data set. In this figure, we can observe that after epoch 10,

the validation accuracy rate becomes constant for the “All systems” data set. After the same

16https://github.com/google-research/bert

19



point, the validation loss begins to increase gradually. This point is a good indicator for

halting the training before overfitting the model. We followed the same procedure for all

system-wise data sets and their individual validation curve is shown in Figure 2.5. The trend

of these graphs cannot be guessed beforehand. For example, In the case of validation accu-

racy of the Swarm data set, the curve seems to drop after epoch 10. But as the validation

loss kept dropping, we continued to train the model. Then the accuracy increased again after

epoch 14.

2.3.2 Encoding text into numerical data

Machine learning algorithms do not directly work with textual data. Therefore, we need to

encode the textual data into numerical data through tokenization and vectorization before feeding

it to the machine learning algorithms. We used the n-gram model to tokenize the sentences in our

data set, and TF-IDF to vectorize those tokens.

2.3.2.1 N-gram model

In the n-gram model, a sentence is divided into contiguous sequences of n words. When n = 1,

the model is called unigram. Similarly, when n = 2, the model is called bigram, and when n = 3,

it is called trigram. In this thesis, when we refer to the composition of tokens from both unigram

and bigram as n = {1, 2} or unigram+bigram.

2.3.2.2 Term Frequency - Inverse Document Frequency (TF-IDF)

TF-IDF is one of the most popular encoding algorithms. It indicates the relevance of a word

(or a group of words) to a document [32]. It achieves this based on the frequency of the word in

the document with respect to the inverse document frequency in a collection of documents.

Let us assume that we want to calculate the TF-IDF score of a word or term t in a document

d that belongs to the set of documents D, which contains a total of N documents. The formula to

20



(a) HttpCore (b) jEdit

(c) Swarm (d) ArgoUML

(e) All systems

Figure 2.5: Fine-tuned BERT optimized with Adam learning rate

21



compute TF-IDF for t is given by:

tfidf(t, d,D) = tf(t, d)× idf(t,D)

tf(t, d) = log(1 + freq(t, d))

idf(t,D) = log

(

N

|{d ∈ D : t ∈ d}|

)

where the function freq(t, d) computes the occurrences of the term t in the document d, and

|{d ∈ D : t ∈ d}| indicates the number of documents in D where the term t appears.

Figure 2.6 shows the basic steps for converting a sentence into vectors of numbers to feed into

machine learning algorithms.

Sentence
Convert all

characters to
lower case

Separate words
by whitespaces

Remove stop
words 

Detect POS tag
for all words

Lemmatize the
words

Vectorize using
TF-IDF for

unigram and
bigram

Figure 2.6: Processing sentences before feeding into models

We demonstrate this process with Example 2.3.2 from the tutorial book of HttpCore.

Example 2.3.2. “A HTTP message consists of a header and an optional body”

1. Convert characters to lower case: “a http message consists of a header and an optional body”.

2. Separate words by white spaces: “a”, “http”, “message”, “consists”, “of”, “a”, “header”,

“and”, “an”, “optional”, “body”.

22



3. Detect Parts of Speech (POS17) tags for each word: <“a”, DT>, <“http”, NN>, <“message”,

NN>, <“consists”, VBZ>, <“of”, IN>, <“a”, DT>, <“header”, NN>, <“and”, CC>, <“an”,

DT>, <“optional”, JJ>, <“body”, NN>.

4. Remove stop words: “http”, “message”, “consists”, “header”, “optional”, “body”.

5. Lemmatize the words: “http”, “message”, “consist”, “header”, “optional”, “body”.

6. Vectorize using TF-IDF for unigram, bigram.

2.4 Evaluating the performance of the models

To evaluate the performance of the resulting classification models, we use the four metrics

described next. These metrics are standard in the evaluation of classifiers and have been used in

studies similar to ours [12, 33].

• Accuracy. It computes the fraction of data points a model is able to correctly classify. The

accuracy of a model can be as low as 0, if the model misclassifies all the data points in the

testing data set, and as high as 1, if the model correctly classifies all the data points in the

testing data set.

Accuracy =
Data points correctly classified

Total number of data points

• Precision. It signifies the fraction of data points positively classified by the model that is

actually correct. Precision values are in the range [0, 1]. A value of 0 indicates that all the

data points positively classified by the model are incorrect. A value of 1 indicates that all

data points positively classified by the model are actually correct.

Precision =
True Positive

True Positive+ False Positive

17DT indicates Determiner, NN indicates Noun, VBZ indicates Verb (3rd person singular present), IN indicates Prepo-

sition or subordinating conjunction, CC indicates Coordinating conjunction, DT indicates Determiner, JJ indicates

Adjective

23



• Recall. It describes the fraction of actual positive data points the model is able to correctly

predict. Recall values are in the range [0, 1]. A value of 0 indicates that the model is not able

to recognize any of the positive data points in the data set. A value of 1 indicates that the

model is able to recognize all the positive data points.

Recall =
Data points predicted positive by the model

Number of actual positive data points in the dataset

=
True Positive

True Positive+ False Negative

• F1-score. It represents the harmonic mean between precision and recall, i.e., it combines

precision and recall into a single value. In some situations, both precision and recall have

to be considered to compare the performance of different models, and this is when F1-score

comes in handy. A model can have an F1-score as high as 1, when both the precision and

recall are 1. It can also be as low as 0 indicating that either precision or recall are 0.

F1-score =
Precision×Recall

Precision+Recall

2.5 Threats to validity

Threats to internal validity refer to experimental conditions that might affect the outcomes of

our study. One of these threats is the small size of the data set we built to train the classification

model, which consists of 368 data points. Similar binary classification models [12] were trained

and tested in data set containing almost twice as many data points as we have. Given the size of

our data set, our model might miss some patterns of constraints that are not present in the training

data set. The testing data set was also small. As a result, if the model fails to predict the right class

of a single sentence, the value of the resultant metric could fluctuate.

When using data sets derived from deductive coding, subjectivity in the manual analysis is

another threat to the internal validity. To mitigate this threat, we had two coders independently

annotating sentences in the documentation. Still, while analyzing the results obtained with the

24



Fine-tuned BERT model, we came across an interesting situation, where the sentence “Auto-scale

toggles helicorder auto-scaling on and off” was correctly classified as constraint, although it was

originally—and incorrectly—tagged as non-constraint. To understand the cause of this error, it is

important to remember how we collected the non-constraint sentences. The coders were asked to

label the constraints in the given documents. This is an effort-intensive task that requires concen-

tration. When continuously executing this task for a while, it is possible for coders to overlook a

constraint due to several reasons such as tiredness. This particular sentence was missed by both

coders, and in the later steps, was picked up as a non-constraint sentence. In future studies and if

the financial budget allows it, we will recruit a larger set of coders to reduce subjectivity.

We only analyzed a subset of the sections of the documents in our sample. It is likely that the

types of contents of other sections are different. To reduce selection bias, we randomly chose a

subset of sections to be used in our study. However, since this subset is small, we might not have

covered all the types of contents from the analyzed documents. Therefore, our model might not

recognize constraints from a section with other types of content that we have not coded.

Threats to external validity refer to experimental conditions that affect the generalizability of

the outcomes of our study. We only analyzed publicly available documentation of open-source

software systems. Getting access to the documents of enterprise or proprietary software was not

possible for us. Different from proprietary software, open-source software projects rarely de-

vote time to requirements engineering, and therefore, do not produce requirements specification

documents. The documentation from enterprise-level software might differ on purpose, types of

contents and structure, so our models might not perform properly to identify constraints in such

documents. This also applies to other forms of open-source software documentation, whose types

of contents and structure might differ from the ones in our sample.

25



Chapter 3

Results

Following the methodology described in the previous chapter, we build different classifica-

tion models and compare their performance in the detection of constraint and non-constraint sen-

tences. To recapitulate, we leveraged Support Vector Machine (SVM), Naive Bayes (NB), De-

cision Tree (DT) and Fine-tuned BERT with Adam to generate the models. We used n-grams

(n = {1, 2, 3, {1, 2}}) with TF-IDF and BERT as embedding and language models.

In this chapter, we discuss the performance of the generated constraint classification models

based on the evaluation metrics described in Section 2.4, i.e., accuracy, precision, recall, and F1-

score. We often refer to a random classifier as a baseline for comparison. A random classifier is

a model in which the prediction score of a class is randomly assigned. Notice that the accuracy,

precision, and recall values reached by a random classifier trained on a balanced two-class data set

like ours would be 50%.

3.1 Testing the performance of the models with two strategies

To measure the performance of the models we followed two strategies:

• Strategy 1: Train the model on a portion of a data set (80% of the constraints and an equal

number of non-constraints) and test the model on the other portion of the same data set. The

results of this testing strategy demonstrate how our models will perform when detecting new

constraints in documentation already seen by the models.

• Strategy 2: Train the model on three data sets and then test the model on a fourth data

set. The results of this testing strategy indicate how out models will perform when detecting

constraints in documentation that is totally new to the models.

26



3.2 Strategy 1: Train and test the models on the same data set

An overview of the performance of the different machine learning models and embedding

schemes used in our experiments for all of our subject systems is shown in Table 3.1. Overall,

decision tree based models performed better than the other models.

3.2.1 System-wise comparison of models

Given a software document, our primary goal is to detect all the constraints it describes, so

that developers can easily find them. This could save time in the development and maintenance of

software. Therefore, our classifiers should detect as many software constraints as possible while

avoiding false positives. Leaving out one constraint undetected (and thus not implemented and

tested) might become problematic when delivering the software product to the customer. There-

fore, when comparing the performance of two models, we give more importance to recall than to

precision as an evaluation metric (see underlined values in Table 3.1). A higher recall value indi-

cates that a model is able to capture more constraints in the sequence of sentences than a model

with a lower recall value. If the performance of two models in terms of recall is similar, we also

consider their precision. A higher precision value indicates that a sentence predicted as a constraint

by a model has a higher chance of being an actual constraint. If both precision and recall values of

two models are close to each other, we consider the F1-score.

Table 3.1 reports the metrics for all the models across all the systems. Next, we analyze the

models that performed the best for each subject system.

27



Table 3.1: Accuracy (AC), precision (PC), recall (RC) and F1-score (F1) comparison between different machine learning models across all systems

for testing strategy 1. Abbreviations used for the sake of brevity: Model (MDL), Support Vector Machine (SVM), Naive Bayes (NB), Decision

Tree (DT), BERT model fine-tuned with Adam (FT-BERT), embedding (EMD) unigram (1GM), bigram (2GM), trigram (3GM), unigram+bigram

(1-2GM). The underlined values represent the highest recall value obtained for a system by a particular model and embedding. The values in bold

indicate the highest recall value obtained for a system.

MDL EMB

System

HttpCore jEdit Swarm ArgoUML All Systems

AC

(%)

PC

(%)

RC

(%)
F1

AC

(%)

PC

(%)

RC

(%)
F1

AC

(%)

PC

(%)

RC

(%)
F1

AC

(%)

PC

(%)

RC

(%)
F1

AC

(%)

PC

(%)

RC

(%)
F1

SVM

1GM 68.2 70.6 85.7 0.77 80.0 86.7 81.2 0.84 64.4 83.3 62.5 0.71 75.0 75.0 85.7 0.80 72.5 85.7 70.6 0.77

2GM 72.7 72.2 92.9 0.81 68.0 70.0 87.5 0.78 42.2 75.0 28.1 0.41 66.7 66.7 85.7 0.75 70.6 77.9 77.9 0.78

3GM 68.2 66.7 100 0.80 36.0 0 0 0 66.7 69.8 93.8 0.80 66.7 80.0 57.1 0.67 67.6 68.0 97.1 0.80

1-2GM 68.2 68.4 92.9 0.79 80.0 86.7 81.2 0.84 62.2 82.6 59.4 0.69 75.0 75.0 85.7 0.80 73.5 91.8 66.2 0.77

BERT 85.7 83.3 71.4 0.77 79.2 72.7 80.0 0.76 84.2 71.4 83.3 0.77 81.8 71.4 89.1 0.79 75.0 71.4 73.2 0.72

NB

1GM 72.7 100 57.1 0.73 84.0 92.9 81.2 0.87 66.7 81.5 68.8 0.75 75.0 75.0 85.7 0.80 70.6 89.6 63.2 0.74

2GM 59.1 66.7 71.4 0.69 52.0 66.7 50.0 0.57 71.1 80.6 78.1 0.79 66.7 71.4 71.4 0.71 64.7 76.7 67.6 0.72

3GM 45.5 100 14.3 0.25 36.0 50.0 37.5 0.43 64.4 80.8 65.6 0.72 66.7 100 42.9 0.60 53.9 69.8 54.4 0.61

1-2GM 54.5 83.3 35.7 0.50 84.0 92.9 81.2 0.87 68.9 82.1 71.9 0.77 75.0 75.0 85.7 0.80 73.5 91.8 66.2 0.77

BERT 66.7 50.0 100 0.67 58.3 50.0 10.0 0.17 47.4 37.5 100 0.55 81.8 71.4 89.1 0.79 56.5 50.6 100 0.67

DT

1GM 59.1 69.2 64.3 0.67 72.0 100 56.2 0.72 62.2 82.6 59.4 0.69 50.0 60.0 42.9 0.50 66.7 81.5 64.7 0.72

2GM 77.3 73.7 100 0.85 64.0 66.7 87.5 0.76 71.1 74.4 90.6 0.82 66.7 66.7 85.7 0.75 69.6 74.0 83.8 0.79

3GM 68.2 66.7 100 0.80 72.0 69.6 100 0.82 66.7 69.8 93.8 0.80 41.7 0 0 0 67.6 68.0 97.1 0.80

1-2GM 63.6 71.4 71.4 0.71 68.0 90.0 56.2 0.69 57.8 93.3 43.8 0.60 58.3 66.7 57.1 0.62 70.6 79.7 75.0 0.77

BERT 81.0 100 42.9 0.60 62.5 55.6 50.0 0.53 55.3 30.8 33.3 0.32 63.6 60.0 60.0 0.60 67.4 62.8 65.9 0.64

FT -

BERT
- 77.3 61.5 100 0.76 80.0 66.7 88.9 0.76 92.0 100 77.8 0.88 76.7 77.2 90.7 0.83 76.9 61.90 82.9 0.71

2
8



3.2.1.1 HttpCore

On the HttpCore data set, we found that SVM with bigram performed better than SVM with

all other embeddings. Even though SVM with trigram achieved a higher recall value (100%) than

the one of SVM with bigram (92.9% recall), SVM with bigram achieved higher precision value

(72.2%) and F1-score (0.81) than SVM with trigram (66.7% precision and 0.80 F1-score). In other

words, SVM with trigram was able to detect all the constraints in the HttpCore data set, but SVM

with trigram also classified higher number of non-constraint sentences as constraints than SVM

with bigram. Thus, we concluded that SVM with trigram achieved better performance than SVM

with bigram.

Naive Bayes with bigram achieved a recall value of 71.4%, a precision value of 66.7% and

an F1-score of 0.69. Even though Naive Bayes with BERT had a perfect recall value, it scored

a precision value (50%) similar to a random classifier and a lower F1-score (0.67) than Naive

Bayes with bigram. So, we concluded that Naive Bayes with bigram embedding performed the

best among all the variants of Naive Bayes.

The decision tree classifier with bigram performed better than all other variants of decision tree

in this system. It reached a 100% recall, 73.7% precision and 0.85 F1-score.

Fine-tuned BERT achieved 100% recall and 61.5% precision value. Even though this model

achieved a perfect recall value, it achieved lower precision than decision tree with bigram.

Considering the overall results, we concluded that decision tree with bigram embedding per-

formed the best on the HttpCore data set, as it achieved a perfect recall value and the highest

F1-score.

3.2.1.2 jEdit

On the jEdit data set, SVM with unigram performed better than SVM with bigram, reaching a

recall value of 81.2% and a precision value of 86.7%. Even though SVM with bigram embedding

achieved a higher recall value (87.5%) than SVM with unigram, SVM with bigram achieved a

lower precision value (70%) and lower F1-score (0.78) than SVM with unigram. Another aspect

to highlight here is that SVM with unigram and SVM with unigram+bigram (i.e., n-gram where

29



n = {1, 2}) resulted in an identical performance. This means that in this case, SVM was able

to find all the necessary keywords to classify the incoming sentences with unigrams, and adding

bigrams to the mix did not make any difference. Lastly, SVM with trigram performed poorly in

jEdit achieving 0% precision and recall. It indicates that SVM with trigram did not find any helpful

three-word length keyword which can be used to differentiate constraints from non-constraints. As

a result, SVM with trigram failed to detect all of the constraints present in the testing data set.

Naive Bayes with bigram, trigram and BERT embeddings performed equal or worse than a

random classifier for jEdit in terms of recall (no value greater than 50%). Naive Bayes with un-

igram embedding and unigram+bigram embedding performed better than other variants of Naive

Bayes, both achieving a recall value of 81.2%, a precision value of 92.9% and an F1-score of 0.87.

Even though Naive Bayes with unigram and unigram+bigram embedding achieved the same per-

formance, we concluded that Naive Bayes with unigram performed better than the other because

the unigram embedding uses a lower number of keywords than unigram+bigram to achieve the

same performance.

In the case of the decision tree based models, the trigram variation was able to achieve the

highest recall value (100%) with a precision value of 69.6% and an F1-score of 0.82. Even though

decision tree with unigram and unigram+bigram achieved higher precision values (100% and 90%

respectively) than decision tree with trigram, we still selected the trigram as the best performing

variation of decision tree as we focused more on the higher recall values than higher precision

values. The BERT embedding variation achieved a recall value of 88.9% and a precision value of

66.7%.

Overall, decision tree with trigram embedding performed the best in this data set, achieving a

perfect recall, 69.6% precision and 0.82 F1-score. This model achieved the highest recall value in

the jEdit data set.

3.2.1.3 Swarm

SVM with trigram embedding performed better than other SVM variations on the Swarm data

set. It was able to achieve 93.8% recall, 69.8% precision and an F1-score of 0.80. Although other

30



variations of Swarm obtained a higher precision value than trigram variation, their recall values

were lower than that of the trigram variation.

The BERT variation of the Naive Bayes model reached the highest recall value (100%) obtained

for this system but obtained a precision value of only 37.5%. Instead, the bigram variation of Naive

Bayes achieved a recall value of 78.1%, a precision value of 80.6% and an F1-score of 0.79. As

the bigram variation achieved better recall value than all other embeddings (except Naive Bayes

with BERT), we concluded that Naive Bayes with bigram performed better than all other variants

of Naive Bayes.

In the case of the decision tree classifiers, the bigram variation performed better (90.6% recall,

74.4% precision and 0.82 F1-score) than other embeddings. Even though decision tree with tri-

gram achieved a higher recall value (93.8%), decision tree with trigram achieved a lower precision

(69.8%) and F1-score (0.80) than decision tree with bigram. Fine-tuned BERT achieved a recall

value of 77.8% and a precision value of 100%.

Overall, the decision tree with bigram performed better than all the other classifiers. Decision

tree with bigram achieved the second highest recall value and the second highest F1-score in the

Swarm data set.

3.2.1.4 ArgoUML

ArgoUML was the smallest data set in our study. Still, SVM and Naive Bayes managed to

perform at a similar level in ArgoUML compared to the other data sets. Decision tree suffered in

this small data set, whereas Fine-tuned BERT performed the best among all the classifiers.

SVM performed better with BERT than with other embeddings on the ArgoUML data set. It

achieved 89.1% recall, 71.4% precision and an F1-score of 0.79. All the embeddings of SVM

(except trigram) achieved recall values higher than 85%.

The Naive Bayes model with BERT embedding achieved the highest recall value (89.1%)

among all the embeddings of Naive Bayes in this data set, a precision value of 71.4% and an

F1-score of 0.79. On this data set, the decision tree models did not perform well (except with

31



the bigram embedding). Decision tree with bigram was able to achieve 85.7% recall and 66.7%

precision, but with trigram it scored a value of 0% in both recall and precision.

On the other hand, Fine-tuned BERT performed well on the ArgoUML data set. It achieved a

recall value of 90.7%, a precision value of 77.2% and an F1-score of 0.83. This model achieved

the highest recall value and the highest F1-score in ArgoUML data set. So, we selected Fine-tuned

BERT as the best performing model in this data set.

3.2.2 Model performance across “All Systems” data set

Considering all the subject systems as a single data set, we constructed the “All Systems” data

set. In this data set, SVM performed better with the trigram embedding than with the bigram

and unigram one, achieving an F1-score of 0.80, a recall value of 97.1% and a precision value of

68.0%. Even though the rest of the embeddings achieved higher precision values than trigram,

those embeddings achieved lower precision values than trigram. All of the SVM based models

achieved F1-score higher than 0.72 in this data set.

In the case of the Naive Bayes models, the BERT embedding achieved a perfect recall value

(100%) and an F1-score of 0.67. However, its precision value (50.6%) is comparable to that of a

random classifier. Thus, we selected the Naive Bayes model with unigram+bigram (66.2% recall,

91.8% precision and 0.77 F1-score) to be the best performing model on this data set.

In the case of the decision tree based models, we selected the trigram embedding as the best

variation (with 97.1% recall, 68% precision and 0.80 F1-score). Decision tree with trigram and

SVM with trigram achieved identical performance in this data set. Both of these models achieved

the highest recall value and the highest F1-score in this data set.

Fine-tuned BERT achieved a recall value of 82.9%, a precision value of 61.9%, an accuracy

value of 76.9% and an F1-score of 0.71.

We concluded that decision tree with trigram and SVM with trigram performed the best in this

data set. Both of these models achieved the highest recall value and the highest F1-score in this

data set.

32



3.2.3 Overall comparison between classification models

Even though decision trees are some of the most trivial models in the machine learning field,

they performed unexpectedly well in our study. Our decision tree based models were able to

achieve the best performance on all the data sets (except ArgoUML). This result is inline with other

studies [34] that have also found decision tree based models to perform well for text classification.

Nevertheless, these classifiers did not perform consistently well across all the data. For example,

the decision tree model with unigram on the jEdit data set (56.2% recall), the decision tree model

with BERT on the jEdit data set (50% recall), and the decision tree model with trigram on the

ArgoUML data set (0% recall) performed close or worse than a random classifier. Dalal and

Zaveri [35] argues that decision tree based models generally perform well in text classification but

suffers when the number of attributes in the data is too large.

We found that Naive Bayes based models cannot perform as well as decision tree for textual

classification tasks. Naive Bayes assumes conditional independence, i.e., it assumes that “features

are independent of each other given the class”18. However in natural language, most features are

not independent of one another.

Overall, the performance of the Fine-tuned BERT models was consistently good throughout

all the systems. The recall values for these models ranged in between 77.8% and 100%, and their

precision values ranged in between 61.5% and 100%. Even though some of the other models

performed better than Fine-tuned BERT on some particular cases, in other cases those models per-

formed even worse than a random classifier. For example, decision tree with trigram embedding

achieved the best performance in the jEdit and “All Systems” data sets (with recall values of 100%

and 97.1% respectively) among all the models. However, in the case of ArgoUML data set, deci-

sion tree with trigram achieved 0% recall value. In case of SVM, SVM with trigram achieved the

best performance in “All Systems” data set (97.1% recall and 68.0 precision) but performed poorly

(0% recall and 0% precision) in the jEdit data set. Fine-tuned BERT can perform better than other

models in small data sets, such as our ArgoUML data set.

18https://nlp.stanford.edu/IR-book/html/htmledition/properties-of-naive-bayes-1.html

33



In general, all the models performed better on the “All Systems” data set than on the single-

system data sets. On the single-system data sets, even though a model performed well, some other

models clearly failed. The main reason for the models to perform better in the “All Systems” data

set is—again—the number of data points available for training. The higher the number of data

points is, the better the overall model performance. For example, in the “All Systems” data set, the

Fine-tuned BERT model achieved an F1-score of 0.71, the variants of SVM obtained F1-scores in

the range of 0.72 to 0.80, the variants of decision tree obtained F1-score in the range of 0.64 to

0.80, and the variants of Naive Bayes obtained F1-score in the range of 0.61 to 0.77.

ArgoUML was the hardest data set to classify for the decision tree based models. In ArgoUML,

the decision tree based models achieved F1-scores in the range of 0 to 0.62 (except bigram embed-

ding). We attribute this situation to the size of the ArgoUML data set, which is the smallest one in

our study (see Table 2.2). Because of this, the algorithms did not get enough data points to build a

proper classification model and hence behaved poorly in the testing data set.

The trigram encoding did not perform well in the ArgoUML data set. SVM, Naive Bayes

and decision trees achieved poor recall values (57.1%, 42.9% and 0% respectively) with trigram

embeddings. Compared to trigram, unigram and bigram performed well, with recall values ranging

from 71.4% to 85.7% (except decision tree with unigram). This indicates that there are very few

keywords with three-word length that exists in the ArgoUML data set.

3.2.4 Choosing the best model

In Table 3.1, we have marked the model performing best for each data set in bold. Decision

tree with bigram achieved the best performance in HttpCore and Swarm data set. Decision tree

with trigram achieved the best performance in jEdit and “All Systems” data set. Fine-tuned BERT

achieved the best performance in ArgoUML data set. SVM with trigram achieved the best perfor-

mance in the “All Systems” data set.

Even though decision tree with trigram achieved the best performance in jEdit and “All Sys-

tems” data set, decision tree with trigram performed poorly (0% precision and recall) in ArgoUML.

34



The same situation occurred in the case of SVM with trigram. Even though SVM with trigram

achieved the best performance in “All Systems” data set, SVM with trigram performed poorly (0%

precision and recall) in jEdit. Thus, we discarded decision tree with trigram and SVM with trigram

as options to be selected as the best performing model.

The remaining two choices for choosing the best performing model were decision tree with

bigram and Fine-tuned BERT. Decision tree with bigram achieved recall values in the range of

83.8% and 100%, precision values in the range of 66.7% and 74.4%. Whereas, Fine-tuned BERT

achieved recall values in the range of 77.8% and 100%, precision values in the range of 61.5%

and 100%. If we compare these two choices data set by data set, we can see that decision tree

with bigram performed better than Fine-tuned BERT in three data sets (HttpCore, Swarm and “All

Systems”). Fine-tuned BERT performed better than decision tree with bigram in two data sets

(jEdit and ArgoUML). As decision tree with bigram performed better than Fine-tuned BERT in

higher number of data sets, we concluded that decision tree with bigram performed the best among

all the models.

3.2.4.1 Keywords used by decision tree with bigram

One advantage of decision tree based models is that the internal structure of the model is

transparent, which means that we can understand the decision making process of the model by

analyzing the structure of the tree. Figures 3.1, 3.2, 3.3, 3.4 and 3.5 show the four splitting nodes

closest to the root node of the decision tree with bigram based models for every data set. Even

though the height of these trees was greater than four, we present only the top four levels for the

sake of simplicity.

Let us consider the structure of the decision tree with bigram embedding for the HttpCore data

set (see Figure 3.1). The most frequent bigram token in the HttpCore data set was “repeatable

entity”, and all of the sentences containing this keyword were marked as constraints. As a result,

the decision tree algorithm can predict with high confidence that a sentence containing this token

is a constraint, and does not require any other token in the sentence to compare. Thus, the trained

decision tree based model placed this token in the root node. The numeric value on the right side

35



Figure 3.1: Top four tokens used by decision tree with bigram in HttpCore data set

of the inequality referring to the token (i.e., “repeatable entity”) indicates the threshold value for

the token. This means that if the TF-IDF score of this keyword in an input sentence is lower than

the threshold value (0.162), the model will confidently classify that sentence as a constraint. The

attribute “value” in the nodes represents the distribution of constraints and non-constraints in the

sub-tree rooted at that node. The attribute “class” represents the majority class present in that node.

3.2.5 In-depth analysis of misclassified cases

In this section, we analyze some example sentences where one of the models made some mis-

takes in the classification process, but other models were able to correctly classify the sentence.

Example 3.2.1. “If nothing happens, you can run the application from a command (or DOS)

prompt to see if there are any errors that can be used for troubleshooting.”

Example 3.2.1 is part of the user manual of Swarm. Although it was originally labeled as a non-

constraint sentence, Fine-tuned BERT classified it as a constraint. From a grammatical perspective,

36



Figure 3.2: Top four tokens used by decision tree with bigram in jEdit data set

Figure 3.3: Top five four used by decision tree with bigram in Swarm data set

37



Figure 3.4: Top five four used by decision tree with bigram in ArgoUML data set

Figure 3.5: Top four tokens used by decision tree with bigram in “All Systems” data set

38



this is a conditional sentence. In our training data set, many of the sentences containing constraints

followed a conditional structure, where an action might or might occur depending on a condition.

So naturally, Fine-tuned BERT considered this sentence as a constraint, even though it is merely

suggesting the user to try another process if one fails. This situation indicates that although Fine-

tuned BERT is able to find relational patterns between the words of a sentence, it cannot understand

the meaning of that relation, and thus, it failed in this case. The same phenomenon was observed

with other similar sentences (e.g., “For example, if some text was inserted, Undo will remove it

from the buffer").

Example 3.2.2. “Range selections are equivalent to selections in most other text editors; they cover

text between two points in a buffer.”

Example 3.2.2 is an excerpt from the user guide of jEdit. This sentence is not a constraint,

because it only compares a feature of jEdit with that of other systems and does not describe any

limitation of the feature in jEdit. Nonetheless, the decision tree model with bigram classified this

sentence as a constraint. There is a sentence containing constraint in the training data set “Range

Selection Dragging the mouse creates a range selection from where the mouse was pressed to

where it was released” (also excerpted from jEdit). As a result, when decision tree with bigram

found the keyword “Range Selection” in if Example 3.2.2, it classified it as a constraint. This is

one of the problems of n-gram based models: they look for keywords to classify a sentence and do

not try to understand their meaning.

Example 3.2.3. “Multiple Selection Edit > More Selection > Multiple Selection (keyboard short-

cut: C+/) turns multiple selection mode on and off.”

Example 3.2.3 is another excerpt from the user guide of jEdit, which is a constraint because it

restricts the possible values for multiple selection mode. All the models except Fine-tuned BERT

classified it as a constraint. The n-gram models found the popular keywords of constraints: “on”

and “off”, and classified this sentence as a constraint. When Fine-tuned BERT analyzed the struc-

ture of the sentence, the model got confused at the beginning of the sentence: “Multiple Selection

39



Edit > More Selection > Multiple Selection”. This portion of the sentence describes the menu

path to change the multiple selection mode in jEdit. This is not a common sentence grammatically

speaking and thus the Masked Language Model of Fine-tuned BERT failed to recognize it as a

constraint. A similar phenomenon was observed in another example sentence from the user guise

of jEdit: “HOME is bound to Smart Home”. This sentence is describing the shortcut function-

ality of the key “HOME” in the jEdit application. Without the context of its parent paragraph,

Fine-tuned BERT failed to parse this sentence correctly. Based on these examples, we can see

that Fine-tuned BERT sometimes fails to properly classify sentences that do not follow a common

structure. However, n-gram based models were able to recognize those constraints with the help

of popular keywords.

Example 3.2.4. “Earthworm data provides raw wave data only.”

Example 3.2.4 is part of the user manual of Swarm. This sentence is a constraint because

it limits the possible output formats by the Earthworm sub-system. However, the decision tree

model with bigram marked this sentence as a non-constraint. Although there were multiple con-

straint sentences in the training data set containing the token “Earthworm” (e.g., “Connection to

Earthworm requires the IP address or host name of the server, port number, and communication

time out in seconds”), there was also one non-constraint sentence in the train data containing this

token (“Figure 4 Adding new Earthworm data source 3”). In the case of the decision tree with

bigram embedding, the produced bigram was “Earthworm data”. This token was not present in the

training samples of constraints but was present in the training samples of non-constraints. After

the vectorization process, there is no way to detect that the token “Earthworm data” contains the

token “Earthworm” in it. As a result, the decision tree model failed to classify this sentence as a

constraint.

Example 3.2.5. “Visibility This checkbox allows to hide the visibility of a package.”

Example 3.2.5 is an excerpt from the user manual of ArgoUML. This sentence is a constraint

because it describes the functionality of a checkbox that is capable of controlling the visibility of a

40



package. All the sentences containing the token “checkbox” in the training data set are constraints

(e.g., “Operation This checkbox allows to hide or show the operations compartment of a class or

interface”). As a result, all the decision tree based models were able to classify this sentence as

a constraint. Decision tree with bigram based models found the bigram token “checkbox allows”

and decision tree with trigram based models found the token “this checkbox allows”. These to-

kens helped the models to detect this sentence as a constraint. Instead, Fine-tuned BERT failed to

classify this sentence as a constraint. The reason lies behind the text styling adopted by the docu-

mentation of ArgoUML. Whenever describing an item in a list, the authors of the documentation

did not add any line break to differentiate the title of the item from the description of the item.

Rather the authors just changed the style of the text for the portion of the title of the item. When

we built our data set for training purposes of the models, we discarded the styling of the text. We

have mentioned before that Fine-tuned BERT depends on the masked language model and fails to

classify a sentence correctly when the grammatical structure of the sentence is not correct. The

first word of the Example 3.2.5 is the title of an item in a list. As this kind of sentence structure

is not common in the English literature, BERT was not pre-trained on this kind of sentences, so it

failed to classify this sentence as a constraint.

3.3 Strategy 2: Train and test the models on different data sets

As mentioned before, we considered four data sets in our study. In Section 3.2, we presented

the results of training and testing the models on the same data set. In this section, we present the

results of training our models on three of these data sets and testing them on the other one. This

will help us understand how our models would perform on the documentation of an OSS system

for which the models were not trained on.

Table 3.2 reports on the performance of the models when trained on the data sets of the other

three software systems and tested on the one at hand. For example, the metric values listed in the

column “HttpCore” represent the performance of the models trained on the full data sets of jEdit,

Swarm, and ArgoUML, and tested on the full data set of HttpCore.

41



We can observe that decision tree with bigram was able to achieve the best performance in

the testing data sets of HttpCore, jEdit and Swarm. This model also achieved 100% recall in all

the four testing data sets (HttpCore, jEdit, Swarm and ArgoUML), but its precision was rather

low (in the range between 52.3% and 56.8%). These high recall and low precision values indicate

that decision tree with bigram was able to detect all the constraints in the testing data sets, but

misclassified many non-constraints as constraints.

Fine-tuned BERT achieved the best performance in the ArgoUML testing data set with 73.1%

recall and 70.6% precision. Even though decision tree with bigram was able to achieve a perfect

recall value, its precision (52.3%) was much lower than that of Fine-tuned BERT (70.6%). In the

jEdit testing data set, Fine-tuned BERT achieved only 48.8% recall value. This is the only time we

observed Fine-tuned BERT performing worse than a random classifier.

SVM with trigram was also able to achieve 100% recall in all of the testing data sets, but

similarly to the decision tree model with bigram, its precision also suffered (ranging from 52.3%

to 56.4%).

In the case of Naive Bayes based models, none of its variants were able to perform consistently

well in terms of recall across the four testing data sets (unlike decision with bigram and SVM with

trigram). Naive Bayes suffered more in the HttpCore testing data set compared to the other testing

data sets (with a highest recall value of 52.3%). This indicates that the assumption of feature

independence in the sentences of the HttpCore testing data set did not hold well in these cases.

As the decision tree model with bigram achieved the highest recall values in all the testing data

sets and also achieved higher precision than SVM with trigram, we concluded that decision tree

with bigram is the best performing model in this testing strategy.

As mentioned earlier, we consider the performance of a random classifier as the baseline of

comparison. Overall, our best performing models in each of the testing data sets achieved better

recall and precision values than a random classifier. This indicates that with the addition of more

data sets from other open-source software systems, our models will be able to perform even better

on the data sets on which the models were not trained.

42



Table 3.2: Accuracy (AC), precision (PC), recall (RC) and F1-score (F1) comparison between different machine learning models across all systems

for testing strategy 2. Abbreviations used for the sake of brevity: Model (MDL), Support Vector Machine (SVM), Naive Bayes (NB), Decision

Tree (DT), BERT model fine-tuned with Adam (FT-BERT), embedding (EMD) unigram (1GM), bigram (2GM), trigram (3GM), unigram+bigram

(1-2GM). The underlined values represent the highest recall value obtained for a system by a particular model and embedding. The values in bold

indicate the highest recall value obtained for a system.

MDL EMB

System

HttpCore jEdit Swarm ArgoUML

AC

(%)

PC

(%)

RC

(%)
F1

AC

(%)

PC

(%)

RC

(%)
F1

AC

(%)

PC

(%)

RC

(%)
F1

AC

(%)

PC

(%)

RC

(%)
F1

SVM

1GM 56.1 57.7 68.2 0.62 62.4 59.3 96.0 0.73 53.0 57.1 47.6 0.52 52.3 52.9 78.3 0.63

2GM 52.4 53.1 97.7 0.69 54.8 54.3 100 0.70 57.7 57.1 100 0.73 52.3 52.3 100 0.69

3GM 53.7 53.7 100 0.70 53.8 53.8 100 0.70 56.4 56.4 100 0.72 52.3 52.3 100 0.69

1-2GM 53.7 55.2 72.7 0.63 61.3 58.3 98.0 0.73 54.4 56.2 85.7 0.68 52.3 53.1 73.9 0.62

BERT 55.6 62.4 71.8 0.67 56.7 72.9 66.7 0.70 52.1 55.4 74.6 0.64 52.3 56.4 75.1 0.64

NB

1GM 41.5 43.8 31.8 0.37 57.0 56.8 84.0 0.68 50.3 57.1 47.6 0.52 61.4 63.6 60.9 0.62

2GM 61.0 67.6 52.3 0.59 58.1 61.2 60.0 0.61 54.4 55.6 94.0 0.70 52.3 52.3 100 0.69

3GM 52.4 56.8 47.7 0.52 53.8 53.8 100 0.70 54.4 56.5 83.3 0.67 52.3 52.3 100 0.69

1-2GM 41.5 44.1 34.1 0.38 59.1 58.1 86.0 0.69 48.3 53.5 63.1 0.58 61.4 63.6 60.9 0.62

BERT 38.6 45.8 48.9 0.47 53.5 62.3 78.7 0.69 45.0 56.3 72.5 0.63 63.4 64.9 55.3 0.64

DT

1GM 62.2 59.4 93.2 0.73 49.5 51.9 82.0 0.64 55.0 56.3 90.5 0.69 59.1 56.8 91.3 0.70

2GM 53.7 53.7 100 0.70 53.8 53.8 100 0.70 57.0 56.8 100 0.72 52.3 52.3 100 0.69

3GM 53.7 53.7 100 0.70 53.8 53.8 100 0.70 56.4 56.4 100 0.72 52.3 52.3 100 0.69

1-2GM 46.3 50.0 13.6 0.21 45.2 49.2 60.0 0.54 55.0 57.0 82.1 0.67 52.3 52.4 95.7 0.68

BERT 53.7 61.4 72.9 0.67 43.8 46.7 62.3 0.53 59.1 55.7 67.2 0.61 51.8 71.2 52.9 0.61

FT -

BERT
- 69.5 70.9 57.9 0.64 48.4 44.7 48.8 0.47 68.5 59.8 84.6 0.70 68.1 70.6 73.1 0.71

4
3



3.4 Summary and discussion

We formulated a working definition of software constraints after studying existing literature

and exploring software documentation. We built a data set containing 167 constraints and 199

non-constraint sentences. This data set is meant to be used in future studies.

We analyzed the performance of several constraint classification models generated with four

machine learning algorithms. In our study, the decision tree based model with bigram embedding

performed the best among all the models, with recall values ranging from 83.8% to 100% and

precision values ranging from 66.7% to 74.4%.

On our smallest data set (i.e., ArgoUML), Fine-tuned BERT achieved 90.7% recall and 77.2%

precision. BERT has been pre-trained on thousands of sentences from the English language be-

forehand, thus it was able to achieve such a performance. We also found that if a sentence is not

properly structured, Fine-tuned BERT can fail to classify the sentence correctly.

Some studies [36] suggest that SVM models generally achieve high precision and poor recall,

but we did not find any such relation in our study. In some cases, we found SVM to achieve high

precision with low recall, and in some others, low precision with high recall. For example, the

SVM model with trigram achieved high recall (100%) but low precision (66.7%) on the HttpCore

data set. But on the same data set, SVM with bigram achieved low precision (72.2%) with high

recall (92.9%).

Even though Naive Bayes models are trivial classifiers, the multinomial variant performs well

in text classification problems19, which was confirmed in our study. For example, Naive Bayes

with BERT embedding performed better than the decision tree with bigram embedding on the

ArgoUML data set. Domingos and Pazzani [37] also observed the same result and reasoned that

even if the probability estimation of Naive Bayes is slightly off, the correct class still gets a higher

probabilistic value than the other classes. As we select the class with the highest probabilistic

value, the result still remains correct. Naive Bayes based models can perform better than decision

tree based models on small data sets (for example, ArgoUML data set), but latter ones perform

19https://scikit-learn.org/stable/modules/naive_bayes.html

44



better than the former on larger data sets (for example, “All Systems” data set). Kohavi et al. [38]

and Domingos and Pazzani [37] also observed the same effect of data set size on the performance

of Naive Bayes and decision tree models.

Decision tree based models generally need some key nodes for good performance. In Figures

3.1, 3.2, 3.3, 3.4 and 3.5 we have shown the top key nodes in each of the data sets. In the case of

text classification, the model can suffer when the dimensionality of the data is high. Decision tree

models performed worse (e.g., Decision Tree with trigram on the ArgoUML data set) relative to

Fine-tuned BERT when the size of the data set was small. However, we observed improvements

in the performance of the decision tree classifiers when trained on larger data sets. For example,

the decision tree model with bigram performed better than the Fine-tuned BERT model on the

HttpCore data set. But when the size of the data set grew larger (in the “All systems” data set), the

decision tree models resulted in lower precision than Fine-tuned BERT. Other studies observed a

similar effect of the size of the data set on the performance of decision tree models. Catlett [39]

states that the recall of decision tree models increases with larger data sets, but if the size of the

data sets keeps increasing, the precision value and F1-score start to drop after some point. For

example, in the case of decision tree with unigram we noticed that the precision values increased

when the number of data points in the data set were less than 100 (see Figure 3.6), but when the

number of data points increased to more than 100, the precision values declined.

We also found that, even if our models were not trained on the documentation of a software

system, the models can still detect constraints better than the baseline random classifier in that

software system. This in turn proves that our models will be able to perform better if the models

are trained on more data sets from different software systems.

45



Figure 3.6: Precision trend of the decision tree model with unigram

46



Chapter 4

Related work

Relevant to our research is the work on constraint categorization and their automatic detec-

tion in the documentation. Also related to our work is the detection of other types of contents

(e.g., functional or non-functional requirements and business rules) in software documentation. In

this chapter, we describe existing taxonomies and detection efforts focused on constraints, require-

ments and business rules, and how our work differs from them.

4.1 Constraints

4.1.1 Constraint categorization

Despite their importance, not many research efforts have focused on characterizing and cate-

gorizing software constraints.

4.1.1.1 Taxonomy of privacy constraints by Breaux and Antón

As part of their work on semantic parsing of privacy constraints from regulatory rules, Breaux

and Antón [3] proposed a taxonomy for the constraints found in the Health Insurance Portability

Act20 (HIPAA). Their goal was to reduce ambiguity between constraints and prioritize them, to

support requirement engineers in the analysis of constraints of healthcare software systems.

Breaux and Antón’s approach used semantic parameterization to build formal models of con-

straints from natural language. Semantic parameterization is the process of parsing sentences from

natural language form into a formal first-order predicate logic form. The constraints were divided

into two classes namely, parameterized and non-parameterized constraints. At the end of the pa-

rameterization process, the policies in natural language form are parsed and mapped to different

20https://www.hhs.gov/hipaa/index.html

47



Constraints

Stakeholder Beliefs
and Determinations 

Parameterized
constraints

Non-parameterized
constraints

Contractual
Statements  Data subjects Intended and Inferred

Purposes 

Legal determinations Medical
determinations  

Personal beliefs and
determinations  

Figure 4.1: Constraint classification by Breaux and Antón [3]

properties such as subject, action, modality, object, target and purpose. The full taxonomy is shown

in Figure 4.1 and discussed below:

• Parameterized constraints. After parsing these constraints, the aforementioned properties

are mapped to a single word or a noun phrase from the sentence.

• Non-parameterized constraints. In this kind of constraints, the aforementioned properties

cannot be mapped to a single word or a noun phrase from the sentence. Instead, these

properties are mapped to the phrases with “wh” questions. Non-parameterized constraints

can be divided into four sub-classes.

– Stakeholder beliefs and determinations. These constraints involve a decision-making

process, which gives access to some data. They can further be divided into three sub-

classes depending on whether the decision is made by a legal authority, medical per-

sonal, or by an average person.

– Contractual statements. These constraints restrain data access depending on whether a

person has been legally granted access to the data.

48



– Data subjects. These constraints restrain data access permissions depending on the

ownership of the data.

– Intended and inferred purposes. These constraints impose access permissions on the

data depending on the task for which the data will be used.

To the best of our knowledge, this is the only taxonomy of constraints proposed in the literature

so far. The focus of Breaux and Antón’s taxonomy is on privacy and security constraints that

protect patients’ information. This differs from our research goal, which is to detect all software

constraints in software documentation.

4.1.1.2 Types of constraints in the ISO/IEC/IEEE standards

The ISO/IEC/IEEE 29148 standard [11] does not explicitly describe a specific taxonomy of

constraints. However, the following constraint types are mentioned along the document:

• Business operational constraints. Constraints that describe limitations on how a business

process will be executed.

• Operational constraints. Constraints to successfully implement the business operation into

the system. This may end up creating new functional requirements.

• Project constraints. Constraints describing the limitations on project timelines, financial

budget, etc.

• Design constraints. Constraints describing the rules needed to be abide by the laws from

government entities or to satisfy customer requirements. For example, a customer might

impose conditions on design notation and coding standards.

• Interface constraints. Constraints describing the limitations of an external entity that the

system needs to communicate with.

• Physical size constraints. Constraints describing the weight or volume limitations on the

hardware itself.

49



• Constraints derived from law. Constraints that are imposed by government entities for the

safety of the users.

• Maintenance constraints. Constraints imposed on the maintenance activity of the system.

• User or operator limitations. Constraints imposed on the system due to the limited work

capacity or speed of humans.

• System performance constraints. Constraints defining a benchmark (e.g., time, memory) for

the system to be acceptable to the customers.

• Safety constraints. Constraints the system has to maintain to ensure the security of user data

or the physical well-being of the user.

• Data availability constraints. Constraints determining how user data will be stored and

accessed in the system.

• Memory constraints. Constraints on how much primary and secondary memory the system

is permitted to use.

• Integrity constraints. Constraints on the integrity of the user data. It is similar to the refer-

ential integrity constraints in database systems.

In addition, Wiegers and Beatty [40] collected the next types of constraints from the ISO/IEC/IEEE

29148:2011(E) standard [41].

• Technology stack constraint. Constraints on the tool, language or framework to be used

while building the software.

• Platform constraint. Constraints that are imposed on the system because of using a certain

operating system or browser.

• Compatibility constraints. When a new version of the system comes up, it has to be compat-

ible with its older versions such that customers using the older versions of the software do

not face any issues.

50



• Compliance constraints. Mirror the constraints derived from laws discussed earlier.

• Hardware constraints. Mirror the physical size constraints and memory constraints dis-

cussed earlier.

• Physical constraints. Same as the physical size constraints discussed earlier.

• Interface constraints. Same as the interface constraints discussed earlier.

• Data format constraints. Constraints on the data standard or data format to be used to com-

municate with external entities.

The aforementioned constraints can be thought of as sub-classes of software constraints. These

sub-classes are in no way an exhaustive list and they do not represent a complete taxonomy of

constraints. Moreover, some of the sub-classes might even overlap with each other.

We explored these constraint types in the literature to find out what type of sentences are

considered as constraints. Doing so helped us to understand the definition of constraints better

which in turn reduced disagreements in the coding phase of the thesis.

4.1.2 Automatic detection of constraints in documentation

Our main goal was to automatically detect software constraints in natural language texts. In

other words, we wanted to classify natural language sentences into constraints and non-constraints

classes. There are not a lot of works existing in the literature on constraint detection in software

documentation.

4.1.2.1 Automated extraction of access control policies by Xiao et al.

Security policies can be considered as a sub-class of software constraints. Xiao et al. [4]

defined access control policies (ACP) as “principals such as users have access to which resources".

ACP falls into the similar category of safety constraints discussed earlier. As these sentences limit

the access permission of certain data, ACP is considered as sub-class of software constraints.

51



Sentence Shallow parsing
Associate verbs
with semantic

classes
Infer ACP effect Build ACP model

Figure 4.2: Automatic extraction of Access Control Policies by Xiao et al. [4]

The overall steps to build a formal ACP model from natural language text are shown in Fig-

ure 4.2. We are going to explain the steps mentioned in the figure using Example 4.1.1 shown

below:

Example 4.1.1. “Admin should not access user’s personal financial data".

The authors analyzed the sentence with the shallow parser. The parser segmented the sentence

into subject, object, verb groups, phrases, clauses. The example sentence would be analyzed as

<Admin, subject>, <should not access, main verb group>, <user’s personal financial data, object>.

Then the authors would compare the verbs with a pre-built dictionary of verbs to retrieve semantic

classes. The example verb group would be matched with the “Deny” action effect. The subject,

object and the action effect would then be encoded in formal XACML format. In a nutshell, the

authors relied on the pre-built list of verbs to identify whether a sentence contains an access control

policy (ACP) or not.

4.2 Software requirements

ISO/IEC TS 24748 [42] defines a software requirement as a “statement that translates or ex-

presses a need and its associated constraints and condition”. Sommerville [5] classified software

requirements into the next three major categories: non-functional requirements, functional require-

ments, and domain specific requirements. In this section, these requirement categories will be

briefly discussed.

4.2.1 Non-functional requirements

ISO/IEC/IEEE 24765 defines a non-functional requirement as a "software requirement that de-

scribes not what the software will do but how the software will do it" [43]. Sommerville [5] clas-

52



Nonfunctional
requirement

Product requirement Organizational
requirement External requirement

Usability
requirement

Efficiency
requirement

Dependability
requirement

Security
requirement

Performance
requirement

Space
requirement

Environmental
requirement

Operational
requirement

Development
requirement

Regulatory
requirement

Ethical
requirement

Legislative
requirement

Accounting
requirement

Safety / Security
requirement

Figure 4.3: Taxonomy of nonfunctional requirements by Sommerville [5]

sified nonfunctional business requirements into three subcategories, namely product requirements,

organizational requirements, and external requirements. The taxonomy is shown in Figure 4.3.

There is a large body of research literature [12, 13, 44, 14, 15] present on nonfunctional re-

quirements categorization and how to automatically classify them. Hence, we do not concentrate

on non-functional requirements.

4.2.2 Functional requirements

ISO/IEC/IEEE 24765 defines a functional requirement as a "statement that identifies what re-

sults a product or process shall produce" [43]. In general, functional requirements refer to features

or functionality the software offers to its users. There have been relatively fewer research efforts

on classifying functional requirements.

4.2.2.1 Taxonomy of functional requirements by Ghazarian [45]

Ghazarian [45] studied documentation from fifteen projects in the domain of enterprise systems

[45]. 1217 functional requirements were found after analyzing the documentation of those projects

Those requirements were classified into twelve classes. They are mentioned below:

• Data output. The requirements that describe the format of the output data. The output can

be the final output itself or it can be the intermediate output between modules.

53



• Data input. The requirements that describe the format the system expects the input data

to be. Similar to output requirements, the data input can describe intermediate data input

formats between modules of the system.

• Event trigger. The requirements that describe the system response on the actions initiated

by users. For example: Keypress events.

• Business logic. The requirements that describe the business processes of the system.

• Data persistence. The requirements that describe how data will be stored in the system.

• User Interface navigation. The requirements that describe the sequential flow of screens on

different user activities.

• External call. The requirements that describe how the system will interact with other soft-

ware and vice versa.

• Communication. The requirements that describe the requirements or contents in case of

communicating with any external entities.

• User Interface. The requirements that describe the screen layout of the system.

• User Interface logic. The requirements which describe the choices of screen flow depending

on the user interaction.

• Data validation. The requirements that describe the criteria that determine whether the input

data valid.

• External behavior. The requirements that describe the reaction of any external sub-component

of the system.

The author provided definitions of each of these classes but did not provide any examples.

“Data output”, “Data input”, “Event trigger”, “Business logic” and “Data persistence” were the

54



most common functional requirements in these fifteen projects. All together these classes com-

prised 85% of all the functional requirements found. “External behavior” and “Data validation”

were the least common functional requirements. The author also argued that the low concentration

of some of these requirement types can indicate the bad quality of the software itself.

We identified some problems with this taxonomy:

• The author listed business rules in the “Business logic” category. But we know that business

rules are different from requirements.

• The proposed taxonomy is more implementation-oriented than documentation-oriented. Most

of the popular classes are related to the developed code. For example - Data output, data in-

put.

4.2.2.2 Taxonomy of functional requirements by Sharma and Biswas

Sharma and Biswas [6] presented a taxonomy of functional requirements in this study [6]. They

built this taxonomy by following the grounded theory [46] approach. The grounded theory mainly

focuses on verifying assumptions by analyzing the data. In other term, grounded theory tries to

find clues grounded in the data.

The authors analyzed documentation from five enterprise software systems. These systems

were in the domain of academic, finance and healthcare sectors. Three of these documents were

in free flow format and the rest of them contained structured use cases. The authors found 3060

requirement data points from those documents. In the first step of analyzing the requirements, the

authors followed the open coding approach. The findings were frequently compared with other

members. In the next phase, the authors performed selective coding to identify the central category

and integrate the other sub-categories to the central category to design an initial taxonomy. In the

last step, they did theoretical coding to define relationships between the finalized categories. The

final taxonomy is shown in Figure 4.4. The authors classified functional requirements into seven

categories. Types of requirements that each of these categories contain, are listed below each of

these categories in the figure.

55



Functional
requirement

Entity modeling
requirement

User Interface
requirement

User privileges
requirement

User interaction
requirement

Business workflow
requirement

Business
constraints
requirement

External
communication

requirement

System entities
Available roles
Concept
Abstraction

Information
display
Information
layout on GUI
Look and feel
on page
N i ti

Permissible function
Associated
privileges
Eligible operations
Actions permitted
Actions permitted

Accessing data on
GUI
Steps to
manipulate data
from GUI
Display error / info

Business logic
Sequence of
operations
Business procedure

Regulatory norms
Policies /
Guidelines
Technical concern

Remote
communication
External trigger
External interface

Figure 4.4: Taxonomy of functional requirements by Sharma and Biswas [6]

4.2.3 Automatic classification of functional and non-functional requirements

by Kurtanović and Maalej

The authors devised a machine learning model that can automatically separate non-functional

requirements from functional requirements [12]. They used the data set from "Second RE17 data

challenge: the identification of requirement types using Quality attributes"21. There were 625

sentences in the data set and for each sentence in the data set, there was a label associated with

it. The label indicated whether a sentence is a functional requirement or if it is a non-functional

requirement what subclass does it belong to. There were eleven sub-classes in the non-functional

requirement category: Availability, Fault tolerance, Look and feel, Maintainability, Operational,

Performance, Portability, Scalability, Legal, Usability and Security.

The model was able to successfully differentiate between functional and non-functional re-

quirements. In the case of binary functional and non-functional classification, the model achieved

a precision value of around 0.92 and a recall value of around 0.92 while no automatic feature selec-

tion was being applied. In the case of multi-class classifications for non-functional requirements,

the model achieved precision values in the range of 0.65 to 0.86 and recall values in the range of

0.77 to 0.82.

21http://ctp.di.fct.unl.pt/RE2017/downloads/data sets/nfr.arff

56



Business Rule

derivation 
process Derivation

inference

entity relationship

Structural
Assertion

Degree of decision
 support

Nature of 
statement

type

Action assertion

Derived

Base

Attribute Participation Generalization

Association Aggregation Role

Controlling

Influencing
Integrity

Authorization

Condition

Enabler Timer Executive

Inference

Mathematical

Figure 4.5: Business rule taxonomy by Ross [7]

4.3 Business Rules

A business rule is “a statement that defines or constrains some aspect of the business” [47].

Business rules define core regulations or policies of a company, which have to be maintained as

guidelines to conduct the business activities of the company. These rules can be imposed by a

government entity or by the company itself.

In this chapter, we explain previous works on business rules by providing a brief description of

these taxonomies, as well as some of their pros and cons.

4.3.1 Taxonomy by Ross

Ross [7] is one of the pioneers in the field of classifying and modeling business rules. The

GUIDE project [47] summarizes his proposed taxonomy. Business rules are common in almost

every type of business industry and so this taxonomy was not restricted to the software industry. It

uses a hypothetical EU-Rent’s car rental business to exemplify the rule categories in the taxonomy.

The taxonomy is represented in Figure 4.5. As the taxonomy is quite big and is not directly

related to our study we will not dive deep into each sub-category. Ross classifies business rules

into three major categories:

57



• Structural Assertion (Fact). A business rule that describes a concept or an existing entity in

relation to other concepts or entities of interest [47]. An entity can be an actor or object in

the system.

Structural assertions can be classified into two subcategories based on their creation process:

Base and Derived. Base rules are atomic and Derived rules are constructed from other rules

by mathematical calculations or logical inference.

Structural assertions can also be classified into three categories based on the relationship

between terms. A term can be any word or phrase that the business uses when modeling its

system. The three categories are: Attribute describing the property of a business entity, Gen-

eralization describing the subset or superset relationship among entities and Participation

describing the aggregation or association relationships between entities.

• Derivation. A business rule that stems from one or more atomic business rules (by mathe-

matical calculation or by inference) is called a derived business rule [47].

• Action Assertion. A business rule that specifies control over the possible results of an ac-

tion [47].

Action assertions can be divided into three categories based on the nature of the statement –

Conditional action assertion leads to other action assertions based on the condition, Integrity

action assertion that must be preserved, Authorization action assertion grants privileges to

actors.

Action assertions can also be categorized based on the action type. Enabler action assertion

initiates another action assertion whereas Executive assertion acts as a trigger to execute an-

other action assertion. Timer action assertion defines a threshold in time after which another

action is auto-initiated.

Action assertions can also be divided into two categories based on the flexibility of the

resultant action: Controlling and Influencing.

58



Ross’s was one of the first efforts towards building a taxonomy for business rules. The taxo-

nomy attempted to classify every business rule into one or more categories. However, we found

several problems when trying to adopt this taxonomy for our classification task.

• The taxonomy was published in 1997 and has not been updated since. Meanwhile, the

software industry has evolved. Many modern requirements documents consist mostly of

diagrams rather than text. Traditional databases (which inspired the original taxonomy)

have been replaced with other technologies. Some parts of the taxonomy focus on the entity

(Structural assertion) relationship similar to database systems. It means that these types of

relations mainly focus on relations between entities in a sentence. This type of relation-

focused taxonomy can not help much in automatic binary textual classifications as they do

not focus on the sentence structure.

• The examples mentioned in the taxonomy are not related to the software industry.

• It is one of the most complex business rule taxonomy in existence. One rule can fit into mul-

tiple categories depending on the scheme of the classification. For example, a sentence might

fall into the “Derived” subcategory of the “Structural Assertion” category if the relationship

between entities is considered. But if the inference procedure is considered, then the same

sentence falls into the “Derived” or the “Base” subcategory. This complexity became par-

ticularly problematic in the tagging step of our data collection process. As a single sentence

was tagged by multiple coders, for most of the sentences there was at least one subcategory

mismatch between the tagged sub-classes of the coders.

• Modern software practitioners consider definitions and non-functional requirements as busi-

ness rules [1]. But the taxonomy does not consider them as business rules.

59



Business Rule

Structural Behavioral
Managerial

Object structure Persistency History

Information flow Pre-conditions Post-conditions FrequencyDuration Control flow Task knowledge

Organization Goal & value Actor
completeness

Actor
responsibilities Resources

Figure 4.6: Business rule taxonomy by Weiden et al. [8]

4.3.2 Taxonomy by Weiden et al.

Weiden et al. [8] proposed a new taxonomy primarily based on the taxonomy by Ross [7] with

some modifications. They classified the business rules into three main categories. The detailed

taxonomy is shown in Figure 4.6 and is described below.

• Structural. This category focuses on business relations between objects, and how long the

information or history of an object should be stored. Rule types in this category include:

– Object Structure. A business rule that lists the objects or entities in the system. It can

also describe the relationships between objects.

– Persistence. A business rule that describes the data persistence timeline of objects.

– History. A business rule that describes whether the system should store the history of

some particular object.

• Behavioral. This category focuses on conditional relations and sequential relations between

business tasks. Rule types in this category include:

– Information flow. A business rule that describes the required information of a task from

other tasks.

60



– Preconditions. A business rule that describes the conditions needed to be fulfilled for

the current task to initiate.

– Post-conditions. A business rule that describes the conditions that will appear once the

current task finishes executing.

– Frequency. A business rule that describes how frequently a task can be performed.

– Duration. A business rule that describes how long a task should last.

– Control flow. A business rule that controls the execution order of multiple tasks.

– Task knowledge. A business rule that describes the information or knowledge needed

to perform a business task.

• Managerial. This category focuses on the organization and resources of the business.

– Organization. A business rule that describes the organizational policies.

– Goal and value. A business rule that describes the goal of the company.

– Actor competencies. A business rule that describes the quality of actors that make them

competent for the business.

– Actor responsibility. A business rule that describes the tasks one actor should perform.

– Resources. A business rule that describes the policies to make good use of company

resources.

Weiden et al. [8] conducted a case study to evaluate to what extent their taxonomy (see Fig-

ure 4.6) fits into an industry level software and to refine their initial taxonomy if necessary. The

case study was based on interviews with the business analysts of a mortgage offering process-

ing software. The identified 320 business rules were stored both in natural text and in a relational

database, which were also categorized according to their proposed taxonomy. UML diagrams were

also considered as semi-formatted business rules. The classification process, however, was a man-

ual effort, and although some of the business rules fit within the software domain, the taxonomy

61



covered too many aspects of businesses in other fields. For example, we can consider the subcat-

egory “Actor competency" in the category of “Managerial" rules. The authors added sentences to

this sub-category that describe an actor’s skills necessary for the role. These sentences describing

an actor’s skills are clearly business rules but they are not specifically related to any actor related

to any software systems. Besides, the taxonomy was also old (published in 2002).

4.3.3 Taxonomy by Maalej and Ghaisas

Maalej and Ghaisas [1] surveyed different types of business rules by interviewing 11 experi-

enced software practitioners from different fields of the software industry. The goal of this study

was to find out the perceptions of business rules in the stakeholders of the software industry. The

interviewees worked in various software systems related to financial services, insurance and tele-

com industries. The authors asked the interviewees questions such as the following:

• What types of sentences they consider as business rules.

• Questions related to common requirement engineering practices.

• What type of business rules they have used. They were also asked to give some examples

for each of them.

• They were asked about the problems faced while maintaining these rules throughout the life

cycle of the software.

The interviewees mentioned 27 different types of rules. The authors found that practitioners

have a broad perception for this term, ranging from flow of business processes to directives for

calling external system interfaces.

The authors were motivated by two phenomena:

• One simple change in a business rule results in a significant ripple effect. This means that

a change in a single business rule might affect some other business rules that depended on

the original rule. As a result, many requirements might change with them, which in turn can

lead to an extended delay in the delivery timeline of the software.

62



• Most of these rules are “domain, region, or company specific rather than application spe-

cific” [1]. Thus, the authors suggested that it might be a good idea to design an automated

approach to extract business rules from artifacts to increase code reusability.

The authors found that the understanding of business rules varies from one practitioner to

another depending on their area of expertise, company culture and role. They mentioned that

one of the software practitioners considers business rules as "non-negotiable constraints which

are driven by corporate policy or regulations". Even some of the other practitioners think that

non-functional rules are a certain category of business rules. These notions of business rules of

software practitioners in the current software industry do not really reflect the formal definition of

business rules found in the literature. The authors also mentioned that these types of business rules

suggested by the practitioners, are not mutually exclusive, and are non-exhaustive. This implies

that there are more types of business rules out there than mentioned by the practitioners. The top

five types of business rules (ordered by how many practitioners mentioned them) are listed below.

• Validations rules and value ranges

• System or application specific rules

• Calculation rules

• Access control rules

• External system interfaces

However, the authors did not provide any well-organized definitions or examples for them. We

have listed these definitions in Table 4.1 that were provided by the authors throughout the study.

Some of the definitions were collected from other studies [16] conducted by the same authors [1].

The sub-classes for which the authors did not mention any definition have been omitted.

This taxonomy was one of the few modern efforts to classify business rules. One big plus point

for this taxonomy is that the authors tried to build the taxonomy keeping the feedback from current

software practitioners in mind.

63



Even though the authors have tried to make a list of the business rules, here are some problems

we found while following their taxonomy:

• The authors only listed the names of the categories of the business rules they had collected

by interviewing the software practitioners. They did not provide any definition for most of

the categories. They only added examples for a few categories.

• The research questions the authors were trying to answer were not directed towards building

a taxonomy of business rules. Their main goal was to find out how today’s software industry

uses business rules while building the software.

4.4 Automatic detection and classification of business rules

Several research efforts have focused on building approaches to automatically classify business

rules. In this section, we describe the existing approaches to automatically classify business rules.

4.4.1 Automatic detection and classification of business rules by Ghaisas

et al.

Ghaisas et al. [16] collected samples of business rules from documentation of 20 large projects

in the insurance domain. To automatically classify them, they introduced rule intent patterns. Rule

intent patterns are syntactic patterns consisting of phrases and keywords in business rules. These

patterns contained parts of speech tags, keywords and wildcard characters. For example, consider

a business rule mentioned by the authors.

Example 4.4.1. “During a call to the Service Router, the application in context will be locked to

the active user.”

The rule intent patterns of this sentence are:

• During *,

• * call TO + NN *,

64



• * application + MD VB VBN *, and

• + TO * user *;

where TO represents the preposition to, NN indicates noun, MD indicates modal, VB indicates verb,

VBN indicates verb in past participle form, and ‘*’ is a wild character to indicate occurrence of any

words with 0 or more frequency. Each of these patterns represents a rule intent. The analysis of

the 20 documents yielded 517 rule intents.

After analyzing all the training sentences, the rule intents that appear together in the same types

of business rule sentences, were grouped into a sub-class. To classify a sentence into categories

of business rules, the approach detects all the rule intents present in that sentence first. Then, it

finds the subclass that generally contains those rule intents in group in a sentence. That sub-class

represents the category of business rules for that sentence.

We considered whether using rule based approach can achieve better performance than machine

learning based classification approach. Although it was a good idea to find rule intents in the

sentences, the task to detect and group rule intents needed heavy manual effort. When the data set

grows larger, it becomes practically impossible to group rule intents from each of those sentences.

So, this system was not scalable. Also, in the tagging step of finding those pattern-based rule

intents, it is hard to keep track of the already found rule intents. While building those rule intents,

If a person tags two sentences with the same rule intent pattern in a week apart, there is a high

chance that he will not remember that he has already tagged a sentence with a similar structure

into another rule intent. Considering these reasons, we decided to use machine learning based

approach instead of rule based approach.

4.4.2 Automatic classification approach by Anish et al.

Anish et al. [2] devised a machine learning based approach that can automatically classify busi-

ness rules. Ghaisas [1] was also a part of this research team. In their previous work, Ghaisas et al.

[16] expressed each of those business rules into a composition of multiple rule intents. Each of

these intents were associated with a part of speech (POS), keywords and wild character based pat-

65



Sentence Embedding
layer Bi-LSTM layer Attention layer Output layer

Figure 4.7: Automatic classification approach by Anish et al. [2].

terns. However, as mentioned earlier, it is difficult to build patterns for a large data set. Thus, Anish

et al. [2] introduced machine learning algorithms and new types of business rules (see Table 4.2)

on top of the ones proposed by Maalej and Ghaisas [1].

For their data set, they collected 4,043 sentences from 40 Software Requirement Specification

(SRS) documents in the insurance domain. Their model is shown in Figure 4.7. It has five logical

layers.

In the embedding layer, they used Word2Vec algorithm [48] to convert words into numbers.

In the next layer, those numbers were fed into a BiLSTM model [49] to preserve contextual de-

pendencies of words in both directions. An aggregated value is collected from all the nodes in a

weighted manner. In the output layer, different sigmoid functions were used to classify sentences

into a specific business rule category.

For binary classification (business rule sentence vs. non-business rule sentence), the proposed

approach achieved 88.11% precision and 87.6% recall value. In the case of classifying sentences

according to their categories, the approach achieved precision values in the range of 55.36% to

99.9%, while the recall value was in the range of 44.44% to 83.87%. Some of the categories

(i.e., Deadline, User Interface, Data Protection) were exceptionally easy to classify for the model

and had a high precision value. However, for some of the other categories (i.e., Data Validation,

Financial Transaction), the model performed similarly to a random classifier model. For the low

recall values, the authors argued that they had very few data points for those categories in their data

set. Also in the case of Data Validation, the authors mentioned that this category sentence contains

a wide range of information and it can have multiple sub-categories within itself.

Even though this approach was a good option for our binary classification task between con-

straints and non-constraints, we did not use this approach in our thesis. This model did not consider

66



Table 4.1: Partial taxonomy by Maalej and Ghaisas [1]. The sub-classes for which the authors did not

mention any definition have been omitted

ID Type Definition

1 Validations rules and value

ranges

"Rules that validate data processed by the system or used

by stakeholders to perform some task" [16]

2 System / application specific

rules

"Restricting the deployment of the application, how it

should be used" [1] and rules that may change from sys-

tems to systems

4 Calculation rules How to calculate a particular value [1]

5 Access control rules "Rules that restrict stakeholder’s access or constraints ac-

tivities performed by them" [16]

8 Sequencing/ control flow "Rule that restricts the functionality of the system, its be-

havior or the process" [1].

12 User interface rules "Rules related to user interface describing various screen

elements, screen layout etc" [16].

17 Non-functional rules "Non-functional rules include availability restrictions,

performance rules, and the number of concurrent users

at a time" [1].

Table 4.2: New types of business rules proposed by Anish et al. [2]. Definitions are verbatim from the

original publication.

Business rule type Definition

Deadline Rules that restrict time duration, date.

Conditional Execution Rules describing checks to be performed by user or system

while executing process steps.

Data Protection Rule act that mandates the practices to be followed to pro-

tect sensitive data.

Documentation Mandate Rule act that mandates the information that needs to be pro-

vided in a document.

Financial Transaction Rule act that restricts the monetary transactions.

User Responsibility Rule act that mandates the user to perform some action.

67



every type of business rule found in their previous and new studies (it only considered 10 types of

business rules). Anish et al. used BiLSTM to train their model. At that time BiLSTM was one of

the state of the art machine learning models. BiLSTM is slower than BERT as BiLSTM can input

one word at a time at the time of training, whereas BERT comes as pre-trained over the internet.

Also, BiLSTM tries to understand the bidirectional context by concatenating two unidirectional

training phases. So, BiLSTM is not a true bidirectional context aware model.

4.5 Summary

In this chapter, we described taxonomies and automatic classification approaches on con-

straints, requirements and business rules related to our work. Although we have not used any

of the taxonomies discussed in this chapter, readers can use it as a starting point to learn about

existing approaches for text classification in software documentation.

68



Chapter 5

Conclusions

5.1 Lessons learned

In this thesis, we developed an approach to identify software constraints from software docu-

mentation. With this purpose, we constructed a working definition of constraints based on existing

works on constraints in the literature. We analyzed the documentation of four open-source software

systems and built a data set containing examples of constraint and non-constraint sentences.

We also built machine learning based models that can classify sentences from software docu-

mentation into two categories: constraint and non-constraint. The machine learning model based

on decision tree algorithm with bigram embedding was able to achieve 74% precision, 83.8% re-

call and 0.79 F1-score. Considering the small size of our data set (consisting of 368 data points),

this was a good result. Other binary classification models, such as the classification model of func-

tional and non-functional requirements (see Section 4.2.3) by Kurtanović and Maalej [12] achieved

92% precision and recall on a data set consisting of 625 data points. With a larger data set, we be-

lieve that our models could have achieved similar or better results. Kurtanović and Maalej [12]

also used SVM with n-gram based models similar to ours (see Section 2.3.2.2). To the best of our

knowledge, ours is the first attempt to automatically detect constraints in software documentation

artifacts.

We observed some interesting trends in the behavior of the machine learning algorithms and

derived models in our testing strategy 1. These behaviors have been discussed (see Section 3.4) in

detail. Our decision tree with bigram and Fine-tuned BERT models performed consistently better

than the other models in all the data sets. Fine-tuned BERT was able to achieve 90.7% recall in a

small data set like ArgoUML, because the model was already pre-trained on thousands of English

language sentences. However, Fine-tuned BERT cannot perform correctly if the sentence structure

is uncommon. Unlike other studies, we did not find any co-relation between precision and recall

69



values in the case of SVM based models. In the case of decision trees, we observed improvements

in the performance of the models when the size of the training data set increased, just like in other

similar studies. In fact when the size of the data set is small, Naive Bayes can perform better than

the decision tree based models. However, with the increase of the size of the data set, decision

trees gradually outperform Naive Bayes based models.

5.2 Future Work

In the short term, training the model on a larger data set is likely to produce better results. To

increase the size of our data set, we must annotate more sentences and maybe other documents.

To execute this task and mitigate the threats to validity discussed in Section 2.5, we plan to recruit

more coders in the future.

Although we performed an intrinsic evaluation of our approach with testing strategy 2, we

are yet to evaluate how much it helps developers when working on real-world software systems.

Running the approach on the documentation of industry-level software is necessary to assess its

usefulness and is left as future work.

Currently, our model can classify sentences into one of two classes: constraints and non-

constraints. We believe that this model can be extended to be a multimodal classifier. For example,

the model could detect sentences that express constraints, requirements or business rules.

In the long term, the next step of the research is to develop an approach to trace constraint

sentences to their implementation in source code. This step is challenging because of various

reasons, such as irregularities in identifier names and complex source code structure. Moreover,

in current practice, values of environmental and configuration variables for live systems are stored

in a separate portal rather than directly in the source code. Also, the documentation of software

systems is often not well maintained and hence could be inconsistent with respect to the code.

Ideally, our tracing approach should be able to link sub-classes of constraints to code. To do

so, we must understand how developers implement different types of constraints. If we find that

the implementation of different types of constraints differs and we can detect the type of constraint

70



to trace, we might be able to apply a strategy that is suitable to the constraint at hand. In that case,

a taxonomy for different constraint types and a model capable of classifying those constraints are

necessary.

71



Bibliography

[1] Walid Maalej and Smita Ghaisas. Capturing and sharing domain knowledge with business

rules lessons learned from a global software vendor. In 2014 IEEE 22nd International Re-

quirements Engineering Conference (RE), pages 364–373. IEEE, 2014.

[2] Preethu Rose Anish, Abhishek Sainani, Abdul Ahmed, and Smita Ghaisas. Implementation-

centric classification of business rules from documents. In 2019 IEEE 27th International

Requirements Engineering Conference Workshops (REW), pages 227–233. IEEE, 2019.

[3] Travis Breaux and Annie Antón. Analyzing regulatory rules for privacy and security require-

ments. IEEE transactions on software engineering, 34(1):5–20, 2008.

[4] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. Automated extraction

of security policies from natural-language software documents. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering, pages

1–11, 2012.

[5] Ian Sommerville. Software engineering 9th edition. ISBN-10, 137035152:18, 2011.

[6] Richa Sharma and Kanad K Biswas. Functional requirements categorization grounded theory

approach. In 2015 International Conference on Evaluation of Novel Approaches to Software

Engineering (ENASE), pages 301–307. IEEE, 2015.

[7] Ronald Ross. The business rule book: classifying, defining and modeling rules: Ross method.

Database Research Group, Boston, Mass, 1997. ISBN 9780941049030.

[8] Marcel Weiden, Leo Hermans, Guus Schreiber, and Sven van der Zee. Classification and

representation of business rules. Universiteit van Amsterdam, 2002.

[9] Petr Marounek. Simplified approach to effort estimation in software maintenance. Journal

of systems integration, 3(3):51–63, 2012.

72



[10] Timothy C Lethbridge, Janice Singer, and Andrew Forward. How software engineers use

documentation: The state of the practice. IEEE software, 20(6):35–39, 2003.

[11] ISO/IEC/IEEE international standard - systems and software engineering – life cycle pro-

cesses – requirements engineering. ISO/IEC/IEEE 29148:2018(E), pages 1–104, 2018. doi:

10.1109/IEEESTD.2018.8559686.

[12] Zijad Kurtanović and Walid Maalej. Automatically classifying functional and non-functional

requirements using supervised machine learning. In 2017 IEEE 25th International Require-

ments Engineering Conference (RE), pages 490–495. Ieee, 2017.

[13] John Slankas and Laurie Williams. Automated extraction of non-functional requirements in

available documentation. In 2013 1st International workshop on natural language analysis

in software engineering (NaturaLiSE), pages 9–16. IEEE, 2013.

[14] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. Automated classifica-

tion of non-functional requirements. Requirements engineering, 12(2):103–120, 2007.

[15] Mengmeng Lu and Peng Liang. Automatic classification of non-functional requirements

from augmented app user reviews. In Proceedings of the 21st International Conference on

Evaluation and Assessment in Software Engineering, pages 344–353, 2017.

[16] Smita Ghaisas, Manish Motwani, and Preethu Rose Anish. Detecting system use cases and

validations from documents. In 2013 28th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 568–573. IEEE, 2013.

[17] Preethu Rose Anish, Abhishek Sainani, Abdul Ahmed, and Smita Ghaisas. Implementation-

centric classification of business rules from documents. In 2019 IEEE 27th International

Requirements Engineering Conference Workshops (REW), pages 227–233. IEEE, 2019.

[18] Ralph Rowland Young. The requirements engineering handbook. Artech House, 2004.

73



[19] D. I. K. Søberg, R. Welland, and M. P. Atkinson. Software constraints for large application

systems. The Computer Journal, 40(10):598–616, 1997. doi: 10.1093/comjnl/40.10.598.

[20] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura

Moreno, Gabriele Bavota, and Michele Lanza. Software documentation issues unveiled.

In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages

1199–1210. IEEE, 2019.

[21] Matthew B. Miles, A. Michael Huberman, and Johnny Saldaña. Qualitative Data Analysis:

A Methods Sourcebook. SAGE Publications, Inc, Thousand Oaks, Califorinia, third edition,

2014. ISBN 978-1-4522-5787-7.

[22] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on

knowledge and data engineering, 21(9):1263–1284, 2009.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[24] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya

Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vié-

gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

https://www.tensorflow.org/. Software available from tensorflow.org.

74



[25] Thomas Bayes. An essay towards solving a problem in the doctrine of chances. 1763. MD

computing: computers in medical practice, 8(3):157–171, 1991.

[26] William S Noble. What is a support vector machine? Nature biotechnology, 24(12):1565–

1567, 2006.

[27] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152, 1992.

[28] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):

273–297, 1995.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[31] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read stu-

dents learn better: On the importance of pre-training compact models. arXiv preprint

arXiv:1908.08962v2, 2019.

[32] Juan Ramos. Using TF-IDF to determine word relevance in document queries. In Proceedings

of the first instructional conference on machine learning, volume 242, pages 29–48. Citeseer,

2003.

[33] K Mouthami, K Nirmala Devi, and V Murali Bhaskaran. Sentiment analysis and classification

based on textual reviews. In 2013 international conference on Information communication

and embedded systems (ICICES), pages 271–276. IEEE, 2013.

75



[34] Arundhati Navada, Aamir Nizam Ansari, Siddharth Patil, and Balwant A Sonkamble.

Overview of use of decision tree algorithms in machine learning. In 2011 IEEE control

and system graduate research colloquium, pages 37–42. IEEE, 2011.

[35] Mita K Dalal and Mukesh A Zaveri. Automatic text classification: a technical review. Inter-

national Journal of Computer Applications, 28(2):37–40, 2011.

[36] M Ikonomakis, Sotiris Kotsiantis, and V Tampakas. Text classification using machine learn-

ing techniques. WSEAS transactions on computers, 4(8):966–974, 2005.

[37] Pedro Domingos and Michael Pazzani. Beyond independence: Conditions for the optimality

of the simple bayesian classi er. In Proc. 13th Intl. Conf. Machine Learning, pages 105–112.

Citeseer, 1996.

[38] Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid.

In Kdd, volume 96, pages 202–207, 1996.

[39] Jason Catlett. Overprvning large decision trees. In IJCAI, pages 764–769. Citeseer, 1991.

[40] Karl Wiegers and Joy Beatty. Software requirements. Pearson Education, 2013.

[41] ISO/IEC/IEEE international standard - systems and software engineering – life cycle pro-

cesses –requirements engineering. ISO/IEC/IEEE 29148:2011(E), pages 1–94, 2011. doi:

10.1109/IEEESTD.2011.6146379.

[42] ISO/IEC TS 24748-1:2016. ISO/IEC TS 24748-1:2016 Systems and software engineering –

Life cycle management – Part 1: Guidelines for life cycle management. Standard, Interna-

tional Organization for Standardization, 2016.

[43] Iso/iec/ieee international standard - systems and software engineering–vocabulary.

ISO/IEC/IEEE 24765:2017(E), pages 1–541, 2017. doi: 10.1109/IEEESTD.2017.8016712.

76



[44] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On non-functional requirements

in software engineering. In Conceptual modeling: Foundations and applications, pages 363–

379. Springer, 2009.

[45] Arbi Ghazarian. Characterization of functional software requirements space: The law of

requirements taxonomic growth. In 2012 20th IEEE International Requirements Engineering

Conference (RE), pages 241–250. IEEE, 2012.

[46] Ciarán Dunne. The place of the literature review in grounded theory research. International

journal of social research methodology, 14(2):111–124, 2011.

[47] David Hay, Keri Anderson Healy, and J Hall. Defining business rules-what are they really.

Final report, 34, 2000.

[48] Tomas Mikolov, Kai Chen, Gregory S Corrado, and Jeffrey A Dean. Computing numeric

representations of words in a high-dimensional space, May 19 2015. US Patent 9,037,464.

[49] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions

on Signal Processing, 45(11):2673–2681, 1997. doi: 10.1109/78.650093.

77


