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Abstract 

This report documents the development and testing of a new type of dynamical core. Toe· model 

uses the invariant form of the primitive equations, solving the vorticity and divergence equations in place 

of the momentum equation. In the horizontal directions the model is discretized on a geodesic grid which 

is nearly uniform over the entire globe. In the vertical direction the model can use a variety of coordinate 

systems, including the generalized sigma coordinate of Suarez et al. (1983) and the Phillips (1957) sigma 

coordinate. By integrating the vorticity and divergence equations, terms related to gravity wave 

propagation are isolated and an efficient semi-implicit time stepping scheme is implemented. 

The model is tested using the idealized forcing proposed by Held and Suarez (1994). Results are 

presented for a variety of vertical coordinate systems with horizontal resolutions using 2562 polygons 

(approximately 4.5 ° x 4.5 °) and using 10242 polygons (approximately 2.25 ° x 2.25 ° ). The results are 

compared to standard spectral model simulations truncated at T30 and T63. In terms of averages and 

variances of state variables, e geodesic grid model results using 2562 polygons are comparable to those 

of a spectral model truncated at slightly less than TIO, while a simulation with 10242 polygons is 

comparable to a spectral model simulation truncated at slightly less than T63. 

In terms of computational efficiency, further development of this geodesic grid model is required. 

Model timings completed on an SGI Origin 2000 indicate that the geodesic grid model with 10242 

polygons is 2. 7 times slower than the spectral model truncated at T63. At these resolutions, the MFlop rate 

of the geodesic grid model is 15% faster than the spectral model, so the differences in model speed are due 

to differences in the number of floating point operations required per day of simulation. The geodesic grid 

model is more competitive at higher resolution than at lower resolution, so further optimization and future 

trends toward higher resolution should benefit the geodesic grid model. 



1. Introduction 

All atmospheric general circulation models (AGCMs) numerically solve a set of equations which 

describe the evolution of the general circulation and thermal state. These equations are often referred to as 

the ''primitive equations" and are an approximate form of the Navier-Stokes equations. The component of 

an AGCM which describes the general circulation is now commonly called the dynamical core. In the 

context of climate modeling, the atmospheric dynamical core has a strong influence on all other climate 

sub-systems, such as ocean, sea-ice, land-surface, and radiation. This fact emphasizes the importance of 

developing a dynamical core which accurately represents the general circulation. 

Many different varieties of dynamical cores have been developed. Since all dynamical cores use a 

similar set of governing equations, dynamical cores are generally differentiated based on the numerical 

methods used to solve the equations. The two largest families of dynamical cores are finite-difference 

methods and spectral methods. The 'birth' of finite-difference models of the atmosphere's circulation came 

with the pioneering attempt of Richardson (1922) _to predict the weather. In the following decades, 

numerical methods developed and simple numerical models of the atmosphere were successful in 

capturing some gross features of the general circulation (e.g. Charney et al. 1950). A paradigm shift in the 

modeling of the atmospheric circulation came with the discovery of the Fast Fourier Transform (FFT) by 

Cooley and Tukey (1965) and the transform technique to evaluate vector-coupled sums (Orszag 1970). The 

efficiency of the FFT made spectral methods a viable alternative to finite-difference methods. These two 

approaches to discretization, finite-difference methods and spectral methods, have been competing ever 

since, each method having enough positive attributes to maintain its own viability. 

Models using spectral methods often solve the vorticity-divergence form of the primitive 

equations, as opposed to solving for the vector components of the momentum equation. Unlike 

components of the momentum vector, vorticity and divergence are true scalars whose values are invariant 
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with respect to the choice of coordinate system. Furthermore, conservation principles for potential vorticity 

and potential enstrophy are easily formulated within the context of the vorticity and divergence equations. 

Solving the vorticity and divergence equations involves extra computational effort since at each time step 

elliptic equations must be inverted to determine the vector velocity. This overhead has generally inhibited 

finite-difference models from integrating the vorticity and divergence equations. In contrast to finite-

difference methods, spectral decomposition reduces the elliptic operators to algebraic equations which are 

trivial to solve. By virtue of solving for vorticity and divergence, spectral methods isolate the terms related 

to gravity wave propagation and allow efficient semi-implicit schemes to be implemented. Furthermore, 

spectral methods do an exceptional job of modeling linear dynamics. For example, spectral methods give 

the exact phase speeds for the individual components of linearly-propagating waves. In addition, the linear 

growth phase of instabilities, such as baroclinic instability, is simulated extremely accurately within 

spectral models. _ 

When the state variables and boundary conditions which are expanded in the appropriate spectral 

space are smooth (i.e. infinitely differentiable), spectral methods converge extremely rapidly as the number 

of retained modes increases. In fact, for such a case spectral methods converge exponentially fast, which is 

faster than finite-difference methods of any accuracy (Jarrud and Simmons 1983). On the other hand, if 

state variables or boundary conditions are not infinitely differentiable and are "lumpy'', such as cloud 

liquid water or surface topography, the rate of converge is dramatically reduced and "spectral ringing" 

develops in regions of rapid change. One effec of spectral ringing is often to generate negative values of 

fields that should be positive definite. Generally, some type of ad hoc method is required to overcome these 

deficiencies. When the variable itself is discontinuous or nearly so (e.g. cloud liquid water), the spectral 

expansion is only first-order accurate (Tennekes and Lumley 1990), which is less accurate than commonly 

used finite-difference methods. Furthermore, in this instance the spectral expansion converges only in the 
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L 2 
sense, not in the L 00 

sense. Therefore large local errors remain, regardless of the number of spectral 

modes retained (Greenberg 1978). Increasing computer power translates into retaining of more wave 

numbers, but may not translate into increased fidelity of the simulations which use spectral methods to 

represent variables which are nearly discontinuous in space. 

As the vertical coordinate systems of dynamical cores move away from the conventional cr 

coordinate to a more physical coordinate, finite-difference methods may be the only viable method. A case 

in point would be the use of potential temperature as the vertical coordinate, in which case layers intersect 

the surface boundary and become "massless." Such a mass distribution can be handled in a straightforward 

manner by finite-difference methods based on flux-corrected transport algorithms. As stated above, the 

spectral expansion will converge extremely slowly with large local errors regardless of the spectral 

resolution. 

Finite-difference methods do, of course, have disadvantages. The grids used to discretize the 

surface of the globe are generally regular latitude-longitude grids which converge at the North and South 

Pole. Spectral methods do not suffer from this problem. Using latitude-longitude grids results in extremely 

small grid cell areas near the poles relative to grid cell areas near the equator. Substantial computational 

effort and ad hoc methods are needed to suppress the numerical problems arising from having singularities 

at the grid poles. Furthermore, given the relative smallness of grid cells in the polar regions, a 

disproportionately large amount of computational work is used to simulate that region. Another 

disadvantage is that finite-difference methods always introduce anomalous dispersion and/or diffusion to 

linearly-propagating waves. Conventional finite-difference models integrate the components of the 

momentum equation, as opposed to the vorticity and divergence equations. Gravity wave propagation, 

which is isolated in the divergent portion of the vector wind field, is contained in both components of the 

momentum equation. Semi-implicit schemes which attempt to isolate gravity wave propagation can not be 
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implemented as efficiently in these finite-difference models as in spectral models which utilize the vorticity 

and divergence equations. 

The purpose of this work is to develop a new dynamical core which combines many of the 

advantages of both finite-difference methods and spectral methods while eliminating deficiencies of each 

method. This new dynamical core is radically different from conventional finite-difference models in that it 

uses a geodesic grid. The surface of the globe is discretized using an assembly of hexagons and 12 

pentagons, as opposed to quasi-rectangular grid ce s of latitude-longitude grids. The geodesic grid gives 

nearly uniform grid cell areas across the entire globe and has no grid singularities. Also, the use of 

multigrid methods makes it practical to solve the vorticity and divergence equations. Furthermore, this 

model uses a single un-staggered grid, the Z-grid (Randall 1994), on which all variables are defined. While 

the geodesic grid allows a more elegant discretization of the primitive equations, it does lose some of the 

simplicity in its numerical implementation. The development of this dynamical core grew naturally out of 

the work by Heikes and Randall ( 1995a, b ), who solved the shallow water equations on a geodesic grid. 

This document acts as a technical reference on the model's formulation. Section 2 describes the 

governing equations and provides a detailed derivation of the invariant form of the vorticity and divergence 

equations. Section 3 provides an introduction to geodesic grids and describes the numerical methods used 

to discretize the horizontal directions, vertical direction, and time. Model results using the idealized 

forcing proposed by Held and Suarez (1994) are shown in Section 4. Also included in Section 4 is a 

preliminary comparison of computational efficiency between the geodesic grid model and the spectral 

model. A discussion with some conclusions is contained in Section 5. 

2. Governing Equations 

The continuous governing equations used here are similar to those used in most present-day 

AGCMs. A set of nonlinear partial differential equations is used to describe the temporal and spatial 
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evolution of mass, momentum, potential temperature, and an arbitrary number of passive tracers. While the 

final form of the governing equations used in this work will not make reference to any horizontal 

coordinate system, an explicitly-stated vertical coordinate is used. The vertical coordinate used is the 

generalized sigma coordinate which allows both the lower boundary and the PBL top to be coordinate 

surfaces. This coordinate has been used in the both the UCLA and CSU AGCM for many years (Suarez et 

al. 1983). The coordinate is defined by 

p-pl p-pl 
Pr5.P<P1 ---

1tK Pi-Pr 

cr= Po-P Po-P 
P15.P<Po (1) = 

1tl Po-P1 

l +Ps-P = l + Ps-P Po5.P5.Ps 
1tM Ps-PB 

where p is the atmospheric pressure. The pressure at _the top df the model is defined by the constant, p T , 

while p 1 is a constant pressure roughly defining the tropopause. Note that at pressure lower than p 1 , a 

surfaces coincide with p surfaces. The variables, 7t { L, K , M} are the pressure thicknesses of each vertical 

layer which are loosely referred to as the stratosphere, troposphere, and PBL, respectively. Both p s, the 

surface pressure, and p B , the PBL top pressure, are time and spatially varying quantities which will be 

described by prognostic equations. (Results on page 26 will compare simulations using this generalized 

sigma coordinate to simulations using simpler vertical coordinates, such as the Phillips sigma coordinate 

and the generalized sigma coordinate without the stratosphere region.) 

In the equations written below we define VP to operate along surfaces of constant pressure, V to 

operate along surfaces of constant cr, and 7t = 7t { L, K , M } depending upon the local atmospheric pressure. 
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The prognostic equations describe the evolution of velocity, potential temperature, passive tracers, surface 

pressure, and PBL top pressure, respectively. (See "Variable Definitions" on page 61. for a complete 

listing.) 

a (~ +L) . a -V+ -- kx1tV+VK+cr-V = -Vp<l>+F ot - 1t - - ocr - -
(2) 

(3) 

~( 1tq) + V •( 1tq f) + ~( cr1tq) = .S 
ot - - ocr -

(4) 

o- =2 

J -V•(1tf)dcr (5) 
O" = - 1 

a=l 

= I -V•(1tr)dcr-g(E-MB) (6) 
O" = - 1 

Using the relation of VP = V + (V Pa )(;cr), the pressure gradient term in (2) can be rewritten as 

(7) 

where His the Heaviside step function defined as H(x) = 0 when x < 0 and H(x) = 1 when x 0 . 

Any vector field can be decomposed into purely rotational and divergent vector fields by using 

Helmhotz's decomposition (e.g. Panton 1984). The rotational and divergent components of the velocity 

7 



fields can be expressed in terms of scalar potential fields. This relationship is expressed as 

(8) 

where !f is the unit vector normal to the coordinate surface, 'I' is the stream.function describing the 

rotational part of the vector field, and X is the velocity potential describing the divergent part of the vector 

field. If we substitute (8) into (2) and take the curl and divergence, we obtain the vorticity equation and 

divergence equation, respectively. These equations have the form, 

J(cra.,rc)+H(cr - l)J(a.,2p8 -ps) = Vxf 

-J(ri, x)- V•(ri v'I') + v•( cr ;cr vx)-J( a,:)+ V 2
(K +ct>)+ 

V•(cra.Vrc)+H(cr-l)V•{a.V(2p8 -ps)} = V•f 

(9) 

where J(A, B) = !f · (VA x VB) , TJ is the absolute vorticity, and 8 is the divergence. Vorticity and 

divergence are related to the stream.function and velocity potential through the diagnostic relations 

(11) 

2 
8 = V X· (12) 

A full derivation of these equations, including (9) and (10), is given in Appendix A: Derivation of the 

invariant form of the primitive equations in terms of vorticity and divergence on page 49. 
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In order to close the system, we need equations for the geopotential height, <I> , and the vertical 

velocity, 6 . The geopotential height is obtained by integrating the hydrostatic equation from the model 

lower boundary upward. In differential form, the equation for <I> is written as 

8<I> = - a.Bp = -a1t8cr . (13) 

The vertical velocity is obtained from mass continuity which has the form of 

00 + V•(1t V) + ~ (1t6) = 0 . Bt - Ba (14) 

Note that the equations for surface pressure (5) and PBL top pressure (6) are obtained by vertically-

integrating (14) between the appropriate limits. The vertical velocity at any level in the atmosphere is 

obtained by vertically integrating (14) from the upper oundary downward as 

o = o' 

(1t6)j 0 = o ' = - cr': - f v'•(1tf)8cr (15) 
0 =-1 

with the boundary conditions of 6j
0 

= _1 = 0 and cr j
0 

= 2 = 0 . In (15), we can eliminate the vector 

velocity by substituting (8) and expanding. This manipulation gives the vertical velocity in terms of the 

streamfunction and velocity potential as 

o = o ' 

C1tcr)l 0 = 
0

, = - a':+ f [J C1t, 'I')- v•c1tvx)Jacr. (16) 
o=-1 

A mass flux closure is needed in the equation describing the PBL top pressure (6). This is a 

fundamental link between the atmospheric dynamics and atmospheric physics such as turbulence and 
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stratiform clouds. In the testing of this atmospheric dynamical core, no attempt is made to realistically 

parameterize this mass flux, and a simple relaxation will be used to keep the PBL at reasonable 

thicknesses. When physics are added to the dynamics, the mass flux closure currently employed in the 

CSU AGCM will be used. 

vorticity 
~-J(ri, 'I')+ V•(riVx) + v-( CJ:a v"') +-1 CJ,~)+ 

(17) 

J(aa, 1t) + H(a- l)J(a, 2ps- Ps) = Vx.f 

divergence 
ao -J(ri, x)- V•(ri v"') + v•( CJ~Vx )-J( CJ, 8"') + v\K +<I>)+ 

(18) 

at aa aa 

V•(aav'1t)+H(a-l)V•{av'(2ps-Ps)} = V•.f 

potential a a . neQ (19) 
temperature -(1t0)-J(n0,'1')+V•(1t0Vx)+-(an0) = -

at aa cPT 

surface 
aps 

a=2 (20) 
pressure = f [J(n, 'I')- V•(nVx)]da 

at 
a=-1 

PBL top 
apB 

a=I (21) 
pressure - = f [J(1t, 'l')-V•(nVx)]da-g(E-Ms) 

at 
a =-I 

passive 
!/1t'f)-J(1t'f, 'l')+V•(n'fVx)+ :a(CJ1t'f) = § 

(22) 
tracers 

geopotentlal a<I> = -anaa (23) 
height 

vertical a=a' (24) 
velocity (1tCJ)I = - a'&+ f [J(1t, 'I')- V•(nVx)]aa 

a= a' at 
a=-1 

stream- -2 'l'=v' (11-.n (25) 
function 

velocity -2 (26) 
potent la I X = V o 
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For completeness, the entire set of governing equations, written in terms of streamfunction and 

velocity potential, is given directly above. These equations constitute the ' dynamical core' of the general 

circulation model. Note that no horizontal coordinate system is explicitly referenced; the equations are 

written in invariant form. 

3. Numerical Methods 

Given the nonlinear narure of the governing equations, we must solve the system of equations 

using discrete numerics to obtain anything more than trivial solutions. Since large-scale atmospheric 

motion is nearly two-dimensional, we can conceptually think of the atmosphere as being an assembly of 

vertically-stacked layers. The methods to discretize the three-dimensional fluid is then, to large extent, 

separable into the horizontal discretization of each layer and the discretization of the vertical stacking. 

Since the problem is somewhat separable, we can draw on previous work done with the shallow water 

equations to aid in the discretization of the horizontal directions of this three dimensional fluid. So the 

approach here is akin to 'divide and conquer.' 

A close inspection of (17) through (26) reveals that a total of 7 analytic operators must be 

discretized in order to numerically-integrate the equations. If we use a and f3 to represent two arbitrary 

scalar variables, then the 7 operators are: 

aa 2 -2 aa I ar•k•VaxVf3,V•(a.Vf3),Va,V a , 8 cr,and a.8cr. 

The following shorthand notation will be convenient: 

F(a, f3) = V•(av'f3), (27) 

L(a) (28) 
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L/(a) -2 = V a. (29) 

In the next section we discuss the numerical methods used to discretize the four operators related to the 

horizontal discretization (J, F, L, LI), then we proceed to discuss the discretization of the vertical cr 

coordmate { (:), f ado}, and finally we discuss the temporal discretization (:) . 

3. 1 Horizontal Discretization and the Geodesic Grid 

This section attempts to motivate the use of the geodesic grid and to explain how the numerics 

involving the grid are implemented. The more complete discussions of the geodesic grid by Heikes (1993) 

and Heikes and Randall ( 1995a, b) should be considered required reading on this model. All of the material 

presented in this section can be found in Heikes (1993). 

The idea of using a geodesic grid to discretize the spherical globe was put forth by Williamson 

(1968) and Sadourny et al. (1968). Both Williamson (1968) and Sadourny et al. (1968) solve for the 

velocity components and height in the non-divergent shallow water equations. Masuda and Ohnishi (1986) 

made progress using geodesic grids by solving the vorticity-divergence form of the shallow water 

equations. Masuda and Ohnishi (1986) show that their approach conserves mass, energy, and potential 

enstrophy. As will be shown below, if the vorticity-divergence form of shallow water equations are solved, 

elliptic operators relating the vorticity and divergence to their respective potential fields must be inverted 

each time step. While this is trivial to do within spectral models, it is a major obstacle to overcome when 

using finite-difference methods. Heikes (1993) and Heikes and Randall (1995a,b) further develop the 

numerical methods using geodesic grids by solving the vorticity-divergence form of the shallow water 

equations and by implementing a multigrid method to efficiently invert the elliptical operators. 

A geodesic grid is a grid which covers the surface of a sphere with an assembly of polygons. In 
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Figure 1: 

(a) (b) (c) 

(d) (e) (t) 

Generating geodesic grids by recursive bisection and projection. (a) 
Starting with an Icosahedron, (b) each face is bisected to form 4 new 
faces, (c) each new vertex Is projected onto the unit sphere. (d), (e), 
and (f) show the result of continued bisection, projection, and 
bisection. 

general, the generation of geodesic grids involves the repeated use of a simple set of rules. For example, in 

Fig. 1 each face of the initial icosahedron (a) is bisected to form 4 faces (b). Each vertex ofthis new grid is 

then projected to the surface of the sphere (c). Applying the rules of bi-section and projection to 

subsequent grids allows finer meshes to be generated (as in (d), (e), and (t)). The initial icosahedron has 42 

faces and the first subdivision has 162 faces. The formula relating the number of grid cells, N c , to the level 

of recursion, R, is N c = 5 · 2 2R + 3 + 2 . The properties of the grids generated by this recursive method is 

shown in Table 1 at the end of Section 3.1. 

Each vertex is associated with a grid point. In addition, each grid point is associated with a unique 
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• Po 
Figure 2: The area associated 
with each vertex, such as Po, Is the 
set of all points closer to Po than 

area of the surface of the sphere. In Fig. 2, the area associated with grid point, PO , is that area which lies 

closer to PO than any other grid point. As elucidated by Heikes and Randall (1995a), this grid has many 

attractive properties. The areas of the grid cells are nearly uniform across the entire sphere. This eliminates 

the common problems encountered near the grid poles when using conventional latitude-longitude grids. 

The recursive nature of the grid lends itself nicely to the use of multigrid methods which allow the efficient 

inversion of elliptic operators ( discussed later). Another important property of the this grid which will be 

explained in more detail immediately below is that it allows an accurate discretization of the analytic 

operators of J, F, L, LI. 

The J, F, L, and LI operators are analytic operators that must be numerically evaluated at a grid 

point such as PO (Fig. 2). If we assume that the grid cell area is sufficiently small, we can approximate the 

value of the operators at PO as the mean value integrated over the cell area. Using the Jacobian operator as 

an example, this is expressed mathematically as 
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Figure 3: Typical hexagonal cells. 
Scalars are defined at cell centers and are 
averaged to cell wall mid-points or cell 
wall corners, depending upon the 
operation to be carried out. 

J(a., J3)1p ~Alff J(a., J3)dA' 
0 C 

(30) 
Ac 

where Ac is the cell area. With this approximation, we can use Gauss's Theorem to reduce the area 

integral to a line integral as 

1 ff 1 ! 8J3 J(a., J3)1p ~A- J(a., J3)dA = A-ya.-8 ds , 
0 C C S 

Ac C 

(31) 

where C is the contour enclosing Ac and ds is an infinitesimal segment along C. Referring to Fig. 3, the 

contour integration is carried out by summing over the cell walls associated with PO as, 

(32) 
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where /i is the length of the cell wall and 

(33) 

So a is approximated at the cell wall as the average of the two nearest grid point values and P is 

approximated at the cell comers as the average of the three closest grid point values. Both of these 

approximations are second-order accurate. Equation (32) can be simplified to yield 

(34) 

In a similar fashion, F and L can be discretized as 

(35) 

(36) 

where Li is the length of the arc connecting PO to Pi . The analytic operators satisfy the conservation 

relations of 

ff J(a, P)dA = 0 , ff F(a, P)dA = 0,and ffL(a)dA = 0, (37) 
A A A 

where the integration is carried out over the entire sphere. Since these operators are evaluated by 

integrating along cell walls and each cell wall is uniquely shared by two grid cells, we can show that the 
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numerical operators satisfy 

C = 1 C = 1 C = 1 

where the summation is over the total number of grid points, N c. 

Since the stencil for the Laplacian operator has een defined, the stencil for the inverse Laplacian 

is also known. If we wish to invert 

(39) 

on a sphere with cyclic boundary conditions where g is known, we can apply the Laplacian stencil of (36) 

to obtain 

Uo = ----;.~,,..=...al __ 

I wj 

j = 1 

(40) 

where wi = 1/(AcLi) and u0 is an approximate solution of U evaluated at P0 • Solving (40) is an 

iterative process where successive sweeps over the entire grid reduce the error. Although obtaining 

numerically-converging solutions is not difficult, finding numerical methods which converge quickly is 

more challenging. Equation (39) is one of the most studied equations in mathematics and substantial effort 

has been put into finding efficient algorithms. One such means of efficient inversion is with the use of 

multigrid methods (Fulton et al. 1986). While not discussed here, this model employs the multigrid 

method outlined in Heikes (1993). 
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Ratio of 

Number Number Average smallest 

of cells of cells Average cell Ratio of 
distance 

distance to 
q NC along area in km2 smallest cell to between cell largest 

largest cell distance equator centers in km between cell 
centers 

0 42 10 l.214x10 7 0.885 3717.4 0.881 

1 162 20 3.149x10 6 0.916 1909.5 0.820 

2 642 40 7.946 x10 5 0.942 961.6 0.799 

3 2562 80 l.991x10 5 0.948 481.6 0.790 

4 10242 160 4.98x10 4 0.951 240.9 0.789 

5 40962 320 4 l.245x10 0.952 120.5 0.788 

Table 1: properties of geodesic grid at various levels of recursion. 

3.2 Vertical discretization 

The vertical coordinate used in this model is similar to the one used in the current and previous 

versions of the CSU AGCM. Most of the numericai issues relating to the vertical discretization of the 

generalized sigma coordinate are discussed in Arakawa and Lamb (1977) and Suarez et al. (1983). 

For better or worse, the vertical staggering of variables is currently defined on the Lorenz grid 

(Arakawa and Lamb 1977). The Lorenz grid defines geopotential height and potential temperature at the 

layer centers. An alternative vertical staggering, the Charney-Phillips grid, defines geopotential height and 

potential temperature at the layer edges. The positive feature of the Lorenz grid is that energy conservation 

is relatively simple to enforce. On the negative side, the Lorenz grid incorporates one extra degree of 

freedom which is unconstrained. This extra degree of freedom generally manifests itself as computational 

noise in the vertical direction. 

The numbering convention for the vertical indexing and the vertical staggering of variables is as 
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follows: layer centers are denoted by integer values of the index, k, beginning at the top and increasing 

downward. Layer edges and are denoted by k ± 11 2 values. Vorticity, divergence, streamfunction, 

velocity potential, potential temperature, tracers, and geopotential are all defined at the layer centers. 

Surface pressure, PBL top pressure, and vertical velocity are defined at the layer edge(s). The vertical 

coordinate, cr , is defined on the layer edges while the layer thickness, ~cr , is defined at the layer centers. 

Note that in the discussion of the vertical discretization given below, both time and the horizontal 

directions are kept in continuous form in order to isolate the vertical discretization. 

3.2. 1 Mass Continuity 

Let K, L, M be the number of layers within the regions of -1 :s;; cr < 0 , 0 :s;; cr < 1 , 1 :s;; cr :s;; 2 , 

respectively, and let NLM denote the total number of layers. The discrete form of the continuity equation at 

level k is 

(41) 

This serves as a starting point for the discrete equations forms of p s, p B, and cr. This equation is subject 

to the boundary conditions 

(1tcr) i 
k = -

2 
= 0 and ( 1t cr) 1 = 0 . 

k=NLM + -
2 

Vertically summing ( 41) over the appropriate levels gives 

NLM 

= L [J(1tt, 'l'k)-F(1tk' Xk)]~crk 
k = I 

19 

(42) 

(43) 



where 

K+M 

= L [J(1tk''l'k)-F(1tk'X.k)]~CJk-g(E-MB) 
k=I 

{rtcr)I 1 = g(E-M). 
k=K+M+-

2 

The vertical velocity at the layer edges for each region is given as: 

Stratosphere j 

{rtcr) I = L [J(1tk' 'l'k)-F(1tk' X.k)]~CJk 
i+ -2 k= 1 

Tropopause 
opB 

j 

{rtcr) 1 =-CJ 1·- + L [J(1tk' 'l'k)-F(1tk' X.k)]~CJk 
i+ - i+- at 

2 2 k = 1 

PBL 
, ( ) ~B ( ) ~S {1tCJ) 1 = CJ 1 -1 ·- + CJ 1 -2 ·- + 

i+- i+- at i+- at 
2 2 . 2 

j 

L [J(1tk' 'l'k)-F(1tk' X.k)]~CJk 
k=I 

(44) 

(45) 

'46) 

47) 

'48) 

The vertical velocity is determined diagnostically after the surface pressure tendency and PBL pressure 

tendency have been determined. 

3.2.2 Tracer Advection 

The governing equation for an arbitrary tracer, which includes potential temperature, has a form 

similar to the continuity equation with 

~(1tqh-J[(1tq)k''l'k]+F[(1tq)k'x.k]+} [CJ 1(rtcr) 1-q 1(rtcr) 1] = o (49) 
u t LlCJ k + - k + - le - - k - -2 2 2 2 
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where q is defined on layer edges and is some function of q. One possible function is 

= ~(qk + qk+ 1) andqk_l = ~(qk + qk - 1). 
2 

(50) 

Lorenz (1960) and Arakawa and Lamb (1977) point out that computing q using (50) leads to the 

conservation of the global integral of q2 with respect to mass. 

3.2.3 Vertical advection in the Vorticity and Divergence equations 

Although the momentum equation is not used in this formulation, we still require that the vertical 

advection of kinetic energy, or f • f , be conservative (Arakawa and Lamb 1977). Four terms in (17) and 

(18) are related to the vertical advection of momentum. Appendix B: Conserving Kinetic Energy under 

Vertical Advection on page 55 gives a full derivati n of the appropriate discrete form of vertical advection. 

The end result of that derivation is 

F(a,a&x) = -+-{F[(na) 1, (i 1-xk)] +F[(ncr) 1,(xk-i 1)]}, (53) a k 1t kocr k k + - k + - k - - k - -2 2 2 2 
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where all the averaging to layer edges is done using the arithmetic mean. 

3.2.4 Geopotential Height 

In climate simulations it is important that the conversion of energy between the forms of kinetic 

and potential is conserved. Since the potential energy of the atmosphere is several orders of magnitude 

larger than the kinetic energy, small fictitious sources of potential energy which leak into the kinetic energy 

can quickly destroy a simulation. The 'conduit' by which energy is transformed between kinetic and 

potential is found in the pressure work term, f • v' P <l> , in the kinetic energy equation and in the vertical 

advection of the thermodynamic energy equation. As fully explained by Arakawa and Lamb (1977), 

enforcing conservation of energy requires an analysis of the kinetic energy equation, thermodynamic 

energy equation, and the hydrostatic equation. For this discussion it should suffice to show how the 

pertinent terms are numerically evaluated to insure conservation of total energy. The discrete form of the 

geopotential height equation is 

(55) 

where 

(56) 

In the horizontal pressure gradient force (7), special attention must be paid to the cra v'1t and 

av' ( 2 p 8 - p s) terms. In the momentum equation, the consistent way to evaluate those terms is 
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(57) 

(58) 

The curl and divergence of both (57) and (58) are incorporated in the vorticity and divergence equations 

(17) and (18), respectively. 

3.3 Temporal discretization 

3.3. 1 Explicit time stepping 

In the explicit version of the model, all terms are integrated using the 3rd order Adams Bashforth 

(AB3) scheme. The stencil to integrate a sample ordinary differential equation of 

du · 
dt = f [u(t), t)] (59) 

is 

(60) 

where vn is the approximation of u at time t = n · dt . Compared to other commonly used time stepping 

schemes this is a memory intensive scheme requiring the prognostic variables to be saved at two time 

levels and the time tendencies of the prognostic variables to be saved at three time levels. As opposed to the 

Leapfrog scheme, the AB3 scheme does not require special procedures to damp the computational mode 

and to prevent mode decoupling. With this time-stepping scheme and the surface of the sphere discretized 
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with 2562 polygons (C2562), the model will integrate stably with a time step of 300 seconds. The AB3 

scheme and 10242 polygons (C10242) integrates with a time step of 150 seconds. 

3.3.2 Semi-implicit time stepping 

Given that the accuracy of conventional AGCMs is mainly a function of spatial resolution but 

stability is mainly a function of temporal resolution, methods to increase the allowable time-step often 

increase the computational efficiency of the algorithm without sacrificing accuracy (Haltiner and Williams 

1980). In general, the criterion limiting the maximum allowable time step in an explicit time-stepping 

scheme is the phase speed of the gravity waves. The idea of the semi-implicit time-stepping schemes is to 

integrate all terms related to gravity-wave propagation in an implicit, or unconditionally stable, manner, 

while integrating all other terms explicitly. Since gravity waves are irrotational, no terms in the vorticity 

equation are related to gravity wave propagation and that equation can be integrated entirely explicitly. The 

equations involved in the semi-implicit scheme are listed on the following page and the terms which are 

integrated semi-implicitly are highlighted by boxes. The first four equations are prognostic while the last 

three equations are diagnostic and so must be evaluated on each iteration. 

The semi-implicit scheme involves first evaluating all terms which are integrated explicitly, then 

making a first guess at the values of the prognostic variables which include terms that are integrated 

implicitly. One iteration through the semi-implicit scheme involves evaluating the implicit terms on the rhs 

of (61) through (64), updating the prognostics in (61) through (64), and then updating the diagnostic 

equations (65) through (67). Following an iteration cycle, convergence is assessed by differencing the 

values of the prognostic variables at the current iteration and their values at the last iteration. If this 

difference is smaller than the specified criteria for each prognostic variable at every grid point, then the 

solution is deemed to have converged and the integration continues to the next time level. 
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divergence 
-J(11, x)-V•(11V'I') + V•( cr:) - 1 cr, :) + V

2
K V2<I> 

(61) 

I V•(craV1t)1H(cr-l)V•{aV(2pB-Ps)} r V•f 

surface 
Bps o- = 2 (62) 

pressure f [J(1t, 'l')I- V•(1tVx)]~cr' at = 

O' = - 1 

PBL top 
8pB 

o = l (63) 
pressure = f [J(1t , 'I'~- V•(1tVx)]rcr' -g(E-MB) at 

O' = - 1 

potential (64) %/ n9)-J( n9, o/) 1 V•( n9Vx) f:,,(irn9J - ::~ temperature 

geopotentlal 8<1> = -a TC 8a (65) 
height 

vertical o = o' (66) 
velocity C1tcr)I = - a'an + f [J(1t, 'I')- V•(1tVX)]8cr 

O' = o' at 
o=l 

velocity -2 (67) 
potential X = V 8 

3.4 Dissipation and Diffusion 

The cascade of enstrophy to scales in which molecular diffusion is important is not resolved in 

AGCMs. Some type of sink for the enstrophy must in included in the model to prevent a build up of 

enstrophy at the grid scale. Some numerical schemes, such as flux corrected transport schemes, are 

inherently dissipative and can often control the grid-scale noise without any other explicitly defined 

dissipation. Numerical schemes which are not by design dissipative require some type of diffusion to 

control the grid-scale noise. 

This model uses a scale-selective V4 horizontal diffusion on vorticity, divergence, and potential 

temperature to control the grid-scale noise. The value of the diffusion coefficient, µ is spatially uniform, 

but resolution dependent. Trial and error is often needed to find the appropriate value of the diffusion 
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coefficient. The coefficient must be large enough to control the buildup of grid-scale noise, but small 

enough to prevent diffusion from excessively altering the resolved structures, such as baroclinic eddies. 

Typical values are 4.0e 16 m 4 Is and 7.5e 15 m 4 Is at resolutions of C2562 and C10242, respectively. 

Held and Suarez (1994) use a spectral model truncated at comparable resolutions of T30 and T63 with 

diffusion coefficients of 5.0e 19 m 4 Is and 2.0e 17 m 4 Is at the smallest scales, respectively. 

4. Results 

Evaluation and intercomparison of dynamical cores have received little attention. Even though a 

wide variety of numerical techniques, such as semi-Lagrangian methods, spectral methods, finite- element 

methods, and finite-difference methods, are being used in dynamical cores, no systematic intercomparison 

has been completed. One reason for this lack of intercomparison is related to the lack of exact solutions to 

the primitive equations with realistic forcing. Without the aid of analytic solutions, identifying and 

quantifying errors in the numerical models is difficult. 

Several benchmark calculations have been proposed as a means of evaluating primitive equation 

dynamical cores. One such benchmark which has met with considerable success is the calculation 

· proposed by Held and Suarez (1994). In the Held and Suarez Test Case (HSTC), the thermal structure of 

the model atmosphere is restored to a prescribed "radiative equilibrium" with a time scale of 

approximately 40 days. The HSTC emphasizes simplicity by specifying the forcing and boundary 

conditions to be zonally-symmetric and keeping parameterizations to an absolute minimum. The 

simplicity of the formulation makes it "portable" to a wide variety of models and, thereby, facilitates 

intercomparison. A weakness of this test case is that the real climate is composed of much more than the 

zonally-symmetric portion captured in the HSTC. Regardless, this test case has proven to be useful as a 

first step in evaluating dynamical cores, and we will use it here. 
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Several important points should be considered when analyzing the HSTC simulations. First, since 

analytical solutions are not known, separating right from wrong can be difficult or impossible. Enough 

simulations have been completed using the HSTC forcing that a consensus could be formed, but that is a 

poor substitute for truth. As with almost all numerical modeling, there is an underlying belief that as the 

resolution is increased, the model simulation will converge to the (statistically) correct solution. Held and 

Suarez (1994) point out that even at a spectral truncation of T63 the simulations have still not converged. 

As the model resolution increases, the variance of basic model statistics such as u'u', v'v', and u'v' , 

increases. As a result, the fidelity of model simulations is often judged based on the amount of variance 

produced at a given resolution. 

Section 4.1 gives a brief description of the experimental design and setup. A qualitative look at the 

ability of the geodesic grid model to simulate the structure of nonlinear baroclinic eddies is completed in 

Section 4.2. In Section 4.3 zonal-mean statistics of simulations using the geodesic model are compared to 

simulations using a spectral model. Section 4.4 analyzes zonal spectra of the variance fields produced by 

both the geodesic grid model and the spectral model. The effect of using different vertical coordinate 

systems in the geodesic grid model is looked at in Section 4.5. A preliminary comparison of computational 

efficiency is given in Section 4.6. 

4. 1 Experimental Design 

The initial conditions for all the experiments are an isothermal atmosphere at rest. Random noise is 

added to the surface pressure field ±0.5 Pa and to the potential temperature field ±0.5 K in order to break 

the symmetry of the initial conditions. The lower resolution (C2562 and T30) integrations are carried out 

1200 days with averages and statistics computed from the last 1000 days. The higher resolution 

integrations (C10242 and T63) are carried out 600 days with averages and statistics computed from the last 

450 days. 
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The forcing in all experiments is that proposed by Held and Suarez (1994). In the HSTC the 

dominate external forcing of the model general circulation is a restoring of the thermal field to a prescribed 

"radiative equilibrium." The forcing is both zonally-symmetric and symmetric about the equator. Since the 

HSTC forcing is zonally symmetric, additional statistical significance can be obtained by analyzing zonal 

means instead of sections at a given longitude. If we assume that each hemisphere is a nearly independent 

realization, then the statistical significance of the results can be inferred by comparing the results of 

between hemispheres. The specifics of the HSTC forcing can be found in Appendix C: The Held and 

Suarez Test Case Forcing on page 59. 

In order to compare the geodesic grid model to an "independent" model, Sections 4.3 and 4.4 

present results from both the geodesic grid model and a spectral model which is identical to that used in 

Held and Suarez (1994). Simulations from the geodesic grid model at resolutions of C2562 and C10242 

are compared to spectral model simulations completed at T30 and T63, respectively. All results shown in 

these two sections use the Phillips sigma coordinate (Phillips 1957) with 17 levels spaced evenly in 

pressure. The time stepping scheme is semi-implicit in all cases. 

Section 4.5 presents results for a variety of vertical coordinate configurations. The standard 

vertical coordinate is the Generalized Sigma Coordinate (GSC) with 17 vertical layers. The standard GSC 

has 3 distinct regimes: a PBL region defined between the surface and the prognostically-determined PBL 

top, a "stratospheric" region defined between the model top (10 hPa) and a prescribed constant pressure 

(100 hPa), and a ''tropospheric" region which falls between the PBL region and the stratospheric region. 

Two layers are used within the PBL region and 13 layers are used in the tropospheric region. In both of 

these regions the layers are spaced evenly in pressure. Three layers, spaced evenly in natural logarithm of 

pressure, are used in the stratospheric region. The prescribed constant pressure which determines the 

bottom of the stratospheric region is meant to loosely define the tropopause. Furthermore, within the 
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stratospheric region levels of constant pressure are coincident with levels of constant cr , so the vertical 

coordinate is effectively a pressure coordinate within this region. 

The model is also used with three modifications to the standard GSC. The first modification, 

referred to as the GSC MS, uses only two layers in the stratosphere which are spaced evenly in pressure (as 

opposed to spaced evenly in natural logarithm of pressure). The total number of layers in GSC MS is the 

same as in GSC by adding one layer to the middle region. The second permutation of the GSC, referred to 

as GSC NS, is to eliminate the stratospheric region and allow the tropospheric region to extend to the 

model top of 10 hPa. The last permutation of the GSC is to eliminate both the stratospheric region and the 

PBL region and allow the tropospheric region to extend from the surface to the model top. This effectively 

reduces the GSC to the Phillips Sigma Coordinate (PSC). By ' stripping down' the standard version of the 

GSC, we can clearly assess the effect of the stratospheric region and the PBL region on the model 

simulations. It should be noted that we are assessing this effect within a highly idealized framework. 

In the experiments which include the PBL region, a parameterization of the PBL-top mass flux is 

required. In an AGCM with full physics, this would be computed using a relatively sophisticated 

parameterization. In this wo we opt for a simple c osure in which the PBL top pressure is restored to a 

value of 90% of the surface pressure with a time scale of 2 hours. The purpose of this closure is to keep the 

PBL depth within reasonable values. 

4.2 Instantaneous Fields in the C10242 simulation 

A qualitative means of evaluating the fidelity of the simulation is to look at instantaneous "snap 

shots" of the model state. In particular, it is useful to analyze the structure of mature extratropical 

baroclinic eddies. Fig. 4a shows the lowest-layer potential temperature and surface pressure on day 225 in 

a geodesic grid model simulation at C 10242. The figure shows only a part of the global domain in order to 
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isolate two mature baroclinic eddies. Two cut-off low pressure systems are present with minima of965 hPa 

and 960 hPa. Regions of warm air advection to the east of the low pressure centers and cold air advection 

to the west are evident. The eastern low-pressure system has wrapped warm air almost completely around 

the low pressure center. Fig. 4b shows the lowest-layer relative vorticity along with the near-surface winds. 

(Note that the model does not prognostically solve for the wind vector field. Wind vectors are computed by 

interpolating the streamfunction and velocity potential from the geodesic grid to a regular latitude-

longitude grid and then constructing the velocity field on the regular grid.) The low-pressure centers are 

correlated with regions of large cyclonic rotation. The relative vorticity extends away from the low-

pressure centers along the temperature front. Small regions of anti-cyclonic vorticity are developing 

immediately east of the low-pressure centers due to low-level cold air advection. These regions of anti-

cyclonic vorticity are being wrapped in a spiral manner around the center of the cyclonic circulation. Fig. 

4c shows the lowest-layer surface divergence along with contours of near-surface potential temperature. 

The regions of convergence are correlated to regions oflarge temperature gradient (i.e. temperature fronts). 

Fig. 4b and Fig. 4c clearly show that the system is attempting to further strengthen of the front. This is 

consistent with analytical theories of frontogenis (Orlanski 1985). 

4.3 Comparison of geodesic grid model simulations to spectral model simulations 

In this section we compare simulations completed at C2562 to simulations completed at C10242. 

In addition, we compare the geodesic grid model results to results obtained from a spectral model 

truncated at T30 and T63. The vertical coordinate is the Phillips sigma coordinate (Phillips 1957) with 17 

layers for all simulations shown in this section. Statistics were computed on 39 evenly spaced pressure 

levels. Pressure surfaces that exist less than 20% of the time are masked out. Unless otherwise stated, each 

figure shown in this section has 4 panels where (a), (b), (c), and (d) show results from the C10242, T63, 

C2562, and T30 simulations, respectively. 
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grid at C2562, and (D) Is the spectral model at T30. 

Fig. 5 shows the zonal-mean zonal wind for the four experiments. The simulations show many 

common features. The subtropical jet strength and position is approximately 30 ms·1 and 45° latitude, 

respectively, in all simulations. In addition, the surface easterlies are similar with maximum zonal winds of 

approximately 8 ms·1, and all the simulations produce "stratospheric easterlies." Tropical easterlies extend 
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through the entire depth of the atmosphere in all cases expect the C2562 simulation where weak westerlies 

(less than 1 ms·1) exist in the mid-troposphere. The differences the zonal-mean winds (Cl0242-T63 and 

C2562-T30) are shown in Fig. 6. At the higher resolution the differences in the zonal-mean zonal wind are 

small and are confined primarily above 200 hPa. At the lower resolution the difference is mainly in the 

barotropic component of the wind with the C2562 simulation producing a jet which is equatorward of the 

T30 simulation. 

Fig. 7 shows the zonal-mean meridional wind for each of the four experiments. The meridional 

overturning in all simulations is quite similar with the higher resolution experiments showing a tendency 

for a deeper poleward branch of the Hadley Cell. As would be expected, in all experiments the "return" 

surface flow of the Hadley Cell is confined within the dissipative surface layer below 800 hPa (Held and 

Hou 1980). 

The zonal-mean temperature variance shown in Fig. 8 indicates that increasing the resolution from 

C2562 to Cl0242 and from T30 to T63 results in approximately a 50% increase in variance. The 
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temperature variance is largest near the surface with the higher resolution integrations showing a well-

defined maximum at 800 hPa. Toe maximum variance occurs in the extratropics and is associated with 

baroclinic wave activity. 

Toe zonal-mean meridional wind variance and the zonal-mean momentum flux shown in Fig. 9 

and Fig. 10, respectively, indicate an increased level ofbaroclinic eddy activity with increasing horizontal 

34 



lOOOO 

Figure 8: 

s - 15 10000 

15 20000 

lOOOO 

40000 

S0000 

IOOOO 

70000 

80000 

80000 

100000 

10000 

20000 

lOOOO 

40000 

S0000 

IOOOO 

70000 

IIOOOO 

80000 

EQ 
100000 

Zonal-mean temperature variance for 4 simulations. (A) Is the geodesic 
grid at C10242, (B) Is the spectral model at T63, (C) Is the geodesic grid 
at C2562, and (D) Is the spectral model at T30. Contour Interval Is 5 K2 

with the zero contour omitted. 

resolution. In the geodesic grid model results, the variance in these two quantities increases by 50% when 

the resolution is increased from C2562 to C10242. 

4.4 Zonal spectra of variance fields in the geodesic grid model and the spectral model 

While the zonal-mean statistics provide a good measure of the overall amplitude of the variance 

and the vertical distribution of variance, they do not provide any information on the spatial scales in which 
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Figure 9: Zonal mean variance of meridional wind for 4 simulations. (A) Is the 
geodesic grid at C10242, (B) Is the spectral model at T63, (C) Is the 
geodesic grid at C2562, and (D) Is the spectral model at T30. Contour 
Interval Is 50.0 m2s·2 with the zero contour omitted. 

the variance resides. One way of determining the scales which are producing the variance is to compute the 

vertically-averaged zonal spectra of quadratic quantities such as u'u', v'v' , u'v' , and v' T. As in the 

previous section, figures will be composed of 4 panels with same layout as above. 

Fig. 11 shows the zonal spectrum of the vertically-averaged zonal wind variance plotted against 

latitude. The simulations tend to produce three maxima in each hemisphere with one maximum at low 
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wavenumber near 45 ° latitude and two maxima near wavenumber 5 straddling 45 ° latitude. In the 

geodesic grid model increasing the resolution results in an overall increase in variance of more than a 

factor of 2. Within both models the most pronounced increase in variance occurs at low wavenumber near 

45 ° latitude and near the poles. Fig. 12 shows the zonal spectrum of the eddy kinetic energy ( u'u' + v'v') 

for the 4 simulations. The zonal spectrum of the meridional wind variance (not shown) can be inferred by 
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taking the difference of Fig. 12 and Fig. 11. At low wavenumber the amplitude of the KE spectrum is 

similar to the zonal-wind zonal spectrum, therefore the amplitude of the meridional wind variance is 

minimal at low wavenumber. At higher wave number ( 4 through 8), the KE spectrum is dominated by the 

meridional wind variance with a maximum at 45 ° latitude, which is in between the two zonal-wind 

maxima. As the resolution increases, the maximum at low wave number near each pole becomes more 

pronounced. 
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Fig. 13 shows the vertically-averaged zonal spectrum of divergence. Note that the x-axis is 

extended to wavenumber 30 in Fig. 13 in order to capture more of the spectrum. More than any other 

measure analyzed thus far, the zonal spectrum of divergence shows clear and systematic changes with 

increased resolution both in the tropics and extratropics. In the tropics the lower resolution simulations 

show a maximum along the equator at approximately wavenumber 6. Increasing the resolution results in 

increased variance along the equator and a shifting of the maximum to lower wavenumber. In fact in the 
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Figure 13: Zonal spectrum of divergence variance for 4 simulations. (A) is the 
geodesic grid at C10242, (B) is the spectral model at T63, (C) is the 
geodesic grid at C2562, and (D) is the spectral model at T30. Contour 
interval is 0.2*1 e-12 s·2 with the zero contour omitted. 

Cl0242 and T63 simulations a maximum in divergence variance occurs near wavenumber 2. Along the 

equator the decay of divergence variance with increasing wavenumber is smaller in the higher resolution 

cases than in the lower resolution cases, producing a well-defined ''tail." The tendency to produce at "tail" 

is also evident in the extratropics in the higher resolution simulations. 

4.5 Results at C2562 using various vertical coordinate configurations 

Both figures shown in this section are zonal-mean quantities. Fig. 14 shows the zonal-mean zonal 
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Zonal-mean zonal wind for 4 simulations using the geodesic grid model at 
C2562 with variations In the vertical coordinate definition. (A) uses the 
Generalized Sigma Coordinate (GSC), (B) uses Phillips sigma coordinate, 
(C) uses the GSC with a modified stratospheric region, and (D) uses the 
GSC without the stratospheric region. 

wind for 4 simulations at C2562. The four simulations differ only by the vertical coordinate configuration 

as discussed Section 4.1. All simulations give a qualitatively correct zonal wind structure and are more 

similar than they are different. The simulation which uses the full GSC (Fig. 14a) shows stronger 

"stratospheric easterlies" and a subtropical jet which extends unabated to the model top. Within the 

Tropics, all simulations fail to produce easterlies through the entire column. 
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zonal-mean temperature variance for 4 simulations using the geodesic grid 
model at C2562 with variations In the vertical coordinate definition. (A) uses the 
Generalized Sigma Coordinate (GSC), (B) uses Phllllps sigma coordinate, (C) 
uses the GSC with a modified stratospheric region, and (D) uses the GSC 
without the stratospheric region. 

The zonal-mean temperature variance is shown in Fig. 15. While the variances are similar in the 

lower troposphere, the simulations show considerable differences above 200 hPa. The full GSC version 

(Fig. 15a) shows excessive upper-level noise with variances approximately 6 times larger than the PSC 

(Fig. 15b) or the GSC NS simulations (Fig. 15d). The simulation which uses a modified stratospheric 

region (GSC MS) is still excessively noisy, but not to the extent of the GSC simulation. The version of the 
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model without the stratospheric region (Fig. 15d) is quite similar to the PSC simulation (Fig. 15b), which 

indicates that, in within this framework, the PBL region is having a minor influence in the simulation. 

4.6 Comparison of computational efficiency 

The initial development of this model has concentrated on the fidelity of the simulations, as 

opposed to the computational efficiency of the numerical algorithm. Given the high quality of simulation 

results presented above, we are now in a position to optimize the geodesic grid model such that is will be 

competitive not only in terms of simulation quality, but also in terms of computational efficiency. This 

section provides a baseline comparison between the geodesic grid model and the spectral model. 

Table 1 provides a comparison of the models' computational speed in terms of model resolution, 

rate of floating point operations (MFlop), CPU time required per simulated day (computational efficiency), 

and computer platform. This comparison was completed on a single processor. The two platforms have a 

distinctly different architecture: the C90 is a shared memory machine with fast access to main memory, 

while the SGI Origin 2000 (O2K) is a shared/distri uted memory machine with relatively slow access to 

main memory. The two resolutions for each model are the same as shown in the results above: C2562 and 

C10242 for the geodesic grid model, T30 and T63 for the spectral model. As seen in Table 1, while the 

Mflop rate varies with platform and resolution, the two models have a similar Mflop rate on a given 

machine at a comparable resolution. The one exception would be that the geodesic grid model at C10242 is 

approximately 15% faster than the T63 model on the O2K. In terms of computational efficiency, the 

geodesic grid model is significantly slower. At its best, the geodesic grid model is 2. 7 times slower than the 

spectral model. This occurs at higher resolution on the O2K. The geodesic grid model is slower than the 

spectral model because it requires significantly more floating point operations to complete a simulated day. 

Several caveats should be kept in mind when evaluating these two models in terms of 

computational efficiency. First, the geodesic grid model is a relatively new model which has not had the 
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benefit of years of optimization that the spectral model has had. Significant improvements in the semi-

implicit time-stepping scheme and the reduction of redundant floating point operations could easily result 

in a factor of 3 improvement in efficiency. Second, these tests were conducted on a single processing 

element. The current trend in computer platforms is toward massively parallel systems where ''turn around 

time" is a strong function of how efficiently the problem can be spread across many processing elements. 

Primitive equation models based on finite-difference schemes, such as the LANL Parallel Ocean Program, 

have demonstrated computational efficiency on as many as 512 processing elements. In contrast, spectral 

models generally utilize significantly fewer elements, for example the spectral dynamical core used in 

NCAR's CCM 3.2 is currently limited to 64 processing elements. Our intention is to implement a 

massively parallel version of the geodesic grid model sometime in the next several years. 

Table 1 : Comparison of computational efficiency between of the geodesic grid model and the 

spectral model. 

Model Machine Resolution time step Mflop rate CPU time (sec) 
(min) per simulated day 

geodesic O2K 10242 10 76.8 1110.0 

geodesic O2K 2562 20 99.7 113.0 

geodesic C90 10242 10 494.5 180.7 

geodesic C90 2562 20 411.4 30.0 

spectral O2K T63 20 67.9 411.9 

spectral O2K T30 30 94.3 25.7 

spectral C90 T63 20 517.2 50.6 

spectral C90 T30 30 396.3 7.5 

5. Conclusions 

Overall, the results indicate that the development of this dynamical core has been very successful. 

The dynamical core incorporates many of the positive features of spectral models and finite-difference 
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models into a single model. As with many spectral models, this dynamical core solves the vorticity-

divergence form of the primitive equations. This form of the primitive equations allows a straightforward 

implementation of semi-implicit time stepping. The finite-difference ' stencils ' are local which makes the 

model amiable to massively parallel systems. Furthermore, the development of the dynamical core has 

been based on the invariant form of the primi ive equations. While we have chosen to discretize the 

equations on a geodesic grid, if desired, other grids could be implemented with minimal effort. 

The overall level of variability of this model at a horizontal resolution of C2562 is comparable to a 

spectral dynamical core truncated at slightly less than T30. At a horizontal resolution of Cl0242, the 

variability is comparable to a spectral model truncated at slightly less than T63. Comparing resolutions of 

finite-difference models and spectral models can be misleading, but the transform grid of T30 and T63 is 

comparable in resolution to the C2562 and C10242 grid, respectively. 

Comparison of the zonal-mean statistics and zonal spectra of the variance fields indicates that the 

geodesic grid model and the spectral model are producing very similar general circulations. Spectral 

models are at their best within the framework of the dry primitive equations with no surface topography. In 

this case the numerical solutions are relatively smooth and the spectral expansion converges rapidly with 

increasing wavenumber. Making a comparison between the geodesic grid model and the spectral model 

within the framework of a full AGCM would be difficult given the strong influence which physical 

parameterizations have on the general circulation. An intermediate test case which uses real topography 

and incorporates moisture in a simple way wo d, in some sense, be a fairer test case comparison. Moisture 

is an integral part of the general circulation and accurately accounting for its transport and phase change is 

a critical task for dynamical cores. In the near future we plan to define a new test case which extends the 

Held-Suarez Test Case to include surface orography and a multi-phase tracer. 

The standard GSC version of the geodesic grid model shows excessive "noise" in the upper levels 
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of the atmosphere. While this noise is most prominent in the temperature variance, it can be found in many 

variable fields (not shown). The mechanism responsible for initiating this noise is likely the abrupt change 

in the definition of CJ between the "stratospheric" region and "tropospheric" region. The effects of this 

abrupt change are exacerbated by the artificial rigid lid placed at the model top. Eliminating the 

stratospheric region reduces the noise substantially. 

Further optimization, in terms of computational efficiency, is required in the geodesic grid model. 

While the model demonstrates a relatively high Mflop rate, the number of floating point operations 

required to complete a simulated day is significantly higher than that required by the spectral model. Our 

intention is to work on improving the semi-implicit time-stepping scheme and reducing the number of 

redundant floating point operations in hopes of improving the overall computational efficiency. 

A version of this model is currently being implemented as a dynamical core of the CSU AGCM. 

Comparing the AGCM results with this new dynamic core to previous results will be a more critical 

validation test since the results will contain the feedbacks between the atmospheric dynamics and the other 

climate sub-systems. Standard AMIP2 simulations will be conducted as a part of the validation process. 

Subsequent coupled model simulations, which will incorporate this dynamical core, are also planned. 

While we are pleased with results of this geodesic grid model, we are pursuing the possibility of 

using vertical coordinate systems different from the conventional CJ coordinate. One version of the model 

which is currently being tested uses potential temperature as the vertical coordinate similar to Hsu and 

Arakawa (1990). Another version of the model incorporates the generalized vertical coordinate of Konor 

and Arakawa ( 1997). We also plan to implement a hybrid CJ / pressure vertical coordinate using the 

Charney-Phillips grid (Arakawa and Konor 1996), in hopes of eliminating the excessive noise generated in 

the upper levels of the Generalized Sigma Coordinate simulations. 
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6. Appendix A: Derivation of the invariant form of the primitive equations in 
terms of vorticity and divergence . 

6.1 Vector Analysis 

The following are vector identities which are used in subsequent derivations. These identities can 

be found in most reference manuals including Beyer (1984) and in the previous work by Heikes (1993). In 

( 68) through (7 5), S is a scalar field and f { l, 2, 3} are vector fields. 

VxvS = 0 

6.2 Transforming tracer equations into invariant form 

The equation for an arbitrary tracer, S, is described by 

dS = C 
dt 
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where C is the source term. Expanding the material derivative and rewriting the equation in flux form 

(Arakawa and Lamb 1977) yields, 

08 +v'• (1tSV)+~(1tcrS) = C ot - ocr (77) 

where 7t is the pressure thickness. Smay represent any passive scalar tracer such as potential temperature, 

ozone, or carbon dioxide. This tracer equation involves the velocity field. We eliminate the velocity by 

substituting, 

into (77) and expanding the second term on the lhs, 

v'•(1tSf) = v'•[1tS(! xv"'+ Vx)l 

= v'•(1tSv'x) + v'•[1tS(! x v''l')l 

= v'•(1tSv'x) + 1tS[v'•(! x v''l')l + v'1tS • (! x v''I') 

= V•(1tsyx) + k • (v'"' x v'1tS) 

= v'•(1tSv'x)-J(1tS, 'I') 

Equation (77) can then be written in terms of the streamfunction and velocity potential as, 

This such suffice as a derivation for (19), (20), (21), (22), (23), (24). 

6.3 Derivation the divergence equation from the momentum equation 

(78) 

(79) 

(80) 

The derivation of the divergence equation has two parts. The first part is taking the divergence of 

the momentum equation and the second is expanding the velocity in terms of the streamfunction and 
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velocity potential. Beginning with the momentum equation, 

~v + (<; + L'lk X 1tV + VK + cr~V = - Vp(J) + F at- 1t-)- - acr- -

and substituting (7) for the pressure gradient term yields 

-V+ -- kx1tV+v'K+cr-V = a (c; +l) . a 
at - 1t - - acr -

Divergence is defined as 

so, 

ao = v~v 
at at-

= V•[-;(! x 1tt)-VK -cr:crf - v'{f}-crav'1t -H(cr- l){av'(2ps-Ps)} + f] 

It is easier to work on individual terms of (84). Starting with the first term on the rhs, 
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-v-[~c! X 1tf)] = -~[V•(! X 1tf)]-(! X 1tf). v(~) 

= - !1 [-k • V X7t V - 1t V • V xk] - k • (1t V X v(!1)) 
1t - - - - - - 1t 

= ~! • Vx( 7t ,Y) - ! • ( 7t ! x V ~) 

= !•(;vx(1tf)-1tyxv;) 

= ! • (Vx11 f) 

Still working on the first term on the lhs and substituting (78) into (85) yields, 

! • (Vx11 f) = ! • [Vx11(! x V\jl + Vx)] 
= ! • [Vx(11! x V'I')] + ! • (Vx11 Vx) 
= ! • [11!V•V\jl + !(V'I' • V11)] + ! • (V11 x Vx + 11VxVx) 
= V•(11 V'I') + J(11, X) 

The only other term in (84) which needs attention is the third term on the rhs 

= -v•[ a(t xv:)+ a( v~)] 
=-Va • (t x v:)-v•[ a( v~)] 
= t( vcr x v:)-v•[ a( v~)] 

= { a, :)-v•[ a( v~)] 

(85) 

(86) 

(87) 

With this we can obtain the divergence equation of (18). Note that all the terms, except the source term, are 

moved to the lbs. 
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(88) 

6.4 Derivation of the vorticity equation from the momentum equation 

The derivation of the vorticity equation follows the same lines as the divergence equation. First, we 

take the curl of the momentum equation, then we rewrite the velocity in terms of the streamfunction and 

velocity potential. The relative vorticity is defined as, 

(89) 

and is related to the absolute vorticity as Tl = <; + f. Since Of = 0 Oll = oc; . Taking the curl of (81) at · at at 
gives 

Oll = k . (vx~v) at - at - . (90) 

= &- • Vx[-~(&- x ref) - VK -6 :a[ - V<!>- craVre-H(cr- 1){ aV(2p8 - Ps)} + -t'] 

Again, it is easiest to work on each of the terms individually. Starting with the first term on the rhs of (90) 

&- • vx[-~(t x ref)] = -! • [ V~ x (! x ref)+ ~(Vx(~ x f))] 

= -k . [k('re V • v!l) + k!1V•1t v] ~ ~ ~ re ~re ~ 

Now expanding the velocity in (91) in terms of streamfunction and velocity potential yields, 
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-V•(ri f) = -V•[ri(! X V\j/ + Vx.)] 
= - Vri. (! X V\j/)- V•(riVx.) 
= -! • (V\j/ X Vri)- V•(ri Vx.) 
= J(ri, 'I')- V•(riVx.) 

Moving to the third term on the rhs of (90) gives, 

= -k . [ver X (k X °"') + ervx(k X °"')]-k. Ver X Vax, - - aa - aa - aa 
= -k. [kver. v8"' + kerV•v°"']-k. Ver X Vax, - - aa - aa - aa 
= -v•( erv:)-J( er,:) 

(92) 

(93) 

The other terms in derivation of the vorticity equation are fairly straightforward, so by we obtain the 

vorticity equations (17) as, 

-J(ri, 'I')+ V•(TJ Vx,) + V•( er :a V\jl) +"(er,:)+ 

J( cra, rt)+ H( a- 1 )J(a, 2pB- Ps) = Vxf 
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7. Appendix B: Conserving Kinetic Energy under Vertical Advection 

Expanding the material derivative in the momentum equation gives 

where k is the index representing layer center and k ± represents layer edges. f is defined at layer 

centers, so f represents an averaging of velocity from layer centers to layer edges. Arakawa and Lamb 

( 1977) show that the choice of averaging which conserves kinetic energy under vertical advection is 

(96) 

Recalling (79), we obtain the discrete form of the vertical advection in the vorticity equation by 1) dividing 

(95) by 7t k, 2) substituting (79) into (95), and 3) taking the curl of the resulting equation. Focusing just on 

the terms relating to vertical advection gives, 

(97) 

Since all the terms have a similar form, it should suffice to look at detail at just 
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vx[+(c1tcr) ,(k X V\j/ I+ Vx, ,))]. 
7tkocrk k + - k + - k + -2 2 2 

(98) 

Note that both \j/ and x have, by definition, an arbitrary constant on each vertical level. This constant may 

vary between vertical levels. To insure that this constant does not erroneously enter into calculations, the 

gradients of \j/ and x are computed before the vertical derivative. Rewriting (98) and dropping the 

subscripts gives of the k + 1, 

(99) 

Applying this same manipulation to all pieces of the vertical advection term yields, 

Vx{+((1tcr) 1(f 1-fk)+(1tcr) 1(fk- f 1))} = 
7tkocrk k + - k + - k - - k - -2 2 2 · 2 

(100) 
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which is the kinetic energy conserving form of vertical advection in the vorticity equation. The same 

painful manipulation can be done for the divergence equation. Starting with the momentum equation and 

making the necessary substitutions gives, 

(101) 

Looking at a single term within the above equation and dropping subscripts yields 

(102) 

( . ) ( . ) 7t(J 7t(J = F -- X - J -- 'I' 
7ti,.ilcr/ 1t~cri,' 

The form of the vertical advection terms in the divergence is 
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V•{-~l ((m:r) 1(f 1-fk)+(1tcr) 1(fk-f 1))} = 1t crk k+- k+- k-- k--2 2 2 2 
(103) 
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8. Appendix C: The Held and Suarez Test Case Forcing 

The test case proposed by Held and Suarez (1994) prescribes forcing in the momentum equation 

and the thermodynamic equation as 

a -V = -k (cr)V at~ V ~ ' (104) 

(105) 

where er = £. is the Phillips sigma coordinate and is the latitude. The static temperature, T, is restored 
Po 

to the prescribed "radiative equilibrium" field of 

with the rate of restoring on temperature and the rate of decay on velocity is given as, 

(107) 

(108) 

The following constants are defined to close the system. 

59 



k _ Ida -t 
s - 4 y 

p 0 = IOOOhPa 

-5 1 Q = 7 .292 X 10 s· 

_ R _ 2 
K - - - -

cp 1 

g = 9.81 ms·2 
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9. Variable Definitions 

Variable Description Units 

a earth radius m 

cP specific heat at constant pressure J kg-I K-1 

E PBL top entrainment kg m-1 s-1 

H Heaviside step function unitless 

J(A,B) Jacobian operator, ! • (v A x VB) --
g gravity (9.81) ms-2 

f Coriolis parameter s-1 

F source term for momentum equation m s-2 

K similar to kinetic energy, f • f m2 s-2 

M cumulus mass flux kgm s-1 

p atmospheric pressure Pa 

Ps planetary boundary layer top pressure Pa 

P1 constant specified in generalized sigma coordinate Pa 

Ps surface pressure Pa 

ff. vector describing an arbitrary number of tracer fields --

Q heating rate per unit mass J kg-I s-1 

t time s 

T static temperature K 

r horizontal velocity field m s-1 

a specific volume m3 kg-I 

8 divergence s-1 

11 absolute vorticity, + f 

e potential temperature K 
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Variable Description Units 

µ coefficient for V4 diffusion m4 s•l 

7t pressure thickness Pa 

7tK pressure thickness of 'stratospheric' layer Pa 

7tr pressure thickness of 'tropospheric' layer Pa 

7tM pressure thickness of planetary boundary layer Pa 

p density kgm·3 

a vertical coordinate non-dim 

a . 1 1 . dcr s·l 
vertica ve oc1ty, dt 

c; relative vorticity s·l 

't relaxation time scale for linear damping s 

<I> geopotential height m2 s·2 

X velocity potential m2 s·2 

'I' streamfunction m2 s·2 
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