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1 In tro d u c tio n

In this paper, we are mainly concerned with the group SL2(Z) and of the modular forms that may 

be defined for it. We first prove some results about the structure of SL2(Z). We then define modular 

forms for this group, and develop the basic theory. Finally, we use the theory of lattices to construct 

some examples of modular forms, namely the theta series. The material is derived from the following

• Bruiner, Jan; Geer, Gerard van der; Harder, Gunther; Zagier, Don. The 1-2-3 of Modular 

Forms (2008) Springer.

• Elkies, Noam. “Theta functions and weighted theta functions of Euclidean lattices, with some 

applications” (2009) h ttp : //www. math. harvard. edu/~elk ies/aw s09. p d f.

• Koecher, Max; Krieg, Aloys. Elliptische Funktionen und Modulformen 2nd ed. (2007) Springer.

• Miyake, Toshitsune. Modular forms (1989, 2006) Springer.

• Serre, Jean-Pierre. A Course in Arithmetic (1973) Springer-Verlag.



2 T h e  stru ctu re  o f  SL2(Z)

2.1 Some relevant groups

If n is a positive integer, the group GL„(R) is, by definition, the group of all n x n matrices with 

real entries that are invertible (i.e., matrices with nonzero determinant). The subgroup SL„(R) is 

the group of elements of GL„(R) with determinant 1. We can also construct the analogous matrix 

groups over the integers. The group GL„(Z) consists of the n x n integer matrices with inverse also 

an integer matrix, and SL„(Z) is the subgroup of G L„(Z) of elements of determinant 1. At present, 

we will only be concerned with matrices of dimension 2 x 2.

The elements

T =
1 1

, 0 1
S =

of SL2(Z) are elementary matrices: T  acts on a 2 x 2 matrix from the left by adding the second row 

to the first row, and S acts by swapping the two rows and then negating the first row.

Convention. When we speak of a matrix A G GL2(K), we will denote the entries of A by

A =
a b 

c di

Theorem  1. The group SL2(Z) is generated by T and S.

Proof. Let A be the subgroup of SL2(Z) generated by T  and S. Consider an arbitrary element A of 

SL2(Z). We will prove that A G A. The proof is by induction on the absolute value of c.



First, suppose that c =  0. Then, by the determinant condition, a =  d =  ±1. Since =  —I, 

and for n € Z,

' 1 n ’

0 1

rpn  __

the claim is verified in this case.

Now suppose that |c| > 0 and that all elements of SL2(Z) whose 2,1 entry has magnitude smaller 

than |c| are in A. There exists an integer n such that |a +  nc| < |c|. Then, since

ST’'A =
—c —d 

a +  nc b +  nd

is in A by the inductive hypothesis, we have A e A. □

2.2 Group actions

Let C denote the complex plane together with a new “point at infinity” oo. We will also write 

R =  R U {oo} C C. The group GL2(R) acts from the left on C as follows. For z € C, write

az +  b 
cz + d ’

where the result is defined to be oo if the denominator vanishes. We define the action at oo by taking 

the limit as 2 —> oo; that is, we set Aoo =  a/c. This is a real number if c /  0 and is oo otherwise.

We easily see that, if I is the identity matrix, then /z  =  z for z € C. So, to verify that we have 

a group action, it remains to show that A{B z) =  {AB )z  for any A ,B  e  SL2(Z). If we suppose that



z ^  oo and that denominators do not vanish, we calculate:

/  A \ (  A  1a b\ 1 e /  1
•

V" V V  J

0^  +  6 g z+ h  '

^gz+h ^  “

a{ez +  / )  + h{gz +  /i) 
c(c2 +  / )  +  d{gz +  h) 
(ae +  bg)z +  a f  +  bh 
(ce +  dg)z +  c f  +  dh

ae +  bg a f +  bh

ce +  dg c f  +  dh

/  A  /

A similar calculation holds if  ̂=  oo or zero denominators occur.

Let H be the set of complex numbers with positive imaginary part. The group action restricted 

to SL2(Z) is an action on H. That is, H is closed under the action. To see this, let z € H. We 

note first that C2 +  d ^  0, for otherwise we would have either that 2 is a real number —dfc, or that 

c =  d =  0, which violates the determinant condition. We can now show that the operation takes 

points in H to points in H . More specifically, we can show that, ii z £ H , then Im((n2 +  ft)/(c2 + d)) =  

Im(2) /  |c2 +  d|̂  > 0. To do this, we write z =  x +  yi, where x, y € K and y > 0. Then

az +  b a{x +  yi) + b
cz + d c(x +  yi) +  d,

_  ax +  b +  ayi 
cx +  d + cyi
{ax +  fc +  ayi){cx +  d — cyi)
{cx +  d +  cyi){cx +  d — cyi) 
acx'  ̂+  adx +  bcx +  bd + acy'̂  +  (ad — bc)yi 

|cx +  d +  cyi^
acx^ +  adx +  bcx +  6d +  acy^ +  yi 

\cz +  d|̂

This has imaginary part y/ |c2 +  d f,  which verifies our assertion. Therefore this point is in H. 

Applying the definitions, we see that the generators T  and S act as Tz =  2 +  1 and Sz =  - I / 2 .



The quotient SL2(Z )/Z (S L 2(Z)) of SL2(Z) by its center is denoted PSL2(Z). The center of SL2(Z) 

in fact consists of just ± I , so PSL2(Z) is obtained from SL2(Z) by considering matrices equivalent 

if they differ by a factor of -1 . For any A e  SL2(Z), we see that A and - A  act identically on H. 

Thus the action of SL2(Z) induces an action of PSL2(Z) on H .

2.3 Fundamental domain

Define the subset F =  {z  & H : —1/2 < Re(2) < \/2,\z\ > 1} of the upper half plane. This 

region is bounded by two vertical lines and a circle centered at 0, which intersect at the points 

±1 /2  +  (\/3/2)i, which are also the points and We will write p for the point

Notice that =  Sp =  —p. It is easy to see that if 2 e F, then Im(z) > \/3/2, and the inequality 

is strict if 2 is in the interior of F.

Theorem  2. The set F is a fundamental domain for the action of SL2 {If) on H, in the sense that 

(i) each point of H is equivalent to a point in F  under SL2(Z), and (ii) no two distinct points in the 

interior of F  are equivalent under SL2(Z).

Proof. To prove the first claim, let 2 G II. We claim that we can find an element A of SL2(Z) such 

that |c2 ±  d\ is minimal. To prove this, choose a real number x  such that the set S — {(c, d) G Z^ : 

gcd(c, d) =  1 , |c2 ±  d| < x } is nonempty. We will prove that S is also finite; this will imply that we 

can take an element of S that minimizes |c2 ±  d| over S, and since c and d are coprime we can find 

a and b so that the matrix A =  ( “ ^) has determinant 1.

Now, |c2 ±  d| > |Im(c2 ±d)| =  |c|Im(2). So, for all sufficiently large c, we have |c2 ±  d| > x  

(regardless of d). Hence, to obtain a member of S, there are only finitely many choices for c. Again, 

|c2 ±  d| > |Re(c2 ±  d)| =  |Re(c2) ±  d|, so for any fixed c, there are only finitely many choices for d. 

This shows that S is finite.

We are now justified in taking A G SL2(Z) with |c2 ±  d| minimal. Prom the formula Im(A2) =  

Im(2) /  |c2 ±  d|̂ , we see that A maximizes Im(A2). Since T^Az =  Az n for any integer n, we 

can choose n so that —1/2 < Re(F” A2) < 1/2. The condition |T"A2| > 1 also holds. For, if not, 

then from |T"A2 | < 1 we deduce Im (F(F"A 2)) =  Im (T"A 2) /| T "A 2 |̂ > Im (F"A 2) =  Im(A2), 

contradicting the maximality of Im(A2). We conclude that T^Az G F.



To prove the second claim, take two points z i , Z2 in the interior of F. We can assume without loss 

of generality that Im(z2) > Suppose that Azi =  Z2 . Then, since Im(22) =  Im(zi)/ \czi +  d f,

we have \czi +  d| < 1 . Since also \czi +  d| > |Im {czi +  d)\ =  |c| Im(z) > |c| \/3/2 > |c| /2, we must 

have |c| < 1. Now, |Im(zi)| =  |Im(±Zi +d)|, but |Re(zi)| < |Re(±Zi +d)| (for, if, d 5̂  0, then 

1/2 < |Re(±Zi +d)|). It follows from this that |±Zi +  d| > |2i| > 1. This means we cannot have 

c =  ±1. The only remaining possibility is c =  0. Then, b =  d =  ±1, and A is of the form ± T ” . 

Since the real parts of Zi and Z2 differ by less than 1 , it must be that n =  0, and so A =  ± I  and 

Zl  =  Z2. □

2.4 Classification of elements of GL2 i,

The center of GL2(K) consists of the matrices x l  with x  a nonzero real number.

Definition 1 . If 4  6 GL2(K) is not central, then it is called elliptic if (tr4)^ < 4det4 , parabolic 

if (tr.4)^ =  4detyl, and hyperbolic if (tr > 4det A.

The elements of GL2(M) can be described in terms of the fixed points of their actions on C. The 

central matrices fix every point. The other elements are characterized by the following theorem.

Theorem  3. A matrix A G GL2(K) is elliptic if and only if it has two distinct, complex conjugate, 

fixed points (and no others); A is parabolic if and only if it has one fixed point in K (and no others); 

and A is hyperbolic if and only if it has two distinct fixed points in K (and no others).

Proof. To prove this, consider a noncentral matrix A G GL2(K). First, suppose that c /  0. Then 00 

is not a fixed point. Therefore, the fixed points are the solutions of the equation (az +  b)/{cz +  d) =  z, 

or cz^ +  (d — a)z — 6 =  0. The discriminant of this equation is (d — a)^ +  46c =  d̂  — 2ad +  +  46c =

(a +  d)  ̂ — 4(ad — be) =  (tr A)^ — 4det A. Hence, if A is elliptic, there are two distinct, complex 

conjugate fixed points; if A is parabolic there is one, real, fixed point; and if A is hyperbolic, then 

there are two distinct, real, fixed points.

Next, suppose c =  0. Then 00 is a fixed point. Any other fixed points are the solutions of the 

equation (az +  b)/d =  z, or (d — a)z — 6 =  0. If a =  d, then there are no solutions (for if 6 =  0 then 

A =  al =  dl is central). Thus, there is only one fixed point, 00. If, however a d, then z =  b/{d — a) 

is a real fixed point. Moreover, since (tr A)^ — 4det A =  (a +  d)^ — 4ad =  +  2nd + df — 4ad =

6



2ad — dP =  {a — d)^, the matrix A is parabolic if a =  d, but hyperbolic if a /  d. These results

confirm the claim when c =  0. □

We pause to give some examples of elliptic, parabolic, and hyperbolic matrices and the fixed 

points of their action on C.

1. Elliptic elements. The matrix S is elliptic, with trace 0 and determinant 1. The fixed points 

of its action are ±i. Another elliptic matrix is (5 with trace 5 and determinant 16. Its 

fixed points are (1 ±  \/—39)/10.

2. Parabolic elements. The matrix T  is parabolic, with trace 2 and determinant 1. As it induces 

the action 2 1—► z +  1 , it has no fixed points in C, but 00 is a fixed point. Another parabolic 

matrix is (g I 7 ), with trace —6 and determinant 9. Its fixed point is 1/2.

3. Hyperbolic elements. Any element of GL2(K) with negative determinant is hyperbolic. An-

other example is ( 1 5 ), with trace 9 and determinant 19. Its fixed points are (—1 ±  \/5)/2. 

Another example is ( ~q ), with trace —3 and determinant 2. Its fixed points are 00 and 1.

We now concentrate on SL2(R). In this subgroup, matrices A other than ± I  are elliptic, 

parabolic, or hyperbolic, as |tr A| < 2, |tr A| =  2, or |tr A| > 2. We can also characterize the classes 

of matrices in terms of their eigenvalues. The characteristic polynomial of A is — (tr A)x +  1, 

which has discriminant (tr A)^ — 4. We thus easily deduce that if a matrix is elliptic if and only if 

it has no real eigenvalues; it is parabolic if and only if it has a double eigenvalue of either 1 or —1 ; 

and it is hyperbolic if and only if it has two distinct real eigenvalues.

Theorem  4. In SL2(K), elements of finite order must be central or elliptic.

Proof. Suppose that A is parabolic. Then the Jordan canonical form of A has diagonal entries 

equal to A, the eigenvalue of A. Since A is not central, the entry in the upper-right corner must 

be nonzero (and thus equal to 1). Then, the nth power of the Jordan canonical form has the entry 

in the upper-right corner equal to A'*“ ’ n̂. It follows that A has infinite order. Next, suppose that 

A is hyperbolic. Then the Jordan canonical form of A is a diagonal matrix with two distinct real 

numbers on the diagonal. Taking the nth power of this matrix replaces the diagonal entries with



their nth power. The only real roots of unity are 1 and —1, but these cannot be the diagonal entries, 

for then the matrix would have determinant -1 . Thus, in this case too, A has infinite order. □

2.5 Elements of SL2 (Z) of finite order

We now again restrict our attention, this time to SL2(Z). We will see that if an element of SL2(Z) 

has finite order, there are only a few possibilities for what that order is.

Theorem  5. In SL2(Z), the element I  has order 1, the element —I has order 2, and all other 

elements of finite order are elliptic with order 3, 4, or 6 .

Proof. The first two assertions are obvious. Let A he a noncentral element of SL2(Z) of finite order. 

We already know that A must be elliptic. Thus, it has no real eigenvalues, and so the characteristic 

polynomial of A is irreducible over Z. Therefore the characteristic polynomial of A is its minimal 

polynomial, and so the minimal polynomial has degree 2 . Since A has finite order, it satisfies the 

polynomial x" — 1 for some n > 1. The irreducible factors of x "  — 1 are precisely the cyclotomic 

polynomials $d(x) for the divisors d of n. Therefore the minimal polynomial of A is $fc(x) for some 

k. By the same factorization theorem just cited, we see that $fc(x) divides x*̂  — 1, but does not 

divide any x '" — 1 with m < k. So, A has order k. But $fc(.x) has degree 4>{k) (where (p denotes 

Euler’s totient function) and also has degree 2, so 4>{k) =  2. The only values of k for which 4>{k) =  2 

are 3, 4, and 6 . (This may be verified using the product formula for 4>. FVom this formula we see 

that if p is a prime, a is a positive integer, and p“ divides k, then both p — 1 and p“ ~̂  divide 4>{k). 

This restricts the possible prime factors of k to 2, which can occur at most twice, and 3, which can 

occur at most once.) □

Soon we will see another way to prove this theorem.

We know that every elliptic element of SL2(Z) fixes exactly one point of H. Conversely, for a 

point of II, we can ask what its stabilizer in SL2(Z) is. The stabilizer must include the central 

matrices ±1, and any other elements of the stabilizer must be elliptic. We will now show that for 

most points, the stabilizer is just { ± / } .

Theorem  6 . Let z be a point in the fundamental domain D, and let A be an elliptic element of 

SL2(Z) that fixes z. Then z is either i, p, or —p. Moreover the stabilizer in SL2(Z) of i is the cyclic



group of order 4 generated by S, that of p the cyclic group of order 6 generated by ST, and that of 

—J) the cyclic group of order 6 generated by TS.

Proof Consider an element A of SL2(Z) that fixes z e  D. By the proof of Theorem 3, c 7  ̂ 0 and 

cz'̂  + {d -  a)z - 6  =  0. So, applying the quadratic formula, we obtain Re(z) =  (a -  d)/{2c). Since 

Az =  z, the equation lm{Az) =  \m{z)/ \cz +  d'̂  implies that \cz +  d\ =  1. Since also |c2 +  d| > 

|c| Im(2) > |c| /2, we have c =  ±1. If c =  —1 we can negate all entries of A and obtain an equivalent 

action, so suppose without loss of generality that c =  1. Then the real part of 2 is either an 

integer or half-integer, and so is either 0, 1/2, or -1 /2 . Next, since |Im(2)| =  |Im(2 -f d)|, but 

|Re(2)| < 1/2 < |Re(2 -I- d)\ (when d /  0), we have 1 =  |z -b d| > \z\. Since by definition \z\ >  1 , we 

have \z\ =  1 . The only such points in H with real part 0, 1/2, or - 1 /2  are i, p and —p respectively.

It is now straightforward to determine the stabilizers of these 3 points, using the facts |2 -b d| =  1 

and Re(2) =  (a — d)/2. If we continue to assume c =  1, then for the point 2 =  i, the only value of d 

such that \z -b d| =  1 is 0. Since Re(2) =  0, we then conclude that a =  0. Finally, the determinant 

condition shows that 6 =  — 1. Thus, we have the matrix S. If we had used c =  — 1 we would have 

obtained —S. These two matrices together with ± I  are the cyclic group generated by S.

For the point z =  p, the only possible values for d with |2 -b d| =  1 are 0 and 1. Since Re(2) =  

— 1 / 2 , we have a =  d — 1 , so for a we get the values —1 and 0, respectively, and from the determinant 

condition we get 6 =  — 1 in either case. The two matrices, together with their negatives and ± / ,  

constitute the cyclic group generated by ST.

The analysis for —p is similar. □

C orollary 1. An element o/SL2(Z) has finite order if and only if it is central or elliptic. An elliptic 

element is conjugate to an element fixing i or p.

Proof. We have shown that any point in H  is equivalent by the action of SL2(Z) to a point of D. 

Moreover, p and - p  are equivalent by the matrix S. Since any elliptic element A fixes a point in H, 

it is conjugate to an element fixing a point z £ D, which must be i, p, or —p since A is noncentral. 

This implies the second assertion. For the first assertion, we already know that elements of finite 

order are central or elliptic. Conversely, all central or elliptic elements are conjugate to elements 

fixing a point in D, and we have seen that all such elements have finite order. □



Notice that we have also obtained another proof of Theorem 5, for, since any noncentral element 

of finite order is elliptic, it lies in the stabilizer of a point in the upper half plane, and all such 

stabilizers have order 2, 4, or 6 . Moreover, we see that all the element orders specified in Theorem 5 

actually occur.

2.6 PSL2 (Z) as a free product

The free product of two groups is, essentially, the group generated by the two groups with no relations 

between the elements of the groups. More precisely, we have the following definition.

D efinition 2. Let G and H be groups with presentations {B  \ R} and {C  | 5 }  respectively, where 

B and C are disjoint. The free product of G and H  is the group with presentation { B u C  \ RX) S).

(In order for this to be a proper definition, it is necessary to show that the free product does not 

depend on the particular presentations of G and H chosen. We omit the proof.)

From Theorem 1, we deduce that the matrices S and ST  (which generate the stabilizers of i and 

p respectively) generate the group SL2(Z). Thus SL2(Z) is generated by an element of order 4 and 

an element of order 6. Since 5^ =  (ST)^ =  —I, the images of these points in PSL2(Z) have orders 2 

and 3. It can be shown that PSL2(Z) is in fact the free product of the cyclic groups of order 2 and 

3 generated by the images of S and T  in PSL2(Z). In other words, PSL2(Z) is abstractly the group 

presented by { x , y  \ =  1} via an isomorphism sending S to a: and ST  to y. A consequence

of this is that any group that can be generated by an element of order 2 and an element of order 

3 can be obtained as a quotient of PSL2(Z). This is the case for most families of nonabelian finite 

simple groups.
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3 M o d u la r  form s

3.1 Definition of modular forms

Definition 3. Let k be an integer. A meromorphic function /  : H  — > C is called a weakly modular 

function of weight k [for SL2(Z)] if for any A 6 SL2(Z) and « € H, the relation f {A z )  =  {cz +  d)^f{z)  

holds.

We will call the relation occurring in the definition the transformation rule for modular forms. 

If we let A =  T in the definition, then the transformation rule becomes f { z  +  1 ) =  f {z) .  Thus, if /  

is weakly modular, the value of /  at 2 depends only on q — since from q we can recover 2 up

to an integer difference. Define the function /  by f {q)  =  Now, if we let Im(2) ^  oo, then

q —> 0- Thus, we say that /  is meromorphic at oo if /  is meromorphic at 0; that is, if we can write

H q) =
n€Z

with a„ =  0 for all sufficiently small n. Such a series is called a Fourier series for / .  Similarly, /  

is holomorphic at oo precisely when /  is holomorphic at 0, or, equivalently, if we may take o„ =  0 

for all n < 0. If /  is holomorphic at oo, then we define the value of /  at oo to be the value of the 

Fourier expansion when <? =  0; that is, /(o o )  =  Oq .

D efinition 4. Let k be an integer. A function /  : H — > C is called a modular form  of weight k 

[for SL2(Z)] if it is weakly modular and is holomorphic everywhere, including at oo.

(In the above definitions we have specified “for SL2(Z)” in brackets because these concepts can 

be defined with reference to many other groups as well.)

11



Notice that if k is odd, only the zero function can be a modular form of weight k. This is true 

because if we use the matrix —I  in the transformation rule, we see that a modular form is required 

to satisfy f { z )  =  { - l ) ^ f { z )  =  - f { z )  if k is odd, and this implies that f { z )  =  0. For this reason we 

will henceforth assume that k is even.

When showing that a certain function is a modular form, it can be cumbrous to verify the 

transformation rule for every A 6 SL2(Z). Fortunately, this is not necessary. To demonstrate 

this, it will be convenient to introduce the notation j {A ,z )  =  cz +  d. With this definition, the 

transformation rule for modular forms becomes f {A z)  =  j (A,z )^f {z ) .  Take A ,B  e  SL2(Z). We 

claim that j {AB,  z) =  j {A, Bz) j {B, z). To prove this, write

B

Then, we compute.

j (AB,  z) =  (ce +  dg)z +  c f  +  dh 

=  c{ez +  f )  +  d{gz +  h)

= j {A ,B z ) j [B ,z ) .

This identity implies that if both A and B satisfy the transformation rule, then so do AB  and 

A~^. By induction, we deduce that if the transformation rule is satisfied by a generating set for 

SL2(Z), such as the matrices T and S, then it is satisfied by all matrices in SL2(Z). We will apply 

this later.

3.2 Modular forms as a graded algebra

Let Mk be the set of modular forms of weight k. This set is a vector space over C under the pointwise 

sum and scalar product operations. In particular, the sum and scalar multiple of modular forms of 

weight k is also of weight k. This is straightforward to verify. For instance, assuming f , g  S Mk,

12



and A € SL2(Z), then we find that ( /  +  g)(Az)  =  f (A z)  +  g(Az) =  (cz +  d)'^f{z) +  (cz +  d)'^g{z) =  

(cz +  d)*^(/ +  g){z). Note also that the sum and scalar products of holomorphic functions are again 

holomorphic (even at oo).

We can also consider the pointwise product of functions. If /  G and g G then ( / g){Az)  =

f {Az)g{Az)  =  {cz +  df^f { z ) { cz  +  df^g{z)  =  {cz +  d)>^^^Hfg){z). Thus f g  G Therefore, if

we form the direct sum

M  =  ^  Mk,
k€2Z

then A4 is closed under multiplication. Since each space Mfc is closed under addition and scalar 

multiplication, M  forms an algebra over C. Moreover, the fact that the weight of a product of 

modular forms is the sum of the weights means precisely that is a graded algebra.

3.3 Eisenstein series

D efinition 5. For even k > 2 and z £ H , the Eisenstein series of index k is

Gk{z) =
1

m,nGZ
(m ,n)^(0,0)

{mz + n)^'

We are going to show that the Eisenstein series are modular forms, which will require a bit of 

work.

Lem m a 1. Let K  be a compact subset of H . There exists a positive real number 7  such that for all 

m, n G K and all z € K ,

7  |mi +  n| < |rn2 +  n|.

Proof. If m =  n =  0, then the result is true regardless of the values of 7  or z. So we may assume 

that either rn or n is nonzero. By rescaling, we may then supppose that {m, n) lies on the unit circle 

C in R^. Then the desired conclusion becomes

7  < \mz +  n\.

13



Consider the function on K  x C  given by {z, m, n) >-» |rri2: +  n\. Since z 6 / / ,  this function never 

vanishes (see the argument on page 3). Since K  x C is compact, the function takes on a minimum 

value 7 , which by the preceding remark is positive. □

Lem m a 2. The preceding result holds even if we replace K  by the fundamental domain D.

Proof. Let z Q D and m, n 6 K. As in the previous lemma, we may suppose that =  1. If

|m| > 1/2 we obtain \mz +  n| > |Im(mz +  n)| > -y/3 |m| /2  > \/3/4. If |m| < 1/2 then |Re(mz)| < 

1/4 and also |n| > 1/2, so that we obtain |rrtz +  n| > |Re(mz + n)| > 1/4. Therefore, we may take 

7 =  1/4. □

Theorem  7. For even k > 2, the Eisenstein series converges absolutely and is holomorphic on 

H.

Proof. It suffices to show that Gk(i) converges absolutely. For then Lemma 1 will show that Gk(z) 

converges absolutely for any z E H and (by the Weierstrass M  test) converges uniformly in any 

compact subset of H. The uniform convergence implies that Gk is holomorphic.

Now, to show that Gfc(j) converges absolutely, we need to show that

E
.,nez 

(m ,n)^(0,0)

(m^ +  n^)
m ,n€Z

(771,71)76(0,0)

(*)

converges. The terms in which n =  0 sum to

CC
2 ^  =  2C(fc).

m = l

Likewise, the terms in which m =  0 also sum to 2C,{k). Notice that for any m, n e R, ni  ̂+  n? >  |mn|. 

This follows from the observation that if ?n, n > 0, then m^+n^-rrm > m^+n^-2mn =  > 0.

Therefore the sum of the remaining terms in the series (those in which neither m nor n is 0) is 

bounded above by

m ,n€Z\{0}

14



The sum of the terms in the latter series for which m, n > 0 is bounded above by

' oo \ ^
=C^(fc/2).

m = l /

By multiplying the latter constant by 4, we account for all possible signs of m and n.

We have thus shown that the series {*) is bounded above by 4(((fc)+(^(/c/2)), and thus converges.

□

Theorem  8 . The Eisenstein series is a modular form of weight k. Moreover, Gfc(oo) =  2f{k).

Proof. Any member of SL2(Z) acts on as an invertible linear transformation and so yields a 

permutation of 7? \ {(0 ,0 )}. Take A G SL2(Z). To verify the transformation rule for modular forms, 

we calculate

m,n€Z
(m,n)7̂ (0,0)

Gk{Az) =  Y .
2 
(

=  (C2 +  d f

= (c2 + d)  ̂

=  (cz +  d)^

1

cz-{-d +  n)*̂

E
Ti,ne2

E

m,n£Z
(m,n):^(0,0)

m,nEZ
(m ,n)^(0,0)

E

{m(az +  b) +  n{cz + d))’̂

{{am +  cn)z +  {bm +  dn))^

1

m,n€Z
(m ,n)^{0,0)

{m'z +  n'Y

where {m',n') =  A~^{m,n). Since A^ simply permutes the indices, the last expression equals {cz +  

d)^Gk{z). Thus Gfc satisfies the transformation rule. We have already shown that Gk is holomorphic 

on H, so all that is left to do is show that is holomorphic at oo and determine Gk{oo). To do 

this, we take the limit as Im(z) ^  oo. We need only consider Im(2) > 1. Therefore, by applying 

a suitable translation T ", we may assume that 2 G D. (Since G*, satisfies the transformation rule 

for modular forms, we know that Gk{T’̂ z) =  Gk{z).) Now Lemma 2 implies that Gk converges 

uniformly in D, so we may compute the limit of the series term by term. For m /  0, we have
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\l{mz +  n)^ —» 0 as Im(2) —> oo, and then the remaining terms sum to

OO
2 ^ n - '=  =  2C(fc).

n = l

Thus Gk is holomorphic at oo and has the claimed value.

3.4 Cusp forms

D efinition 6 . A modular form /  is called a cusp form  if /(o o )  =  0. 

For an example, first define

54 = 6OG4 56 = IdOG'e-

□

Then, define the discriminant:

A =  5I -  27g l

Since both gf and 5I have weight 12, this is a modular form of weight 12. Moreover, the coefficients 

have been chosen so that A vanishes at 00. This can be verified by noting that by Theorem 9, 

^ 4(00) =  2((4) and Gq {o o ) =  2((6), and by using the values

C(4) =  —  C(6) =  — .

Thus, A is a cusp form of weight 12. However, we do not yet know whether A is just the zero 

function. We will soon show that A does not vanish anywhere in H.

The set of cusp forms of weight k is denoted Sk- This is a vector subspace of Mfc. If 7  ̂ 0, 

then the codimension of Sk in Mk is 1. This holds since if / ,  5 G Mk but are not cusp forms, then 

for a suitable v G C, the modular form f  + vg vanishes at 00, so /  and 5 are linearly dependent in 

the quotient Mk/Sk- Since the Eisenstein series are not cusp forms, for even k >  2 we can write Mk 

as a direct sum Sk © CGk, where CGk is the 1-dimensional subspace of Mk spanned by Gk-

16



3.5 Zeros of modular forms

If /  is a meromorphic function on H and w e  H , then for 2 near w we can write

/ ( « )  =  ^ a n { z  -  w)".

If /  ^  0, then define v-u,{f), the order of /  at w, to be the smallest n for which a„ ^  0. (Such an 

n exists because /  is meromorphic.) Thus, Wu,(/) > 0 if and only if /  is holomorphic at w, and 

> 0 if and only if f {w) =  0. We say that /  has a simple zero at w if v^ if) =  1, and a simple 

pole at w if =  -1 . Notice that for f ,g  meromorphic, we have v^( fg)  =  v^{ f)  +Vu,{g), as can

been seen by multiplying the Laurent series for /  and g. If /  is weakly modular and meromorphic 

at 00, we also define v ^ { f )  to be the smallest n such that a„ 7̂  0 in the Fourier expansion described 

before Definition 4. Now, for f  e  Mk and A € SL2(Z), by definition f {Aw)  =  {cw +  d)'"f{w). Since 

(cw + d)  ̂ ^  0, this means that VAz{f) =  Vz{f)- Thus, the order of /  at tc depends only on the orbit 

of w under the action of SL2(Z).

We can show that, if we only count one point from each orbit, a nonzero modular form /  has 

finitely many zeros. More precisely, let O be the set of orbits of the action of SL2(Z) on H. Then 

we have the following result.

Theorem  9. Let f  be a nonzero modular form of weight k. Then,

.. , *^«(/) , ^^^oc(/) +  —  + ^ +  ^  =
9€0\{j ,p}

We omit the proof of this theorem; see [Serre] for a proof.

C orollary 2.

(i) The Eisenstein series G4 has a simple zero at p, and Vz(G4 ) =  0 for z not in the orbit of p. 

(ii) The Eisenstein series Gq has a simple zero at i, and Vz {Gq) =  0 for z not in the orbit of i. 

(Hi) The discriminant A  has a simple zero at 00 and does not vanish in H .

Proof. These results follow easily from the previous theorem by exploiting the fact that the order 

of a point is a nonnegative integer. Note that we have shown that G4 and Gg are nonzero (they
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do not vanish at oo), so we may apply the theorem to them. For (i), G4 has weight 4, so the sum 

occurring in the previous theorem is 4/12 =  1/3. We find that the only way to achieve this is by 

setting Vp{Gi) =  1 and v^{Gi) =  0 for points 2: inequivalent to p. For (ii), Ge has weight 6 , so the 

sum occurring in the previous theorem is 1/2. Again, this forces Vi(Ge) =  1 and v^{Ge) =  0 for 

points 2 inequivalent to i. For (iii), we have just shown that Gq vanishes at i, but G4 does not. 

Therefore, A does not vanish at i, and the previous theorem is applicable. Now A is of weight 12, 

so the sum in the theorem is 1. Since A  does vanish at 00, this means that Uoo(A) =  1 and A does 

not vanish elsewhere. □

3.6 The dimension of Mk

For each even k, we know that Mfc is a complex vector space, but we do not yet know how large Mk 

is, or even whether Mk is finite dimensional. We can use Theorem 9 to give a precise answer. We 

will need the following:

Theorem  10. Lei k be an even integer. The map f  A f  is a vector space isomorphism from Mk

to Sk + 12-

Proof. Denote by 4> the map f  ^  A f .  This map is a linear transformation and sends Mk into 

Sfc+12. Moreover, if 3 € Sk+1 2 , then gf A  is weakly modular of weight k and is meromorphic at 00. 

As A does not vanish on H, the function g/A is holomorphic on H. Moreover, since Voo{g) > 0 and 

Woo (A) =  1, we have that Voo{g/A) > 0, so g/A is holomorphic at 00 at well. Thus g is a modular 

form of weight k. So the map g 1—» g/A sends 5 jt+i2 into Mk, and it is an inverse to cf>, so 4> is an 

isomorphism. □

Now we can determine the dimension of Mk for all k. Recall that if Mfc is nonzero then Sk is of 

codimension 1 in Mfc.

Theorem  11. Let k be an even integer. If k < 0 , then dim Mfc =  0. Otherwise, if k =  2 (mod 12), 

then dim Mfc =  [A:/12J. In all other cases dim Mk =  [^/12J +  1.

Proof. First, suppose k < 0. Since the sum in Theorem 9 is nonnegative, we cannot have any nonzero 

modular forms of weight k, so that dim Mfc =  0. From this and the previous theorem we see that
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for 0 < k <  10, we have dim^fc =  0, so that dim M*, < 1 . Since the identity function is a nonzero 

modular form of weight 0, this means that dimMo =  1 . If =  2 , then the sum in Theorem 9 is 1/6, 

which is plainly impossible, so dim M2 = 0 . For A: > 4 the modular form Gk is of weight k and is 

nonzero, so dim Mk =  1 for 4 < A; < 10.

We have now verified the theorem for k < 12. We can now use induction to prove the theorem 

for k > 12. Since [(A; — 12)/12J =  [A: -  12J — 1 , we just need to show that dim Mk =  dim M k -u  +  1. 

This follows immediately from the fact that Mk- 1 2  is isomorphic to Sk-

□

This theorem lets us prove the following.

Theorem  1 2 . The graded C-algebra A4 of all modular forms is generated by G4 and Gq .

Proof Let Af be the subalgebra of M  generated by G4 and Gq . We get Mq C Af for free since 

this space is the image of C in AA. The space M 2 is 0-dimensional. Since M4 is 1-dimensional, it 

is generated by G4. For even k > 6, we use induction to show that Mk C Af. Let /  € Mk- As 

k is even, either A: or A: — 6 is divisible by 4. Thus we can find nonnegative integers a and (3 such 

that A: =  4q  -I- 6/1. Then G“ Gg is of weight k. Since the Eisenstein series do not vanish at cxi, we 

can find a scalar A such that g =  f  -  AGf Gg is a cusp form. By Theorem 10, g =  Ah for some 

h G Mk-\2 - By the inductive hypothesis, h G A/, and since A  G AA by definition of A, we conclude 

that f  eA f .  □

3.7 The j-function

The /-function is defined to be j  =  1728g4/A. It is a weakly modular function of weight 0. Since 

A  does not vanish in H, the /-function is holomorphic there. However, since G4 is nonzero at 00, 

but A has a simple zero at cxd, the /-function has a simple pole at 00, which prevents /  from being 

a modular form.

We can express the /-function as a Fourier series:

j {z )  =  i  -h 744 -I- 1968849 +  214937609  ̂ +
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where we recall that q =  The coefficients of this series are all integers. They are connected

with the “Monster” , the largest of the sporadic simple groups. We briefly describe this connection, 

which concerns the irreducible complex representations of the Monster. In general, a complex 

representation of a group G is a complex vector space V together with a homomorphism 0 of G 

into G L (y), the group of invertible linear transformations of V. We will assume that V is of finite 

dimension, say, n; thus, we may take GL(V") to be the group GL„(C) of n x n invertible complex 

matrices. We call n the degree of the representation. A subrepresentation of (V, <l>) is a subspace 

W  oi V closed under 0(G), and the action of G on W is given by restricting the action on V . 

If 01 : G — > Vi and 02 : G — ► V2 are two representations of G, then we can define another 

representation, the direct sum 0  =  0i © 02 : G — » V"i © V2 by ip{g) =  0 i(g) © 02(s). The matrix 

of 0 (p), with respect to the basis of Vi © V2 obtained from bases of Vi and 1̂ 2, is then the block 

diagonal matrix  ̂ j . A representation is indecomposable if it is not the direct sum of

two representations of smaller degree. For complex representations of finite groups, the concepts of 

irreducible and indecomposable coincide. Moreover, a finite group has, up to isomorphism, finitely 

many irreducible complex representations, and it is a general problem to determine what they are, 

and in particular to determine the degrees of the irreducible representations.

The two smallest irreducible representations of the Monster have degree 1 and 196883, and it 

is observed that 1 +  196883 is the coefficient of the q term in the Fourier series in the J-function. 

In general, each coefficient of the j-function (except for the constant term 744) is a integer linear 

combination of the irreducible representation degrees of the Monster, with “small” coefficients. (The 

last proviso is of course what makes the statement interesting; without it, we could merely observe 

that that any integer is a multiple of 1 !) ■
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4  L a ttices and th e ta  series

4.1 Lattices

A subset L of the vector space R" is an n-dimensional lattice if there is a basis 12 =  w i, . . . ,  of 

R ", such that L is the set of all Z-linear combinations of uii,. . .  Let (vi,V2 ) denote the usual 

inner product of Vi and V2 in R". Then the Gram matrix of the basis is the n x n matrix with 

i,j entry equal to We also call this matrix the Gram matrix of L. However, two different

bases of R”  can determine the same lattice, so a lattice does not have a uniquely determined Gram 

matrix.

If 0  =  c j i , . . .  ,ain and F =  7 i , . •. , 7n are two bases of R” , and A is the Gram matrix of 12, then 

we can determine the Gram matrix of F as follows. Let B be the change of basis matrix from F to 

12. Then the Gram matrix of F is AB. Verifying this is an exercise in matrix multiplication and 

applying the bilinearity of the inner product. A particular case occurs when 12 is the standard basis. 

Then B is the matrix whose columns are the vectors F, and the Gram matrix of F is B^ B.

Theorem  13. The Gram matrix corresponding to any basis o /R ”  is symm.etric and positive definite.

Proof. Let A be the Gram matrix corresponding to some basis 12 =  o»i,. . .  ,u>„ of R". Then A is 

symmetric because the inner product is commutative. To prove that A is positive definite, let u € R" 

be nonzero. Let B be the matrix whose columns are the vectors 12. Then A =  B^B, so (considering 

w as a column vector) Av =  {Bv)^Bv =  {Bv, Bv) >  0. Thus, A is positive definite. □

We will call a matrix in GL„(R) integral if all its entries are integral. Recall that the group 

G L„(Z) is the group of integral matrices whose inverse is also integral. We now give a useful 

characterization of GL„{Z).
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Lem m a 3. The group GLn(Z) consists of the integral elements o /G L „(R ) whose determinant is

± 1.

Proof. Suppose A e GL„(Z). Since AA~^ =  / ,  taking determinants yields (det/l)(det =  1. 

Now both determinants are integers, so det >4 is invertible in Z. Thus det/l =  ±1. Gonversely, 

suppose A e GL„(1R) is integral and that det^ =  ±1. To show that A~^ is integral, write the 

characteristic polynomial of ^ as

H------- h cix  +  (-l)" (d e t> l).

By the Cayley-Hamilton theorem.

A" +  Cji-iA’  ̂ +  • • ■ +  c ij 4 +  ( —l)"(det A) I =  0.

Now, multiplying by 4̂“ ,̂ we deduce that

( - l ) " (d e t ^ ) / l - i  =  - ( ^ " - 1  +  c „ _ i^ " -2  +  . . .  +  Cl/).

Since the expression on the right is certainly an integral matrix, our assumption about the value of 

det/I implies that v4“  ̂ is integral. □

While the Gram matrix of a lattice L depends on the basis chosen, the determinant of the Gram 

matrix does not depend on the particular basis. To see this, let A be the Gram matrix of L with 

respect to the basis fl =  a>i,. . .  ,o;„, and suppose that F =  7 1 , . . .  , 7 „  is another basis of that 

generates L. Let B be the change of basis matrix from F to fl. Since each 71 is a Z-linear combination 

of the vectors wi , . . .  ,w„, the matrix D has integer entries. Similarly, the inverse of B also has integer 

entries. Thus, B G G L„(Z), and so det Z? =  ±1. Therefore, det B^AB =  det/1. But B^AB  is the 

Gram matrix of F. This shows that each possible Gram matrix of L has the same determinant, and 

we call this value the discriminant of L, which we will denote discL. The discriminant must be 

positive, since the Gram matrix is positive definite.
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While a lattice does not determine a Gram matrix, we might ask whether a (candidate) Gram 

matrix uniquely determines a lattice. First, note that every symmetric positive definite matrix A 

is the Gram matrix of some lattice. This holds because A has a symmetric positive definite square 

root B, and then the columns of B form a basis for a lattice whose Gram matrix is B^B =  B'̂  =  A. 

Now, suppose we take a lattice Lj with basis (the columns of) a matrix B. We want to find all other 

lattices (if any) that have the same Gram matrix as Li. Consider another lattice L2 and let C be the 

change of basis matrix from a basis of L2 to B. Then to say that the two lattices have equal Gram 

matrices is to say that { C B Y C B  =  B~^B, which is equivalent to C'^C =  I. That is, the inverse and 

transpose of C coincide, which means (by definition) that C  is orthogonal. The conclusion, then, is 

that two lattices, generated by chosen bases, have the same Gram matrix if and only if the change 

of basis matrix from one basis to the other is orthogonal.

Thus, a Gram matrix determines multiple lattices. However, if two lattices have the same Gram 

matrix, the change of basis matrix B from one basis to another preserves inner products between 

the basis vectors, and hence between all vectors. Thus, in particular, B preserves the lengths of 

vectors and the angles between them, and the former property indicates that B is an isometry. We 

can then say that the two lattices are the same up to “orientation” .

Typically, we do not care about the orientation of a lattice, as the orientation is considered an 

artifact of the coordinates in R” . This motivates a different way to describe lattices. We consider 

that the lattice points are always just Z ", and that it is the inner product, specified by the Gram 

matrix, that varies. This perspective bundles in the notion that the orientation of a lattice is 

immaterial. Importantly, all the properties of lattices that we care about (such as the discriminant) 

can be determined from the Gram matrix.

D efinition 7. A lattice is integral if its Gram matrix is integral. A lattice is unimodular if its 

discriminant is 1 .

Note that the definition of an integral lattice makes sense; the condition is equivalent to asserting 

that the inner product of any two elements of the lattice is an integer.

If cji, . . . ,  is a basis of R " , then the dual basis w j , . . . ,  w* is the basis defined by the conditions 

(u}i,u>t) =  1 and (u)i, ujj) =  0 for 1 < i /  j  < n. (It is easy to show that the vectors w j , . .. ,a;* are 

linearly independent.)
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Definition 8 . Let L be a lattice in R' .̂ The dual lattice to L, denoted L*, is defined by

L* =  {n G R”  ; Vw e L{v,uj) G

The following theorem shows that L* is indeed a lattice.

T heorem  14. Let u>i,. . .  ,u)n be a basis o /R " , and let L be the lattice generated by this basis. Then 

L* is the lattice generated by the dual basis o / w i , . . . ,

Proof. Take a vector v G R". To have v G L’ , it suffices to have (v,u>i} G Z for all 1 < i < n. Write

w as a linear combination of the dual basis vectors: v =  H-------t-WnW*. Now, using the definition

of the dual basis, we see that for 1 < i < n, we have =  Uj. So, w G L ’  if and only if v is an

integer linear combination of the dual basis vectors. □

From the definition, we see that the dual to a dual basis is the original basis. Therefore, the 

previous theorem shows that L** =  L. We next want to determine the Gram matrix of L* in terms 

of that for L.

Theorem  15. Let A be the Gram matrix of a basis o /R " . Then the dual basis has Gram matrix 

A -T

Proof. Take a basis Wj,. . . ,  w„ of R" with Gram matrix A. Let B be the Gram matrix of the dual 

basis. We will show that AB  =  /.  To do this, we compute the i,j entry of AB  for all 1 < i , j  < n. 

Write

ojj — aiuji +  • • ■ +  a„u>n (♦)

with Oi, . . . , G R. Then, for any 1 < A: < n, we have {u)l,ujp =  a .̂ Thus,

n n

{AB) i j  =  =  y^gfc {cjj.cok)-
k=l

But, taking the inner product of (*) with u;, yields

fc=i
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Y^ak{uJi,u>k) =
fc=l

which is 1 if i =  j  but 0 if i /  j . □

An immediate corollary is that the discriminant of the dual lattice L* is the reciprocal of the 

discriminant of L. Now, a lattice is self-dual if L =  L*. We can characterize self dual lattices as 

follows.

Theorem  16. A lattice is self-dual if and only if it is integral and unimodular (that is, if the Gram 

matrix of the lattice is in GL„{Z)J.

Proof. Let L be a lattice. Suppose L is self-dual. Then it is immediate from Definition 8 that the 

inner product of any two lattice elements is an integer, so L is integral. Moreover, L and L* have 

the same discriminant, but the discriminants are reciprocals of each other. Thus L is unimodular.

Conversely, suppose L is integral and unimodular. Since L is integral, we have L L*. If A 

is a Gram matrix of L, then A e  GL„(Z), so that A~'̂  e  GL„{Z).  Thus, L* is integral, so that 

L* C L "  =  L. □

4.2 Theta series

We now define theta series. Under certain conditions, these will turn out to be modular forms.

Let L be a lattice. For any real number k, let Nk{L) be the number of vectors in L such that 

(v,v) =  k. (That there are finitely many such vectors will be proved below.) Then, for z e  H, we 

define the theta series of L to be

k > 0 L

where = r,2kiriz (In general, the k occurring in the sum can be arbitrary nonnegative real

numbers, but in the case we will be interested in they will turn out to be integers.) In order to prove 

the convergence of the theta series, we will need the following lemma. This lemma, together with a 

similar statement involving the greatest eigenvalue, is known as Rayleigh’s inequality.
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Lem m a 4. Let A be a symmetric real matrix of dimension n x n ,  and let X be the smallest eigenvalue 

of A . Then, for every u e K ",

■ '̂ ) ^ v^Av.

Proof. Since A is symmetric, it has an orthonormal basis of eigenvectors. Let u>i,. . .  ,u)n be these 

eigenvectors, and let A i , . . . ,  A„ be the corresponding eigenvalues. Now write

v =  a\u)\ +  • • • +  ajiiVn

with a i , . . . ,a„  £ K. Then,

Av =  t;^(aiAiWx H------- h a„XnUJn)

fii Ai (u, uj\) T ■' ■ T  OfiXji (,v, LJfi')

=  OjAi +•■ • +  a^An

> \{al + • • • + a^)

=  A(i;,n>.

(In the third and fifth lines we use the fact that the basis is orthonormal.) □

Theorem  17. For every lattice L in R ", the number of vectors v ^ L such that {v, v) < k is 0(/c"/^) 

(where k varies over the nonnegative real numbers). In particular, Nk[L) is finite.

Proof. Let B be a matrix whose columns are the vectors of a basis for L. Then, B, considered as 

a linear transformation, gives a bijection from Z " onto L, so that we are reduced to counting the 

number of u € Z "  such that (Bu, Bu) < k. Moreover, A =  B^B  is the Gram matrix for L. Let A 

be the smallest eigenvalue of A. Since A is positive definite, A > 0. Using the previous lemma, we 

obtain,

(Bu, Bu) — (Bu)^Bu =  u'^̂ Au >  A(u, u).

Thus, if we write u =  (ui , . . .  ,u„),  we see that if Xuf > k for some 1 < i < n, then (Bu, Bu) > k.
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Hence, the number of u such that {Bu, Bu) < /c is at most +  1 )” . Since A does not depend

on k, this establishes the result. □

Now, this is enough to prove that the theta series for Z " converges. Since Z " is integral, we 

need to take the sum only over k with 2k € Z, and then it is easy to prove that the theta series 

converges absolutely for z & H (using, for instance, the ratio test). We can then generalize this 

result as follows.

Theorem  18. The theta series for any lattice converges absolutely for z E H.

Proof We use the notation in the previous theorem. Take z e  H, and let r =  q .̂ Note that |r| <  1. 

Then,

|(u,ti)/2^  ^  |^|(Su ,Su) /2  ^  ^  |^|A{u,u)/2 _

v̂ Li

which we already know converges.

1̂1
ti€Z"

□

In order to show that, under the right circumstances, theta series are modular forms, we need 

the following result. We give only a summary of the proof.

Theorem  19. Suppose L is a lattice in K" and that z lies on the positive imaginary axis. Then,

(discL)>/2(2 /j ) - " /2 e^. ( z )  =

Proof sketch. We define a Schwartz function to be an infinitely differentiable function /  from K" to 

C that decays “quickly” . More precisely, for all real k, we must have that /  and all partial derivatives 

of /  are o{(v, v)^) as the magnitude of v increases without bound. Then the Fourier transform of / ,  

denoted / ,  is given by

/ ( “) = [

for all V e  R. With this apparatus, one shows, for any lattice L,

Y ^ f { v )  =  (discL) ^
v€L u€L‘
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(See [Elkies] for a proof of this.) Then, let t be a positive real number, and consider f {v)  =  e 

This is a Schwartz function. In order to compute the Fourier transform of / ,  we use the integral

J r

Write V =  (v i , . . . ,  u„) and u =  (u i , . . . ,  u„) in terms of their components under the standard basis. 

We find that

/ ( « )  =  [ -7T{v,v)/t^2ni{v ,u)

r ^
= .  n « - ”’*/ j = \

n

n i

f t  2nivj  Uj dvi

7=1

j=i

(The third line is obtained by rewriting the integral a.s nested one-dimensional integrals and moving 

constant factors out of integrations.) Applying our general result for Schwartz functions, we get

^  e-7r{v,,;)/i ^  ( d i s c L ) - i / 2 £ " ' ' 2  Y ,
v̂ Li it*

Finally, by making the substitution t =  zji, we derive the desired result. 

Corollary 3. Suppose the lattice L in M" is self-dual. Then, for all z € H ,

□

(z/ ir/^eU z) =  SL i- i/z ) .

Proof. A self-dual lattice is unimodular, so the previous theorem becomes the desired equation. This 

establishes the result when z is on the positive imaginary axis. Moreover, since the equations relates
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analytic functions, the uniqueness of analytic continuations implies that the equation holds for all 

z e  H. □

We can now proceed fairly quickly to the main result. Suppose the lattice L is self-dual. Then, 

L is integral, so the k occurring in the theta series are integers or half integers. Thus, the theta 

series are invariant under the map z z +  2. Of course, to make the theta series modular forms 

for SL2(Z), we need to have them invariant under z z +  1, which we can achieve by imposing the 

further restriction that the lattice (or Gram matrix) is even. This means, by definition, that (u, v) 

is even for all u e L, which is equivalent to asserting that the diagonal entries of the Gram matrix 

are even. Requiring L to be even forces the k in the theta series to be integers, so that the theta 

series are indeed invariant under z z +  1.

Theorem  20. Let L be an even self-dual lattice in R". Then 8 | n.

Proof. For any w e  H, we apply Corollary 3 and the identity Q l {w ) =  Q l {w  1) to deduce that 

&l {TSw ) =  Applying this three times (to w = z, TSz, and (T5)^z), we get

Q l (z ) =  Ql {{TS)^z ) =  { { {TS fz ) l i r l \ {TSz )/ ir /^ {z l ir /^Q t {z ) ,

the first equality holding because (TS)^ =  —I acts trivially.

Now, let z =  i in the above. We have TSi =  i I and (TS)^i =  (1 -|- i)/2. Also, from the 

definition we see that © l (*) is a positive real number, so we may cancel it from the equation. Thus, 

as j -|- 1 =

l =  ({i +  l ) / 2) " /2(j +  i )«/2 ^

which holds only when n is divisible by 8. □

Theorem  21. If L is an even, self-dual lattice in R" then is a modular form of weight nj2.

Proof. We already know that for 0^ the matrix T  satisfies the transformation rule for modular forms. 

The previous theorem implies that =  1 , so Corollary 3 simplifies to Q l {—1/z ) =  z ^^^Ql (z ),
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which shows that S satisfies the transformation rule. Finally, 0  ̂ is holomorphic since it is given by 

a Fourier series with nonnegative powers. □

4.3 Examples of even, self-dual lattices

In the last section we showed that theta series of even, self-dual lattices are modular forms, and 

along the way we saw that such lattices can only occur in spaces whose dimension is a multiple of 8. 

We can show that the converse is true; there is an even, self-dual lattice in K" for every n a multiple 

of 8. An example is the 8-dimensional lattice Ss given by the Gram matrix

^2 0 0 0 0 1 1 l \

0 2 0 0 - 1 0 - 1 1

0 0 2 0 - 1 1 0 - 1

0 0 0 2 - 1 - 1 1 0

0 - 1 - 1 - 1 2 0 0 0

1 0 1 - 1 0 2 0 0

1 - 1 0 1 0 0 2 0

V 1 - 1 0 0 0 0 2 /

(To show that this matrix is the Gram matrix of a lattice, we need to show that it is positive 

definite, which we may do by verifying that all the minors of the matrix have positive determinant.) 

From this example, we can construct even, self-dual lattices whose dimension is any multiple of 8 by 

forming a block diagonal matrix with copies of Ss- Another example is the 24-dimensional lattice 

known as the Leech lattice. To define this lattice, first let B be the 11 x 11 matrix such that the i,j 

entry is 0 if i = j ,  and otherwise is 1 or —1 according as i — j  is or is not a square modulo 11. Then 

define a 12 x 12 matrix

0 E

,-E'^ B
A =

V
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where E is the 1 x 1 1  matrix with every entry 1. More explicitly, A is the matrix

0 1 1 1 1 1 1 1 1 1 1 1

- 1 0 - 1 1 - 1 - 1 - 1 1 1 1 - 1 1

- 1 1 0 - 1 1 - 1 - 1 - 1 1 1 1 - 1

- 1 - 1 1 0 - 1 1 - 1 - 1 - 1 1 1 1

- 1 1 - 1 1 0 - 1 1 - 1 - 1 - 1 1 1

- 1 1 1 - 1 1 0 - 1 1 - 1 - 1 - 1 1

- 1 1 1 1 - 1 1 0 - 1 1 - 1 - 1 - 1

- 1 - 1 1 1 1 - 1 1 0 - 1 1 - 1 - 1

- 1 - 1 - 1 1 1 1 - 1 1 0 - 1 1 - 1

- 1 - 1 - 1 - 1 1 1 1 - 1 1 0 - 1 1

- 1 1 - 1 - 1 - 1 1 1 1 - 1 1 0 - 1

- 1 - 1 1 - 1 - 1 - 1 1 1 1 - 1 1 0

And now the Leech lattice A04 is the lattice with Gram matrix

where I is the 12 x 12 identity matrix. These are certainly not the only examples. While the lattice 

Sg, is in fact the only 8-dimensional even, self-dual lattice (up to isometry), there are 2 such lattices of 

dimension 16, and 24 of dimension 24. The number for higher multiples of 8 has not been determined, 

but it is known that there are at least 10® such lattices of dimension 32 (N. J. A. Sloane, Ed., The 

On-Line Encyclopedia of Integer Sequences, http://www.research.att.com /-njas/sequences/ 

A054909).
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