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A numerical scheme for non-local aggregation
with non-linear diffusion and approximations

of social potential

F. Georgiou1 N. Thamwattana2 B. P. Lamichhane3

J. E. F. Green4 J. Buhl5

(Received 11 December 2020; revised 19 February 2022)

Abstract

Aggregations abound in nature, from cell formations to locust
swarms. One method of modelling these aggregations is the non-local
aggregation equation with the addition of degenerate diffusion. In this
article we develop a finite volume based numerical scheme for this style
of equation and perform an error, computation time, and convergence
analysis. In addition we investigate two methods for approximating
the non-local component.
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1 Introduction
Aggregations abound in nature, from cell formations [9] to locust swarms [1].
While there are a variety of techniques in modelling these phenomena, one
popular technique is the non-local aggregation equation. First proposed by
Mogilner and Edelstein-Keshet [12], it is a conservative mass system of the
form

∂ρ(x, t)

∂t
+∇ · ([−∇Q(x) ? ρ(x, t)]ρ(x, t)) = 0 ,

where Q(x) is a scalar function of x ∈ Rn and called the social interaction
potential, ρ(x, t) is the density of species in question, and ? is the convolution
operator in space. For this model the existence and stability of swarms
has been proven [12], and both travelling wave solutions [12] and analytic
expressions for the steady states [1] have been found. However, in this form
the maximum density of steady state solutions grow unbounded with the
addition of mass. It was thus further extended to include non-linear local
repulsion in the form

∂ρ

∂t
+∇ · (ρ [−∇(Q ? ρ) − γρ∇ρ]) = 0 ,

which leads to compact and bounded solutions [13]. Finally, linear diffusion
is added either for modelling or simulation purposes to give

∂ρ

∂t
+∇ · (ρ [−∇(Q ? ρ) − γρ∇ρ]) −D∆ρ = 0 . (1)
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It is this style of equation that we study in one dimension. While initially
used for single populations, the model has been further adapted to consider a
variety of interacting species and populations [9, 14, 6].

The difficulty in simulating (1) arises from the non-local interaction term.
While it is possible to directly calculate this term [7], it is more efficient
to use Fourier transforms [2, 3]. The key to using Fourier transforms is
the convolution theorem [5], which states that under suitable conditions the
Fourier transform of a convolution of two functions is equal to the point-wise
product of their individual Fourier transforms, that is,

F {f ? g} = F {f} ·F {g} , (2)

where F represents the Fourier transform and f and g are two integrable
functions on Rn (we also denote the inverse Fourier transform as F−1). We
also use another property of convolutions given by

∇ (f ? g) = (∇f) ? g = f ? (∇g) . (3)

As Q does not depend on time, (2) and (3) allow us to calculate F {∇Q} once
at the beginning of the simulation and then be used throughout.

In this article we use and compare two methods to find F {∇Q}. The first
is performing a discrete time Fourier transform (dtft) as done by Topaz
et. al. [14], and the second is to define ∇Q on our domain x = [0, L] in such
a way that we can approximate the dtft using a discrete Fourier transform
(dft) [8]. We begin with a common social potential known as the Laplace
potential,

Q(x) = e
−|x|
r , (4)

whose derivative has the dtft [14]

dtft
{
∂

∂x
e−

|x|
r

}
=

i∆x sin(∆xq)
r [cosh(∆x/r) − cos(∆xq)]

, (5)
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Table 1: Definitions of symbols used in numerical scheme at arbitrary cell i.

Symbol Definition
∆x spatial size of cells in the x direction
x vector representing the discretised spatial grid
xi x value of the midpoint of a grid cell
Pi approximate function values of ρ
P vectors representing the discretised function ρ
Ni approximate value of the non-local component of the equation
Ai approximate value of the advective component of the equation
Di approximate value of the diffusive component of the equation

where q is the frequency domain. The approximation is [8]

∂

∂x
e

−|x|
r =

{
0 if x = 0 ,
1
r

(
−e−

|x|
r + e−

|(L+∆x)−x|
r

)
if x > 0 .

(6)

which is then converted to the frequency domain using a dft. We term (5)
the exact dtft and (6) the approximate.

We begin in Section 2 by introducing a numerical scheme for simulating (1) in
one dimension. Then, in Section 3 we look at convergence and computation
time for the numerical scheme using both methods of transforming ∇Q to
the frequency domain and understanding what error is introduced by using
the approximate transform (6) versus exact dtft (5).

2 Numerical scheme
We now derive the numerical scheme for (1) in one dimension using a finite
volume method (fvm) with a linearised Riemann approximator [10]. For the
numerical scheme the terms described in Table 1 are used in relation to an
arbitrary cell i with cell boundaries i± 1

2
. To begin we approximate the local
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part of the velocity term using a central differencing scheme, giving

−γρ
∂ρ

∂x
≈ −γPi

Pi+1 − Pi−1
2∆x

,

at an arbitrary cell i. Then, for the non-local component of the velocity term,
we use (2) and (3) to turn the convolution component of the advection term
into

−∇(Q ? ρ) = F−1

{
F

{
−
∂

∂x
Q

}
·F {ρ}

}
.

We then approximate the convolution as

−∇(Q ? ρ) ≈ N = real
{
ifft
{

F

{
−
∂

∂x
Q

}
· fft {P}

}}
,

where fft and ifft represent the fast Fourier transform and inverse fast Fourier
transform, respectively. We take only the real component of the ifft as any
imaginary value will simply be due to error. By combining the local and
non-local components and letting

Fi =

(
−γPi

Pi+1 − Pi−1
2∆x

+ Ni

)
Pi ,

and using a standard Riemann approximator we estimate the wave-speed at
a cell boundary, i− 1

2
, as

Si− 1
2
=

{
Fi−Fi−1
Pi−Pi−1

Pi 6= Pi−1 ,
Fi−Fi−1
∆x

Pi = Pi−1 ,
(7)

and the wave size as
Wi− 1

2
= Pi − Pi−1 . (8)

We then approximate the advection component using an upwind scheme,
giving

Ai =
1

∆x

(
max {Si− 1

2
, 0}Wi− 1

2
+min {Si+ 1

2
, 0}Wi+ 1

2

)
.
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It is worth noting that as we multiply Si− 1
2
with Wi− 1

2
the denominator of

the fraction used to calculate Si− 1
2
is cancelled out and the only information

that is used is the sign of Pi − Pi−1 . We therefore simplify (7) and (8) to

Ŝi− 1
2
= (Fi − Fi−1) sign(Pi − Pi−1) ,

and
Ŵi− 1

2
= sign(Pi − Pi−1) ,

where

sign(x) =


−1 x < 0 ,

0 x = 0 ,

1 x > 0 ,

giving the upwind scheme for the advection component as

Ai =
1

∆x

(
max {Ŝi− 1

2
, 0} Ŵi− 1

2
+min {Ŝi+ 1

2
, 0} Ŵi+ 1

2

)
.

Next, for the diffusion term, we approximate this using fvm as

Di ≈
D

∆x2
(2Pi − Pi−1 − Pi+1) .

Combining all the terms we obtain

Pt+∆ti = Pti − ∆t(Ai + Di) .

Finally, for time integration we use the Dormand–Prince method [4]. This is
an adaptive Runge–Kutta method where a fourth and a fifth order scheme
are calculated simultaneously with the fifth order scheme being used as an
error estimate for the fourth order scheme. This error estimate is then used
to adapt the time step [11]. This method is used in the Matlab function
ode45.
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3 Results
In order to test our numerical scheme of (1) we ran a series of simulations with
64, 128, 256, 512, 1024 and 2048 grid cells. The initial densities are given
by ρ(x, 0) = max (2+ µ, 0) where µ is some normally distributed noise with
mean 0 and standard deviation 1. In addition, one set of initial conditions
was created at the lowest resolution and interpolated to higher resolutions to
ensure all simulations had the same initial conditions. The spatial domain
was x ∈ [0, 20] with periodic boundary conditions (i.e., ρ(0, t) = ρ(20, t)) and
time was run to the pseudo steady state t = 500 .

We used the following social potential for gregarious locust behaviour as it is
commonly used in literature [1, 14, 6],

Q(x) = Re
−|x|
r −Ae−|x| . (9)

We then took both the exact dtft and approximate transform (given by (5)
and (6), respectively). The constants were set as D = 0.01 , γ = 0.6 ,
R = 0.25 , A = 1 and r = 0.5 . Finally, we let the 2048 grid cells with exact
dtft be our reference solution; a snapshot at times t = 0, 0.72, 4.80 and 500
is shown in Figure 1.

The error and computation time is shown in Figure 2, a) and b), respectively.
In order to calculate the error, we interpolated our reference solution to
each lower resolution (denoted Pref), then for each number of grid cells
(64, 128, 256, 512 and 1024) and each social potential (approximate and exact
dtft) we calculated our total error as

ε = ‖Pref − P‖ ,

where ‖ · ‖ represents the standard L2 norm. The error is calculated at
the pseudo steady state of t = 500 . From this we estimated the average
convergence rate as greater than 1.8 for both the exact dtft and approximate
social potentials (1.8829 and 1.9114, respectively), however the approximated
social potential has a non-uniform convergence. Computation time was
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Figure 1: Reference solution of (1) with social potential given by (9) with
D = 0.01 , γ = 0.6 , R = 0.25 , A = 1 and r = 0.5 on the periodic domain
x ∈ [0, 20] . The reference solution uses the exact dtft given by (5) and
2048 grid cells.
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Figure 2: Numerical Error Estimates (ε) and computation time for
64, 128, 256, 512 and 1024 grid cells at time t = 500 for both the exact
dtft and approximated social potentials with D = 0.01 , γ = 0.6 , R = 0.25 ,
A = 1 and r = 0.5 .

comparable for both approximated and exact dtft social potentials. The
most startling aspect of this numerical experiment is that for the majority of
grid cells the approximation is closer to the reference solution than the exact
dtft.

To test whether the approximation continues to be more accurate than the
exact dtft, we ran simulations with a different set of constants. The constants
in (4) were changed to R = 1 , A = 1 and r = 0.1 with everything else set
as before. The error and computation time is shown in Figure 3, a) and b),
respectively. It is again seen that at certain resolutions the approximation
outperforms the exact dtft. This time the average convergence rate is
greater than 1.7 for both the exact dft and approximate social potentials
(1.7512 and 1.8684, respectively).
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Figure 3: Numerical Error Estimates (ε) and computation time for
64, 128, 256, 512 and 1024 grid cells at time t = 500 for both the exact
dtft and approximated social potentials with D = 0.01 , γ = 0.6 , R = 1 ,
A = 1 and r = 0.1 .

In order to better understand this, we turned back to our original values
and looked at the relative error between the high resolution (2048 grid cells)
exact dtft of the social potential and the lower resolution exact dtft and
approximate social potentials. We then defined the relative error between
social potentials as

εrel =
‖Qref − Qapp‖
‖Qref − Qext‖

,

where Qref is the high resolution exact dtft, Qapp is the approximation, and
Qext is the lower resolution exact dtft (we also calculate the relative error
between simulations in a similar manner). The social potentials, Qref and Qext,
have been converted back to the spatial domain using a dft. The results
can be seen in Figure 4 (blue line, left axis), with εrel < 1 showing that the
estimate is more accurate than the exact dft for each resolution. While the
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Figure 4: εrel < 1 indicating that the approximation is more accurate than
the exact dtft for each resolution. While the approximation is closer to the
reference social potential at each resolution it is not a good predictor of the
relative error between simulations (red dashed line, right axis)

approximation is closer to the reference social potential at each resolution it
is not a good predictor of the relative error between simulations (red dashed
line, right axis).

4 Conclusion
In this article we introduced a finite volume based numerical scheme for
simulating (1) and tested its accuracy and convergence using a common social
potential. In addition, we compared an exact dtft of the social potential with
a method for approximating it and found that under the tested conditions
the approximation outperformed the exact dtft. While more work needs
to be done to understand why this is the case, the approximation method
appears to work well and could be used for social potentials with difficult to
calculate dtfts.
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