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Abstract

Innovative design of helicopters promises great benefits over conven-
tional aircraft but there are a number of technical challenges. Hyper
Q Aerospace brought a project to the 2020 Mathematics-in-Industry
Study Group to consider a helicopter design with a counter-rotating,
coaxial, double rotor. Specific considerations were the vibration and
harmonic properties of the rotor blades, the noise from the aircraft
and the aerodynamic characteristics. Euler–Bernoulli beam theory
and classical airfoil theory were implemented to consider the vibration
and aerodynamic features of the aircraft and the rotor system. The
fundamental lengthwise and lateral harmonics of the blades were ob-
tained and compared with typical rotational forcing frequencies. The
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modification to the lift generated by the counter-rotating blades and
noise mitigation strategies were discussed. Improved design strategies
were presented.
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Figure 1: A
schematic
diagram of the
helicopter rotors.
The Hyper-Q
design has
counter-rotating
rotors to balance
the momentum
and remove the
necessity for a
tail rotor.

1 Introduction

Mathematical modelling of aircraft is challenging because of the complexities
of flight. However, at the simplest level, with a solid factual foundation,
modelling can provide some insight into the processes involved. This can
then be further explored with experimental trials. In this spirit, the 2020
Mathematics-in-Industry Study Group (misg2020) undertook a study relating
to helicopter flight, for the company Hyper Q Aerospace.

The topic of flight has previously appeared at the annual Mathematics-in-
Industry Study Group [3]. A 2005 project was inspired by a series of patents
from the 1930s. However, in this misg 2005 project, the lack of technical
details and experimental data was challenging in the modelling process, and
somewhat constrained progress.

The company Hyper Q Aerospace is developing an aircraft that is powered by
a coaxial rotor-head. The counter-rotating rotors will be driven directly by
electric axial flux motors, and their compensating angular momentum means
that no tail rotor is required (Figure 1). Unlike conventional helicopter design
there will be limited requirements for gearboxes, transmissions or drive shafts.
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Blade length is approximately 3m giving a rotor disk size of about 6.5m, and
the rotor disk separation is about 0.5m. Typical angular velocity of helicopter
blades is around 600rpm, but this model is designed to operate at values
250–1500rpm. Aircraft velocity will vary from 0 to 300 knots (550 km/hr).

The major factors for consideration by the study group were the vibrations
in the system, the noise generated by the new design, and the aerodynamic
response. We relate the findings of each in turn. The following questions were
identified on the first day of the workshop.

• Question 1: What are the vibration modes present?

– within the blades

– within the entire rotor system

– between the rotor disks

– due to blades crossing

• Question 2: How is the lift affected by the coaxial design?

– What is the lift generated by the two blade system?

– What is the effect of blade crossing?

• Question 3: What is the noise footprint?

2 Critical Frequencies/Harmonics of the
Blade

Vibrations are an inevitable occurrence in systems of this type. In general,
these vibrations are harmless to the integrity of the craft. However, serious
damage may result if there is feedback between components leading to reso-
nance and consequently growing oscillations. Possible sources of vibration are
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the blades as their velocity changes, the movement of the entire rotor, and
the interaction between the rotor disks and the blades as they cross.

The frequency of all of these sources of vibration are readily determined
with the exception of the vibrations of the rotor blades. However, in Sec-
tion 2.1, we use Euler–Bernoulli beam theory to estimate the vibrations of
each rotor blade.

2.1 Euler–Bernoulli Beam Theory

The vibration characteristics of the rotor blades are calculated using the
Euler–Bernoulli equation [10]. This equation models the oscillations in a
beam of small thickness, simplifying the equations of solid mechanics. So long
as the oscillations are relatively small it provides an accurate representation
of the behaviour of the beam given the basic material properties. Both
along-beam oscillations and across-beam oscillations are considered, and the
resonant frequencies and harmonics are computed. The nice thing about this
approach is that the solutions are computed quickly, and exactly, given the
characteristics of the blade.

The calculation provides the major frequencies within the rotor blades that
should be avoided in other components within the rotorcraft, such as the
engine vibration, rotor cycling or rotor crossing. If this is not done, and these
other components are maintained at the same value of frequency, then the
energy within these components may feed into the rotor oscillations causing
resonance and ultimately failure. In what follows we compute the frequencies
with Euler–Bernoulli beam theory and compare with finite element simulations.
These calculations do not account for the rotating frame of reference. Such
effects can be considered using the techniques by Yang et al. [12].
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2.1.1 Vibration analysis of a single beam/blade

We consider the Euler–Bernoulli equation [10],

EI
∂4η

∂x4
+M

∂2η

∂t2
= 0 (1)

together with the boundary conditions

η = 0 ,
∂η

∂x
= 0 at x = 0 , (2)

∂2η

∂x2
= 0 ,

∂3η

∂x3
= 0 at x = LB . (3)

Here η denotes the displacement (in metres), and this depends on the position
on the blade x and on time t. Time variation is considered as a simple
harmonic, that is, e−iωt. The quantity EI is a property of the blades (E is
the modulus of elasticity and I is the moment of inertia of the cross-section),
and data was provided by Hyper Q Aerospace. LB denotes the length of the
blade/beam (in metres) andM denotes the uniformly distributed mass of the
blade/beam (in kg/m). The conditions (2) indicate that the end at x = 0 is
fixed, whereas the conditions (3) allow for the movement of the free end at
x = LB . A general solution of the partial differential equation (1) is

η(x, t) = [c1 cosh(Kx) + c2 sinh(Kx) + c3 cos(Kx) + c4 sin(Kx)] e−iωt (4)

for constants c1, c2, c3, c4. Here, K ∈ R denotes a wave number, and ω rep-
resents the forcing frequency due to the rotation of the rotor.

A nontrivial solution of the Euler–Bernoulli System (1)–(3) exists when the
nonlinear equation

1+ cos(KLB) · cosh(KLB) = 0 (5)

is satisfied. Equation (5) has infinitely many solutions Kn, n ∈ N , from which
wave numbers for different harmonics are derived. In particular, for any Kn
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Figure 2: Visualization of the first four modes corresponding to the solution (7)
for c1n = 1 and LB = 3.25 . The magnitude of the amplitude depends on the
initial conditions. The value used here is solely for illustration.
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satisfying (5), the corresponding angular frequency of the rotational forcing

ωn =

√
EI

M
K2n . (6)

For a fixed Kn, the given boundary conditions lead to the solution

ηn(x) = c1n

{
[cosh(Knx) − cos(Knx)]

+
cos(KnLB) + cosh(KnLB)

sin(KnLB) + sinh(KnLB)
[sin(Knx) − sinh(Knx)]

}
,

(7)

with the free constant c1n. The constant c1n is determined from the initial
condition. Figure 2 shows the shapes of the first four modes.
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Table 1: Lengthwise vibration frequencies (Hz) for calculations at different
rpm (Revolutions per minute) for Euler–Bernoulli theory and Finite Element
computations.

Mode Euler–Bernoulli Finite Element
Frequency rpm Frequency rpm

1 1.23 74. 1.36 81.6
2 7.73 463.9 8.72 523.2
3 21.66 1298.8 38.4 2304.
4 42.42 2545.3 80.8 4848.

Table 1 reveals that the first two values of frequency for the lengthwise
modes are similar to the finite element simulation data provided by Hyper Q
Aerospace. The details of the finite element simulations were not provided by
Hyper Q Aerospace, as they are commercial in-confidence.

The third value differs; however, it is possible the third mode is missing, in
which case the alignment is quite good. Results indicate that the second and
third modes are the most relevant for the Hyper Q Aerospace design.

The comparison of the cross-wise oscillations, seen in Table 2, is less accurate
due to the short distances involved, making the results much more susceptible
to small variations in the parameters. The results are computed in isolation,
rather than as part of the whole blade vibrating (as in the fem) and as a
consequence this difference is to be expected. However, importantly, the
cross-wise oscillations are at a much higher frequency and so are of almost no
concern to Hyper Q Aerospace (personal communication).

The Euler–Bernoulli theory is quickly deployed to compute variations to the
standard design. Here we demonstrate this by considering another mass
added at the end of the beam/blade. This analysis is the same as before
except for a modification to the free-end shear moment (3) to produce

EI
∂3η

∂x3
=M1ω

2η(LB) at x = LB . (8)
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Table 2: Crosswise vibration frequencies (Hz) for calculations at different
rpm (Revolutions per minute) for Euler–Bernoulli theory and Finite Element
computations.

Mode Euler–Bernoulli Finite Element
Frequency rpm Frequency rpm

1 7.67 460. 6.42 385.2
2 48.08 2885. 24.8 1488.
3 134.63 8078. 48.9 2934.
4 263.82 15829. 100.5 6030.

The general solution (4) remains the same. The boundary conditions lead to
the matrix equation

1 0 1 0

0 1 0 1

cosh(KLB) sinh(KLB) − cos(KLB) − sin(KLB)
A B C D



c1
c2
c3
c4

 = 0 , (9)

and further

A = A(K,ω,M1, LB) = sinh(KLB) +
M1ω

2

K3
cosh(KLB), (10)

B = B(K,ω,M1, LB) = cosh(KLB) +
M1ω

2

K3
sinh(KLB), (11)

C = C(K,ω,M1, LB) = sin(KLB) +
M1ω

2

K3
cos(KLB), (12)

D = D(K,ω,M1, LB) = − cos(KLB) +
M1ω

2

K3
sin(KLB). (13)

A non-trivial solution exists when the determinant of the 4× 4 matrix in (9)
is zero, and using that relation we derive Kn. Again, as for the lengthwise
case, Kn and ωn are related by equation (6).

Figure 3 shows the first four modes of vibration lengthwise when a 0.5 kg
weight is added to the end of the blade. Figure 4 shows the effect of the
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Figure 3: modes
of lengthwise
oscillation with a
0.5 kg mass
added to the end
of the blade.
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Figure 4: the
effect of the mass
on the frequency
of the critical
harmonics. As
the load on the
end is increased
the critical
frequency
decreases
slightly.
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weight on the critical frequencies of these four modes. As more weight is
added, the critical values reduce slightly.

This section has shown that, given the appropriate data, the important
vibration modes can be quickly calculated for any configuration that the
manufacturer wishes to deploy. A range of possible configurations can quickly
be tested for appropriateness and to ascertain the likelihood of interactions
with other components.

3 Aerodynamic Performance

One of the most important components of a helicopter design is the lift
generated by the rotors. In the design of Hyper Q Aerospace, there are two
counter-rotating blades, rotating at a speed of between 250–1500rpm. Each
blade of a helicopter produces an average lift L, and so the total lift on a single
rotor helicopter is estimated by summing over all lifting surfaces. However,
the total lift in this two rotor configuration is changed by the interaction of
the air from the different blades.

We adopted a staged process in investigating the properties of such a system.
Flow past a single airfoil was considered to gain a general understanding of the
region-of-influence in the surrounding air and the lift generated. The work of
aerodynamics pioneers including application of the Joukowski transformation
and thin airfoil theory [2, 5, 6, 9] was used to examine the lift generated by
different wing configurations. These classical results, many of which were
produced in the early part of the 20th century, provide very accurate and
relatively simple computations for lift on a single airfoil of any reasonable
single blade profile. The results provide a good approximation to the local flow
without the undue complication of a full computational fluid dynamics (cfd)
simulation, and also enable some general conclusions to be drawn about the
features of the flow and wing shapes. Hyper Q Aerospace indicated that they
did not wish for the misg to conduct full cfd simulations.
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To gain some understanding of the impact of the presence of other lifting
surfaces in close proximity, we then consider the interactions in the flow past
the wings of a bi-plane, since this incorporates some of the features we seek,
yet can still be considered in a steady flow context.

However, for a helicopter with coaxial rotors moving in opposite directions
the reference frame in which the wing or blade is stationary and the air flows
past is not applicable because the problem is changing with time (unsteady).
In order to be able to investigate lift and air pressure, we are interested in
finding the streamlines as the blades of the counter-rotating airfoil discs pass
each other. Finally, we attempt to infer the resulting behaviour by what we
learnt from these relatively simple calculations.

The traditional approach in aerodynamics is to assume steady, irrotational
flow of an inviscid, incompressible fluid, in which case the problem to solve
for flow past an object is to find a velocity potential, φ(x, y), that satisfies

∇2φ = 0 on Θ , (14)
∇φ · ~n = 0 on ∂Θ , (15)

∇φ→ ~U as (x, y)→∞ , (16)

where Θ is the fluid domain, ~n is the outward normal to the surface, ∂Θ, of all
bodies in the flow, and ~U is the velocity of the free air stream. The velocity
potential is used to obtain the horizontal velocity component as u = φx
and the vertical component as v = φy . Condition (15) represents that the
air cannot pass through the surface of the body, whereas (16) ensures that
the air flow should approach the free-stream value, ~U as the distance from
the wing increases.

3.1 A single airfoil

We begin with a study of flow past a single airfoil. One method that provides
a deep understanding of such flows involves the use of the famous “Joukowski”
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transformation [5, 7] and this method is used to consider some general features
of the flow. In this technique, the flow past a circular cylinder is transformed
into flow past a vast range of airfoil shapes, both symmetric and cambered,
using complex-variable theory in two dimensions. The assumption of two-
dimensional flow means that the theory does not consider end effects, but
it does highlight the main factors affecting the flow and generating the lift.
Section 3.1.4 considers what is known as thin-airfoil theory as this can be
extended to a configuration with two wings, such as in a bi-plane. This
enables us to consider the impact of the second lifting surface.

3.1.1 Joukowski map

The important feature of this method [5, 7] is the mapping of the shape of a
circle into an airfoil shape using conformal mapping. We demonstrate how
this transformation modifies a cylinder to a symmetric or cambered airfoil,
although for simplicity we only do computations for a symmetric case. Once
this transformation is known for a particular shape, then the flow is computed.
Consider a circle of radius 1+ ε centred at (−ε, 0) in the complex z = x+ iy
plane (where i =

√
−1). The mapping

f(z) =
z

2
+
1

2z
. (17)

takes this circle in the z-plane to a symmetric airfoil in the f-plane. Since
the equation for flow past a cylinder is known, we transform this flow to that
past any object mapped under this transformation. Figure 5 shows the result
for the mapping for the case where ε = 0.3 . If the circle is symmetric about
the horizontal axis, then the resulting airfoil is symmetric. Therefore, to
introduce a camber to the airfoil, we vertically offset the centre of the circle
to be (−ε, δ) for some small positive δ. Figure 6 shows an airfoil for ε = 0.3
and δ = 0.1 .

As an example, we consider the standard NACA0012 airfoil. The numbers
indicate the shape of the airfoil; the first two digits give the amount and
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Figure 5: The result of a transformation of a circle of radius 1.3 and centre
(−0.3, 0) under the Joukowski map, for the case with ε = 0.3 .
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location of the camber, whereas the last two indicate the maximum thickness as
a percentage of the chord length. Thus, this is a symmetric airfoil in which the
maximum thickness is 0.12 times the chord. This is not typical of a helicopter
blade for which the ratio is much larger. Importantly, typical helicopter blades
are thinner than this, but these calculations are for demonstration purposes
only. In order to consider the flow past this shape, we must choose ε so that
the resultant airfoil has the maximum thickness of h = 0.12 of the chord, c.
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Figure 6: The result of a Joukowski transformation of a circle of radius 1.3
and centre (−0.3, 0) for the case with ε = 0.3 and δ = 0.1 , introducing a
camber to the shape.
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The width of the chord line, as dependent on ε, is

c(ε) = |f(1) − f(−2ε− 1)| =
2(ε+ 1)2

2ε+ 1
. (18)

Likewise, the thickness is dependent on ε via

h(ε) =
∣∣f[ε+ (ε+ 1)i] − f[ε− (ε+ 1)i]

∣∣ = 2ε(ε+ 1)2

ε2 + (ε+ 1)2
. (19)

The thickness ratio, defined as AT = h/c , is

AT (ε) =
h(ε)

c(ε)
=

ε(2ε+ 1)

ε2 + (ε+ 1)2
. (20)

Solving for ε, we find the positive solution is

ε =
−2AT + 1−

√
−4A2T + 4AT + 1

4(AT − 1)
. (21)

For AT = 0.12 , we find ε ≈ 0.123 . Figure 7 is a plot of this symmetric airfoil
using the Joukowski map.

3.1.2 Airstream

In complex variables, the most general equation for the complex potential for
flow past a cylinder, with centre (−ε, 0) and radius R = 1+ ε , is

G(z) = φ(x, y) + iψ(x, y) = U

[
z+

(ε+ 1)2

z+ ε

]
− iΓ log(z+ ε), (22)

where U is the speed of the free air stream and z = x + iy . The real
part, φ(x, y), is the velocity potential and the imaginary part, ψ(x, y), is
known as the streamfunction. As an analytic function, the real and imaginary
parts satisfy Laplace’s equation (14). The derivative of the velocity potential
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Figure 7: The NACA0012 airfoil represented by the image of a Joukowski
map with ε = 0.123 .
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provides the velocity field, f ′(z) = u − iv = φx − iφy of the air. The
streamfunction has the property that in steady flow the air flows along lines
for which the value of the streamfunction is constant (called streamlines). The
second, log term is a circular flow, called a vortex, situated at the centre of the
circle. The quantity Γ is called the circulation and represents a “rotating” flow
around the circle. For flow past an object, the inclusion of this term represents
an infinite number of possible solutions via different values of Γ . This non-
uniqueness is resolved by what is known as the “Kutta-condition” [6, 9], that
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stipulates that, for a wing with an aerodynamic tail in normal flight, the flow
will separate smoothly from the trailing edge. It turns out that lift on the
wing is directly proportional to the value of Γ , via the relation

L = ρUΓ, (23)

where ρ is air density. The top plot of Figure 8 shows the streamlines of this
solution for flow past a cylinder and the bottom plot shows the corresponding
streamlines for flow past the airfoil shown in Figure 7. We see that airstreams
are affected further away from the cylinder than for the airfoil, as expected
due to the smoothness of the surface and separation. In this example, due to
the symmetry and that there is zero angle of attack, the value of Γ = 0 and
there is no lift on the wing.

Although the air is disturbed around the airfoil, it is only over a relatively
small region, not much more than the length of the airfoil.

3.1.3 Angle of Attack Considerations

In the case of a symmetric airfoil, the only way to generate lift in open air
is to tilt the airfoil slightly upward into the oncoming flow. This tilting is
called the “angle of attack” and leads to an asymmetry in the flow causing
the pressure above the airfoil to decrease as the relative air speed increases,
and the pressure below to increase, due to a slightly lesser increase in speed.
It is the difference in pressure above and below the wing that causes the lift.

As the angle of attack α for an airfoil increases, the airstreams are also affected.
It is convenient to rotate the airstream slightly rather than the airfoil, giving
the modified potential

G(z) = U

[
ze−iα + eiα

(ε+ 1)2

z+ ε

]
− iΓ log(z+ ε). (24)

To satisfy the Kutta condition, the velocity of the airstream at the point on
the sphere that maps to the tail of the airfoil under the transformation must
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Figure 8: Plot of the airstreams about a cylinder (top) and the flow past the
transformed shape after the Joukowski map (bottom). The angle of attack is
zero and the objects are symmetric, so no lift is generated on either shape.
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be zero, ensuring that the separation from the tail is smooth. Thus for a
given angle of attack α,

dG

dz

∣∣∣∣
z=1

= 0 =⇒ Γ = −2U(ε+ 1) sin(α). (25)

For small angles of attack, sinα ≈ α , and so the relation between angle of
attack and lift is almost linear. Typically, to avoid stall (and the separation
of the boundary layer and loss of lift), α < 10◦. The airstream computed
with (24) is shown in Figure 9. The separation from the trailing edge is
smooth. Once the air has passed the airfoil it resumes its travel at angle α.

3.1.4 Thin Airfoil Theory

One of the oldest theories for lifting surfaces is known as thin-airfoil theory [6,
1]. It is more general than Joukowski transforms and has the advantage
of providing some nice “rules of thumb” about lifting surfaces. It is a very
powerful approach that allows for analytical calculations of lift for a number
of different shapes predicated on wings generally being very thin. Given this
assumption, everything is expanded about the line y = 0 in two dimensions.
The wing is assumed to lie along −l < x < l , where the chord length c = 2l ,
and an expansion is performed about y = 0 to compute variations for angle
of attack and curvature. The potential φ = Ux + O(ε2) is broken up into
odd and even components, where ε is the ratio of wing thickness to chord of
the wing and U is the velocity. By symmetry the even component cannot
contribute to the lift on a single airfoil, and so it remains to solve for the odd
component. Setting φ = Ux+Φ , the problem becomes

∇2Φ = 0 , (26)
Φy = Uf±x on y = 0±, for − l < x < l , (27)
Φ→ 0 as (x, y)→∞ , (28)
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Figure 9: Plot of the airstream for the NACA0012 airfoil at angle of attack
α = 10◦. The circulation value for this example is Γ ≈ −0.39 , computed
from (25).
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where f±(x) are the upper and lower surface of the wing and f̄(x) = (f+(x) +
f−(x))/2 is the centreline of the wing. A solution is obtained by using a
vortex distribution along the wing, that is,

Φ(x, y) = −
1

2π

∫ l
−l

γ(ξ) arctan

(
y

ξ− x

)
dξ . (29)

If (x, y)→∞ , then Φ(x, y)→ Γ
2π

arctan(y/x), where Γ =
∫l
−l γ(ξ)dξ is the

total vortex strength, effectively the circulation, and then the lift per unit
span is −ρUΓ . Making the appropriate substitutions, the problem becomes a
singular, first-kind integral equation for the vortex strength γ(x),

1

π

∫ l
−l

γ(ξ)

x− ξ
dξ = 2Uf̄ ′(x). (30)

This is solved as
γ = γ0(x) +

Γ

2π
(l2 − x2)−1/2, (31)

where the second term is a solution to the homogeneous form of the integral
equation (30), and

γ0(x) = −
(l2 − x2)−1/2

π

∫ l
−l

(l2 − ξ2)1/22Uf̄ ′(ξ)

x− ξ
dξ (32)

is the particular solution [11]. This ultimately gives an expression for the
total vortex strength for any thin airfoil shape of

Γ = 2U

∫ l
−l

√
l+ ξ

l− ξ
f̄ ′(ξ)dξ . (33)

The value of Γ must be chosen to ensure that the velocity at the trailing edge
is finite. This Kutta condition is the determining factor in the computation
of Γ and hence the lift.

As a simple example, the theory solves for a flat plate at an angle of attack α,
giving L = 2π sinαρU2l for the lift. From equation (33), that lift L is a



3 Aerodynamic Performance M64

weighted average of the local angle of attack, where the weight function
is
√
(l+ x)/(l− x), which is largest as x approaches l, the trailing edge.

Therefore, to maximize the lift on a single airfoil it is better to have a larger
angle of attack, but to concentrate it locally near to the trailing edge. Thus
wings with camber are more efficient.

This method is used to estimate the lift on a blade at any angle of attack
and at any air speed. However, the interaction effect from other blades is
not present in these calculations. One approach to study what the effect of
another blade might be, is to consider a second blade nearby, such as in a bi-
plane configuration. This has the advantage that we are still able to consider
the flow as steady, which is mathematically much easier. However, these are
very complicated calculations, and so, in Section 3.2, we also demonstrate
a different, reasonably simple, numerical approach to compute the lift and
interaction between two blades.

3.2 Bi-plane calculation

We assume that the actual direction of travel of the blades with respect to
each other has little significance, or that transient effects are minimal, and
consider flow past two airfoils, such as in a bi-plane, to try to ascertain the
effect on lift.

A similar theory to thin airfoil theory is followed for a biplane by incorporating
a second “plate”. The theory requires a complex mapping procedure to an
alternative complex plane in which the two “wings” are aligned along the axes,
and it is then possible again to satisfy the Kutta condition. The details are
rather complicated as detailed by Munk [8].

Ultimately, the equation for the lift is

L = 4πρU2l
(
B sinα+

√
B sinα0

)
, (34)

where B is a rather complicated constant that represents the separation
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between the wings and α0 is the angle of attack for which the cambered
wing has zero lift. In the case of a symmetric wing (no camber), α0 = 0 . In
general, B is substantially less than one, but as the wings get further apart
B → 1 and so the lift approaches that of two separate wings. If the wings
get close together then the lift of the combined wings is less than the lift
on the two wings as monoplanes. This is known as the biplane effect. Thus
1− B represents the decrease in lift due to the angle of attack and 1−

√
B

that due to the curvature. Therefore, the reduction in lift due to angle of
attack is greater than that due to camber in the bi-plane configuration. At
the same time, it is possible to compute the repulsive force and the induced
drag between the two wings [8, 9].

This theory assumes the two wings are vertically aligned (no stagger), but is
modified by Munk [8] to include vertical stagger and thus the changes in lift
experienced if the two wings are vertically offset. Since, in potential flow, the
fundamental equation has no explicit dependence on time, this would provide
a first estimate of how the blades interact as they pass each other.

3.2.1 A numerical approach

We compute the flow past any number of objects using a numerical scheme
based on fundamental solutions to Laplace’s equation (14). The linearity of
the equation allows us to take a linear combination of known solutions. Thus
we make this ansatz,

φ = Ux+

N∑
j=1

{
Γj

2π
arctan

y− ycj
x− xcj

+

n∑
k=1

mjk log
[
(x− xjk)

2 + (y− yjk)
2
]1/2}
(35)

where (xjk, yjk) are n interior points of the N airfoils, Figure 10, representing
sources and sinks, and (xcj, ycj), j = 1, . . . ,N , are appropriately chosen
points within each of the wings. In a bi-plane configuration, N = 2 . The
sources (mjk with positive sign) and sinks (mjk with negative sign) need to
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Figure 10: An airfoil blade made up
of sources and sinks (green points).
The boundary condition (15) is
enforced at the red points so that
there can be no flow through the
surface of the airfoil. The blue arrows
represent the normal vectors ~n.

-2 -1 1 2 3 4 5

-2

-1.5

-1

-0.5

0.5

1

1.5

2

be balanced to close off each of the bodies, which imposes the conditions

n∑
k=1

mjk = 0 for j = 1, . . . ,N . (36)

The Ux term in equation (35) describes the mean horizontal flow that the
blades encounter. In equation (36), the weights mjk, k = 1, . . . , n , j =
1, . . . ,N , are unknown and have to be found numerically to satisfy the
boundary condition (15) at n boundary points. Together with equation (36)
we obtain a linear system of equations for the vector of unknown coefficients.
The final step is the choice of Γj, j = 1, . . . ,N , that ensures the smooth
separation from the trailing edges, but this is a very difficult calculation.

Once the coefficients are known, we plot the contours of the velocity potential
function (35). These contour lines, for the case of a bi-plane, N = 2 , are
shown in the left panel of Figure 11 for Γ1 = Γ2 = 0 and are perpendicular to
the streamlines, shown in the right panel of Figure 11. Unfortunately, it is
quite difficult to satisfy the Kutta condition to determine the circulation and
hence the lift and so these calculations were not completed during the time
of the study group.
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Figure 11: Contour plot of the velocity potential function φ (left panel) and
the resulting streamlines.
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3.3 Other factors

Bi-planes are generally accepted to produce about 1.4 times the lift of a single
wing aircraft. So although there is extra lift in comparison, the bi-plane does
not provide as much lift as that due to two separate single wings.

The full problem of determining the air flow for counter-rotating blades is
very difficult but, after considering what had been learned during the week,
the group felt that some general conclusions could be drawn. When the
blades pass over and under one another the two interact in a manner that
can be thought of as a “ground effect”. Ground effect is the increase in lift
on an airfoil caused by the distortion of the air flow by the proximity of the
ground (or in this case the other blade). The ground effect on the upper
blade due to the lower blade increases its lift due to an increase in pressure
beneath. However, this pressure increase above the lower blade reduces the
lift on that blade. To some extent these effects will cancel during a hover,



4 Noise Footprint M68

while when moving forward the blade that is moving toward the direction of
travel will experience the greatest change. It seems likely that with the extra
impact of induced drag between the rotor blades, there will be some loss of
the total lift generated. If there are the same number of evenly spaced blades
on each rotor, then all of the blade crossings coincide and the effect occurs
simultaneously. If the upper and lower rotor blade numbers are co-prime,
then the blade crossings all occur separately, perhaps producing a smoother
lift profile during a single revolution.

4 Noise Footprint

The noise generated by a helicopter was considered via a literature search.
The findings indicate that most of the noise comes from only a few sources.
One source is the rotor itself. There is also the interaction of the rotor with the
tail-rotor (on a single main rotor aircraft), engine noise and other mechanical
noise. The largest components of the noise are in the lower frequency sounds
generated by the rotor itself.

In the design of the Hyper-Q Aerospace helicopter, much of the higher
frequency noise will not occur due to the nature of the electric motor, the lack
of a tail rotor and the direct drive on the blade system. The lower frequency
noise will come from the overlapping of the counter-rotating blades.

There is an exhaustive treatment of helicopter noise in the textbook by
Johnson [4]. In summary, if the number of blades in the rotor disc is N and
the rotor rotational speed or angular velocity is Ω [radians s−1], then the
textbook notes that the noise is usually around the harmonics of the blade
crossing frequency, which is NΩ. The largest component of noise therefore
has period TP = 2π/NΩ .

For a coaxial system, with rotor discs of N and M blades, respectively, and
assuming both discs counter-rotate at the same angular velocity, there will
be 2NM blade rendezvous per full revolution. If N =M , and both discs are
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such that the blades are symmetrically arranged, then these rendezvous will
align, which leads to a significant increase in rotor noise.

However, another possibility is to select the second rotor disc with a different
number of blades, and to choose N and M to be co-prime. In this case,
assuming an asymmetric blade arrangement, the 2NM rendezvous will all
occur at different times, thus reducing the noise footprint. An even more
extreme approach is to replace one rotor by rotating weights to counter the
imbalance in angular momentum and avoid the problem of crossing blades.

5 Final Comments

The study group considered several factors in the design of the helicopter.
Some general conclusions should be of use.

• Euler–Bernoulli beam theory provides a good estimate of the lengthwise
vibration modes in the rotor blades, and can be implemented quite
easily to compare with other vibration modes in the aircraft. Results
indicate it is the second and third modes that are most important.

• Aerodynamic analysis shows that lift on blades is generated by angle of
attack and camber. Thin airfoil theory shows that camber toward the
rear of the blade has the most impact on generating lift.

• Lift on a biplane provides some indicators of the lift on the blades of
the twin rotor as they overlap, and demonstrates that the total lift is
less than the combined lift of the two blades separately.

• The reduction in lift on a bi-plane is less if the blades are further apart,
also reducing their repulsive force (which is likely to impact on both
vibration and noise). In a bi-plane, the reduction in lift as the two
wings get closer in cambered wings is less than the loss in lift due to
angle of attack.
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• Noise generation comes mainly from the rotor crossings and so contem-
plation of how the two rotors are configured would be very worthwhile.

This is a very interesting problem and it is clear that much more work could
be done to develop the models considered here. It is beyond the scope of
this study to consider these factors, but this work provides some important
pointers for future work.
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