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Abstract

My dissertation focuses on issues related to the technical efficiency of energy firms as well

as the integration of U.S. natural gas markets during the era of shale gas expansion of the early 2000s.

In the first chapter, I use nonparametric methods to estimate changes in efficiency and productivity

of natural gas pipelines in the U.S. during the period of shale gas expansion during 2007–2018. This

period, known as the Shale Revolution, saw an increase in shale gas production from less that 5

billion cubic feet per day (BCF/d) in 2007 to over 60 BCF/d in 2018. This increase in production

coincides with increases in capacity and infrastructure improvements to the transportation network of

natural gas pipelines. Previous research in energy economics has not examined changes in efficiency

and productivity of natural gas pipelines during the Shale Revolution using modern nonparametric

techniques. To guide my estimation procedure I use new nonparametric tests to make inference on the

properties of the production set of pipelines. These nonparametric tests indicate that the production

set for pipelines changes with production year, is convex, and does not exhibit constant returns to

scale. Moreover, I find strong evidence of increases in the technical efficiency and productivity of

pipelines during the period of shale gas expansion from 2007 through 2018.

In the second chapter, I use nonparametric methods to estimate changes in productivity

and efficiency of major electric utilities in the U.S. during 2001–2019. Starting in 2007, an increased

supply of natural gas resulted in large-scale adoption of natural gas fueled energy production as well

as an overall increase in installed generating capacity. Data on major electric utilities, collected by

the Federal Energy Regulatory Commission (FERC), indicate that the overall installed generating

capacity of utilities increased by 13 percent during 2001–2013, with an increasing share of capacity

coming from plants fueled by natural gas. However, this increase in capacity coincides with a

decrease in the growth of utility-scale electricity consumption and a 12 percent decrease in utility
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energy generation. The evidence suggests a decline in the productivity of energy generation from

electric utilities during the sample period. In addition, using modern nonparametric techniques

reveals a decrease in mean technical efficiency of utilities during the period of decline in energy

generation. Finally, other modern nonparametric tests show that the production frontier of electric

utilities changes depending on the production year and share of natural gas fueled generating capacity

a utility has out of their total capacity. This indicates that nonparametric efficiency estimates should

be conditional on time and the share of natural gas fueled generating capacity.

In the third chapter, I use unit root tests to measure the degree to which geographically

dispersed natural gas markets in the U.S. became integrated into the same market from 1996 through

2019. Previous papers examining natural gas market integration in earlier periods suggest that some

regional natural gas markets in the U.S. became integrated into the same market during the early

1990s. This was likely the result of regulatory reform instituted by FERC in the late 1980s and

early 1990s. Nonetheless, previous studies also indicate that some regions remained distinct markets,

particularly the eastern and western U.S. Unit root tests of the price-gaps between geographically

dispersed price hubs fail to reject that the eastern and western gas markets were distinct markets

prior to the early 2000s. After 2001 a higher proportion of the east and west price-gaps became

stationary, suggesting that more price hubs in each region responded to similar market shocks.

This provides some evidence that the eastern and western U.S. natural gas markets may have been

integrated into the same market starting in the early 2000s. Moreover, the qualitative results of this

paper hold under four different unit root tests.
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Chapter 1

Nonparametric Benchmarking of

Natural Gas Pipelines: Changes in

Productivity and Efficiency of

Natural Gas Pipelines During The

Shale Revolution

1.1 Introduction: Natural Gas Transportation

Most natural gas production occurs far away from major population centers or market

regions. Transporting natural gas from the wellhead to a market region requires a vast network

of pipelines and processing facilities. Pipelines that cross state boundaries, or interstate pipelines,

account for approximately 63 percent of natural gas pipelines in the U.S., while the remaining

37 percent are smaller intrastate pipelines or local delivery lines. The Federal Energy Regulatory

Commission (FERC) oversees interstate pipelines’ construction approvals, shipping rates, and con-

tracts.
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FERC considers two events in the past 30 years to be highly important to the natural gas

pipeline industry. The first event was the unbundling of the sale (marketing) and transportation

of wholesale natural gas. Prior to 1992, pipelines were vertically integrated firms that transported

and marketed natural gas at a “bundled rate” to customers, such as local distribution companies.

These vertically integrated pipeline firms could reduce competition in the sale of gas by preventing

competing marketers from using their pipelines. In 1992, FERC instituted regulation under FERC

Order 636 which required pipeline firms to unbundle the marketing and transportation of natural

gas. FERC’s goal was to allow marketers to compete in a deregulated competitive market. However,

FERC Order 636 still regulates pipelines and prohibits them from marketing gas. Thus, pipelines can

only operate as transporters of natural gas, and they cannot discriminate in the choice of marketers

they transport gas for.

The second major event was the rapid increase of U.S. shale gas production, which started

around 2007 and resulted from technological improvements in gas and oil production. This period,

known as the Shale Revolution, started with developments in fracking and directional drilling which

made shale gas economically feasible to extract. Figure 1.1 shows average daily production levels

of shale gas by shale bed from January 2000 through December 2018. During this time, U.S. shale

gas production increased from under 3.6 billion cubic feet of gas per day (BCF/d) to 65.7 BCF/d,

an increase by a factor of 18.25 in daily production levels. Because of this, marketers needed an

expanded pipeline network to transport larger volumes of produced gas away from wellheads to

markets. FERC Order 636 prohibited marketers from developing their own pipelines to transport

gas, thus pipeline companies responded to the increased demand for gas transportation and devel-

oped more marketer financed pipeline projects to connect shale beds to markets. Marketers that

contract with pipelines to help finance the development of a new pipeline, in exchange for a share

of capacity on the pipeline to transport gas, are known as anchor shippers. Figure 1.2 shows new

pipeline capacity attributed to anchor shippers during 1999–2017, and depicts an upward trend in

pipeline capacity attributed to anchor shippers since 2007. In addition, anchor shipper capacity at-

tributed to natural gas producers increased in the years after the start of the Shale Revolution. This

suggests there was an increased need for pipelines to transport gas away from production regions to

markets.

To make inference on changes in the technical efficiency and productivity of U.S. natural
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gas pipelines during the Shale Revolution, I use free-disposal hull (FDH) and data envelopment

analysis (DEA) estimators. These estimators involve enveloping a sample of observed inputs and

outputs of firms to estimate the production set and frontier (i.e. the set of efficient input and

output combinations). My sample contains annual data on the inputs and outputs of U.S. natural

gas pipelines during the years 1996–2018, a period that encompasses the Shale Revolution which

started around 2007. While there are many papers that estimate the efficiency and productivity of

natural gas pipelines in the U.S., to my knowledge, none examine efficiency or productivity trends

of pipelines during the Shale Revolution while using modern nonparametric techniques.

Given the increase in natural gas production during the Shale Revolution, coupled with

Order 636, regulators at FERC began to recognize a greater reliance on natural gas pipelines to

serve electrical load in 2012, as they began to hold series of conferences on gas and electric system

coordination (Annibali et al., 2012). The increase in natural gas supply resulted in the drop of the

price of U.S. natural gas, and this changed the relative price of natural gas to other fuel sources,

such as coal. This led to the adoption of more gas-fired energy generation and a substitution

away from coal-burning power plants. Moreover, natural gas is also a fuel used by pipelines to

power compressor stations. Thus, pipelines faced a changing cost set during the Shale Revolution.

Furthermore, Kahn (1971) and O’Neill (2005) explain that natural gas pipelines are oligopolies

where several pipelines may serve the same market. Increased pipeline build out during the Shale

Revolution may have enhanced inter-pipeline competition for shipping contracts to transport shale

gas to similar markets. This may have resulted in the adoption of cost saving technology by some

pipelines. Dreskin and Boss (2010) comment on technological changes in pipelines during the early

periods of the Shale Revolution. They argue that many pipelines began to serve similar markets

and discuss how this created an incentive to reduce costs. Technological improvements such as more

powerful compressor stations and increased pipeline operating pressures to transport gas increased

the throughput volume of pipelines at a lower operating cost. Consequently, pipelines faced increased

utilization and cost improvements during this period. This paper adds to the energy economics

literature by shedding light on how the technical efficiency and productivity of pipelines changed

during the Shale Revolution.

This paper also adds to the literature on pipeline efficiency by using recently developed

nonparametric methods to make inference. Although studies use nonparametric methods to examine
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pipeline technical efficiency (e.g. Jamasb et al. (2008) and Nieswand et al. (2010) both use DEA

to estimate efficiency of pipelines just prior to the start of the Shale Revolution), to my knowledge

previous studies of natural gas pipelines only report point estimates of pipeline efficiency and do not

make inference on the properties of the production set, changes in efficiency over time, nor anything

else. I use modern techniques to make inference on changes in technical efficiency over time and

test for properties of the production set to guide selection of an appropriate estimator. These tests

include tests of (i) changes in the production frontier due to environmental factors, (ii) convexity of

the production set and (iii) returns to scale of the production set.

Prior research on interstate pipelines is also limited to small sample sizes. Nonparametric

efficiency estimators are similar to other nonparametric estimators as they suffer from the curse of

dimensionality. It is well-known that the convergence rates of nonparametric efficiency estimators

decrease as the dimensionality of the problem (i.e. the specified number of inputs and outputs)

increases, thereby increasing the order of estimation error. Jamasb et al. (2008) use the variable re-

turns to scale (VRS) and constant returns to scale (CRS) DEA estimators with 39 observations and

four dimensions. This may overstate the efficiency of pipelines as more pipelines will populate the

frontier without dimension reduction. See Kneip et al. (2015) and Wilson (2018) for technical details.

While Nieswand et al. (2010) use dimension reduction techniques on pipeline data used for DEA

estimation, they apply eigensystem decomposition of the correlation matrix which may not always

be reliable for dimension reduction. For this reason and others, Wilson (2018) proposes using eigen-

system decomposition of the moment matrix. Given the small number of pipelines observed in U.S.

pipeline data, this paper utilizes dimension reduction techniques so five dimensions can be specified

with a nonparametric frontier estimator that achieves the parametric rate of convergence.

The remainder of this paper is organized as follows. Section 1.2 discusses the statistical

model, estimators of efficiency, and tests for properties of the frontier. Section 1.3 discusses the

sample used to estimate efficiency. Section 1.4 reports the results and findings of the estimates.

Finally, a summary and overview of the conclusions are reserved for Section 1.5.
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1.2 Statistical Model

1.2.1 Modeling Conditional Efficiency

To model pipeline efficiency, I use conditional efficiency measures which were first described

by Cazals et al. (2002), and later discussed by Daraio and Simar (2005, 2007a,b) and Daraio et al.

(2018). Consider a process that generates random vectors (X,Y, T ). Inputs are denoted X ∈ Rp+,

while Y ∈ Rq+ are outputs, and T ∈ R1 indicates the production year. To establish notation let

the lower case letters (x, y, t) indicate particular realizations of the above random vectors. The

production set, ignoring T ,

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y}, (1.1)

is all the pairs of input and output quantities that are feasible given the production technology.

However, as described in Section 1.2.3, the production year may affect the boundary of the production

set. Conditioning on T leads to the conditional production set,

Ψt = {(x, y) ∈ Rp+q
+ | x can produce y when T = t}, (1.2)

which consists of all input and output quantities that are feasible given the production technology

in year t. The efficient frontier of (1.2) is defined as the extreme points of Ψt, or

Ψt∂ = {(x, y) ∈ Ψt | (γ−1x, γy) /∈ Ψt ∀ γ > 1, T = t}. (1.3)

Several assumptions about Ψt are made. These assumptions are similar to standard assumptions in

production theory, and follow that of Shephard (1970). Moreover, these assumptions are required

to use results established in Kneip et al. (2015), described in more detail below. I assume Ψt is

closed, (x, y) /∈ Ψt if x = 0, y ≥ 0, y 6= 0 (all production requires the use of some inputs), and

∀(x, y) ∈ Ψt, (i) x̃ ≥ x =⇒ (x̃, y) ∈ Ψt, and (ii) ỹ ≤ y =⇒ (x, ỹ) ∈ Ψt (the production set allows

for strong disposability). Assuming that Ψt is closed implies that the set of efficient points, or the

frontier, is contained in the production set (i.e. Ψt∂ ∈ Ψt). The second assumption ensures there is

“no free lunch”, or the production of a nonzero output vector requires the expenditure of a nonzero

input vector. Finally, strong disposability imposes weak monotonicity of the frontier.
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In a given year t, I observe data on inputs and outputs at the level of the pipeline. A

pipeline’s technical efficiency is measured by their distance from their observed input and output

quantities to Ψt∂ . The Farrell (1957) input efficiency measure,

θ(x, y | t) := inf{θ | (θx, y) ∈ Ψt}, (1.4)

indicates by how much firms must proportionally scale back inputs while producing the same level

of output to operate on Ψt∂ . Likewise, the Farrell (1957) output efficiency measure,

λ(x, y | t) := sup{λ | (x, λy) ∈ Ψt}, (1.5)

indicates by how much firms must proportionally expand output given the same level of inputs to

operate on Ψt∂ . As shown in Wilson (2011, Figure 6.1) a firm operating off of the efficient frontier

can have differing input and output measures of efficiency. Thus, the hyperbolic graph measure of

efficiency,

γ(x, y | t) := inf{γ > 0 | (γx, γ−1y) ∈ Ψt}, (1.6)

proposed by Färe et al. (1985), indicates the amount a firm must simultaneously scale down inputs

and increase output by the same factor, γ, to operate on Ψt∂ . The benefit of (1.6) is that a firm’s

distance to the frontier is measured along a hyperbolic path and this avoids the issue of a firm having

differing measures under (1.4) and (1.5).

1.2.2 Estimation Methods

Of course Ψt is not observed and must be estimated with a random sample of inputs and

outputs by production year, Sn = {(Xi, Yi, Ti)}ni=1, where i indexes the pipeline. Different nonpara-

metric efficiency estimators require different assumptions about the properties of the production

set. To begin, Deprins et al. (1984) propose estimating the FDH of the observed input and output

vectors in Sn, or

Ψ̂FDH,n :=
⋃

(Xi,Yi)∈Sn

{(x, y) ∈ Rp+q | y ≤ Yi, x ≥ Xi}, (1.7)

to estimate the production set. Daraio and Simar (2005) discuss conditioning FDH estimates with

respect to variables that may impact the boundary of the production set. In my case, if the produc-
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tion year impacts the frontier of the production set, the FDH estimator conditional on T ,

Ψ̂t
FDH,n :=

⋃
(Xi,Yi)∈Sn

{(x, y) ∈ Rp+q | y ≤ Yi, x ≥ Xi, T = t}, (1.8)

allows for the frontier to vary depending on T .

While the FDH estimators do not impose convexity on the production set, DEA estimators

of the production set can be used if the productions set is convex. Farrell (1957) proposes DEA

estimators of the production set in the unconditional case. The unconditional VRS-DEA estimator

is given by the convex hull of (1.7), or

Ψ̂V RS,n := {(x, y) ∈ Rp+q | y ≤ Yω, x ≤ Xω, i′nω = 1,ω ∈ Rn+}, (1.9)

where X = (X1, ...., Xn) and Y = (Y1, ...., Yn) are (p× n) and (q× n) input and output matrices, in

year t, i′n is an (n×1) vector of ones, and ω is a (n×1) vector of weights. Daraio and Simar (2007b)

extend the VRS-DEA estimator to the conditional case, where in my application, conditioning (1.9)

on T obtains the VRS-DEA estimator conditional on T , or

Ψ̂t
V RS,n := {(x, y) ∈ Rp+q | y ≤ Yω, x ≤ Xω, i′nω = 1,ω ∈ Rn+, T = t}. (1.10)

If CRS is assumed, the unconditional CRS-DEA estimator estimates the production set as the

conical hull of (1.9), denoted Ψ̂CRS,n, which can be obtained by removing the constraint, i′nω = 1,

in (1.9). Similarly, the conditional CRS-DEA estimator, Ψ̂t
CRS,n,h, is obtained by removing the same

constraint from (1.10).

The conditional CRS-DEA, VRS-DEA and FDH estimators of efficiency are obtained by

replacing Ψt with Ψ̂t
CRS,n, Ψ̂t

V RS,n and Ψ̂t
FDH,n, respectively, into equations (1.4)–(1.6). Input

and output-oriented DEA estimates can be computed using linear programming methods, while

hyperbolic-oriented estimates are non-linear programs that can be solved using numerical methods

proposed by Wilson (2011). In addition, the FDH estimates can be solved using numerical methods

as well. See Wilson (2011) for technical details. Furthermore, all estimates and tests described in

this paper are done using the FEAR software developed by Wilson (2008).
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1.2.3 Testing Hypothesis

To guide my estimation procedure I conduct several tests. First I test whether the produc-

tion year affects the frontier. In this case, the production year can act as an environmental factor

since it may influence the production process. The issues of environmental factors with nonpara-

metric efficiency estimators have been discussed by Simar and Wilson (2011a,b) and Daraio et al.

(2018). In my case, the production year, T , can impact the distribution of efficiency estimates, the

efficient frontier, or both. If T only impacts the distribution of efficiency estimates, then all pipelines

in all production years face the same attainable frontier and FDH and DEA efficiency estimates do

not need to be conditioned on production year. In this case, the separability condition, as described

in Simar and Wilson (2011a,b) and Daraio et al. (2018), is said to hold with respect to T . However,

if T affects the frontier, unconditional FDH and DEA efficiency estimates are meaningless. In this

case, unconditional efficiency estimates will benchmark some firms in some production year t rela-

tive to a frontier that is not attainable in t. After I test for separability, I then test for convexity

versus non-convexity of the production set, then CRS versus VRS. These tests reduce the chance

of selecting an estimator that relies on assumptions that are inconsistent with the true structure of

the production set.

I test for separability along the lines of Daraio et al. (2018). In my application, the test

involves testing the null hypothesis of

H0 : Ψt = Ψ∀t ∈ T (1.11)

versus

H1 : Ψt 6= Ψ for some t ∈ T. (1.12)

The test for separability requires randomly shuffling the observations in the sample and splitting the

sample into two sub-samples of equal size, or differing by one if the cardinality of the sample is odd.

Using the FDH estimator, the procedure includes estimating unconditional efficiency (restricting the

frontier to be the same for all t ∈ T ) with the first sub-sample, and conditional efficiency (allowing

the frontier to change depending on t ∈ T ) with the second sub-sample. I use the test statistics

proposed by Daraio et al. (2018) to estimate the difference between the mean unconditional and

mean conditional efficiency estimates. Since this test relies on a random sample-split, the uncertainty
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from a single samples-split is reduced by using the information from multiple sample-splits through a

bootstrap procedure proposed by Simar and Wilson (2020). Using this method, I randomly split the

sample 100 times and calculate the sample average of the test statistics over the 100 splits. I then

use 1,000 bootstrap replications to estimate the p-value of the average of the test statistics. If the

average test statistic is statistically significant, separability is rejected. Moreover, the distribution

of p-values from the test statistics generated over the 100 sample splits are compared to the uniform

distribution on [0, 1] using the Kolmogorv-Smirnov (KS) test.1 Since the 100 p-values used to

construct the KS statistic are not independent, the bootstrap procedure discussed by Simar and

Wilson (2020) is used to estimate the distribution of the KS statistic and make inference on the

uniformity of the 100 p-values. If uniformity of the p-values is rejected, then separability can also

be rejected. For technical details see Daraio et al. (2018) and Simar and Wilson (2020).

In order to test for convexity versus non-convexity and CRS versus VRS, I use results

from Kneip et al. (2015, 2016) and Simar and Wilson (2020). Kneip et al. (2015) provide central

limit theorems for FDH and DEA efficiency estimates and Kneip et al. (2016) use these results to

develop specific tests for convexity, returns to scale, and differences in mean efficiency across groups

of producers. As with the test for separability, the tests for convexity and returns to scale rely on

randomly splitting the sample, but the uncertainty of doing so is reduced by using multiple sample-

splits through the bootstrap procedure proposed by Simar and Wilson (2020). Furthermore, I follow

the testing strategy of Apon et al. (2015, Figure 1) and test convexity before testing for returns to

scale.2 To test for convexity, I first randomly split the sample and obtain VRS-DEA estimates of

efficiency with one sub-sample and FDH estimates with the other.3 The test uses information from

1,000 bootstrap replications and 100 sample-splits to determine if the difference between the mean

VRS-DEA and FDH estimates are statistically significant. If so, convexity should be rejected. As

with the test for separability, I also examine the distribution of the 100 p-values generated from the

sample-splits and use the KS test as described above. In this case, if the uniformity of the p-values

is rejected the hypothesis of a convex production set should be rejected. If the test fails to reject

convexity, returns to scale are tested. The test for returns to scale is similar to the test for convexity,
1As discussed by Simar and Wilson (2020), the uniform distrbution on [0, 1] is the distribution of p-values under

the null hypothesis due to the probability integral transform.
2Apon et al. (2015) only test returns to scale if convexity is rejected. However, Kneip et al. (2021) examine

non-convex production sets with CRS frontiers.
3In both the test for convexity and returns to scale, the estimators are conditioned on T if separability with respect

to T is rejected.

9



but the FDH estimator is replaced with the CRS-DEA estimator. For technical details see Apon

et al. (2015), Kneip et al. (2015), Kneip et al. (2016), and Simar and Wilson (2020).

1.3 Data

1.3.1 Data on Natural Gas Pipelines and Variable Specification

The sample is an unbalanced panel of inputs and outputs by pipeline and production year.

The data collected contain information on U.S. natural gas pipelines during the years 1996–2018 and

were collected from the Form 2 Financial Data on Major Natural Gas Pipelines (Form 2) produced

by FERC. The Form 2 are financial and engineering data natural gas pipelines report to FERC and

are made publicly available. These are the most commonly used data for measuring productivity

and efficiency of natural gas pipelines in the U.S.

I specify pipelines as having p = 1 input, operating expenditure (OPEX), and q = 4

unique outputs including total delivery volume, total horsepower, length, and peak delivery volume.4

Jamasb et al. (2008) note that having a single monetary cost input avoids the issue of non-reporting

of some physical quantities of traditional inputs in the Form 2, such as tons of steel. In addition, I

assume that all pipeline firms face the same input prices in a given year t. Jamasb et al. (2006) and

Jamasb et al. (2008) note that pipeline costs are largely comprised of globally traded commodities,

such as steel, which is used to replace pipes and compressor station turbines, and natural gas, which

is used to fuel compressor stations. These input prices are unlikely to vary across pipeline firms.

Thus, with pipelines facing the same input prices in the same year, the input orientation measure of

technical efficiency, as described above, is the proportion by which the OPEX of producing output

quantities, y, can be reduced. This is a measure of cost efficiency as described in Simar and Wilson

(2019b).

Although input prices are assumed to not vary across firms, prices for natural gas declined

after the Shale Revolution. Thus pipelines face a different cost set over time due to technological

advances in natural gas production. To control for this Jamasb et al. (2008) suggest removing fuel

cost from the cost input measure. However, I choose to include fuel costs. Thus, tests for changes in
4Delivery volume is the quantity of gas delivered by a pipeline in a production year, measured in dekatherms.

Horsepower is the sum of the horsepower ratings across all compressor stations in a pipeline. Total length is the total
mileage of pipe in a pipeline. Finally, peak delivery volume is a proxy for a pipeline’s delivery capacity and measures
the largest daily delivery volume reported by a pipeline in a production year.
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efficiency over time will also reflect cost reduction due to technological advancement in the upstream

production of natural gas. Estimation results that do not include total fuel costs are reserved for

Appendix B.

The q = 4 outputs were chosen based of a review of previous studies evaluating the

efficiency of pipelines. Previous papers on natural gas pipelines use various specifications for inputs

and outputs. Table 1.1 contains a review of previous research examining the efficiency of pipelines.

Traditionally horsepower, length, tons of steel, or other measures of pipeline capacity have been used

as inputs, while delivery volume has been a common output. However, the ability to specify these

inputs and outputs was possible due to the availability of physical quantities of some additional

inputs such as labor. For example, Aivazian et al. (1987), Sickles and Streitwieser (1992), and

Granderson (2000), include labor as an input. To my knowledge, FERC Form 2 data productions

have not included data on pipeline employees since at least 1991. Thus, more recent studies, which

include Hess (2000), Jamasb et al. (2008), and Nieswand et al. (2010), do not include labor or

other physical inputs specified in older studies. In addition, studies that have used horsepower or

length as an input relied on parametric methods, with the exception of Sickles and Streitwieser

(1992). Therefore, I choose a specification of inputs and outputs that has been previously used for

nonparametric estimation of pipeline efficiency and relies on data currently available in the Form

2.

Two papers rely on nonparametric DEA estimation of pipeline efficiency using available

Form 2 data. Jamasb et al. (2008) examine 39 interstate pipelines from 1996–2004 and specifies two

models by stipulating delivery volume, total length, and compressor station horsepower as outputs,

while using total expenditure (TOTEX) as an input. This is known as TOTEX benchmarking,

where TOTEX is considered an input or expenditure on a pipeline, while outputs are seen as cost

drivers. The outputs of length and compressor station volume are included as capacity measures or

capital outputs. While the length of the pipeline may change seldom from year to year, horsepower

can be added fairly frequently. In addition, delivery volume captures a pipeline’s ability to compete

with other pipelines for delivery contracts. Jamasb et al. (2008) note that delivery volume accounts

for a pipelines ability to use better management, trading techniques, or other unobserved approaches

to increase throughput. Thus, under TOTEX benchmarking, efficiency measurements estimate how

well pipelines maximize output quantities (while holding TOTEX fixed), minimize TOTEX (while
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holding output fixed), or do both. The authors note the difficulties associated with measuring

TOTEX accurately, which includes measuring capital costs. They offer an alternative model where

revenue is utilized as an input variable.

Nieswand et al. (2010) offer a similar approach to Jamasb et al. (2008), however OPEX,

is used as an input. This is known as OPEX benchmarking. While OPEX includes operating and

maintenance expenditure, it excludes capital costs. While Jamasb et al. (2006) and Nieswand et al.

(2010) both note that TOTEX and OPEX are correlated measures, OPEX benchmarking avoids the

complication of the measurement error associated with recording capital costs. Like Jamasb et al.

(2008), Nieswand et al. (2010) include delivery volume, system length, and horsepower in their set of

outputs, but also include peak delivery volume as another proxy for pipeline capacity. As with TO-

TEX benchmarking, OPEX benchmarking estimates how well pipelines maximize output quantities

(while holding OPEX fixed), minimize OPEX (while holding output fixed), or do both. Nieswand

et al. (2010) also demonstrate the efficacy of dimension reduction with OPEX benchmarking and

their specified outputs.5 Because of this, I follow the approach of Nieswand et al. (2010) and have

the same specified inputs and outputs. Table 1.2 provides summary statistics for the sample of

specified inputs and outputs. In addition, Table 1.3 shows the number of pipelines observed in each

year of the sample, where the number of pipelines observed each year ranges from 43, in 1996, to

72, in 2018.

1.3.2 Dimension Reduction Method

The curse of dimensionality is a well known issue in nonparametric benchmarking, where

the convergence rates of DEA and FDH estimators decrease as the number of inputs and outputs,

p+q, increases. The rate of convergence for the VRS-DEA and FDH estimators have been established

by Kneip et al. (1998), Park et al. (2000), and Daouia et al. (2017). With p + q = 5 dimensions

the VRS-DEA estimator converges at rate n 1
3 , while the FDH estimator converges at a slower rate

n
1
5 .

To mitigate the slow rate of convergence, I use eigensystem methods along the lines of

Wilson (2018) to reduce the dimensionality of the problem. More specifically, I find the (n× 1) first
5Nieswand et al. (2010) reduce the dimensions of their sample through eigensystem decomposition of the correlation

matrix. As noted in Section 1.1, this may not always be reliable for dimension reduction. Because of this, and other
reasons noted in Wilson (2018), I use dimension reduction methods described in Section 1.3.2.
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principal component, Y ∗, of the moment matrix, Y′Y, of my observed (n × q) output matrix, Y.

Y ∗ is the matrix product of the observed output matrix and the eigenvector corresponding to the

largest eigenvalue of Y′Y. The ratio of the largest eigenvalue of the moment matrix of Y to the sum

of all of its eigenvalues measures the amount of independent linear information Y ∗ contains from

the q columns of Y. From the sample described above this ratio ranges from 0.975 to 0.994 when

limiting the sample to specific years, and equals 0.979 when pooling the entire sample.6 Results

from Wilson (2018) suggest that reducing the dimensions by replacing Y with Y ∗ is reasonable since

little information is lost. In my application, I estimate Y ∗ using the pooled sample of data from

1996 through 2018. This is done to maximize the amount of data used to estimate the principal

components. See Wilson (2018) for technical details.

With dimension reduction the convergence rate for the VRS-DEA estimator improves from

n
1
3 to n 2

3 , and the convergence rate for the FDH estimator improves from n
1
5 to n 1

2 . In this case,

the VRS-DEA estimator achieves a convergence rate faster than the standard parametric rate, while

the FDH estimator converges at the parametric rate. Because of this, I conduct all estimates using

dimension-reduced data.

1.4 Estimation and Results

I first test for separability with respect to T to determine if efficiency estimates should

allow for potentially a different frontier each production year. Table 1.4 reports several iterations of

tests for separability of Ψt with respect to T using the FDH estimator.7 The top portion of Table 1.4

reports results for separability tests for consecutive year pairs. In this case, T is treated as a binary

variable. The results depict some evidence of the frontier for pipelines changing from one year to

the next, but in most cases Ψt does not appear to change. It is not unreasonable to assume that

the technology for pipelines is not rapidly changing from year to year, but it should be noted that

under almost all orientations changes in Ψt are apparent in the years 2008 though 2015, a period of

time just after the start of the Shale Revolution.

The second portion of Table 1.4 reports results for a similar set of separability tests, to
6In this case when pooling the entire sample, the first principal component of the output matrix contains 97.9

percent of the independent linear information contained in Y.
7The FDH estimator is used as it does not rely on convexity of production set and is the safest estimator to use

for testing separability without testing for convexity prior.
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those described above, but the sample is pooled in the intervals of 1996–2000, 2001–2006, 2007–2012,

and 2013-2018. Here I test for separability of consecutive time interval pairs. In this case, even when

the data are pooled over longer time periods, separability is not always rejected. This again, only

suggests that the frontier may remain the same for consecutive periods of time.

The third and fourth portions of Table 1.4 report tests for separability that no longer

treat T as a binary outcome. The third portion of Table 1.4 reports test results that use the same

pooling of years as in the second portion of Table 1.4, but I test separability across all four time

intervals, and not just consecutive interval pairs. likewise, the fourth portion of Table 1.4 reports

results of separability tests across all 23 years in the sample. The tests strongly reject separability

of the frontier in both cases. Moreover, Table 1.5 reports the results of the KS tests corresponding

to the p-values generated from the sample-splitting procedure used to develop the estimates in

Table 1.4. In this case, the rejection rate of the uniformity of the p-values is similar to the rate

of rejections observed in Table 1.4. This provides additional evidence against the null hypothesis,

separability with respect to time. Thus, I assume the alternative hypothesis, (1.12), otherwise

known as non-separability, as described in Daraio et al. (2018). This allows the production set to

vary by production year. Assuming separability under non-separability of the production set renders

efficiency estimates meaningless, since Ψt∂ may not be attainable by some firms in certain years.

Thus, I condition my estimates on production year and allow the possibility of a different frontier

every production year.

As stated above, I follow the testing strategy noted in Apon et al. (2015) and test for

convexity then returns to scale, if necessary. Table 1.6 presents the results of the tests for convexity.

Out of the 69 tests, convexity is rejected only 7 times, or at a rate of 7/69 ≈ 0.101. Moreover, in

sample years where tests reject convexity, rejections only occur under one orientation. Thus, I find

little evidence to reject convexity under this set of tests. However, I also examine the distribution

of the p-values from the sample-splitting procedure used to calculate the test statistics reported in

Table 1.6. Table 1.7 reports the KS test results comparing the distributions of the p-values to the

uniform distribution on [0, 1]. I find strong evidence against the uniformity of the p-values, with a

37/69 ≈ 0.536 rejection rate. This offers stronger evidence against the convexity of the production

set. Given this evidence against convexity, I assume that the production set is non-convex.

Table 1.8 presents the results of the tests of CRS versus VRS. The results indicate CRS is
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always rejected at the 1 percent level under the output orientation, and is strongly rejected under

the hyperbolic orientation, with only one test failing to reject CRS. Table 1.9 reports the results of

the corresponding KS tests and shows similar results in rejecting CRS. Under the input orientation,

under both sets of tests, the results are more ambiguous where the tests reject the null only in

some years. Despite only rejecting CRS in a few instances under the input orientation, I relax the

assumption of CRS and allow for VRS.

These results suggest that the FDH estimator, conditional on production year, will yield

consistent estimates of technical efficiency with my sample. While Jamasb et al. (2008) rely on both

the CRS and VRS-DEA estimators and Nieswand et al. (2010) rely on the VRS-DEA estimator, I

find evidence against separability with respect to time, convexity, and CRS. This suggests that the

FDH estimator conditional on production year is likely the only consistent estimator of the technical

efficiency of natural gas pipelines. Moreover, while the VRS-DEA estimator has a faster conver-

gence rate than the FDH estimator, simulations by Wilson (2018) show that the FDH estimator

with dimension reduction yields less estimation error than the VRS-DEA estimator with dimension

reduction. Given these results, all further estimates are done using the FDH estimator.

Table 1.10 presents results on changes in mean efficiency over the sample period. In this

test, I use the estimator for differences in mean efficiency across groups of producers, allowing the

frontier to vary by group, as described by Kneip et al. (2016). If mean pipeline efficiency is greater

in year t than in period t−1, the test statistics are large and positive. Conversely, drops in technical

efficiency result in a large negative test statistic.8 The results in the top portion of Table 1.10

compare the mean technical efficiencies of pipelines in consecutive year pairs. In this case, year-to-

year changes in technical efficiency varies over the sample period. I find that all instances of drops in

technical efficiency, where the null is rejected at the 1 percent level, are contained in the set of years

2001 through 2008. This finding is consistent with Jamasb et al. (2008) and Moss (2008) who both

suggest that the in the early 2000s, prior to the Shale Revolution, a series of mergers in the natural

gas pipeline industry may have hindered technical efficiency change. However, there are instances of
8Note that the tests of differences in mean efficiency, developed by Kneip et al. (2016), require independence

between the groups of producers. When testing for changes in mean efficiency over time, pipelines are observed
at multiple points in time resulting in a covariance issue. However, Wilson and O’Loughlin (2021) perform similar
tests for U.S. municipalities, and they argue that any covariance is likely positive due to inertia. In my case, inertia
likely plays a role as well where a pipeline that performs poorly (or well) in one year is likely to continue performing
poorly (or well) in a subsequent year. Consequently, ignoring positive covariance makes my tests for changes in mean
efficiency conservative as I bias towards failing to reject the null.
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significant increases to technical efficiency in this same time interval. Notably, technical efficiency

improves during 2003–2004 in the hyperbolic orientation, with significance at the 5 percent level,

and during 2005–2006, with significance at the 5 percent level in the input orientation and at the 1

percent level in the output and hyperbolic orientations.

From the period during 2008–2013, the estimates indicate that technical efficiency is non-

decreasing with instances of improvement in all orientations. Specifically, technical efficiency im-

proves during 2009–2010 and 2012–2013 under the input orientation, during 2008–2009 and 2011–

2012 under the output orientation, and during 2008–2010 and 2012–2013 under the hyperbolic

orientation. These improvements to technical efficiency reject the null at at least the 5 percent level

with the majority of rejections occurring at the 1 percent level. This provides strong evidence of

technical efficiency improvements to the natural gas pipeline industry in the years following the start

of the Shale Revolution.

The second portion of Table 1.10 depicts net changes in mean technical efficiency. I

compare mean efficiencies in the years 2007, 2008, 2009, 2010, and 2011 to the last year in the

sample, 2018. There is strong evidence of technical efficiency improvements from 2007, 2008, and

2009 through 2018, with rejections of the null at the 1 percent level under all orientations. In

addition, I find evidence for technical efficiency improvement in the output orientation from 2010

and 2011 through 2018, with rejections of the null at the 1 percent level. This supports the hypothesis

that during the years following the start of the Shale Revolution the technical efficiency of pipelines

improved.

Because I reduce the dimensionality of pipeline outputs such that p = q = 1, I can directly

measure the mean productivity of pipelines over time. The mean productivity of pipelines in year t

is defined as
̂Productivityt = n−1

t

nt∑
i

Y ∗i,t
OPEX∗i,t

, (1.13)

and the standard Lindeberg-Fellar Central Limit Theorem can be used to make inference on pro-

ductivity changes over time.9 Table 1.11 reports the test statistics of differences in the productivity

estimates. The results suggest that from year to year the productivity of pipelines does not change

as all the estimates measuring year-over-year productivity change are not statistically different from
9Similar covariance issues as noted in footnote 8 arise when examining productivity over time. However, similar

reasoning applies here where any covariance is likely positive making the tests conservative.
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zero. However, examining changes from 2007, 2010, and 2011 to 2018 shows that the net change of

natural gas pipeline productivity was positive and statistically significant at at least the 10 percent

level. This suggests that during the period of the Shale Revolution pipelines were able to increase

output quantities for a fixed quantity of OPEX. For example, mean productivity in 2007 is estimated

at 15.2 and increases to 28.6 by 2018, implying an 88.2 percent increase in productivity over this

period. This is consistent with Dreskin and Boss (2010) who discuss how engineering improvements

to pipelines allowed increased throughout at a lower cost. However, it is unclear if productivity

improvements are largely driven by these technical improvements or if productivity improvements

are driven by increased utilization of pipelines.10 Moreover, I observe pipeline entry and exit in my

sample, which both can positively impact estimated technical efficiency and productivity. To ad-

dress this, I examine “older” pipelines in my sample that are observed every production year. These

pipelines may be constrained in adopting newer technology which removes the effect of technological

improvements. A discussion of this analysis and the results are reported in Appendix A.

I next test for change in technology over the sample period to determine the direction in

which the frontier is changing. In particular let Zti = (Xt
i , Y

t
i ) denote pipeline i’s input-output pair

at time t where t ∈ {1, 2}. Change in technology relative to pipeline i’s position in time period 1

and 2 is given by

Ti =
[
γ(Z2

i | Ψ1)
γ(Z2

i | Ψ2) ×
γ(Z1

i | Ψ1)
γ(Z1

i | Ψ2)

]1/2

. (1.14)

This expression is the hyperbolic-oriented analog of the measure of change in technology index that

appears in the Malmquist decompositions of Ray and Desli (1997), Gilbert and Wilson (1998), Simar

and Wilson (1998), and Simar and Wilson (1999), and consists of a geometric mean of two ratios.

The first ratio in Ti measures any shift in Ψ∂ relative to i’s position in period 2, while the second

ratio measures any shift in Ψ∂ relative to i’s position in period 1. Values of Ti greater (less) than 1

indicate an upward (downward) shift in technology. Values of Ti equal to 1 indicate the technology

is not shifting.

Estimates of Ti are made by substituting the hyperbolic FDH Estimator in for Ψt, where

t ∈ T . Inference on the estimates are made using the central limit theorem results from Simar and

Wilson (2019a). The top portion of Table 1.12 presents the estimates of change in technology in
10In this case, the Shale Revolution decreased the price of natural gas and increased demand for natural gas fueled

energy production as well as pipelines to transport fuel.
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consecutive year pairs. The results indicate that the technology of the pipelines changes abruptly

year-over-year, but neither consistently increases or regresses.11 At the start of the Shale Revolution

technology increased to a large degree during 2007–2008, but regressed from 2008 through 2010.

This regress could be attributed to the decrease in energy consumption during the Great Recession.

Technology would then increase during 2010–2012, but then again regress during 2012–2013.

The bottom portion of Table 1.12 presents tests for net changes in technology from 2007,

2008, 2009, 2010, and 2011 through 2018. In this case, there is strong evidence of net change in

technology in the upward direction when comparing 2007, 2009, 2010 and 2011 to the technology

in 2018 with three rejections of the null at less than the 1 percent level and one rejection at the 5

percent level. When comparing 2008 to 2018 the technology indicates a strong net technical regress.

However, the year-over-year change in technology from 2007 through 2008 was the largest increase

in the technology in year-over-year terms. This indicates that the technology increased sharply in

2008, then regressed the following year, but would then increase in net terms by 2018. Thus, there is

strong evidence of the technology increasing in net terms from the beginning of the Shale Revolution

to the end of the sample. In addition, Figure 1.3 and Figures C.1–C.22, in Appendix C, show plots

of the FDH over time, and do not provide strong evidence of technical regress during the sample

period.

Finally, to confirm that the increases in technical efficiency are not driven by a decreasing

number of observed firms over time, I examine the number of pipelines observed each production

year and the number of pipelines operating on Ψt∂ . Table 1.3 shows the number of observed pipelines

in the sample by year. In this case, the number of observed pipelines increases in the sample period

with only three instances where the pipeline counts drop by at most two pipelines.12 This suggests

the increasing number of pipelines that define Ψt∂ of the FDH is not driven by a reduction in the

number of observed pipelines each year, and because the Form 2 data are representative of all major

interstate pipelines, the number of competing pipelines increased over the sample period. This is

consistent with Dreskin and Boss (2010) who explain that increased pipeline entry during the period

of the Shale Revolution created an incentive to adopt cost saving technology. Although technical
11This test is more sensitive to changes in the frontier than the tests for separability, as it is comparing the geometric

mean of ratios of efficiency estimates. This provides further evidence that conditioning estimates on T is necessary
for consistent efficiency estimates.

12From 2009 through 2010 the pipeline counts drop from 64 to 62, from 2014 though 2015 the pipeline counts drop
from 69 to 67, and from 2015 through 2016 the pipeline counts drop from 67 to 66.
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efficiency did increase and increased pipeline competition arguably played a role in this, Annibali

et al. (2012) discuss how increased utilization of pipelines and the decline in gas costs affected pipeline

operations as well. In this case, both increased capacity utilization and cost saving technology could

have improved the technical efficiency and productivity of natural gas pipelines.

1.5 Summary and Conclusion

In the analysis outlined above, I use nonparametric DEA and FDH estimation techniques

to measure the technical efficiency of pipelines during the period of expansion in the supply of

shale gas after 2007. Using tests for convexity, returns to scale and separability I find that the

production set for pipelines exhibits convexity, VRS, and non-separability with respect to production

year. These results have not been considered in previous work using nonparametric techniques to

examine pipeline efficiency. The results on efficiency estimations show that technical efficiency prior

to the Shale Revolution declined, however there is strong evidence for improvements to technical

efficiency and productivity during the Shale Revolution. These findings suggest that the Shale

Revolution provided an opportunity for pipelines to capture efficiency gains from declining fuel

costs and increasing utilization (due to fracking) or from improved transmission technology induced

by pipeline competition to deliver shale gas. Future research should parse the impacts of these two

effects on pipeline technical efficiency.
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Table 1.3: Count of Observed Pipelines by Year

Year Pipeline Count Pipeline Count on Ψt∂ Percent of Pipelines on Ψt∂

1996 43 10 0.23
1997 44 9 0.20
1998 44 10 0.23
1999 47 8 0.17
2000 47 9 0.19
2001 47 7 0.15
2002 50 7 0.14
2003 51 7 0.14
2004 51 5 0.10
2005 53 4 0.08
2006 55 7 0.13
2007 55 6 0.11
2008 62 6 0.10
2009 64 7 0.11
2010 62 9 0.15
2011 66 10 0.15
2012 70 12 0.17
2013 69 14 0.20
2014 69 10 0.14
2015 67 15 0.22
2016 66 13 0.20
2017 68 15 0.22
2018 72 13 0.18
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Table 1.4: Separability Test With Respect to Time (FDH Estimator)

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 1.235 0.170 2.981 0.172 4.111 0.474
1997–1998 0.255 0.880 3.511 0.046** 5.340 0.018**
1998–1999 1.366 0.135 3.741 0.011** 3.789 0.386
1999–2000 0.774 0.489 3.672 0.129 4.034 0.253
2000–2001 0.568 0.585 3.074 0.271 4.843 0.248
2001–2002 0.140 0.871 4.099 0.047** 4.262 0.388
2002–2003 0.940 0.388 3.325 0.296 4.951 0.285
2003–2004 1.200 0.267 2.809 0.912 5.459 0.554
2004–2005 1.191 0.152 4.082 0.146 6.472 0.136
2005–2006 1.650 0.155 3.542 0.259 7.376 0.028**
2006–2007 1.232 0.509 5.174 0.079* 6.500 0.160
2007–2008 2.434 0.004*** 5.350 0.002*** 9.518 0.000***
2008–2009 2.330 0.026** 3.942 0.089* 8.124 0.003***
2009–2010 2.613 0.006*** 3.164 0.368 7.481 0.000***
2010–2011 1.773 0.012** 3.165 0.255 4.980 0.120
2011–2012 1.868 0.000*** 4.112 0.004*** 7.241 0.000***
2012–2013 2.331 0.000*** 2.476 0.321 4.984 0.000***
2013–2014 1.701 0.000*** 4.633 0.008*** 4.932 0.005***
2014–2015 0.954 0.014** 2.767 0.069* 4.200 0.012**
2015–2016 0.299 0.386 2.116 0.103 3.088 0.381
2016–2017 −0.283 0.970 2.247 0.212 2.909 0.620
2017–2018 0.232 0.228 2.344 0.049** 3.571 0.046**

[96, 00]–[01–06] 0.092 0.259 5.713 0.002*** 9.990 0.001***
[01, 06]–[07–12] 1.015 0.059* 4.610 0.570 14.381 0.000***
[07, 12]–[13–18] 4.910 0.000*** 5.022 0.032** 14.092 0.000***
[96, 00], [01, 06], 5.973 0.000*** 8.418 0.000*** 6.710 0.000***[07, 12], [13, 18]

96, 97,...,18 14.600 0.000*** 16.440 0.000*** 19.000 0.000***

The test statistic, described in Daraio et al. (2018), is computed using the FDH estimator with dimension-reduced data, such
that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the principal
components are estimated using the pooled sample of data from 1996–2018. The p-values are developed using 100 sample-
splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One, two or three asterisks
denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 1.5: Separability Test (KS Test) With Respect to Time (FDH Estimator)

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 0.412 0.218 0.567 0.407 0.745 0.512
1997–1998 0.247 0.713 0.655 0.109 0.815 0.093*
1998–1999 0.432 0.169 0.626 0.075* 0.570 0.977
1999–2000 0.385 0.279 0.600 0.421 0.695 0.522
2000–2001 0.330 0.381 0.570 0.588 0.742 0.540
2001–2002 0.192 0.832 0.700 0.095* 0.727 0.553
2002–2003 0.385 0.296 0.558 0.724 0.761 0.544
2003–2004 0.475 0.140 0.585 0.892 0.744 0.887
2004–2005 0.399 0.197 0.556 0.738 0.615 0.978
2005–2006 0.455 0.257 0.497 0.901 0.609 0.967
2006–2007 0.439 0.422 0.692 0.472 0.702 0.945
2007–2008 0.546 0.038** 0.590 0.362 0.811 0.194
2008–2009 0.570 0.045** 0.488 0.909 0.693 0.756
2009–2010 0.500 0.098* 0.572 0.617 0.720 0.569
2010–2011 0.522 0.027** 0.508 0.719 0.714 0.682
2011–2012 0.466 0.000*** 0.598 0.213 0.644 0.277
2012–2013 0.528 0.000*** 0.491 0.712 0.574 0.548
2013–2014 0.521 0.001*** 0.748 0.025** 0.746 0.091*
2014–2015 0.374 0.016** 0.624 0.052* 0.667 0.234
2015–2016 0.271 0.130 0.516 0.167 0.579 0.740
2016–2017 0.231 0.402 0.542 0.236 0.607 0.720
2017–2018 0.275 0.057* 0.565 0.043** 0.644 0.213

[96, 00]–[01–06] 0.215 0.688 0.470 0.991 0.835 0.648
[01, 06]–[07–12] 0.478 0.047** 0.545 0.998 0.831 0.621
[07, 12]–[13–18] 0.652 0.000*** 0.433 1.000 0.702 0.956
[96, 00], [01, 06], 0.843 0.001*** 0.766 0.012** 0.710 0.008***[07, 12], [13, 18]

96, 97,...,18 0.997 0.000*** 0.999 0.000*** 0.998 0.000***

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test to test for
uniformity of the p-values estimated from the multiple sample-splits used in the tests presented in Table 1.4. The dimensions
are reduced using eigensystem methods as described in Wilson (2018), and the principal components are estimated using the
pooled sample of data from 1996–2018. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications
using techniques described in Simar and Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Table 1.6: Convexity Test

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 −1.567 0.999 −1.055 0.992 −1.564 1.000
1997 −1.549 0.993 −0.904 0.938 −1.314 0.983
1998 −2.035 0.999 −0.553 0.706 −1.289 0.973
1999 −1.932 0.998 −0.706 0.750 0.229 0.126
2000 −1.214 0.953 0.116 0.198 1.102 0.006***
2001 −0.639 0.722 −0.292 0.454 0.796 0.008***
2002 −0.960 0.954 −0.802 0.899 −0.763 0.898
2003 −2.230 0.998 −1.743 0.984 −1.644 0.971
2004 −1.662 0.973 −1.301 0.915 −0.791 0.694
2005 −4.589 1.000 −2.965 1.000 −4.059 1.000
2006 −2.598 0.999 −0.348 0.445 −1.126 0.848
2007 −1.516 0.876 −1.660 0.911 −2.366 0.986
2008 −2.882 0.978 −2.285 0.931 −2.057 0.890
2009 −4.157 1.000 −0.900 0.631 −2.259 0.993
2010 −2.056 0.972 −1.084 0.637 −0.910 0.541
2011 −1.694 0.997 −0.652 0.788 −0.811 0.856
2012 −3.813 1.000 0.614 0.016** −3.021 1.000
2013 −0.039 0.354 0.221 0.208 −0.043 0.362
2014 −2.848 1.000 0.218 0.092* −1.052 0.883
2015 −2.148 1.000 0.544 0.039** −1.382 0.985
2016 −0.411 0.764 0.766 0.024** 0.344 0.121
2017 −1.153 0.999 0.813 0.011** −0.296 0.759
2018 −2.669 1.000 0.138 0.241 −1.655 0.999

The test statistic, described in Kneip et al. (2016), is computed using dimension-
reduced data, such that p = q = 1. The dimensions are reduced using eigensystem
methods as described in Wilson (2018), and the principal components are estimated
using the pooled sample of data from 1996–2018. The p-values are developed using
100 sample-splits and 1,000 bootstrap replications using techniques described in Simar
and Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Table 1.7: Convexity Test (KS Test)

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.439 0.002*** 0.392 0.011** 0.388 0.006***
1997 0.427 0.017** 0.317 0.112 0.377 0.051*
1998 0.504 0.001*** 0.276 0.276 0.408 0.046**
1999 0.485 0.009*** 0.351 0.157 0.292 0.330
2000 0.438 0.037** 0.238 0.482 0.394 0.076*
2001 0.312 0.221 0.294 0.290 0.295 0.288
2002 0.325 0.127 0.320 0.147 0.340 0.102
2003 0.443 0.049** 0.504 0.012** 0.437 0.071*
2004 0.434 0.093* 0.484 0.025** 0.353 0.238
2005 0.697 0.001*** 0.493 0.032** 0.628 0.000***
2006 0.590 0.002*** 0.359 0.214 0.389 0.158
2007 0.415 0.219 0.487 0.074* 0.512 0.048**
2008 0.611 0.041** 0.535 0.141 0.519 0.154
2009 0.720 0.000*** 0.314 0.454 0.516 0.052*
2010 0.535 0.037** 0.348 0.508 0.398 0.345
2011 0.439 0.018** 0.377 0.072* 0.303 0.224
2012 0.700 0.001*** 0.260 0.248 0.719 0.000***
2013 0.305 0.197 0.371 0.072* 0.294 0.228
2014 0.656 0.000*** 0.270 0.423 0.410 0.102
2015 0.571 0.003*** 0.248 0.368 0.477 0.014**
2016 0.238 0.246 0.316 0.102 0.190 0.470
2017 0.378 0.013** 0.269 0.099* 0.224 0.225
2018 0.658 0.000*** 0.202 0.346 0.570 0.000***

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test
to test for uniformity of the p-values estimated from the multiple sample-splits used in the tests presented
in Table 1.6. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and
the principal components are estimated using the pooled sample of data from 1996–2018. The p-values are
developed using 100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and
Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 1.8: Returns to Scale Test

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 3.653 0.041** 6.494 0.000*** 5.391 0.003***
1997 3.389 0.087* 5.403 0.000*** 5.233 0.009***
1998 2.986 0.101 5.170 0.000*** 5.134 0.007***
1999 1.942 0.232 4.801 0.000*** 4.362 0.007***
2000 1.579 0.405 4.174 0.000*** 3.977 0.006***
2001 0.532 0.540 2.678 0.001*** 2.316 0.023**
2002 0.927 0.514 2.906 0.004*** 2.333 0.044**
2003 1.600 0.470 3.836 0.000*** 3.292 0.056*
2004 1.219 0.492 3.206 0.007*** 2.820 0.087*
2005 1.422 0.627 3.606 0.005*** 2.560 0.271
2006 2.271 0.243 5.203 0.000*** 5.342 0.001***
2007 1.562 0.615 3.679 0.003*** 3.694 0.063*
2008 0.784 0.753 4.147 0.000*** 4.008 0.019**
2009 2.314 0.369 6.134 0.000*** 6.099 0.007***
2010 1.786 0.479 4.430 0.000*** 4.422 0.017**
2011 3.491 0.047** 5.614 0.000*** 5.092 0.005***
2012 3.236 0.036** 6.678 0.000*** 7.661 0.000***
2013 2.322 0.062* 3.712 0.000*** 3.818 0.005***
2014 2.548 0.114 5.728 0.000*** 6.014 0.000***
2015 2.886 0.040** 5.537 0.000*** 5.567 0.000***
2016 3.352 0.007*** 4.894 0.000*** 4.757 0.001***
2017 3.276 0.015** 5.012 0.000*** 4.549 0.003***
2018 4.180 0.009*** 6.661 0.000*** 6.756 0.000***

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced data, such that
p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the
principal components are estimated using the pooled sample of data from 1996–2018. The p-values are developed
using 100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020).
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 1.9: Returns to Scale Test (KS Test)

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.785 0.057* 0.904 0.001*** 0.847 0.012**
1997 0.832 0.023** 0.951 0.000*** 0.945 0.000***
1998 0.797 0.044** 0.918 0.000*** 0.916 0.004***
1999 0.442 0.592 0.861 0.001*** 0.742 0.040**
2000 0.567 0.315 0.919 0.000*** 0.885 0.002***
2001 0.228 0.548 0.739 0.001*** 0.663 0.032**
2002 0.345 0.541 0.827 0.001*** 0.697 0.032**
2003 0.520 0.467 0.857 0.001*** 0.785 0.024**
2004 0.380 0.601 0.773 0.004*** 0.706 0.103
2005 0.408 0.812 0.697 0.037** 0.525 0.496
2006 0.607 0.271 0.837 0.002*** 0.802 0.018**
2007 0.552 0.434 0.825 0.002*** 0.833 0.014**
2008 0.339 0.773 0.843 0.002*** 0.695 0.041**
2009 0.600 0.403 0.979 0.000*** 0.865 0.014**
2010 0.518 0.567 0.852 0.001*** 0.857 0.020**
2011 0.835 0.024** 0.939 0.000*** 0.836 0.017**
2012 0.499 0.479 0.944 0.000*** 0.814 0.013**
2013 0.621 0.117 0.695 0.010*** 0.794 0.017**
2014 0.769 0.032** 0.930 0.000*** 0.907 0.001***
2015 0.577 0.210 0.880 0.000*** 0.824 0.013**
2016 0.887 0.001*** 0.949 0.000*** 0.984 0.000***
2017 0.832 0.010*** 0.978 0.000*** 0.947 0.001***
2018 0.775 0.045** 0.972 0.000*** 0.942 0.001***

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test to
test for uniformity of the p-values estimated from the multiple sample-splits used in the tests presented in Table
1.8. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the principal
components are estimated using the pooled sample of data from 1996–2018. The p-values are developed using
100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One,
two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 1.10: Test For Equivalency of Mean Efficiency: FDH Estimator

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 −1.779 0.075* −1.316 0.188 −0.583 0.560
1997–1998 0.527 0.598 −0.533 0.594 0.221 0.825
1998–1999 −0.908 0.364 0.687 0.492 1.829 0.067*
1999–2000 0.699 0.485 −0.816 0.414 −0.877 0.381
2000–2001 0.584 0.559 0.518 0.604 −0.05 0.960
2001–2002 −1.699 0.089* −1.25 0.211 −2.689 0.007***
2002–2003 −1.922 0.055* −2.601 0.009*** −3.129 0.002***
2003–2004 1.106 0.269 0.256 0.798 2.251 0.024**
2004–2005 −2.562 0.010*** −4.664 0.000*** −4.887 0.000***
2005–2006 2.067 0.039** 6.869 0.000*** 5.377 0.000***
2006–2007 0.851 0.395 −0.941 0.346 −1.347 0.178
2007–2008 −2.359 0.018** −3.074 0.002*** −3.043 0.002***
2008–2009 0.374 0.709 4.483 0.000*** 2.150 0.032**
2009–2010 4.084 0.000*** −0.88 0.379 5.354 0.000***
2010–2011 −0.216 0.829 1.127 0.260 −0.691 0.490
2011–2012 −0.508 0.611 2.581 0.010*** −1.517 0.129
2012–2013 3.485 0.000*** −1.183 0.237 2.329 0.020**
2013–2014 −2.490 0.014** 0.002 0.999 −2.182 0.029**
2014–2015 1.56 0.119 1.204 0.229 1.23 0.219
2015–2016 2.405 0.016** 1.266 0.206 2.220 0.026**
2016–2017 −1.422 0.155 0.337 0.736 −0.746 0.456
2017–2018 −1.435 0.151 −0.879 0.379 −1.899 0.058*

2007 & 2018 3.833 0.000*** 5.460 0.000*** 4.199 0.000***
2008 & 2018 5.629 0.000*** 8.209 0.000*** 6.651 0.000***
2009 & 2018 5.713 0.000*** 3.979 0.000*** 4.460 0.000***
2010 & 2018 1.062 0.288 4.326 0.000*** −0.517 0.605
2011 & 2018 1.415 0.157 3.471 0.001*** −0.063 0.950

The test statistic, described in Kneip et al. (2016), is computed using the FDH estimator with dimension-reduced data,
such that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the
principal components are estimated using the pooled sample of data from 1996–2018. Since separability tests suggest
that separability with respect to T does not hold, the estimator allows for a different frontier every production year.
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 1.11: Productivity Estimates

Period Statistic p-value
1996–1997 0.785 0.432
1997–1998 1.452 0.146
1998–1999 0.803 0.422
1999–2000 −1.047 0.295
2000–2001 1.559 0.119
2001–2002 −0.014 0.989
2002–2003 −0.378 0.705
2003–2004 −0.610 0.542
2004–2005 −0.357 0.721
2005–2006 0.325 0.745
2006–2007 −1.313 0.189
2007–2008 1.495 0.135
2008–2009 −0.885 0.376
2009–2010 −1.200 0.230
2010–2011 −0.011 0.992
2011–2012 1.427 0.154
2012–2013 −1.149 0.251
2013–2014 1.490 0.136
2014–2015 −0.834 0.404
2015–2016 −0.707 0.480
2016–2017 −0.292 0.771
2017–2018 0.555 0.579
2007–2018 2.546 0.010***
2008–2018 −0.585 0.558
2009–2018 0.743 0.457
2010–2018 1.895 0.058*
2011–2018 2.189 0.028**

Productivity tests are conducted with dimension-
reduced data (p = q = 1). One, two or three
asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Table 1.12: Tests for Change in Technology

Period T p-value
1996–1997 1.054 0.001***
1997–1998 1.022 0.000***
1998–1999 0.953 0.000***
1999–2000 1.033 0.000***
2000–2001 1.034 0.126
2001–2002 1.079 0.000***
2002–2003 1.073 0.000***
2003–2004 0.854 0.000***
2004–2005 1.200 0.000***
2005–2006 0.765 0.000***
2006–2007 1.055 0.005***
2007–2008 1.377 0.000***
2008–2009 0.822 0.000***
2009–2010 0.812 0.000***
2010–2011 1.005 0.842
2011–2012 1.348 0.000***
2012–2013 0.785 0.000***
2013–2014 1.214 0.000***
2014–2015 0.932 0.000***
2015–2016 0.920 0.000***
2016–2017 1.004 0.303
2017–2018 1.124 0.000***
2007–2018 1.146 0.039**
2008–2018 0.838 0.000***
2009–2018 1.016 0.000***
2010–2018 1.235 0.001***
2011–2018 1.263 0.000***

Tests for change in technology are conducted
with dimension-reduced data (p = q = 1). One,
two or three asterisks denote significance at the
10, 5 and 1 percent levels, respectively.
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Figure 1.1: Daily U.S. Shale Gas Production By Month: January 2000 – December 2018
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This figure presents data from the U.S. Energy Information Administration on daily U.S. shale gas production by
shale bed.
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Figure 1.2: Certified Anchor Marketer Capacity: 1999 – 2017
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This figure presents data on pipeline capacity, from newly certified pipeline projects, that have been contracted to an
anchor shipper. These data were collected from pipeline certificate documents from FERC.
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Figure 1.3: FDH: 2007 Versus 2018
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Chapter 2

Nonparametric Benchmarking of

U.S. Electric Utilities: Changes in

Productivity and Efficiency of

Electric Utilities From

2001–2019

2.1 Introduction

During 2007–2017, energy consumption in the U.S. declined. Prior to 2007, energy con-

sumption in the U.S. consistently increased every year, corresponding with increases in gross do-

mestic product over the same period. The US Energy Information Administration (March 2021,

2009) indicate that from 1995 to 2007 energy consumption in the U.S. increased from 90,931 trillion

British thermal units (BTUs) to 100,893 trillion BTUs, an 11 percent increase. However, during

2007–2009 energy consumption declined by 7 percent to 93,942 trillion BTUs. This was the first

multi-year decline in energy consumption in the US. This event itself is unsurprising as it coincides

35



with the financial crisis during 2007–2008. However, since this decline, the demand for energy has

remained flat.

The reasons for the decrease in growth of energy consumption have been widely discussed in

previous research. Several studies have suggested that increased efficiency in energy consumption has

reduced the demand for electricity. For example, Nadel and Herndon (2014) and Nadel and Young

(2014), suggest that energy efficiency programs, warmer winter weather, and distributed rooftop

solar generation have been strong contributors to the decline in the production and consumption of

energy in the US. In addition, Davis (2017) explains increased usage of more efficient lightning in

households and the rapid emergence of light emitting diode or LED bulbs has created more end-

user efficiency, reducing household energy consumption. Other explanations for end-user efficiency

include more efficient building construction and the increased adoption of more efficient appliances,

as Nadel et al. (2015) suggests.

A major event concurrent to the decline in energy consumption was the expansion of

natural gas supply due to technology shocks from developments in fracking and directional drilling.

In 2009, the average natural gas wellhead price declined by about 50 percent and has remained

within $3–$5 per million BTUs (MMBtus). This changed the relative prices of coal and natural

gas, and thus electricity producers began to substitute away from coal to natural gas as a major

fuel source. Coincidentally, the proliferation of renewable portfolio standards, implemented by many

state governments and regulators, increased investment in renewable energy generating plants. Both

events have coincided with an increase in installed electric generating capacity in the US. According

to the US Energy Information Administration (2009, 2020), total utility-scale generating capacity in

the U.S. increased from 1,087,791 megawatts (MW) in 2007 to 1,197,917 MW in 2019, a 10 percent

increase.

Given the decline in energy consumption during the early 2000s and the expansion of

generating capacity, one might expect that the productivity and efficiency of energy producers

declined during this period. However, environmental factors affecting the production process of

energy producers should be considered, as the feasible production set of producers may differ over

time or due to investment in different types of generating capacity. I use nonparametric estimators

to measure the technical efficiency and productivity of U.S. electric utilities during 2001–2019.

Moreover, I use modern techniques to make inference on changes in technical efficiency over time and
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test for properties of the production set. These tests include tests of (i) changes in the production

frontier due to environmental factors, (ii) convexity of the production set and (iii) returns to scale

of the production set. Previous studies using nonparametric methods to examine electric utility

technical efficiency provide only point estimates. Examples include Färe et al. (1989), who examine

the effects of environmental regulation on utility efficiency, Sarkis and Cordeiro (2012), who examine

the ecological efficiency of utilities, as well as von Geymueller (2009) and Omrani et al. (2015), who

discuss the efficiency of transmission operations within utilities. No studies measure the efficiency

and productivity of U.S. electric utilities during the simultaneous decrease in energy consumption

and increase in generating capacity that occurred after 2007 while using modern nonparametric

techniques to make inference.

To my knowledge, the Federal Energy Regulatory Commission (FERC) provide the only

publicly available data on U.S. electric utility operations. Moreover, these are the most commonly

used data for estimating the efficiency and productivity of electric utilities and power generators.

However, these data only include major utilities as defined by FERC resulting in a small sample

of utilities being observed each year.1 A small sample size creates issues when using nonparamet-

ric efficiency estimators as they are subject to the curse of dimensionality. It is well-known that

the convergence rates of nonparametric efficiency estimators decrease as the dimensionality of the

problem (i.e the specified number of inputs and outputs, increases, thereby increasing the order of

estimation error).

While Omrani et al. (2015) use dimension reduction techniques to study Iranian electric

utilities, they only reduce their dimensions from 16 to 8 total inputs and outputs to estimate the

efficiency of 37 utilities in a single year. Thus, their estimates are likely overstating how efficient

Iranian electric utilities are. They apply eigensystem decomposition of the correlation matrix which

may not always be reliable for dimension reduction. For reasons given in Wilson (2018), it is better

to apply eigensystem decomposition of the moment matrix. Given the small number of electric

utilities observed in U.S. utility data, this paper utilizes dimension reduction techniques along the

lines of Wilson (2018) so four dimensions can be reduced to two dimensions with only a small loss

of information.
1FERC defines a major utility has having one million megawatt hours of production or more, 100 megawatt hours

of annual sales for resale, 500 megawatt hours of annual power exchange delivered, or 500 megawatt hours of annual
wheeling for others (deliveries plus losses).
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The remainder of this paper is organized as follows. Section 2.2 discusses the statistical

model, estimators of efficiency, and tests for properties of the frontier. Section 2.3 discusses the

sample used to estimate efficiency of electric utilities. Section 2.4 reports the results and findings of

the estimates. Finally, Section 2.5 provides a summary and overview of the conclusions.

2.2 Statistical Model

2.2.1 Modeling Conditional Efficiency

To model electric utility efficiency, I use conditional efficiency measures which were first

described by Cazals et al. (2002), and later discussed by Daraio and Simar (2005, 2007a,b) and

Daraio et al. (2018). Consider a process that generates random vectors (X,Y, T, Z). Inputs are

denoted X ∈ Rp+, while Y ∈ Rq+ are outputs, T ∈ R1 denotes the production year, and Z ∈ Rr

indicates an r-dimensional vector of continuous environmental factors where, in my application,

r = 1.2 To establish notation let the lower case letters (x, y, t, z) indicate particular realizations of

the above random vectors. The production set, ignoring (T,Z),

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y}, (2.1)

is all the pairs of input and output quantities that are feasible given the production technology. How-

ever, as described in section 2.2.3, environmental factors may affect the boundary of the production

set. Thus, conditioning the production set on (T,Z) might be required, where

Ψt,z = {(x, y) ∈ Rp+q
+ | x can produce y when (T,Z) = (t, z)} (2.2)

is the conditional production set, or all the pairs of input and output quantities that are feasible

given the production technology subject to (t, z). The efficient frontier of (2.2) is defined as

Ψt,z∂ = {(x, y) ∈ Ψt,z | (γ−1x, γy) /∈ Ψt ∀ γ > 1}. (2.3)
2Environmental factors are neither inputs nor outputs and are not a choice variable under the control of the electric

utility, but still can influence the production process. Likewise the vector of production years, T , may influence the
production process and is treated as a discrete environmental factor.
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Several assumptions about Ψt,z are made. These assumptions follow those of Shephard (1970) and

are similar to standard assumptions made in production theory. Moreover, these assumptions are

required to use results established in Kneip et al. (2015), described in more detail below. I assume

Ψt,z is closed, (x, y) /∈ Ψt,z if x = 0, y ≥ 0, y 6= 0 (all production requires the use of some inputs),

and ∀(x, y) ∈ Ψt,z, (i) x̃ ≥ x =⇒ (x̃, y) ∈ Ψt,z, and (ii) ỹ ≤ y =⇒ (x, ỹ) ∈ Ψt,z (the production set

allows for strong disposability). Assuming that Ψt,z is closed implies that the set of efficient points,

or the frontier, is contained in the production set (i.e. Ψt,z∂ ∈ Ψt,z). The second assumption ensures

there is “no free lunch”, or the production of a nonzero output vector requires the expenditure of a

nonzero input vector. Finally, strong disposability imposes weak monotonicity of the frontier.

In a given year t, I observe data on inputs, outputs, and other variables that could po-

tentially be environmental factors at the level of the utility. An electric utility’s technical efficiency

is measured by their distance from their observed input and output quantities to Ψt,z∂ . The input

efficiency measure conditional on (T,Z), along the lines of Daraio and Simar (2007b),

θ(x, y | t, z) := inf{θ | (θx, y) ∈ Ψt,z}, (2.4)

indicates by how much firms must proportionally scale back inputs while producing the same level

of output to operate on Ψt,z∂ . Likewise, extending (2.4) to output efficiency gives,

λ(x, y | t, z) := sup{λ | (x, λy) ∈ Ψt,z}, (2.5)

which indicates by how much firms must proportionally expand output given the same level of inputs

to operate on Ψt,z∂ . As shown in Wilson (2011, Figure 6.1) a firm operating off of the efficient frontier

can have differing input and output measures of efficiency. An alternative measure is the hyperbolic

graph measure of efficiency conditional on (T,Z), defined as

γ(x, y | t, z) := inf{γ > 0 | (γx, γ−1y) ∈ Ψt,z}. (2.6)

The hyperbolic graph measure indicates the amount a firm must simultaneously scale down inputs

and increase output by the same factor, γ, to operate on Ψt,z∂ . The benefit of (2.6) is that a firm’s

distance to the frontier is measured along a hyperbolic path and this avoids the issue of a firm having
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differing measures under (2.4) and (2.5).

2.2.2 Estimation Methods

Of course Ψt,z is not observed and must be estimated with a random sample of observed

quantities of inputs, outputs, environmental factors and production years, Sn = {(Xi, Yi, Ti, Zi)}ni=1,

where Xi ∈ Rp+, Yi ∈ Rq+, Ti ∈ R1, Zi ∈ Rr, and i indexes the utility. Different nonparametric

efficiency estimators require different assumptions about the properties of the production set. To

begin, Deprins et al. (1984) propose estimating unconditional efficiency with the free disposal hull

(FDH) of the observed input and output vectors in Sn, or

Ψ̂FDH,n :=
⋃

(Xi,Yi)∈Sn

{(x, y) ∈ Rp+q | y ≤ Yi, x ≥ Xi}. (2.7)

If environmental factors should be considered, Daraio and Simar (2005) propose conditioning FDH

estimates with respect to continuous environmental factors using a bandwidth, h. In my case the

FDH estimator conditional on (T,Z),

Ψ̂t,z
FDH,n,h :=

⋃
(Xi,Yi)∈Sn

{(x, y) ∈ Rp+q | y ≤ Yi, x ≥ Xi, T = t, Z ∈ [z − h, z + h]}, (2.8)

allows the frontier to to vary depending on T or Z.

While the FDH estimators do not impose convexity on the production set, data envelop-

ment analysis (DEA) estimators of efficiency can be used if the production set is convex. Farrell

(1957) propose DEA estimators in the unconditional case. The unconditional variable returns to

scale (VRS) DEA estimator is given by the convex hull of (2.7),

Ψ̂V RS,n := {(x, y) ∈ Rp+q | y ≤ Yω, x ≤ Xω, i′nω = 1,ω ∈ Rn+}, (2.9)

where X = (X1, ...., Xn) and Y = (Y1, ...., Yn) are (p × n) and (q × n) input and output matrices,

in year t, i′n is an (n × 1) vector of ones, and ω is a (n × 1) vector of weights. Daraio and Simar

(2007b) extend the VRS-DEA estimator to the conditional case by conditioning (2.9) on (T,Z) to
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obtain the conditional VRS-DEA estimator,

Ψ̂t,z
V RS,n,h := {(x, y) ∈ Rp+q | y ≤ Yω, x ≤ Xω, i′nω = 1,ω ∈ Rn+, T = t, Z ∈ [z − h, z + h]}, (2.10)

which is locally convex, where the localization is controlled by h. Both the conditional and uncondi-

tional VRS-DEA estimator do not make any assumptions about return to scale of the production set.

If constant returns to scale (CRS) is assumed, the unconditional CRS-DEA estimator estimates the

conical hull of (2.9), denoted Ψ̂CRS,n, which can be obtained by removing the constraint, i′nω = 1, in

(2.9). Similarly, the conditional CRS-DEA estimator, Ψ̂t,z
CRS,n,h, is obtained by removing the same

constraint from (2.10).

Input and output-oriented DEA estimates can be computed using linear programming

methods, while hyperbolic-oriented estimates are non-linear programs that can be solved using

numerical methods proposed by Wilson (2011). In addition, the FDH estimates can be solved using

numerical methods as well. See Wilson (2011) for technical details. Furthermore, all estimates and

tests described in this paper are performed using the FEAR software package developed by Wilson

(2008).

2.2.3 Testing Hypothesis

Prior to estimating technical efficiency, I conduct several tests to guide my estimation

procedure. First I test whether environmental factors, (T,Z), affect the frontier. The issues of

environmental factors with nonparametric efficiency estimators have been discussed by Simar and

Wilson (2011a,b) and Daraio et al. (2018). To begin, environmental factors, (T,Z), can impact

the distribution of efficiency estimates, the efficient frontier, or both. If (T,Z) only impacts the

distribution of efficiency estimates, then all utilities face the same attainable frontier and FDH and

DEA efficiency estimates do not need to be conditioned on environmental factors. In this case, the

separability condition, as described in Simar and Wilson (2011a,b) and Daraio et al. (2018), is said to

hold with respect to the environmental factors. However, if (T,Z) affects the frontier, unconditional

FDH and DEA efficiency estimates are meaningless. In this case, unconditional efficiency estimates

will benchmark some firms relative to a frontier that is not attainable due to the environmental

factors those firms face. After I test for separability, I then test for convexity versus non-convexity

of the production set, then CRS versus VRS. These tests reduce the chance of selecting an estimator
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that relies on assumptions that are inconsistent with the true structure of the production set.

To test for separability with respect to (T,Z), I use methods from Daraio et al. (2018) to

test

H0 : Ψt,z = Ψ∀(t, z) ∈ (T,Z) (2.11)

versus

H1 : Ψt,z 6= Ψ for some (t, z) ∈ (T,Z). (2.12)

Moreover, limiting the sample to single year t′ ∈ T and testing

H0 : Ψt′,z = Ψ∀z ∈ Z (2.13)

versus

H1 : Ψt′,z 6= Ψ for some z ∈ Z, (2.14)

allows me to disentangle the effects of T and Z on the frontier, and assess if Z alone impacts the

frontier. The test for separability involves randomly shuffling observations in the sample, of size

n, and splitting the sample into two groups. Using the FDH estimator, the procedure initially

estimates unconditional efficiency, ignoring (T,Z) (restricting the frontier to be the same for all

(t, z)), with the first group Snu (of size nu), and then estimates efficiency conditional on (T,Z), with

the second group Snc
(of size nc), where nu + nc = n and Snu

∩ Snc
= ∅. The conditional efficiency

estimates allow the frontier to change with different t ∈ T and across different h-neighborhoods of

z, where optimal bandwidths are found using the least squares cross validation (LSCV) procedure

in accordance with Li et al. (2013). Since this test requires randomly splitting the sample into

two sub-samples, the uncertainty from a single sample-split is reduced by gathering information

from multiple sample-splits through a bootstrap procedure proposed by Simar and Wilson (2020).

This test uses information from 1,000 bootstrap replications and 100 sample-splits to calculate

test statistic, proposed by Daraio et al. (2018), which estimates the difference between the mean

conditional and unconditional efficiency estimates.3 If these test statistics are statistically significant,

separability is rejected. In addition, the p-values from the 100 sample splits are collected and their
3The number of utilities in my data observed each year T ranges from 85 to 113. Simulation results from Simar

and Wilson (2020) suggest 100 sample splits to estimate the test statistic and 1,000 bootstrap replications to estimate
the distribution of test statistics performs well with sample sizes as small as 100 observations.
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distribution is compared to the uniform distribution on [0, 1] using the Kolmogorv-Smirnov (KS)

test.4 The bootstrap procedure discussed by Simar and Wilson (2020) is used to estimate the

distribution of the KS statistic since the 100 p-values used to construct the KS statistic are not

independent. If uniformity of the p-values is rejected, then separability can also be rejected. For

technical details see Daraio et al. (2018) and Simar and Wilson (2020).

The convergence rate of the conditional FDH estimator is slower than that of the uncon-

ditional FDH estimator, due to localizing the estimates of the frontier. Therefore, the sample-split

sizes are selected such that nκu = n
κ/(rκ+1)
c subject to nu+nc = n, where κ = 1

p+q is the convergence

rate of the unconditional FDH estimator, as shown by Park et al. (2000), and 1/(rκ + 1) is the

convergence rate of the conditional FDH estimator, as shown by Daraio et al. (2018). Moreover,

as noted in Section 2.2.1, r = 1 in my application. This method results in an uneven sample-split

and is efficient as more information is provided to the conditional estimator. This sample-splitting

technique is proposed by Kneip et al. (2016).

Tests of convexity versus non-convexity and CRS versus VRS are also done to infer whether

the appropriate estimated production set should be estimated with the FDH, VRS-DEA, or CRS-

DEA estimators (with conditioning if needed). I use results from Kneip et al. (2015, 2016), and

Simar and Wilson (2020) in order to do this. Kneip et al. (2015) provide central limit theorems

for FDH and DEA efficiency estimates, and Kneip et al. (2016) use these results to develop specific

tests for convexity, returns to scale, and differences in mean efficiency across groups of producers.

As with the tests for separability, these tests rely on a random sample-split where the split sizes are

selected with an uneven sample-split along the lines of Kneip et al. (2016). In addition, multiple

sample-splits are used along with the bootstrap method of Simar and Wilson (2020) to reduce

uncertainty. Furthermore, I follow the testing strategy of Apon et al. (2015, Figure 1) and test

convexity before testing for returns to scale.5 To summarize, I first conduct the test for convexity by

randomly splitting the sample and obtaining conditional VRS-DEA estimates of efficiency with one

sub-sample and conditional FDH estimates with the other, if separability is rejected. If separability

holds, the unconditional estimators can be used. The test uses information from 1,000 bootstrap

replications and 100 sample-splits to determine if the difference between the mean conditional VRS-
4As discussed by Simar and Wilson (2020), the uniform distrbution on [0, 1] is the distribution of p-values under

the null hypothesis due to the probability integral transform.
5Apon et al. (2015) only test returns to scale if convexity is rejected, however Kneip et al. (2021) does show that

CRS technology can exhibit a non-convex production set.
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DEA and conditional FDH estimates are statistically significant. If so, then convexity is rejected. If

the test fails to reject convexity, returns to scale are tested. The test for returns to scale is similar

to the test for convexity, but the conditional FDH estimator is replaced with the conditional CRS-

DEA estimator. As with the test for separability, the KS tests are conducted for both the test for

convexity and returns to scale. For technical details see Apon et al. (2015, Figure 1), Kneip et al.

(2015), Kneip et al. (2016), and Simar and Wilson (2020).

2.3 Data

2.3.1 Data on Electric Utilities and Variable Specification

The sample is an unbalanced panel of inputs and outputs by electric utility and produc-

tion year collected from the Form 1 Financial Data on Major Electric Utilities (Form 1) produced

by FERC. The Form 1 data consist of financial and engineering data that electric utilities report

to FERC, and are publicly available. These are the most commonly used data for measuring pro-

ductivity and efficiency of utilities and power plants in the US, and, to my knowledge, are the only

publicly available, comprehensive data on U.S. electric utility operations. The data collected contain

information on electric utilities during the years 2001–2019.

Table 2.1 contains a review of previous research examining the technical efficiency of

electric utilities or power plants. While many specifications of inputs and outputs have been used

to describe electric utility operations, several papers include generating capacity, fuel, and labor as

inputs, while net generation of electricity is treated as an output. For example, Färe et al. (1989)

specify inputs as the number of workers, heat content of fuel, and installed generating capacity,

while a single output is measured in megawatt hours of net generation. Likewise, Sarkis and Cordeiro

(2012) and Bernstein (2020) use similar specifications.6 Other papers examine other facets of electric

utility operations (e.g von Geymueller (2009), Growitsch and Hess (2009), and Omrani et al. (2015))

such as transmission operations and cost efficiency, and thus have specified inputs and outputs

differently.
6It should be noted that Färe et al. (1989) included precipitator costs as an input to examine the effect of

environmental regulation on efficiency scores. Likewise Sarkis and Cordeiro (2012) included emissions as outputs
to incorporate “bad” outputs into the estimation of the production frontier. Finally, Bernstein (2020) examined
efficiency at the level of the power plant and included additional plant level variables, such as hours connected to
load, as inputs.
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I specify inputs and outputs of utilities along lines similar to these previous studies. Specif-

ically, I include p = 3 inputs including heat content of fuel measured in MMBtus, generating capacity

measured in MW, and number of employees. In addition, I specify q = 1 output consisting of net

generation of energy measured in gigawatt hours (GWh). It should be noted that net generation

includes electricity generated by the power plants operated by the utilities and is exclusive of en-

ergy purchased from other producers. The chosen inputs and outputs allows for the nonparametric

estimation of a production function with capital, labor, and fuel as inputs, and energy as the single

output.

Figures 2.1 through 2.4 show sample means of the included inputs and outputs over time.

Examining the output, net generation, shows that while electric utility output increased over 2001–

2007, there was a downward trend in output for the remainder of the sample. More specifically,

average net generation declined from 17,843 GWh in 2007 to 15,694 GWh in 2019, a 12 percent

decline. These data are consistent with findings from other studies, such as Nadel and Herndon

(2014), Nadel and Young (2014), and Davis (2017) who discuss the decline in energy demand due

to energy efficiency, as well reports from the US Energy Information Administration (March 2021).

With regards to inputs, generating capacity trends upward from 2001 through 2013, with a 13

percent increase in capacity to 4.3 GW in 2013 from 3.8 GW in 2007. From 2013 to the end of the

sample, the growth in capacity slows down where total installed capacity remains near 4.3 GW at

the end of the sample period. Finally, the average number of employees decreases and there is no

distinct trend in the average heat content of fuel used by utilities during the sample period.

A benefit of using the Form 1 data is the ability to examine plant-level data within each

utility. Power plant details such as type and the fuel type are available for each plant, allowing

examination of the resource mix by each utility. Figure 2.5 shows the average share of generating

capacity attributed to natural gas fueled plants over time, while Figure 2.6 shows the average share

of generating capacity attributed to coal fueled plants over time. These data confirm that during

the period of shale gas expansion in the early 2000s, natural gas fueled energy production increased,

while coal generation decreased. While the choice to change resource mix can be made by the utility,

this is almost always subject to regulation. For example, regulatory requirements such as renewable

portfolio standards may inhibit some utilities from expanding natural gas fueled generation, in

favor of renewable generation. In addition, local utility regulation may dictate whether power plant
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investment gets approved or not. Thus, I use the share of natural gas generation used by each utility,

denoted as Z, as a continuous environmental variable.

2.3.2 Dimension Reduction Method

As noted in Section 2.1, the curse of dimensionality is a well-known issue in nonparametric

benchmarking, since‘ the convergence rates of FDH and DEA estimators decrease as the number of

inputs and outputs, p+q, increases. The rate of convergence for the VRS-DEA and FDH estimators

are established by Kneip et al. (1998), Park et al. (2000), and Daouia et al. (2017). With p+ q = 4

dimensions the VRS-DEA estimator converges at rate n 2
5 , while the FDH estimator converges at a

slower rate n 1
4 .

To mitigate the slow rate of convergence, I use eigensystem methods along the lines of

Wilson (2018) to reduce the dimensionality of the problem. More specifically, I find the (n× 1) first

principal component, X∗, of the moment matrix, X′X, of my observed (n×p) output matrix, X. X∗

is the matrix product of the observed output matrix and the eigenvector corresponding to the largest

eigenvalue of X′X. The ratio of the largest eigenvalue of X′X to the sum of all of its eigenvalues

measures the amount of independent linear information X∗ contains from the p columns of X. With

the sample of inputs from all production years, this ratio is 0.971. Results from Wilson (2018)

suggest that reducing the dimensions by replacing X with X∗ is reasonable since little information

is lost. See Wilson (2018) for technical details.7

With dimension reduction the convergence rate for the VRS-DEA estimator improves from

n
2
5 to n 2

3 , and the convergence rate for the FDH estimator improves from n
1
4 to n 1

2 . In this case,

the VRS-DEA estimator achieves a convergence rate faster than the standard parametric rate, while

the FDH estimator converges at the parametric rate. Because of this, I compute all estimates using

dimension-reduced data. Table 2.2 provides summary statistics for the sample of specified inputs

and outputs as well as the first principal components of the input matrix.8

7The estimated first principal component of the input matrix is derived using the pooled sample of data from
2001–2019. This is done to maximize the amount of data used to estimate the principal components. If different
principal components were estimated for each year in the sample, the ratios described above would range from 0.964
to 0.991, suggesting dimension reduction is still feasible with a sample limited to each year.

8Trivially, the first principal component of the output vector is the vector of net generation.
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2.4 Estimation and Results

I first test for separability of the production set with respect to (T,Z). Table 2.3 reports

results of the tests for separability with respect to (T,Z) using the FDH estimator with 1,000

bootstrap replications and 100 sample-splits.9 For all tests, I estimate efficiency using the input,

output and hyperbolic orientations as robustness checks. The first row, denoted Test 1, of Table 2.3

reports the test statistics corresponding to the differences between the unconditional and conditional

FDH estimates. The second row, denoted Test 2, shows the corresponding KS test. Of the six tests,

two reject the null at the 1 percent level, one rejects at the 5 percent level, and one rejects at the 10

percent level. This is evidence that separability of the frontier does not always hold with respect to

(T,Z). As discussed above, limiting the sample to individual years in T and testing for separability

with respect to Z allows me to separate the effects of T and Z on the frontier. Table 2.4 presents

the test statistics corresponding to the differences between the FDH estimates conditional on Z

and unconditional estimates, for each year in the sample. Table 2.5 reports the KS test results

corresponding to the p-values from the sample-splitting procedure used to create the test statistics

in Table 2.4. Both tables show numerous rejections of rejections of the null. This is evidence that

Z impacts the frontier faced by electric utilities. Previous research does not consider the possibility

of gas share of generation impacting the frontier faced by utilities. These results suggest that the

attainable frontier of utilities varies with z ∈ Z. Thus, all efficiency estimates will be conditioned

on Z as well as T .

Table 2.6 reports the results of the tests of convexity versus non-convexity using the test

statistics from Kneip et al. (2016) and Table 2.7 reports the results of the corresponding KS tests.

Both sets of tests show similar rates of rejections to the tests for separability, where the rates are

high enough to make one cautious in assuming the null hypothesis. In addition, Table 2.8 and Table

2.9 report the results for the returns to scale tests using the test statistics from from Kneip et al.

(2016) and the corresponding KS tests. Like the tests for convexity, the returns to scale tests have

rejection rates sufficient enough to reject the null. In this case, I find enough evidence to reject the

convexity and CRS of the production set. Thus, for all remaining tests I use the conditional FDH

estimator.
9The FDH estimator is used as it does not rely on convexity of Ψt,z , and is the safest estimator to use for testing

separability without testing the convexity of Ψt,z prior.
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Figure 2.7 plots the point estimates of mean efficiency using the FDH estimator, conditional

on T and Z, over time. As with the tests for separability, convexity, and returns to scale, efficiency

is estimated in the input, output, and hyperbolic orientation as robustness checks.10 Under all

orientations, the point estimates show technical efficiency trending upward from 2001 through 2008.

This largely coincides with the increase in net generation from 2001 through 2007 as shown in Figure

2.1. However, the trend in efficiency stops increasing after 2008, with a temporary drop in estimated

efficiency from 2011 through 2015 and a decline in efficiency from 2017 to the end of the sample

period.

Table 2.10 presents the results for tests in changes in conditional mean efficiency using the

FDH estimator. In this test, I use the estimator for differences in mean efficiency across groups of

producers, allowing the frontier to vary by group, as described by Kneip et al. (2016). Each row

corresponds to an interval of time for which changes in mean efficiency are tested, and the utilities

in different years are treated as different groups of producers. The test statistic is asymptotically

distributed standard normal, and is large and positive (negative) when there are increases (decreases)

in mean efficiency.11 In year-over-year terms, mean efficiency changes occasionally throughout the

sample. There is an increase in mean efficiency during 2001–2002 under all orientations, with a

subsequent decrease under the hyperbolic orientation over 2002–2003. During 2006–2007, technical

efficiency increases again under all orientations, but would remain flat from 2008 through 2010, then

decrease in the input and hyperbolic orientations from 2010 through 2011. Efficiency would then

increase over 2015–2016 in the input orientation and over 2016–2017 in the output orientation, but

then decline from 2017 through the end of the sample period under all orientations.

The bottom portion of Table 2.10 contains results for tests of changes in mean efficiency

in net terms for some year t to the end of the sample period, 2019. The results indicate that

over 2001–2019, 2003–2019, and 2006–2019 there were statistically significant increases in technical

efficiency, under the input and hyperbolic orientations. As shown in Figure 2.1, these increases
10While (2.4) and (2.6) by construction are weakly less than one, (2.5) is weakly greater than one. For ease of

comparison, Table 2.10 and Figure 2.7 present the output-oriented measures as the Farrell metric or reciprocal of
(2.5). Thus, efficiency measures are in (0, 1] with efficiency measures of one indicating presence on the frontier.

11Note that the tests of differences in mean efficiency, developed by Kneip et al. (2016), require independence
between the groups of producers. When testing for changes in mean efficiency over time, utilities are often observed
at multiple points in time resulting in a covariance issue. However, Wilson and O’Loughlin (2021) perform similar
tests for U.S. municipalities, and they argue that any covariance is likely positive due to inertia. In my case, inertia
likely plays a role as well where a utility that performs poorly (or well) in one year is likely to continue performing
poorly (or well) in a subsequent year. Consequently, ignoring positive covariance makes my tests for changes in mean
efficiency conservative as I bias towards failing to reject the null.
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coincide with the increase in utility net generation observed early in the sample period. However,

over 2008–2019, 2009–2019, and 2010–2019 there are estimated declines in technical efficiency under

various orientations. These coincide with the period of decline in net generation, that occurs after

2007. To summarize, the results indicate that technical efficiency did increase, in net terms, from the

beginning of the sample period to the end, where these increases correspond with increases in utility

output that occurred prior to 2007. However, the subsequent decline in utility output coincides with

a decrease in technical efficiency of utilities observed after 2007.

Finally, because I have a single output, net generation, and use dimension reduction to

obtain a single input, X∗, I can directly measure the mean productivity of utilities in a given

production year t as
̂Productivityt = n−1

t

nt∑
i

NetGenerationi,t
X∗i,t

, (2.15)

where i indexes the utilities and nt is the number of utilities observed in production year t. Moreover,

the standard Lindeberg-Feller Central Limit Theorem can be used to make inference on changes in

productivity over time.12 Table 2.11 reports the test statistics of differences in the productivity

estimates. The results indicate declines in productivity in year-over-year terms from 2007–2014.

This corresponds with the period of decline in net generation as shown in Figure 2.1. Although there

is an increase in productivity from 2017–2018, coinciding with a large increase in net generation over

the same time period, there is strong evidence for declines in productivity, in net terms. The results

at the bottom portion of Table 2.11 indicate that under all tests for net change in productivity the

test statistics are negative and large in magnitude, indicating productivity declined over the sample

period.

2.5 Summary and Conclusion

In the analysis outlined above I use nonparametric methods and dimension reduction

techniques to measure the technical efficiency and productivity of electric utilities from 2001–2019.

Moreover, I apply modern nonparametric tests to determine if a utility’s reliance on natural gas

generation changed the production set the utility faced. This is done to determine if efficiency esti-

mates should be conditional on the amount of gas generation a utility has. The results indicate that
12Similar covariance issues as noted in footnote 11 arise when examining productivity over time. However, similar

reasoning applies here where any covariance is likely positive making the tests conservative.
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separability with respect to production year and reliance on natural gas generation does not hold,

thus the production set for utilities changes with respect to these variables. This is something pre-

vious work examining utility efficiency using nonparametric methods has not considered. Moreover,

I find little evidence against convexity of the production set.

While tests for changes in mean efficiency suggest that the technical efficiency of utilities

did increase when comparing early production years in the sample to the end, the increases in

technical efficiency cease after the 2006. After 2008, during the initial decline of net generation

and electricity consumption, declines in the efficiency of utilities are observed. In addition, the

productivity of utilities declined each year from 2007-2014. The results provide evidence that utilities

became less efficient and less productive after energy consumption declined after 2007.
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Table 2.3: Separability Test With Respect to (T,Z) (FDH Estimator)

Input–Orientation Output–Orientation Hyperbolic
Statistic p-value Statistic p-value Statistic p-value

Test 1 2.410 0.000*** 0.407 0.636 2.679 0.002***
Test 2 0.718 0.073* 0.348 0.517 0.725 0.023**

The test statistic for test 1, described in Daraio et al. (2018), is computed using the FDH estimator with
dimension-reduced data, such that p = q = 1. The test 2 statistic is from the KS test as described in
Simar and Wilson (2020). The dimensions are reduced using eigensystem methods as described in Wilson
(2018), and the principal components are estimated using the pooled sample of data from 2001–2019. The
p-values are developed using 100 sample-splits and 1,000 bootstrap replications using techniques described
in Simar and Wilson (2020). Sample-splits are done unevenly to apply more data to the estimator with
the slower rate of convergence, as described by Kneip et al. (2016). One, two or three asterisks denote
significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.4: Separability Test With Respect to Z (FDH Estimator)

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value
2001 −0.584 0.995 −0.273 0.552 0.242 0.737
2002 0.265 0.871 −0.892 0.931 0.047 0.843
2003 0.396 0.788 −0.779 0.879 −0.536 0.941
2004 0.837 0.741 −0.852 0.940 0.973 0.467
2005 1.987 0.379 −0.739 0.884 1.245 0.464
2006 1.054 0.850 −0.787 0.921 0.303 0.849
2007 1.876 0.658 −1.011 0.956 2.248 0.487
2008 3.702 0.034** −0.416 0.859 3.374 0.108
2009 3.721 0.061* 0.071 0.801 3.727 0.048**
2010 4.636 0.024** −0.294 0.877 3.882 0.397
2011 1.573 0.672 −0.589 0.906 0.626 0.687
2012 1.180 0.873 −1.237 0.992 0.545 0.847
2013 3.687 0.009*** 3.075 0.087* 3.181 0.260
2014 3.830 0.016** 2.843 0.107 3.231 0.145
2015 2.851 0.466 −0.233 0.816 2.005 0.606
2016 3.578 0.019** 2.637 0.126 3.181 0.040**
2017 3.329 0.091* 2.908 0.095* 3.035 0.067*
2018 3.331 0.046** 2.544 0.345 3.106 0.095*
2019 2.952 0.242 1.587 0.698 2.629 0.376

The test statistic, described in Daraio et al. (2018), is computed using the FDH estimator with dimension-
reduced data, such that p = q = 1. The dimensions are reduced using eigensystem methods as described
in Wilson (2018), and the principal components are estimated using the pooled sample of data from
2001–2019. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications using
techniques described in Simar and Wilson (2020). Sample-splits are done unevenly to apply more data to
the estimator with the slower rate of convergence, as described by Kneip et al. (2016). One, two or three
asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.5: Separability Test (KS Test) With Respect to Z (FDH Estimator)

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value
2001 0.367 0.695 0.590 0.296 0.291 0.693
2002 0.310 0.936 0.631 0.230 0.364 0.631
2003 0.443 0.541 0.619 0.234 0.467 0.275
2004 0.387 0.758 0.583 0.379 0.415 0.524
2005 0.626 0.402 0.607 0.215 0.424 0.551
2006 0.269 0.982 0.583 0.417 0.278 0.856
2007 0.512 0.736 0.786 0.073* 0.665 0.534
2008 0.922 0.050** 0.776 0.158 0.904 0.046**
2009 0.935 0.057* 0.786 0.224 0.928 0.058*
2010 0.965 0.070* 0.780 0.383 0.896 0.343
2011 0.454 0.849 0.667 0.476 0.513 0.552
2012 0.413 0.873 0.752 0.209 0.467 0.789
2013 0.902 0.046** 0.798 0.241 0.741 0.636
2014 0.925 0.038** 0.841 0.094* 0.867 0.201
2015 0.769 0.561 0.533 0.849 0.601 0.636
2016 0.916 0.042** 0.730 0.258 0.856 0.049**
2017 0.904 0.067* 0.766 0.249 0.786 0.150
2018 0.858 0.098* 0.690 0.536 0.804 0.124
2019 0.842 0.171 0.499 0.932 0.744 0.346

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use
the KS test to test for uniformity of the p-values estimated from the multiple sample-splits used in
the tests presented in Table 2.4. The dimensions are reduced using eigensystem methods as described
in Wilson (2018), and the principal components are estimated using the pooled sample of data from
2001–2019. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications using
techniques described in Simar and Wilson (2020). Sample-splits are done unevenly to apply more data
to the estimator with the slower rate of convergence, as described by Kneip et al. (2016). One, two or
three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.6: Convexity Test Conditional on Z

Input–Orientation Output–Orientation Hyperbolic

Year T̂KSW p-Value T̂KSW p-Value T̂KSW p-Value
2001 0.182 0.495 0.227 0.696 −0.169 0.873
2002 0.210 0.042** −0.094 0.923 −0.052 0.348
2003 −0.293 0.200 −0.259 0.959 0.109 0.183
2004 −0.195 0.878 0.998 0.085* −0.257 0.948
2005 0.189 0.247 0.161 0.817 −0.135 0.725
2006 −0.043 0.280 0.489 0.261 −0.310 0.856
2007 −1.798 0.596 0.792 0.010*** −1.816 0.831
2008 −3.257 1.000 0.346 0.387 −3.077 0.998
2009 −1.427 0.545 0.313 0.349 −0.682 0.591
2010 −1.166 0.177 0.370 0.287 −0.252 0.228
2011 0.269 0.265 0.173 0.545 0.026 0.474
2012 −2.007 0.719 0.780 0.008*** −1.164 0.636
2013 −3.401 0.973 −0.951 0.611 −1.580 0.332
2014 −0.408 0.343 −0.488 0.719 −0.926 0.641
2015 −1.988 0.775 0.135 0.602 −1.110 0.603
2016 −1.393 0.367 0.960 0.009*** −0.242 0.063*
2017 −0.487 0.018** 0.397 0.244 −0.890 0.582
2018 −0.564 0.883 0.209 0.560 −0.198 0.805
2019 −1.422 0.555 0.275 0.397 −0.810 0.526

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced data,
such that p = q = 1. The dimensions are reduced using eigensystem methods as described in
Wilson (2018), and the principal components are estimated using the pooled sample of data from
2001–2019. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications
using techniques described in Simar and Wilson (2020). Sample-splits are done unevenly to apply
more data to the estimator with the slower rate of convergence, as described by Kneip et al. (2016).
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.7: Convexity Test (KS Test) Conditional on Z

Input–Orientation Output–Orientation Hyperbolic

Year T̂KSW p-Value T̂KSW p-Value T̂KSW p-Value
2001 0.322 0.810 0.622 0.343 0.449 0.122
2002 0.417 0.095* 0.591 0.175 0.432 0.020**
2003 0.540 0.024** 0.575 0.142 0.590 0.001***
2004 0.486 0.605 0.640 0.491 0.479 0.581
2005 0.483 0.253 0.642 0.275 0.481 0.196
2006 0.477 0.120 0.626 0.227 0.530 0.031**
2007 0.489 0.462 0.715 0.044** 0.597 0.077*
2008 0.794 0.002*** 0.680 0.146 0.679 0.004***
2009 0.452 0.460 0.748 0.024** 0.575 0.188
2010 0.686 0.014** 0.698 0.179 0.500 0.049**
2011 0.580 0.217 0.517 0.467 0.533 0.199
2012 0.529 0.350 0.760 0.017** 0.512 0.226
2013 0.823 0.012** 0.322 0.827 0.428 0.831
2014 0.410 0.653 0.509 0.134 0.477 0.152
2015 0.544 0.262 0.609 0.380 0.383 0.494
2016 0.424 0.779 0.621 0.344 0.441 0.172
2017 0.456 0.382 0.643 0.373 0.352 0.535
2018 0.556 0.081* 0.703 0.317 0.560 0.121
2019 0.386 0.794 0.727 0.113 0.301 0.790

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use
the KS test to test for uniformity of the p-values estimated from the multiple sample-splits used in
the tests presented in Table 2.6. The dimensions are reduced using eigensystem methods as described
in Wilson (2018), and the principal components are estimated using the pooled sample of data from
2001–2019. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications using
techniques described in Simar and Wilson (2020). Sample-splits are done unevenly to apply more data
to the estimator with the slower rate of convergence, as described by Kneip et al. (2016). One, two or
three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.8: Returns to Scale Test Conditional on Z

Input–Orientation Output–Orientation Hyperbolic

Year T̂KSW p-Value T̂KSW p-Value T̂KSW p-Value
2001 1.891 0.010*** 1.749 0.228 1.547 0.003***
2002 0.970 0.267 0.980 0.813 0.742 0.046**
2003 1.424 0.087* 1.388 0.842 0.967 0.015**
2004 1.740 0.008*** 1.613 0.109 1.620 0.000***
2005 1.877 0.042** 1.154 0.347 1.478 0.011**
2006 1.494 0.079* 0.867 0.460 1.302 0.008***
2007 1.149 0.161 0.800 0.254 0.683 0.153
2008 1.474 0.113 0.983 0.363 1.143 0.107
2009 0.890 0.280 1.145 0.269 0.952 0.130
2010 −1.532 0.985 −0.057 0.887 −0.247 0.393
2011 0.345 0.361 1.022 0.155 0.597 0.077*
2012 0.625 0.393 0.793 0.297 0.585 0.141
2013 1.562 0.207 1.272 0.029** 1.551 0.116
2014 1.509 0.075* 0.820 0.039** 1.105 0.100*
2015 1.394 0.036** 0.734 0.520 1.208 0.023**
2016 0.640 0.184 −0.180 0.671 0.036 0.087*
2017 1.661 0.073* 1.086 0.457 1.082 0.094*
2018 1.986 0.006*** 1.355 0.159 1.947 0.002***
2019 1.522 0.052* 0.661 0.369 0.860 0.192

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced data, such that
p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and
the principal components are estimated using the pooled sample of data from 2001–2019. The p-values
are developed using 100 sample-splits and 1,000 bootstrap replications using techniques described in
Simar and Wilson (2020). Sample-splits are done unevenly to apply more data to the estimator with
the slower rate of convergence, as described by Kneip et al. (2016). One, two or three asterisks denote
significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.9: Returns to Scale Test (KS Test) Conditional on Z

Input–Orientation Output–Orientation Hyperbolic

Year T̂KSW p-Value T̂KSW p-Value T̂KSW p-Value
2001 0.514 0.064* 0.468 0.999 0.426 0.577
2002 0.309 0.973 0.208 1.000 0.298 1.000
2003 0.473 0.496 0.430 1.000 0.295 0.999
2004 0.535 0.025** 0.439 0.977 0.509 0.253
2005 0.497 0.127 0.310 1.000 0.449 0.600
2006 0.459 0.300 0.287 1.000 0.361 0.951
2007 0.314 0.975 0.365 0.999 0.225 1.000
2008 0.399 0.831 0.375 0.998 0.438 0.904
2009 0.378 0.893 0.315 1.000 0.376 0.970
2010 0.928 0.000*** 0.886 0.000*** 0.853 0.085*
2011 0.325 0.979 0.356 1.000 0.236 0.998
2012 0.462 0.450 0.320 0.998 0.398 0.885
2013 0.475 0.206 0.403 0.446 0.462 0.422
2014 0.370 0.475 0.342 0.542 0.341 0.786
2015 0.415 0.533 0.205 1.000 0.408 0.882
2016 0.245 0.989 0.177 1.000 0.222 0.998
2017 0.437 0.540 0.428 0.983 0.393 0.862
2018 0.552 0.003*** 0.415 0.350 0.570 0.010***
2019 0.415 0.408 0.279 0.998 0.285 0.979

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the
KS test to test for uniformity of the p-values estimated from the multiple sample-splits used in the tests
presented in Table 2.8. The dimensions are reduced using eigensystem methods as described in Wilson
(2018), and the principal components are estimated using the pooled sample of data from 2001–2019. The
p-values are developed using 100 sample-splits and 1,000 bootstrap replications using techniques described
in Simar and Wilson (2020). Sample-splits are done unevenly to apply more data to the estimator with
the slower rate of convergence, as described by Kneip et al. (2016). One, two or three asterisks denote
significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.10: Test For Equivalency of Mean Efficiency: FDH Estimator Conditioned on Z and T

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

2001–2002 2.688 0.007*** 2.006 0.045** 2.221 0.026**
2002–2003 −1.317 0.188 −0.921 0.357 −2.145 0.032**
2003–2004 1.058 0.290 −0.733 0.463 1.116 0.264
2004–2005 0.044 0.965 −0.129 0.898 0.256 0.798
2005–2006 −0.481 0.631 0.150 0.881 −0.877 0.380
2006–2007 1.791 0.073* 2.062 0.039** 2.490 0.013**
2007–2008 1.138 0.255 0.229 0.819 0.758 0.449
2008–2009 1.310 0.190 0.261 0.794 0.475 0.635
2009–2010 0.244 0.808 −1.188 0.235 −0.053 0.957
2010–2011 −2.767 0.006*** −0.320 0.749 −3.077 0.002***
2011–2012 0.248 0.804 −0.188 0.850 0.765 0.444
2012–2013 0.269 0.788 0.209 0.835 0.248 0.804
2013–2014 1.275 0.202 1.547 0.122 1.130 0.258
2014–2015 −0.645 0.519 −0.311 0.756 0.096 0.923
2015–2016 2.119 0.034** 1.138 0.255 1.444 0.149
2016–2017 1.538 0.124 2.570 0.010*** 1.441 0.150
2017–2018 −3.407 0.001*** −2.048 0.041** −2.249 0.024**
2018–2019 −1.253 0.210 −2.691 0.007*** −2.498 0.012**
2001–2019 4.261 0.000*** 1.098 0.272 2.705 0.007***
2002–2019 1.169 0.242 −1.186 0.236 −0.064 0.949
2003–2019 2.878 0.004*** −0.181 0.857 2.643 0.008***
2004–2019 1.522 0.128 0.630 0.529 1.533 0.125
2005–2019 1.680 0.093* 0.812 0.417 1.250 0.211
2006–2019 2.218 0.027** 0.661 0.508 2.261 0.024**
2007–2019 0.231 0.817 −1.576 0.115 −0.615 0.538
2008–2019 −1.193 0.233 −1.983 0.047** −1.674 0.094*
2009–2019 −2.625 0.009*** −2.212 0.027** −2.260 0.024**
2010–2019 −2.810 0.005*** −1.013 0.311 −2.102 0.036**
2011–2019 0.804 0.422 −0.664 0.507 1.810 0.070*

The test statistic, described in Kneip et al. (2016), is computed using the FDH estimator with dimension-reduced
data, such that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and
the principal components are estimated using the pooled sample of data from 2001–2019. One, two or three asterisks
denote significance at the 10, 5 and 1 percent levels, respectively.
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Table 2.11: Productivity Estimates

Period Statistic pvalue
2001–2002 −0.470 0.638
2002–2003 0.183 0.855
2003–2004 0.379 0.705
2004–2005 −0.980 0.327
2005–2006 −0.324 0.746
2006–2007 1.393 0.164
2007–2008 −2.152 0.031**
2008–2009 −3.080 0.002***
2009–2010 1.838 0.066*
2010–2011 −2.073 0.038**
2011–2012 −3.017 0.003***
2012–2013 2.801 0.005***
2013–2014 −1.942 0.052*
2014–2015 −1.535 0.125
2015–2016 0.012 0.990
2016–2017 −0.229 0.819
2017–2018 2.144 0.032**
2018–2019 −1.070 0.285
2001–2019 −3.977 0.000***
2002–2019 −4.004 0.000***
2003–2019 −4.000 0.000***
2004–2019 −4.022 0.000***
2005–2019 −3.501 0.000***
2006–2019 −3.752 0.000***
2007–2019 −5.086 0.000***
2008–2019 −4.533 0.000***
2009–2019 −2.695 0.007***
2010–2019 −3.494 0.000***
2011–2019 −2.184 0.029**

Change in productivity test statistics are com-
puted with dimension-reduced data, such that p =
q = 1. The dimensions are reduced using eigensys-
tem methods as described in Wilson (2018), and
the principal components are estimated using the
pooled sample of data from 2001–2019. One, two
or three asterisks denote significance at the 10, 5
and 1 percent levels, respectively.
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Figure 2.1: Average Net Generation of Electric Utilities: 2001–2019
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This figure presents data from the FERC Form 1 on average net generation of electric utilities by year. These data
are exclusive of energy purchased by utilities then re-sold to customers.
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Figure 2.2: Average Generating Capacity of Electric Utilities: 2001–2019
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This figure presents data from the FERC Form 1 on average generating capacity of electric utilities by year.

63



Figure 2.3: Average Number of Employees at Electric Utilities: 2001–2019
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This figure presents data from the FERC Form 1 on average number of power plant employees at electric utilities.
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Figure 2.4: Average Heat Content of Fuel Used by Electric Utilities: 2001–2019
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This figure presents data from the FERC Form 1 on average heat content of fuel used by electric utilities.
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Figure 2.5: Average Share of Natural Gas Fueled Generating Units: 2001–2019
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This figure presents data from the FERC Form 1 on average share of capacity attributed to natural gas powered
generating units.
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Figure 2.6: Average Share of Coal Fueled Generating Units: 2001–2019
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This figure presents data from the FERC Form 1 on average share of capacity attributed to coal powered generating
units.
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Figure 2.7: Mean Efficiency Scores by Orientation Conditional on Z and T : FDH Estimator
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The table shows mean efficiency scores by year conditional on Z for the input, output, and hyperbolic orientations.
The input and hyperbolic orientations are expressed in the Farrell metric, and the output orientation is expressed
in the Shephard metric. The estimation is done using dimension-reduced data such that (p = q = 1), and principal
components are estimated using the pooled sample of data from 2001–2019.
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Chapter 3

Price Convergence Across Natural

Gas Markets During The Shale

Revolution

3.1 Introduction

In the early 1980s the Federal Energy Regulatory Commission (FERC) began to implement

a series of reforms to restructure how wholesale natural gas was transported and delivered to markets

from gas producing regions in the U.S. These reforms were developed with the intention of creating

a national spot market for natural gas. In order to do this FERC imposed measures to decouple the

production of gas from the trading of the commodity itself. In 1992 FERC created a regulatory order,

Order 636, designed to “improve the competitive structure of the natural gas industry” where the

primary goal was to “ensure that all shippers have meaningful access to the pipeline transportation

grid so that willing buyers and sellers can meet in a competitive, national market to transact the

most efficient deals possible” (FERC, 1992).

The stated goals of Order 636 imply that geographically dispersed gas markets were not

integrated into a national spot market prior to the gas market restructuring that occurred in the
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early 1990s. In order to infer if FERC’s objectives have been achieved, I test whether regional gas

markets in the U.S. became integrated into the same market from July 1996 through December 2019.

In order to do this I examine the daily differences (or price-gaps) between pairs of 71 geographically

dispersed price hubs in the U.S. and Canada. More specifically, I use several unit root tests to

test for stationarity of the price-gaps, where stationary price-gaps would suggest the presence of an

equilibrium price-gap. This would provide evidence of the corresponding price hubs existing in the

same market.

Previous studies examining the U.S. natural gas markets suggest that Order 636 played

a role in integrating some geographically dispersed natural gas markets in the U.S. into the same

market. For example, King and Cuc (1996), Doane and Spulber (1994), and Cuddington and Wang

(2006) use various time series methods to assess the convergence of U.S. natural gas prices at differ-

ent gas price hubs across the U.S. Their results suggest that different regional gas markets became

more integrated through FERC’s market restructuring. In particular, Doane and Spulber (1994)

discuss how FERC’s restructuring allowed for unbundling of the merchant and transportation ser-

vices pipeline’s traditionally provided. Prior to Order 636, pipeline firms acted as both a transporter

and merchant (or seller) of natural gas. Pipeline firms that also acted as sellers of natural gas had

an incentive to restrict access to their pipeline network, creating market power in the selling of

natural gas. In response to this, Order 636 relegated pipeline firms to only the transportation of gas

and required pipelines to become an open access resource available to merchants of natural gas.1

This resulted in a larger set of natural gas merchants gaining access to pipelines for transporting

gas. Moreover, local distribution companies, electric utilites, industrial plants, and other customers

began to enter the wholesale market with more options for purchasing and receiving gas. Open

access meant that purchase agreements between customers, producers, and pipelines were no longer

tied to a specific pipeline and producer pair. This coincided with the duration of shipping contracts

becoming shorter with more flexible terms. Thus, a wholesale natural gas customer could substitute

between a wider variety of delivery routes to ship gas, allowing for more arbitrage across different

regional gas markets. This resulted in the integration of many geographically dispersed natural gas

trading hubs into the same market.

However, King and Cuc (1996) and Cuddington and Wang (2006) argue that natural gas
1While firms that own pipelines may also have a natural gas merchant function, the merchant operations of gas

must be done at an “arms-length” from transporting gas under Order 636.
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markets were only imperfectly integrated by the 1990s. King and Cuc (1996) examine monthly U.S.

natural prices from 1986 through 1995, and observe an east-west split in U.S. natural gas markets

during this time. Moreover, Cuddington and Wang (2006) examine U.S. natural gas markets from

1993 through 1997 with daily natural gas spot price data, and provide more evidence of a separate

western U.S. gas market during this period. In order to do this, Cuddington and Wang (2006)

estimate the proportion of price-gaps between prices in different regions of the U.S. that are unit

root (or non-stationary) processes. The presence of a unit root in the price-gap may suggest that

the corresponding prices may respond to different market shocks, indicating arbitrage between the

price hubs may not be possible. Cuddington and Wang (2006) estimate that 84 percent of price-

gaps between east and west pricing hubs were not integrated into the same market during 1993–

1997.

Since 1997, U.S. natural gas markets have changed. One might expect that U.S. natural

gas markets became more integrated through the late 1990s and early 2000s for several reasons.

First, the increase in shale production, starting in the early 2000s (a period known as the Shale

Revolution), diversified natural gas supply regions in the U.S. Second, this expansion of shale gas

production coincided with increasing pipeline capacity in the U.S. In addition, the largest pipeline

in the U.S., Rockies Express Pipeline (REX), was commissioned in 2009 and runs from the rocky

mountains to eastern Ohio. One might expect that the development of east-west pipeline capacity

would integrate eastern and western natural gas markets. While I use an approach similar to that

of Cuddington and Wang (2006) and use unit root tests on the price-gaps between geographically

dispersed price hub pairs, my analysis differs from Cuddington and Wang (2006), and other previous

papers, in that I examine U.S. natural gas markets with a later sample period of July 1996 through

December 2019. Moreover, while Cuddington and Wang (2006) use only a Ng-Perron unit root test

on price-gaps, I use several other unit root tests on price-gaps as robustness checks.

The remainder of the paper is organized as follows. Section 3.2 discusses the statistical

model and the method for testing for stationarity of price-gaps between price hubs. Section 3.3

describes the data. Section 3.4 reports the empirical results and findings. Finally, a summary and

overview of the conclusions are given in Section 3.5.
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3.2 Statistical Model

To test for market integration between price hubs I use an autoregressive (AR) model,

similar to that used by Cuddington and Wang (2006), to examine natural gas price-gaps from July

1996 through December 2019. Let xijt = pit − p
j
t denote the price-gap between price hub i and price

hub j at time t. The idea behind using an AR approach is that if the price series that generate

pit and pjt are both I(1) processes (i.e., if the price series pi and pj are integrated of order 1), they

could lie within the same market if price shocks at either hub i or j cause a similar price change at

the other hub. In this case, arbitrage will be possible if two price hubs lie within the same market,

resulting in an equilibrium price-gap x̄. This is consistent with the definition of a market provided

by Stigler and Sherwin (1985).

Of course price-gaps are not expected to continuously reflect just x̄. Cuddington and Wang

(2006) present the partial adjustment mechanism or

xijt − x̄ = λ(xijt−1 − x̄) + εijt , (3.1)

which was derived from the Enke-Samuelson-Takayama-Judge model of spatial equilibrium in the

presence of transport costs and capacity constraints. Expression (3.1) suggests that within a market,

deviations from an equilibrium price-gap in period t is posited to be a fraction, λ, of the deviation in

t− 1. In this case λ measures the persistence of disequilibrium where λ ∈ [0, 1]. Rearranging terms

in (3.1) implies the AR(1) specification

xijt = c+ λxijt−1 + εijt , (3.2)

where c = (1 − λ)x̄. I use the specification in (3.2) to test whether λ = 1. If λ = 1, a shock to

the price-gap, xt, is permanent, suggesting that the price hubs of the price-gap to not lie within

the same market. Testing H0 : λ = 1 versus H1 : λ 6= 1 amounts to a unit root test. See Enke

(1951), Samuelson (1952), Takayama and Judge (1964, 1971), and Cuddington and Wang (2006) for

technical details.

Cuddington and Wang (2006) also discuss persistent serial correlation found in their price-
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gaps, and suggest a higher-order AR(q) process

xijt = c+ λxijt−1 + ...+ λxijt−q + εt (3.3)

to model price-gap dynamics. In this case, I determine the number of lags, q, using two information

criteria, i.e., the Akaike information criterion (AIC) and the Bayes information criterion (BIC).

For unit root tests that rely on an AR(q) model to deal with serial correlation, I report results

corresponding to both information criteria as robustness checks.

It is well-known that the power of unit root tests can be low. Enders (2009) notes that

these tests will often fail to reject the presence of a unit root, when in fact the unit root hypothesis

should be rejected. Many unit root tests have been proposed in an attempt to increase the power

of unit root testing. Because of this I use four different tests to make inference on the stationar-

ity of the price-gaps. These tests are the Augmented Dickey-Fuller (ADF) test, as described by

Said and Dickey (1984), the Phillips-Perron test, as described by Phillips and Perron (1988), the

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, as described by Kwiatkowski et al. (1992), and

the modified Dickey–Fuller test (ADF-GLS) as described by Elliott et al. (1996). While I expect

that each test will vary in terms of the proportion of price-gaps identified as unit root processes, an

increasing trend of stationary price-gaps across all tests will provide stronger evidence of increasing

market integration, as opposed to relying on a single unit-root test. Moreover, for tests where unit

roots are the null hypothesis, any rejection of the null should provide strong evidence of stationarity

of the price-gaps due to the low power of these tests.

3.3 Data

The sample is comprised of daily volume-weighted average natural gas prices at 71 ge-

ographically dispersed price hubs in the U.S. The sample contains data on daily prices from July

1993 through December 2019 collected from Natural Gas Intelligence (NGI), a trade publication that

produces natural gas price indices. NGI natural gas pricing data are developed from information

collected from market participants and the Intercontinental Exchange.2

2The Intercontinental Exchange operates a marketplace for financial assets and commodities, including natural
gas.
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The selection of the 71 price hubs is based on a review of previous studies examining

U.S. natural gas prices and encompasses major trading points of natural gas at all major producing

regions and citygates. Table 3.1 presents the price hub counts by region in my sample. Moreover,

Figure 3.1 presents a map with the locations of the pricing hubs.3 NGI categorizes price hubs by

natural gas region. For example, in my sample NGI categorizes seven hubs in the Appalachia natural

gas region. Consistent with Cuddington and Wang (2006, Table 2), I categorize each NGI region

into larger geography of east, central, and western U.S. regions. In addition, NGI provides major

Canadian price hubs, which Cuddington and Wang (2006, Table 2) do not include. Scarcioffolo

and Etienne (2019) discuss how these Canadian price hubs have become major trading points for

supplying natural gas to the western U.S.; therefore I include these Canadian price hubs in my

sample.

To reduce the skewness and kurtosis of the price series, the natural logarithm of the price

series are used for statistical testing as opposed to prices in levels. This standard practice in the

literature examining natural gas prices as well the prices of other commodities. It is also common

in research studying natural gas prices to examine the price series and first differences of prices at

major price hubs in the sample. Consistent with Cuddington and Wang (2006), I examine the price

series at Henry Hub, Southern Natural, and Kern River. Figure 3.2 presents the daily price series

in logs as well as the first difference in log prices. While the log prices suggest that the three price

series follow a similar pattern, there are some periods where the price movements differ. Henry Hub

and Southern Natural are U.S. Gulf Coast pricing points in Louisiana, while Kern River is a major

pricing point in California. While Southern Natural and Henry Hub prices, unsurprisingly, appear

similar throughout all time periods, they differ in certain periods with Kern River. Notably, Kern

River’s log price during 2002–2004, 2005–2009, and 2017–2019 appears more volatile than prices at

Henry Hub and Southern Natural. This is particularly apparent when examining the first difference

in log prices. Consequently, one might expect that Kern River’s prices might follow market shocks

that are distinct from Southern Natural and Henry Hub. However, formal tests are needed to make

inference on this.
3In some cases natural gas price indices are based on sales from sections of pipeline or within a larger region. In

this case the location of the hub presented in Figure 3.1 is an approximate location.
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3.4 Estimation and Results

To determine if an equilibrium price-gap between two price hubs exists (i.e. the price-gap

is stationary), or if the price-gap is a unit root process (such as a random walk), I first examine

whether the price series are themselves stationary processes. If the price series are stationary, the test

of market integration would indicate that price hubs are in the same market regardless of whether

customers could substitute between markets, as argued by Werden and Froeb (1993). In this case,

examining price-gaps for market integration would be misleading. As explained in Cuddington and

Wang (2006, footnote 15), two independent random walks, such as price gaps between non-market

integrated price hubs with price series that are I(1), will have a non-stationary price-gap. Thus, the

price series themselves need to be non-stationary in order to test for market integration between the

price hub pairs. Using an ADF test I find that 4 out of the 71 price series are stationary.4 Thus

I remove these 4 price series from my sample. The remaining 67 price hubs had price series that

were stationary in their first difference, suggesting they are I(1) processes and valid for testing for

equilibrium price-gaps. My remaining sample of price series from 67 price hubs amounts to a total

of 2,211 bilateral price-gaps.

With my remaining sample I first use an ADF test on the price-gaps to test for market

integration. In my application, I parse my sample period into three-year intervals and calculate the

proportion of stationary price-gaps in each interval.5 I define a price-gap as stationary if the ADF

test rejects the the presence of a unit root. Figure 3.3 shows the proportion of stationary price-gaps

over time by lag selection procedure.6 Figure 3.3 also shows the proportion of rejections at the 1,

5, and 10 percent levels as a robustness check. While the results may vary depending on the lag

selection procedure and chosen level of significance, some distinct trends in the stationarity of the

price-gaps are apparent across all tests. These include the increase in the proportion of stationary

gaps during 1993–2001, and the decline in the proportion of stationary gaps during 2002–2010. The

increase in stationary price-gaps is consistent with results obtained by Doane and Spulber (1994)

and Cuddington and Wang (2006), who discuss how FERC’s restructuring of gas markets played a
4As noted above I perform these tests on the natural log of prices.
5In some cases, price data are not reported for certain periods at some hubs. For example, the El Paso South

Mainline/Noth Baja price hub was not tracked as a major price index until September of 2004. Thus, In each three-
year time interval, I only calculate price-gaps (and thus test for unit roots of price-gaps) from price hubs with at least
100 days of observed prices in that time interval.

6It is clear from Figure 3.3 that different lag selection procedures produce different results in determining if a
price-gap is stationary. The number of lags chosen by each procedure differed. The average lag length selected under
the AIC and BIC procedures was 11.3 and 4.6 days, respectively.
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role in integrating different gas markets in the U.S.

While one might expect that stationarity of the price-gaps would have persisted, this was

not the case. From 2002 through 2010, market integration appears to have declined as suggested

by the decreasing proportion of stationary price-gaps. Others have speculated as to why market

integration may have declined during this period. Scarcioffolo and Etienne (2019) examine seven

natural gas spot markets in the U.S. and Canada during 1994–2016 and argue that market integration

declined towards the end of their sample period and cite three potential reasons why this may have

occurred. To begin, market power and market manipulation are issues in U.S. natural gas markets.

Despite the efforts of FERC to curb market power and prevent market manipulation, some major

traders of natural gas have become more sophisticated in their ability to control prices. The second

issue is the reduced trading volume at some price hubs stemming from a reduction in the number

of traders in the natural gas market. After Enron’s bankruptcy in 2001, the credit requirements

required by trading counter-parties increased while the number of market intermediaries in many

regional markets diminished. Finally, Scarcioffolo and Etienne (2019) argue that pipeline constraints

during the shale gas boom played a major role in reducing the contentedness of gas markets across

eight different price hubs.

While the results suggest that market integration declined from 2002 through 2010, price-

gaps become more stationary from 2011 through 2019. This coincides with the development of major

pipeline systems and restructuring of existing systems to accommodate large increases in shale gas

production that occurred during this period. For example, REX became fully operation in 2009. It

was initially designed to carry gas west to east but, in 2015 its flow was reversed to bring shale gas

produced in the east to western markets. During this time, shale production in the the eastern U.S.

put eastern U.S. gas prices at a discount to western gas prices. REX and other developed pipelines

may have played a role in equating prices across western and other regions. Previous studies have

found that western gas markets were not integrated into other regional gas markets in the U.S. prior

to the expansion of shale gas. Figure 3.4 presents the proportion of stationary price-gaps between

western hubs and hubs in other regions. In this case we see similar trends to the results from

examining all price-gaps. This suggests the western U.S. natural gas markets eventually became

integrated with other regional markets as well.

In addition to examining the proportion of price-gaps that are stationary processes, I
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inspect the distribution of the p-values from the ADF tests for each time period. Figure 3.5 shows

empirical distribution functions of the p-values from the ADF test results shown in Figure 3.3. To

visually inspect the frequency with which the null is rejected, vertical lines are located at 0.1 on

the horizontal axes. It is clear that the distribution of the p-values changes over time with a lower

frequency of rejecting the null the during 1993–1995 and 1996–1998, relative to later time periods.

Moreover, Figure 3.6 shows empirical distribution functions of the p-values from the ADF test results

shown in Figure 3.4, where the analysis was limited to price-gaps between western hubs and hubs in

other regions. In this case, the change in the distribution of the p-values is similar. The increasing

frequency with which unit roots of price-gaps are rejected over time suggests that price-gaps became

more stationary over time and responsive to similar market shocks. This provides some evidence of

U.S. gas markets becoming more integrated over time and the western markets becoming increasingly

integrated with other U.S. gas markets as well.

As noted above, I use several other unit root tests to test for stationarity of the price-

gaps. I perform the same procedure, as outlined above, with the ADF-GLS, Phillips-Perron, and

KPSS unit root tests on the price-gaps. Figure 3.7 shows the proportion of stationary price-gaps

over time by lag selection procedure, where stationarity is defined as a rejection of the unit root (or

null) hypothesis of the ADF-GLS test. As with the ADF test I also examine empirical distribution

functions of the corresponding p-values, as shown in Figure 3.8. Comparing the results from ADF

test and ADF-GLS tests illustrates the varying degrees of power associated with unit root tests.

More specifically, the two tests differ in the proportions of price-gaps determined to be stationary.

Notably, the proportion of stationary price-gaps appears to fluctuate each time period under the

ADF-GLS test. However, the trends and the qualitative conclusions of the tests are similar as both

tests indicate an increasing trend in the proportion of price-gaps that are stationary. Moreover,

these trends remain true when examining price gaps between western and other regions, as shown

in Figures 3.9 and 3.10. This provides further evidence that not only have U.S. gas markets become

more integrated over time, but the distinction between western gas markets and other regions in the

U.S. has become less apparent.

Figure 3.11 shows the results the Phillips-Perron tests. As with the ADF and ADF-GLS

test, the null hypothesis of the Phillips-Perron test is the presence of a unit root. In this case, the

results depict a sharp increase in the proportion of price-gaps that are stationary with nearly 100
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percent of price-gaps remaining stationary for the remainder of the sample period after 1999.7 This

becomes increasingly apparent when examining the empirical distribution functions of the p-values

which are shown in Figure 3.12. The range of the p-values become more narrow and closer to 0 in the

time periods during 1999–2019. For example, the largest p-value from the Phillips-Perron test during

the sample period of 1993 through 1995 was 0.997, while during 2017–2019 the maximum p-value

was 0.028. Similar to the ADF and ADF-GLS tests noted above, the Phillips-Perron tests largely

differs from the other tests in the proportion of price gaps determined to be stationary each time

period. However, the qualitative conclusion of increasing stationarity of the price-gaps still holds.

Moreover, Figures 3.13 and 3.14 show the same analysis, but limited to price gaps between western

and other regions. As with the ADF and ADF-GLS tests, these results provide strong evidence of

market integration of western gas markets to a larger U.S. gas market.

Finally, the analogous results of the KPSS tests are shown in Figures 3.15–3.18. While the

ADF, ADF-GLS, and Phillips-Perron tests have the presence of unit roots as the null hypothesis,

the KPSS test has the presence of a unit root as the alternative hypothesis. In this case, we would

expect to see decreasing rejections of the null as some evidence of increasing market integration

under the KPSS test on price-gaps. As with all the other unit root tests, the KPSS test largely

differs in the quantitative result of the proportion of price-gaps indicated as stationary versus unit

root processes, as shown in Figures 3.15 and 3.16. As with the analysis presented above, Figure 3.15

shows the proportion of stationary price-gaps for the whole sample using a KPSS test, while Figure

3.16 shows the corresponding empirical distribution functions of the p-values from the tests. While

I observe decreasing rejections of the null hypothesis under the KPSS test, failure to reject the null

is not proof that the null hypothesis of stationarity is true. However, the qualitative results of the

test are largely consistent with the results of the other tests. The KPSS test alone may not provide

strong evidence for market integration, however these results along with the results from the other

tests all suggest market integration has increased. As shown in Figures 3.17 and 3.18 these results

also hold when examining the gaps between western and other regions as well.
7As noted above, unit root tests, such as the Phillips-Perron test, will often fail to reject a false null hypothesis,

due to their low power. Thus any rejections of the null in this case are strong results in favor of stationarity of the
price gaps.
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3.5 Conclusion

In the analyses outlined above I use unit root tests to determine if the price-gaps between

geographically dispersed price hubs were stationary. These tests were done to determine if the

price hubs corresponding to a price-gap responded to the same market shocks. Consistent with

previous studies, I find that from 1993 through 2001 the proportion of price-gaps that were stationary

increased, which suggests that a larger set of dispersed price hubs were integrated into the same

market. This coincides with FERC’s restructuring of gas markets in the U.S. allowing greater entry of

natural gas marketers. However, from 2002 through 2010 I find that the level integration declined.

This coincides with a period of increased pipeline capacity constraints and reduced competition

in natural gas trading. Finally, from 2011 through 2019 I find the integration increased as the

proportion of stationary price-gaps increased. The overall trend of increasing stationarity of the

price-gaps is robust across four different unit root tests. Moreover, previous work has not considered

the integration of western U.S. gas markets into other U.S. gas market regions. I find that western

markets may have been integrated into the same market as other regions in the U.S. This coincides

with large capacity increases and pipeline expansions running east to west.
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Table 3.1: Count of Price Hubs by Region

Canada
Total: 2

Central Region
Midcontinent 3
Midwest 10
South Texas 3
West Texas SE New Mexico 3

Total: 19
East

Appalachia 7
East Texas 4
North Louisiana Arkansas 2
Northeast 12
South Louisiana 6
Southeast 5

Total: 36
West

Arizona Nevada 2
California 4
Rocky Mountains 8

Total: 14
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Figure 3.1: Natural Gas Pricing Hubs
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Figure 3.2: Daily Log Prices & First Differences of Log Prices - Kern River, Henry Hub, and Southern
Natural
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Figure 3.3: Proportion of Stationary Price-Gaps (ADF Test)
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This figure shows the proportion of stationary price-gaps between all combinations of price hub pairs available in each
time period. Here I define stationarity as a rejection of the null hypothesis in the ADF test. I report rejection rates
at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series were excluded
from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.
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Figure 3.4: Proportion of Stationary Western and Other Region Price-Gaps (ADF Test)
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This figure shows the proportion of stationary price-gaps between the price hubs in western and other regions available
in each time period. Here I define stationarity as a rejection of the null hypothesis in the ADF test. I report rejection
rates at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series were excluded
from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.
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Figure 3.5: Empirical Distribution Functions Corresponding to the Distribution of p-values from
ADF Tests (All Hubs)
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This figure shows the empirical distribution functions of the p-values from the ADF tests shown in Figure 3.3. A
vertical line is drawn at 0.1 on the horizontal axis.
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Figure 3.6: Empirical Distribution Functions Corresponding to the Distribution of p-values from
ADF Tests (Western and Other Region)
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This figure shows the empirical distribution functions of the p-values from the ADF tests shown in Figure 3.4. A
vertical line is drawn at 0.1 on the horizontal axis.
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Figure 3.7: Proportion of Stationary Price-Gaps (ADF-GLS Test)
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This figure shows the proportion of stationary price-gaps between all combinations of price hub pairs available in each
time period. Here I define stationarity as a rejection of the null hypothesis in the ADF-GLS test. I report rejection
rates at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series were excluded
from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.
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Figure 3.8: Empirical Distribution Functions Corresponding to the Distribution of p-values from
ADF-GLS Tests (All Hubs)
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This figure shows the empirical distribution functions of the p-values from the ADF-GLS tests shown in Figure 3.7.
A vertical line is drawn at 0.1 on the horizontal axis.
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Figure 3.9: Proportion of Stationary Western and Other Region Price-Gaps (ADF-GLS Test)
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This figure shows the proportion of stationary price-gaps between the price hubs in western and other regions available
in each time period. Here I define stationarity as a rejection of the null hypothesis in the ADF-GLS test. I report
rejection rates at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series
were excluded from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.
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Figure 3.10: Empirical Distribution Functions Corresponding to the Distribution of p-values from
ADF-GLS Tests (Western and Other Region)
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This figure shows the empirical distribution functions of the p-values from the AD-GLS tests shown in Figure 3.9. A
vertical line is drawn at 0.1 on the horizontal axis.

90



Figure 3.11: Proportion of Stationary Price-Gaps (Phillips-Perron Test)
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This figure shows the proportion of stationary price-gaps between all combinations of price hub pairs available in
each time period. Here I define stationarity as a rejection of the null hypothesis in the Phillips-Perron test. I report
rejection rates at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series
were excluded from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.
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Figure 3.12: Empirical Distribution Functions Corresponding to the Distribution of p-values from
Phillips-Perron Tests (All Hubs)
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This figure shows the empirical distribution functions of the p-values from the Phillips-Perron tests shown in Figure
3.11. A vertical line is drawn at 0.1 on the horizontal axis. The empirical distribution functions for the periods during
2005–2007, 2011–2013, 2014–2016, and 2017–2019 are not visible as they closely overlap the vertical axis is each plot.
This that nearly all bilateral price gaps in the sample are stationary when using a Phillips-Perron test.
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Figure 3.13: Proportion of Stationary Western and Other Region Price-Gaps (Phillips-Perron Test)
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This figure shows the proportion of stationary price-gaps between the price hubs in western and other regions available
in each time period. Here I define stationarity as a rejection of the null hypothesis in the Phillips-Perron test. I report
rejection rates at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series
were excluded from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.
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Figure 3.14: Empirical Distribution Functions Corresponding to the Distribution of p-values from
Phillips-Perron Tests (Western and Other Region)
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This figure shows the empirical distribution function of the p-values from the Phillips-Perron tests shown in Figure
3.13. A vertical line is drawn at 0.1 on the horizontal axis. The empirical distribution functions for the periods during
2005–2007, 2011–2013, 2014–2016, and 2017–2019 are not visible as they closely overlap the vertical axis is each plot.
This that nearly all bilateral price gaps in the sample are stationary when using a Phillips-Perron test.
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Figure 3.15: Proportion of Non-Stationary Price-Gaps (KPSS Test)
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This figure shows the proportion of non-stationary price-gaps between all combinations of price hub pairs available in
each time period. Here I define stationarity as a rejection of the null hypothesis in the KPSS test. I report rejection
rates at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series were excluded
from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.
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Figure 3.16: Empirical Distribution Functions Corresponding to the Distribution of p-values from
KPSS Tests (All Hubs)
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This figure shows the empirical distribution function of the p-values from the KPSS tests shown in Figure 3.15. A
vertical line is drawn at 0.1 on the horizontal axis.
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Figure 3.17: Proportion of Stationary Western and Other Region Price-Gaps (KPSS Test)
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This figure shows the proportion of non-stationary price-gaps between the price hubs in western and other regions
available in each time period. Here I define stationarity as a rejection of the null hypothesis in the KPSS test. I report
rejection rates at the 1, 5, and 10 percent levels as robustness checks. Four price hubs with stationary price series
were excluded from this analysis. Thus, this analysis includes 67 price hubs with price series that are I(1) processes.

97



Figure 3.18: Empirical Distribution Functions Corresponding to the Distribution of p-values from
KPSS Tests (Western and Other Region)
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This figure shows the empirical distribution function of the p-values from the KPSS tests shown in Figure 3.17. A
vertical line is drawn at 0.1 on the horizontal axis.
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Appendix A

Estimates Excluding Pipeline

Entry and Exit

To remove the effects of pipeline entry and exit on mean technical efficiency and produc-

tivity, I limit the sample to only pipelines that are observed in every production year in the sample

(old pipelines).1 Both pipeline entry and exit can positively affect mean technical efficiency and

productivity. More specifically, this will affect the proportion of pipelines in the sample using better

technology. While inefficient an unproductive pipelines will exit the market, newer pipelines will uti-

lize better technology and locate where they can exhibit the greatest return on investment, subject

to regulatory constraints. Examining old pipelines offers insight on how pipelines in existence before

the Shale Revolution may have benefited or not benefited from the expansion of shale gas supply.

While one would expect that new pipelines would use new technology to transport gas, Dreskin and

Boss (2010) explain that this may not be feasible for older pipelines in a rate regulated environment

where approval from FERC for increased rates is required to cover the costs of upgrades. As a

result, newer pipelines are more likely to incorporate improved technology to transport gas. Thus,

any improvements (or declines) in the technical efficiency of old pipelines removes some of the effect

of technological improvements.2

1I observe 41 pipelines that are present in every year in the sample.
2I do not observe the specific upgrades or technical specifications of the pipeline steel, compressor stations, or

other operating characteristics of the pipelines. As a result, I cannot limit the sample to pipelines of certain technical
specifications and test how these specifications impact efficiency and productivity.
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To model the technical efficiency of old pipelines, I use the same estimation procedure

outlined in Section 1.2 and the same specified inputs and outputs noted in Section 1.3.1. Moreover,

all estimation is done with dimension reduced data, where eigensystem methods described in Wilson

(2018) are used to reduce the dimensions of the output matrix. In this application, the q = 4 unique

outputs of total delivery volume, total horsepower, length, and peak delivery volume are reduced

to a single principal component which contains 97.9 percent of the independent linear information

contained in the original four columns of the output matrix. Thus, dimension reduction in this

application is feasible as little information is lost.

As with the primary analysis, I test for separability with respect to production year,

convexity, and returns to scale to guide my choice of estimator. Tables A.1 and A.2 report the results

of the tests for separability with respect to production year. Table A.1 reports the test statistics

associated with the differences in conditional and unconditional efficiency described in Daraio et al.

(2018), while Table A.2 reports the associated results from the KS tests. In this case, both sets

of tests provide some evidence against separability with respect to production year. Specifically,

the bottom row of both tables report the results of testing separability across all production years

simultaneously. It is clear that separability is strongly rejected.

Tables A.3 and A.4 report the results of the tests for convexity of the production set.

Table A.3 presents the test statistics corresponding to the differences in mean FDH and VRS-DEA

estimates by year, as described in Kneip et al. (2016). While there is only mild evidence against

convexity under these sets of tests, with a rejection rate of 7/69 ≈ .101, the corresponding KS

test statistics, reported in A.4 provide more evidence against convexity with a rejection rate of

15/69 ≈ .217. Thus, I assume that the production set is non-convex. Moreover, given the strong

evidence against returns to scale as shown in Tables A.5 and A.6, I estimate technical efficiency

using the FDH estimator conditional on production year.

Table A.7 presents the results of the test for changes in technical efficiency over time

for old pipelines. While year-over-year technical efficiency increases and decreases with statistical

significance quite frequently, comparing the efficiency of pipelines in 2007, 2008, 2009, 2010, and

2011 to 2018 provides similar results to Table 10 in the primary analysis. More specifically, I

observe positive changes in technical efficiency during 2007–2018 and 2008–2018. This suggests

that, for old pipelines, technical efficiency was greater in 2018 than in 2007 and 2008. Although I
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find negative test statistics associated with technical efficiency change during 2009–2018, 2010–2018,

and 2011–2018, these estimates are not statistically significant.

Finally, change in productivity estimates, presented in Table A.8, indicate that productiv-

ity increased when comparing mean productivity in 2007, 2008, 2009, 2010, and 2011 to 2018. The

changes in mean productivity over all these time periods are statistically significant at the 1 percent

level, indicating stronger evidence for productivity improvements for old pipelines over the entire

sample of pipelines. In this case, if old pipelines are constrained in adopting better technology to

transport gas, as suggested by Dreskin and Boss (2010), these pipelines may have benefited purely

from increased throughput as pipeline utilization increased during the Shale Revolution.
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Table A.1: Separability Test With Respect to Time (FDH Estimator): Old Pipelines Only

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 1.276 0.384 3.451 0.155 4.120 0.450
1997–1998 1.036 0.509 5.016 0.011** 5.036 0.175
1998–1999 1.123 0.423 4.036 0.043** 6.377 0.014**
1999–2000 1.283 0.451 2.970 0.471 5.458 0.091*
2000–2001 1.232 0.440 4.360 0.148 2.849 0.881
2001–2002 1.231 0.355 3.997 0.095* 3.506 0.532
2002–2003 0.245 0.550 3.967 0.048** 5.042 0.067*
2003–2004 1.876 0.036** 4.226 0.110 8.136 0.000***
2004–2005 0.301 0.804 1.905 0.769 7.839 0.003***
2005–2006 0.939 0.498 1.570 0.837 3.028 0.604
2006–2007 −0.176 0.962 3.040 0.319 5.005 0.182
2007–2008 1.614 0.281 1.920 0.832 3.889 0.641
2008–2009 1.891 0.045** 4.891 0.030** 5.847 0.035**
2009–2010 1.690 0.042** 2.694 0.180 0.678 0.970
2010–2011 1.228 0.267 3.248 0.079* 2.622 0.660
2011–2012 3.458 0.002*** 1.998 0.718 3.428 0.417
2012–2013 1.767 0.210 1.436 0.782 6.378 0.027**
2013–2014 2.691 0.020** 5.840 0.004*** 3.404 0.711
2014–2015 1.250 0.265 −0.268 0.961 5.328 0.072*
2015–2016 1.511 0.183 2.036 0.410 4.198 0.242
2016–2017 0.839 0.534 0.842 0.845 3.811 0.392
2017–2018 1.132 0.511 −0.061 0.942 1.612 0.895

[96, 00]–[01–06] 0.080 0.315 5.727 0.043** 11.003 0.011**
[01, 06]–[07–12] 1.938 0.014** 11.741 0.000*** 15.343 0.000***
[07, 12]–[13–18] 2.796 0.000*** 12.095 0.000*** 2.600 0.978
[96, 00], [01, 06], 7.980 0.000*** 7.250 0.000*** 8.620 0.000***[07, 12], [13, 18]

96, 97,...,18 14.900 0.000*** 18.100 0.000*** 17.100 0.000***

The test statistic, described in Daraio et al. (2018), is computed using the FDH estimator with dimension-reduced data, such
that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the principal
components are estimated using the pooled sample of data from 1996–2018. The p-values are developed using 100 sample-
splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One, two or three asterisks
denote significance at the 10, 5 and 1 percent levels, respectively.
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Table A.2: Separability Test (KS Test) With Respect to Time (FDH Estimator): Old Pipelines
Only

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 0.530 0.353 0.550 0.612 0.799 0.471
1997–1998 0.532 0.330 0.800 0.066* 0.600 0.876
1998–1999 0.478 0.448 0.684 0.231 0.800 0.332
1999–2000 0.521 0.415 0.646 0.522 0.906 0.093*
2000–2001 0.436 0.562 0.784 0.224 0.599 0.906
2001–2002 0.393 0.588 0.500 0.691 0.700 0.573
2002–2003 0.379 0.329 0.764 0.095* 0.776 0.338
2003–2004 0.460 0.224 0.600 0.503 0.850 0.193
2004–2005 0.347 0.694 0.498 0.822 0.900 0.090*
2005–2006 0.548 0.246 0.500 0.801 0.556 0.871
2006–2007 0.335 0.749 0.623 0.471 0.700 0.644
2007–2008 0.393 0.665 0.502 0.866 0.700 0.671
2008–2009 0.666 0.034** 0.596 0.558 0.600 0.811
2009–2010 0.556 0.118 0.688 0.157 0.365 0.969
2010–2011 0.594 0.141 0.528 0.467 0.672 0.579
2011–2012 0.794 0.034** 0.497 0.830 0.656 0.653
2012–2013 0.577 0.305 0.380 0.937 0.975 0.067*
2013–2014 0.672 0.106 0.740 0.245 0.666 0.839
2014–2015 0.473 0.358 0.260 0.979 0.700 0.607
2015–2016 0.551 0.237 0.596 0.380 0.690 0.607
2016–2017 0.440 0.458 0.558 0.514 0.827 0.276
2017–2018 0.554 0.331 0.372 0.863 0.461 0.921

[96, 00]–[01–06] 0.367 0.341 0.474 0.935 1.000 0.006***
[01, 06]–[07–12] 0.421 0.276 0.822 0.267 0.895 0.508
[07, 12]–[13–18] 0.395 0.311 0.800 0.197 0.495 0.995
[96, 00], [01, 06], 0.900 0.008*** 0.700 0.138 0.900 0.002***[07, 12], [13, 18]

96, 97,...,18 0.999 0.000*** 0.969 0.000*** 0.900 0.000***

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test to test for
uniformity of the p-values estimated from the multiple sample-splits used in the tests presented in Table A.1. The dimensions
are reduced using eigensystem methods as described in Wilson (2018), and the principal components are estimated using the
pooled sample of data from 1996–2018. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications
using techniques described in Simar and Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Table A.3: Convexity Test: Old Pipelines Only

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 −1.693 0.997 0.358 0.292 −0.801 0.910
1997 −0.957 0.867 0.000 0.418 −1.199 0.918
1998 0.592 0.125 −0.566 0.677 −2.953 0.999
1999 −1.925 0.962 −0.044 0.310 0.791 0.054*
2000 0.080 0.229 −0.324 0.448 −0.924 0.720
2001 −2.252 0.960 −2.433 0.969 0.846 0.048**
2002 −0.790 0.767 −1.593 0.963 −1.174 0.901
2003 −0.726 0.783 −1.288 0.939 −2.641 0.999
2004 −0.674 0.804 −1.301 0.923 0.583 0.237
2005 −2.521 0.993 −0.542 0.711 −1.713 0.968
2006 −1.032 0.867 −1.319 0.912 0.348 0.296
2007 −0.020 0.461 −1.211 0.901 0.479 0.283
2008 −0.748 0.806 −4.162 0.999 −1.424 0.941
2009 1.234 0.166 1.398 0.101 0.995 0.250
2010 1.101 0.135 −0.450 0.839 0.843 0.213
2011 1.379 0.152 2.219 0.022** 0.014 0.816
2012 −0.557 0.919 1.617 0.099* 1.545 0.098*
2013 0.629 0.224 −1.572 0.989 −0.873 0.910
2014 −0.775 0.783 0.105 0.324 −1.256 0.915
2015 1.407 0.044** 0.122 0.507 −0.081 0.649
2016 0.901 0.269 0.713 0.367 1.184 0.152
2017 1.355 0.087* 0.476 0.516 1.190 0.135
2018 −0.164 0.779 0.329 0.528 1.122 0.163

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced
data, such that p = q = 1. The dimensions are reduced using eigensystem methods
as described in Wilson (2018), and the principal components are estimated using the
pooled sample of data from 1996–2018. The p-values are developed using 100 sample-
splits and 1,000 bootstrap replications using techniques described in Simar and Wilson
(2020). One, two or three asterisks denote significance at the 10, 5 and 1 percent levels,
respectively.
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Table A.4: Convexity Test (KS Test): Old Pipelines Only

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.395 0.166 0.277 0.484 0.264 0.497
1997 0.295 0.476 0.141 0.957 0.379 0.232
1998 0.452 0.124 0.310 0.446 0.596 0.018**
1999 0.392 0.260 0.282 0.578 0.526 0.062*
2000 0.316 0.527 0.252 0.708 0.333 0.455
2001 0.378 0.353 0.540 0.093* 0.579 0.056*
2002 0.500 0.065* 0.535 0.038** 0.453 0.086*
2003 0.385 0.173 0.354 0.219 0.585 0.013**
2004 0.389 0.333 0.393 0.314 0.499 0.111
2005 0.593 0.027** 0.381 0.263 0.560 0.038**
2006 0.428 0.212 0.353 0.387 0.300 0.531
2007 0.418 0.244 0.300 0.569 0.470 0.175
2008 0.454 0.212 0.798 0.004*** 0.481 0.179
2009 0.519 0.174 0.438 0.292 0.615 0.073*
2010 0.478 0.172 0.304 0.559 0.406 0.291
2011 0.595 0.096* 0.493 0.218 0.159 0.967
2012 0.296 0.705 0.522 0.191 0.593 0.106
2013 0.270 0.580 0.541 0.038** 0.460 0.134
2014 0.300 0.459 0.306 0.449 0.269 0.543
2015 0.535 0.075* 0.288 0.545 0.249 0.678
2016 0.451 0.271 0.458 0.272 0.502 0.171
2017 0.532 0.118 0.366 0.430 0.468 0.211
2018 0.184 0.915 0.426 0.307 0.430 0.293

The test statistic is from the KS test as described in Simar and Wilson (2020). In this
case, I use the KS test to test for uniformity of the p-values estimated from the multiple
sample-splits used in the tests presented in Table A.3. The dimensions are reduced using
eigensystem methods as described in Wilson (2018), and the principal components are
estimated using the pooled sample of data from 1996–2018. The p-values are developed
using 100 sample-splits and 1,000 bootstrap replications using techniques described in
Simar and Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and
1 percent levels, respectively.
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Table A.5: Returns to Scale Test: Old Pipelines Only

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 3.943 0.020** 3.872 0.008*** 4.030 0.032**
1997 1.789 0.549 5.642 0.002*** 4.180 0.087*
1998 2.879 0.167 4.377 0.008*** 4.653 0.034**
1999 1.276 0.635 3.231 0.041** 4.207 0.080*
2000 1.875 0.448 3.845 0.010*** 3.864 0.088*
2001 1.470 0.459 2.660 0.047** 2.454 0.211
2002 1.491 0.498 0.423 0.719 1.842 0.411
2003 2.654 0.194 2.205 0.144 3.075 0.174
2004 0.995 0.636 1.932 0.130 1.278 0.494
2005 2.021 0.253 3.225 0.019** 2.155 0.227
2006 0.580 0.758 2.456 0.050** 1.435 0.283
2007 1.503 0.489 2.752 0.068* 1.443 0.546
2008 1.987 0.375 3.850 0.018** 1.979 0.459
2009 1.718 0.135 1.991 0.067* 2.858 0.014**
2010 0.775 0.518 2.213 0.014** 0.737 0.556
2011 1.620 0.279 1.449 0.281 2.164 0.130
2012 1.804 0.443 3.757 0.032** 5.422 0.008***
2013 0.886 0.688 2.900 0.025** 3.654 0.037**
2014 3.080 0.091* 3.200 0.033** 3.935 0.059*
2015 2.074 0.147 3.179 0.009*** 2.991 0.048**
2016 1.458 0.196 3.357 0.005*** 2.722 0.021**
2017 1.552 0.278 2.691 0.029** 3.527 0.008***
2018 2.205 0.098* 2.656 0.027** 1.928 0.187

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced data, such that
p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and
the principal components are estimated using the pooled sample of data from 1996–2018. The p-values are
developed using 100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and
Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table A.6: Returns to Scale Test (KS Test): Old Pipelines Only

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.892 0.033** 0.759 0.087* 0.799 0.081*
1997 0.525 0.655 0.900 0.012** 0.899 0.026**
1998 0.763 0.180 0.894 0.013** 0.855 0.069*
1999 0.399 0.820 0.668 0.152 0.790 0.132
2000 0.645 0.434 0.893 0.017** 0.976 0.007***
2001 0.817 0.084* 0.731 0.061* 0.886 0.049**
2002 0.499 0.569 0.300 0.806 0.311 0.850
2003 0.741 0.177 0.493 0.511 0.597 0.463
2004 0.410 0.718 0.597 0.240 0.391 0.745
2005 0.594 0.411 0.738 0.080* 0.600 0.357
2006 0.414 0.632 0.660 0.133 0.588 0.269
2007 0.675 0.264 0.688 0.159 0.565 0.507
2008 0.637 0.401 0.976 0.007*** 0.528 0.609
2009 0.535 0.320 0.837 0.007*** 0.787 0.046**
2010 0.341 0.650 0.774 0.013** 0.341 0.670
2011 0.630 0.283 0.556 0.364 0.776 0.083*
2012 0.564 0.499 0.810 0.045** 0.813 0.062*
2013 0.413 0.708 0.801 0.037** 0.911 0.018**
2014 0.935 0.016** 0.787 0.053* 0.900 0.029**
2015 0.748 0.118 0.768 0.065* 0.834 0.057*
2016 0.470 0.372 0.888 0.006*** 0.879 0.018**
2017 0.546 0.379 0.697 0.113 0.889 0.018**
2018 0.687 0.142 0.868 0.016** 0.624 0.264

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test
to test for uniformity of the p-values estimated from the multiple sample-splits used in the tests presented
in Table A.5. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and
the principal components are estimated using the pooled sample of data from 1996–2018. The p-values are
developed using 100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and
Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table A.7: Test For Equivalency of Mean Efficiency: FDH Estimator With Old Pipelines Only

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 −3.017 0.003*** −2.509 0.012** −2.839 0.005***
1997–1998 −0.406 0.685 −0.860 0.390 −1.060 0.289
1998–1999 −0.837 0.403 0.477 0.633 1.282 0.200
1999–2000 −0.280 0.780 −1.111 0.267 −1.140 0.254
2000–2001 −1.347 0.178 −1.789 0.074* −0.542 0.588
2001–2002 3.182 0.001*** 2.852 0.004*** 2.136 0.033**
2002–2003 −1.961 0.050** −2.580 0.010*** −2.008 0.045**
2003–2004 2.746 0.006*** 1.998 0.046** 2.574 0.010***
2004–2005 −1.309 0.191 −1.720 0.086* −2.315 0.021**
2005–2006 1.629 0.103 3.006 0.003*** 2.131 0.033**
2006–2007 −1.188 0.235 −1.910 0.056* 0.250 0.802
2007–2008 −1.790 0.073* −1.476 0.140 −2.380 0.017**
2008–2009 8.973 0.000*** 8.000 0.000*** 7.190 0.000***
2009–2010 −1.918 0.055* −2.174 0.030** −0.879 0.379
2010–2011 −0.803 0.422 0.945 0.344 0.661 0.509
2011–2012 −0.193 0.847 0.015 0.988 −0.802 0.422
2012–2013 −2.149 0.032** −5.562 0.000*** −3.804 0.000***
2013–2014 −3.222 0.001*** 0.245 0.806 −2.372 0.018**
2014–2015 5.029 0.000*** 4.940 0.000*** 4.713 0.000***
2015–2016 0.750 0.453 0.044 0.965 1.570 0.116
2016–2017 1.484 0.138 0.515 0.607 0.017 0.986
2017–2018 −2.964 0.003*** 0.178 0.858 −1.412 0.158

2007 & 2018 3.898 0.000*** 5.649 0.000*** 3.135 0.002***
2008 & 2018 5.609 0.000*** 6.802 0.000*** 5.033 0.000***
2009 & 2018 −0.480 0.631 −0.772 0.440 −1.328 0.184
2010 & 2018 −1.372 0.170 1.410 0.159 −0.490 0.624
2011 & 2018 −0.823 0.411 0.595 0.552 −0.808 0.419

The test statistic, described in Kneip et al. (2016), is computed using the FDH estimator with dimension-reduced data,
such that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the
principal components are estimated using the pooled sample of data from 1996–2018. Since separability tests suggest
that separability with respect to T does not hold, the estimator allows for a different frontier every production year.
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table A.8: Productivity Estimates: With Old Pipelines Only

Period Statistic p-value
1996–1997 0.971 0.331
1997–1998 0.921 0.357
1998–1999 0.155 0.877
1999–2000 −1.219 0.223
2000–2001 −0.136 0.892
2001–2002 −0.935 0.350
2002–2003 −0.081 0.936
2003–2004 −1.377 0.168
2004–2005 −0.578 0.563
2005–2006 1.101 0.271
2006–2007 −0.687 0.492
2007–2008 0.218 0.827
2008–2009 2.330 0.020**
2009–2010 −1.292 0.196
2010–2011 0.011 0.991
2011–2012 2.618 0.009***
2012–2013 1.214 0.225
2013–2014 0.222 0.824
2014–2015 −0.037 0.971
2015–2016 −0.097 0.923
2016–2017 −0.717 0.474
2017–2018 0.073 0.942

2007 & 2018 5.075 0.000***
2008 & 2018 3.457 0.001***
2009 & 2018 2.824 0.005***
2010 & 2018 3.212 0.001***
2011 & 2018 3.785 0.000***

Productivity tests are conducted with dimension-
reduced data (p = q = 1). One, two or three as-
terisks denote significance at the 10, 5 and 1 percent
levels, respectively.
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Appendix B

Estimates Excluding Fuel Costs

To model technical efficiency change without fuel costs as suggested in Jamasb et al.

(2008), I specify two models. For both models, pipelines are defined as having q = 4 unique outputs

of total delivery volume, total horsepower, length, and peak delivery volume. The models differ on

the defined inputs. One model has a single p = 1 monetary input of OPEX that excludes fuel costs,

and the second has p = 2 inputs of the physical quantity of fuel used for compressor stations and

OPEX excluding fuel costs.

All estimates described below are conducted with dimension reduced data. In this case

the eigensystem methods described in Wilson (2018) are also applied to the input matrix of physical

quantity of fuel and OPEX excluding fuel costs. In this case the first principal component of the

input matrix contains 98.7 percent of the independent linear information from the p = 2 columns

of the input matrix. Thus, the input matrix with both the physical quantity of fuel and OPEX

excluding fuel costs can be replaced with it’s first principal component without much information

loss.

Tables B.1 through B.4 present the results of the tests for separability. While Tables B.1

and B.3 present the estimates of the test statistics described by Daraio et al. (2018), Tables B.2 and

B.4 present the associated KS tests.1 As with the primary results of this paper, I find significant

evidence that separability does not hold with respect to time under both models. This provides
1I also report the associated KS test statistics for the tests on convexity and CRS versus VRS as described below.
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further evidence that the frontier changes from year to year, and efficiency estimates should be

conditional on production year, T .

Tables B.5 through B.8 present the results of the tests for convexity. When quantity of

fuel is excluded as an input, the tests for convexity reject the null at a rate of 15/69 ≈ 0.217 when

examining the differences between the mean FDH and mean VRS-DEA estimates which I report in

Table B.5. However, the associated KS test statistics, reported in Table B.6, show an increased

rejection rate of 28/69 ≈ 0.405. Similar results are shown when physical quantity of fuel is included

as an additional input as shown in Table B.7 and Table B.8. Given the evidence against convexity

under both models, I use the FDH estimator for all efficiency estimates. Moreover, given the results

from Wilson (2018), this approach should yield less estimation error.

Tables B.9 and B.12 present the results of the tests for CRS versus VRS. In both models

there is strong evidence against CRS. The results of these tests provide additional evidence of

pipelines not exhibiting CRS. Although, Jamasb et al. (2008) also include capital costs in their

specified TOTEX input, they present CRS-DEA efficiency estimates without evidence to suggest

CRS holds. It should be noted that they also present VRS-DEA estimates, which would achieve

consistent estimates of efficiency under VRS or CRS. In addition, the VRS-DEA estimator would

also achieve the faster CRS convergence rate if the frontier is globally CRS, according to Theorem 1

of Kneip et al. (2016). However, the results of the tests for CRS versus VRS in this analysis suggest

that CRS does not hold. Thus, the CRS-DEA estimates from Jamasb et al. (2008) may not be

consistent.

Tables B.13 and B.14 present the results of the test for changes in technical efficiency over

time. When fuel is not included as a part of operating cost, the changes in estimated technical

efficiency does not change rapidly from year to year. Under both models there is strong evidence

of technical efficiency drops during 2007–2008 and 2010–2011. In addition, there is evidence of

technical efficiency improvements during 2008–2009. The net technical efficiency change estimates

in both models suggest that technical efficiency change during 2008–2018 was positive, but was

negative from 2009 and 2010 through 2018. These results suggest that the technical efficiency

gains shown in Table 10, from the primary analysis of this paper, result from pipelines exploiting a

changing cost set over time and expanding operations while facing lower fuel costs.

While the efficiency change estimates differ from the primary model used in this analysis,
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the productivity estimates under these additional models are consistent with Table 8 in the primary

analysis of this paper. Tables B.15 and B.16 present estimates for changes in productivity. The

results of these additional models suggest that the net change in productivity was positive over the

years of 2007, 2009, and 2010 through 2018.
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Table B.1: Separability Test With Respect to Time (FDH Estimator): Without Quantity of Fuel as
Input

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 1.516 0.210 2.481 0.486 1.946 0.910
1997–1998 −1.430 1.000 1.379 0.807 3.094 0.666
1998–1999 0.339 0.867 4.136 0.200 5.118 0.044**
1999–2000 −0.076 0.873 6.320 0.005*** 3.980 0.264
2000–2001 0.221 0.681 2.207 0.589 4.711 0.127
2001–2002 0.810 0.559 6.141 0.000*** 2.772 0.740
2002–2003 1.825 0.105 5.946 0.005*** 4.145 0.371
2003–2004 −0.216 0.953 2.614 0.679 4.125 0.375
2004–2005 0.550 0.813 3.912 0.324 3.372 0.842
2005–2006 0.994 0.540 3.381 0.475 6.744 0.066*
2006–2007 0.095 0.830 3.651 0.168 4.392 0.357
2007–2008 5.006 0.000*** 5.100 0.007*** 5.626 0.030**
2008–2009 3.381 0.000*** 1.942 0.463 5.821 0.006***
2009–2010 −0.093 0.881 3.836 0.077* 3.656 0.347
2010–2011 1.201 0.072* 1.957 0.596 7.104 0.002***
2011–2012 0.503 0.362 2.794 0.193 2.457 0.565
2012–2013 0.152 0.578 1.313 0.607 3.258 0.277
2013–2014 0.302 0.487 4.284 0.009*** 3.805 0.147
2014–2015 −0.250 0.845 1.578 0.567 1.384 0.919
2015–2016 0.644 0.225 0.948 0.757 3.256 0.229
2016–2017 0.130 0.551 1.565 0.630 4.874 0.071*
2017–2018 0.295 0.545 2.869 0.170 0.295 0.997

[96, 00]–[01, 06] 1.127 0.048** 0.011 0.993 5.374 0.774
[01, 06]–[07, 12] 0.721 0.156 17.050 0.000*** 12.957 0.018**
[07, 12]–[13, 18] 4.461 0.000*** 6.926 0.004*** 13.386 0.000***
[96, 00], [01, 06], 16.200 0.000*** 18.200 0.000*** 16.500 0.000***[07, 12], [13, 18]

96, 97,...,18 15.200 0.000*** 16.300 0.000*** 21.300 0.000***

The test statistic, described in Daraio et al. (2018), is computed using the FDH estimator with dimension-reduced data, such
that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the principal
components are estimated using the pooled sample of data from 1996–2018. The p-values are developed using 100 sample-
splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One, two or three asterisks
denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.2: Separability Test (KS Test) With Respect to Time (FDH Estimator): Without Quantity
of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 0.520 0.292 0.677 0.390 0.593 0.850
1997–1998 0.300 0.799 0.534 0.683 0.643 0.734
1998–1999 0.360 0.763 0.800 0.177 0.834 0.191
1999–2000 0.197 0.931 0.822 0.132 0.800 0.249
2000–2001 0.301 0.624 0.499 0.740 0.800 0.258
2001–2002 0.491 0.370 0.800 0.115 0.620 0.776
2002–2003 0.485 0.375 0.800 0.135 0.830 0.323
2003–2004 0.308 0.760 0.515 0.860 0.967 0.051*
2004–2005 0.372 0.720 0.698 0.552 0.706 0.789
2005–2006 0.398 0.645 0.847 0.170 0.928 0.237
2006–2007 0.193 0.928 0.882 0.047** 0.745 0.624
2007–2008 0.777 0.006*** 0.586 0.491 0.700 0.442
2008–2009 0.590 0.062* 0.400 0.794 0.773 0.287
2009–2010 0.115 0.991 0.796 0.075* 0.870 0.132
2010–2011 0.532 0.066* 0.400 0.889 0.800 0.253
2011–2012 0.383 0.273 0.599 0.338 0.592 0.655
2012–2013 0.330 0.403 0.458 0.696 0.593 0.622
2013–2014 0.208 0.768 0.838 0.016** 0.694 0.374
2014–2015 0.148 0.949 0.500 0.571 0.583 0.761
2015–2016 0.232 0.644 0.396 0.806 0.492 0.817
2016–2017 0.324 0.383 0.435 0.785 0.799 0.221
2017–2018 0.302 0.487 0.775 0.078* 0.499 0.900

[96, 00]–[01–06] 0.489 0.094* 0.534 0.820 0.798 0.832
[01, 06]–[07–12] 0.331 0.562 0.800 0.344 0.700 0.887
[07, 12]–[13–18] 0.866 0.003*** 0.447 0.952 0.780 0.723
[96, 00], [01, 06], 0.700 0.083* 0.600 0.316 0.800 0.007***[07, 12], [13, 18]

96, 97,...,18 0.998 0.000*** 0.789 0.000*** 0.900 0.000***

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test to test for
uniformity of the p-values estimated from the multiple sample-splits used in the tests presented in Table B.1. The dimensions
are reduced using eigensystem methods as described in Wilson (2018), and the principal components are estimated using the
pooled sample of data from 1996–2018. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications
using techniques described in Simar and Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Table B.3: Separability Test With Respect to Time (FDH Estimator): With Quantity of Fuel as
Input

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 1.128 0.419 1.659 0.751 1.715 0.936
1997–1998 −0.219 0.956 4.624 0.034** 0.101 1.000
1998–1999 1.348 0.440 4.883 0.081* 2.973 0.621
1999–2000 0.795 0.536 4.239 0.189 5.847 0.008***
2000–2001 1.244 0.182 3.956 0.160 5.763 0.017**
2001–2002 0.486 0.771 1.848 0.740 7.047 0.001***
2002–2003 0.478 0.720 3.438 0.290 4.918 0.196
2003–2004 0.316 0.812 3.688 0.405 3.916 0.459
2004–2005 1.148 0.546 4.353 0.167 2.595 0.939
2005–2006 0.698 0.743 4.073 0.288 4.634 0.554
2006–2007 1.374 0.238 1.910 0.733 5.888 0.047**
2007–2008 −1.549 0.996 5.493 0.003*** 4.504 0.112
2008–2009 2.383 0.004*** 2.509 0.319 4.733 0.060*
2009–2010 0.945 0.257 2.277 0.467 4.421 0.168
2010–2011 1.905 0.005*** 4.850 0.018** 4.276 0.179
2011–2012 0.431 0.372 2.648 0.217 5.429 0.008***
2012–2013 1.345 0.036** 2.676 0.190 5.005 0.010***
2013–2014 0.560 0.316 1.560 0.470 −0.090 0.993
2014–2015 0.318 0.528 3.437 0.056* 5.239 0.013**
2015–2016 −0.330 0.834 1.789 0.432 4.537 0.033**
2016–2017 1.282 0.035** 1.270 0.718 3.642 0.297
2017–2018 0.462 0.376 4.550 0.006*** 4.033 0.190

[96, 00]–[01, 06] −0.938 0.792 6.763 0.006*** 14.884 0.000***
[01, 06]–[07, 12] 0.882 0.123 8.618 0.022** 11.644 0.049**
[07, 12]–[13, 18] 4.413 0.000*** 10.262 0.000*** 18.797 0.000***
[96, 00], [01, 06], 5.015 0.000*** 5.477 0.000*** 5.286 0.000***[07, 12], [13, 18]

96, 97,...,18 12.600 0.000*** 14.000 0.000*** 18.900 0.000***

The test statistic, described in Daraio et al. (2018), is computed using the FDH estimator with dimension-reduced data, such
that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the principal
components are estimated using the pooled sample of data from 1996–2018. The p-values are developed using 100 sample-
splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One, two or three asterisks
denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.4: Separability Test (KS Test) With Respect to Time (FDH Estimator): With Quantity
of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 0.447 0.470 0.554 0.667 0.576 0.872
1997–1998 0.196 0.935 0.792 0.115 0.368 0.994
1998–1999 0.540 0.387 0.818 0.179 0.481 0.939
1999–2000 0.484 0.350 0.820 0.180 0.861 0.143
2000–2001 0.417 0.370 0.500 0.793 0.900 0.070*
2001–2002 0.343 0.720 0.634 0.501 0.800 0.300
2002–2003 0.315 0.722 0.652 0.508 0.778 0.504
2003–2004 0.504 0.350 0.562 0.834 0.798 0.416
2004–2005 0.410 0.669 0.700 0.497 0.695 0.840
2005–2006 0.392 0.670 0.883 0.113 0.846 0.548
2006–2007 0.426 0.463 0.611 0.566 0.988 0.040**
2007–2008 0.402 0.340 0.600 0.462 0.695 0.465
2008–2009 0.683 0.019** 0.506 0.564 0.822 0.129
2009–2010 0.448 0.276 0.659 0.355 0.899 0.069*
2010–2011 0.713 0.005*** 0.699 0.275 0.630 0.724
2011–2012 0.492 0.083* 0.600 0.328 0.900 0.019**
2012–2013 0.617 0.018** 0.636 0.256 0.897 0.027**
2013–2014 0.287 0.507 0.578 0.361 0.391 0.940
2014–2015 0.508 0.099* 0.602 0.271 0.797 0.170
2015–2016 0.248 0.620 0.600 0.274 0.620 0.494
2016–2017 0.524 0.049** 0.472 0.718 0.689 0.512
2017–2018 0.375 0.263 0.772 0.073* 0.865 0.126

[96, 00]–[01–06] 0.287 0.563 0.600 0.650 1.000 0.035**
[01, 06]–[07–12] 0.474 0.181 0.600 0.821 0.689 0.955
[07, 12]–[13–18] 0.706 0.009*** 0.600 0.721 0.785 0.737
[96, 00], [01, 06], 0.871 0.001*** 0.685 0.180 0.683 0.040**[07, 12], [13, 18]

96, 97,...,18 0.897 0.000*** 0.797 0.000*** 0.899 0.000***

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test to test for
uniformity of the p-values estimated from the multiple sample-splits used in the tests presented in Table B.3. The dimensions
are reduced using eigensystem methods as described in Wilson (2018), and the principal components are estimated using the
pooled sample of data from 1996–2018. The p-values are developed using 100 sample-splits and 1,000 bootstrap replications
using techniques described in Simar and Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Table B.5: Convexity Test: Without Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 −1.084 0.987 0.120 0.265 −0.100 0.437
1997 −1.823 0.991 0.254 0.137 −0.206 0.369
1998 −0.321 0.491 0.300 0.118 0.038 0.242
1999 −1.012 0.956 0.196 0.250 −0.003 0.380
2000 −0.592 0.767 0.889 0.022** 0.262 0.197
2001 −0.629 0.873 −0.383 0.680 −0.641 0.848
2002 −1.060 0.984 0.101 0.427 1.049 0.039**
2003 0.222 0.322 0.456 0.199 0.713 0.095*
2004 −0.045 0.507 0.731 0.072* 0.922 0.034**
2005 −0.187 0.485 0.211 0.213 0.827 0.035**
2006 −0.144 0.442 0.250 0.143 −0.108 0.430
2007 −0.029 0.451 0.241 0.216 0.223 0.231
2008 −3.584 1.000 −0.767 0.692 −1.850 0.991
2009 0.122 0.496 0.734 0.055* 0.895 0.032**
2010 0.792 0.060* 1.275 0.008*** 1.868 0.001***
2011 −1.530 0.999 0.198 0.120 −0.302 0.558
2012 −2.082 1.000 0.117 0.147 −1.670 0.999
2013 −1.661 0.995 0.861 0.004*** −0.638 0.721
2014 −0.786 0.832 0.991 0.002*** −0.532 0.677
2015 −1.505 0.979 0.311 0.055* −0.211 0.313
2016 −2.360 1.000 0.400 0.063* −0.667 0.813
2017 −0.576 0.920 0.060 0.366 −0.150 0.592
2018 −1.249 0.994 −0.042 0.401 −0.588 0.864

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced
data, such that p = q = 1. The dimensions are reduced using eigensystem methods as
described in Wilson (2018), and the principal components are estimated using the pooled
sample of data from 1996–2018. The p-values are developed using 100 sample-splits and
1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One,
two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.6: Convexity Test (KS Test): Without Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.452 0.007*** 0.140 0.863 0.218 0.391
1997 0.453 0.024** 0.258 0.417 0.247 0.436
1998 0.278 0.308 0.238 0.450 0.261 0.362
1999 0.350 0.082* 0.214 0.434 0.208 0.479
2000 0.338 0.148 0.329 0.169 0.306 0.206
2001 0.275 0.147 0.235 0.269 0.249 0.240
2002 0.419 0.030** 0.175 0.723 0.359 0.092*
2003 0.263 0.308 0.229 0.412 0.355 0.086*
2004 0.235 0.392 0.251 0.290 0.383 0.043**
2005 0.307 0.189 0.172 0.753 0.396 0.053*
2006 0.190 0.552 0.193 0.531 0.166 0.672
2007 0.273 0.167 0.214 0.344 0.233 0.300
2008 0.522 0.013** 0.372 0.172 0.538 0.012**
2009 0.201 0.371 0.310 0.064* 0.338 0.045**
2010 0.366 0.030** 0.469 0.005*** 0.584 0.001***
2011 0.478 0.003*** 0.174 0.522 0.329 0.068*
2012 0.613 0.000*** 0.191 0.477 0.595 0.000***
2013 0.492 0.010*** 0.327 0.144 0.385 0.090*
2014 0.383 0.055* 0.322 0.127 0.369 0.081*
2015 0.534 0.002*** 0.195 0.609 0.315 0.252
2016 0.620 0.001*** 0.193 0.510 0.357 0.092*
2017 0.262 0.136 0.117 0.835 0.171 0.474
2018 0.392 0.011** 0.087 0.965 0.318 0.060*

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case,
I use the KS test to test for uniformity of the p-values estimated from the multiple sample-
splits used in the tests presented in Table B.5. The dimensions are reduced using eigensystem
methods as described in Wilson (2018), and the principal components are estimated using the
pooled sample of data from 1996–2018. The p-values are developed using 100 sample-splits and
1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One, two
or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.7: Convexity Test: With Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 −0.926 0.973 0.172 0.192 0.066 0.305
1997 −1.024 0.892 −0.160 0.384 −0.502 0.635
1998 −0.646 0.784 0.218 0.162 −0.495 0.697
1999 −1.081 0.986 0.128 0.325 0.566 0.081*
2000 −0.846 0.867 0.226 0.229 0.237 0.217
2001 −1.523 0.996 −0.164 0.471 −0.676 0.854
2002 −0.901 0.971 0.561 0.178 0.686 0.116
2003 −0.105 0.630 0.344 0.294 0.959 0.059*
2004 −0.015 0.499 0.502 0.162 0.525 0.150
2005 −0.449 0.704 0.134 0.254 0.677 0.054*
2006 0.117 0.246 −0.032 0.356 −0.210 0.518
2007 −0.141 0.585 0.002 0.450 0.374 0.176
2008 −3.104 1.000 −0.525 0.515 −1.353 0.931
2009 0.049 0.577 0.882 0.036** 0.683 0.085*
2010 0.946 0.044** 1.277 0.009*** 1.674 0.001***
2011 −1.679 0.999 0.636 0.011** −0.640 0.864
2012 −1.505 0.999 −0.369 0.639 −0.689 0.888
2013 −1.155 0.971 0.535 0.029** −0.421 0.606
2014 −1.568 0.999 0.796 0.010*** −0.437 0.628
2015 −2.171 0.999 0.662 0.010*** −0.310 0.430
2016 −1.863 1.000 0.750 0.008*** −0.889 0.927
2017 −0.880 0.985 0.337 0.182 −0.159 0.665
2018 −0.788 0.964 −0.077 0.461 −0.931 0.974

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced
data, such that p = q = 1. The dimensions are reduced using eigensystem methods as
described in Wilson (2018), and the principal components are estimated using the pooled
sample of data from 1996–2018. The p-values are developed using 100 sample-splits and
1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One,
two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.8: Convexity Test (KS Test): With Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.385 0.030** 0.133 0.881 0.201 0.472
1997 0.342 0.152 0.216 0.586 0.304 0.263
1998 0.284 0.253 0.222 0.505 0.329 0.158
1999 0.378 0.035** 0.183 0.621 0.334 0.085*
2000 0.405 0.062* 0.272 0.328 0.225 0.523
2001 0.428 0.008*** 0.166 0.627 0.283 0.172
2002 0.394 0.044** 0.317 0.179 0.373 0.070*
2003 0.282 0.234 0.148 0.807 0.394 0.048**
2004 0.210 0.465 0.242 0.337 0.282 0.191
2005 0.312 0.155 0.131 0.921 0.345 0.091*
2006 0.219 0.419 0.118 0.927 0.209 0.445
2007 0.288 0.139 0.117 0.904 0.257 0.205
2008 0.466 0.032** 0.304 0.335 0.451 0.066*
2009 0.197 0.382 0.365 0.024** 0.280 0.101
2010 0.381 0.037** 0.404 0.019** 0.503 0.002***
2011 0.509 0.000*** 0.323 0.062* 0.344 0.045**
2012 0.569 0.000*** 0.246 0.213 0.433 0.007***
2013 0.429 0.024** 0.304 0.163 0.372 0.065*
2014 0.533 0.001*** 0.303 0.184 0.289 0.205
2015 0.617 0.001*** 0.304 0.211 0.279 0.310
2016 0.528 0.002*** 0.345 0.081* 0.352 0.072*
2017 0.369 0.012** 0.225 0.223 0.159 0.536
2018 0.296 0.071* 0.096 0.931 0.339 0.034**

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case,
I use the KS test to test for uniformity of the p-values estimated from the multiple sample-
splits used in the tests presented in Table B.7. The dimensions are reduced using eigensystem
methods as described in Wilson (2018), and the principal components are estimated using the
pooled sample of data from 1996–2018. The p-values are developed using 100 sample-splits
and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020).
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.9: Returns to Scale Test: Without Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 3.038 0.036** 4.529 0.000*** 4.753 0.000***
1997 2.693 0.133 4.475 0.000*** 3.992 0.012**
1998 2.373 0.210 3.771 0.001*** 3.884 0.015**
1999 1.893 0.284 2.858 0.015** 2.639 0.073*
2000 1.624 0.423 3.180 0.011** 2.560 0.120
2001 2.554 0.088* 3.855 0.003*** 3.247 0.048**
2002 2.913 0.142 4.553 0.000*** 3.784 0.053*
2003 2.190 0.205 3.831 0.001*** 3.270 0.023**
2004 1.923 0.240 3.532 0.000*** 2.898 0.021**
2005 2.683 0.110 4.685 0.000*** 3.609 0.035**
2006 2.690 0.040** 4.479 0.000*** 4.276 0.004***
2007 2.849 0.073* 5.014 0.000*** 4.653 0.003***
2008 2.157 0.349 4.932 0.000*** 5.523 0.003***
2009 2.538 0.054* 4.491 0.000*** 4.485 0.000***
2010 0.990 0.347 2.773 0.000*** 2.470 0.009***
2011 2.929 0.034** 5.776 0.000*** 5.185 0.002***
2012 3.271 0.028** 5.828 0.000*** 5.315 0.001***
2013 2.229 0.089* 5.417 0.000*** 4.727 0.000***
2014 2.475 0.070* 5.476 0.000*** 4.458 0.002***
2015 2.068 0.166 4.443 0.000*** 4.553 0.001***
2016 3.155 0.039** 6.366 0.000*** 6.097 0.000***
2017 2.998 0.013** 4.928 0.000*** 4.258 0.000***
2018 2.676 0.050** 4.779 0.000*** 4.497 0.002***

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced data, such that
p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and
the principal components are estimated using the pooled sample of data from 1996–2018. The p-values are
developed using 100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and
Wilson (2020). One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.10: Returns to Scale Test (KS Test): Without Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.615 0.183 0.924 0.000*** 0.824 0.008***
1997 0.720 0.090* 0.911 0.000*** 0.794 0.016**
1998 0.592 0.297 0.816 0.003*** 0.762 0.023**
1999 0.592 0.284 0.790 0.007*** 0.747 0.034**
2000 0.474 0.509 0.635 0.040** 0.487 0.480
2001 0.682 0.089* 0.854 0.002*** 0.679 0.105
2002 0.567 0.409 0.880 0.000*** 0.709 0.114
2003 0.634 0.179 0.867 0.000*** 0.767 0.015**
2004 0.635 0.154 0.831 0.000*** 0.698 0.037**
2005 0.700 0.087* 0.877 0.000*** 0.736 0.062*
2006 0.756 0.028** 0.939 0.000*** 0.891 0.002***
2007 0.587 0.205 0.947 0.000*** 0.813 0.010***
2008 0.615 0.281 0.788 0.011** 0.772 0.038**
2009 0.581 0.200 0.814 0.001*** 0.830 0.001***
2010 0.400 0.325 0.871 0.000*** 0.801 0.002***
2011 0.813 0.009*** 0.982 0.000*** 0.954 0.000***
2012 0.624 0.165 0.942 0.000*** 0.687 0.113
2013 0.579 0.179 0.956 0.000*** 0.896 0.001***
2014 0.663 0.100* 0.951 0.000*** 0.875 0.000***
2015 0.506 0.398 0.856 0.000*** 0.746 0.031**
2016 0.635 0.202 0.900 0.000*** 0.782 0.033**
2017 0.835 0.003*** 0.944 0.000*** 0.903 0.000***
2018 0.543 0.266 0.922 0.000*** 0.743 0.027**

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test to
test for uniformity of the p-values estimated from the multiple sample-splits used in the tests presented in Table
B.9. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the principal
components are estimated using the pooled sample of data from 1996–2018. The p-values are developed using
100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One,
two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.11: Returns to Scale Test: With Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 2.780 0.054* 4.916 0.000*** 4.482 0.001***
1997 2.667 0.155 4.409 0.002*** 4.325 0.009***
1998 2.557 0.159 4.143 0.001*** 3.516 0.049**
1999 1.901 0.302 3.315 0.007*** 2.726 0.102
2000 1.664 0.439 3.547 0.003*** 3.157 0.056*
2001 2.616 0.104 4.204 0.000*** 3.669 0.025**
2002 2.678 0.204 4.194 0.000*** 4.000 0.040**
2003 2.395 0.151 3.860 0.002*** 3.150 0.045**
2004 1.891 0.294 3.732 0.001*** 3.308 0.015**
2005 2.855 0.118 4.598 0.003*** 4.421 0.010***
2006 2.681 0.062* 4.797 0.000*** 4.633 0.003***
2007 2.793 0.073* 4.728 0.000*** 4.699 0.003***
2008 2.544 0.200 5.071 0.000*** 5.001 0.010***
2009 2.878 0.026** 4.714 0.000*** 4.061 0.000***
2010 1.176 0.289 3.248 0.000*** 2.734 0.004***
2011 3.064 0.028** 5.862 0.000*** 5.069 0.001***
2012 3.165 0.060* 6.676 0.000*** 5.855 0.000***
2013 2.931 0.016** 5.304 0.000*** 4.877 0.000***
2014 2.403 0.095* 5.177 0.000*** 4.735 0.002***
2015 1.694 0.355 4.721 0.000*** 4.435 0.004***
2016 3.146 0.041** 5.972 0.000*** 6.415 0.000***
2017 3.014 0.010*** 4.856 0.000*** 4.498 0.000***
2018 2.727 0.061* 4.635 0.000*** 5.068 0.001***

The test statistic, described in Kneip et al. (2016), is computed using dimension-reduced data, such that
p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the
principal components are estimated using the pooled sample of data from 1996–2018. The p-values are developed
using 100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020).
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.12: Returns to Scale Test (KS Test): With Quantity of Fuel as Input

Input–Orientation Output–Orientation Hyperbolic
Year Statistic p-value Statistic p-value Statistic p-value
1996 0.593 0.239 0.924 0.000*** 0.820 0.011**
1997 0.705 0.127 0.849 0.000*** 0.811 0.016**
1998 0.624 0.240 0.893 0.001*** 0.698 0.106
1999 0.538 0.404 0.825 0.000*** 0.650 0.141
2000 0.421 0.683 0.662 0.035** 0.576 0.215
2001 0.677 0.108 0.862 0.000*** 0.738 0.042**
2002 0.561 0.421 0.784 0.009*** 0.661 0.165
2003 0.695 0.101 0.885 0.001*** 0.765 0.022**
2004 0.620 0.203 0.873 0.000*** 0.712 0.046**
2005 0.740 0.076* 0.848 0.001*** 0.859 0.005***
2006 0.759 0.033** 0.963 0.001*** 0.911 0.002***
2007 0.656 0.128 0.927 0.000*** 0.828 0.008***
2008 0.678 0.139 0.846 0.001*** 0.777 0.029**
2009 0.640 0.118 0.879 0.000*** 0.771 0.011**
2010 0.462 0.269 0.855 0.000*** 0.830 0.000***
2011 0.856 0.006*** 0.966 0.000*** 0.901 0.000***
2012 0.612 0.225 0.931 0.000*** 0.734 0.049**
2013 0.711 0.036** 0.962 0.000*** 0.836 0.006***
2014 0.670 0.094* 0.945 0.000*** 0.880 0.003***
2015 0.391 0.702 0.849 0.000*** 0.698 0.081*
2016 0.646 0.207 0.941 0.000*** 0.838 0.009***
2017 0.771 0.021** 0.950 0.000*** 0.919 0.000***
2018 0.546 0.280 0.888 0.000*** 0.796 0.008***

The test statistic is from the KS test as described in Simar and Wilson (2020). In this case, I use the KS test to
test for uniformity of the p-values estimated from the multiple sample-splits used in the tests presented in Table
B.11. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the principal
components are estimated using the pooled sample of data from 1996–2018. The p-values are developed using
100 sample-splits and 1,000 bootstrap replications using techniques described in Simar and Wilson (2020). One,
two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.13: Test For Equivalency of Mean Efficiency: FDH Estimator Without Quantity of Fuel as
Input

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 −0.571 0.568 0.325 0.745 −1.044 0.297
1997–1998 0.006 0.995 −0.086 0.932 0.372 0.710
1998–1999 0.749 0.454 −0.482 0.629 1.282 0.200
1999–2000 0.288 0.773 0.675 0.500 −0.576 0.565
2000–2001 −0.424 0.671 −1.314 0.189 −1.268 0.205
2001–2002 −0.083 0.934 0.792 0.428 1.825 0.068*
2002–2003 0.65 0.516 −0.305 0.760 −0.369 0.712
2003–2004 −0.119 0.905 0.508 0.611 0.039 0.969
2004–2005 −1.528 0.126 −1.327 0.184 −2.105 0.035**
2005–2006 1.657 0.098* 1.165 0.244 −0.131 0.896
2006–2007 −0.082 0.934 −0.133 0.894 1.211 0.226
2007–2008 −6.945 0.000*** −3.761 0.000*** −5.092 0.000***
2008–2009 8.172 0.000*** 5.416 0.000*** 6.614 0.000***
2009–2010 0.161 0.872 0.533 0.594 0.706 0.480
2010–2011 −3.512 0.000*** −2.494 0.013** −4.795 0.000***
2011–2012 0.818 0.413 −0.869 0.385 0.113 0.910
2012–2013 −1.028 0.304 1.507 0.132 0.758 0.448
2013–2014 0.726 0.468 −0.996 0.319 −0.46 0.645
2014–2015 −0.472 0.637 −0.212 0.832 −0.066 0.948
2015–2016 −0.092 0.927 0.484 0.628 0.169 0.866
2016–2017 2.134 0.033** −0.467 0.641 0.164 0.870
2017–2018 −0.538 0.590 −0.321 0.748 −0.75 0.453

2007 & 2018 −1.077 0.281 −0.850 0.396 −2.182 0.029**
2008 & 2018 6.097 0.000*** 2.999 0.003*** 2.978 0.003***
2009 & 2018 −2.349 0.019** −2.660 0.008*** −3.675 0.000***
2010 & 2018 −2.795 0.005*** −2.867 0.004*** −4.489 0.000***
2011 & 2018 0.996 0.319 −0.445 0.656 0.396 0.692

The test statistic, described in Kneip et al. (2016), is computed using the FDH estimator with dimension-reduced data,
such that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the
principal components are estimated using the pooled sample of data from 1996–2018. Since separability tests suggest
that separability with respect to T does not hold, the estimator allows for a different frontier every production year.
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.14: Test For Equivalency of Mean Efficiency: FDH Estimator With Quantity of Fuel as
Input

Input–Orientation Output–Orientation Hyperbolic
Period Statistic p-value Statistic p-value Statistic p-value

1996–1997 −0.713 0.476 0.104 0.917 −0.887 0.375
1997–1998 0.3 0.764 0.473 0.636 0.574 0.566
1998–1999 0.146 0.884 −1.401 0.161 0.695 0.487
1999–2000 0.396 0.692 0.373 0.709 −0.569 0.570
2000–2001 −0.491 0.623 −0.628 0.530 −0.868 0.385
2001–2002 0.029 0.977 0.709 0.478 1.655 0.098*
2002–2003 0.526 0.599 −0.26 0.795 0.248 0.804
2003–2004 −0.019 0.985 0.767 0.443 −0.051 0.959
2004–2005 −1.447 0.148 −1.34 0.180 −2.057 0.040**
2005–2006 1.016 0.310 1.117 0.264 −0.178 0.859
2006–2007 0.124 0.902 −0.346 0.730 1.454 0.146
2007–2008 −6.785 0.000*** −2.863 0.004*** −4.261 0.000***
2008–2009 7.854 0.000*** 4.843 0.000*** 5.888 0.000***
2009–2010 0.453 0.650 0.139 0.890 0.927 0.354
2010–2011 −3.705 0.000*** −2.581 0.010*** −4.873 0.000***
2011–2012 1.068 0.286 −0.675 0.500 0.086 0.932
2012–2013 −0.954 0.340 1.28 0.200 1.029 0.304
2013–2014 0.301 0.764 −0.3 0.764 −0.757 0.449
2014–2015 −0.504 0.614 −0.543 0.587 0.177 0.859
2015–2016 0.434 0.664 0.468 0.640 0.909 0.363
2016–2017 1.690 0.091* −0.434 0.664 −0.155 0.877
2017–2018 −0.771 0.440 −0.402 0.688 −0.794 0.427

2007 & 2018 −0.760 0.447 −0.803 0.422 −2.116 0.034**
2008 & 2018 5.869 0.000*** 2.077 0.038** 2.133 0.033**
2009 & 2018 −1.938 0.053* −2.960 0.003*** −3.552 0.000***
2010 & 2018 −2.524 0.012** −3.044 0.002*** −4.391 0.000***
2011 & 2018 1.267 0.205 −0.253 0.800 0.442 0.658

The test statistic, described in Kneip et al. (2016), is computed using the FDH estimator with dimension-reduced data,
such that p = q = 1. The dimensions are reduced using eigensystem methods as described in Wilson (2018), and the
principal components are estimated using the pooled sample of data from 1996–2018. Since separability tests suggest
that separability with respect to T does not hold, the estimator allows for a different frontier every production year.
One, two or three asterisks denote significance at the 10, 5 and 1 percent levels, respectively.
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Table B.15: Productivity Estimates: Without Quantity of Fuel as Input

Period Statistic p-value
1996–1997 −0.367 0.714
1997–1998 0.130 0.897
1998–1999 −0.536 0.592
1999–2000 1.625 0.104
2000–2001 2.444 0.015**
2001–2002 −0.404 0.686
2002–2003 0.333 0.739
2003–2004 −0.306 0.760
2004–2005 0.472 0.637
2005–2006 0.218 0.827
2006–2007 −0.803 0.422
2007–2008 1.224 0.221
2008–2009 −1.107 0.268
2009–2010 0.156 0.876
2010–2011 1.636 0.102
2011–2012 −0.140 0.889
2012–2013 1.546 0.122
2013–2014 −0.814 0.416
2014–2015 −1.256 0.209
2015–2016 0.891 0.373
2016–2017 −1.165 0.244
2017–2018 0.877 0.380
2007–2018 2.467 0.013**
2008–2018 0.717 0.473
2009–2018 2.625 0.008***
2010–2018 1.982 0.047**
2011–2018 0.125 0.899

Productivity tests are conducted with dimension-
reduced data (p = q = 1). One, two or three
asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Table B.16: Productivity Estimates: With Quantity of Fuel as Input

Period Statistic p-value
1996–1997 −0.398 0.691
1997–1998 0.065 0.948
1998–1999 −0.474 0.635
1999–2000 1.640 0.101
2000–2001 2.570 0.010***
2001–2002 −0.424 0.671
2002–2003 0.319 0.750
2003–2004 −0.363 0.716
2004–2005 0.404 0.686
2005–2006 0.276 0.783
2006–2007 −0.867 0.386
2007–2008 1.220 0.222
2008–2009 −1.011 0.312
2009–2010 −0.003 0.998
2010–2011 1.671 0.095*
2011–2012 0.018 0.986
2012–2013 1.492 0.136
2013–2014 −0.773 0.440
2014–2015 −1.264 0.206
2015–2016 0.884 0.377
2016–2017 −1.169 0.243
2017–2018 0.875 0.381
2007–2018 2.559 0.010***
2008–2018 1.110 0.266
2009–2018 2.603 0.009***
2010–2018 2.048 0.040**
2011–2018 0.189 0.849

Productivity tests are conducted with dimension-
reduced data (p = q = 1). One, two or three
asterisks denote significance at the 10, 5 and 1
percent levels, respectively.
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Appendix C

FDH From 1996–2018

Plots A.1–A.22 show observed pipeline first principal components, X∗t (OPEX) and Y ∗t ,

and the estimated FDH frontier, Ψ̂t
FDH , for t ∈ [1996, 2018], using the specified inputs and outputs

described in Section 1.3.1. Each plot shows Ψ̂t
FDH for two consecutive year pairs. Line segments

trace pipelines on the frontier in year t to their position in year t + 1, and vise versa. In addition,

dotted line segments trace positions for select pipelines, noted below, over time. The plots show that

the estimated FDH does change from year to year and steadily moves upward during the sample

period. Moreover, firms on the frontier in year t are likely to remain on the frontier in year t + 1.

Finally, the plots do not provide any strong evidence for net technical regress or persistent drop in

the frontier over time.
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Figure C.1: FDH: 1996 Versus 1997
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Figure C.2: FDH: 1997 Versus 1998
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Figure C.3: FDH: 1998 Versus 1999
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Figure C.4: FDH: 1999 Versus 2000
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Figure C.5: FDH: 2000 Versus 2001
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Figure C.6: FDH: 2001 Versus 2002
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Figure C.7: FDH: 2002 Versus 2003
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Figure C.8: FDH: 2003 Versus 2004

ANR Pipeline Co

Texas Eastern Transmission LP

Texas Gas Transmission LLC

Transcontinental Gas Pipe Line Corp

0

2000

4000

6000

0 200 400
Inputs (First Principal Component of X)

O
ut

pu
ts

 (
F

irs
t P

rin
ci

pa
l C

om
po

ne
nt

 o
f Y

)

Year

2003

2004

Path

138



Figure C.9: FDH: 2004 Versus 2005
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Figure C.10: FDH: 2005 Versus 2006
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Figure C.11: FDH: 2006 Versus 2007
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Figure C.12: FDH: 2007 Versus 2008
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Figure C.13: FDH: 2008 Versus 2009
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Figure C.14: FDH: 2009 Versus 2010
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Figure C.15: FDH: 2010 Versus 2011
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Figure C.16: FDH: 2011 Versus 2012
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Figure C.17: FDH: 2012 Versus 2013
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Figure C.18: FDH: 2013 Versus 2014
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Figure C.19: FDH: 2014 Versus 2015
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Figure C.20: FDH: 2015 Versus 2016
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Figure C.21: FDH: 2016 Versus 2017
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Figure C.22: FDH: 2017 Versus 2018
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Appendix D

Discussion on Specific Pipelines

Despite the strong evidence of overall technical efficiency improvements during the Shale

Revolution, the model described in this paper does not provide a lot of contextual information on how

pipelines changed operations during this time period to become more technically efficient, or what

factors prevented some pipelines from achieving greater efficiency. As noted in Appendix C, pipelines

that are operating on Ψt∂ in year t are most likely on Ψt∂ in year t+ 1. However, a couple pipelines

are an exception to this. ANR Pipeline Company (ANR) and Texas Gas Transmission (TGT) were

operating in positions far away from Ψt∂ in periods prior to the Shale Revolution. ANR is a large

system that covers a region that includes Louisiana, Mississippi, Tennessee, Kentucky, Indiana, Ohio,

Illinois, Iowa, Missouri, Oklahoma and Texas. TGT is also a large system and covers Louisiana,

Arkansas, Mississippi, Tennessee, Kentucky, Illinois, Indiana, and Ohio. Both TGT and ANR were

initially designed to receive gas produced in the Gulf of Mexico. However, the Shale Revolution

made the U.S. a net exporter of natural gas, and the lower cost of shale production reduced the

share of U.S. gas produced by offshore rigs. In 2014 both ANR and TGT announced they will

restructure the pipeline to reverse flow and take gas produced in the Marcellus and Utica beds (in

Pennsylvania, New York, West Virginia, and Ohio) to LNG terminals on the Gulf Coast. While

TGT and ANR initially operated off of the frontier they eventually would operate at or near full

efficiency in the years following their restructuring in 2014.

Transcontinental Gas Pipeline (TCO) offers an example of how initial pipeline geography
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can dictate the scale and efficiency of a pipeline. Like TGT and ANR, TCO is a large system that was

initially designed to receive gas produced off the U.S. Gulf Coast and deliver gas across the eastern

seaboard. TCO covers an area that includes the Gulf Coast of Texas, Louisiana, Mississippi, and

Alabama, as well as Georgia, South Carolina, North Carolina, Virginia, Maryland, Pennsylvania,

New Jersey and New York City. TCO occupies a position on Ψt∂ every year in the sample, and

operates as the pipeline with the largest scale on the frontier each year. In addition, TCO’s output

quantities increase every year, and delivery volume more than doubles from 2007 to 2018. This could

be because of TCO’s route through many major east coast metropolitan areas. More importantly

though, their position on the eastern seaboard allows TCO to pass through every state on the east

coast with an existing or proposed LNG terminal. Thus, as shale production increases, TCO remains

a highly productive pipeline because of increasing LNG exports.

Finally, pipeline age and initial design can inhibit increases in technical efficiency. Texas

Eastern Pipeline Company (TETCO) is similarly located to TGT and transports gas from Marcellus

shale deposits to the gulf coast of Louisiana. Along with ANR and TGT, TETCO was one of the

first pipelines to become bidirectional and reverse flow to export gas from the Midwest for LNG

export. However, the pipeline dates back to World War II and was initially designed as a crude oil

pipeline. The pipeline frequently experiences outages due to accidents and pipeline ruptures. This

in turn increases OPEX inhibiting TETCO from achieving full efficiency.
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