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Abstract

In this dissertation, we develop novel techniques that allow for the regression analysis of data

emerging from group testing processes and set the groundwork for graphic processing units (GPU)

enabled implementations. Group testing primarily occurs in clinical laboratories, where it is used to

quickly and cheaply diagnose patients. Typically, group testing tests a pooled specimen–several spec-

imens combined into one sample–instead of testing individual specimens one-by-one. This method

reduces costs by using fewer tests when the disease prevalence is low. Due to recent advances in

diagnostic technology, group testing protocols were extended to incorporate multiplex assays, which

are diagnostic tests that, unlike their predecessors, test for multiple infectious agents simultaneously.

The diseases that a multiplex assay screen typically share co-infection risks. The positive correlation

stemming from co-infection risks creates a more challenging modeling framework. In this work, we

develop a Bayesian regression methodology that can analyze multiplex testing outcomes collected as

part of any group testing protocol. The model can maintain marginal interpretability for regression

parameters and, when the assay accuracies are unknown, we can simultaneously estimate regres-

sion parameters with the test’s sensitivity (true positive rate) and specificity (true negative rate).

Based on a carefully constructed data augmentation strategy, we derive a Markov chain Monte Carlo

(MCMC) posterior sampling algorithm that can be used to complete model fitting. We demonstrate

our methodology via numerical simulations and by using it to analyze chlamydia and gonorrhea,

which are sexually transmitted infections, data collected as part of Iowa’s public health laboratory’s

testing efforts. This regression framework’s drawback is the computational intensity of the proposed

steps in the MCMC algorithm. Due to computational costs, this algorithm does not scale well to

the high-volume clinical laboratory settings where group testing is commonly employed. We need

to accelerate the proposed algorithms to provide for faster modeling fitting and prediction. The

devised MCMC algorithm has several independent steps (e.g., sampling the latent disease status of
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each patient), or matrix operations. These sections of the algorithm are well-suited to be acceler-

ated with parallel processing. Parallel processing is a software task that was historically used on

large-scale computer clusters, but GPUs perform similar computations. To solve the scaling issue

with our MCMC algorithms, we explore the GPU as a remedy. We discuss the necessary GPU tech-

niques to take the first steps toward fitting group testing regression models with GPUs. Specifically,

we explore stochastic gradient and coordinate descent algorithm implementation with independent

steps and matrix operations. Finally, we provide an example MCMC implementation on a GPU to

demonstrate potential acceleration.
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Chapter 1

Introduction

Group testing, also known as pooled testing, is a common technique used in clinical lab-

oratories to screen for infectious diseases. In this setting, group testing proceeds to test pooled

specimens, which are formed from physically combining specimens from each individual instead of

testing each specimen one-by-one. Robert Dorfman [3] was the first to demonstrate the benefits of

group testing which was motivated by the syphilitic screening efforts of the Second World War. In

the 1940s, the U.S. Public Health Service and Selective Service drafted millions of men for the war.

As part of a health screening, a blood draw was performed on each person to help identify those

with syphilis, a bacterial infection. Each blood draw was tested for a syphilitic antigen, in other

words, every draftee was tested to find every person with an immune response to the infection. In

1942, economists Robert Dorfman and David Rosenblatt attended an impromptu discussion on the

wastefulness of performing the test millions of times to find a few syphilitic men [4]. As a result of

those discussions, Robert Dorfman [3] authored the seminal paper that introduced group testing.

In this work, Dorfman [3] proposed the following two-stage group testing procedure called Dorfman

testing (DT). Suppose there are n specimens to be tested. Following Dorfman’s procedure, a portion

of each specimen is combined to form a pooled sample. In the first stage, the pooled sample is tested.

If the test result is negative, then the individuals are classified as negative and we have classified n

individuals with one test. If the test result is positive, we proceed to the second stage in which we

retest each specimen one-by-one with the individuals diagnosed based on their individual level test

result. It is easy to see that in low prevalence settings, this two-stage procedure has the potential

to reduce testing costs.
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Owing to the reduction in testing costs, group testing has been widely adopted across

many different types of applications. The largest application is testing blood donations [5]. The

American Red Cross [6], Canadian Blood Services [7], Japanese Red Cross [8], and German Red

Cross [9] use a variation of DT with mini-pools of size 16, 24, 50, and 96, respectively, to screen

blood donations for hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency

virus type-1 (HIV-1). Group testing has been used to screen for a host of other infectious diseases

such as chlamydia and gonorrhea [10], human immunodeficiency virus [11], influenza viruses [12],

SARS-CoV-2 [13], West Nile virus [14], and Zika virus [15]. Group testing has also been used in

a variety of other application areas, to include detecting rare mutations [16], chromatography in

analytic chemistry [17], prevalence estimation for insect disease vectors [18], genomics studies [19],

water quality studies [20], detecting disease-causing bacteria in sheep [21] and salmonella on chicken

eggs [22], among others.

Group testing research typically focuses on addressing either the identification or estimation

problem. The identification problem involves the task of identifying the disease status of the screened

individuals, while the estimation problem is concerned with estimating either the disease’s population

characteristics; e.g., disease prevalence or regression functions [5] [23]. As part of the identification

problem testing algorithms are developed to minimize the number of tests performed when classifying

individuals. While DT can reduce costs, there are a wide variety of group testing algorithms that

can be employed. Generally, there are two types of algorithms hierarchical and non-hierarchical.

Hierarchical algorithms have the property that tests conducted in the previous stages are known

before the next stage of testing is performed and each subject is tested, either in a pool or individually,

at most, once per stage. DT is an example of a two-stage hierarchical procedure. In contrast, array

testing, originally used in genomics research [19] (see Phatarfod and Sudbury [24]), is an example

of a non-hierarchical algorithm. Two-stage array testing is non-hierarchical because individuals are

assigned to a rectangular grid in the first stage and, based on this assignment, row and column pools

are formed and tested. Therefore, each individual is tested in two overlapping pools, regardless

of the other pool’s outcome. In the next stage, individual testing resolves potential positives; for

further details see Kim, Hudgens, Dreyfuss, Westreich, and Pilcher [25].

Many hierarchical and non-hierarchical algorithms have been proposed, and a primary focus

in the development of these schema is to characterize their performance. Early algorithms assume

perfect testing and a homogeneous population, i.e., every subject has the same infection risk. Many

2



authors developed new algorithms that further reduced testing costs under these conditions. Sterrett

[26] proposed that if a master pool tests positive, then the positive pool would be resolved by

randomly selecting and retesting subjects from the pool individually until the first positive was found,

at which point the remaining subjects would be repooled and tested. This process would be repeated

until all individuals were classified. Sobel and Groll [27] developed a recursive splitting algorithm that

successively splits positive pools into smaller subgroups until all the individual’s statuses are resolved.

However, most tests for infectious diseases are not perfect and these inaccuracies are accounted for

by introducing testing errors. False-positive and false-negative errors occur when a test declares a

diagnosed status that is different than an individual’s true status. As part of evaluating a diagnostic

tests’ performance, these errors are described by the assay accuracies probabilities, sensitivity and

specificity, known as the true positive rate and true negative rate, respectively. In the presence

of imperfect testing, Kim, Hudgens, Dreyfuss, Westreich, and Pilcher [25] describe the operating

characteristics of S-stage hierarchical group testing procedures as well as two and three stage array

testing.

All of the aforementioned works still assume a homogeneous population, but realistically, we

can to assume that individuals have different disease risks. Hwang [28] was the first to acknowledge

and exploit this heterogeneity. The paper develops a dynamic programming algorithm to classify

individuals with different probabilities of disease and was the first step in informative group test-

ing. Informative group testing leverages individual patient information to optimize a group testing

procedure. For example, Lewis, Lockary, and Kobic [29] describe the Idaho Bureau of Laborato-

ries’ stratified specimen pooling scheme where the reason for visiting a health care provider, such

as routine pregnancy screening, exposure to Chlamydia trachomatis (CT) or Neisseria gonorrhoeae

(NG), symptomatic, and STD screening, determines the use of group or individual testing. Bilder,

Tebbs, and Chen [30] devise an informative group testing algorithm that modifies Sterrett’s [26]

strategy so that subject specific probabilities under imperfect testing conditions guides retesting.

Similarly, McMahan, Tebbs, and Bilder [31] modify DT by guiding pool construction via individual

level probabilities. Both of these procedures need a priori knowledge of the individual’s infection

probabilities, which are generally unknown. Thus, to implement informative techniques, we need an

estimation of these probabilities.

Much of the estimation work in group testing focuses on developing techniques that can

aggregate pool testing outcomes to estimate a disease’s prevalence within a population. Thomp-
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son [18] first explored the estimation problem and derived a maximum likelihood estimator of the

prevalence based on MPT outcomes and provided the asymptotic distribution. Hughes-Oliver and

Swallow [32] proposed a two-stage adaptive estimation strategy to estimate the prevalence where

the pool size in the second stage is set to minimize the mean square error of the prevalence estima-

tor. Thompson [18] and Hughes-Oliver [32] estimate the prevalence based on data from master pool

testing only and fail to account for imperfect testing. Sobel and Elashof [33] propose a maximum

likelihood estimator that accounts for retesting. Chen and Swallow [34] evaluate the robustness of a

prevalence estimator using testing and retesting errors. More recently, Bilder and Tebbs [35] develop

an empirical Bayes estimator for the prevalence with credible intervals. The aforementioned works

are all limited to estimating only population level prevalence.

Apart from estimating population prevalence, recent work has allowed for the incorpora-

tion of covariate information in the estimation of regression functions based on group testing data.

Estimating regression models relate patients’ covariates to their infection status. The first to use

regression modeling in group testing was Farrington [22]. The paper proposes estimating a general-

ized linear model using a complementary log-log link function based on testing outcomes takes from

master pools that were formed homogenously with respect to covariate information. Vansteelandt,

Goetghebeur, and Verstraeten [36] extended Farrington’s [22] work by allowing for imperfect testing,

general link function, and any composition of covariates within the pool. Using regression analysis

on group testing data is not limited to parametric models, Delaigle and Meister [37] developed a non-

parametric regression model with imperfect testing for equal pool sizes while Delaingle, Hall, and

Wishart [38] extend this approach to allow unequal pool sizes. However, all of the aforementioned

regression works are capable of analyzing data arising from master pool testing. Xie [39] was the

first to incorporate retesting information to estimate a regression model. This author developed an

expectation-maximization algorithm to estimate regression parameters with imperfect testing and

covariates. Zhang, Bilder, and Tebbs [40] expand on Xie’s [39] work by looking at other common

algorithms and demonstrate that better estimation efficiency can be obtained if resting information

is included. These works assume that the assay’s sensitivity and specificity are known and designed

for specific group testing algorithms. McMahan, Tebbs, Hanson, and Bilder [41] create a Bayesian

regression framework that allows for general link functions and can analyze data from any group

testing scheme with imperfect testing. Liu, McMahan, Tebbs, Gallagher, and Bilder [42] build upon

the Bayesian framework to allow for a generalized additive regression framework to alleviate model
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misspecification from strict linear covariate relations while Joyner, McMahan, Tebbs, and Bilder [43]

incorporate random effects and variable selection.

The previously mentioned group testing literature uses an assay that screens for a single

trait. Recent medical diagnostic developments introduced multiplex assays that test for multiple

diseases simultaneously, which can facilitate completing a test panel comprised of a set of related

tests. For example, a STD multiplex assay simultaneously screens patients for the bacteria CT

and NG using nucleic acid amplification [1]. The SHL at the University of Iowa, Idaho Bureau of

Laboratories [29] and Nebraska Public Health Laboratory [44] use this technique. A multiplex assay

screens blood donations for three STDs: HBV, HCV, and HIV-1 [45] [46]. More considerations are

needed for multiplex assays. First, since related diseases form the test panel, the test outcomes

are potentially correlated as shown by Zhang, Bilder, and Tebbs [44] for CT and NG. Second, the

testing accuracies may differ for each disease. Finally, group testing procedures must be reassessed

when there are multiple traits.

In the context of multiplex assays, group testing algorithms are modified to account for

multiple diseases. For example, the SHL uses an adaptation of Dorfman’s group testing algorithm to

test for CT and NG. The modification is to always perform multiplex assays at each stage and retest

if any test is positive because it is simpler and more cost-effective [47]. Tebbs, McMahan, and Bilder

[47] were the first to characterize the performance of group testing on multiple infections. Later,

Hou, Tebbs, Bilder, and McMahan [48] generalize the work for higher-stage hierarchical algorithms.

Hou, Tebbs, Wang, McMahan, and Bilder [49] propose non-hierarchical algorithms utilizing two-

dimensional arrays and derive its operating characteristics. These works include imperfect testing

and retesting information but early work in the estimation problem did not. Hughes-Oliver and

Rosenberger [50] generalized Hughes-Oliver and Swallow’s [32] earlier work for a two-stage adaptive

group testing procedure designed for multiple diseases. The adaptation gives an optimal design for

the estimation of the prevalence of three diseases in Ethiopian women: HIV, chlamydia, and syphilis.

However, they assume perfect testing and master pool testing only. Tebbs, McMahan, and Bilder [47]

expand on the work of Hughes-Oliver and Rosenberger [50] to propose an expectation-maximization

algorithm to estimate disease prevalence with imperfect testing and retesting information.

Since the test outcomes from multiplex assays are not independent, estimating the regression

function is difficult. Zhang, Bilder and Tebbs [44] generalize the work of Xie [39] and Vansteelandt

et al. [51] by using a expectation-solution algorithm to estimate a regression model for master
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pool testing data for multiple diseases. Later, Lin, Wang, and Zheng [52] propose a generalized

expectation-maximization algorithm for the regression analysis of data arising from a two-stage

group testing protocol using a multiplex assay. Estimating regression functions have two primary

benefits. First, as part of surveillance studies, estimating the regression function allows us to identify

risk factors that relate to infection status. Thus, we can identify parts of the population that are

at higher risk for disease. Second, by leveraging estimated regression functions to differentiate

individuals based on risk, informative group testing techniques can be employed to reduce the cost

of testing. For multiplex assays, Bilder, Tebbs, and McMahan [53] show substantial cost savings by

designing an optimal hierarchical S-stage procedure with individual probabilities of infection. Bilder,

Tebbs, and McMahan [54] propose the first non-hierarchical algorithm for informative multiplex

array group testing. Previous multiplex assay regression works by Zhang, Bilder and Tebbs [44]

and Lin, Wang, and Zheng [52] are limited to group testing algorithms for master pool testing and

two-stage group testing, respectively.

In the following chapter, we develop a Bayesian regression framework to simultaneously

estimate covariate effects, correlation structure, and assay accuracies using data from any group

testing scheme arising from a discriminating multiplex assay. Our work is an extension of the

Bayesian regression framework of McMahan, Tebbs, Hanson, and Bilder [41] to that allows for the

joint analysis of multiple diseases. We develop implementations of our approach under both the

multivariate probit and logistic models following the data augmentation strategies by Albert and

Chib [55] and O’Brien and Dunson [56], respectively. These implementations maintain their marginal

interpretability this allows inference of marginal effects rather than conditional effects. Moreover,

we develop easy to implement Markov chain Monte Carlo (MCMC) algorithm that can estimate

the proposed model. A benefit of using a Bayesian methodology is we can incorporate expert

knowledge to inform model fitting such as the assay’s clinical data for sensitivity and specificity

estimations. We explore the finite sample properties of our proposed approach through simulation

studies and by applying it to STD data collected by the SHL in Iowa. A drawback of our Bayesian

implementation is the amount of time required to compute enough samples for large data sets like

the ones that naturally arise from the high volume settings where group testing is utilized. For

example, in our application we have 13,862 female test results which are easily analyzed by our

algorithm. Although, when considering the test results for the United States our implementation

would be unteable. National test results would be at least an order of magnitude larger than the
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national infection rates for CT and NG, which where the most reported notifiable disease in 2019

with more than 1.8 million and 616,392 infections, respectively, according to a 2021 report [57].

With a low prevalence rate the number of tests needed for analysis can be an order of magnitude

larger. Our MCMC methodology does not scale efficiently to these infection rates.

To overcome the computational barriers limiting the scaling of our Bayesian implementa-

tion a common approach is to employ parallel processing. Parallel processing involves computing

independent steps simultaneously rather than sequentially for time savings. Historically, this was

accomplished on multiple CPUs in mainframes and supercomputers. More recently graphics pro-

cessing unit (GPU) have been used for parallelized tasks. GPUs were not always for the task of

general-purpose computing. In 2001, Larsen and McAllister demonstrate matrix-matrix multiplica-

tions with 8-bit fix point precision [58] opening the door for GPUs in general-purpose computing.

There are several early applications such as finite element simulations [59], physics-based simula-

tions [60], visually simulating ice crystal growth [61], and accelerating neural networks [62]. An

important milestone occurred in 2003, GPUs switched from 8-bit integer color to 32-bit floating

point that allows for a large range of matrix operations [63]. However, these operations were slower

than their CPU counterparts. In 2005, Galoppo, Govindaraju, Henson, and Manocha demonstrated

LU decomposition was faster on a GPU than a CPU [64]. By 2006, these advancements allowed peo-

ple to contribute their GPUs for Folding@home, one of the largest distributed computing projects

that simulates protein folding [65]. All the early applications for GPUs had their drawbacks. Many

developers found designing and writing programs for GPUs difficult with numerous limitations and

workarounds using functions designed for video game development. The leading GPU designer,

NVIDIA, released their CUDA toolkit to address the need for an accessible framework [66]. The

toolkit is used by Terenin, Dong, and Draper [67] to demonstrate the effectiveness and speedups of

using a GPU for MCMC methods.

To lay the foundations for adapting a group testing MCMC algorithm for GPU acceleration,

we introduce GPU computing and run several test cases to demonstrate its effectiveness. We provide

a basic introduction to programming GPUs with NVIDIA CUDA, a common development library.

Following our introduction to GPUs, we implement two optimization routines using the hardware:

stochastic gradient descent and stochastic coordinate descent. These two methods are commonly

used in machine learning and statistics to minimize an objective function. They are particularly

useful in large data problems as they effectively solve the problem in small steps. The methods are
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stochastic because of the randomization of taking a sample from the available data or a parameter

to update. The difference between stochastic gradient descent and coordinate descent is how the

parameters are updated. Stochastic gradient descent updates all of the parameters simultaneously

based on a gradient vector computed using a randomly selected subset of the data. In contrast,

stochastic coordinate descent updates a randomly selected parameter based on the entire data set.

In our exploration, we gain techniques to parallelize independent processes and matrix operations.

We apply those lessons to accelerate a MCMC algorithm. We demonstrate the algorithm for the

Horseshoe probit regression model also shown by Terenin, Dong, and Draper [67].

This dissertation is organized as follows: In Chapter 2, we discuss our Bayesian regression

model, show its finite sample properties by several simulations and demonstrate its application with

Iowa’s CT and NG data. In Chapter 3, we give an introduction meant for a beginner with no prior

knowledge to familiarize with the terminology and set up of a simple GPU program. In Chapter 4,

we implement two descent algorithms on a CPU and GPU for comparison in complexity. In Chapter

5, we recreate Terenin, Dong, and Draper’s work [67] to show how randomization, sampling, and

MCMC methods are implemented on a GPU. Finally, in Chapter 6, we discuss future work.
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Chapter 2

Bayesian Regression for Group

Testing

Group testing is the process of combining specimens (e.g., urine, blood, etc.) from different

individuals into a pool, and testing the pool for disease or infection. Group testing was introduced

by Dorfman [3] to screen draftees for syphilis in the Second World War as a cost-savings measure

to reduce the number of tests performed. This type of testing is guided by testing schemes or

protocols that determine how testing proceeds algorithmically. Typically, the pooled specimen is

tested first. If the result of the pooled specimen is negative, then all individuals in the pool are

declared negative and only one test is used to classify all the members. If the pooled specimen

test is positive, then the members of the pool are retested in subset pools to eventually determine

the positive individuals. Since Dorfman introduced group testing, it has become a popular method

to screen large populations for diseases. The main advantage of group testing is the cost savings,

especially in high-volume settings. Group testing has proven effective in screening for sexually

transmitted diseases including chlamydia and gonorrhea [47], and screening blood donations for

infectious diseases [5] by blood banks (e.g., the German Red Cross [9], Japanese Red Cross [8],

Canadian Blood Services [7] and the American Red Cross [6]) for hepatitis B virus (HBV), hepatitis

C virus (HCV) and human immunodeficiency virus type-1 (HIV-1).

While group testing can result in cost savings for classifying every individual, imperfect test-

ing and dependencies between pools make group testing more complicated for estimation. Imperfect
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testing or testing errors mean that the true disease status of an individual is never known; only the

diagnosed status of the individual at the time of testing is known. Moreover, in most group testing

protocols, many individuals are in multiple, possibly overlapping, pools. Pools sharing common

individuals no longer are independent. With imperfect testing, we cannot sidestep the dependencies

by assigning the true disease statuses to every individual and we cannot use regression models that

need independent outcomes. Instead, we have the diagnosed status of individuals through a set

of dependent tests. These issues complicate data analysis for estimation. For example, the most

basic group testing protocol is master pool testing. In master pool testing, all subjects are divided

into separate pools which are subsequently tested, with no testing being performed beyond this first

stage. If the pool is positive, then at least one member may be infected as imperfect testing means

a positive outcome could arise from a pool with no individual who has the disease. Moreover, the

number of likely positive individuals in the pool is unknown. With all these drawbacks, master pool

testing can be used to estimate population prevalence or a regression function. Farrington [22] was

the first to propose estimating the prevalence with a generalized linear model using a complementary

log-log link function. His work was restricted to perfect testing on master pools with the additional

limitation that the individual’s covariates were identical for each master pool. It is not reasonable in

a low volume clinical setting to have groups of patients with the same covariates. Moreover, most all

tests are imperfect. Tests have a less than perfect true positive rate (sensitivity) and true negative

rate (specificity) known as the assay’s accuracy probabilities. Motivated by HIV surveillance data,

work by Vansteelandt, Goetghebeur, and Verstraeten [36] allow for estimation with a general link

function and any set of covariates for each pool. They included imperfect testing and reflecting the

realities of HIV’s three layers of tests. However, they continued to only consider master pool test

results. For parametric extensions, Chen, Tebbs, and Bilder [68] add random effects, and research

by McMahan, Tebbs, and Bilder [69] account for biomarker distributions. For non-parametric re-

gression, Delaigle and Meister [37] introduce testing errors and any individual covariates but use

only equal-sized master pooled specimen test results. Later, Delaingle, Hall, and Wishart [38] ex-

tended this non-parametric approach to allow for unequal pool sizes. The primary goal of group

testing algorithms is to diagnosis individuals; however, all of the previously mentioned regression

methods are designed to analyze data arising from master pool testing. In contrast, most group

testing protocols resolve postive master pools in an effort to diagnose each individual. For exam-

ple, see Kim, Hudgens, Dreyfuss, Westreich, and Pilcher [25], Kim and Hudgens [70], Sterrett [26],
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Sobel and Groll [27], Sobel and Elashof [33], Hughes-Oliver and Swallow [32], Gastwirth and John-

son [71], Bilder, Tebbs, and Chen [30], and McMahan, Tebbs, and Bilder [31]. These algorithms

guide retesting subsets of individuals after a positive pool result to find the positive individuals or

for quality control. Xie [39] was the first to incorporate retesting information for estimation via an

expectation-maximization algorithm that estimates an individual’s probability of disease by viewing

their true disease status as a latent variable. The algorithm accounted for different testing errors

for the pool test and confirmation test. Zhang, Bilder, and Tebbs [40] provide further analysis of

the methodology. However, like most all other regression methods in group testing, it assumes the

assay errors were known. McMahan, Tebbs, Hanson, and Bilder [41] take a Bayesian approach that

allows for unknown testing error and any group testing protocol. Recent statistical research by Liu,

McMahan, Tebbs, Gallagher, and Bilder [42] extends the Bayesian approach to allow for generalized

additive models. All of the previously mentioned works are designed to analyze data arising from a

group testing protocol that uses a diagnostic test that screens for a single disease.

Recently, advances in medical diagnostic equipment have given rise to multiplex assays that

test for multiple diseases simultaneously. Equipment manufacturers brought the Aptima Combo

2 Assay for chlamydia and gonorrhea in 2001 and the cobas TaqScreen MPX Test [45] for HIV,

HBV, and HCV in 2009. The Aptima Combo 2 is in use at the State Hygienic Laboratory (SHL) at

the University of Iowa [41], the Idaho Bureau of Laboratories [29] and the Nebraska Public Health

Laboratory (NPHL) [44]. The cobas TaqScreen MPTX Test is used to screen blood donations [9].

Group testing algorithms are used for the multiplex assays at SHL according to Tebbs, McMahan,

and Bilder [47]. Multiplex assays generate even more complex data structures due to the correlation

of the outcomes. For example, risks for one STD can be risks for another STD. For descriptions and

properties of multiplex assay group testing schemes see Hughes-Oliver and Rosenberger [50], Tebbs,

McMahan, and Bilder [47], Hou, Tebbs, Bilder, and McMahan [48], Hou, Tebbs, Wang, McMahan,

and Bilder [49] and Bilder, Tebbs, and McMahan [54]. Warasi, Tebbs, McMahan, and Bilder [72]

develop a Bayesian framework to estimate the prevalence of multiple diseases with unknown assay

probabilities from multiplex assays. However, every patient has the same probability of infection

per disease. Building off of the methods of Xie [39], recent works incorporate data from multiplex

assays in the regression models of Zhang, Bilder, and Tebbs [44] and Lin, Wang, and Zheng [52].

The work of Zhang, Bilder, and Tebbs [44] develops an expectation-solution algorithm for multiple

diseases but they are restricted to master pool testing. The work of Lin, Wang, and Zheng [52]
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develop a generalized expectation-maximization for a copula-based multivariate binary regression

that analyses data limited to a two-stage hierarchical testing scheme.

To provide a general regression framework, we develop a Bayesian regression model that

can be used to analyze group testing data arising from any group testing protocol that utilizes a

multiplex assay. Our work generalizes the single disease work of McMahan, Tebbs, Hanson, and

Bilder [41] to analyze data from multiplex assays. Our Bayesian regression framework allows us to

analyze data from any group testing protocol that uses a discriminating multiplex assay. We can

estimate regression models that describe the risk of having all the diseases simultaneously while

specifically accounting for the correlation structure between diseases. The regression functions that

we estimate, maintain their marginal interpretability. When the assay accuracies are unknown, we

are able to estimate them simultaneously with the regression coefficients. With deliberate choices for

data augmentation stategies, we implement easy to compute Markov chain Monte Carlo (MCMC)

sampling algorithms that allow for model fitting. Because we use Bayesian methodologies, we can

use expert knowledge to guide model fitting. We provide two implementations of the model that

utilizes the data augmentation strategies for multivariate probit regression as described by Albert

and Chib [55] and multivariate logistic regression by O’Brien and Dunson [56]. We explore the finite

sample properties of our proposed estimation framework through simulation studies and further

illustrate its performance by applying it to chlamydia and gonorrhea test data collected by the SHL

in Iowa.

The remaining sections of this chapter are as follows: Section 2.1 provides the preliminary

information for the regression model and the modeling assumptions. In Section 2.2, we outline

the prior model specification and the development of the full conditional distributions. Section

2.3 provides the results of a simulation study that demonstrates the effectiveness of our approach.

Section 2.4 presents an analysis of chlamydia and gonorrhea testing data collected in Iowa and

concludes with a summary discussion. Additional tables, figures and results are in Appendix B.

2.1 Model Development

Suppose thatN individuals are screened forD infectious diseases by a group testing protocol.

Let Ỹi = (Ỹi1, . . . , ỸiD)′ be the vector of true disease statuses of the ith patient such that Ỹid = 1,

if the ith patient’s true status is positive for the dth disease and Ỹid = 0 otherwise. We assume
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the availability of a collection of risk factors and demographic information that we denote as xid =

(1, xid1, xid2, . . . , xidQd)′ for the ith patient and dth disease. Let Xi = ⊕Dd=1x
′
id be the block diagonal

matrix for the ith patient with x′id for the dth block. We relate the predictor variables Xi to the

response variable Ỹi through the following general linear model, P (Ỹi|Xi,β,R) = H(X′iβ,R) where

H is a known inverse link function, β = (β1, . . . ,βD)′ be the vector of regression coefficients and R is

a correlation term. We restrict R to be a symmetric matrix where ρrs is the r, s entry and 1 is along

the diagonal. We later examine the multivariate probit and multivariate logistic link functions and for

convenience, we denote the linear predictors as µi = (µi1, . . . , µiD)′ = (x′i1β1, . . . ,x
′
iDβD)′ = Xiβ.

We also assume an individual’s infection status is conditionally independent across individuals given

the covariates, i.e. Ỹi|Xi ⊥ Ỹj |Xj for j 6= i. If the true disease statuses Ỹi where known then we

could easily estimate the model parameters. However, the true disease statuses are unobservable in

most group testing settings.

We are proposing a general framework that can analyze test data arising from any group

testing algorithm that uses a discriminating assay. There are many different types of group testing

protocols such as Dorfman testing [3], S-stage hierarchical testing, [25], array testing [24], 3-stage

array testing [25], three dimensional array testing [70], quality control retesting [71] [16], Sterrett’s

[26] strategy, Sobel and Groll’s [27] recursive splitting and many others [30] [31]. Many of these

protocols require individuals to be tested in multiple and possibly overlapping pools, individually or

as part of confirmatory retests. In order to handle all these algorithms and more, we introduce the

index set Pj to track pool membership. This index set identifies the individuals who contributed to

the jth pool for j = 1, . . . ,M where M is the total number of tests performed. The true disease

status of the pool is determined by the individuals assigned to it. In particular, if any individual is

positive for the dth disease, then the pool is positive for the dth disease. We let Z̃j = (Z̃j1, . . . , Z̃jD)′

be the vector of true pool disease statuses for the jth pool where Z̃jd = 1 if the jth pool has any

member with disease d and Z̃jd = 0 otherwise. Thus, we have Z̃jd = 1(
∑
i∈Pj Ỹid > 0) where 1(·)

is the usual indicator function. In the trivial case with |Pj | = 1 and Pj = {i}, the pool has a single

individual. Much like Ỹi, Z̃j are unobservable as a result of imperfect testing.

With a true pool status and pool test results, we can relate the two by testing errors. That

is, we allow for imperfect testing which results in false-positive errors and false-negative errors. We

denote the testing outcomes taken on the jth pool as Zj = (Zj1, . . . , ZjD)′ where Zjd = 1 if the jth

pool tests positive for disease d and Zjd = 0 otherwise. Let the true positive rate or sensitivity for the
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jth pool be defined as Sej :d = P (Zjd = 1|Z̃jd = 1) and the true negative rate or specificity be defined

as Spj :d = P (Zjd = 0|Z̃jd = 0). In order to develop our model, we assume independence of testing

between diseases conditionally on the true disease status, that is Zj |Ỹ1, . . . , ỸN ⊥ Zk|Ỹ1, . . . , ỸN

for all j 6= k. This is a common assumption in group testing [73]. We also assume that the

conditional distribution of Zj |Z̃j does not depend on the covariates. Now we have the links between

the testing outcomes and the covariates. Furthermore, it is natural to sometimes believe sensitivities

are specificities are known and other times they are not and need to be estimated.

The sensitivity and specificity for each disease are provided by the manufacturer of the test

that we use as a fixed value or to inform priors. For example, the manufacturer of the Aptima

Combo 2 assay for CT and NG used by the SHL provides the assay’s sensitivity and specificity for

each disease, specimen type (swab or urine), and gender. In short, the assay’s performance can vary

not just between diseases but also based on the testing configuration. Additionally, the pool size may

affect the assay’s performance in the group testing context. Most tests rely on detecting biomarkers

such as an antigen, snippets of genetic material, or chemical compounds. Typically, assays give a

diagnosis based on elevated levels of a biomarker. If the biomarker exceeds a prespecified diagnostic

threshold, then we classify the specimen to be positive and otherwise we classify the specimen to be

negative. For example, after being exposed to a virus, a patient may test negative for a few days

until the virus replicates to a detectable concentration. When specimens are pooled together, if a

pool contains a positive specimen, then its signal could be diluted by the negative specimens, thus

limiting the assays ability to correctly classify the pool. To prevent this, the diagnostic threshold can

in some instances be recalibrated [74]. This recalibration step leads to the assumption by Kim et.

al. [25] that the sensitivity and specificity are the same for all pool sizes. However, in our regression

methodology we want the flexibility to acknowledge differences in the assay sensitivity and specificity

that might exist as a function of the pool size, disease, specimen type, gender, etc. For practical

purposes, we add the restriction that each pool is exactly one specimen type e.g. urine or swab.

We develop the notation for sensitivity and specificity to accommodate multiple test con-

figurations. Let Se(l):d and Sp(l):d denote the sensitivity and specificity associated with the lth

assay test configuration for disease d for l = 1, . . . , L. Denote Se = (Se(1):1, . . . , Se(L):D)′ and Sp =

(Sp(1):1, . . . , Sp(L):D)′. Let M(l) = {j : the lth test configuration was used to test the jth pool}

that is M(l) tracks which tests use the lth test configuration. That is Sej :d = Se′j :d = Se(l):d and

Spj :d = Sp′j :d = Sp(l):d when j, j′ ∈M(l). For generality, we consider three specific ways of handling
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the inclusion of testing accuracies. First, we consider the setting where the sensitivities and speci-

ficities are known. In our example Iowa data set we would have eight sets of known sensitivities and

specificities provided by the manufacturer corresponding to the different combinations of disease,

specimen and gender but do not vary by pool size. Second, we consider sensitivities and specificities

configuration exactly the same as in the previous setting except they are unknown and have to be

estimated. Third, it would be reasonable to assume the performance of the test is going to be the

same when testing pools of a common size. That is sensitivity and specificity would be the same

within pool size but vary across pool sizes. The SHL uses Dorfman testing with masterpools of size

four. Therefore in our example we estimate sixteen sets of sensitivities and sixteen specificities for

the previous combinations of diseases, specimen, and gender plus the additional two pool sizes. We

have the additional consideration that a partial ordering of sensitivities and specificities exist for the

group size within test configurations for disease, specimen, and gender to account for the dilution

effects. Suppose pools j and k have different sizes with |Pj | < |Pk|. If we assume there is a partial

order, then we assume that the larger sample has smaller sensitivity and larger specificity. Thus we

have Sej :d > Sek:d and Spj :d < Spk:d for all d. We consider one test being used and its performance

differs based on its test configuration. Generalizing to multiple assays is trivial within the notation

and framework we develop but for purposes of brevity we omit it.

Under the aforementioned assumptions, we may write the conditional distribution of the

observed data as

P (Z|X,β,R) =
∑
Ỹ∈Y

P (Z|Ỹ)P (Ỹ|X,β,R). (2.1)

where Z = (Z1, . . . ,ZM )′, X = (X1, . . . ,Xn)′, Ỹ = (Ỹ1, . . . , ỸN ) and Y is all the possible true

disease statuses of Ỹ. In the expression above, we have that

P (Z = z|Ỹ = ỹ) =

M∏
j=1

D∏
d=1

P (Zjd = zjd|Z̃jd = z̃jd)

=

M∏
j=1

D∏
d=1

{
S
zjd
ej :d

(
1− Sej :d

)1−zjd}z̃jd {S1−zjd
pj :d

(
1− Spj :d

)zjd}1−z̃jd

=

L∏
l=1

∏
j∈M(l)

D∏
d=1

{
S
zjd
e(l):d

(
1− Se(l):d

)1−zjd}z̃jd {S1−zjd
p(l):d

(
1− Sp(l):d

)zjd}1−z̃jd
,

(2.2)
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where z̃jd = I(
∑
i∈Pj ỹid > 0). Equation 2.2 gives the probability of group testing outcomes given

the latent true disease status of the pools and the testing errors for the L assays. Additionally in

the expression above, we have:

P (Ỹ|X,β,R) =

N∏
i=1

P (Ỹi|Xi,β,R) =

N∏
i=1

H(X′iβ,R) (2.3)

where H is a known inverse link function which is linked to the specification of our multivariate

generalized linear model. In what follows, we consider specifications under the multivariate logit

and probit link functions. It is important to note, in the development the model described in

equation 2.1 we make three primary assumptions. First, we assume an individual’s infection status

is conditionally independent across individuals given the covariates, i.e. Ỹi|Xi ⊥ Ỹj |Xj for j 6= i.

Second, we assume independence of testing between diseases conditionally on the true disease status,

that is Zj |Ỹ1, . . . , ỸN ⊥ Zk|Ỹ1, . . . , ỸN for all j 6= k. Lastly, we assume that the conditional

distribution of Zj |Z̃j does not depend on the covariates.

2.1.1 Model Fitting Strategies

It is important to note that to evaluate 2.1 it requires us to compute 2ND possible prob-

abilities numerous times. It would be infeasible to compute every term, multiple times for a high

volume setting with N large. Instead, we consider a two stage data augmentation process to cir-

cumvent direct numerical evaluation of 2.1 to facilitate the development of an posterior sampling

algorithm. To reduce the complexity of the multiple fitting strategies that we outline, the posterior

sampling techniques for the regression coefficients, and the correlation matrix are developed under

the assumption that the testing errors are known and fixed. This assumption is relaxed in Section

2.2.3. The first of these data augmentation steps introduces the individual’s true disease statuses as

latent random variables. This leads to the following joint distribution:

P (Z, Ỹ|X,β,R) = P (Z|Ỹ)P (Ỹ|X,β,R). (2.4)

The second step introduces a series of latent variables that allows for the decomposition of the link

function. We augment the likelihood so that the vector of binary indicator, Ỹi, is derived from a

vector of continuous variables, Ti. Suppose we have a vector of latent variables Ti = (Ti1, . . . , TiD)′
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with Ỹid = 1(Tid > 0) and Ti has distribution fTi(ti|Xi,β,R). This gives the following conditional

distribution:

P (Z, Ỹ|X,β,R) =

L∏
l=1

∏
j∈M(l)

D∏
d=1

{
S
zjd
e(l):d

(
1− Se(l):d

)1−zjd}z̃jd {S1−zjd
p(l):d

(
1− Sp(l):d

)zjd}1−z̃jd

×

{
N∏
i=1

∫
fTi(ti|Xi,β,R)

D∏
d=1

1(tid > 0)ỹid1(tid ≤ 0)1−ỹiddti

}
. (2.5)

In what follows, we consider two specifications of fTi(ti|Xi,β,R) that are two of the most common

link functions: probit and logistic. To decompose the probit link function, we follow Albert and

Chib [55]. We use the strategy of Dunson and O’Brien [56] to decompose the logistic link function.

Under the probit model, fTi(ti|Xi,β,R) = ND(ti|µi,R) where µi = X′iβ. An important

feature of this model is it retains the marginal intepretability of the regression coefficients. In the

following, we demonstrate the marginal distribution is the univariate probit model. We define the

set Aid as (0,∞) when ỹid = 1 and (−∞, 0] when ỹid = 0. Without loss of generality, we show this

for the first true disease status.

P (Ỹi1 = ỹi1|µi1) =
∑

ỹid:d6=1

P (Ỹi1, . . . , ỸiD|µi,R)

=
∑

ỹij :j 6=d

∫
Ai1

∫
AiD

NTi(ti|µi,R)dti

=

∫
Ai1

∫
R

∫
R

NTi1(ti1|µi1, 1)NTi(−1)|Ti1=ti1(ti(−1)|ti1,µi,R)dti

=

∫
Ai1

Nti1(ti1|µi1, 1)dti1

{∫
R

∫
R

NTi(−1)|ti1(ti(−1)|ti1,µi(−1),R)dti(−1)

}
= Φ(x′iβ1)ỹi1 {1− Φ(x′iβ1)}1−ỹi1 . (2.6)

This leads to the conclusion that the regression coefficients are interpreted the same as in univariate

probit model.

For our second implementation, we use the augmentation strategy for the multivariate lo-

gistic density function outlined by O’Brien and Dunson [56]. O’Brien and Dunson’s [56] gives the

distribution as the following:

fTi(ti|Xi,β,R) = TD,ν {gν(ti1 − µi1), . . . , gν(tiD − µiD); 0,R}
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×
D∏
d=1

L(tid;µid)/T1,ν {gν(tid − µid); 0, 1} (2.7)

where gν(·) = F−1
ν {F (·)} using the notation Fν to represent the c.d.f. of the student-t distribution,

F to represent the c.d.f. of the logistic distribution, L represents the p.d.f. of the logistic distribution

and TD,ν(µi,R) be the multivariate t distribution with ν degrees of freedom, mean µi = X′iβ and

correlation matrix R. The distribution’s derivation is not provided here but is shown in O’Brien

and Dunson [56]. Briefly, 2.7 is derived by transforming the logistic random variable Td into a

uniform density, then connects both characteristics by the copula method using the multivariate t

distribution. It can be shown that this distribution also provides the desired properties: the marginal

distribution is the univariate logistic density and the correlation matrix has ones along the diagonal

by construction.

When we introduce the ti as missing data our data model is the following:

P (Z, Ỹ,T|X,β,R) =

L∏
l=1

∏
j∈M(l)

D∏
d=1

{
S
zjd
e(l):d

(
1− Se(l):d

)1−zjd}z̃jd {S1−zjd
p(l):d

(
1− Sp(l):d

)zjd}1−z̃jd

×

{
N∏
i=1

fTi(ti|Xi,β,R)

D∏
d=1

1(tid > 0)ỹid1(tid ≤ 0)1−ỹid

}
. (2.8)

The decomposition of the probit link function into the multivariate normal distribution leads to a

normal full conditional for the regression coefficients under a normal prior and leads to straightfor-

ward posterior sampling. This would also be desirable under the multivariate logistic model. O’Brien

and Dunson [56] demonstrate that this is achieved using importance sampling to approximate the

logistic distribution with the multivariate t distribution which can be decomposed into a mixture of

a gamma distribution and multivariate normal distribution which is shown in Section 2.2.

The choice of priors has the potential to significantly impact the model in the Bayesian

framework. For the regression part, our choice of priors follows from similar choices by O’Brien and

Dunson [56]. These are made with computational ease in mind. We choose a conditional conjugate

prior for β to be normal with mean 0 and covariance structure of Σ0. It is important to note that

Σ0 could be chosen to assert minimal influence on the posterior analysis by choosing it such that

the prior is diffuse. This can be achieved by allowing the variances to be large. Additionally, we

select a uniform prior for ρrs over the support [−1, 1].
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2.2 Posterior Sampling

We describe the posterior sampling for β, and R when the assay accuracy probabilities Se(l):d

and Sp(l):d are known and fixed. We develop a MCMC posterior sampling algorithm that consists

of Gibbs steps and Metropolis-Hasting steps for each correlation term. To outline the development

of the posterior sampling algorithm, we compute full conditional distributions for Ỹi, Ti, β, and

R. Since Tid and Ỹid have a straightforward relationship, it becomes hard to sample one without

the other. For both our implementations, we are able to sample Ỹid without Tid by integrating

Tid out. Note that we are sampling Ỹid and Tid and not their vector forms. We found it easier to

sample each true disease status per individual rather than simultaneously sampling all true diseases

statuses simultaneously per individual using a slice-sampler. This decomposition allows us to draw

from a Bernoulli distribution and a truncated normal distribution for Ỹid and Tid respectively. For

R, we updated each entry by a random walk Metropolis-Hastings step. Simultaneously updating

the matrix faces difficulties arising from the restriction on the diagonal of the correlation matrix. In

what follows, we outline the probit model in Section 2.2.1 and the logistic model in Section 2.2.2.

We incorporate the testing errors in Section 2.2.3.

2.2.1 Probit Model

The full hierarchy of the proposed probit model is

Ỹid = 1(Tid > 0) i = 1, . . . , N, d = 1, . . . , D,

ti ∼ ND(Xiβ,R) i = 1, . . . , N,

β ∼ NQ(0,Σ0),

ρrs ∼ Uniform(−1, 1) (r, s) ∈ [D]× [D] 3 r < s. (2.9)

Under the aforementioned prior specifications and the data augmentation steps, we have the full

conditional of the individual’s continuous latent true disease status is given by

Tid|Ti(−d),T(−i), ỹi,β,R,Z ∼


TN(Tid; µ̃id, Σ̃id, 0,∞), if ỹid = 1,

TN(Tid; µ̃id, Σ̃id,−∞, 0), if ỹid = 0,

(2.10)
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where

µ̃id = µid −Rd,(−d)(R(−d),(−d))
−1(ti(−d) − µi(−d)) (2.11)

Σ̃id = Rd,d −Rd,(−d)(R(−d),(−d))
−1R(−d),d. (2.12)

While the individual’s latent true disease status is

ỹid|ỹi(−d), ỹ(−i),Se,Sp,β,R,T,Z ∼ Bernoulli [gid(1)/ {gid(0) + gid(1)}] (2.13)

with

gid(x) =

∏
j∈Ai

(
S
Zjd
ej :d

S
1−Zjd
ej :d

)1(x+
∑
ỹ(−i)d>0) (

S
1−Zjd
pj :d

S
Zjd
pj :d

)1−1(x+
∑
ỹ(−i)d>0)

 p1−x
id0 (1− pid0)x

(2.14)

where x ∈ {0, 1}, pid,ỹid =
∫
N(tid; µ̃id, Σ̃id)1(tid > 0)ỹid1(tid ≤ 0)1−ỹid , Sej :d = 1 − Sej :d, Spj :d =

1−Spj :d, and Ai = {j : i ∈ Pj}. In other words, Ai tracks which pools the ith patient is a member.

Then the full conditional for the regression coefficients may be sampled simultaneously by

β|R,T,Z ∼ NQ(µ̃, Σ̃). (2.15)

where Σ̃ =
{

Σ−1
0 +

∑N
i=1 X′i(R)−1Xi

}−1

and µ̃ = Σ̃
{∑N

i=1 X′i(R)−1Ti

}
. Lastly, the correlation

parameters are individually sampled using Metropolis-Hastings steps. For each Metropolis-Hastings

step, we draw a candidate sample from a uniform random walk on the interval [ρrs−δ, ρrs+δ] where

we use reflection to contain the candidate in the interval (−1, 1). With the candidate and original

value, we easily compute the acceptance value for the Metropolis-Hastings step used to accept

or reject the candidate value. The full symbolic representation of the entire posterior sampling

algorithm is also given in Appendix A.
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2.2.2 Logistic Model

The full hierarchy of the proposed logit model is

Ỹid = 1(Tid > 0) i = 1, . . . , N, d = 1, . . . , D,

ti ∼ fTi(ti|Xi,β,R) i = 1, . . . , N,

β ∼ NQ(0,Σ0),

ρrs ∼ Uniform(−1, 1) (r, s) ∈ [D]× [D] 3 r < s. (2.16)

where fTi(ti|Xi,β,R) is as in 2.7. In order to compute full conditional posteriors, we face difficulties

with the distribution of the multivariate logistic density. We cannot decompose the density in the

same manner as the multivariate probit density. Thus we are unable to sample the distribution.

Instead, we use importance sampling to sample a similar distribution. We adjust our estimations of

the similar distribution using importance weights to recovery estimations of the original distribution.

For example, suppose the random variable X with probability density f is a difficult distri-

bution to sample from and the random variable Y with probability density g is an easy distribution

to sample from. Normally, we estimate Ef [h(X)] by drawing X1, . . . , Xn and computing the ap-

proximation Ef [h(X)] ≈ 1/n
∑
i h(Xi). However, we can only draw Y1, . . . , Yn. Therefore, we use

the following relationship:

Ef [h(X)] =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx = Eg

[
h(Y )

f(Y )

g(Y )

]
. (2.17)

We can estimate the right hand side with the relation Eg[h(Y )f(Y )/g(Y )] ≈ 1/n
∑
i h(Yi)f(Yi)/g(Yi).

Where the terms wi = f(Yi)/g(Yi) are called the importance weights. The performance of impor-

tance sampling is improved by selecting a distribution that is similar to the original.

The multivariate logistic density is similar to the multivariate t distribution. Hence, we

substitute the multivariate logistic density for the multivariate t distribution, TD,ν(ti|µi,R), and use

importance sampling for estimation. The multivariate t distribution is ideal because it has heavier

tails and we can optimize the multivariate t distribution to be close to the multivariate logistic

distribution. Following O’Brien and Dunson [56], we choose the optimal value to be ν = ν̃ = 7.3 and

replace fTi(ti|Xi,β,R) with TD,ν̃(Xβ, σ̃2R) where σ̃2 = π2(ν̃ − 2)/3ν̃. With importance sampling,

we denote the target or original posterior density P and the posterior density of from which we draw
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samples as P ∗. The following is our sample posterior density:

P ∗(Se,Sp,X,β,R|Z, Ỹ,T) ∝
L∏
l=1

∏
j∈M(l)

D∏
d=1

{
S
zjd
e(l):dS

1−zjd
e(l):d

}z̃jd {
S

1−zjd
p(l):d S

zjd
p(l):d

}1−z̃jd

×
N∏
i=1

TD,ν̃(Ti|Xi,β,R)NQ(β; 0,Σ0)
∏

r<s∈[D]×[D]

U(ρrs;−1, 1) (2.18)

where Se(l):d = 1− Se(l):d, Sp(l):d = 1− Sp(l):d. The corresponding importance weights are given by

w ∝ P (Se,Sp,X,β,R|Z, Ỹ,T)

P ∗(Se,Sp,X,β,R|Z, Ỹ,T)

=

N∏
i=1

fTi(Ti; Xiβ,R)

TD,ν̃(Ti; Xiβ, σ̃2R)
. (2.19)

To find the conditional distribution for P ∗, we add another latent variable φi for the ith subject

to sample from the multivariate t distribution. We have Ti|β1,R ∼ TD,ν̃(µi, σ̃
2R) is equivalent to

the hierarchical model Ti|β,R, φi ∼ ND(µi, σ̃
2φ−1
i R) and φi ∼ Γ(ν̃/2, ν̃/2). Most other notation

is shared with the probit model with the exception of
≈
Σid =

{
Rd,d −Rd,(−d)(R(−d),(−d))

−1R(−d),d

}
σ̃2/φi. Thus we get the similar full conditional distributions:

Tid|Ti(−d),T(−i), ỹi,β,R, φ,Z ∼


TN(Tid; µ̃id,

≈
Σid, 0,∞), if ỹid = 1,

TN(Tid; µ̃id,
≈
Σid,−∞, 0), if ỹid = 0.

(2.20)

While the individual’s latent true disease status is

ỹid|ỹi(−d), ỹ(−i),Se,Sp,β,R, φ,T,Z ∼ Bernoulli [gid(1)/ {gid(0) + gid(1)}] (2.21)

with

gid(x) =

∏
j∈Ai

(
S
Zjd
ej :d

S
1−Zjd
ej :d

)1(x+
∑
ỹ(−i)d>0) (

S
1−Zjd
pj :d

S
Zjd
pj :d

)1−1(x+
∑
ỹ(−i)d>0)

 p′
1−x
id0 (1− p′id0)x

(2.22)

where p′id,ỹid =
∫
N(tid; µ̃id,

≈
Σid)1(tid > 0)ỹid1(tid ≤ 0)1−ỹid .
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Then the full conditional for the regression coefficients may be sampled simultaneously by

β|R, φ,T,Z ∼ NQ(
≈
µ,
≈
Σ). (2.23)

where

≈
Σ =

{
Σ−1

0 + σ̃−2
N∑
i=1

φiX
′
i(R)−1Xi

}−1

(2.24)

≈
µ =

≈
Σ

{
σ̃−2

N∑
i=1

φiX
′
i(R)−1Ti

}
. (2.25)

While the full conditional of the gamma mixture is sampled individually as

φi|β,R,T,Z ∼ Γ
[
(ν̃ + 2)/2,

{
ν̃ + σ̃−2(Ti − µi)

′(R)−1(Ti − µi)
}
/2
]
. (2.26)

Again, the correlation parameters are individually sampled using Metropolis-Hastings steps. For

each Metropolis-Hastings step, we draw a candidate sample from a uniform random walk on the

interval [ρrs − δ, ρrs + δ] where we use reflection to contain the candidate in the interval (−1, 1).

With the candidate and original value, we easily compute the acceptance value for the Metropolis-

Hastings step used to accept or reject the candidate value. The full symbolic representation of the

entire posterior sampling algorithm is also given in Appendix A.

2.2.3 Unknown Testing Errors

We now relax the assumption that testing errors are known and fixed. The sensitivity and

specificity of the model can be varied. Furthermore, the approach outlined in this section is general

and applied to both the logistic and probit models. Priors can be informed with the use of previous

studies [1] that seek to estimate the sensitivity and specificity. As part of validation of the assay

the manufacturer typically performs clinical trials for each combination of disease, specimen type,

and gender. For each test configuration, patients of known disease status are individually tested

using the assay. With the patients true disease status, each of the assay’s testing outcomes to be

categorized as true positive (TPl,d), false positive (FPl,d), true negative (TNl,d) and false negative

(FNl,d). Thus allowing for the estimation of sensitivity and specificity for each test configuration.

The TPl,d, FPl,d, TNl,d, and FNl,d from validation studies can be used to inform our assay accuracy
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priors.

We chose a beta distribution as a prior for both sensitivity and specificity. Many works in

group testing such as Warasi et al. [72], McMahan et al. [41], Joyner et al. [43], etc. use a beta

distribution prior for assay accuracies. We chose a beta distribution as a prior for sensitivity and

specificity as we can switch from an informative prior to an uninformative prior that is uniform on

(0, 1). In this dissertation, we develop two variations to estimating assay accuracies.

One approach would be to estimate an independent sensitivity and specificity for every test

configuration. In the following, we use a beta prior for every Se(l):d and Sp(l):d which leads to the

following prior for the set of sensitivities and specificities:

P (Se)P (Sp) =

L∏
l=1

f(Se(l):d;TPl,d, FNl,d, 0, 1)f(Sp(l):d;TNl,d, FPl,d, 0, 1) (2.27)

where f(x;α, β, a, b) is the truncated beta prior distribution and the limits a = 0, b = 1 recover the

beta distribution. Note when α = β = 1, it follows the uniform distribution, an uninformative prior.

Another approach is to link test configurations to others where they only differ by pool size. For

example, test configuration l and l′ may have the same gender, and specimen type but represent

individual testing and group testing. We consider dilution effects with an additional constraint

on Se(l):d and Sp(l):d. Without the data for an informed prior, this constraint is used to partially

inform the sensitivity and specificity. In larger pools, we expect a decrease in the sensitivity and an

increase in specificity. It is natural to enforce the ordering Se(l):d > Se(l′):d and Sp(l):d < Sp(l′):d for

|Pl| < |Pl′ | by type. The ordering is a way to incorporated the dilution effect and bleed information

across the different testing configurations as they relate to pool size. In the Iowa example, we have

the stratum for CT, swab specimen and female with pools of size one and four. In this case, we may

write the prior distribution of sensitivities for the two pools as the following:

P (Se) = f(Se(1):1;TP1,1, FN1,1, Se(2):1, 1)f(Se(2):1;TP2,1, FN2,1, 0, 1). (2.28)

In order to generalize, we see the following is equivalent:

P (Se) ∝ fSe(1):1|Se(2):1(Se(1):1;TP1,1, FN1,1, 0, 1|Se(1):1 > Se(2):1)fSe(2):1(Se(2):1;TP2,1, FN2,1, 0, 1)

∝ f(Se(1):1;TP1,1, FN1,1, 0, 1)f(Se(2):1;TP2,1, FN2,1, 0, 1)1(Se(1):1 > Se(2):1). (2.29)
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We add in an indicator function to represent the partial orderings within each test configuration.

Let P be the partition of the testing configurations [L] such that
⋃
V ∈P V = [L] and for l, l′ ∈ V

then test configuration l and l′ differ only by size. That is for every V ∈ P , V represents the subset

of test configurations where the stratum is the same except they vary in pool size. Then we have

the following distributions:

P (Se) ∝
∏
V ∈P

∏
l∈V

f(Se(l):d;TPl,d, FNl,d, 0, 1)
∏

l′∈V :|Pl′ |<|Pl|

1(Se(l′):d > Se(l):d), (2.30)

P (Sp) ∝
∏
V ∈P

∏
l∈V

f(Sp(l):d;TNl,d, FPl,d, 0, 1)
∏

l′∈V :|Pl′ |<|Pl|

1(Sp(l′):d < Sp(l):d). (2.31)

The difference between assay accuracies with out ordering in Eqn. 2.27 and the product of assay

accuracies with ordering in Eqn 2.30 and Eqn. 2.31 is the addition of indicator functions. We refer

to the two approaches as no ordering and ordering, respectively.

With the beta distributions as a prior for the sensitivity and specificity, we compute the

full conditional distribution under both approaches. The full conditional distribution when the test

configurations are independent with no ordering are as follows:

Se(l):d ∼ f

 ∑
j∈M(l)

Zjdz̃jd + TPl,d,
∑

j∈M(l)

(1− Zjd)z̃jd + FNl,d, 0, 1

 (2.32)

Sp(l):d ∼ f

 ∑
j∈M(l)

(1− Zjd)(1− z̃jd) + TNl,d,
∑

j∈M(l)

Zjd(1− z̃jd) + FPl,d, 0, 1

 (2.33)

When test configurations share information through ordering, we have the full conditional distribu-

tion as follows:

Se(l):d ∼ f

 ∑
j∈M(l)

Zjdz̃jd + TPl,d,
∑

j∈M(l)

(1− Zjd)z̃jd + FNl,d, Ae(l):d, Be(l):d

 ,

(2.34)

Sp(l):d ∼ f

 ∑
j∈M(l)

(1− Zjd)(1− z̃jd) + TNl,d,
∑

j∈M(l)

Zjd(1− z̃jd) + FPl,d, Ap(l):d, Bp(l):d

 ,

(2.35)
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where if V ∈ P is the subset of the partition containing l and l′ then

Ae(l):d =


0, if @ l′ s.t. |Pl′ | > |Pl|,

max{Se(l′):d| |Pl′ | > |Pl|}, otherwise.

(2.36)

Be(l):d =


1, if @ l′ s.t. |Pl′ | < |Pl|,

min{Se(l′):d| |Pl′ | < |Pl|}, otherwise.

(2.37)

Ap(l):d =


0, if @ l′ s.t. |Pl′ | < |Pl|,

max{Sp(l′):d| |Pl′ | < |Pl|}, otherwise.

(2.38)

Bp(l):d =


1, if @ l′ s.t. |Pl′ | > |Pl|,

min{Sp(l′):d| |Pl′ | > |Pl|}, otherwise.

(2.39)

(2.40)

The full symbolic representation of the posterior sampling algorithm for Se(l):d and Sp(l):d is also

given in Appendix A

2.3 Simulation

We use the following population models to evaluate our estimation methodology:

probit: Ti = (Ti1, Ti2) ∼ N2(Xiβ,R)

Ỹi = (1(Ti1 > 0),1(Ti2 > 0))′ (2.41)

logistic: Ei = (Ei1, Ei2) ∼ N2(0,R)

γi ∼ Γ
(ν

2
,
ν

2

)
Tid = x′iβ + logit (Fν(Eid/

√
γi))

Ỹi = (1(Ti1 > 0),1(Ti2 > 0))′ (2.42)

where Xiβ = (x′iβ1,x
′
iβ2)′ with xi = (1, xi1, xi2)′, ρ12 = 0.3, and Fν(·) is the student-t cumulative

distribution function with ν = 7.3 degrees of freedom. In addition, xi1 ∼ N(0, 1) and xi2 ∼

Bernoulli(0.5). With the two population models, we choose (β1,β2) = (−2.1, 0.5, 0.5,−1.7, 0.5, 0.5)
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for the probit model and (β1,β2) = (−3.3, 0.5, 0.5,−2.55, 0.5, 0.5) for the logistic model. These

parameters give the population prevalence of about 5% and 10% for disease 1 and 2 respectively.

These models generate the true disease status and covariates for every simulated patient. We

generate {(Ỹi,Xi)} for i = 1, . . . , N once for every comparison and repeat this 500 times.

In these simulations, we study four testing scenarios: individual testing (IT), master pool

testing (MPT), Dorfman’s testing (DF), and two-stage array testing (AT). With IT, we perform

a multiplex assay for both diseases on every patient. The simplest form of group testing is MPT.

We arrange patients into separate pools of fixed size, four, and only perform the tests on the pools.

We choose pool sizes of four to reflect the typical pool size used in our application set. In this

case, the patient groups are disjoint, i.e., no patient can be in two groups. Moreover, we test for

two diseases in each pool. For DT, we arrange all patients in disjoint sets of four and test their

pooled results for two diseases similar to MPT. We retest all members of pools with any positive

results, individually, for both diseases. Pools with negative test results for both diseases do not need

retests because individuals in the pool are considered negative. For AT, we partition the patients

into subgroups of sixteen. The subgroup is arranged in a square four by four array and the columns

and rows are pooled. We follow the procedure outlined by Kim et. al. [25] for testing. Imperfect

testing is used for each scenario. We generate the true pool status Z̃jd = 1(
∑
i∈Pj Ỹid > 0) simulate

the test response by Zj |Z̃jd = 1 ∼ Bernoulli(Se(l):d) and Zj |Z̃jd = 0 ∼ Bernoulli(1 − Sp(l):d) with

Se(1):1 = 0.94, Se(2):1 = 0.90, Se(1):2 = 0.98, Se(2):2 = 0.96 and Sp(1):1 = 0.93, Sp(2):1 = 0.95,

Sp(1):2 = 0.97, Sp(2):2 = 0.98.

For each population model, probit and logistic, we examine the performance of the model

under three cases for IT, MPT, DT, and AT. In the first case, we assume that assay accuracies are

known and the correlation between diseases, ρ12, is unknown. In the second case, we change the

assumption that the assay accuracies are unknown and are estimated separately. In the third case,

we assume the unknown assay accuracies have an ordering. In each of the cases, we simultaneously

estimate the unknown parameters. Our simulation results for the probit population model for the

cases are found in Tables B.1, B.2, and B.3 in Appendix B. The logistic population model results

for the six cases are found in Tables B.4, B.5, and B.6.

For the simulation results, we use N = 5008 individuals so that every testing schema was

complete without remainder pools. We chose priors with minimal information and diffuse. For the

regression parameters β, we use the multivariate normal prior with mean 0 and correlation matrix
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Σ0 = 100I6. For the correlation parameter, we use a uniform prior on the interval [−1, 1]. For the

sensitivity and specificity, we used independent beta priors, b(1, 1). For each case, we generate a

population and permute the individuals before each testing protocol. We perform 100, 000 posterior

draws, retain every tenth draw, and discard the first half as burn-in. This leaves us with 5, 000

posterior samples for each parameter.

We run K = 500 simulations. For each simulation, we compute the posterior mean and

standard deviation using the posterior samples. We find the average of K posterior mean estimates

of the bias, the standard deviation of the posterior mean estimates (SSD), and the average of the

posterior standard deviation estimates (ESE). In addition, we calculate the 95% equal-tailed credible

interval (ETI) for every parameter in the simulation with α = 0.05. We verify if the true parameter

is within the interval. The mean number of times the parameter is within the credible interval is

the empirical coverage probability (CP95).

Table B.1 shows the simulation results when assay accuracies are unknown but the regression

coefficients and the correlation term are simultaneously estimated for the probit population and

model. We observe that MPT is the worst performing with roughly double the bias, ESE, and SSD

as the best performing AT at the cost of approximately a third of the number of tests used. Notably

with the exception of the bias in the first disease intercept term and the correlation parameter. In

general, the bias, ESE, and SSD decrease in the order MPT, IT, DT, and AT with a few exceptions.

Another notable observation is that for IT, DT, and AT the bias for the regression coefficients are

the same sign as the true values.

We ran a simulation where assay accuracies are simultaneously estimated for the probit

model. Our results are recorded in Table B.2. The regression coefficient estimations decrease for DT

and AT and increase for IT and MPT over the previous study where assay accuracies are known.

This causes a significant reduction in the coverage probabilities for the regression coefficients for

MPT. The correlation parameter estimations increases significantly for IT and MPT where as the

bias doubles with an increase in SSD and ESE for DT and AT from the first simulation. The

estimations for sensitivity and specificity are poor for IT and MPT but are accurate for DT and AT.

AT again has the lowest biases, SSD, and ESE for the assay accuracies with only two exceptions.

Our third simulation examines DT and AT with and without ordering the assay accuracies. The

estimations are found in Table B.3. We find that SSD and ESE values can be slightly reduced with

ordering implemented but the biases only improve on one intercept term and the larger valued assay
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accuracies.

The forth, fifth and sixth simulations are similar for the previous three simulations except

that we use the logistic population and logistic model. The results in Table B.4 and Table B.5

are when the assay accuracies are known and unknown, respectively. The analysis is similar to the

probit model with a similar prevalence and number of tests performed. Table B.6 shows the results

for when the assay accuracies are unknown and ordered. The results show that the majority of SSD

and ESE estimates improve with ordering and the bias under ordering is only better for the higher

valued accuracies.

There are a few themes from the simulation results from both populations. The first theme

is that AT requires around eight percent more tests than DT in our simulation setup but while AT

demonstrate at least a 23% decrease in the number of tests performed compared to IT. The second

theme is that IT and MPT struggle to estimate sensitivity and specificity with flat priors. Both IT

and MPT provide reasonable regression coefficient estimates when the assay probabilities are known.

The third theme is that enforcing an ordering on the assay accuracies shows only a trade off effect

between bias and variance. Lastly, DT and AT demonstrate lower bias, SSD, and ESE parameter

estimations with reasonable coverage probabilities over IT and MPT.

2.4 Data Application

Iowa’s SHL is the state’s public health and environmental laboratory. It provides services for

disease detection, environmental monitoring, newborn and maternal screening, drinking water test-

ing, and bioterrorism and chemical terrorism response and readiness. For STD screenings, medical

providers collect samples from patients and the specimen are sent to the SHL facilities for testing.

For chlamydia and gonorrhea screening, all urine samples are tested individually and specimens

collected on swabs from females are tested using DT with the dual assay for retesting according to

Tebbs, McMahan, and Bilder [47]. The testing protocol based on gender and specimen type is also

common in Idaho according to Lewis, Lockary, and Kobic [29]. The stratification helps separate

high prevalence populations from low prevalence populations such as men who get tested due to

STD symptoms versus regular screenings for females during pregnancy. In this section, we examine

clinical results for the 2014 Iowa clinical data for females. Included in the data set are results from

individually testing urine samples and both individual and pool testing swab specimens. Our anal-
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ysis of the data is presented in two tables: β estimation in Table B.9, ρ, sensitivity and specificity

estimations are in Table B.10.

The data contains 13,862 female’s test results for classification with individual covariates.

The test results are composed of 4,316 individual urine specimens, 2,272 swab specimen master pools

of size 4, 13 swab specimen master pools of size 3, 1 swab specimen master pool of size 2, and 417

individual swab specimens. We include nine patient covariates for modeling: one continuous and

eight categorical. The continuous variable is the patient’s age in years. The coefficient for age is

βd,1 for d = 1, 2. A density graph by specimen type can be found in Figure B.2. The majority of

patient ages are found in teens to late thirties with the swab specimen type age distribution right-

shifted compared to the urine specimen type age distribution. We reduce the categorical variable

for race into three categories white (W), black (B), and other as black and white were the two

majority classes. We one-hot encoded the category such that the class for other is the baseline and

the majority classes were denoted by the indicators βd,2 for W and βd,3 for B for d = 1, 2. The

rest of the categorical variables do not need one-hot encoding as they have two classes. The other

indicators are patient-reported risks and symptoms for new sexual partner in the last 90 days (RNP,

βd,4), multiple partners in the last 90 days (RMP, βd,5, sexual contact with a STD-positive partner

(RC, βd,6), symptoms of infection (S, βd,7), specimen type swab (1) or urine (0) (ST, βd,8), signs of

cervicitis (SC, βd,9) and signs of pelvic inflammatory disease (SP, βd,10) for d = 1, 2. We provide

descriptive statistics for the categorical covariates in Table B.7. We simultaneously estimate both

the urine and swab samples using both the probit model and the logistic model. With the correlation

term, sensitivities, specificities, and regression coefficients, we estimate 43 parameters.

To combine the testing types into one large dataset, we have separate parameters for the

testing error of each type of specimen in the model. Moreover, we make informed estimates of

sensitivity and specificity for each tuple of disease, test type, and group size. Hologic’s performance

data, used to establish their assay probabilities, provides the necessary counts to inform the priors

on each sensitivity and specificity per disease and test type combination. We provide the data for

female swab and urine specimens in Table B.8. Since there is no data based on group size, all

the varying group sizes have the same prior. Additionally, we explore enforcing an ordering on

the sensitivity and specificity based on group size and specimen type. For example, we have five

assay types l = 1, 2, 3, 4 for the four group sizes of swab specimens and l = 5 for individual urine

specimens. If ordering is in effect, we have the partial order of Se(1),d ≥ Se(2),d ≥ Se(3),d ≥ Se(4),d,
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and Sp(1),d ≤ Sp(2),d ≤ Sp(3),d ≤ Sp(4),d for d = 1, 2. We chose the same priors from our simulations

for the correlation parameter and the regression coefficients. We generated 100, 000 posterior draws

and burned the first half and saved every tenth draw. This left us with 5, 000 posterior draws for

each parameter. We computed the posterior mean, sample standard deviation of posterior draws,

95% highest posterior density interval (HPDI), and 95% equal-tailed interval. We find that the

direction of the regression coefficients is in line with McMahan, Tebbs, Hanson, and Bilder [41].

From our estimations, We did not observe the dilution effect in sensitivity when sensitivity was

not partially ordered. Also we note that for the probit model ST is not significantly different from

zero for chlamydia with ordering but ST is with ordering. For the probit model, RMP was not

significantly different from zero for the disease gonorrhea with ordering but RMP is significant for

no ordering. For the logit model, we found that S and SC where not significantly different from zero

for gonorrhea without ordering but are with ordering enforced.

We have proposed a Bayesian regression model to estimate generalized linear models with

data from most group testing protocols for multiplex assays. Our implementation has the property

that the marginal distributions following the probit and logit link functions. This property allows us

to have estimate interpretable regression coefficients. There are some natural extensions of this work

that may be of interests. One could include variable selection strategies for model reduction steps.

The correlation between infections could conditionally depend on covariates. Non-linear relations

could be present in the covariates. Additionally extensions to handle non-discriminating testing

procedures could be of interest.
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Chapter 3

GPU acceleration with NVIDIA

CUDA

Graphic processing units (GPU) are supplemental hardware to CPUs that are used for

graphics rendering. To achieve real-time graphics, GPUs are designed for highly parallelized tasks.

Graphics rendering involves intricate model meshes which are composed of millions of triangles,

shaders to paint the textures, color and lights on each triangle and matrix transformations ap-

plied to every pixel and vertex of the model to move it in space. While the demand for graphics

performance fuels the GPU market, other numerically intensive tasks take advantage of the high

throughput numerical operations. NVIDIA is a market leader in GPUs and supports general pur-

pose computing on graphics processing units (GPGPU) with NVIDIA’s CUDA (Compute Unified

Device Architecture) Software Development Kit (SDK). We use the NVIDIA CUDA SDK for all of

our GPU accelerated programs. This chapter is dedicated to introducing the SDK and hardware

architecture. In Section 3.1, we address the programmer’s model or an abstraction of the hardware.

The programmer’s model will cover the types of memory on the GPU as well as the thousands of

computational cores or CUDA cores on the GPU. In Section 3.2 and 3.3, we setup a development

environment and learn how to compile and execute code. In Section 3.4 and Section 3.5 we provide

basic examples to springboard into our next project.
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3.1 Programmer’s Model

While we discuss GPU acceleration in this chapter, a GPU is not always needed. There

are several metrics to evaluate needing a GPU. The first consideration is the size of the task.

Sometimes tasks are too small or simple causing the overhead costs of using and programming a

GPU to outweigh the benefits. On the other end of the spectrum, really large tasks sometimes do

not warrant using a GPU. Large tasks spend time sending messages between computers and waiting

on those communications. The cost of communication can drown out the benefits of using GPUs as

well as add unnecessary complexity. After all these considerations, many tasks benefit from GPU

acceleration.

The current GPU architecture has changed dramatically in the last couple of years [75]

[76] [77]. NVIDIA GPU’s hardware is composed of a medley of dedicated circuitry. CUDA cores

are next to tensor cores and ray-tracing cores as well as traditional texture units. The general

organization is the following hierarchy from top to bottom: Graphic Processing Clusters (GPCs),

Texture Processing Clusters (TPCs), Streaming Multiprocessors (SMs), and finally CUDA cores.

We focus on the architecture around the CUDA cores as they are most relevant to this dissertation.

Within each CUDA core, there is a floating-point and an arithmetic logic unit that performs the

computations. The CUDA core is abstractly associated with a thread or small set of independent

instructions, and threads are organized into thread blocks. At the hardware level, the threads are

organized into warps of 32 threads because there are some multiple of 32 CUDA cores within each

SM, which plays an important part in scheduling tasks. In a few instances, we organize tasks in

multiples of 32 to maximize the efficiencies of synchronization in a warp.

Synchronization is important because the NVIDIA GPUs implement a single instruction,

multiple thread (SIMT) model. In a parallelized program, every thread executes the same set of

instructions. At the warp level, instructions are executed in lockstep. For example, an instruction

could be: add the numbers in the first two registers or grab a number in a memory location plus

an offset. Machine commands are executed on the exact same clock cycle in the GPU in all 32

threads of the warp. Outside of the warps, the same code might be running a little off from one

another. Therefore, the timing of memory writes and reads become an important consideration in

this dissertation.

We consider a simple hardware setup of a single CPU and GPU. The programmer considers
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two locations: the host (CPU) and the device (GPU). Programming instructions must be sent to

each location. In addition, data must be sent from the host to the device and vice versa. These

data transfers between host and device are potential choke points. The data transfers can be either

efficiently dispatched or separated from the computation by concurrent operations. Data transfers

can be done asynchronously through the use of streams while other computations proceed.

The next important part of the architecture is the memory model. Reading and writing data

takes time or clock cycles as there are different steps and pathways to complete the task. Memory

can have multiple hardware layers from the fastest registers in the processor through multiple levels

of cache to the system random access memory. Since we focus on the device, we assume the host

only has global memory and the compiler and run time systems takes care of the rest. The device

has memory on three different levels; global, local and shared that must be managed by the user.

The easiest to use is global memory, every thread has read and write access to global memory. It

must be managed such that read and write operations are not interleaved to create an unknown

memory state. In contrast, local memory is only available to the thread and does not need as much

care for scope and timing as it is isolated from being touched by other threads. Moreover accessing

and fetching local memory is either similar to global memory or it is similar to a register on the

chip. Local memory could be stored in registers, the fastest type of memory, but is usually isolated

in the global memory of the device, the slowest type of memory. The compiler will try to optimize

memory management based on the size of the data being retrieved and its usage. The guaranteed

fastest memory is shared memory which trades accessibility and complexity for speed. Finally shared

memory’s scope is between global and local memory. It is available to all the threads in the same

block and is comparable to registers and faster than global memory.

In the programmer’s model, we think from the point of view of the host as the host orches-

trates the work. We create variables and do computations all within host memory. To use the GPU,

we send data and commands to the GPU to do work. There is a cost to copying the information over

to the GPU and back to the CPU, so any GPU computation must outweigh the cost of transmission.

To marginalize the overhead cost of sending data, we use data streams. We sequence the data to

send it in chunks so that the GPU starts computing a chunk while the next is transferred. There

are additional speed-ups from pinning host memory as it usually is automatically done to start a

transfer. However we choose not to do this as our data transfers are usually at the beginning and

end of the computation and the time savings do not scale with the models we implement. Once
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data is in the device, on occasion, we transfer to local or shared memory, which is data accessible

only to a core or to the block. Shared data can be allocated statically or dynamically through the

kernel function. We can move data once locally and then transfer it back at the end of a computa-

tion instead of repeatedly accessing global memory in a thread. This is because global data access

is slower than local/shared data. Another memory issue that we come across is race conditions.

The order in which each thread reads and writes to memory may not be deterministic in the code.

For example, two threads, A and B, write to memory a value in the same place in memory at the

same time. The unknown condition of the memory, either the value from thread A or thread B or

a mangled combination of the two, is called a race condition. There are concepts such as atomic

operations, semaphores, mutex, and other ways to deal with this concurrency issue.

Once the data is transferred to the GPU, it is in the device’s global memory. There are

thousands of cores on the GPU that have access to global memory. The simple cores are directed

by a kernel program that is executed in parallel. Multiple kernels can be written for each part of

the task. The threads that execute the kernels are able to self identify, which means they know

their thread index, and block index, which in turn allows us to direct their tasks and which part

of memory to use. For example, in Chapter 5, we have every thread compute a complex random

number then the first thread selects which random number to use. In Section 3.4, we use the thread

index to choose what numbers to add in memory.

3.2 Setup

The following setup is for the Palmetto Cluster at Clemson University, a high performance

computing (HPC) cluster; however, the concepts are still applicable in other settings. The cluster

is a set of computers called nodes. The nodes are networked with high speed connections. When

we connect to the cluster via SSH, the terminal is at the login node. The login node runs on Red

Had Enterprise Linux as well as the rest of the cluster. In the login node, we may read and write

files and use other basic Linux utilities, but we cannot run our code. Past the login node, the rest

of the cluster has several thousand nodes with different interconnections and hardware availability.

The output of the whatsfree command shows there are NVIDIA K20, K40, P100, and V100 GPUs

associated with various other hardware configurations. The exact hardware we use depends on the

availability, the features, and the tools we need for our work.
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The Palmetto Cluster uses the Portable Batch System (PBS) to request the resources and

job scheduling. The qsub command submits a request to run a script or run an interactive session.

Options of the command allow one to request the number of cores, amount of memory, the number

and type of GPUs as well as the length of the request. Once the command is entered, the scheduler

adds our request to the queue, and once available, the terminal switches to the available node. In

the interactive environment, the terminal prompt changes indicated one is in the node.

After we login into a node, we can load modules. Modules are easy to install software

resources The command module avail contains a condensed list of modules. In our case, we use

the command to find the correct version of CUDA, gcc and R. Even though the toolkit comes

with NVIDIA CUDA Compiler (NVCC), it requires a C++ compiler. The latest compilers do not

always work with NVCC. On Windows, Visual C++ 14.1 in Visual Studio 2017 did not work with

NVCC but Visual C++ 14.0 in Visual Studio 2015 did work at the time of the setup. Sometimes

unexpected behavior or limited features can be from the wrong toolkit and compiler versions. To

check support, go to the Installation Guides for CUDA linked on the landing page [78] or directly

to the Linux guide [79].

3.3 Compiling

The NVCC compiles in two stages for the GPU. The two stages let the programmer choose

between targeting the program to run on a specific hardware architecture or allowing the final stage

to be completed by a yet to be determined architecture at the cost of a slower startup. The first

stage is the virtual architecture which compiles a PTX file. The virtual architecture is designated

by the compute xx designation. The final stage generates the binaries and compiles to a Cubin for

the machine code to be ran by the GPU. The second stage can be left to run-time compilation when

the target architecture is unknown.

When compiling a GPU program to use in R, many flags are required during compilation.

The goal of each flag is to appropriately produce a binary to be run by R with additional libraries

included.

1. nvcc is the program to be called. Its location is found in the PATH variable in the linux

environment and placed by the previous module add calls.
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2. −O3 is the code optimization level. The compiler will make several passes at the code to search

for ways to optimize it. This automatic process is not a guarantee that it will be different from

previous levels, run faster, will be more efficient or error free. There are three levels with the

second level the most commonly used, and the third level is the riskiest.

3. −arch=compute 35 is the virtual architecture for 3.5 which is for Kepler, K40. compute 60

is the 6.0 compute architecture for Pascal, P100, compute 70 and compute 72 is the compute

architecture for Volta, V100. It is recommended to target the lowest architecture for the

features we want.

4. −code=sm 35 targets the 3.5 architecture binaries for Kepler, K40. Similarly, the sm 60 is the

for 6.0 compute architecture for Pascal, P100, sm 70 and sm 72 is the compute architecture

for Volta, V100. If we want to use run-time compilation swap out sm xx for compute xx.

5. −G indicates debug mode.

6. −lcublas −lcurand −lcusolver links the CUDA cublas, curand and cusolver libraries in the

toolkit. The modules include the paths to the libraries and are automatically looked up,

otherwise a direct path is required.

7. −−shared −Xcompiler −fPIC is the set of commands to get a binary file that R can use. The

first part, −−shared, builds a shareable library. The second part, −Xcompiler − fPIC, sets

a flag for position independent code where memory locations are offset rather than absolute

addresses so that the library can be loaded anywhere in program memory.

8. −o cuHorse.so tells the compiler what the output filename should be.

9. cuHorse.cu is the file or files to be compiled.

Further information can be found in the NVCC documentation [80].

3.4 A Simple Program

We now show a simple program for R that uses a GPU to demonstrate using CUDA SDK.

Appendix C.1 contains links to the R code and CUDA code. The goal of the code is to add two
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vectors. Parallelization occurs when we return the componentwise sum where each core adds their

respective component together.

The R script loads the binary gpu program.so for the GPU, creates a wrapper function

to call the GPU code, creates inputs, then calls the function and unloads the GPU code. Note

the .C function call ensures that copies of all the data, not references, are sent to the external

function. While copies of the data are created, only pointers or memory locations will be passed

to our function. In C/C++, a pointer is a memory location declared with an int ∗a. The address

in memory of the variable a is &a and to get the actual value at the memory location it can be

dereferenced by ∗ operator or a [0] .

The next part is the CUDA code that we saved as add vector.cu. In the program we include

all the necessary libraries, in this case the CUDA runtime library, we declare the kernel for the device

and write the host program. One of the ways kernels are declared is by the global declaration

specifier. When writing a kernel, the point of view of the device should be taken. The kernel should

first identify itself by thread id, block id, and block dimension. Distinguishing the kernel’s identity

allows the kernel to use different data or compute different tasks. The kernel from the first example

uses the thread index to add the values at the corresponding indices in the vectors. That means for

a vector of size 10, 10 threads will be launched to add two numbers.

Following the simple kernel function, we return to the point of view of the host. The first

part Extern ‘‘C’’ is a directive for the functions that can be called by the library. Next is the

function, called in R. The variable cudaError t is usually returned for every basic CUDA function.

We check the error after each device function call or we wrap them in another function to check

them. Since we are not running critical computations, they can be ignored as they usually indicate

a catastrophic failure.

The basic way to allocate global memory on the device is by using cudaMalloc. We give a

double pointer address so that the function can return a new location for the pointer in addition

to the number of bits we want to allocate. Next we have the data on the host and move it to the

device using cudaMemcpy. It requires the device and host pointers, the size of the memory, and the

direction of the transfer.

Finally we execute the kernel. We launch with n blocks and 1 thread per block by the

<<<...>>> operator which is the execution configuration syntax. Either we call a double in this

example or a quad-tuple that has the stream and memory management in it. After the kernel is
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called and all threads executed, we still have our results on the device. We then send the results

back to the host and free all the device and host memory that was dynamically allocated.

3.5 A Second Program

In this section the code is similar to the code in the previous section with the exception of

using an outside library. A link to the program is in Appendix C.2. The wrapper and initialization

from R remain nearly identical except for the function name. The library, cuBLAS, contains reusable

code for basic linear algebra subroutines (BLAS) for NVIDIA GPUs. For this program, there is no

need to write a kernel function for adding two vectors, the function is part of the library. Instead,

the program needs to be made aware of the library and where to find the code to run it.

To use the library, we introduce a handler. The handler stores the location of resources to

using the library. There is a price for using the library, most of which is paid for in resources and

time when the handler is initialized. We let cuBLAS manage all the threads, blocks, etc. by calling

the function from the host. Later we must destroy the handler to free system resources back to the

host. Additionally, cublasSetVector and cublasGetVector are are just wrappers for cudaMemcpy.

However they have a nice increment function that allows us to grab the diagonal out of a matrix or

any other subset.

The most subtle part of the function call is how alpha, incx, iny are set. They are all set to

be 1 in the BLAS <t>axpy call. Note there is a mix of variables from the host cublas handle, n [0], 1

and device, d x, d y. In the documentation, if a variable says host or device, the default setting is

host. To toggle between where a variable exists, use cublasSetPointerMode, which is documented in

the cuBLAS helper functions. For more information, we refer to the cuBLAS documentation [81].

We use these methods over the next chapters applied to more complex programs.

3.6 Performance

We run two different simulations to demonstrate the effectiveness of our two simple pro-

grams. In each simulation, we compare running R code (CPU only) versus the simple kernel (CUDA

kernel) and the built-in library (CUDA library) programs. We repeat the simulations for numerical

vectors of size 10i for i = 1, . . . , 9 and compute six summary statistics after running each program
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100 times. We chose to scale up to vectors of size 109 because it was the last increment that fits

within our GPU’s memory. The first simulation demonstrates the overhead costs of running a GPU

program. The data found in Table C.1 and Figure C.1 shows the cost of starting a GPU program

and transferring data to and from the GPU outweighs the computation time by an order of magni-

tude. Moreover, the data demonstrates that the GPU libraries, while convenient, incur additional

overhead costs. The second simulation demonstrates the acceleration of running a GPU program

when we increase the numerical load by adding two vectors not once but 100 times. The results in

Table C.2 and Figure C.2 show the CUDA kernel and CUDA library programs accelerate the com-

putations as the vector size increases. When adding larger vectors, the CUDA kernel and CUDA

library programs are over an order of magnitude faster and the CUDA library is optimized better

than our custom kernel. The simulations demonstrate that we can see acceleration benefits from

large computational tasks that stay on the GPU and using built-in libraries.
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Chapter 4

GPU Acceleration for Logistic

Regression with Penalty

In this chapter, we are interested in measuring the benefits of GPU acceleration. Applica-

tions for GPU acceleration are numerous but we focus on optimization, a common machine learning

task. Optimization is a hard problem because many problems do not have closed form analytic solu-

tions. In linear regression, the ordinary least squares solution is an example of an analytic solution.

In particular, we demonstrate GPU acceleration on the logistic regression with `1 regularization

as our objective function. We choose logistic regression as it has no analytic solution and it is a

common link for binary data. For example, McMahan et. al. [41] use logistic regression to relate

disease status to covariates in a group testing application.

The goal of our optimization is to find the regression coefficients that maximize the likelihood

function or, with a simple negation, the equivalent problem of minimizing the objective function

with the penalty term. A descent method is a common way to find the minimum of the objective

function. We employ two types of descent methods: stochastic gradient descent and stochastic

coordinate descent in different programming languages to see the performance improvements. A

survey by Yuan et al. [82] includes other methods that we do not explore here.

We compare the formulation of Newton’s method to stochastic descent methods to under-

stand the origins of the descent methods and trade-offs. Newton’s method is an iterative method

for root finding with quadratic convergence. It has applications in optimization problems because
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finding critical values or potential extrema is a root finding problem. We wish to minimize the

scalar function F (x) ∈ R where x ∈ Rd and F (x) typically convex. We then wish to find critical

points of the gradient ∇F (x) = 0 as potential solutions. Newton’s method gives a sequence of points

that converge to the solution, xt+1 = xt − ∇2f(xt)
−1∇f(xt). Each iteration of Newton’s method

moves closer to the critical point. In particular, it moves in the general direction of ∇f(xt) where

∇2f(xt)
−1 is a linear transformation that optimally scales and rotates the direction. One downside

of Newton’s method is that it can be expensive to compute ∇2f(xt)
−1 on each iteration.

Gradient descent is an iterative method where each iteration moves in the direction of the

gradient similar to Newton’s method. Gradient descent is represented by the iterations xt+1 =

xt−γt∇f(xt) for some γt called the step size. There are two methods we explore similar to gradient

descent; stochastic gradient descent and coordinate descent. Both these methods stem from ideas of

Robbins and Monro [83] who first presented the idea to solve optimization problems stochastically.

For gradient descent, the step size is called the learning rate ηt and for coordinate descent, the step

size is denoted αt.

In stochastic gradient descent, we rewrite F (x) as
∑n
i=1 Fi(x) where Fi(x) is the ith record

in the data set. The problem is formulated such that each update needs a single observation from

the data. Thus with each observation in the data, we update the sequence until convergence with

xt+1 = xt−ηt∇Fi(xt) where ηt is called the learning rate. The stochastic gradient descent algorithm

randomizes Fi then updates x for each i. However, there are two issue with this methodology. First,

allowing the gradient to be evaluated with one data point creates instability in the direction and

magnitude of the update. Second, an incorrectly selected learning rate can cause the algorithm to

converge slowly. We solve the the first issue with batching, that is we take the average update of

several data points. The second issue is solved using an adaptive learning rate. We use AdaGrad [84]

because of its ease of implementation. AdaGrad tracks the diagonal of the outer product of the

subgradient sequence to change the learning rate per parameter. It is a specialization of the standard

gradient descent that gives frequent features lower learning rates.

In stochastic coordinate descent, we take vertical slices of data to update our solution

instead of horizontal slices of data in stochastic gradient descent. We update for each coordinate in

x ∈ Rd. With each iteration, we create a sequence that updates only one coordinate with xj,t+1 =

xj,t − αt(∇F (xt))j where αt is the step size. The algorithm randomly updates the coordinates of

the solution until convergence.
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In Section 4.1, we derive the algorithms that implement stochastic coordinate descent and

gradient descent to fit logistic regression models. In Section 4.2, we look at the performance of

the algorithm with a comparison to GPU acceleration. For in-depth linear regression examples, see

Appendix D.

4.1 Logistic Regression Derivation

In this section, our focus is on the algorithms for logistic regression. In particular, the model

assumes that we have data, X, and response, Y. The data is normalized such that
∑n
i=1 xij = 0 and

1
n

∑n
i=1 x

2
ij = 1, so the probability of success is P (Yi = 1|xi) = (1 + e−x

T
i β)−1 and the probability

of failure is P (Yi = 0|xi) = (1 + ex
T
i β)−1. We have the following likelihood function that we wish to

maximize as well as the scaled log likelihood function which is equivalent because the log function

is monotonic:

argmax
β

L(β|X) = argmax
β

N∏
i=1

pyii (1− pi)1−yi

= argmax
β

1

N

N∑
i=1

log(pyii (1− pi)1−yi). (4.1)

We frame the problem as a minimization problem by taking the negative of the scaled log likelihood

and adding the penalty, we have the following:

argmin
β

H(β) = argmin
β

F (β) + λ ‖β‖L1

= argmin
β
− 1

N

N∑
i=1

yi log

(
pi

1− pi

)
+ log(1− pi) + λ

d∑
j=1

|βj | .

= argmin
β
− 1

N

N∑
i=1

yiµi + log(1− pi) + λ

d∑
j=1

|βj | , (4.2)

where pi = P (Yi = 1|xi) and µi = xTi β. Moreover we have the following useful terms:

∂p

∂βk
=

eµxk
(1 + eµ)2

= p(1− p)xk

∂(1− p)
∂βk

= −p(1− p)xk. (4.3)
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With these terms, we find the gradient and Hessian of the likelihood function. For the gradient, we

use the definition of the subdifferential for the penalty term whereas the Hessian does not need a

special case.

(∇H(β))k = (∇F (β))k + λ
∂

∂βk
‖β‖L1

= − 1

N

N∑
i=1

xik(yi − pi) + λ


sign(βk) if βk 6= 0

[−1, 1] if βk = 0

(∇2H(β))ij = (∇2F (β))ij

=
1

N

N∑
k=1

−xkixkjpk(1− pk) (4.4)

Our goal is to ensure that for each iteration we decrease the function F (β) in search of the minimum.

In order to ensure this, we optimally use the step size in the stochastic coordinate descent itera-

tion. That is, we use the condition of Shalev-Shwartz and Tewari [85] that F (β + δβjej) ≤ F (β) +

δβj(∇F (β))j + 1
2α(δβj)

2. This condition ensures that on the T th iteration β(T ) is close to the mini-

mizer, β∗,
∣∣∣E[F (β(T ))]− F (β∗)

∣∣∣ < C/T for some C. Following Taylor’s Theorem, we need to select

α such that δβje
′
j∇2F (β)δβjej ≤ α(δβj)

2. When we find the max∇2F (β)jj = 1
N

∑N
i=1 x

2
ijpi(1−pi).

We have pi(1 − pi) has a maximum of 1/4 at pi = 1/2. Therefore α = 1
4

1
N

∑N
i=1 x

2
ij = 1

4 from the

regularization.

After dealing with the likelihood part of the function we address the penalty. The `1

penalty or LASSO term is carefully handled. The derivative of |βj | changes with the sign of βj and

includes all subderivatives when βj = 0. When updating βt, we have to consider the sign changes

of the components, βj,t and βj,t+1. Suppose that βj,t > 0, then βj,t+1 = βj,t − γt(∇H(βt)) > 0 is

correct so long as βj,t+1 remains positive. Thus we have the condition that βj,t − γt∇F (βt) > γtλ.

Similarly βj,t < 0 gives rise to the condition that βj,t − γt∇F (βt) < −γtλ. Thus we are left with

βj,t − γt∇F (βt) ∈ [−γtλ, γtλ] when βj,t+1 = 0. These three cases can be exactly represented by the

soft-thresholding function:

sτ (w) = sign(w) max(0, |w| − τ). (4.5)

For stochastic gradient descent, we have∇Fi(βt) = −(yi−pi)xi and ηt is the learning rate. Hence our
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naive update step is βt+1 = sηtλ (βt + ηt(yi − pi)xi). We use the algorithm AdaGrad introduced

by Duchi, Hazan, and Singer [84] to provide and adaptive learning rate. While AdaGrad has

been improved upon by algorithms such as AdaDelta [86] and Adam [87], AdaGrad is simpler to

implement. In addition, we batch our update to add stability. This means that we take a random

subset of indices of size B and average the gradient. For the largest batch size, B = N , we have

gradient descent which is slow. For the smallest batch size B = 1 is too sensitive to outliers. A large

batch size approximates the gradient for a fast update. Furthermore we choose a common learning

rate, ηt = 1 · t−1/2. Algorithm 4.1 represents our version of stochastic gradient descent.

Result: argminβH(β)

Set β = 0 ∈ Rd
while not converged do

Choose It ⊂ [N ] uniformly at random with |It| = B.
Let Gt+1,ii ← Gt,ii + ( 1

B

∑
i∈It((yi − pi)xi))

2
i .

Let ηt ← t−1/2/
√
ε+Gt+1,ii.

Let βt+1 ← sηtλ
(
βt + ηt

1
B

∑
i∈It((yi − pi)xi)

)
.

end
Algorithm 4.1: AdaGrad Stochastic gradient descent with batching for logistic regression with
`1 penalty.

For coordinate descent, we have (∇F (βt))k = − 1
N

∑N
i=1 xik(yi−pi) and the step size αt = 1

4

is sufficient. The update step is βk,t+1 = sαtλ
(
βk,t + αt

1
N

∑n
i=1 xik(yi − pi)

)
. Shalev-Shwartz and

Tewari [85] introduce a stochastic coordinate descent with convergence results. Algorithm 4.2 is our

implementation.

Result: argminβH(β)

Set β = 0 ∈ Rd
while not converged do

Chose k ∈ {1, . . . , d} uniformly at random.

Let βk,t+1 ← sαtλ

(
βk,t + αt(

1
N

∑N
i=1 xik(yi − pi))

)
.

end

Algorithm 4.2: Stochastic coordinate descent for logistic regression with `1 penalty.

In order to implement these methods in parallel, we made several attempts using existing

literature. For SGD, we attempted the Hogwild approach of Recht, etc. [88] for asynchronous updates

to the solution for coordinate descent. The asynchronous updates means that every time a thread

starts an update it uses the latest version of β. However, this implementation failed to converge.

Instead we exploit parallel structures in Algorithm 4.3. For each processor, we compute the gradient

of a random row and accumulate the gradients. In this algorithm, the number of threads equals the
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batch size. After we synchronize the threads with a wall, for the d components of β we update the

outer product of the gradients, the step size, and combine it to update the parameter.

Result: argminβH(β)

Set β = 0 ∈ Rd
while not converged do

do in parallel
Choose i ∈ {1, . . . , N} uniformly at random.
Compute pi.
Atomically update Wj ←Wj + (yi − pi)xij for all j.

end
Synchronize.
do in parallel

Choose j ∈ {1, . . . , d}.
Let Gt+1,jj ← Gt,jj +

(
1
BWj

)2
.

Let ηt ← t−1/2/
√
ε+Gt+1,ii.

Let βj,t+1 ← sηtλ
(
βj,t + ηt

1
BWj)

)
.

end

end
Algorithm 4.3: Parallel stochastic gradient descent with batching for logistic regression with
`1 penalty.

We had similar problems with SCD. The shotgun, a parallelized shooting approach, by

Bradley et al. [89] was difficult to implement due to the duplicate features. Algorithm 4.4 instead

uses the same parallel structure but does not use the same update or duplicate features. We update

µt using a parallelized matrix vector multiplication. Using µt, we perform several updates for random

column vectors.

Result: argminβH(β)

Set β = 0 ∈ Rd
while not converged do

do in parallel
µt ← Xβt.

end
do in parallel

Choose k ∈ {1, . . . , d} uniformly at random.

Let βk,t+1 ← sαtλ

(
βk,t + αt(

1
N

∑N
i=1 xik(yi − pi))

)
.

end

end
Algorithm 4.4: Parallel stochastic coordinate descent with batching for logistic regression with
`1 penalty.

Both methods that we implemented, while effective, are general purpose algorithms. In

contrast, the glmnet algorithm of Friedman et al. [90] is designed for logistic regression with
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penalty. The algorithm uses the Taylor expansion to find a weighted least squares approximation.

Moreover, we need to solve for several λ with nearby solutions. Therefore each solution for λ can

warm start the algorithm. We provide the derivation of the glmnet update from the following Taylor

expansion:

F (β) = F (β̃) + (β − β̃)T∇F (β̃) +
1

2
(β − β̃)T∇2F (β̃)(β − β̃) + Remainder. (4.6)

argmin
β

F (β̃) + (β − β̃)T∇F (β̃) +
1

2
(β − β̃)T∇2F (β̃)(β − β̃)

argmin
β

1

N

N∑
i=1

yiµ̃i + log(1− p̃i)− (yi − p̃i)(µi − µ̃i)−
1

2
p̃i(1− p̃i)(µi − µ̃i)2

argmin
β

−1

2N

N∑
i=1

p̃i(1− p̃i)

[(
µi − µ̃i −

yi − p̃i
p̃i(1− p̃i)

)2

+
−2yiµ̃i − 2 log(1− p̃i)

p̃i(1− p̃i)
−
(

y − p̃i
p̃i(1− p̃i)

)2
]

(4.7)

The first term is a quadratic and the remainder we will ignore. We can then obtain a form for the

weighted least squares problem

argmin
β

`Q(β) = argmin
β

−1

2N

N∑
i=1

p̃i(1− p̃i)
(
µi − µ̃i −

yi − p̃i
p̃i(1− p̃i)

)2

∂`Q(β)

∂βj
= − 1

N

N∑
i=1

p̃i(1− p̃i)
(
µi − µ̃i −

yi − p̃i
p̃i(1− p̃i)

)
xij (4.8)

Thus we have

βj =
sλ( 1

N

∑N
i=1 p̃i(1− p̃i)xij(

∑
k 6=j xikβk − µ̃i −

yi−p̃i
p̃i(1−p̃i) ))

1
N

∑N
i=1 p̃i(1− p̃i)x2

ij

(4.9)

Friedman et al. [90] proceed to describe the glmnet algorithm as the following:

To add parallelism, we split the algorithm into two parts similar to SCD. The first part is to

update the mean in parallel, and the second part is to use the common update for each coordinate

in parallel. We have the following parallel glmnet Algorithm 4.6.
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Result: argminβH(β)

Set β = 0 ∈ Rd.
while not converged do

Let µ̃i = xTi β.
for j = 1 . . . d do

βj ←
sλ( 1

N

∑N
i=1 p̃i(1−p̃i)xij(

∑
k 6=j xikβk−µ̃i−

yi−p̃i
p̃i(1−p̃i)

))

1
N

∑N
i=1 p̃i(1−p̃i)x2

ij

end

end

Algorithm 4.5: glmnet for logistic regression with `1 penalty.

Result: argminβH(β)

Set β = 0 ∈ Rd.
while not converged do

do in parallel
µ̃i ← Xβ.

end
do in parallel

βj ←
sλ( 1

N

∑N
i=1 p̃i(1−p̃i)xij(

∑
k 6=j xikβk−µ̃i−

yi−p̃i
p̃i(1−p̃i)

))

1
N

∑N
i=1 p̃i(1−p̃i)x2

ij

end

end

Algorithm 4.6: Parallel glmnet for logistic regression with `1 penalty.

4.2 Performance

In order to test the performance of the algorithms for logistic regression, we create synthetic

simulations. Synthetic simulations allow us to create a test data set for a logistic regression. The

test data set is limited by allowable matrix allocation sizes in R. We create a matrix, X, of size n×p

from the standard normal distribution. We create covariates, β, of size p from the Beta distribution

and set m of the coefficients as zero. We choose five testing scenarios found in Tables 4.1, 4.2, and

4.3. Note that from Section 3, we could not use vectors over size 109 thus our design matrix does

not exceed that size as well.

A key consideration is the convergence condition for the algorithms as we do not have the

Case n p m
1 104 10 2
2 5 ∗ 104 50 10
3 105 100 20
4 5 ∗ 105 500 100
5 106 1000 200

Table 4.1: Parameters for gradient descent algorithms.
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Case n p m
1 4 · 103 100 20
2 2 · 104 500 100
3 4 · 104 1000 200
4 2 · 104 5000 1000
5 2 · 105 104 2000

Table 4.2: Parameters for coordinate descent algorithms.

Case n p m
1 103 100 20
2 5 ∗ 103 500 100
3 104 1000 200
4 5 ∗ 104 5000 1000
5 105 104 2000

Table 4.3: Parameters for glmnet algorithms.

true solution in general. We chose a stopping condition such that the max coordinate wise update

is less than an error tolerance or
∥∥βt+1 − βt

∥∥
∞ < 10−4. However, when one coordinate at a time

is updated this condition is too aggressive as all but one coordinate is the same value. For SCD

and glmnet, we track the last update to βj for each coordinate and stop when all are less than our

tolerance. For example, set wj = 1 for all j, when j is updated set wj = |βj,t+1 − βj,t|. Therefore

our stopping condition is ‖wj‖∞ < 10−4. We check this condition before the common mean µ is

computed.

We ran the algorithms on a single core CPU with a NVIDIA V100 GPU. We set the batch

size and the number of processors to be B = P = 4096. Furthermore, we use 8 blocks of 512

threads to achieve our 4096 parallel processors. For each case, we simulated the data, selected a λ,

and ran the relevant algorithms 5 times. For SGD, we chose a simulation that emphasizes a larger

n than p as the parallelism is row wise. We wrote Algorithm 4.1 in R and C and implemented

Algorith 4.3 in CUDA. Our results are in Figure 4.1. The results show for all problem sizes that

parallelism improves the time to convergence. However, the performance improvement is not the

same order of magnitude of P . This is caused by the simplicity of the gradient update relative to

the synchronization and other overhead. A more complex update would yield better results. This

issue carries over the SCD and glmnet algorithms. We select design matrix sizes that take advantage

of the column wise parallelism. For SCD, we implement Algorithm 4.2 in R and C and Algorithm

4.4 in CUDA. When we used single threads, the largest runs failed to complete in the maximum

server time. This means the stopping condition requires every column index to be iterated which
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takes more time when randomly selecting columns. We replaced the single core SCD that computes

the mean and iterates over all columns. Figure 4.2, shows that the R implementation is still slow

and we had to drop the largest case. We see the parallelism shows improvement after accounting for

overhead. For glmnet, we implement Algorithm 4.5 in R and C and Algorithm 4.6 in CUDA. Figure

4.3, shows the overhead of parallelism slowing down the algorithm for smaller sizes. The uneven

scaling with the design matrix size is indicative of the randomness of our convergence criteria with

the smaller ratio of n : p in the design matrix.

Figure 4.1: The graph shows the timings of three implementations of stochastic gradient descent for

logistic regression with `1 penalty. The R and C implementations are written for a single processor

and the CUDA implementation is written using a parallel algorithm.
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Figure 4.2: The graph shows the timings of three implementations of stochastic coordinate descent

for logistic regression with `1 penalty. The R and C implementations are written for a single processor

and the CUDA implementation is written using a parallel algorithm.
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Figure 4.3: The graph shows the timings of three implementations of glmnet for logistic regression

with `1 penalty. The R and C implementations are written for a single processor and the CUDA

implementation is written using a parallel algorithm.
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Chapter 5

Horseshoe Probit

In this chapter, we explore the benefits of GPU acceleration using Clemson’s High Per-

formance Cluster in a Bayesian statistical model. In particular, we benchmark the case study by

Terenin, Dong, and Draper [67]. The case study revolves around a Bayesian probit regression with

a horseshoe prior. The horseshoe prior was introduced by Carvalho, Polson, and Scott [91]. The

binary response from Albert and Chib [55] and the horseshoe prior was used for a GPU-accelerated

case study by Terenin, Dong, and Draper [67]. In Section 5.1, we establish the model and derive the

posterior sampling algorithm. In Section 5.2, we build probability distributions from basic functions

because the CUDA SDK has limit random number generating functionality. In Section 5.4, we dis-

cuss two programming features: randomness and streaming. These features have been used in other

sections but a thorough discussion is necessary in this example. A portion of the definitions and

theorems used in this chapter can be found in Appendix E. The code used in this chapter is found

in Appendix F.

5.1 Model

This section will introduce the probit model with the horseshoe prior. We will further

decompose the horseshoe prior into inverse gamma distributions to simplify our conversion to GPU

acceleration. Lastly, we present the likelihood function. The probit model proposed by Terenin,
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Dong and Draper [67] is

yi|zi = round[Φ(zi)],

zi|xi,β ∼ N(xiβ, 1),

zi ⊥ z−i|β (5.1)

where the priors from Carvalho, Polson and Scott [91] are

βj |λj , τ ∼ N(0, λ2
jτ

2),

λj ∼ C+(0, 1),

τ ∼ C+(0, 1). (5.2)

The parameter estimation for this problem is easier than our earlier work in Chapter 2,

but not trivial. In order to make a Gibbs sampler GPU ready, we augment the prior distri-

butions. The Cauchy distribution is difficult to directly sample from so we further decompose

λ2
j |νj ∼ IG(1/2, 1/νj) and νj ∼ IG(1/2, 1) and τ2|ε ∼ IG(1/2, 1/ε) and ε ∼ IG(1/2, 1). The

decomposition is outlined using the theorems in Appendix E.

5.1.1 Posterior Computation

Now that we have established our model along with the prior, we write the likelihood then

the posterior and conditional posterior distributions. We are able to compute conditional posterior

distributions for every parameter. We use a Gibbs sampler and avoid any Metropolis-Hasting steps

since we have conditional posterior distributions for every parameter.

First we have the following augmented likelihood function for probit regression from Albert

and Chib [55]:

π(y|Z,β) =

N∏
i=1

{1(Zi > 0)1(yi = 1) + 1(Zi ≤ 0)1(yi = 0)}φ(Zi|xiβ, 1). (5.3)

We combine the likelihood function and the priors to get the full the posterior as follows:

π(Z,β|y) ∝ π(β)

N∏
i=1

{1(Zi > 0)1(yi = 1) + 1(Zi ≤ 0)1(yi = 0)}φ(Zi|xiβ, 1)
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=

p∏
j=1

N(βj |0, λ2
jτ

2)IG(λ2
j |1/2, ν−1

j )IG(νj |1/2, 1)IG(τ2|1/2, ε−1)IG(ε|1/2, 1)

×
N∏
i=1

{1(Zi > 0)1(yi = 1) + 1(Zi ≤ 0)1(yi = 0)}N(zi|xiβ, 1, yi) (5.4)

From the full posterior, we derive the full conditional posteriors as follows:

zi ∼ TN(xiβ, 1, yi)

τ−2 ∼ IG

(
p+ 1

2
,

1

ε
+

1

2

∑ β2
j

λ2
j

)

ε ∼ IG(1,
1

τ2
+ 1)

λ2
j ∼ IG(1,

β2
j

2τ2
+

1

νi
)

νj ∼ IG(1,
1

λ2
j

+ 1)

β ∼ N(ΣXT z,Σ) (5.5)

where Σ =
(
XTX + τ−2diag(λ−2

1 , . . . , λ−2
p )
)−1

.

For inference, we create a Gibbs sampler with full conditional posteriors. From the above

list of conditional posterior distributions, we see that we need to sample from a normal distribution,

truncated normal distribution, exponential and inverse gamma distribution. Notice that many of

the posterior distributions are listed as inverse gamma. When the shape is one for an inverse gamma

distribution, it is equivalent to an exponential distribution. In the next section, we review sampling

methods for those distributions to complete the Markov chain Monte Carlo method.

5.2 Distributions

From the previous section, we need to sample from a normal distribution, truncated normal

distribution, and inverse gamma distribution. The CUDA toolkit offers a library for random num-

ber generation but not all of the aforementioned distributions. In exchange for performance and

parallelism, there are several of the usual trade-offs. The programmer is responsible for a litany of

tasks with respect to random number generation. These tasks include: selecting the random number

generator, initializing and tracking the starting states for each thread, and transforming the basic
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distributions. The basic distributions available are: the standard uniform, standard normal, log

normal and Poisson distributions. Therefore we spend some time building the distributions we need.

We choose methods that extend the available distributions to our desired distributions utilizing the

built-in sampling methods. When we sample from an exponential distribution, a gamma distribu-

tion, or a truncated normal distribution, they all must be derived from a sampling method based

on a uniform or normal distribution.

5.2.1 Exponential

We begin with the exponential distribution. The following Lemma 5.2.1 gives us that the

exponential distribution is a simple transformation of the uniform distribution:

Lemma 5.2.1. If U ∼ U(0, 1), then − logU/λ ∼ Exp(λ).

Proof. We have that P (− logU/λ ≤ u) = P (U ≥ e−λu) = 1− FU (e−λu) = 1− e−λu.

5.2.2 Truncated Normal

In this subsection, we discuss how to build the truncated normal distribution for (−∞, 0]

and [0,∞). In order to do this, we use part of the efficient sampler from Li and Ghosh [92]. To

efficiently sample the truncated normal, we combine three samplers: a normal rejection sampler, a

half-normal rejection sampler and a one-sided translated-exponential.

Li and Ghosh [92] method for a truncated normal distribution uses the accept reject algo-

rithm that is outlined in Algorithm 5.1. With the accept reject algorithm, the expected number

Result: Sample from distribution X with density f using accept-reject algorithm
repeat

1) Sample y from Y with density g
2) Sample u from Unif(0, 1)

until u < f(y)/Mg(y);
return x=y

Algorithm 5.1: Accept reject algorithm.

of iterations is M . Thus we wish to minimize M whenever possible, or else we waste too much

time rejecting samples. Minimizing M is the reason there are three components to sampling the

truncated normal distribution.

We are interested in sampling from the truncated normal distribution with mean xβ and
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standard deviation 1 on [0,∞). When we negate the mean, we get the distribution for the support

(−∞, 0]. Hence we focus only on the problem for positive support.

The accept reject algorithm needs four components: a target distribution, a sample distri-

bution, a uniform sampler and M . We begin by writing the target distribution for the truncated

normal as follows:

Definition 1 (Truncated Normal Distribution). Let the mean and variance be µ and σ2 respectively.

Let x ∈ (a, b). The density is

TN(x|µ, σ2, a, b) =

1√
2πσ2

e−
(x−µ)2

2σ2

Φ( b−µσ )− Φ(a−µσ )
=

φ(x−µσ )

σ(Φ( b−µσ )− Φ(a−µσ ))

and the distribution is

FX(x|µ, σ2, a, b) =
Φ(x−µσ )− Φ(a−µσ )

Φ( b−µσ )− Φ(a−µσ )
.

Furthermore, we simplify our target distribution under a linear transform to align our target

distribution with the sample distribution. In our case the sample distribution is a standard normal

distribution. We have the following lemma to transform the truncated normal:

Lemma 5.2.2. If X is from TN(µ, σ2, 0,∞) then X−µ
σ is from TN(0, 1,−µσ ,∞).

Proof. We have that the density for X is

fX(x) =

1√
2πσ2

e−
(x−µ)2

2σ2∫ b
a

1√
2πσ2

e−
(x−µ)2

2σ2 dx
. (5.6)

Then the density of (X − µ)/σ is fX(xσ + µ)σ or

f(X−µ)/σ(x) =

1√
2π
e−

x2

2

Φ(∞−µσ )− Φ( 0−µ
σ )

=

1√
2π
e−

x2

2

1− Φ(
−µσ−0

1 )
. (5.7)

Let −µ/σ = a. Then we optimize TN(0, 1, a,∞) for three cases which gives the three

sampling distributions that combine to the truncated normal.

1. If a < 0, then let x ∼ N(0, 1) and let the accept reject sampler reject if x ∈ (−∞, a). We have

that TN(0, 1, a,∞) ≤ 1
1−Φ(a)N(0, 1). Thus the probability of acceptance is 1/M = 1− Φ(a).
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2. If 0 ≤ a < a∗, then let x ∼ N(0, 1) and take |x| and let the accept reject sampler reject

if |x| < a. The density of the half normal is 2φ(x)1(x > 0). We have TN(0, 1, a,∞) ≤
1

2(1−Φ(a))2φ(x)1(x > 0). Thus the probability of acceptance is 1/M = 2(1 − Φ(a)). Hence

when a > 0 we use the half normal sampler as it is twice as efficient.

3. If a∗ < a, then we sample from the translated exponential density gY (y). The accept reject

sampler condition rejects if u > e−(y−λ)2/2. The density for the translated exponential is

λe−λ(y−a)1(y > a). We can choose 1
M =

√
2πλe−

λ2

2 +λa(1−Φ(a)), giving f/Mg = e−(x−λ)2/2 ≤

1. Hence for x > a we may maximize 1/M with a choice of λ = a+
√
a2+4
2 .

We choose a∗ for when the acceptance probability of the half normal and the translated

exponential are equal. Thus we have 2(1−Φ(a)) =
√

2π a+
√
a2+4
2 e−

(
a+
√
a2+4
2

)2

2 +a
a+
√
a2+4
2 (1−Φ(a))

or a∗ ≈ 0.2570. With our choice of a∗, it is the optimal value of a∗ that minimizes M or the mean

number of iterations needed to accept a value. Finally we have the truncated normal distribution

in terms of the standard normal and exponential density.

5.2.3 Inverse-Gamma

Finally, we discuss how to build the inverse-gamma distribution. We will use Cheng’s

algorithm for sampling the gamma distribution from G(α, 1) [2]. We then divide by the rate

parameter to get G(α, β).

Result: Sample from Gamma(α, 1) distribution
repeat

1) Generate a pair of uniform random numbers, U1 and U2.
2) Set V = a logU1(1− U1) and X = αeV

until b+ cV −X < log(U2
1U2);

return X
Algorithm 5.2: Sample from the Gamma distribution by an algorithm introduced by Cheng
[2].

To generate τ−2, we do not have a high acceptance rate for the method from Cheng [2].

Terenin, Dong and Draper [67] suggests to generate blocks of 32 candidates, check them and use the

first available one. This requires local memory between the 32 threads that is faster then the global

memory.

Each thread proceeds to generate a candidate, checks if it works, and sets a local flag if true.

Once every thread is done producing a candidate, the first thread sees if any of the other threads

58



found a candidate. If an acceptable candidate is found, it exits the process and if not, it restarts

the process. We include a wall to block all threads until the threads are finished each iteration. The

wall is not necessary if all the threads are on a warp. Hence we generate 32 candidates in the time

it takes for one candidate to be produced with a little overhead to sync and to find the correct one.

5.3 Algorithm

The parallel algorithm for the horseshoe probit E.1 is quite complicated because we add

parallelism to all matrix operations as well as generate distributions in a parallel manner. For

example, we use 8 CUDA functions to sample β. The operations to copy a matrix, add matrices,

multiply a matrix and a vector, dot product, solve dense linear systems, and solve upper triangular

systems are built in functions that have been optimized for parallelism. Additionally, we wrote

several custom CUDA kernels to independently sample all other distributions.

5.4 Implementation

The previous sections introduced the algorithms to sample from several distributions that

are not built by the CUDA SDK. In this section, we learn how to implement them in the CUDA

programming environment while taking advantage of the hardware whenever possible. In Subsection

5.4.1, we focus on setting up random number generation and the built in random distributions. In

Subsection 5.4.2, we delve deeper into optimally streaming data in and out of the GPU device.

5.4.1 cuRand

Part of the CUDA SDK is the cuRand library. The cuRand functions allow the GPU to

generate random numbers. There are a few lines to setup a random number generator. First we must

select the type or method of random number generation and the seed. Since the GPU uses SIMD,

we have to be careful that when there are multiple threads running that each thread is generating

a different random numbers. To do this, we use a state of the random generator which is composed

of the seed, the sequence, and the offset in the sequence. This way we are guaranteed that each

state will generate a different random sequence. Moreover the states will remain where they are in

the sequence and multiple subsequent calls to the state will produce different parts of the random
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sequence. This allows for it to be initialized once and not repeat itself. We choose to assign each

thread a different sequence with no offset.

In the following code, we create the device states, choose our generator, select the random

seed and destroy our generator.

curandGenerator t gen ;

curandState t ∗ d s t a t e s ;

curandCreateGenerator(&gen , CURAND RNG PSEUDO PHILOX4 32 10) ;

curandSetPseudoRandomGeneratorSeed ( gen , 1234ULL) ; // s e t to time

. . .

curandDestroyGenerator ( gen ) ;

Once the generator, and seed are selected, we can initialize a unique random number state

for every thread. The state is used to generate random numbers from the builtin functions that will

be unique for every thread.

/∗ I n i t i a l i z e random number genera tor ∗/

g l o b a l void i n i t (unsigned int seed , curandState t ∗ d s t a t e s ) {

int idx = threadIdx . x +blockDim . x ∗ blockIdx . x ;

c u r a n d i n i t ( seed , idx , 0 , &d s t a t e s [ idx ] ) ;

}

Later on in the main loop, we generate random samples two different ways. Either we

generate random numbers using function calls in custom kernels or using function calls from the

host device. When we use function calls in kernels, every kernel must be given a pointer to the state

of the random sequence. We use the thread identifier to recall the state with the proper sequence.

In the following code snippet, we used the states and thread index to sample z in the kernel. To

sample a random number, each thread feeds its thread index into the appropriate state and then

that state is used to draw the next random number.

/∗ Sample normals ∗/

g l o b a l void sample z ( curandState t ∗ d s ta t e s , int ∗d Y , double ∗d mu

↪→ , double ∗ d z ) {

int idx = threadIdx . x + blockDim . x ∗ blockIdx . x ;

. . .
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d s = curand normal double(& d s t a t e s [ idx ] ) ;

. . .

}

Alternatively, from the host we can ask for a set of n random samples to be generated on

the device. After the random samples are generated we can simply use a pointer to determine where

they are in memory to read them later.

/∗ Sample 2p + 1 uniform random v a r i a b l e s ∗/

curandGenerateUniformDouble ( gen , d uniform , p + p + 1) ;

5.4.2 Streaming

For the NVIDIA GPU, transferring data from device and host and floating point calculations

in the core are not dependent operations. Therefore we can transfer memory data while other non-

blocking processes can be done simultaneously. This process is called streaming.

We set up two streaming handles for this application. The following code sets up and

destroys the streams:

cudaStream t stream1 ;

cudaStream t stream2 ;

cudaStreamCreate(&stream1 ) ;

cudaStreamCreate(&stream2 ) ;

. . .

cudaStreamDestroy ( stream1 ) ;

cudaStreamDestroy ( stream2 ) ;

We interleave the streams for several operations. For example allocating memory and copy-

ing into memory are separate operations. We move several variables onto the device. While we

allocate up the memory for one variable, we begin queuing up memory copies.

/∗ A l l o c a t e space f o r t a u s q u a r e i n v e r s e ∗/

cudaMalloc ( ( void ∗∗)&d t a u s q u a r e i n v e r s e , s izeof (double ) ) ;

cudaMemcpyAsync ( d t a u s q u a r e i n v e r s e , &t a u s q u a r e i n v e r s e , s izeof (double

↪→ ) , cudaMemcpyHostToDevice , stream1 ) ;
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/∗ A l l o c a t e space f o r v i n v e r s e ∗/

cudaMalloc ( ( void ∗∗)&d v inve r s e , p ∗ s izeof (double ) ) ;

cublasSetVectorAsync (p , s izeof (double ) , v inve r s e , 1 , d v inve r s e , 1 ,

↪→ stream2 ) ;

Another instance when streaming improves performance is when retrieving results from the

device back to the host. After every update of β(t), the results are sent back to the host while

one can proceed with another computation. This reduces the memory needed on the device side

as one does not have to store every iteration of β(t). Additionally, it saves time at the end of the

computation to move the entire chunk of memory back to the host.

/∗ Step v i i i : Compute Beta = Rs + mu ∗/

cublasDaxpy ( handle , p , d one , d s , 1 , d XTz , 1) ;

cublasGetVectorAsync (p , s izeof (double ) , d XTz , 1 , s t o r e + t ∗ p , 1 ,

↪→ stream1 ) ;

5.5 Performance

We use the following probit population model to evaluate our estimation methodology:

Yi ∼ Bernoulli(Φ(x′iβ)) (5.8)

where with xi is a vector of size d generated from the standard normal, that is xij ∼ N(0, 1), and β

is a vector of size d with mostly zeros. We generate the data {(Yi, Xi)} for i = 1, . . . , N . We choose

n = 104 and d = 103. We set β = (1.3, 4,−1, 1.6, 5,−2, 0, . . . , 0)′.

We perform and retain 100,000 posterior draws. Even with a small example such as this we

see significant differences in the languages. See Table 5.1. Although almost ever step uses parallelism,

the most significant speed ups are from the Cholesky decomposition, inverting the correlation matrix,

and sampling the truncated normal. Both the Cholesky decomposition and the solve are for matrices

of size d×d. Since we use a large d = 103), we can expect parallelism to gain an advantage. Moreover,

a significant amount of time in the R solve method is used to check inputs and choose the solve

method for every iteration. Whereas we choose the solve method without checks. Lastly, we sample

n = (104) independent truncated normal distributions. Independence allows us to divide n by the
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Language Min 1-Quartile Mean Median 3-Quartile Max
R 1569.2530 1597.0731 1619.3852 1607.5422 1624.1556 1698.9023

CUDA 147.7432 148.2983 148.5039 148.2989 148.7514 149.4278

Table 5.1: The table shows the timings for five runs of the horseshoe probit MCMC in two imple-
mentations. The R implementation is written for a single processor and the CUDA implementation
is written using a parallel algorithm. Timings are for 1,000 iterations, 10,000 observations with 100
covariates. All timings are displayed in seconds.

number of threads to perform the work instead of computing them sequentially. In Appendix F, we

have the link to the code for our tests.
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Chapter 6

Future Directions

There are a couple areas to improve upon for group testing. First, while our estimations

are fast, they can be improved upon with GPU acceleration. The measurement for group testing

can be switched to included dilution effects. The correlation of the disease can include risk factors.

Lastly, there are several opportunities to improve variable selection and estimation.

Our methodology for group testing is a computationally intensive process and takes time to

run. Our next steps are to increase its performance using GPU acceleration. In order to use GPU

acceleration, we have to identify areas for parallelization. In general there are three areas that we

can improve. If sections are independent, we can use threads to compute them in parallel. If we use

matrix operations, we can use built in matrix libraries to accelerate the computation. If there is an

aggregation function, we have opportunities to parallelize the aggregation.

For Markov chain Monte Carlo methods, every iteration depends on the state of the last

iteration. This dependence prevents us from parallelizing the iterations. In addition there are global

parameters that need to be estimated at every iteration such as R and β that must be sampled

before continuing. Hence we focus on parallelization opportunities on a parameter by parameter

basis.

We have three sets of global parameters R, β and to a lesser extent the sensitivities and speci-

ficities. All global parameters have different opportunities for GPU acceleration. The Metropolis-

Hastings steps in sampling R depend on a sequential process for each ρrs to be computed. We could

simultaneously sample ρrs for all rs, but we would risk bad mixing and failing to converge to our

target distribution. Hence in the case of R we do not have independent pieces that have paralleliza-
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tion opportunities at a high level. One can only benefit from GPU accelerated matrix operations

and computing expensive aggregation functions. For the case of sampling the β distribution we

simultaneously sample. Therefore, we can only take advantage of matrix operations and aggregation

functions required to sample β. When computing sensitivity and specificity there is an opportunity

to compute the disease index and specimen type independently. Moreover if the ordering of the

group size does not affect other sensitivities and specificities, that is we do not use a truncated beta

distribution with upper and lower bounds, then we can independently compute the specificities and

sensitivies by group size. Each instance were we have independence, we can use separate threads to

compute in parallel.

At the individual levels, sampling can sometimes offer more opportunities because they are

independent along the patient or disease dimension. When sampling γ, we can independently sample

each patient. The most complicated sampling occurs when computing the true disease status. To

parallelize this step, we have to identify disjoint sets of pools. A disjoint set of pools is where there

is a patient can only be present in the pool set. This ensures that when a patients status is updated

then it will be available to the other patients in the pool set when their status is updated. In

our simulation and case study, we had many disjoint pools sets. Small disjoint sets of pools are a

characteristic for our testing schemas. For instance in Dorfman group testing the group pool and

the dependent individual pools would be set of pools disjoint from all other sets of pools. Hence

we can parallellize easily. In a general setting, a simple computation can be performed before the

MCMC to determine the number of threads. We assign pools that have common patients a counting

index. For every available thread, we assign the next counting index. Beyond the independence

within pools, we can add parallelism on the disease index. For each disease. we can independently

compute the true disease status of the patients. This is because we only need to know the mean for

the disease to compute the true disease status.

When performing group testing, one has to set a threshold for the classification specimen.

Since we are interested in parameter estimation instead of classification, we can capture biomarker

levels such as nucleic acid concentrations. This will allow us to use richer information as well

as directly address the dilution effect and to prevent any issues with the threshold choice for the

pool. The correlation between diseases is assumed to be universal, however there may be additional

correlations in sub populations. We could explore was to add a dependence for every patient on the

correlations.
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Finally, there are several ways to improve estimation performance. During the exploration

of this paper we experimented with variable selection. As more information is collected in medical

records, more predictors are available to the model. Variable selection can bring forward and help

isolate the most important risk factors. Spike and slab variable selection shows some promise but

was computationally too expensive during early stages of this work. Additionally, we did not explore

interactions or other higher order effects.
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Appendix A Group Testing Algorithms

Finally, we write the Metropolis-Hastings algorithms for both the probit and logistic distri-

butions. Most of our parameters are updated once per iteration in the Monte Carlo Markov Chain.

For each iteration, we use the superscript (t) as in ỹ
(t)
id to indicate the tth iteration of ỹid. The

complications of indexing our data structures mean parameters such as z̃jd be updated |Pj | times

every iteration. Thus the superscript (t∗) indicates an intermediate iteration between t and t + 1.

Additionally, R is updated D(D−1)/2 times; therefore, we use the (tk) notation for the intermediate

iteration k ∈ [D(D − 1)/2] . We use (?) (star) to indicate the proposal on the (tk) iteration. We

sample ρrs on a uniform random walk with reflective boundaries −1 and 1 with step size δ = 0.05.

We write the probit model algorithm as follows:

1. Initialize T
(0)
i = 0 and β(0) = 0 for the ith patient and set R(0) = I2.

2. Let gid(x) =

{∏
j∈Ai

(
S
Zjd
ej :d

S
1−Zjd
ej :d

)1(x+
∑
ỹ
(t∗)
(−i)d) (

S
1−Zjd
pj :d

S
Zjd
pj :d

)1−1(x+
∑
ỹ
(t∗)
(−i)d)

}
p1−x
id0 (1−pid0)x

for x ∈ {0, 1}.

For all d = 1, . . . , D and for all i = 1, . . . , N :

(a) Sample T
(t+1)
id ∼ N(µ̃

(t)
id , Σ̃

(t)
id )I(T

(t+1)
id > 0)ỹ

(t)
id I(T

(t+1)
i1 ≤ 0)1−ỹ(t)id .

(b) Sample Ỹ
(t+1)
id ∼ Bernoulli [gid(1)/ {gid(0) + gid(1)}].

3. Sample β(t+1) ∼ NQ(µ̃(t), Σ̃(t)) where Σ̃(t) =
{

Σ−1
0 +

∑N
i=1 X′i(R

(t))−1Xi

}−1

and

µ̃(t+1) = Σ̃(t)
{∑N

i=1 X′i(R
(t))−1T

(t+1)
i

}
.

4. Sample ρ?rs from [ρ
(t)
rs − δ, ρ(t)

rs + δ]. Set ρ
(t+1)
rs = ρ?rs with probability

min

{
1,

∏N
i=1N(µ

(t+1)
i ,R?)∏N

i=1N(µ
(t+1)
i ,R(tk))

}
.

Otherwise ρ
(t+1)
rs = ρ

(t)
rs .

5. Go to step 2.

The logit algorithm is similar to the probit algorithm but with extra steps for φ and the

importance sampling weights. Moreover the importance weights produce not a number results in R.

This is caused by an infinite return value from the student-t quantile function. When we encounter

an infinite return value we substitute a large positive number.
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1. Initialize T
(0)
i = 0 and β(0) = 0, φ

(0)
i ∼ Γ(ν̃/2, ν̃/2) for the ith patient and set R(0) = I2.

2. Sample φ
(t+1)
i ∼ Γ

[
(ν̃ + 2)/2,

{
ν̃ + σ̃−2(T

(t+1)
i − µ

(t)
i )′(R(t))−1(T

(t+1)
i − µ

(t)
i )
}
/2
]

for all i.

3. Let gid(x) =

{∏
j∈Ai

(
S
Zjd
ej :d

S
1−Zjd
ej :d

)1(x+
∑
ỹ
(t∗)
(−i)d) (

S
1−Zjd
pj :d

S
Zjd
pj :d

)1−1(x+
∑
ỹ
(t∗)
(−i)d)

}
p1−x
id0 (1−pid0)x

for x ∈ {0, 1}.

For all d = 1, . . . , D and for all i = 1, . . . , N :

(a) Sample T
(t+1)
id ∼ N(

≈
µ

(t)
id ,

≈
Σ

(t)
id )I(T

(t+1)
id > 0)ỹ

(t)
id I(T

(t+1)
i1 ≤ 0)1−ỹ(t)id .

(b) Sample Ỹ
(t+1)
id ∼ Bernoulli [gid(1)/ {gid(0) + gid(1)}].

4. Sample β(t+1) ∼ NQ(
≈
µ(t),

≈
Σ(t)) where

≈
Σ′(t) =

{
Σ−1

0 + σ̃−2
∑N
i=1 φ

(t+1)
i X′i(R

(t))−1Xi

}−1

and

≈
µ(t+1) =

≈
Σ(t)

{
σ̃−2

∑N
i=1 φ

(t+1)
i X′i(R

(t))−1T
(t+1)
i

}
.

5. Sample ρ?rs from [ρ
(t)
rs − δ, ρ(t)

rs + δ]. Set ρ
(t+1)
rs = ρ?rs with probability

min

{
1,

∏N
i=1N(µ

(t+1)
i , σ̃2φ

(t+1)
i R?)∏N

i=1N(µ
(t+1)
i , σ̃2φ

(t+1)
i R(tk))

}
.

Otherwise ρ
(t+1)
rs = ρ

(t)
rs .

6. Compute w(t+1) ∝
∏N
i=1 L2,ν̃(T

(t+1)
i ;µi,R

(t+1))/T2,ν̃(T
(t+1)
i ;µi, σ̃

2R(t+1)).

7. Go to step 2.

To add the sampling for testing accuracies, we add the following steps for independent test

configurations.

1. Compute

S
(t+1)
e(l):d ∼ f

 ∑
j∈M(l)

Zjdz̃
(t+1)
jd + TPl,d,

∑
j∈M(l)

(1− Zjd)z̃(t+1)
jd + FNl,d, 0, 1

 for all d and l.

2. Compute

S
(t+1)
p(l):d ∼ f

 ∑
j∈M(l)

(1− Zjd)(1− z̃(t+1)
jd ) + TNl,d,

∑
j∈M(l)

Zjd(1− z̃(t+1)
jd ) + FPl,d, 0, 1

 for all

d and l.

If we want to include a dilution effect, we instead add the following:
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1. Compute

S
(t+1)
e(l):d ∼ f

 ∑
j∈M(l)

Zjdz̃
(t+1)
jd + TPl,d,

∑
j∈M(l)

(1− Zjd)z̃(t+1)
jd + FNl,d, Ae(l):d, Be(l):d

 for all d

and l.

2. Compute

S
(t+1)
p(l):d ∼ f

 ∑
j∈M(l)

(1− Zjd)(1− z̃(t+1)
jd ) + TNl,d,

∑
j∈M(l)

Zjd(1− z̃(t+1)
jd ) + FPl,d, Ap(l):d, Bp(l):d


for all d and l.
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Appendix B Simulation Data

Scenario Test Rows and Columns Re-Test Positive Column

1

NN PP NN NN NN

NN ◦ ◦ ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

NN PP NN NN NN

NN ◦ NN ◦ ◦ ◦

NN ◦ NN ◦ ◦ ◦

NN ◦ NP ◦ ◦ ◦

NN ◦ PN ◦ ◦ ◦

NN ◦ NN ◦ ◦ ◦

Scenario Test Rows and Columns Re-Test Intersections

2

NN PP NN NN NN

NN ◦ ◦ ◦ ◦ ◦

PN ◦ ◦ ◦ ◦ ◦

NP ◦ ◦ ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

NN PP NN NN NN

NN ◦ ◦ ◦ ◦ ◦

PN ◦ NN ◦ ◦ ◦

NP ◦ NP ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

NN ◦ ◦ ◦ ◦ ◦

Figure B.1: Each table represents a part of the process for testing a square five by five array. Each

row represents the different scenarios for the last stage. The first table in each row is the result

of testing rows and columns. The results of the row and column are labeled as row and column

headers with N and P for negative and positive for each of the two diseases. The second table in

each row represents which individuals are tested and their test results are labeled on the interior

of the table. In the first scenario, only a column test positive, then the testing procedure dictates

that every individual is tested in the column. In the second scenario, a column and two rows test

positive, then the testing procedure dictates that every individual in the intersection is tested. In

both cases, we classify the remaining individuals as negative for both diseases.

The following tables contain the data for the synthetic calibration and Iowa clinical results.
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Parameter IT MPT DT AT

Prevalence d1 = 0.05 d2 = 0.10

Average number of tests 5008 1252 3573.4 3863.6

β10 = −2.1 Bias (CP95) -0.0529 (0.94) 0.0844 (0.87) -0.0166 (0.96) -0.0138 (0.95)

SSD (ESE) 0.1301 (0.1276) 0.1404 (0.1275) 0.0787 (0.0778) 0.0670 (0.0696)

β11 = 0.5 Bias (CP95) 0.0184 (0.93) -0.0191 (0.92) 0.0061 (0.96) 0.0069 (0.96)

SSD (ESE) 0.0637 (0.0619) 0.0721 (0.0703) 0.0435 (0.0445) 0.0396 (0.0404)

β12 = 0.5 Bias (CP95) 0.0289 (0.96) -0.0044 (0.95) 0.0130 (0.95) 0.0103 (0.95)

SSD (ESE) 0.1209 (0.1195) 0.1728 (0.1568) 0.0866 (0.0839) 0.0777 (0.0768)

β20 = −1.7 Bias (CP95) -0.0120 (0.94) 0.0158 (0.94) -0.0072 (0.94) -0.0067 (0.92)

SSD (ESE) 0.0630 (0.0597) 0.0875 (0.0845) 0.0521 (0.0497) 0.0504 (0.0477)

β21 = 0.5 Bias (CP95) 0.0035 (0.95) 0.0018 (0.95) 0.0014 (0.96) 0.0010 (0.95)

SSD (ESE) 0.0347 (0.0357) 0.0563 (0.0549) 0.0306 (0.0313) 0.0296 (0.0301)

β22 = 0.5 Bias (CP95) 0.0054 (0.93) 0.0095 (0.95) 0.0040 (0.94) 0.0043 (0.92)

SSD (ESE) 0.0696 (0.0651) 0.1147 (0.1117) 0.0621 (0.0582) 0.0602 (0.0564)

ρ = 0.3 Bias (CP95) -0.0045 (0.94) -0.0256 (0.94) -0.0042 (0.94) -0.0035 (0.95)

SSD (ESE) 0.0676 (0.0647) 0.0837 (0.0852) 0.0526 (0.0516) 0.0483 (0.0477)

Table B.1: Known assay accuracy probabilities Se(1):1 = 0.94, Se(2):1 = 0.90, Se(1):2 = 0.98, Se(2):2 =

0.96 and Sp(1):1 = 0.93, Sp(2):1 = 0.95, Sp(1):2 = 0.97, Sp(2):2 = 0.98 (imperfect testing) and unknown

ρ = 0.3. Average bias of 500 posterior mean estimates (Bias), sample standard deviation of 500

posterior mean estimates (SSD), average of 500 estimates of the posterior standard deviation (ESE),

and empirical coverage probability (CP95) of 95% equal-tail credible intervals are given for each

estimated parameter when possible. The total number of individuals is N = 5008 with disease

status generated by probit population model. Prevalence of each disease in the population are

given. For Dorfman testing (DT) and array testing (AT) the average number of tests are shown.

Master pool testing (MPT), DT and AT uses master pools of size 4.
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Parameter IT MPT DT AT

Prevalence d1 = 0.05 d2 = 0.10

Average number of tests 5008 1252 3578.2 3864.1

β10 = −2.1 Bias (CP95) -0.1548 (0.91) -1.0792 (0.73) 0.0062 (0.96) -0.0059 (0.96)

SSD (ESE) 0.8121 (0.3567) 2.2442 (0.7457) 0.0874 (0.0947) 0.0700 (0.0744)

β11 = 0.5 Bias (CP95) 0.3086 (0.76) 0.4721 (0.58) 0.0053 (0.95) 0.0024 (0.95)

SSD (ESE) 0.4574 (0.2237) 0.7977 (0.3271) 0.0454 (0.0458) 0.0407 (0.0406)

β12 = 0.5 Bias (CP95) 0.3704 (0.83) 1.0090 (0.69) 0.0079 (0.97) 0.0040 (0.96)

SSD (ESE) 0.7437 (0.2949) 1.9803 (0.6553) 0.0827 (0.0851) 0.0766 (0.0769)

β20 = −1.7 Bias (CP95) 0.0580 (0.94) -0.2887 (0.91) 0.0080 (0.97) -0.0013 (0.96)

SSD (ESE) 0.1555 (0.1597) 0.4013 (0.3138) 0.0533 (0.0561) 0.0482 (0.0490)

β21 = 0.5 Bias (CP95) 0.1356 (0.79) 0.2536 (0.65) 0.0020 (0.95) 0.0003 (0.93)

SSD (ESE) 0.0909 (0.1101) 0.2321 (0.1787) 0.0323 (0.0318) 0.0322 (0.0302)

β22 = 0.5 Bias (CP95) 0.1343 (0.88) 0.2946 (0.78) 0.0018 (0.96) -0.0004 (0.95)

SSD (ESE) 0.1145 (0.1296) 0.3244 (0.2623) 0.0570 (0.0586) 0.0549 (0.0564)

ρ = 0.3 Bias (CP95) 0.2173 (0.70) 0.1689 (0.69) -0.0106 (0.95) -0.0071 (0.95)

SSD (ESE) 0.1369 (0.1463) 0.3227 (0.2008) 0.0543 (0.0526) 0.0500 (0.0483)

Se(1):1 = 0.94 Bias (CP95) -0.3728 (0.72) -0.0218 (0.97) -0.0051 (0.95)

SSD (ESE) 0.1135 (0.1734) 0.0345 (0.0442) 0.0233 (0.0240)

Se(2):1 = 0.90 Bias (CP95) -0.3165 (0.76) -0.0142 (0.96) -0.0040 (0.94)

SSD (ESE) 0.1596 (0.1393) 0.0454 (0.0523) 0.0233 (0.0233)

Se(1):2 = 0.98 Bias (CP95) -0.2685 (0.55) -0.0101 (0.99) -0.0028 (0.97)

SSD (ESE) 0.0863 (0.1382) 0.0113 (0.0172) 0.0089 (0.0097)

Se(2):2 = 0.96 Bias (CP95) -0.1850 (0.81) -0.0114 (0.97) -0.0021 (0.95)

SSD (ESE) 0.0933 (0.1029) 0.0219 (0.0265) 0.0104 (0.0107)

Sp(1):1 = 0.93 Bias (CP95) -0.0053 (0.87) -0.0002 (0.95) -0.0003 (0.93)

SSD (ESE) 0.0090 (0.0089) 0.0074 (0.0077) 0.0093 (0.0089)

Sp(2):1 = 0.95 Bias (CP95) -0.0994 (0.59) 0.0031 (0.97) 0.0002 (0.95)

SSD (ESE) 0.1595 (0.0380) 0.0113 (0.0125) 0.0070 (0.0071)

Sp(1):2 = 0.97 Bias (CP95) -0.0059 (0.90) 0.0002 (0.97) -0.0010 (0.95)

SSD (ESE) 0.0091 (0.0096) 0.0059 (0.0064) 0.0073 (0.0075)

Sp(2):2 = 0.98 Bias (CP95) -0.0874 (0.78) 0.0019 (0.98) -0.0003 (0.97)

SSD (ESE) 0.0834 (0.0474) 0.0065 (0.0084) 0.0051 (0.0053)

Table B.2: Unknown assay accuracy probabilities Se(1):1 = 0.94, Se(2):1 = 0.90, Se(1):2 = 0.98,

Se(2):2 = 0.96 and Sp(1):1 = 0.93, Sp(2):1 = 0.95, Sp(1):2 = 0.97, Sp(2):2 = 0.98 (imperfect testing) and

unknown ρ = 0.3. Average bias of 500 posterior mean estimates (Bias), sample standard deviation

of 500 posterior mean estimates (SSD), average of 500 estimates of the posterior standard deviation

(ESE), and empirical coverage probability (CP95) of 95% equal-tail credible intervals are given for

each estimated parameter when possible. The total number of individuals is N = 5008 with disease

status generated by probit population model. Prevalence of each disease in the population are given.

For Dorfman testing (DT) and array testing (AT) the average number of tests are shown. Master

pool testing (MPT), DT and AT uses master pools of size 4.
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Parameter DT no order DT order AT no order AT order

Prevalence d1 = 0.05 d2 = 0.10

Average number of tests 3573.3 3573.3 3864.4 3864.4

β10 = −2.1 Bias (CP95) 0.0069 (0.96) 0.0135 (0.96) -0.0053 (0.95) -0.0028 (0.95)

SSD (ESE) 0.0922 (0.0950) 0.0920 (0.0952) 0.0735 (0.0742) 0.0735 (0.0743)

β11 = 0.5 Bias (CP95) 0.0041 (0.95) 0.0035 (0.94) 0.0017 (0.95) 0.0017 (0.95)

SSD (ESE) 0.0462 (0.0457) 0.0463 (0.0456) 0.0398 (0.0405) 0.0398 (0.0405)

β12 = 0.5 Bias (CP95) 0.0102 (0.95) 0.0095 (0.95) 0.0033 (0.95) 0.0032 (0.95)

SSD (ESE) 0.0861 (0.0851) 0.0856 (0.0849) 0.0762 (0.0767) 0.0762 (0.0769)

β20 = −1.7 Bias (CP95) 0.0025 (0.97) 0.0058 (0.97) -0.0046 (0.96) -0.0037 (0.97)

SSD (ESE) 0.0533 (0.0562) 0.0529 (0.0565) 0.0479 (0.0491) 0.0477 (0.0492)

β21 = 0.5 Bias (CP95) 0.0026 (0.96) 0.0033 (0.96) 0.0013 (0.95) 0.0017 (0.95)

SSD (ESE) 0.0313 (0.0319) 0.0313 (0.0319) 0.0295 (0.0303) 0.0296 (0.0303)

β22 = 0.5 Bias (CP95) 0.0071 (0.96) 0.0076 (0.96) 0.0041 (0.96) 0.0044 (0.96)

SSD (ESE) 0.0583 (0.0587) 0.0584 (0.0588) 0.0565 (0.0565) 0.0566 (0.0566)

ρ = 0.3 Bias (CP95) -0.0064 (0.95) -0.0090 (0.95) -0.0045 (0.95) -0.0068 (0.94)

SSD (ESE) 0.0518 (0.0525) 0.0518 (0.0525) 0.0485 (0.0482) 0.0487 (0.0482)

Se(1):1 = 0.94 Bias (CP95) -0.0213 (0.99) -0.0075 (0.99) -0.0050 (0.96) 0.0008 (0.97)

SSD (ESE) 0.0331 (0.0446) 0.0267 (0.0374) 0.0225 (0.0240) 0.0181 (0.0206)

Se(2):1 = 0.90 Bias (CP95) -0.0180 (0.97) -0.0376 (0.93) -0.0024 (0.94) -0.0073 (0.95)

SSD (ESE) 0.0469 (0.0526) 0.0399 (0.0485) 0.0232 (0.0232) 0.0208 (0.0222)

Se(1):2 = 0.98 Bias (CP95) -0.0091 (0.99) -0.0065 (0.99) -0.0033 (0.96) -0.0015 (0.96)

SSD (ESE) 0.0111 (0.0169) 0.0103 (0.0146) 0.0090 (0.0098) 0.0075 (0.0083)

Se(2):2 = 0.96 Bias (CP95) -0.0115 (0.96) -0.0199 (0.95) -0.0025 (0.93) -0.0048 (0.94)

SSD (ESE) 0.0226 (0.0264) 0.0184 (0.0246) 0.0109 (0.0107) 0.0098 (0.0103)

Sp(1):1 = 0.93 Bias (CP95) 0.0006 (0.95) 0.0014 (0.95) -0.0011 (0.96) -0.0013 (0.97)

SSD (ESE) 0.0079 (0.0077) 0.0074 (0.0074) 0.0088 (0.0089) 0.0080 (0.0085)

Sp(2):1 = 0.95 Bias (CP95) 0.0029 (0.98) 0.0018 (0.99) -0.0004 (0.95) 0.0001 (0.95)

SSD (ESE) 0.0107 (0.0126) 0.0088 (0.0107) 0.0069 (0.0071) 0.0065 (0.0069)

Sp(1):2 = 0.97 Bias (CP95) -0.0003 (0.95) -0.0004 (0.96) -0.0009 (0.95) -0.0022 (0.97)

SSD (ESE) 0.0064 (0.0064) 0.0058 (0.0061) 0.0076 (0.0075) 0.0064 (0.0070)

Sp(2):2 = 0.98 Bias (CP95) 0.0017 (0.99) 0.0026 (0.98) -0.0001 (0.97) 0.0009 (0.97)

SSD (ESE) 0.0064 (0.0084) 0.0052 (0.0069) 0.0050 (0.0053) 0.0046 (0.0049)

Table B.3: Unknown assay accuracy probabilities Se(1):1 = 0.94, Se(2):1 = 0.90, Se(1):2 = 0.98,

Se(2):2 = 0.96 and Sp(1):1 = 0.93, Sp(2):1 = 0.95, Sp(1):2 = 0.97, Sp(2):2 = 0.98 (imperfect testing)

and unknown ρ = 0.3. Assumes ordering for assay accuracies. Average bias of 500 posterior mean

estimates (Bias), sample standard deviation of 500 posterior mean estimates (SSD), average of 500

estimates of the posterior standard deviation (ESE), and empirical coverage probability (CP95)

of 95% equal-tail credible intervals are given for each estimated parameter when possible. The

total number of individuals is N = 5008 with disease status generated by probit population model.

Prevalence of each disease in the population are given. For Dorfman testing (DT) and array testing

(AT) the average number of tests are shown. DT and AT uses master pools of size 4.
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Parameter IT MPT DT AT

Prevalence d1 = 0.05 d2 = 0.10

Average number of tests 5008 1252 3566.3 3860.8

β10 = −3.3 Bias (CP95) -0.0845 (0.94) 0.1335 (0.82) -0.0261 (0.94) -0.0172 (0.91)

SSD (ESE) 0.2131 (0.2048) 0.2433 (0.2175) 0.1340 (0.1291) 0.1286 (0.1197)

β11 = 0.5 Bias (CP95) 0.0184 (0.93) -0.0512 (0.91) 0.0033 (0.94) 0.0047 (0.95)

SSD (ESE) 0.1092 (0.1076) 0.1436 (0.1378) 0.0799 (0.0779) 0.0739 (0.0725)

β12 = 0.5 Bias (CP95) 0.0366 (0.94) 0.0106 (0.93) 0.0148 (0.94) 0.0094 (0.92)

SSD (ESE) 0.2355 (0.2272) 0.3420 (0.3144) 0.1623 (0.1581) 0.1569 (0.1473)

β20 = −2.55 Bias (CP95) -0.0142 (0.93) 0.0322 (0.90) -0.0065 (0.93) -0.0057 (0.92)

SSD (ESE) 0.0970 (0.0934) 0.1488 (0.1431) 0.0834 (0.0819) 0.0811 (0.0793)

β21 = 0.5 Bias (CP95) 0.0049 (0.95) -0.0095 (0.92) 0.0029 (0.95) 0.0031 (0.94)

SSD (ESE) 0.0552 (0.0571) 0.0985 (0.0985) 0.0508 (0.0516) 0.0511 (0.0502)

β22 = 0.5 Bias (CP95) 0.0048 (0.94) 0.0085 (0.92) 0.0000 (0.95) -0.0019 (0.95)

SSD (ESE) 0.1140 (0.1129) 0.2256 (0.2111) 0.1032 (0.1024) 0.0997 (0.0996)

ρ = 0.3 Bias (CP95) 0.0023 (0.92) -0.0301 (0.92) -0.0009 (0.94) -0.0023 (0.95)

SSD (ESE) 0.0706 (0.0680) 0.0907 (0.0887) 0.0546 (0.0529) 0.0494 (0.0488)

Table B.4: Known assay accuracy probabilities Se(1):1 = 0.94, Se(2):1 = 0.90, Se(1):2 = 0.98, Se(2):2 =

0.96 and Sp(1):1 = 0.93, Sp(2):1 = 0.95, Sp(1):2 = 0.97, Sp(2):2 = 0.98 (imperfect testing) and unknown

ρ = 0.3. Average bias of 500 posterior mean estimates (Bias), sample standard deviation of 500

posterior mean estimates (SSD), average of 500 estimates of the posterior standard deviation (ESE),

and empirical coverage probability (CP95) of 95% equal-tail credible intervals are given for each

estimated parameter when possible. The total number of individuals is N = 5008 with disease

status generated by logistic population model. Prevalence of each disease in the population are

given. For Dorfman testing (DT) and array testing (AT) the average number of tests are shown.

Master pool testing (MPT), DT and AT uses master pools of size 4.
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Parameter IT MPT DT AT

Prevalence d1 = 0.05 d2 = 0.10

Average number of tests 5008 1252 3566.5 3856.4

β10 = −3.3 Bias (CP95) 0.1087 (0.88) -0.2441 (0.58) 0.0588 (0.93) -0.0088 (0.94)

SSD (ESE) 1.5659 (0.8944) 6.1371 (1.7864) 0.1626 (0.1849) 0.1360 (0.1321)

β11 = 0.5 Bias (CP95) 0.3321 (0.89) -0.2027 (0.55) -0.0036 (0.93) -0.0013 (0.93)

SSD (ESE) 0.9085 (0.3071) 3.9308 (1.0766) 0.0754 (0.0793) 0.0730 (0.0719)

β12 = 0.5 Bias (CP95) 0.4684 (0.91) 1.2416 (0.60) 0.0167 (0.95) 0.0080 (0.94)

SSD (ESE) 1.3174 (0.5461) 6.5378 (2.0586) 0.1640 (0.1601) 0.1545 (0.1463)

β20 = −2.55 Bias (CP95) 0.1405 (0.93) -2.3682 (0.67) 0.0276 (0.90) -0.0063 (0.94)

SSD (ESE) 0.4766 (0.4876) 4.8239 (1.4378) 0.0998 (0.0997) 0.0798 (0.0830)

β21 = 0.5 Bias (CP95) 0.2451 (0.85) 0.9965 (0.44) -0.0038 (0.94) -0.0020 (0.92)

SSD (ESE) 0.1919 (0.2057) 3.0176 (0.7572) 0.0543 (0.0521) 0.0536 (0.0503)

β22 = 0.5 Bias (CP95) 0.2638 (0.85) 2.1825 (0.62) 0.0028 (0.94) 0.0041 (0.95)

SSD (ESE) 0.2717 (0.2732) 4.7859 (1.4853) 0.1061 (0.1028) 0.0977 (0.0996)

ρ = 0.3 Bias (CP95) 0.3739 (0.36) 0.0335 (0.57) -0.0033 (0.95) -0.0047 (0.93)

SSD (ESE) 0.1323 (0.1536) 0.5005 (0.2745) 0.0531 (0.0537) 0.0510 (0.0490)

Se(1):1 = 0.94 Bias (CP95) -0.3958 (0.73) -0.0371 (0.98) -0.0054 (0.97)

SSD (ESE) 0.1217 (0.1994) 0.0375 (0.0552) 0.0233 (0.0262)

Se(2):1 = 0.90 Bias (CP95) -0.4526 (0.53) -0.0261 (0.97) -0.0025 (0.93)

SSD (ESE) 0.2145 (0.1198) 0.0514 (0.0641) 0.0268 (0.0255)

Se(1):2 = 0.98 Bias (CP95) -0.3536 (0.33) -0.0119 (0.99) -0.0031 (0.96)

SSD (ESE) 0.1093 (0.1730) 0.0104 (0.0189) 0.0094 (0.0102)

Se(2):2 = 0.96 Bias (CP95) -0.3228 (0.60) -0.0180 (0.95) -0.0018 (0.95)

SSD (ESE) 0.1817 (0.1112) 0.0268 (0.0315) 0.0108 (0.0112)

Sp(1):1 = 0.93 Bias (CP95) -0.0039 (0.88) 0.0010 (0.96) -0.0000 (0.95)

SSD (ESE) 0.0147 (0.0162) 0.0079 (0.0085) 0.0088 (0.0090)

Sp(2):1 = 0.95 Bias (CP95) -0.1945 (0.47) 0.0065 (0.98) 0.0001 (0.92)

SSD (ESE) 0.1891 (0.0806) 0.0115 (0.0148) 0.0081 (0.0076)

Sp(1):2 = 0.97 Bias (CP95) -0.0179 (0.83) 0.0014 (0.95) -0.0017 (0.94)

SSD (ESE) 0.0147 (0.0172) 0.0069 (0.0072) 0.0076 (0.0077)

Sp(2):2 = 0.98 Bias (CP95) -0.2084 (0.37) 0.0026 (0.99) -0.0003 (0.97)

SSD (ESE) 0.1518 (0.0639) 0.0057 (0.0090) 0.0051 (0.0056)

Table B.5: Unknown assay accuracy probabilities Se(1):1 = 0.94, Se(2):1 = 0.90, Se(1):2 = 0.98,

Se(2):2 = 0.96 and Sp(1):1 = 0.93, Sp(2):1 = 0.95, Sp(1):2 = 0.97, Sp(2):2 = 0.98 (imperfect testing) and

unknown ρ = 0.3. Average bias of 500 posterior mean estimates (Bias), sample standard deviation

of 500 posterior mean estimates (SSD), average of 500 estimates of the posterior standard deviation

(ESE), and empirical coverage probability (CP95) of 95% equal-tail credible intervals are given for

each estimated parameter when possible. The total number of individuals is N = 5008 with disease

status generated by logistic population model. Prevalence of each disease in the population are

given. For Dorfman testing (DT) and array testing (AT) the average number of tests are shown.

Master pool testing (MPT), DT and AT uses master pools of size 4.
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Parameter DT no order DT order AT no order AT order

Prevalence d1 = 0.05 d2 = 0.10

Average number of tests 3570.5 3570.5 3861.6 3861.6

β10 = −3.3 Bias (CP95) 0.0665 (0.92) 0.0828 (0.92) -0.0084 (0.94) -0.0019 (0.94)

SSD (ESE) 0.1667 (0.1848) 0.1670 (0.1882) 0.1377 (0.1330) 0.1388 (0.1324)

β11 = 0.5 Bias (CP95) 0.0035 (0.93) 0.0013 (0.93) 0.0019 (0.92) 0.0024 (0.94)

SSD (ESE) 0.0846 (0.0793) 0.0834 (0.0784) 0.0731 (0.0724) 0.0726 (0.0726)

β12 = 0.5 Bias (CP95) 0.0020 (0.93) -0.0014 (0.93) -0.0049 (0.94) -0.0039 (0.94)

SSD (ESE) 0.1655 (0.1582) 0.1641 (0.1575) 0.1521 (0.1472) 0.1524 (0.1470)

β20 = −2.55 Bias (CP95) 0.0259 (0.91) 0.0343 (0.90) -0.0060 (0.91) -0.0041 (0.91)

SSD (ESE) 0.0959 (0.1003) 0.0949 (0.1008) 0.0910 (0.0830) 0.0903 (0.0833)

β21 = 0.5 Bias (CP95) 0.0042 (0.92) 0.0044 (0.91) 0.0030 (0.92) 0.0034 (0.94)

SSD (ESE) 0.0553 (0.0515) 0.0548 (0.0519) 0.0531 (0.0505) 0.0539 (0.0504)

β22 = 0.5 Bias (CP95) 0.0066 (0.93) 0.0067 (0.91) 0.0067 (0.92) 0.0080 (0.92)

SSD (ESE) 0.1068 (0.1034) 0.1068 (0.1025) 0.1077 (0.1004) 0.1071 (0.0999)

ρ = 0.3 Bias (CP95) -0.0095 (0.92) -0.0117 (0.92) -0.0079 (0.91) -0.0098 (0.91)

SSD (ESE) 0.0554 (0.0535) 0.0554 (0.0536) 0.0534 (0.0494) 0.0546 (0.0497)

Se(1):1 = 0.94 Bias (CP95) -0.0377 (0.98) -0.0173 (1.00) -0.0040 (0.95) 0.0027 (0.98)

SSD (ESE) 0.0368 (0.0558) 0.0299 (0.0454) 0.0250 (0.0261) 0.0201 (0.0222)

Se(2):1 = 0.90 Bias (CP95) -0.0278 (0.98) -0.0547 (0.92) -0.0017 (0.94) -0.0080 (0.94)

SSD (ESE) 0.0528 (0.0652) 0.0454 (0.0590) 0.0265 (0.0256) 0.0238 (0.0245)

Se(1):2 = 0.98 Bias (CP95) -0.0108 (1.00) -0.0092 (0.98) -0.0035 (0.94) -0.0015 (0.96)

SSD (ESE) 0.0092 (0.0186) 0.0104 (0.0163) 0.0094 (0.0102) 0.0076 (0.0085)

Se(2):2 = 0.96 Bias (CP95) -0.0174 (0.97) -0.0263 (0.93) -0.0012 (0.94) -0.0039 (0.96)

SSD (ESE) 0.0269 (0.0314) 0.0212 (0.0287) 0.0111 (0.0111) 0.0098 (0.0106)

Sp(1):1 = 0.93 Bias (CP95) 0.0017 (0.96) 0.0032 (0.96) -0.0010 (0.95) -0.0009 (0.96)

SSD (ESE) 0.0078 (0.0086) 0.0074 (0.0081) 0.0089 (0.0091) 0.0082 (0.0086)

Sp(2):1 = 0.95 Bias (CP95) 0.0074 (0.97) 0.0048 (0.98) -0.0006 (0.94) 0.0001 (0.96)

SSD (ESE) 0.0111 (0.0149) 0.0092 (0.0123) 0.0077 (0.0076) 0.0073 (0.0074)

Sp(1):2 = 0.97 Bias (CP95) 0.0014 (0.95) 0.0013 (0.97) -0.0014 (0.94) -0.0026 (0.96)

SSD (ESE) 0.0066 (0.0072) 0.0060 (0.0067) 0.0079 (0.0077) 0.0068 (0.0072)

Sp(2):2 = 0.98 Bias (CP95) 0.0026 (0.99) 0.0039 (0.98) -0.0004 (0.93) 0.0008 (0.93)

SSD (ESE) 0.0054 (0.0090) 0.0047 (0.0074) 0.0057 (0.0056) 0.0052 (0.0052)

Table B.6: Unknown assay accuracy probabilities Se(1):1 = 0.94, Se(2):1 = 0.90, Se(1):2 = 0.98,

Se(2):2 = 0.96 and Sp(1):1 = 0.93, Sp(2):1 = 0.95, Sp(1):2 = 0.97, Sp(2):2 = 0.98 (imperfect testing) and

unknown ρ = 0.3. Average bias of 500 posterior mean estimates (Bias), sample standard deviation

of 500 posterior mean estimates (SSD), average of 500 estimates of the posterior standard deviation

(ESE), and empirical coverage probability (CP95) of 95% equal-tail credible intervals are given for

each estimated parameter when possible. The total number of individuals is N = 5008 with disease

status generated by logistic population model. Prevalence of each disease in the population are

given. For Dorfman testing (DT) and array testing (AT) the average number of tests are shown.

DT and AT uses master pools of size 4.
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Figure B.2: The patient age distribution for the 2014 Female Iowa SHL data.

Parameter # of Patients Race W Race B RNP RMP RC S ST SC SP

Count 13,862 11,205 1,506 6,215 1,769 703 3,873 9,546 731 120

Table B.7: Patient categorical covariates for 2014 Female Iowa SHL with positive encoding counts.

Race has three categories white (W), black (B) and other and is one-hot encoded. A positive

indicator or yes response to other risk factors are counted for each encoding.

Disease Specimen CT Swab CT Urine NG Swab NG Urine

Seα (TP) 192 197 126 116

Seβ (FN) 12 11 1 11

Spα (TN) 1154 1170 1335 1347

Spβ (FP) 28 13 17 10

Table B.8: The informed prior parameters for the beta distribution for sensitivity and specificity for

each disease and specimen type. The data counts are from the female urine and swab performance

tables for CT and NG found in the data sheet for the Aptima Combo 2 Assay [1].
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Probit Probit Logistic Logistic

No Se, Sp ordering Se, Sp ordering No Se, Sp ordering Se, Sp ordering

β1,0 ( Intercept ) Mean (ETI95) −0.744 (−0.931,−0.560) −0.736 (−0.922,−0.546) −1.089 (−1.324,−0.740) −1.077 (−1.296,−0.768 )

ESE (HPD95) 0.093 (−0.935,−0.566) 0.095 (−0.927,−0.554) 0.236 (−1.386,−0.897) 0.167 (−1.296,−0.768 )

β1,1 ( Age ) Mean (ETI95) −0.034 (−0.040,−0.028) −0.034 (−0.040,−0.028) −0.070 (−0.078,−0.058) −0.071 (−0.079,−0.061 )

ESE (HPD95) 0.003 (−0.040,−0.028) 0.003 (−0.040,−0.028) 0.005 (−0.081,−0.063) 0.006 (−0.079,−0.061 )

β1,2 ( Race W ) Mean (ETI95) −0.162 (−0.274,−0.049) −0.164 (−0.275,−0.056) −0.328 (−0.476,−0.134) −0.283 (−0.486,−0.171 )

ESE (HPD95) 0.057 (−0.271,−0.047) 0.057 (−0.279,−0.061) 0.082 (−0.514,−0.227) 0.090 (−0.486,−0.171 )

β1,3 ( Race B ) Mean (ETI95) 0.014 (−0.131, 0.155) 0.015 (−0.125, 0.155) −0.010 (−0.197, 0.228) 0.011 (−0.197, 0.188 )

ESE (HPD95) 0.072 (−0.130, 0.156) 0.072 (−0.133, 0.146) 0.104 (−0.244, 0.120) 0.119 (−0.197, 0.188 )

β1,4 ( RNP ) Mean (ETI95) 0.140 ( 0.074, 0.206) 0.140 ( 0.074, 0.204) 0.311 ( 0.174, 0.384) 0.251 ( 0.176, 0.372 )

ESE (HPD95) 0.034 ( 0.073, 0.204) 0.034 ( 0.074, 0.203) 0.076 ( 0.152, 0.328) 0.063 ( 0.176, 0.372 )

β1,5 ( RMP ) Mean (ETI95) 0.164 ( 0.072, 0.256) 0.164 ( 0.073, 0.257) 0.231 ( 0.163, 0.449) 0.321 ( 0.165, 0.426 )

ESE (HPD95) 0.047 ( 0.073, 0.256) 0.047 ( 0.075, 0.258) 0.077 ( 0.133, 0.376) 0.062 ( 0.165, 0.426 )

β1,6 ( RC ) Mean (ETI95) 0.732 ( 0.616, 0.846) 0.737 ( 0.622, 0.857) 1.349 ( 1.191, 1.518) 1.405 ( 1.204, 1.502 )

ESE (HPD95) 0.059 ( 0.615, 0.844) 0.059 ( 0.622, 0.857) 0.093 ( 1.150, 1.437) 0.087 ( 1.204, 1.502 )

β1,7 ( S ) Mean (ETI95) 0.132 ( 0.055, 0.207) 0.134 ( 0.055, 0.211) 0.261 ( 0.145, 0.380) 0.290 ( 0.150, 0.365 )

ESE (HPD95) 0.039 ( 0.057, 0.209) 0.039 ( 0.058, 0.213) 0.074 ( 0.114, 0.318) 0.063 ( 0.150, 0.365 )

β1,8 ( ST ) Mean (ETI95) 0.097 ( 0.005, 0.194) 0.091 (−0.004, 0.191) 0.265 ( 0.050, 0.353) 0.178 ( 0.050, 0.323 )

ESE (HPD95) 0.049 ( 0.004, 0.192) 0.050 (−0.007, 0.186) 0.149 ( 0.022, 0.270) 0.087 ( 0.050, 0.323 )

β1,9 ( SC ) Mean (ETI95) 0.087 (−0.054, 0.223) 0.086 (−0.049, 0.223) 0.130 (−0.036, 0.390) 0.249 (−0.020, 0.359 )

ESE (HPD95) 0.071 (−0.056, 0.219) 0.070 (−0.051, 0.219) 0.159 (−0.086, 0.283) 0.148 (−0.020, 0.359 )

β1,10 ( SP ) Mean (ETI95) 0.103 (−0.243, 0.426) 0.100 (−0.246, 0.419) 0.113 (−0.362, 0.678) 0.320 (−0.383, 0.602 )

ESE (HPD95) 0.171 (−0.216, 0.449) 0.173 (−0.238, 0.427) 0.257 (−0.479, 0.438) 0.301 (−0.383, 0.602 )

β2,0 ( Intercept ) Mean (ETI95) −2.501 (−2.903,−2.133) −2.511 (−2.919,−2.140) −4.786 (−5.841,−4.127) −4.900 (−5.768,−4.311 )

ESE (HPD95) 0.195 (−2.881,−2.120) 0.197 (−2.907,−2.131) 0.432 (−6.069,−4.535) 0.356 (−5.768,−4.311 )

β2,1 ( Age ) Mean (ETI95) −0.007 (−0.018, 0.003) −0.007 (−0.018, 0.003) −0.025 (−0.046, 0.001) −0.025 (−0.042,−0.002 )

ESE (HPD95) 0.005 (−0.018, 0.003) 0.005 (−0.018, 0.003) 0.010 (−0.051,−0.011) 0.017 (−0.042,−0.002 )

β2,2 ( Race W ) Mean (ETI95) −0.132 (−0.375, 0.126) −0.133 (−0.362, 0.119) −0.395 (−0.784, 0.221) −0.305 (−0.794, 0.148 )

ESE (HPD95) 0.128 (−0.380, 0.117) 0.123 (−0.369, 0.105) 0.232 (−0.880,−0.059) 0.313 (−0.794, 0.148 )

β2,3 ( Race B ) Mean (ETI95) 0.296 ( 0.020, 0.581) 0.298 ( 0.021, 0.587) 0.609 ( 0.119, 1.281) 0.592 ( 0.122, 1.191 )

ESE (HPD95) 0.145 ( 0.026, 0.585) 0.143 ( 0.009, 0.571) 0.321 ( 0.004, 0.971) 0.365 ( 0.122, 1.191 )

β2,4 ( RNP ) Mean (ETI95) 0.061 (−0.082, 0.206) 0.058 (−0.081, 0.203) 0.098 (−0.142, 0.482) 0.095 (−0.139, 0.450 )

ESE (HPD95) 0.074 (−0.090, 0.198) 0.073 (−0.079, 0.206) 0.194 (−0.224, 0.319) 0.288 (−0.100, 0.486 )

β2,5 ( RMP ) Mean (ETI95) 0.196 ( 0.002, 0.376) 0.185 (−0.020, 0.371) 0.310 ( 0.095, 0.877) 0.502 ( 0.062, 0.749 )

ESE (HPD95) 0.096 ( 0.004, 0.376) 0.099 (−0.016, 0.375) 0.338 ( 0.014, 0.678) 0.169 ( 0.062, 0.749 )

β2,6 ( RC ) Mean (ETI95) 0.923 ( 0.742, 1.103) 0.924 ( 0.743, 1.107) 2.163 ( 1.877, 2.561) 2.154 ( 1.864, 2.506 )

ESE (HPD95) 0.092 ( 0.737, 1.098) 0.092 ( 0.747, 1.109) 0.185 ( 1.799, 2.390) 0.122 ( 1.864, 2.506 )

β2,7 ( S ) Mean (ETI95) 0.137 (−0.024, 0.291) 0.146 (−0.012, 0.303) 0.203 (−0.030, 0.654) 0.503 ( 0.005, 0.641 )

ESE (HPD95) 0.081 (−0.030, 0.284) 0.081 (−0.006, 0.310) 0.186 (−0.105, 0.486) 0.178 ( 0.005, 0.641 )

β2,8 ( ST ) Mean (ETI95) 0.158 (−0.040, 0.380) 0.162 (−0.033, 0.386) 0.461 ( 0.031, 1.072) 0.358 ( 0.080, 0.937 )

ESE (HPD95) 0.106 (−0.049, 0.363) 0.107 (−0.037, 0.380) 0.240 (−0.052, 0.753) 0.187 ( 0.080, 0.937 )

β2,9 ( SC ) Mean (ETI95) 0.162 (−0.077, 0.388) 0.165 (−0.075, 0.395) 0.420 (−0.010, 0.878) 0.611 ( 0.008, 0.826 )

ESE (HPD95) 0.121 (−0.075, 0.390) 0.121 (−0.071, 0.397) 0.219 (−0.118, 0.661) 0.314 ( 0.008, 0.826 )

β2,10 ( SP ) Mean (ETI95) 0.185 (−0.409, 0.701) 0.183 (−0.406, 0.688) 0.265 (−0.809, 1.463) 0.448 (−0.684, 1.332 )

ESE (HPD95) 0.283 (−0.361, 0.743) 0.278 (−0.344, 0.743) 0.566 (−1.139, 0.991) 0.681 (−0.532, 1.433 )

Table B.9: The regression parameter estimates for all stratum of the Iowa test set using the Bayesian

probit and logistic model. The sensitivity and specificity used the Hologic data to inform beta

distributed priors. Ordering was optionally enforced with regards to the size of the pool. The β

parameters had a normal prior with zero mean and a diffuse covariance matrix. The parameter ρ

had a uniform prior. The posterior mean estimate, estimated posterior standard deviation, 95%

highest posterior density interval and 95% equal-tailed interval are given for each predictor for each

posterior distribution. The diseases are chlamydia (d = 1) and gonorrhea (d = 2).
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Probit Probit Logistic Logistic

No Se, Sp ordering Se, Sp ordering No Se, Sp ordering Se, Sp ordering

ρ Mean (ETI95) 0.484 ( 0.390, 0.566) 0.487 ( 0.406, 0.561) 0.399 ( 0.321, 0.480) 0.384 ( 0.321, 0.473 )

ESE (HPD95) 0.043 ( 0.400, 0.571) 0.040 ( 0.411, 0.565) 0.032 ( 0.303, 0.436) 0.040 ( 0.321, 0.473 )

Se(1),1(Swab, 1) Mean (ETI95) 0.985 ( 0.975, 0.992) 0.985 ( 0.977, 0.992) 0.985 ( 0.979, 0.992) 0.986 ( 0.980, 0.991 )

ESE (HPD95) 0.004 ( 0.977, 0.993) 0.004 ( 0.978, 0.993) 0.002 ( 0.977, 0.989) 0.004 ( 0.980, 0.991 )

Se(2),1(Swab, 2) Mean (ETI95) 0.943 ( 0.908, 0.970) 0.975 ( 0.965, 0.983) 0.949 ( 0.917, 0.966) 0.977 ( 0.968, 0.981 )

ESE (HPD95) 0.016 ( 0.911, 0.972) 0.005 ( 0.965, 0.984) 0.013 ( 0.917, 0.964) 0.004 ( 0.968, 0.981 )

Se(3),1(Swab, 3) Mean (ETI95) 0.943 ( 0.908, 0.970) 0.972 ( 0.962, 0.980) 0.949 ( 0.919, 0.968) 0.974 ( 0.965, 0.978 )

ESE (HPD95) 0.016 ( 0.911, 0.971) 0.005 ( 0.963, 0.981) 0.015 ( 0.912, 0.958) 0.004 ( 0.966, 0.979 )

Se(4),1(Swab, 4) Mean (ETI95) 0.986 ( 0.977, 0.993) 0.970 ( 0.959, 0.978) 0.986 ( 0.979, 0.992) 0.971 ( 0.962, 0.977 )

ESE (HPD95) 0.004 ( 0.978, 0.993) 0.005 ( 0.960, 0.979) 0.003 ( 0.979, 0.991) 0.004 ( 0.963, 0.977 )

Se(5),1(Urine, 1) Mean (ETI95) 0.940 ( 0.904, 0.968) 0.940 ( 0.905, 0.967) 0.936 ( 0.914, 0.964) 0.944 ( 0.916, 0.961 )

ESE (HPD95) 0.016 ( 0.908, 0.970) 0.016 ( 0.908, 0.968) 0.013 ( 0.914, 0.962) 0.014 ( 0.919, 0.964 )

Se(1),2(Swab, 1) Mean (ETI95) 0.944 ( 0.910, 0.971) 0.951 ( 0.927, 0.971) 0.941 ( 0.920, 0.968) 0.956 ( 0.934, 0.967 )

ESE (HPD95) 0.015 ( 0.912, 0.972) 0.011 ( 0.927, 0.971) 0.023 ( 0.920, 0.965) 0.009 ( 0.934, 0.967 )

Se(2),2(Swab, 2) Mean (ETI95) 0.907 ( 0.852, 0.951) 0.933 ( 0.908, 0.955) 0.912 ( 0.868, 0.945) 0.931 ( 0.915, 0.949 )

ESE (HPD95) 0.025 ( 0.857, 0.953) 0.012 ( 0.911, 0.957) 0.017 ( 0.858, 0.930) 0.010 ( 0.915, 0.949 )

Se(3),2(Swab, 3) Mean (ETI95) 0.907 ( 0.851, 0.951) 0.922 ( 0.895, 0.944) 0.913 ( 0.866, 0.946) 0.925 ( 0.903, 0.939 )

ESE (HPD95) 0.026 ( 0.854, 0.953) 0.013 ( 0.896, 0.945) 0.029 ( 0.855, 0.929) 0.011 ( 0.903, 0.939 )

Se(4),2(Swab, 4) Mean (ETI95) 0.945 ( 0.910, 0.971) 0.912 ( 0.882, 0.937) 0.949 ( 0.920, 0.968) 0.916 ( 0.891, 0.932 )

ESE (HPD95) 0.016 ( 0.913, 0.972) 0.014 ( 0.885, 0.938) 0.015 ( 0.913, 0.958) 0.010 ( 0.894, 0.934 )

Se(5),2(Urine, 1) Mean (ETI95) 0.985 ( 0.957, 0.998) 0.985 ( 0.957, 0.998) 0.987 ( 0.968, 0.997) 0.984 ( 0.968, 0.996 )

ESE (HPD95) 0.011 ( 0.963, 1.000) 0.011 ( 0.963, 1.000) 0.010 ( 0.968, 0.996) 0.012 ( 0.975, 0.999 )

Sp(1),1(Swab, 1) Mean (ETI95) 0.998 ( 0.997, 0.999) 0.995 ( 0.993, 0.996) 0.998 ( 0.997, 0.999) 0.995 ( 0.994, 0.996 )

ESE (HPD95) 0.001 ( 0.997, 0.999) 0.001 ( 0.993, 0.996) 0.000 ( 0.997, 0.999) 0.000 ( 0.994, 0.996 )

Sp(2),1(Swab, 2) Mean (ETI95) 0.988 ( 0.982, 0.994) 0.995 ( 0.994, 0.996) 0.990 ( 0.983, 0.993) 0.995 ( 0.994, 0.996 )

ESE (HPD95) 0.003 ( 0.982, 0.994) 0.001 ( 0.994, 0.996) 0.002 ( 0.982, 0.991) 0.001 ( 0.994, 0.996 )

Sp(3),1(Swab, 3) Mean (ETI95) 0.988 ( 0.981, 0.994) 0.995 ( 0.994, 0.997) 0.988 ( 0.983, 0.993) 0.995 ( 0.994, 0.996 )

ESE (HPD95) 0.003 ( 0.982, 0.994) 0.001 ( 0.994, 0.997) 0.003 ( 0.982, 0.991) 0.001 ( 0.994, 0.996 )

Sp(4),1(Swab, 4) Mean (ETI95) 0.995 ( 0.992, 0.997) 0.996 ( 0.995, 0.998) 0.995 ( 0.993, 0.997) 0.996 ( 0.995, 0.997 )

ESE (HPD95) 0.001 ( 0.992, 0.997) 0.001 ( 0.995, 0.998) 0.002 ( 0.992, 0.996) 0.001 ( 0.995, 0.997 )

Sp(5,1(Urine, 1) Mean (ETI95) 0.979 ( 0.972, 0.986) 0.979 ( 0.972, 0.986) 0.978 ( 0.974, 0.985) 0.979 ( 0.974, 0.984 )

ESE (HPD95) 0.004 ( 0.972, 0.987) 0.004 ( 0.972, 0.986) 0.004 ( 0.973, 0.983) 0.004 ( 0.974, 0.984 )

Sp(1),2(Swab, 1) Mean (ETI95) 0.999 ( 0.998, 0.999) 0.997 ( 0.996, 0.998) 0.999 ( 0.998, 0.999) 0.997 ( 0.996, 0.998 )

ESE (HPD95) 0.000 ( 0.998, 0.999) 0.000 ( 0.996, 0.998) 0.000 ( 0.998, 0.999) 0.000 ( 0.996, 0.998 )

Sp(2),2(Swab, 2) Mean (ETI95) 0.992 ( 0.987, 0.996) 0.997 ( 0.996, 0.998) 0.990 ( 0.988, 0.996) 0.997 ( 0.997, 0.998 )

ESE (HPD95) 0.002 ( 0.987, 0.996) 0.000 ( 0.996, 0.998) 0.002 ( 0.988, 0.995) 0.000 ( 0.997, 0.998 )

Sp(3),2(Swab, 3) Mean (ETI95) 0.992 ( 0.986, 0.996) 0.997 ( 0.997, 0.998) 0.992 ( 0.988, 0.995) 0.998 ( 0.997, 0.998 )

ESE (HPD95) 0.002 ( 0.987, 0.996) 0.000 ( 0.997, 0.998) 0.001 ( 0.988, 0.995) 0.000 ( 0.997, 0.998 )

Sp(4),2(Swab, 4) Mean (ETI95) 0.997 ( 0.995, 0.998) 0.998 ( 0.997, 0.999) 0.997 ( 0.995, 0.998) 0.998 ( 0.997, 0.999 )

ESE (HPD95) 0.001 ( 0.995, 0.998) 0.000 ( 0.997, 0.999) 0.001 ( 0.995, 0.998) 0.000 ( 0.997, 0.999 )

Sp(5,2(Urine, 1) Mean (ETI95) 0.994 ( 0.991, 0.996) 0.994 ( 0.991, 0.996) 0.993 ( 0.992, 0.996) 0.993 ( 0.992, 0.995 )

ESE (HPD95) 0.001 ( 0.991, 0.996) 0.001 ( 0.991, 0.996) 0.001 ( 0.991, 0.995) 0.001 ( 0.992, 0.996 )

Table B.10: The scale, sensitivity and specificity parameter estimates for all stratum of the Iowa

test set using the Bayesian probit and logistic model. The sensitivity and specificity used the

Hologic data to inform beta distributed priors. Ordering was optionally enforced with regards to

the size of the pool. With ordering, we used the following partial ordering corresponding to pool

size Se(1),d ≥ Se(2),d ≥ Se(3),d ≥ Se(4),d, and Sp(1),d ≤ Sp(2),d ≤ Sp(3),d ≤ Sp(4),d for d = 1, 2. The

β parameters had a normal prior with zero mean and a diffuse covariance matrix. The parameter

ρ had a uniform prior. The posterior mean estimate, estimated posterior standard deviation, 95%

highest posterior density interval and 95% equal-tailed interval are given for each predictor for each

posterior distribution. The diseases are chlamydia (d = 1) and gonorrhea (d = 2).
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Appendix C Introductory CUDA Code Repositories

C.1 Simple Program

The R script is found in the cuda examples github repository of pcubre with the file name

add vector.R. is the framework to interact between R and C/C++. We dynamically load the library,

provide a function signature to the library, and unload the library.

The CUDA program is found in the cuda examples github repository of pcubre under the

name add vector.cu. It has three parts: load headers, a device kernel, and a host program. The

device kernel finds its own index and then performs the appropriate addition based on the index.

The host program allocates memory on the device, copies data to the device, launches the kernel,

moves data back to the host and frees device memory.

C.2 Second Program

The CUDA program found cuda examples github repository of pcubre under the name

add vector 2.cu. is a small program using additional libraries. It has two parts: load headers, and

a host program. The host program is different from the earlier program as uses a handler to set up

the library and moves memory between the device and host via matrix and vector functions.
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C.3 Simulations

Vector Size Language Min 1-Quartile Mean Median 3-Quartile Max Evaluations

101 R 0.0003 0.0013 0.0022 0.0018 0.0033 0.0096 100

101 CUDA kernel 0.2494 0.2607 0.2946 0.2798 0.2884 1.5244 100

101 CUDA library 0.6227 0.6353 0.6499 0.6412 0.6465 1.3791 100

102 R 0.0005 0.0008 0.0033 0.0023 0.0061 0.0069 100

102 CUDA kernel 0.2464 0.2574 0.2729 0.2755 0.2849 0.3086 100

102 CUDA library 0.6274 0.6427 0.6660 0.6512 0.6570 1.7869 100

103 R 0.0027 0.0041 0.0057 0.0048 0.0071 0.0163 100

103 CUDA kernel 0.2632 0.2780 0.2912 0.2899 0.2995 0.5122 100

103 CUDA library 0.6441 0.6632 0.6770 0.6744 0.6868 0.8135 100

104 R 0.0233 0.0274 0.0378 0.0411 0.0466 0.0535 100

104 CUDA kernel 0.4018 0.5473 0.5387 0.5554 0.5673 0.6479 100

104 CUDA library 0.7702 0.9403 0.9504 0.9616 0.9690 2.2898 100

105 R 0.2279 0.2309 0.2599 0.2326 0.2364 1.4865 100

105 CUDA kernel 1.6316 1.6719 1.7667 1.6797 1.6879 3.0429 100

105 CUDA library 1.8702 1.8967 2.0438 1.9076 1.9263 4.1852 100

106 R 2.2768 2.3026 3.0070 2.3203 2.3871 25.8529 100

106 CUDA kernel 13.3620 13.7002 16.3052 14.5700 15.5582 44.3450 100

106 CUDA library 12.5322 12.9081 16.0420 13.8855 15.1548 44.3460 100

107 R 27.4952 28.2571 29.9086 29.3003 30.8850 54.2894 100

107 CUDA kernel 183.8623 187.8381 195.1081 190.4356 198.7771 239.1906 100

107 CUDA library 167.3054 171.2911 177.7724 175.2761 182.1034 211.5703 100

108 R 298.7344 299.1144 306.8947 299.7457 307.9471 539.6474 100

108 CUDA kernel 1846.0654 1871.2546 1898.4229 1894.1307 1913.5316 1986.4911 100

108 CUDA library 1690.8641 1719.6367 1748.3970 1744.5908 1773.2190 1842.2082 100

109 R 2989.5161 3395.3064 3935.1477 4158.1613 4428.6801 5648.8770 100

109 CUDA kernel 18425.2621 18504.2436 19187.3646 18687.5881 19391.7940 27757.4831 100

109 CUDA library 16905.1594 16985.2045 17439.2973 17152.4995 17788.5568 22584.4471 100

Table C.1: Microsecond timings for 100 evaluations of functions that add two vectors. The both

vectors have dimension 10i for i = 1, . . . , 9. The three functions where called from R and utilized

either R vector addition, the Nvidia cuBLAS library or a custom kernel implementation. They were

added on a Palmetto HPC node with a V100 and 64gb of memory.
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Vector Size Language Min 1-Quartile Mean Median 3-Quartile Max Evaluations

101 R 11.4250 13.0565 16.7017 15.5190 16.6115 59.8930 100

101 CUDA kernel 298.5260 308.6900 362.8955 329.5865 337.0180 3164.5810 100

101 CUDA library 784.3160 793.5230 834.7403 797.2535 803.4535 1800.4250 100

102 R 32.2200 36.2460 41.4432 41.8470 45.4565 64.0570 100

102 CUDA kernel 300.4320 310.9335 344.7658 329.2185 339.1205 1321.0960 100

102 CUDA library 759.4510 815.6710 862.9754 822.5620 832.9065 2050.0010 100

103 R 214.0760 376.3590 369.5524 387.1125 395.1855 411.3300 100

103 CUDA kernel 313.4450 336.1470 373.6682 346.4940 361.3675 1562.3670 100

103 CUDA library 814.8790 845.6790 910.5580 867.9925 889.1225 2259.6360 100

104 R 1936.4810 1946.0275 2091.2105 1950.0345 1953.5680 4431.4660 100

104 CUDA kernel 664.2980 686.7515 714.5434 698.6620 707.5625 1741.4890 100

104 CUDA library 927.5570 944.4415 996.3053 959.2785 976.0510 2134.8460 100

105 R 19197.7830 20373.8270 20649.0109 20391.0320 20425.0085 44907.5530 100

105 CUDA kernel 4579.0040 4612.6085 4768.5866 4655.5365 4793.0140 6053.4960 100

105 CUDA library 1997.4180 2196.2820 2430.7635 2327.2155 2512.5320 3996.6350 100

106 R 196482.0950 199265.1430 206804.1463 202277.2085 209849.7790 244242.4630 100

106 CUDA kernel 38997.2570 39674.5730 41981.3113 40738.0560 42383.2545 65577.7560 100

106 CUDA library 14832.3970 15278.4140 17632.3712 16187.4545 17009.1640 42120.4920 100

107 R 2534010.7790 2587059.1425 2601346.4783 2600044.5515 2613744.6295 2691286.0410 100

107 CUDA kernel 444139.5800 447063.4960 457329.8523 450491.4200 467333.3240 490134.9900 100

107 CUDA library 193418.9970 195866.3945 206724.4619 201731.5470 216095.8375 237053.7630 100

108 R 22992094.6780 23023521.5920 23479118.8865 23042662.8500 23075528.4960 33431615.0600 100

108 CUDA kernel 4431228.8120 4451962.2615 4478375.7105 4468270.3020 4472830.3840 5029489.3510 100

108 CUDA library 1907584.4630 1926139.1810 1963621.5519 1939344.4990 1947535.3540 2861840.3780 100

109 R 206015005.4990 209943465.9835 220938231.9035 215718359.0965 233421430.0020 273024560.9830 100

109 CUDA kernel 45252926.2350 47733750.0645 48583731.8736 48116913.2375 49526135.6595 53804125.3580 100

109 CUDA library 20002668.8770 22343227.2525 22643012.1014 22483137.1600 22928511.6130 26978105.7540 100

Table C.2: Microsecond timings for 100 evaluations of functions that sequentially adds two vectors

100 times. The both vectors have dimension 10i for i = 1, . . . , 9. The three functions where

called from R and utilized either R vector addition, the Nvidia cuBLAS library or a custom kernel

implementation. They were added on a Palmetto HPC node with a V100 and 64gb of memory.
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Figure C.1: Average times for 100 evaluations of functions that add two vectors in microseconds.
The axes scale is log10. The both vectors have dimension 10i for i = 1, . . . , 9. The three functions
where called from R and utilized either R vector addition, the Nvidia cuBLAS library or a custom
kernel implementation. They were added on a Palmetto HPC node with a V100 and 64gb of memory.
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Figure C.2: Average times for 100 evaluations of functions that sequentially add two vectors 100
times in microseconds. The axes scale is log10. The both vectors have dimension 10i for i = 1, . . . , 9.
The three functions where called from R and utilized either R vector addition, the Nvidia cuBLAS
library or a custom kernel implementation. They were added on a Palmetto HPC node with a V100
and 64gb of memory.
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Appendix D Descent Algorithms

In this section, we review the concepts of stochastic gradient descent and stochastic coor-

dinate descent for linear regression. The objective is to apply the concepts to simple and familiar

problems in order to grasp the methodology.

D.1 Linear Regression

Linear regression acts as a baseline for most modeling. It can be written as the following

forms:

argmin
β

1

2N
‖Y −Xβ‖22

= argmin
β

1

2N

N∑
i=1

(yi −
p∑
j=1

xijβj)
2, (1)

where N is the number of observations, p is the number of variables and yi is ith observation and

xij is the jth co-variate of the ith observation.

We can find the exact solution by taking partial derivatives with respect to β.

∂

∂βk

 1

2N

N∑
i=1

(yi −
p∑
j=1

xijβj)
2


= − 1

N

N∑
i=1

(yi −
p∑
j=1

xijβj)xik

= − 1

N
XT
k (Y −Xβ) (2)

or

∇(β) = − 1

N
XT (Y −Xβ) (3)

Thus we have a critical point βols for the solution to 0 = ∇(β).

0 = ∇(β) = − 1

N
XT (Y −Xβ)

XTXβ = XTY (the normal equation)
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βols = (XTX)−1XTY when XTX is invertible (4)

D.2 Stochastic Descent

Even though there can be an exact solution to linear regression, we can use other methods

to compare. One method that we present in two variations are stochastic methods. It was Robbins

and Monro [83] who first presented the idea to solve optimization problems stochastically. Their

methodology was to iterate to find the solution by xn+1 − xn = an(α − yn) where an is in `2, yn

is a random variable, α is a constant, and xn is a sequence heading to the solution. This method

essentially is a contraction that finds a solution, similar to other methods such as Newton’s method,

xn+1 − xn = ∇2F (xn)−1∇F (xn).

To distinguish between the two methods, we set the notation F (β) = 1
2N

∑N
i=1(yi −∑p

j=1 xijβj)
2 and Fi(β) = 1

2 (yi −
∑p
j=1 xijβj)

2. Thus we have F (β) = 1
N

∑N
i=1 Fi(β).

For Stochastic Gradient Descent (SGD) we have the equation

βt+1 = βt − ηt∇Fi(βt)

= βt − ηt(−xi(yi − xTi βt)) (5)

where ηt is called the learning rate. The learning rate is usually of the form ηt = Ct−c for some

constants C and c. Then we have the algorithm:

Result: argminβ F (β)
Set β = 0 ∈ Rp
while not converged do

Chose i ∈ {1, . . . , N} uniformly at random.
Let βt+1 ← βt − ηt(−xi(yi − xTi βt).

end

Moreover to add stability one can use the implicit SGD

βt+1 = βt − ηt∇Fi(βt+1)

= βt − ηt(−xi(yi − xTi βt+1))

= βt −
ηt

1 + ηt ‖xi‖22
(−xi(yi − xTi βt)). (6)

Additionally, an intermediate method uses mini-batch where one takes a subset of [N ],
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St ⊂ [N ], of size B = |St| such that

βt+1 = βt − ηt
1

B

∑
i∈St

∇Fi(βt)

= βt − ηt
1

B

∑
i∈St

(−xi(yi − xTi βt)) (7)

where B = N recovers the gradient descent.

For Stochastic Coordinate Descent (SCD) we have the equation

βk,t+1 = βk,t − αt(∇F (βt))k

= βk,t − αt(−
1

N
XT
k (Y −Xβ)) (8)

where αt is the step size. In the case of linear regression, a step size of 1 is sufficient. Then we have

the algorithm:

Result: argminβ F (β)
Set β = 0 ∈ Rp
while not converged do

Chose k ∈ {1, . . . , p} uniformly at random.
Let βk,t+1 ← βk,t − αt(− 1

NXT
k (Y −Xβ)).

end

D.3 LASSO

Popularized by Tibshirani [93] the least absolute shrinkage and selection operator (lasso)

helps automate variable selection. This section we will apply the lasso techniques on both SGD and

SCD in linear regression. First we have the new problem form:

argmin
β

1

2N
‖Y −Xβ‖22 + λ ‖β‖1

= argmin
β

1

2N

N∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
i=1

|βj | , (9)

for any λ. Let F (β) = 1
2N ‖Y −Xβ‖22, G(β) = λ ‖β‖1 and H(β) = F (β) +G(β).
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We can find the solution by taking partial derivatives with respect to β.

∂

∂βk

 1

2N

N∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |


= − 1

N

N∑
i=1

(yi −
p∑
j=1

xijβj)xik + λ sign(βk)

= − 1

N
XT
k (Y −Xβ) + λ sign(βk) (10)

or

∇H(β) = − 1

N
XT (Y −Xβ) + sign(β) (11)

where sign(·) ∈ {−1, 0, 1}p is a vector version of the sign function for inputs in Rp.

When solving our gradient descent problems β can change sign component wise and we

must allow for the possibility that a component is zero. Therefore we want to track the sign changes

at each iteration of βt+1 = βt − γt∇H(βt).

Solving for critical points,

0 = − 1

N

N∑
i=1

(yi −
p∑
j=1

xijβj)xik + λ sign(βk)

βk =
1
N

∑n
i=1 xik(yi −

∑p
j 6=k xijβj)− sign(βk)λ

1
N

∑N
i=1 x

2
ik

. (12)

However there are issues. Let ck = 1
N

∑n
i=1 xik(yi−

∑p
j 6=k xijβj). Then we have the following

conditions:

βk > 0 if and only if ck > λ, βk < 0 if and only if ck < −λ, βk = 0 if and only if ck ∈ [−λ, λ].

Thus we have the operator

Definition 2 (Soft Threshold Operator). Let ω ∈ Rd and τ be a vector where each component is

the same, sign(·) be the vector sign function, and (·)+ = max(·, 0). Then sτ (ω) = sign(ω)(|ω| − τ)+
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is the soft threshold operator with

sτ (ω) = sign(ω)(|ω| − τ)+ =


ω − τ ω > τ

ω + τ ω < −τ

0 ω ∈ [−τ, τ ]

Then

βk =
sλ

(
1
N

∑n
i=1 xik(yi −

∑p
j 6=k xijβj)

)
1
N

∑N
i=1 x

2
ik

. (13)

D.4 LASSO with Stochastic Descent

Incorporating stochastic descent in the SGD and SCD cases with lasso is a small modifica-

tion. In the case of SGD, we have the following conditions:

βk,t+1 > 0 if and only if βk,t − ηt∇Hi(βt) > 0

if and only if βk,t − ηt(−(yi −
p∑
j=1

xijβj,t)xik + λ) > 0

if and only if βk,t − ηt(−(yi −
p∑
j=1

xijβj,t)xik) > ηtλ,

βk,t+1 < 0 if and only if βk,t − ηt∇Hi(βt) < 0

if and only if βk,t − ηt(−(yi −
p∑
j=1

xijβj,t)xik − λ) < 0

if and only if βk,t − ηt(−(yi −
p∑
j=1

xijβj,t)xik) < −ηtλ,

βk,t+1 = 0 if and only if βk,t − ηt(−(yi −
p∑
j=1

xijβj,t)xik ∈ [−ηtλ, ηtλ]. (14)

The above equations can be rewritten as

βt+1 = sηtλ
(
βt − ηt(−(yi − xTi βt)xi)

)
. (15)

Thus we have the modified SGD algorithm:
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Result: argminβH(β)
Set β = 0 ∈ Rp
while not converged do

Chose i ∈ {1, . . . , N} uniformly at random.
Let βt+1 ← sηtλ

(
βt − ηt(−(yi − xTi βt)xi)

)
.

end

In the case of SCD, we have the following conditions:

βk,t+1 > 0 if and only if βk,t − αt∇H(βt)j > 0

if and only if βk,t − αt(−
1

N
XT
k (Y −Xβt) + λ) > 0

if and only if βk,t − αt(−
1

N
XT
k (Y −Xβt)) > ηtλ,

βk,t+1 < 0 if and only if βk,t − αt∇Hi(βt) < 0

if and only if βk,t − αt(−
1

N
XT
k (Y −Xβt)− λ) < 0

if and only if βk,t − αt(−
1

N
XT
k (Y −Xβt)) < −ηtλ,

βk,t+1 = 0 if and only if βk,t − αt(−
1

N
XT
k (Y −Xβt)) ∈ [−ηtλ, ηtλ]. (16)

The above equations can be rewritten as

βk,t+1 = sηtλ

(
βk,t − αt(−

1

N
XT
k (Y −Xβt))

)
. (17)

Thus we have the modified SCD algorithm

Result: argminβH(β)
Set β = 0 ∈ Rp
while not converged do

Chose k ∈ {1, . . . , p} uniformly at random.
Let βk,t+1 ← sαtλ

(
βk,t − αt(− 1

NXT
k (Y −Xβt))

)
.

end

In the R script found at github.com/pcubre/cuda_examples/blob/master/thesis_linear_

regression_sgd_scd_lasso.R, we have the simple program to compare the methods. The algo-

rithms stop when there is approximate convergence to the solution. For these examples convergence

is measured relative L2 error of 5% to the true solution or the solution from the R package glmnet.

The following violin plots exams the speed of evaluating 100 iterations
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Figure D.1: Timings for 100 iterations for stochastic descent methods for linear regression.
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Appendix E Horseeshoe Probit

In this Appendix, we provide supplemental proofs and lemmas used to in the derivation of

the Horseshoe probit model.

Definition 3 (Gamma Density). Let the shape and rate be α > 0 and β > 0 respectively. Let

x ∈ (0,∞). Then the density is

G(x|α, β) =
βα

Γ(α)
xα−1e−βx.

Definition 4 (Inverse Gamma Density). Let the shape and scale be α > 0 and β > 0 respectively.

Let x ∈ (0,∞). Then the density is

IG(x|α, β) =
βα

Γ(α)
x−α−1e−

β
x .

Lemma E.1. If X is generated by a random variable with distribution FX(x) and density fX(x),

then 1/X has distribution F 1
X

(x) = 1− FX( 1
x ) and density f 1

X
(x) = fX( 1

x ) 1
x2 .

Proof. We have that F 1
X

(x) = P ( 1
X < x) = P ( 1

x < X) = 1− FX( 1
x ). Therefore f 1

X
(x) = F ′1

X

(x) =

F ′X( 1
x ) 1

x2 = fX( 1
x ) 1

x2

Lemma E.2. If X ∼ G(α, β), then 1
X is IG(α, β).

Proof. Let X be generated by G(x|α, β) = βα

Γ(α)x
α−1e−βx. Then by the previous lemma 1/X is

generated by G( 1
x |α, β) 1

x2 = βα

Γ(α)x
−α−1e−

β
x = IG(α, β).

Lemma E.3. G(α, β) is G(α, 1)/β.

Proof. Let g(x) = x/β and X ∼ G(α, 1). Then g−1(x) = xβ and (g−1)′(x) = β. Thus fX/β(y) =

fX(xβ)β = G(α, β).

Definition 5 (Exponential Density). Let the rate be λ > 0 and x ∈ [0,∞). Then the density is

Exp(x|λ)λe−λx

and the distribution is

1− e−λx.
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Lemma E.4. G(α = 1, β = λ) is Exp(λ).

Proof. We have that G(x|α = 1, β = λ) = λ
1x

1−1e−λx = Exp(x|λ).

Definition 6 (Cauchy Density). Let the location and scale be x0 and γ > 0 respectively. Let

x ∈ (−∞,∞). Then the density is

f(x|x0, γ) =
1

πγ [1+( x−x0

γ )2]
.

Lemma E.5. Let C+(0, 1) be the truncated Cauchy distribution on R+. Then the density is

f(x|0, 1) =
2

π(1 + x2)
.

Proof. We find the integrating constant for the standard Cauchy distribution over the positive reals

is

∫∞
0

dx
1+x2

=tan−1(x)|∞0 =π

2 .

Lemma E.6. If X has distribution FX(x) and density fX(x), then
√
X has distribution F√X(x) =

FX(x2) and density f√X(x) = fX(x2)2x.

Proof. The proof is strait forward as F√X(x) = P (
√
X < x) = P (X < x2) = FX(x2) and f√X(x) =

F ′√
X

(x) = F ′X(x2)2x = fX(x2)2x.

Theorem E.7. Let
√
x ∼ C+(0, 1) be a truncated Cauchy distribution on R+. Then x|a ∼ IG(ν2 ,

ν
a ),

a ∼ IG( 1
2 ,

1
A2 ).

Proof.

f(x) =

∫
f(x|a)f(a)da

=

∫ (
ν
a

) ν
2

Γ
(
ν
2

)x− ν2−1e−
ν
a
x

(
1
A2

) 1
2

Γ
(

1
2

) a− 1
2−1e−

1
A2
a da

=
ν
ν
2

Γ
(
ν
2

)√
π
x−

ν
2−1

(
1

A2

) 1
2
∫
a−

ν+1
2 −1e−

1
a ( νx+ 1

A2 )da

=
ν
ν
2

Γ
(
ν
2

)√
π
x−

ν
2−1

(
1

A2

) 1
2 Γ

(
ν+1

2

)
(
ν
x + 1

A2

) ν+1
2

∫ (
ν
x + 1

A2

) ν+1
2

Γ
(
ν+1

2

) a−
ν+1
2 −1e−

1
a ( νx+ 1

A2 )da

=
Γ
(
ν+1

2

)
ν
ν
2

Γ
(
ν
2

)√
πA

1

x−
ν
2−1

1(
ν
x + 1

A2

) ν+1
2
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=
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πνA

(
1

1 + x
A2ν

) ν+1
2 1

x
1
2

Thus we let ν = 1 and A = 1. Then we have the density is f(x) = 1
π(1+x)2

1

x
1
2

. With the lemma we

have that
√
X ∼ C+(0, 1).

The below is Horseshoe Probit algorithm where we indication a parallel operation.
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Result: β(t)

for t iterations do
do in parallel

A← XTX.
end
do in parallel

A← A+ diag
(
1/λ2

1, . . . , 1/λ
2
p

)
/τ2.

end
do in parallel

Σ−1 ← DenseLinearSolver(Ax = I).
end
do in parallel

s ∼ N(0, 1) of size n.
end
do in parallel

Rs← TriangleSolver(Σ−1x = s)
end
do in parallel

B ← XT z(t−1)

end
do in parallel

µ(t) ← DenseLinearSolver(Σ−1µ = B)
end
do in parallel

β(t) ← Rs+ µ
end
do in parallel

Y ∗i ← (2Yi − 1).

Ti ∼ TN(0, 1, µ
(t)
i Y ∗i ,∞) by Li and Ghosh sampler.

z
(t)
i ← Y ∗i (Ti + µiY

∗
i )

end
do in parallel

U ∼ Uniform(0, 1) of size 2p+ 1.

λ−2
i ← − log(Ui)/(ν

−1
i + τ−2β

(t)
i /2).

ν−1 ← − log(Ui+p)/(1 + λ−2
i ).

ε← − log(U2p+1)/(1 + τ−2).
end
do in parallel

C ←
∑

(β
(t)
i )2/λ2

i .
τ2 ∼ Gamma((p+ 1)/2, 1) by Cheng sampler.
τ−2 ← (ε−1 + C/2)/τ2.

end

end
Algorithm E.1: Parallel Horseshoe Probit.
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Appendix F Horseshoe Probit Code Repositories

In this Appendix, we provide the implementation of the Horseshoe Probit in two forms:

R and R/Cuda. The code for the Horseshoe Probit in R at https://github.com/pcubre/cuda_

examples/blob/master/cuHo.R.

We then have the code for the Horseshoe Probit in Cuda and R First, we have the R

code to launch the CUDA at https://github.com/pcubre/cuda_examples/blob/master/cuH.R.

The CUDA code that launches the main process at https://github.com/pcubre/cuda_examples/

blob/master/cuHorse1.cu
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