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Abstract

This dissertation explored the idea of penalized method in estimating the autocorrelation

(ACF) and partial autocorrelation (PACF) in order to solve the problem that the sample (partial)

autocorrelation underestimates the magnitude of (partial) autocorrelation in stationary time series.

Although finite sample bias corrections can be found under specific assumed models, no general for-

mulae are available. We introduce a novel penalized M-estimator for (partial) autocorrelation, with

the penalty pushing the estimator toward a target selected from the data. This both encapsulates

and differs from previous attempts at penalized estimation for autocorrelation, which shrink the

estimator toward the target value of zero. Unlike the regression case, in which the least squares

estimator is unbiased and shrinkage is used to reduce mean squared error by introducing bias, in

the autocorrelation case the usual estimator has bias toward zero. The penalty can be chosen so

that the resulting estimator of autocorrelation is asymptotically normally distributed. Simulation

evidence indicates that the proposed estimators of (partial) autocorrelation tend to alleviate the

bias and reduce mean squared error compared with the traditional sample ACF/PACF, especially

when the time series has strong correlation.

One application of the penalized (partial) autocorrelation estimator is portmanteau tests

in time series. Target and tuning parameters can be selected to improve time series Portmanteau

tests–shrinking small magnitude correlations toward zero controls type I error, while increasing

larger magnitude correlations improves power. Specific data based choices for target and tuning

parameters are provided for general classes of time series goodness of fit tests. Asymptotic properties

of the proposed test statistics are obtained. Simulations show power is improved for all of the most

prevalent tests from the literature and the proposed methods are applied to data.

Another application of the penalized ACF/PACF considered in this dissertation is the opti-

mal linear prediction of time series. We exploit ideas from high-dimensional autocorrelation matrix
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estimation and use tapering and banding, as well as a regularized Durbin-Levinson algorithm to

derive new predictors that are based on the penalized correlation estimators. We show that the

proposed estimators reduce the error in linear prediction of times series. The performance of the

proposed methods are demonstrated on simulated data and applied to data.
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Chapter 1

Introduction

1.1 Autocorrelation and Partial Autocorrelation Function

1.1.1 Definitions and Background

The autocorrelation function (ACF) and the partial autocorrelation function (PACF) are

frequently used in time series analysis and forecasting. Autocorrelation measures the strength of

the linear relationship between time series values at different points say t and s, whereas partial

autocorrelation accounts for the information contained in measurements taken between time t and

time s. Estimation of the (partial) autocorrelation function is fundamental in time series analysis and

has applications in econometrics, finance, communications engineering, neuroscience, environmental

and ecological studies, etc. They are both employed in modeling stationary time series, especially

in fitting autoregressive moving average (ARMA) processes (Box and Jenkins, 1976).

Consider a stationary process {Xt}, the autocorrelation function (ACF) is defined as the

function whose value at lag h is

ρX(h) =
γX(h)

γX(0)
= Corr(Xt+h, Xt)

for all t, h ∈ Z. The autocovariance function (ACVF) is γ(h) = E[(Xt+h − µ)(Xt − µ)], where

µ = E[Xt]. Estimating the autocorrelation function is essential for determining the degree of serial

correlation in a time series. It also plays a important role in statistical inference in time series
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analysis. In much of time series analysis, it is common to fit constants to estimate the mean and

trend, and use the residuals to estimate autocorrelations. The most frequently used estimator is the

sample autocorrelation function (sample ACF), sometimes it is called conventional autocorrelation

function (Brockwell and Davis, 1991, 2002). Given the data x1, ..., xn, the estimator which we

typically use for γ(h) is the sample ACVF

γ̂(h) = n−1
n−h∑
t=1

(xt+h − x̄)(xt − x̄), 0 ≤ h ≤ n− 1

where x̄ = n−1
∑n

t=1 xt is the sample mean of {xt}. The sample ACF estimator is

ρ̂(h) =
γ̂(h)

γ̂(0)
=

n−h∑
t=1

(xt+h − x̄)(xt − x̄)

n∑
t=1

(xt − x̄)2
(1.1)

The autocorrelation function provides a useful measure to determine the degree of depen-

dence among the values of a time series at different times. It is an important tool for constructing an

appropriate mathematical model of the data, and optimal linear predictors for time series are deter-

mined by mean and autocorrelation parameters (Brockwell and Davis, 1991, 2002). For stationary

time series with mean µ, variance γ(0), and autocorrelation function ρ(h), consider using {X1, ..., Xn}

to predict Xn+h, h > 0. To find the best linear predictor (BLP): Pn(Xn+h) = α0 +
∑n

i=1 αiXi, we

minimize E[Xn+h − α0 −
∑n

i=1 αiXi]
2 and the best linear predictor is

Pn(Xn+h) = µ+

n∑
i=1

αi(Xn+1−i − µ) (1.2)

where αn satisfies Rnαn = ρn(h) and α0 = µ(1−
∑n

i=1 αi). Here the mean squared prediction error

is E[Xn+h − Pn(Xn+h)]
2 = γ(0)(1 − α′

nρn(h)) where αn = (α1, ..., αn)
′, Rn = [ρ(i − j)]ni,j=1, and

ρn(h) = (ρ(h), ..., ρ(h+ n− 1))′. Note that if {Yt} is the zero mean series defined by Yt = Xt − µ,

then Pn(Xn+h) = µ+ Pn(Yn+h).

The partial autocorrelation function (PACF) of {Xt} at lag h, denoted by α(h) is defined as

the coefficient of Xt in the best linear predictor for Xt+h in terms of Xt+h−1, ..., Xt. For the AR(p)

model Xt =
∑p

i=1 ϕiXt−i + ϵt, we have α(p) = ϕp and α(h) = 0, for h > p. Note the α(1) is the

same as the autocorrelation at lag one, but α(h) for h > 1 can be quite different from ρ(h). Another
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way to define the PACF at lag h is the correlation between Xt and Xt+h given (conditional on) the

intermediate variables Xt+1, ..., Xt+h−1. Therefore the PACF at lag h is

α(h) = ϕhh, h ≥ 1

where α(0) = 1 and ϕhh is the last component of ϕh = R−1
h ρh. For data {x1, ...xn}, the sample

partial autocorrelation function (sample PACF) is given by

α̂(h) = ϕ̂hh, h ≥ 1 (1.3)

and α̂(0) = 1, where ϕ̂hh is the last component of ϕ̂h = R̂
−1

h ρ̂h.

To determine the best linear predictor Pn(Xn+h) in terms of {X1, ..., Xn}, the direct ap-

proach requires the determination of a solution of n linear equations, which is difficult and time

consuming for large n. The Durbin-Levinson algorithm (Brockwell and Davis, 1991) processes the

autocovariance {γ(1), ..., γ(h)} or autocorrelation {ρ(1), ..., ρ(h)} that utilize the recursive idea for

h = 1, ..., n− 1 and computes the coefficients of the optimal one-step ahead predictor at time t > h.

The one-step predictor Pt(Xt+1) based on the h previous realizations could be used to simplify the

calculation of Pt+1(Xt+2). For zero-mean stationary time series {Xt}, Pt(Xt+1|Xt, . . . , Xt+1−h) =∑h
j=1 ϕhjXt+1−j , where ϕhh is the partial autocorrelation between Xt and Xt+h. The coefficients

ϕh1, ..., ϕhh can be computed recursively from the equations (Brockwell and Davis, 1991)

ϕhh = [γ(h)−
h−1∑
j=1

ϕh−1,jγ(h− j)]v−1
h−1, (1.4)

(ϕh1, ..., ϕh,h−1)
′ = (ϕh−1,1, ..., ϕh−1,h−1)

′ − ϕhh(ϕh−1,h−1, ..., ϕh−1,1)
′ (1.5)

vh = vh−1(1− ϕ2hh), ϕ11 = ρ(1) and v0 = γ(0). (1.6)

This algorithm provides the solution to the Yule-Walker system of equations (1.2) in O(h2) opera-

tions, by making efficient use of the Toeplitz structure of Rh+1.

Some recent papers focus on optimal linear prediction in a high-dimensional setting which

arises when the dimension h is of the same order of magnitude as the sample size, n. In this situation,

the sample autocovariance or autocorrelation matrix is not consistent (Wu and Pourahmadi, 2009).

To achieve consistency, Wu and Pourahmadi (2009) and Bickel and Gel (2011) proposed banded
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estimators of the sample autocovariance matrix and introduced a banding parameter l. The banded

estimator keeps the first l main diagonals of the sample autocoavarince matrix intact and sets the

remaining ones to zero. McMurry and Politis (2010) proposed a tapered and banded estimator in

which the 2l+1 subdiagonals of the sample autocovariance or autocorrelation matrix are maintained

the same and the remaining entries are shrunk to zero gradually. McMurry and Politis (2015)

introduced a consistent estimator of the n × n autocovariance matrix to construct an estimator

of the optimal, full-length coefficient vector. They developed the methodology for optimal linear

prediction of a stationary time series based on the resulting autocovariance estimates. However, the

tapered and banded matrices are not positive definite. Proietti and Giovannelli (2018) proposed a

Durbin-Levinson regularized estimator that receives as input the banded and tapered sample PACF.

This estimator is consistent and positive-definite.

Time series goodness of fit tests are primarily based on estimates of the ACF and PACF

of the residuals from a fitted model. Many authors have proposed goodness of fit tests to check

the adequacy of the fitted ARMA model. The commonly used test statistics are those proposed

by Box and Pierce (1970), Ljung and Box (1978), Li and Mak (1994), Monti (1994), Peña and

Rodŕıguez (2002, 2006), Mahdi and McLeod (2012) and Fisher and Gallagher (2012) using the sample

ACF or PACF. McLeod and Li (1983a) introduced a portmanteau test using the squared-residuals

autocorrelations for detecting nonlinearity (ARCH). To test for neglected nonlinearity in time series,

several improved portmanteau statistics have been proposed (Li and Mak, 1994; Rodŕıguez and

Ruiz, 2005; Peña and Rodŕıguez, 2002, 2006). Fisher and Gallagher (2012) proposed a portmanteau

statistics that are weighted sum of the squares of the sample autocorrelation coefficients. The

weighted tests are modified to check for nonlinearity and the adequacy of a fitted nonlinear model.

Simulation studies show that the weighted goodness of fit tests tend to have higher power than

traditional tests.

Also, when conducting inference with autocorrelated data, determining appropriate cor-

rections to standard errors is a common problem in time series econometrics (Berk, 1974; Newey

and West, 1987). In many cases the goal is to make inference in terms of regression parameters

without assuming a specific model for the correlation structure. The heteroscedasticity and auto-

correlation consistent (HAC) methods (Andrews, 1991; Müller, 2014) estimate the standard error

of the estimated mean (regression) parameters using a weighted linear combination of estimated

autocorrelations. HAC estimators considered perform poorly in an absolute sense with high amount
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of correlation. The procedures mentioned above are dependent on accurate estimates of the degree

of correlation. However, it has long been known that the sample ACF and PACF are biased and

tend to underestimate the magnitude of the correlation.

1.1.2 Estimators of Autocorrelation Function

In fact, several alternative estimators had been proposed and widely studied in the literature

(Bartlett, 1946; Kendall, 1954; Marriott and Pope, 1954; White, 1961; Andrews, 1993). Much of

the motivation behind these studies was to reduce the bias of the conventional estimator. The main

objective of this section is to describe six autocorrelation estimators, presenting the expressions for

their calculus. Note that the conventional (sample), ordinary least, modified , and Fuller estimators

have the general form for multi lags, while the others are estimators of lag-one autocorrelation

function.

Conventional estimator: the sample ACF, is widely used in most of the texts and in

social and behavioural science studies. It is also known as the Yule-Walker method for ARMA

models. The estimator is defined by the expression in (1.1). Kendall and Ord (1990) considered the

bias of conventional autocorrelation estimation under an AR(1) model. The bias is − (1+4ρ)
n for long

series, where ρ is the autoregressive parameter and n is the series length.

Least squares estimator: another widely used estimator is the least square estimator of

the autocorrelation. The ordinary least squares (LS) estimator can be expressed in the following

manner:

ρ̂LS(h) =

n−h∑
t=1

(Xt − X̄)(Xt+h − X̄)

n−h∑
t=1

(Xt − X̄)2
, h = 1, 2, ..., n− 1 (1.7)

When we consider the lag-one autocorrelation estimator, this is an estimator of the autoregressive

parameter in the first order autoregressive model, because ϕ1 = ρ(1). In general, if the model is

written as Xt = ϕhXt−h + ϵt, the least squares solution for the estimator of ϕh can be written as

(x
′
x)−1x

′
y, where x = {Xi − X̄}n−h

i=1 , y = {Xj − X̄}nj=h+1, and X̄ =
n∑

t=1
Xt/n. This estimator

has the same number of terms in the numerator and the denominator n− h. Huitema and McKean

(1991) also investigated the properties of least square estimator in an extensive Monte Carlo study.

They found that the least square estimator performs similarly to the conventional estimator, by

comparing the bias and mean squared errors. However, It is still highly biased, especially when
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|ρ(h)| tends to one.

Modified estimator: the modified estimator (Orcutt and Irwin, 1948) consists of a linear

modification of the conventional estimator. This estimator is proposed in the following formula,

r∗(h) =
n

n− h

n−h∑
t=1

(Xt − X̄)(Xt+h − X̄)

n∑
t=1

(Xt − X̄)2
(1.8)

It is defined as the sample ACF estimator multiplied by a term greater than one n
n−h ρ̂(h), where ρ̂(h)

is the sample ACF estimator at lag h and n is the sample size. The bias of the modified estimator

approximates − (1+3ρ)
n for long series, which is less than that of the conventional estimator. For the

conventional estimator, the number of terms in numerator is fewer than terms in denominator. This

discrepancy leads to conventional estimates that are closer to zero, which is called ”the squeezing

effect” (Huitema and McKean, 1991). So multiplying by some term greater than one will help to

remove the effect of the discrepancy in the number of terms.

Fuller’s estimator: Fuller (1976) attempted to correct the sample estimator’s bias, espe-

cially for short series. The Fuller estimator has the following expression:

rf (h) = ρ̂(h) +
n− h

(n− 1)2
(1− ρ̂(h)2). (1.9)

C statistic: Young (1941) proposed the C statistic to determine whether or not data series

are random. The C statistic is an estimator of lag-one autocorrelation (DeCarlo and Tryon, 1993).

It add a factor to ρ̂ to compensate the bias of the ρ(1) estimator as follows,

C = 1−

n−1∑
t=1

(Xt −Xt+1)
2

2
n∑

t=1
(Xt − X̄)2

= ρ̂(1) +
(Xn − X̄)2 + (X1 − X̄)2

2
n∑

t=1
(Xt − X̄)2

(1.10)

Translated estimator: Huitema and McKean (1991) proposed the r+1 estimator as follows,

r+1 = ρ̂(1) +
1

n
. (1.11)

Since it performs a translation over the sample estimator by adding a bias correction part n−1, it is

referred as the translated estimator. The bias of r+1 is approximately −(4ρ)/n.
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Additionally, there are other estimators, such as, exact estimator Kendall (1954), the σ-

recursive estimator, the maximum likelihood estimator (Kendall and Ord, 1990). Anderson (1942)

investigated a cyclic estimator for different lag autocorrelation. This estimator has one extra term in

the numerator (Xn − X̄)(Xn+1 − X̄), where Xn+1 = X1. Huitema and McKean (1994) investigated

two new autocorrelation estimators, rF1 and rF2, which are far less biased than the conventional

estimator, but their error variances increase. Arnau and Bono (2001) proposed a first-order ACF

estimator by analyzing the function of the empirical bias with the polynomial regression for different

sample sizes and correcting by the absolute value of the polynomial fitting model. Although bias

in autocorrelation estimation has been recognized and various alternative estimators have been pro-

posed in several decades, there is no estimator of autocorrelation that can solve the underestimation

issue of sample ACF for all positive and negative autocorrelations in stationary ARMA processes

with different lags. The limitations of autocorrelation estimators in the literature are: (1) most of

the studies only focus on the lag-one autocorrelation in time series; (2) the bias corrected estimators

perform better than sample ACF for positive correlations, but worse for negative ones; (3) these

estimators have higher mean squared error (MSE); (4) they are not positive definite estimators. Our

work will use penalized regression methods to estimate (partial) autocorrelation to reduce the bias

and improve the performance in terms of mean squared error for the stationary time series.

1.2 Penalized M-estimators

Penalized objective function estimation for regression models has been extensively studied

(Hoerl and Kennard, 1970; Tibshirani, 1996; Fan and Li, 2001; Zou, 2006). In the regression context

least squares provides unbiased estimators of the regression parameters. Penalizing the objective

function based on the distance of regression parameters from the origin introduces bias while reducing

variance, which can reduce MSE by ”shrinking” the parameter estimates toward zero. A general

form of the penalized least square estimator is to minimize

O(data;β) + ||Λβ||,

where O is an objective function, β = (β1, ...βp) are the regression parameters, Λ is a diagonal

matrix of non-negative of tuning parameters, and || · || denotes a distance between the regression

7



parameters β and the origin. Typically, the first part of the objective function is the sum of least

squares errors ||Y − Xβ||2, where X,Y are from data. The penalty function takes different forms

for different methods.

In the background of regularization, Hoerl and Kennard (1970) introduced the ridge regres-

sion which can provide parameter estimates with small variance for data and obtain better perfor-

mance in prediction. Ridge regression minimize an objective function containing a least squares

error term and a L2 penalty term which is defined as

||Λβ||Ridge = λ

p∑
i=1

β2
i

where λ ≥ 0 is the tuning parameter that controls the amount of shrinkage. It shrinks the regression

coefficients by imposing a penalty on their sizes. Our work will consider the L2 norm in the penalty

term.

The Lasso method is a L1 penalized least squares method which is proposed by Tibshirani

(1996). The penalty term of this method is referred to as a L1 penalty:

||Λβ||Lasso = λ

p∑
i=1

|βi|

where λ is a non-negative regularization parameter whose role is to balance prediction accuracy

and sparsity. When the L1 penalty is applied, many regression coefficients are shrunk to zero and

a few other regression coefficients are shrunk comparatively little. The Lasso method can be used

in the situation when there are more predictors p than subjects n in a study. It also corresponds

to a convex minimization procedure. The Elastic Net method (Zou, 2006) is proposed to improve

the Lasso when the predictors are highly correlated. To compensate for the correlation between

predictors, the penalty of the Elastic Net is

||Λβ||ElasticNet = λ1

p∑
i=1

|βi|+ λ2

p∑
i=1

β2
i

for given tuning parameters λ1 and λ2. The minimization problem is also convex. The penalty

tends to result in all small but nonzero regression coefficients. The Elastic Net estimator shares the

sparsity properties of the Lasso estimator and leads to more accurate prediction of the response than

Lasso estimator when predictors have high correlation. To compare among the estimators of OLS,
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ridge regression, Lasso, Elastic Net, it is well known that the ridge estimator is a constant scaled

OLS estimator, the Lasso estimator is a constant translated OLS estimator and elastic net includes

ridge type shrinkage and lasso type thresholding.

Fan and Li (2001) proposed the SCAD method in a general parametric framework for

efficient estimation and variable selection. This method applies a specially designed penalty function,

the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001; Fan, 2004). The continuous

penalty function is defined by

||Λβ||SCAD = λI(β ≤ λ) +
(aλ− β)+
(a− 1)λ

I(β > λ)

for some a > 2 and θ > 0, where a ≈ 3.7 as suggested by Bayesian risk analysis for SCAD. It has

been showed that the lasso doesn’t satisfy the oracle properties of a good procedure (Fan and Li,

2001). Zou (2006) proposed the adaptive lasso for simultaneous parameter estimation and variable

selection. The adaptive lasso enjoys the oracle properties using the adaptively weighed L1 penalty

which is

||Λβ||Adaptive = λ

p∑
i=1

ŵi|βi|

where w is a known weight vector with elements which are data-dependent. For example, we can

use β̂ols, and the weights ŵi = 1/|β̂i
γ
| with γ > 0. The adaptive lasso shrinkage also leads to a

near-minimax-optimal estimator and enjoys the computational advantage of the Lasso.

In the case of estimating autocorrelation, the finite sample bias is toward zero. To alleviate

this bias and reduce MSE, we propose penalizing correlation values based on the distance between

the correlation and a target ρτ . Consider a general penalized objective function:

O(data;ρ) + ||Λ(ρ− ρτ )||, (1.12)

where the penalty term moves the resulting penalized estimator toward the target. The target values

and tuning parameters can depend on both the data and the applications.
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1.3 Cross validation Methods with Dependent Data

Penalized least squares minimization requires us to choose tuning parameters. Cross vali-

dation (CV) (Stone, 1974; Arlot and Celisse, 2010) is a popular method for parameter estimation.

The fundamental principle of cross validation is to partition data once or multiple times in order to

estimate the risk of each algorithm: a portion of the data (the training sample) is used to train each

algorithm, while the remainder (the validation sample) is used to estimate the method’s risk. The

tuning parameter with the smallest estimated risk is then chosen by cross validation. When data are

identical and independent distributed (IID), the training sample is independent from the validation

sample. Then cross validation avoids overfitting compared to other methods. The popularity of the

cross validation method mostly comes from the common strategy which is data splitting.

When data are dependent, the cross validation methods break down since the validation

and training samples are no longer independent. It is often unclear which is the best way to evaluate

models in time series cases. Some studies demonstrate cases where traditional cross validation

fails in time series contexts (Hart and Wehrly, 1986; Chu and Marron, 1991). Opsomer et al.

(2001) showed that if the autocorrelation of the error is high, and the approach overfits the data,

traditional cross validation underestimates bandwidths in a kernel estimator regression framework.

The bandwidth selectors developed for independent observations will not produce good bandwidths

if the observations are dependent. For example, cross validation will provide small bandwidths if the

data are positively correlated, resulting in rough kernel estimations of the regression function. On

the other hand, cross validation will create large bandwidths if the data are negatively correlated,

resulting in oversmooth kernel estimations of the regression function. Therefore cross validation

must be modified. Several cross validation techniques for dependent data have been investigated

extensively in the literature (Györfi et al., 1989; Burman and Nolan, 1992; Burman et al., 1994;

Hyndman, 2014; Bergmeir et al., 2018). In what follows we briefly introduce some approaches.

h-block CV method: Let Y = {Y1, ..., Yn} be a time series. The traditional K-fold CV

randomly removes K numbers out of the vector Y . But the errors in the training and test tests

are correlated in the dependent setting. The h-block CV proposed by Burman et al. (1994) which

reduces the training set by removing the h observations preceding and following the observations

in the test set. h is a fixed fraction of the sample size. It excludes any observations that could be

considered dependent and only includes those that can be regarded independent. The limitation of
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this method is inefficient use of all of the available data. Since the h-block CV is not asymptotically

optimal. Racine (2000) proposed a modification of h-block method, named hv-block cross validation,

which is consistent for general stationary observations.

K-fold CV method for AR models: Although cross-validation is sometimes not valid

for time series cases, it is possible to use the traditional K-fold CV if the models considered have

uncorrelated errors for purely autoregressive models (Bergmeir et al., 2018). Consider an AR model

with a fixed lag order h, the embedded time series with order h can be written as a matrix as follows,



Y1 Y2 . . . Yh Yh+1

...
...

...
...

...

Yt−h Yt−h+1 . . . Yh−1 Yt
...

...
...

...
...

Yn−h Yn−h+1 . . . Yh−1 Yn


.

The matrix is used as the input of a regression where each row is the form of [X
′

t, Yt] and X
′

t =

(Yt, Yt−h+1, ..., Yh−1)
′
. Then the standard K-fold CV method can be applied. The data is randomly

partitioned into K groups. Let P = {P1, ..., Pk}, Pk is taken as test set and the remaining groups

Pk− = ∪j ̸=kPj are taken as training set. Usually we use k = 5, 10, n− h. The idea of this method

is to leave out the entire set of rows at t in the matrix rather than removing the h observations

to decrease the training set. They showed empirically that K-fold CV performs better than out of

sample evaluation and non-dependent CV method.

Leave-one-out CV (LOOCV) method: This method is a special case of the k-fold CV

method. With the fixed lag order of the model h, the number of fold is k = n − h which is the

number of rows in the embedded matrix. Each fold includes only one row of the matrix. While

LOOCV can be very time consuming to implement in general, it is fast to compute LOOCV for

linear models.

Time Series CV (tsCV) method: For time series forecasting, Hyndman (2014) intro-

duced time series cross-validation which is based on one-step forecasts. It fits a model to the data

Y1, ..., Yn and let Yt+1 be the test data for t = k + 1, ..., n − 1 where k is the minimum number of

observations needed for fitting the model. However, there are limitations using cross-validation for

time series, such as, inefficient use of the available data.
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In Chapter 2, we will use LOOCV to determine the optimal value for a tuning parameter

in the penalized estimation of autocorrelation, as its value regulates how much we ”shrink” to our

target correlations.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows.

In Chapter 2, we propose the estimation of autocorrelation and partial autocorrelation using

penalized regression methods for stationary time series. We prove the asymptotic properties of the

penalized autocorrelation estimator, and introduce a way to ensure positive definiteness in finite

samples. Some approaches to select tuning parameters will be discussed. With respect to bias and

mean square error, we conduct Monte Carlo study on the performance of the penalized ACF/PACF

estimator. The proposed methodology shows promising results for stationary ARMA(p, q) processes.

In Chapter 3, we review portmanteau statistics for stationary time series goodness of fit

testing, and then propose a novel penalized M-estimator of (partial) autocorrelation, with the target

and tuning parameters improving time series Portmanteau tests. We develop the penalized statistics

for fitted ARMA processes and detecting nonlinearity, and prove asymptotic properties. Simulations

show the type I error is controlled and power is improved for traditional goodness of fit tests. The

proposed methods are applied to real world time series data.

In Chapter 4, we proposed a penalized taper and banded estimator of (partial) autocorre-

lation matrices and a Durbin-Levinson regularized estimator of penalized autocorrelation matrices

for the stationary random process in prediction. A computational algorithm based on the proposed

estimators will be introduced. Simulation study and data application on the performance of the

proposed estimator for prediction will be conducted.

In Chapter 5, some general conclusions and discussion are provided.

Appendix A reviews the autocorrelation functions of AR(p), MA(q) and ARMA(p,q) mod-

els. Appendix B shows the function documentation for the R package ”PenalizedPortTest” from

Chapter 3.
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Chapter 2

Penalized (Partial) Autocorrelation

Function Estimation

2.1 Introduction

The estimation of the (partial) autocorrelation function plays a central role in time series

analysis. The autocorrelation and partial autocorrelation function (Brockwell and Davis, 1991,

2002) can be used for model identification, for fitting AR models using the Yule-Walker equations,

for time series goodness of fit (Box and Pierce, 1970; Ljung and Box, 1978; Fisher and Gallagher,

2012), and for predicting future time series values (Brockwell and Davis, 1991). The bias issue of

the conventional estimators, the sample ACF in (1.1) and PACF in (1.3), is well known. Back in

1948, Moran (1948) studied the theoretical bias in all serial correlations of a random series, which

is not necessarily normal. The bias using derivations from the sample mean is −(n − 1)−1 for

both circular and non circular definitions. Marriot and Pope (1954) pointed out two sources of

the bias. Firstly, the autocorrelation will be biased if the true mean of the series is known, except

when the corresponding autocorrelations are zero, since the estimate variance and correlation are

not independently distributed. The second source is that the mean is usually estimated from the

sample in practice and this introduces more bias.

In practice, several investigations (Huitema and McKean, 1991; DeCarlo and Tryon, 1993;

Arnau and Bono, 2001; Solanas et al., 2010) have carried out Monte Carlo simulation comparisons of
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autocorrelation estimators. Huitema and McKean (1991) pointed out that the conventional estimator

has larger empirical and theoretical bias at ρ = 0.9 and ρ = −0.9. The results are consistent with

Kendall’s (1954) conjecture that autocorrelation are probably satisfactory for values of ρ near zero,

but they are of doubtful validity for ρ near to unity.

Figure 2.1 illustrates the theoretical and empirical bias in sample ACF of autocorrelative co-

efficient for different model cases with one lag h = 1 or 2. Samples were generated from the ARMA

models with different sample sizes (n = 20, 50, 100) and true autocorrelation values [−0.99(0.05)0.99]

or [−0.5, 0.5] for MA(1) case. It is of interest to notice that the estimates are significantly highly

biased near boundaries, although the bias decreases as the sample size increases. The bias increases

with the magnitude of the correlation. Note that the bias values in AR(1) obtained with sample au-

tocorrelation are the same as the results of Huitema and McKean (1991) who used the International

Mathematical and Statistical Libraries (1989), and those of Arnau and Bono (2001) who used the

MATLAB program.

In this chapter, we consider estimating (partial) autocorrelation of stationary time series

using penalized techniques. Under some conditions, we show that the new estimator has the same

asymptotic distribution as the sample autocorrelation function. While bias correction formulas can

be calculated for specific assumed models, no general bias correction formulas are available. Unlike

the regression case, in which the least squares estimator is unbiased and shrinkage is used to reduce

mean squared error by introducing bias, in the autocorrelation case the usual estimator has bias

toward zero. We thus choose penalties that penalize for underestimating the magnitude of the

correlation and thereby reduce both bias and MSE.

The rest of the chapter is structured as follows. Section 2.2 introduces a new (partial)

autocorrelation estimator using penalized regression methods, and presents its asymptotic properties

of the proposed estimator and positive definiteness. The selection of the tuning parameters is

discussed in Section 2.3. Performance of proposed ACF/PACF estimators is assessed via simulation

for linear processes in Section 2.4. The results are more satisfactory for high and low correlations

and comparative with the sample ACF/PACF estimator for moderate correlations.
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Figure 2.1: Empirical and Theoretical Bias of Sample ACF
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2.2 Penalized Estimator and Properties

Let {Xt, t ∈ Z} be a stochastic process with mean µ which is described by

Xt − µ =

∞∑
j=0

ψjZt−j , t ∈ Z (2.1)

where {Zt} is iid with E[Zt] = 0, E|Zt|2 < ∞, and some sequence {ψj} such that
∑∞

j=0 |ψj | < ∞.

Such linear processes are also called moving-average (MA) processes. It is well known (Brockwell

and Davis, 1991) that the causal autoregressive (AR) or ARMA processes are representable as the

linear processes (MA processes) {Xt} defined in (2.1). In this work, our main objective is to propose

a new estimation of the autocorrelation function ρ (or partial autocorrelation function) under linear

process models and we consider only the solutions such as |ρ(h)| ≤ 1 for h ∈ Z+. For a time series

with expectation E[Xt] = µ in (2.1) and autocorrelation function

ρ(h) = E(Xt − µ)(Xt−h − µ)/E(Xt − µ)2 for h = 0,±1,±2, . . .

It is easy to see that

ρ(|i− j|) = argmin
ρ

E[(Xi − µ)− ρ(Xj − µ)]2, i, j ∈ Z (2.2)

Then based on this idea, one can set up a regression model as follows,

Xi − µ = ρ(|i− j|)(Xj − µ) + ϵij , i, j ∈ Z (2.3)

where ϵij are independent standard normal variables. Given the observations {x1, x2, ..., xn} from

the stationary time series {Xt} discussed above, we can estimate µ with x̄ = n−1
∑n

t=1 xt. A variety

of correlation estimators have been proposed in the literature and most of these can be associated

with an objective function which approximates (2.2), with the primary differences between the

estimators being how the boundary values (t near 1 and n) are handled. Many time series analysts

prefer the sample ACF, since the resulting function is guaranteed to be non-negative definite. The

sample ACF at lag h is calculated as (1.1). Also, the autocorrelation ρ(|i− j|) for 1 < i, j < n can

be obtained by the least square methods. Chang and Politis (2016) constructed an autoregressive
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scatterplot associated with the pairs {(xt − x̄, xt+h − x̄)} where x̄ = n−1
∑n

t=1 xt and run the linear

regression on the pairs to get a robust estimate of autocorrelation. Here, we can use different pairs

to generate typical estimators of the autocorrelation function.

Assume we have the augmented data x∗1, x
∗
2, ..., x

∗
n, x

∗
n+1, ..., x

∗
2n−1 where x∗t = xt for t =

1, 2, ..., n and x∗t = x̄ = n−1
∑n

t=1 xt for t = n+1, ..., 2n−1. The least square fit of the autocorrelation

at lag h, h < n can be obtained as

ρ̂LS(h) = argmin
ρ(h)

n−h∑
t=1

[(x∗t+h − x̄)− ρ(h)(x∗t − x̄)]2

where x̄ = x̄∗. Then, we have the least square (LS) estimator ρ̂LS(h)

ρ̂LS(h) =

n−h∑
t=1

(xt+h − x̄)(xt − x̄)

n−h∑
t=1

(xt − x̄)2
(2.4)

For the sample ACF, the estimator can be expressed as

ρ̂(h) = argmin
ρ(h)

n∑
t=1

[(x∗t+h − x̄)− ρ(h)(x∗t − x̄)]2

Then,

ρ̂(h) =

n−h∑
t=1

(xt+h − x̄)(xt − x̄)

n∑
t=1

(xt − x̄)2
(2.5)

Here, the least square estimator is almost identical to the sample ACF for h
n small (Chang and

Politis, 2016). In the stationary case, it makes sense to minimize the sum of squares of the forward

and backward errors (Ulrych and Clayton, 1976; Tuan, 1992) and yield a forward-backward least

square (FBLS) estimator ρ̂FBLS(h)

ρ̂FBLS(h) = argmin
ρ(h)

n−h∑
t=1

{
[(x∗t+h − x̄)− ρ(h)(x∗t − x̄)]2 + [(x∗t − x̄)− ρ(h)(x∗t+h − x̄)]2

}
(2.6)
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Then we have

ρ̂FBLS(h) =

n−h∑
t=1

(xt+h − x̄)(xt − x̄)

1
2

h∑
t=1

(xt − x̄)2 +
n−h∑

t=h+1

((xt − x̄)2 + 1
2

n∑
t=n−h+1

(xt − x̄)2
(2.7)

Noting that estimating ρ(h) for h < n by conventional method, least squares method or forward

backward least square method leads to a biased solution. We apply a penalized least squared

technique with constraints to the autocorrelation estimation problem.

In this work, we extend the model in (2.3) to a more general form that can represent the

sample ACF, the least square ACF and the forward-backward ACF. We propose a new estimator ρ̃

of the autocorrelation ρ = (ρ(1), ..., ρ(n− 1))
′
as, let Yt = xt − x̄ which is a time series with sample

mean of zero, and the corresponding augmented data set is Y ∗
t where Y ∗

t = Yt for t = 1, 2, ..., n and

Y ∗
t = 0 for t = n+ 1, ..., 2n− 1. A general version of the penalized model can be expressed as

ρ̃ = argmin
ρ

n−1∑
h=1

{
cf

n−h∑
t=1

[
Y ∗
t+h − ρ(h)Y ∗

t

]2
+ cs

n∑
t=n−h+1

[
Y ∗
t+h − ρ(h)Y ∗

t

]2
+ cb

n−h∑
t=1

[
Y ∗
t − ρ(h)Y ∗

t+h

]2}
+

n−1∑
h=1

vhpλ(ρ(h))

(2.8)

on {ρ : |ρ(h)| ≤ 1, h = 1, ...n − 1}, where 0 ≤ cf , cs, cb ≤ 1. We introduce the generalized penalty

||Λ(ρ − ρτ )|| =
n−1∑
h=1

vhpλ(ρ(h)) where vh is the function of {Yt} and pλ(ρ(h)) are the penalty

functions which depend on λ. The specific choices of cf , cs, cb and vh are given in Table 2.1. Other

unpenalized ACF estimators might be expressed similarly. In this work, we consider the above three

ACF estimators.

Table 2.1: Weights for the three types of ACF estimators in model (2.8)

Unpenalized Estimators ρ̂∗ cf cs cb vh

ρ̂ 1 1 0
∑n

t=1 Y
2
t

ρ̂LS 1 0 0
∑n−h

t=1 Y
2
t

ρ̂FBLS 1 0 1 1
2

∑h
t=1 Y

2
t +

∑n−h
t=h+1 Y

2
t + 1

2

∑n
t=n−h+1 Y

2
t

The unpenalized estimate is obtained via minimizing the whole first term which is equivalent

to ||ρ̂∗(h) − ρ(h)|| where ρ̂∗(h) ∈ {ρ̂(h), ρ̂LS(h), ρ̂FBLS(h)}. Thus the form of the penalized least
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square is

Oh(ρ(h)|Y ∗
1 , . . . , Y

∗
n ) =

∑
i,j

(Y ∗
j − Y ∗

i )
2 +

n−1∑
h=1

(ρ̂∗(h)− ρ(h))2vh +

h∑
t=1

vhpλ(ρ(h))

where 1 ≤ i < j ≤ n for ρ̂∗ = ρ̂LS , 1 ≤ i < j ≤ n + h for ρ̂∗ = ρ̂ and 1 ≤ i, j ≤ n for ρ̂∗ = ρ̂FBLS .

The minimization problem of the above equation is equivalent to minimizing componentwise. This

leads us to consider the following least square problem for each lag h = 1, ..., n− 1

(ρ̂∗(h)− ρ(h))vh + vhpλ(ρ(h))

The penalty functions pλ(.) are not necessarily the same for all h. For example, we may wish to

shrink ρ to zero for weak correlation and increase ρ for moderate and strong correlation. We assume

that there is a target autocorrelation ρτ to achieve our goal. So pλ(.) may be allowed to depend on

ρτ and is defined by

||Λ(ρ− ρτ )|| = pλ(ρ(h)) =

S∑
s=1

λsn,hps(ρ(h)) =

S∑
s=1

λsn,h(|ρτ,s| − sgn(ρ̂∗(h))ρ(h))2 (2.9)

Here we assume the proposed estimator has the same sign as the unpenalized ACF estimator ρ̂∗ and

λn,h ≥ 0. For example, we consider S = 3 and the target function is given by

|ρτ (h)| =


0 |ρ̂∗(h)| ≤ ℓh

f(|ρ̂∗(h)|) ℓn < |ρ̂∗(h)| ≤ uh

1 |ρ̂∗(h)| > uh

(2.10)

for some thresholds uh ≥ ℓn > 0. The proposed method works best for a strongly correlated time

series when ρτ = ±1. Moreover, |ρ| shrinks to zero when ρτ = 0. Since ρ̂∗(h) will be in one of the

intervals, we can assume λsn,h = λn,h for s = 1, .., S which depends on n and h.
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The general form of penalized autocorrelation estimator can be written as,

ρ̃(h) =

n−h∑
t=1

YtYt+h + sgn(ρ̂∗(h))|ρτ (h)|λhvh

vh + λhvh

=
ρ̂∗(h) + sgn(ρ̂∗(h))|ρτ (h)|λh

1 + λh

= whsgn(ρ̂
∗(h))|ρτ (h)|+ (1− wh)ρ̂

∗(h) (2.11)

where wh = λh

1+λh
, ρ̂∗ ∈ {ρ̂, ρ̂LS , ρ̂FBLS} and the corresponding vh as in table (2.1). ρ̂, ρ̂LS and

ρ̂FBLS are special cases of the penalized estimator when wh = 0. The estimator is a convex

combination of the unpenalized estimator and the target:

ρ̃(h) = whρτ (h) + (1− wh)ρ̂(h), (2.12)

Remark 1. Assume the size n is fixed, then we have

1. |ρ̃(h)| decreases in λh when ρ̂(h) ≤ ℓh; |ρ̃(h)| increases in λh when ρ̂(h) > ℓn and ρτ ̸= ρ̂∗.

2. ρ̃(h) is bounded, i.e., lim
λ→∞

|ρ̃(h)| = 1.

The following theorem states the asymptotic normality of the proposed estimator. We use ⇒ to

denote convergence in distribution.

Theorem 1 Let ρ̂′ = (ρ̂(1), . . . , ρ̂(h)), ρ̃′ = (ρ̃(1), . . . , ρ̃(h)), ρ′
τ = (ρτ (1), . . . , ρτ (h)) be a vector

of target values, λ′ = (λ1, . . . , λh) be a vector of tuning parameters, and an(ρ̂ − ρ) converge in

distribution to L. If an(ρ̂(h)−ρτ (h)) → 0 in probability, then an(ρ̃−ρ) converges to L in distribution.

Remark 2. If {Xt} is the stationary process Xt = µ+
∑∞

j=−∞ ψjZt−j , {Zt} ∼ IID(0, σ2), where∑∞
j=−∞ |ψj | <∞ and E[Zt]

4 <∞, and
√
nλh → 0 as n→ ∞, then for each h ∈ {1, 2, ..., n− 1} and

ρ̃(h) defined in (2.11), we have

√
n(ρ̃(h)− ρ(h)) ⇒ N(0, υh) (2.13)

with the variance υh =
∑∞

k=−∞(ρ(k + h) + ρ(k − h) − 2ρ(h)ρ(k)))2 which is given by Bartlett’s

formula (Brockwell and Davis, 1991).
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Proof: Since

an(ρ̃(h)− ρ(h)) = an(ρ̃(h)− ρ̂(h)) + an(ρ̂(h)− ρ(h))

To show that an(ρ̂(h)− ρ̃(h)) → 0 in probability, we have

an(ρ̂(h)− ρ̃(h)) = an(ρ̂(h)− whρτ (h)− (1− wh)ρ̂(h))

= anwh(ρ̂(h)− ρτ (h))

→ 0 in probability,

the last line follows from the fact that wh is bounded and the assumption of the theorem. Hence,

the proposed estimator of the autocorrelation function has the same asymptotic distribution as the

sample ACF. To see Remark 2, we can use the consistency and asymptotic normality of the sample

autocorrelation.

Non-negative Definite There is no guarantee that the penalized estimator will provide a non-

negative definite solution. However, there are several techniques which can modify the estimated

function to be non-negative definite (McMurry and Politis, 2010, 2015). One such technique is

described as follows. For 1 ≤ m < n, let R̂ be the m×m matrix with ρ̂(i− j) in position i, j, and

R̃ be the corresponding symmetric matrix with ρ̂λ(i− j) in position i, j. Both of these matrices are

symmetric and real valued, and have a spectral representation with m real valued eigenvalues and

m orthogonal eigenvectors vectors each with norm 1. For any symmetric real valued matrix A and

unit norm vector v,

vtAv ≥ γ1,

where γ1 is the smallest eigenvalue of A, and the minimum is attained when v is taken to be the

eigenvector corresponding to γ1. Denote the smallest eigenvalue of R̂ as α and let the corresponding

normalized eigenvector be ê. Assume the estimated variance γ̂(0) > 0, then R̂ is positive definite

and α > 0. Now let ẽ be the normalized eigenvector for R̃ corresponding to smallest eigenvalue β.

If β ≥ 0, then R̃ is non-negative definite. If β < 0, we can create a new penalized M-estimator as

follows. let

ρ̃NND(h) = cρ̂(h) + (1− c)ρ̃(h),
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with c = |β|/(α + |β|) and h = |i − j|. This new convex combination of the original penalized

M-estimator and the sample ACF is non-negative definite. To see this let R̃NND be the m × m

symmetric matrix with i, j element ρ̃NND(i− j). Without loss of generality, let m× 1 vector v have

unit norm. Using well known properties of quadratic forms in symmetric matrices,

v′R̃NNDv ≥ cα+ (1− c)β = 0.

Note that the lower bound of zero on the right hand side can only be attained if ê = ±ẽ. Simulations

indicate that this procedure only slightly changes the penalized estimator.

Penalized partial correlation estimator The problem of estimating partial correlations can

also be formulated in terms of M-estimation. The sample PACF is typically found through use of

the Durbin-Levinson algorithm (Brockwell and Davis, 1991). Development similar to that for the

ordinary correlation function results in an estimator of the form

α̃(h) = whατ (h) + (1− wh)α̂(h),

where α̂(h) is the ordinary sample PACF, ατ (h) is a target value and wh = λh/(1+λh). The target

values and tuning parameters can be selected using the sample PACF. Another way to obtain the

penalized PACF is decriced in Section 2.4.3 which is calculated from the penalized ACF.

2.3 Selection of Tuning Parameters

In this section, we illustrate how to choose the target and weight using some plug-in ap-

proaches and cross-validation (CV).

2.3.1 Plug-in Approaches

Since the bias of the sample correlation increases with the magnitude of correlation, we

select the target value based on the sample ACF. We also mimic the idea of adaptive LASSO and

allow the penalty λ to depend on the sample ACF as well. The chosen penalties result in a penalized

least squares (PLS) estimator which reduces both bias and mean squared error relative to the usual

estimator.
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Partition Method Applying the adaptive lasso and the weights are data-dependent (Zou, 2006),

we choose the adaptive weights ŵ = 1/|β̂(ols)|. Similarly, we consider the weight as,

ŵh =
1

|ρ̂(h)|2
I(|ρ̂(h)| ≤ ℓh) +

1

(1− |ρ̂(h)|)2
I(|ρ̂(h)| > ℓh)

for some ℓh > 0. The resulting solution is given by, h = 0, 1, ..., n− 1,

ρ̃part(h) =
ρ̂(h) + λhsgn(ρ̂(h))|ρτ (h)|

1 + λh
(2.14)

where λh = λ

(1−|ρ̂(h)|)2
∑n−h

t=1 Y 2
t

I(|ρ̂(h)| > ℓh) +
λ

|ρ̂(h)|2
∑n−h

t=1 Y 2
t

I(|ρ̂(h)| ≤ ℓh). The thresholds ℓh and

uh depend on the series. In practice, we could learn the thresholding rule from data. Based on the

asymptotic normality and 95% confidence interval, the choice of ℓh = 2/
√
n and uh = 1 − 2/

√
n

works well for h = 1.

We consider λ = f(n) which is a function of series size n. We generated a partition of

interval |ρ| ∈ [0, 1] such as, 0 < an = 2√
n
< 2√

n
+ 1

n < 2√
n
+ 2

n < ... < bn = 1 − 2√
n
< 1. So our

target correlations are

ρτ (h) =



0 |ρ̂(h)| ≤ 2/
√
n

2√
n
+ 1

n 2/
√
n < |ρ̂(h)| ≤ 2/

√
n+ 1/n

...
...

1 |ρ̂(h)| > 1− 2/
√
n

(2.15)

To make the solution continuous, we have

λh =


(ℓh−|ρ̂(h)|)

(n−h)|ρ̂(h)|2Y 2
t

|ρ̂(h)| ≤ ℓh

(|ρ̂(h)|−ℓh)|ρτ (h)|
(n−h)|1−ρ̂(h)|2Y 2

t

|ρ̂(h)| > ℓh.

Bias Correction Method The empirical bias of sample ACF in stationary time series shows that

the true correlation with unbiased estimates is less than zero. For example, ρ(bias = 0) ≈ −0.25 at

h = 1 and n = 100 for AR(1) models. Using this empirical rule, we shrink correlation to zero at

ρ(bias = 0) and choose a continuous and soft target function to correct the bias. Let c = ρ(bias = 0),
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ℓh = 1/
√
n− h and uh = 1− 2.5/

√
n− h, the target is

ρτ (h) =


(ρ̂(h) +

√
1− 2

1+exp{3(ρ̂(h)−c)} )
2+|ρ̂(h)|

n |ρ̂(h)| ≤ uh

max{ρ̂(h) + 1
n , 1} |ρ̂(h)| > uh

(2.16)

and

λh =
(ℓh − |ρ̂(h)− c|)2(1 + sgn(ρ̂(h))ρ̂(h)2)

1− |ρ̂(h)|

then the penalized estimator using bias corrected method is,

ρ̃bc(h) =
ρ̂(h) + λhsgn(ρ̂(h))|ρτ (h)|

1 + λh
(2.17)

Figure 2.2 shows the two target functions for partition and bias correction methods. The ρ are

restricted between (0, 1) and the target plot is the same for negative correlations.

(a) Partition (b) Bias Correction

Figure 2.2: (a) ρτ for partition estimator (b) ρτ for bias correction estimator as functions of ρ̂(1)
with n = 100, and h = 1.

2.3.2 Cross Validation

Bergmeir et al. (2018) introduced K-fold cross validation for dependent data, where the train-

ing and test set are the entire rows in the embedded matrix (see Section 1.3). To avoid the underuse

of the sample, we use leave-one-out CV, so that each fold consists of only one row of the matrix, and
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calculate the penalized estimator based on the forward and backward ACF. The objective function

is given in (2.6). Given the time series y1, y2, ..., yn with zero mean, we can set up the training set

and test set of the pairs for lag h = 1, ..., n−1 as follows, For t = 1, 2, ..., n, Select the pair {yt, yt+h}

at time t for the test set, and use the pairs at times 1, ..., t−1, t+1, ..., n to fit the model. The train-

ing set includes {y1, yh+1}, {y2, yh+2},... {yt−1, yt+h−1}, {NA,NA},{yt+1, yt+h+1},,... {yn−h, yn}.

Then we can calculate the ρ̂−t using the sample autocorrelation function without the value at time

t. For h < (n− 1)/2,

CV−t =


(yt − ρ̃−t(h)yt+h)

2 t = 1, ..., h

(yt+h − ρ̃−t(h)yt)
2 + (yt − ρ̃−t(h)yt+h)

2 t = h+1, ..., n-h

(yt − ρ̃−t(h)yt−h)
2 t = n-h+1, ..., n

and for h ≥ (n− 1)/2,

CV−t =


(yt − ρ̃−t(h)yt+h)

2 t = 1, ..., n-h

0 t = n-h+1, ..., h

(yt − ρ̃−t(h)yt−h)
2 t = h+1, ..., n

Then the CV calculated by

CV =
1

2(n− h)

n∑
t=1

CV−t

For the CV method, we use the bias correction target in (2.16) and let wh range from 0 to 1 by

0.001 for all cases. Let the selected weight be w∗
h, the penalized estimator using leave one out cross

validation technique is

ρ̃cv(h) = w∗
hρτ (h) + (1− w∗

h)ρ̂(h) (2.18)

The limitation of leave-one-out cross-validation can be very time consuming to implement in general,

but it is fast to compute CV for linear models.
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2.4 Simulations

In order to examine the finite performance of the proposed estimator, a simulation study

is conducted to generate stationary time series from different ARMA models. In this section, the

proposed estimator ρ̃ is compared with the sample ACF ρ̂ in three ways: bias, the ratio of two mean

squared errors (MSE) and the distribution of the ratios of two squared errors in one replicate.

• Empirical Bias: the absolute empirical bias is calculated by, for h = 1, 2, ..., n− 1

Biasρ̂ = |ρ̂(h)− ρ(h)|

Biasρ̃ = |ρ̃(h)− ρ(h)|

• Ratio of two mean squared errors (RMSE): the ratio of two MSEs is to compare the

performance of proposed estimator and sample autocorrelation estimator. Let MSEρ̂ be the

mean squared error of the conventional estimator and MSEρ̃ be the mean squared error of

the proposed estimator, we define RMSE 1 to be the ratio of MSEρ̂ and MSEρ̃ as follows,

assume each simulation is repeated M times,

MSEρ̂ =
1

M

M∑
m=1

h∑
i=1

(
ρ̂(i)(m) − ρ(i)

)2

MSEρ̃ =
1

M

M∑
m=1

h∑
i=1

(
ρ̃(i)(m) − ρ(i)

)2

RMSE =
MSEρ̂

MSEρ̃

Both MSEρ̂ and MSEρ̃ can range from 0 to ∞ and are negatively-oriented scores, which

means the lower MSE values the better. In other words, if RMSE values are larger than one,

it means that the proposed estimator ρ̃ is better than ρ̂.

• Ratios of two squared errors (RSE): we are also interested in the distribution of the

ratios of two squared errors (SE)). Let SE
(m)
ρ̂ be the squared error of the sample estimator in

m-th replicate and SE
(m)
ρ̃ be the squared error of the proposed estimator, we define RSE to

be the ratios of SE
(m)
ρ̂ with respect to SE

(m)
ρ̃ in m-th replicate as follows, for m = 1, ...,M

1the RMSE here is not the root mean squared error.
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and h = 1, 2, ..., n− 1

SE
(m)
ρ̂ =

h∑
i=1

(
ρ̂(i)(m) − ρ(i)

)2

SE
(m)
ρ̃ =

h∑
i=1

(
ρ̃(i)(m) − ρ(i)

)2

RSE(m) =
SE

(m)
ρ̂

SE
(m)
ρ̃

2.4.1 Study on ARMA Models with Single Lags

This section presents a variety of simulation experiments. Typically, to model the correlation

structure of a time series, we use a stationary and invertible ARMA process of the form

Xt =

p∑
i=1

ϕiXt−i +

q∑
j=1

θjϵt−j + ϵt

where p is the AR order, q is the MA order, and {ϵt} is an iid innovation sequence of zero mean

random variables with finite variance. In this section, we conduct simulation study using various

time series models with length n = 50, 100, 500. Three different simulated examples are considered

as follows,

AR(1): Xt = ϕXt−1+ ϵt. ϕ = −0.99,−0.95,−0.90,−0.70,−0.50,−0.30,−0.10, 0.10, 0.30, 0.50,

0.70, 0.90, 0.95, 0.99.

AR(2): Xt = ϕ1Xt−1 +ϕ2Xt−2 + ϵt. ϕ1 = 0 and ϕ2 = −0.99,−0.95,−0.90,−0.70,−0.10, 0.10,

0.70, 0.90, 0.95, 0.99.

MA(1): Xt = θϵt−1 + ϵt. ρ(1) = θ/(1 + θ2) to get ρ(1) = −0.50,−0.4,−0.10, 0.10, 0.4, 0.50.

ARMA(1,1): Xt = ϕXt−1 + θϵt−1 + ϵt. θ = ±1 and ϕ = 2ρ(1)∓ 1 to get ρ(1) = −0.99,−0.95,

− 0.90,−0.70,−0.10, 0.10, 0.70, 0.90, 0.95, 0.99.

Throughout this section, we assume {ϵt} follows the standard normal distribution. Each simulation

was repeated 1000 times. Note the autocorrelation of AR(p), MA(q) and ARMA(p,q) are reviewed

in Appendix A.

Table 2.2 shows the the empirical bias, RMSE and RSE for AR(1) model at lag one. Three

penalized ACF estimators ρ̃part, ρ̃bc and ρ̃cv are compared with the sample ACF. All three proposed
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estimators alleviates the underestimation of sample acf for all correlation cases and different sample

sizes. When the correlation is strong, all three penalized estimators attain smaller mean squared

error compared with the sample ACF, especially the penalized estimator via cross validation. For

example, the ratio of MSE of ρ̂ and ρ̃cv is 1.906 when ρ(1) = 0.95 and n = 50. Last three columns

in Table 2.2 show the proportion that RSE > 1 in 1000 replicates. For strong and moderate

correlations, over 50% times that penalized estimators performs better than the sample ACF. Also,

the proposed estimators are competitive with the sample ACF in mean squared error. The estimator

ρ̃part outperforms the sample ACF when the correlation is weak for all ρ(1) and n cases. Compare

to the penalized estimators using partition method and cross validation, the estimator using bias

correction method is more consistent, even though its ratio of MSEs are not as good as the ones

for ρ̃part and ρ̃cv. The worst case in RMSE for ρ̃bc is 0.980 for n = 100 which is very close to

sample ACF. For lag one case, we are also interested in comparing the proposed estimator with

other alternative estimators other than sample ACF. Although some estimators such as C statistic,

Translated ACF estimator performs better than sample ACF with moderate positive correlation,

these performs worse for all negative correlations compared with the sample ACF and penalized

ACF estimators in terms of bias and MSE. Figure 2.3 shows the comparison between least square

estimator (ols) and penalized estimator using CV in absolute bias when n = 100 and h = 1 for

AR(1) model. We can see that the proposed estimator generally outperforms the sample ACF and

least square estimator in terms of both bias and MSE.

(a) Bias (b) RMSE

Figure 2.3: (a) Absolute bias of penalized, sample and least squares estimates (b) Ratio of mean
squared errors of penalized and least squares estimates with respect to sample ACF under AR(1)
model, n = 100, and h = 1.
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Table 2.2: Absolute Bias (Bias), ratio of mean squared errors (RMSE) and ratio of squared errors
(RSE) for AR(1) models, n = 50, 100, 500, h = 1

Bias RMSE Pr{RSE > 1}

n ρ(1) ρ̂ ρ̃part ρ̃bc ρ̃cv ρ̃part ρ̃bc ρ̃cv ρ̃part ρ̃bc ρ̃cv

50 -0.99 0.047 0.013 0.033 0.006 2.323 1.345 2.983 0.860 0.989 0.879

-0.95 0.051 0.013 0.036 0.005 1.702 1.136 1.614 0.624 0.694 0.556

-0.90 0.050 0.012 0.037 0.009 1.322 1.033 1.254 0.587 0.664 0.598

-0.70 0.029 0.002 0.025 0.003 0.924 0.979 0.920 0.498 0.544 0.498

-0.50 0.019 0.005 0.019 0.008 0.916 0.990 0.959 0.469 0.508 0.504

-0.30 0.003 0.001 0.003 0.003 0.873 0.998 0.965 0.170 0.271 0.476

-0.10 0.019 0.013 0.019 0.021 1.009 0.999 0.958 0.513 0.285 0.250

0.10 0.025 0.028 0.024 0.023 1.048 0.988 0.963 0.567 0.537 0.246

0.30 0.049 0.049 0.046 0.044 0.897 0.978 0.987 0.204 0.625 0.587

0.50 0.064 0.052 0.054 0.052 0.975 0.969 1.007 0.589 0.662 0.661

0.70 0.081 0.058 0.055 0.052 1.094 1.068 1.059 0.717 0.710 0.693

0.90 0.107 0.065 0.063 0.050 1.459 1.384 1.589 0.820 0.801 0.772

0.95 0.119 0.074 0.072 0.055 1.560 1.527 1.906 0.921 0.894 0.884

0.99 0.135 0.086 0.086 0.065 1.713 1.668 2.288 1.000 1.000 1.000

100 -0.99 0.026 0.008 0.016 0.002 2.130 1.392 2.632 0.746 0.839 0.685

-0.95 0.028 0.006 0.019 0.001 1.527 1.150 1.372 0.613 0.675 0.554

-0.90 0.024 0.004 0.017 0.002 1.253 1.033 1.115 0.557 0.612 0.557

-0.70 0.014 0.001 0.012 0.000 1.003 0.986 0.955 0.489 0.529 0.490

-0.50 0.011 0.003 0.011 0.006 0.979 0.993 0.993 0.525 0.536 0.529

-0.30 0.002 0.006 0.002 0.005 0.945 0.999 0.980 0.385 0.336 0.473

-0.10 0.006 0.003 0.006 0.007 0.978 0.999 0.979 0.381 0.350 0.332

0.10 0.011 0.014 0.010 0.010 1.000 0.994 0.982 0.432 0.521 0.334

0.30 0.019 0.017 0.018 0.016 0.954 0.984 0.986 0.428 0.561 0.554

0.50 0.025 0.017 0.019 0.017 0.994 0.980 0.978 0.582 0.590 0.587

0.70 0.039 0.027 0.025 0.025 1.070 1.026 1.053 0.636 0.627 0.640

0.90 0.053 0.031 0.028 0.022 1.389 1.376 1.554 0.745 0.723 0.704

0.95 0.057 0.031 0.030 0.022 1.643 1.574 1.998 0.831 0.810 0.794

0.99 0.069 0.041 0.041 0.030 1.812 1.747 2.441 0.996 0.996 0.999

500 -0.99 0.006 0.001 0.003 0.001 1.692 1.261 1.771 0.559 0.633 0.509

-0.95 0.005 0.000 0.003 0.001 1.119 1.063 1.133 0.516 0.552 0.493

-0.90 0.005 0.000 0.003 0.001 1.049 1.022 1.018 0.540 0.559 0.521

-0.70 0.003 0.000 0.002 0.001 0.996 0.996 0.983 0.509 0.522 0.507

-0.50 0.002 0.001 0.002 0.001 0.998 0.998 1.002 0.508 0.518 0.512

-0.30 0.003 0.004 0.003 0.004 0.992 1.000 0.996 0.460 0.455 0.464

-0.10 0.001 0.001 0.001 0.001 0.972 1.000 0.996 0.163 0.498 0.479

0.10 0.001 0.001 0.001 0.001 0.968 0.998 0.996 0.157 0.506 0.490

0.30 0.005 0.004 0.005 0.005 0.997 0.997 1.000 0.537 0.540 0.539

0.50 0.005 0.003 0.004 0.003 1.000 0.996 0.989 0.520 0.524 0.521

0.70 0.007 0.005 0.005 0.003 1.016 1.014 1.021 0.570 0.569 0.563

0.90 0.010 0.005 0.004 0.003 1.148 1.132 1.138 0.602 0.600 0.589

0.95 0.010 0.005 0.004 0.003 1.288 1.294 1.395 0.654 0.645 0.631

0.99 0.013 0.007 0.007 0.005 1.714 1.690 2.119 0.864 0.832 0.810
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Table 2.3: Absolute Bias (Bias), ratio of mean squared errors (RMSE) for ARMA(1,1) and MA(1)
models, n = 50, 100, 500, h = 1

Bias RMSE

Model n ρ(1) ρ̂ ρ̃part ρ̃bc ρ̃cv ρ̃part ρ̃bc ρ̃cv

ARMA(1,1) 50 -0.99 0.038 0.009 0.024 0.002 2.390 1.601 5.241

-0.9 0.032 0.003 0.018 0.003 1.332 1.037 1.193

-0.7 0.029 0.007 0.026 0.007 1.031 0.986 0.974

-0.1 0.002 0.007 0.002 0.000 1.025 0.998 0.960

0.1 0.021 0.025 0.021 0.020 1.051 0.989 0.963

0.7 0.052 0.032 0.023 0.023 1.100 1.069 1.032

0.9 0.061 0.028 0.013 0.003 1.615 1.639 1.924

0.99 0.084 0.041 0.033 0.015 2.283 2.727 6.347

100 -0.99 0.021 0.005 0.011 0.004 2.395 1.704 4.582

-0.9 0.020 0.004 0.012 0.000 1.275 1.070 1.077

-0.7 0.016 0.006 0.014 0.004 1.035 0.994 0.979

-0.1 0.000 0.004 0.000 0.001 0.978 0.999 0.981

0.1 0.013 0.017 0.013 0.012 0.972 0.995 0.982

0.7 0.021 0.010 0.006 0.008 1.065 0.987 1.026

0.9 0.031 0.014 0.005 0.001 1.374 1.423 1.567

0.99 0.041 0.019 0.013 0.005 2.224 2.814 5.278

500 -0.99 0.004 0.004 0.003 0.003 0.992 0.999 0.997

-0.9 0.003 0.002 0.002 0.002 0.990 0.998 0.997

-0.7 0.004 0.003 0.003 0.003 0.994 0.996 0.998

-0.1 0.006 0.002 0.000 0.001 1.273 1.232 1.334

0.1 0.002 0.002 0.002 0.002 0.967 0.999 0.997

0.7 0.005 0.003 0.002 0.001 1.015 1.016 1.017

0.9 0.005 0.002 0.000 0.001 1.106 1.110 1.115

0.99 0.007 0.003 0.001 0.000 1.949 2.045 2.841

MA(1) 50 -0.5 0.020 0.007 0.005 0.009 0.959 0.990 0.985

-0.4 0.010 0.002 0.005 0.003 0.929 0.996 0.982

-0.1 0.015 0.010 0.025 0.018 1.004 0.998 0.957

0.1 0.024 0.029 0.017 0.023 1.039 0.990 0.967

0.4 0.038 0.030 0.023 0.030 0.935 0.960 1.004

0.5 0.049 0.038 0.034 0.038 1.005 0.961 1.009

100 -0.5 0.005 0.001 0.003 0.000 0.981 0.993 1.000

-0.4 0.005 0.000 0.003 0.001 0.966 0.997 0.986

-0.1 0.007 0.004 0.013 0.008 0.984 0.999 0.979

0.1 0.014 0.017 0.008 0.013 1.007 0.995 0.983

0.4 0.020 0.015 0.012 0.016 0.990 0.983 0.996

0.5 0.019 0.012 0.011 0.012 1.017 0.983 0.982

500 -0.5 0.004 0.002 0.002 0.003 1.000 0.999 1.004

-0.4 0.000 0.001 0.002 0.001 0.992 0.999 0.995

-0.1 0.002 0.001 0.003 0.002 0.968 1.000 0.996

0.1 0.002 0.003 0.001 0.002 0.963 0.999 0.997

0.4 0.006 0.005 0.004 0.005 1.003 0.999 1.005

0.5 0.005 0.003 0.003 0.003 1.007 1.001 0.997
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Table 2.4: Absolute Bias (Bias), ratio of mean squared errors (RMSE) for AR(2) models, n =
50, 100, 500, h = 2 and ϕ1 = 0

Bias RMSE

Model n ϕ2 ρ̂ ρ̃part ρ̃bc ρ̃cv ρ̃part ρ̃bc ρ̃cv

AR(2) 50 -0.99 0.055 0.006 0.037 0.002 4.137 1.581 8.711

-0.9 0.062 0.006 0.050 0.002 1.651 1.057 1.622

-0.7 0.051 0.011 0.048 0.011 1.066 0.992 1.053

-0.1 0.011 0.009 0.011 0.015 0.968 0.998 0.918

0.1 0.032 0.035 0.031 0.029 1.011 0.991 0.932

0.7 0.090 0.052 0.065 0.045 1.201 1.072 1.158

0.9 0.115 0.054 0.072 0.039 1.799 1.405 2.027

0.99 0.092 0.034 0.042 0.021 2.387 1.877 3.597

100 -0.99 0.032 0.004 0.021 0.002 3.262 1.508 5.492

-0.9 0.035 0.005 0.028 0.004 1.442 1.052 1.352

-0.7 0.022 0.002 0.020 0.001 1.017 0.992 0.987

-0.1 0.005 0.002 0.005 0.007 0.956 0.999 0.957

0.1 0.017 0.020 0.017 0.016 0.979 0.995 0.967

0.7 0.046 0.025 0.032 0.024 1.140 1.034 1.121

0.9 0.058 0.025 0.033 0.016 1.659 1.406 1.895

0.99 0.052 0.020 0.024 0.011 2.450 1.961 4.013

500 -0.99 0.007 0.000 0.005 0.002 2.160 1.343 2.337

-0.9 0.007 0.000 0.005 0.001 1.102 1.033 1.074

-0.7 0.004 0.000 0.003 0.001 1.008 0.998 0.998

-0.1 0.000 0.000 0.000 0.001 0.966 1.000 0.992

0.1 0.004 0.004 0.004 0.003 0.959 0.999 0.993

0.7 0.009 0.004 0.006 0.003 1.030 1.019 1.035

0.9 0.012 0.005 0.006 0.003 1.240 1.156 1.232

0.99 0.012 0.005 0.006 0.003 2.140 1.784 2.989

Table 2.3 and 2.4 display the empirical bias and ratio of the MSE for ARMA(1,1), MA(1)

and AR(2) at h = 1 or h = 2. For each parameter setting, sample size is taken as n = 50, 10, 500. We

compare the performance between the proposed penalized estimator and sample ACF at lag one for

ARMA(1,1) and MA(1), and at lag two for AR(2) model. Tables provide a summary of the estimates

from weak to high correlation with different sample size for ARMA(1,1) and MA(1). According to

the relationship between ρ(1) and θ, we consider taking the parameters ρ = 0.1, ..., 0.5. From these

results, one will see that the proposed estimators reduce the bias for all cases and generally have
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smaller MSE when ρ ≥ 0.7. The penalized estimator using partition method has better performance

for most of the ARMA(1,1) cases, especially when n = 50. Similarly, the penalized estimator via CV

performs the best in RMSE when ρ ≥ 0.9. Overall, the results show that the proposed estimators

outperform the sample ACF in most cases, and the competitive performance for strongly correlated

time series at single lag.

2.4.2 Study on ARMA Models with Multiple Lags

Next, we simulate time series of length 100 and discuss the performance of the penalized

autocorrelation at multiple lags {1, 2, ..., pn} where pn = (n)1/2 = 10 (Bickel and Gel, 2011). Four

different stationary time series models are generated as follows,

AR(1) : Xt = ϕ1Xt−1 + ϵt;ϕ1 = −0.99,−0.9,−0.5,−0.1, 0.1, 0.5, 0.9, 0.99.

AR(2) : Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϵt;ϕ1 = 0, ϕ2 = −0.99,−0.9,−0.5,−0.1, 0.1, 0.5, 0.9, 0.99.

MA(1) : Xt = θ1ϵt−1 + ϵt; θ1 = −0.99,−0.9,−0.5,−0.1, 0.1, 0.5, 0.9, 0.99.

MA(2) : Xt = θ1ϵt−1 + θ2ϵt−2 + ϵt; θ1 = 0, θ2 = −0.99,−0.9,−0.5,−0.1, 0.1, 0.5, 0.9, 0.99.

In order to obtain better estimation for multiple lags cases, we construct a band and taper estimates

for penalized ACF and then compare with the sample ACF. McMurry and Politis (2010) proposed

a banded and tapered estimates for autocovariance matrices, which gradually down-weights the

correlation to zero starting from l. The detail of selecting the banding parameter l see McMurry

and Politis (2015). Generally, the weights can given by

κ(x) =


1 if |x| ≤ l

g(|x|) if l < |x| ≤ 2l

0 if |x| > 2l.

For the estimation of ACF in multiple lags when |ρ(h)| < 0.7, we consider use the penalized esti-

mators when h ≤ l, sample ACF when l < h ≤ max{2l, pn} and 0 for h > max{2l, pn}. Table

2.5 reports the RMSE for each above process. Note that without using the banded and tapered

method, the RMSE of the estimates with multi lags are close to or larger than one for all AR and

MA models. There is the comparatively larger bias of the proposed estimator between ℓh and uh
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since the ρ might be shrunk to the opposite direction near thresholds. So it is evident that the ratio

of MSE for moderate correlation is less than 1. For MA(1) models, the performance of the proposed

estimator is better if the serial correlation is weak. Based on the autocorrelation of MA(1) model in

Appendix A, we have |ρ(1)| < 0.5 when θ1 = 0.99. The RMSE of the proposed estimator is less than

one but very close to one. In addition, the proposed estimator has almost the same performance as

the conventional estimator for AR(2) and MA(2) cases in the simulation. After applying the banded

and tapered method, the results in Table 2.5 show that the penalized ACF estimator with banded

and tapered weights performs much better than the sample ACF with respect to MSE. To sum up,

this simulation study shows that the proposed estimator is competitive and even much better than

the sample ACF in terms of RMSE when there are multiple lags considered for estimation of the

ACF.

Table 2.5: Ratio of mean squared errors (RMSE) of the penalized autocorrelation estimators for AR
and MA cases with multi-lag, n = 100, h = 10

RMSE(ρ) RMSE(ρ)

Model ϕ1 ϕ2 ρ̃part ρ̃bc ρ̃cv Model θ1 θ2 ρ̃part ρ̃bc ρ̃cv

AR(1) -0.99 - 1.589 1.210 1.977 MA(1) -0.99 - 3.922 3.973 6.221

-0.9 - 1.101 1.000 1.091 -0.9 - 4.205 4.247 7.650

-0.5 - 2.241 2.283 1.532 -0.5 - 4.078 4.123 7.043

-0.1 - 4.465 4.519 7.959 -0.1 - 4.192 4.239 7.411

0.1 - 4.399 4.401 7.978 0.1 - 4.635 4.619 8.899

0.5 - 2.352 2.366 1.540 0.5 - 4.314 4.359 7.603

0.9 - 1.153 1.054 1.173 0.9 - 3.803 3.833 6.163

0.99 - 1.365 1.154 1.535 0.99 - 4.002 4.039 6.794

AR(2) - -0.99 2.329 1.534 3.164 MA(2) - -0.99 2.506 2.491 3.357

- -0.9 1.292 1.071 1.239 - -0.9 2.418 2.409 3.240

- -0.5 1.630 1.636 1.111 - -0.5 2.871 2.834 2.694

- -0.1 5.244 4.992 4.550 - -0.1 4.996 4.773 4.447

- 0.1 4.045 3.922 3.818 - 0.1 4.114 3.978 3.894

- 0.5 1.505 1.516 1.114 - 0.5 2.301 2.289 2.104

- 0.9 0.989 1.010 0.986 - 0.9 2.196 2.194 2.708

- 0.99 0.963 0.995 0.945 - 0.99 2.047 2.046 2.413
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2.4.3 Penalized Partial Correlation Estimator

Recall that the sample partial autocorrelation is defined as α̂(h) = R̂
−1

h ρh, where R̂h =

[ρ̂(i− j)]hi,j=1, and ρ̂h = (ρ̂(1), ..., ρ̂(h))′ in Section 3.1. We also can obtain the penalized PACF as

α̃(h) = R̃
−1

h ρ̃h,

where Rh = [ρ̃(i − j)]hi,j=1, and ρ̃h = (ρ̂(1), ..., ρ̂(h))′. This section presents a simulation study

under AR(2) models to examine the performance of penalized partial autocorrelation against the

usual sample PACF.

Table 2.6 provides the ratio of MSE for penalized PACF estimators under AR(2) models.

In each case, 1000 replicates were performed where an AR(2) process with size n = 50, 100, 500 was

generated using several ϕ1 and ϕ2 values. Note that in AR(2), α(1) = ϕ1/(1 − ϕ2) and α(2) = ϕ2.

Parameters ϕ1 and ϕ2 are taken with different combination to have α(1) = 0.5, 0.7, 0.9 and α(2) =

0.6, 0.7, 0.8, 0.9. We see in Table 2.6 the RMSE of proposed PACF estimators are better than or

close to the sample PACF for all cases at lag 1. The penalized PACF estimators α̃(2) have smaller

absolute bias and MSE compare with the sample PACF α̂(2) for almost all parameters and the

different sample sizes considered.

2.5 Discussion

This chapter introduces new estimation of (partial) autocorrelation function for stationary

time series, which can alleviate the bias and reduce the mean squared error of the usual sample ACF.

Using the penalized methods, the proposed estimators shrink towards the target. The resulting

penalized estimators can achieve the sample acf, least square and forward and backward correlation

estimator as a special case. The proposed ACF/PACF estimators are easy to compute, but still

tend to perform better in estimation than the usual sample ACF/PACF. In many cases, especially

when the correlation is strong, the penalized estimators have smaller bias and MSE compared with

those in the literature. The simulations considered in this chapter demonstrate that the penalized

scheme can improve estimation of (partial) autocorrelation for ARMA processes.

34



Table 2.6: Empirical Bias (Bias) and ratio of mean squared errors (RMSE) of the penalized partial
autocorrelation estimators under AR(2) models, α1 = α(1), α2 = α(2).

RMSE(α(1)) Bias(α(2)) RMSE(α(2))

n α1 α2 α̃part
1 α̃bc

1 α̃cv
1 α̂2 α̃part

2 α̃bc
2 α̃cv

2 α̃part
2 α̃bc

2 α̃cv
2

50 0.5 0.6 0.989 0.988 0.987 0.133 0.096 0.115 0.094 1.170 1.032 1.155

0.7 0.6 1.014 1.014 1.030 0.135 0.085 0.116 0.085 1.187 0.998 1.192

0.9 0.6 1.066 1.062 1.102 0.165 0.097 0.157 0.103 1.116 0.834 1.126

0.5 0.7 0.991 0.992 0.985 0.143 0.094 0.115 0.089 1.303 1.122 1.316

0.7 0.7 1.014 1.009 1.015 0.160 0.102 0.132 0.096 1.334 1.097 1.374

0.9 0.7 1.044 1.033 1.059 0.182 0.097 0.157 0.098 1.405 1.037 1.448

0.5 0.8 0.987 0.996 0.982 0.167 0.106 0.131 0.095 1.470 1.243 1.573

0.7 0.8 1.003 1.005 1.006 0.169 0.100 0.132 0.090 1.540 1.232 1.633

0.9 0.8 1.017 1.015 1.024 0.194 0.104 0.157 0.098 1.712 1.189 1.866

0.5 0.9 0.981 0.997 0.974 0.174 0.099 0.125 0.080 1.806 1.447 2.160

0.7 0.9 0.991 1.001 0.988 0.184 0.106 0.137 0.088 1.818 1.410 2.179

0.9 0.9 1.000 1.005 1.000 0.186 0.103 0.139 0.088 1.929 1.425 2.273

100 0.5 0.6 0.990 0.987 0.991 0.058 0.036 0.045 0.035 1.134 1.039 1.127

0.7 0.6 1.034 1.012 1.031 0.070 0.040 0.054 0.038 1.180 1.040 1.202

0.9 0.6 1.089 1.083 1.127 0.097 0.039 0.085 0.041 1.276 0.837 1.534

0.5 0.7 0.993 0.992 0.995 0.066 0.038 0.048 0.034 1.248 1.124 1.280

0.7 0.7 1.024 1.011 1.026 0.076 0.039 0.053 0.033 1.323 1.188 1.428

0.9 0.7 1.062 1.054 1.092 0.105 0.038 0.079 0.035 1.475 1.124 1.835

0.5 0.8 0.996 0.997 0.995 0.080 0.047 0.056 0.039 1.393 1.256 1.496

0.7 0.8 1.009 1.005 1.012 0.087 0.043 0.059 0.035 1.504 1.316 1.728

0.9 0.8 1.030 1.026 1.048 0.106 0.041 0.073 0.033 1.799 1.396 2.385

0.5 0.9 0.995 0.998 0.993 0.089 0.047 0.060 0.038 1.794 1.469 2.188

0.7 0.9 1.000 1.002 1.001 0.098 0.053 0.068 0.043 1.934 1.533 2.354

0.9 0.9 1.008 1.007 1.013 0.105 0.050 0.072 0.038 2.024 1.561 2.697

500 0.5 0.6 1.005 0.999 0.994 0.012 0.007 0.010 0.006 1.050 1.025 1.069

0.7 0.6 1.015 1.012 1.026 0.013 0.006 0.010 0.005 1.074 1.023 1.091

0.9 0.6 1.077 1.073 1.113 0.021 0.002 0.013 0.003 1.138 1.053 1.242

0.5 0.7 1.003 0.998 0.992 0.011 0.005 0.008 0.004 1.061 1.039 1.096

0.7 0.7 1.016 1.010 1.024 0.016 0.008 0.011 0.007 1.168 1.072 1.186

0.9 0.7 1.052 1.053 1.095 0.023 0.001 0.010 0.001 1.241 1.191 1.472

0.5 0.8 1.001 0.998 0.995 0.014 0.007 0.009 0.006 1.182 1.079 1.216

0.7 0.8 1.011 1.008 1.016 0.016 0.005 0.008 0.004 1.261 1.178 1.286

0.9 0.8 1.032 1.035 1.065 0.026 0.001 0.010 0.002 1.537 1.468 1.924

0.5 0.9 1.001 0.999 0.998 0.017 0.008 0.010 0.006 1.404 1.291 1.506

0.7 0.9 1.007 1.005 1.010 0.019 0.007 0.010 0.005 1.561 1.436 1.799

0.9 0.9 1.017 1.015 1.031 0.028 0.004 0.013 0.001 1.786 1.711 2.666

A current challenge is to find the optimal λ under the given target, so that we can reduce the
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MSE for general ARMA process and all correlation parameter values. There is a trade-off between

reducing MSE under strong correlation ρ → 1 or ρ → 0, and keeping the performance the same as

sample ACF with moderate correlation. The proposed estimator will underestimate the correlation

if the shrinkage moves in the wrong direction. We suggest the estimation of (partial) autocorrelation

function for moderately correlated time series as our future work.
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Chapter 3

Penalized ACF/PACF for Time

Series Goodness of Fit

3.1 Introduction

Much of modeling of stationary time series is based on estimates of the sample autocorre-

lation function (ACF) and partial autocorrelation function (PACF). In this chapter, our focus is on

time series goodness of fit procedures, which are based on estimates of the sample ACF and PACF of

the residuals from a fitted model (Ljung and Box, 1978; Li and McLeod, 1981; Monti, 1994; Li and

Mak, 1994; Peña and Rodŕıguez, 2002; Mahdi and McLeod, 2012; Fisher and Gallagher, 2012) . The

procedures mentioned above are dependent on accurate estimates of the magnitude of correlation,

which when underestimated results in a loss of power in detecting model under fit. However, the

traditional sample ACF and PACF tend to underestimate the magnitude of the correlation, and

that the bias of these estimators increases with the magnitude of the correlation (Marriot and Pope,

1954). The general bias formula for the sample ACF depends on the entire correlation function (e.g.,

see Dürre et al. (2015)) and model specific bias corrected estimates while reducing the bias, typically

have no impact on, or can even increase MSE (MacKinnon and Smith Jr, 1998; Reschenhofer, 2019).

In the first order autoregressive case with heteroscedastic errors and potential unit roots median

unbiased estimators (Andrews, 1993; Reschenhofer, 2019) can improve over the sample ACF, but

these estimators have higher MSE in the simple stationary first order autoregressive model with
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independent Gaussian innovations. In this chapter we consider improving the estimation of (partial)

autocorrelation for stationary time series via penalized object function minimization. The resulting

estimators can be used to perform a variety of time series modeling procedures, but our focus here

will be on improving the performance of time series goodness of fit procedures.

Several authors have considered shrinking (partial) correlations toward zero. A recent se-

quence of papers have considered banded and tapered estimators (Bickel and Gel, 2011; McMurry

and Politis, 2015; Proietti and Giovannelli, 2018), which are equivalent to taking ρτ = 0 in (1.12),

and letting λ be a function only of the lag; in these papers, small lag (partial) correlations are not

shrunk, moderate lag (partial) correlations are shrunk toward zero, and large lag (partial) correla-

tions are set to 0. Alternatively, Liao et al. (2016) shrink correlations toward zero and allow their

tuning parameter to depend on the data, as opposed to simply the lag under consideration. Since

these methods shrink estimated correlations toward zero, they cannot increase power of goodness of

fit tests.

In this chapter we use ordinary and partial correlation estimators found via minimizing

(1.12) to increase power of time series goodness of fit for linear and nonlinear models, and tests for

detecting nonlinear effects. Judicious choice of target and tuning parameter in (1.12) can shrink small

magnitude correlations toward zero to control type I error, and move squared moderate magnitude

correlations toward unity to increase power. Careful data based choices of ρτ and λ can ensure

smooth translation from non-penalized estimator ρ̂ to penalized solution ρ̃λ, while retaining the

same asymptotic behavior as ρ̂. Specific data based choices are provided for general classes of time

series Portmanteau tests, these classes include the most prevalent tests appearing in the time series

goodness of fit literature. The methods proposed below are novel in two distinct ways. First, the

target value is chosen based on an initial estimate of correlation and can be larger in absolute value

than ρ̂, so that the direction of movement can be away from 0. Second, the target value and tuning

parameter are chosen to depend on the nominal type I error bound of a hypothesis test, which does

not impact the type I error properties of the test, but can increase power. Simulations show that

using ρ̃λ instead of the sample ACF ρ̂, and using a penalized partial correlation π̃λ instead of the

PACF π̂ improves power of all of time series goodness of fit tests referenced above.

Estimators and their properties are described in Section 3.2. Section 3.3 provides specific

formulations for linear model goodness of fit and describe our estimators and their properties. De-

tecting non-linear effects and assessing the fit of GARCH processes is considered in Section 3.4.
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Simulation results presented in Section 3.5 show the consistent improved performance of tests based

on ρ̃λ. Data applications are in Section 3.6. The chapter is closed with a discussion of the results

and future research ideas in Section 3.7.

3.2 Penalized Estimator

Given the data: x1, x2, . . . , xn, we can estimate µ with x̄ = n−1
∑n

t=1 xt. A variety of

correlation estimators have been proposed in the literature and most of these can be associated

with an objective function which approximates (2.2), with the primary differences between the

estimators being how the boundary values (t near 1 and n) are handled. Many time series analysts

prefer the sample ACF, since the resulting function is guaranteed to be non-negative definite. Let

yt = xt − x̄, we minimizes Oh(r|x1, . . . , xn) =
∑n+h

t=h+1 (yt − ryt−h)
2
with yt = 0 for t > n to obtain

the penalized M-estimator. For a fixed lag m consider estimating the ACF at the first m lags.

Let ρ′ = (ρ(1), . . . , ρ(m)), ρ̂′ = (ρ̂(1), . . . , ρ̂(m)), r′ = (r1, . . . , rm), ρ′
τ = (ρτ (1), . . . , ρτ (m)) be a

vector of target values, and λ′ = (λ1, . . . , λm) be a vector of tuning parameters. The penalized ACF

estimator is the minimizer of

m∑
h=1

{
Oh(rh|x1, . . . , xn) + λh(

n∑
t=1

y2t )(rh − ρτ (h))
2

}
. (3.1)

and the resulting estimator of ACF is

ρ̃λ(h) = whρτ (h) + (1− wh)ρ̂(h), (3.2)

and the penalized PACF is

π̃λ(h) = whπτ (h) + (1− wh)π̂(h),

where wh = λh/(1 + λh), π̂(h) is the ordinary sample PACF, and πτ (h) is a target value. Many

correlation estimators proposed in the literature result from special cases of minimizing (3.1) in

Table 2.1. Both λ and the target value ρτ can be selected from data, in which case ρτ = ρ̂τ , and

wh = ŵh. For example, taking ρ̂τ = ρ̂ + 2bias and λ = 1, results in a bias corrected estimator

ρ̃λ = ρ̂+ bias, where bias is an additive bias correction term.

Since the sample (partial) autocorrelation estimators are asymptotically unbiased and min-
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imize the limiting MSE, it is optimal to select penalized estimators that enjoy the same asymptotic

behaviour as that of these estimators. It is simple to ensure that the estimator in (3.2) will retain

the same asymptotic distribution as ρ̂ (see Theorem 1); either let ŵh → 0 in probability or as below

select ρ̂τ (h) to converge sufficiently fast to ρ̂(h). The key is then to select target and tuning param-

eters from the data to improve the finite sample performance of any statistical procedures based on

estimates of the (partial) ACF. Specific choices for these that improve time series goodness of fit are

given in Section 3.3.

There is no guarantee that the proposed estimator will provide a non-negative definite

solution. For the purpose of time series goodness of fit test, this is not particularly important. A

discussion of some techniques for non-negative definite correction is given in Section 2.2.

3.3 Linear Goodness of Fit

Parametric models are frequently used to approximate the correlation structure of a station-

ary process or of a function of that stationary process. The correlation structure of a time series {Xt}

is typically modeled using a causal and invertible autoregressive-moving average (ARMA) process

of the form

Xt =

p∑
i=1

ϕiXt−i +

q∑
j=1

θjϵt−j + ϵt (3.3)

where p is the autoregressive order, q is the moving average order and {ϵt} is an independent and

identically distributed (iid) innovation sequence of zero mean random variables with finite variance.

The sample ACF of the residuals {ϵ̂t}:

r̂(k) =

∑n
t=k+1 ϵ̂tϵ̂t−k∑n

t=1 ϵ̂
2
t

k = 1, 2, . . . ,m,

from a fitted ARMA model provide information on the goodness of fit. If the orders p and q

are correctly identified, then each of the above correlation coefficients should be approximately

equal to zero. However, if the fitted model underestimates the ARMA orders, the values of the

autocorrelations should significantly deviate from zero. Most statistical software calculates the

Portmanteau statistic

Q = n

m∑
k=1

n+ 2

n− k
r̂2(k), (3.4)
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from Ljung and Box (1978). Monti (1994) introduced a test utilizing the residual partial autocorre-

lations:

M = n

m∑
k=1

n+ 2

n− k
π̂2(k), (3.5)

where π̂(k) is the residual partial autocorrelation at lag k. Under the null hypothesis, each of these

statistics is asymptotically distributed as a chi-squared random variable with m − (p + q) degrees

of freedom. Simulations demonstrate that M is more powerful than Q when the fitted model

underestimates the order of the moving average component. To increase the power of the ARMA

goodness of fit test, Peña and Rodŕıguez (2002) proposed a statistic based on the determinant of

R̂, which has a more numerically stable version expressed in terms of the partial correlations (Peña

and Rodŕıguez, 2006). Mahdi and McLeod (2012) generalized the determinant based tests to the

multivariate setting and for the univariate case they suggest using

−3n

2m+ 1
log |R̂m|

with null asymptotic distribution represented as a linear combination of independent chi-square ran-

dom variables. Using the relationship between the determinant of R̂m and the partial correlations,

this statistic can be calculated as

D = n

m∑
k=1

−3(m+ 1− k)

2m+ 1
log(1− π̂2(k)), (3.6)

and its null hypothesis asymptotic distribution is approximately chi-square with the degrees of

freedom (3/2)m(m+ 1)/(2m+ 1)− (p+ q). Fisher and Robbins (2018) showed that tests based on

the log of the determinant of the correlation matrix increase power in detecting residual correlation.

Inspired by high dimensional covariance matrix tests, Fisher and Gallagher (2012) considered a test

based on the trace of matrix R̂2 and a similar test using partial correlations:

QW = n

m∑
k=1

(n+ 2)(m− k + 1)

(n− k)m
r̂2(k) and MW = n

m∑
k=1

(n+ 2)(m− k + 1)

(n− k)m
π̂2(k). (3.7)

Under the null hypothesis of adequate ARMA fit, the asymptotic distributions of QW and MW can

be expressed as a linear combination of chi-square random variables. For computational ease, they
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recommend an approximation using gamma distribution with shape and scale parameters

α =
3

4

m(m+ 1)2

2m2 + 3m+ 1− 6m(p+ q)
and β =

2

3

2m2 + 3m+ 1− 6m(p+ q)

m(m+ 1)
.

For a more complete discussion of each of the above test statistics see Fisher and Gallagher (2012).

For each of the above test statistics, the null hypothesis that the fitted ARMA model

adequately models the correlation structure is rejected if the test statistic exceeds a critical value;

the critical value can be found using an asymptotic distribution or via Monte Carlo methods (Mahdi

and McLeod, 2012; Fisher and Gallagher, 2012). Simulations indicate that all of the above tests

have bounded Type I error. In terms of power D tends to have higher power than Q or M , while

MW tends to have higher power than D when the order of moving average is underestimated, and

QW can have higher power than D when the autoregressive order is underestimated.

The power of each of the above test statistics can be improved by replacing r̂(k) with r̃λ(k)

and replacing π̂(k) with π̃λ(k), with target values chosen to increase the magnitude of larger values

of r̂2(k) and π̂2(k). The Type I error can be controlled by shrinking smaller magnitude correlations

toward zero. Tuning parameters can be chosen via cross validation or by plug in methods. Using

Theorem 1 the target values can be chosen to retain the same asymptotic distributions of the test

statistics. In the next section specific choices of target values and tuning parameters are given. The

simulation results in Section 3.5 show the improved power for each of Q, M , D, QW , andMW , when

the sample ACF/PACF are replaced by the penalized M-estimators.

3.3.1 Penalized Estimator for ARMA Fit

Each of the above statistics for testing ARMA fit has representation

Tm = n

m∑
k=1

ωkf(ρ̂
2(k)), (3.8)

where ρ̂(k) is either r̂(k) or π̂(k), f is an increasing function and each summand contributes to the

potential rejection of the ARMA fit according to the magnitude of ρ̂(k); for Q,M , QW , and MW ,

f(x) = x, while for D, f(x) = − log (1− x2). To improve power, while controlling Type I error,

for each test statistic satisfying (3.8) replace ρ̂(k) with penalized M-estimator ρ̃λ(k). Shrinking

apparently insignificant (partial) correlations toward zero will control type I error, while moving
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higher magnitude (partial) correlations toward a larger target will increase power. Under the null

hypothesis the approximate standard error of the estimated lag k (partial) correlation is ℓk =√
(n− k)/(n(n+ 2)), and correlations less than one standard error from 0 can be shrunk toward

zero. Rejection region tests based on the asymptotic distribution of the test statistics reject the

adequacy of the fitted ARMAmodel if Tm > qα, where qα denotes the 1−α quantile of the asymptotic

distribution and α is the nominal type I error bound. In order to reject the null hypothesis of model

adequacy, at least one summand must exceed u = qα/m, and summands exceeding or near this value

support the alternative hypothesis of model under fit. Setting the kth summand in (3.8) equal to u

and solving for ρ̂2(k) results in uk.

A general form of the target correlation is

ρτ (k) =


ρ̂(k) (1− an) |ρ̂(k)| < ℓk

ρ̂(k) + Sbn ℓk < |ρ̂(k)| < uk

ρ̂(k) (1 + cn) |ρ̂(k)| > uk,

where S = sign(ρ̂), {an}, {bn}, and {cn} are positive sequences, with an → 0,
√
nbn → 0 and cn → 0

as n → ∞. Each of the Portmanteau test statistics described above, will retain the same null

asymptotic distribution when the (partial) correlations are replaced with their penalized versions.

Careful choice of these sequences will control type I error while increasing power, and provide stability

with respect to the choice of maximum lag m. Suggested principles for selecting target and tuning

parameters are:

• To control Type I error:

– If ρ̂(k) less than one standard error from 0, |ρ̃λ(k)| < |ρ̂(k)|;

– If ωkf(ρ̂
2(k)) ≤ qα/m, then ωkf(ρ̃

2
λ(k)) ≤ qα/m;

– If ωkf(ρ̂
2(k)) > qα/m, then ρτ is larger than ρ̂(k) with the increase being proportional

to the distance between ωkf(ρ̂
2(k)) and qα/m;

– λ = 0, when ρ̂(k) = ℓk and when ρ̂(k) = uk.

• To increase power:

– If ωkf(ρ̂(k)
2) > qα/m, then ρτ is larger than ρ̂(k) with the increase depending on the

approximate standard error of ρ̂(k), the sample size n, and the magnitude of ρ̂(k).
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Figure 3.1: (a) ρ2τ , (b) w, and (c) ρ̃2λ as functions of ρ̂ = r̂(1) for the Ljung-Box test with α = 0.05,
n = 100, and m = 10.

Specific choices for target and tuning parameters satisfying these principles are given below. Simu-

lation results in Section 3.5 show the improved performance using these formulae.

For any test satisfying (3.8), consider the target value

ρτ (k) =


ρ̂(k) (1 +

√
m(|ρ̂(k)| − ℓk)) |ρ̂(k)| < ℓk

ρ̂(k) + Skm
(r−ℓk)(uk−r)√

n(uk−ℓk)
ℓk < |ρ̂(k)| < uk

ρ̂(k)
(
1 + m+1−k

m (|ρ̂(k)| − uk)(1− |ρ̂(k)|)ℓk
√
nqα/m

)
|ρ̂(k)| > uk,

(3.9)

where ℓk =
√
(n− k)/(n2 + 2n), uk =

√
f−1(u/(nωk)), ρ̂(k) is the lag k sample (PACF) ACF of the

residual sequence, and Sk = sign(ρ̂(k)). The target value depends on the sample size, the number

of lags m, the type I error bound α, and the initial estimate of the lag k (partial) correlation. Note

that the terms involving m in the target are included to ensure stability with changing m. With the

above target, associate tuning parameter:

λk = |(|ρ̂(k)| − ℓk)(|ρ̂(k)| − uk)|/(ρ̂2(k)(1− ρ̂(k))2). (3.10)

The penalized M-estimator of the ACF and PACF at lag k are calculated as

r̃λ(k) = wkrτ (k) + (1− wk)r̂(k) and π̃λ(k) = wkπτ (k) + (1− wk)π̂(k), (3.11)

44



with wk = λk/(1 + λk). For a test statistic of type given by (3.8), let

T̃m = n

m∑
k=1

ωkf(ρ̃
2
λ(k)), (3.12)

where ρ̃λ(k) is given in (3.11). In particular,

M̃ = n

m∑
k=1

n+ 2

n− k
π̃2
λ(k) and Q̃ = n

m∑
k=1

n+ 2

n− k
r̃2λ(k),

D̃ = n

m∑
k=1

−3(m+ 1− k)

2m+ 1
log(1− π̃2

λ(k)), (3.13)

Q̃W = n

m∑
k=1

(n+ 2)(m− k + 1)

(n− k)m
r̃2λ(k) and M̃W = n

m∑
k=1

(n+ 2)(m− k + 1)

(n− k)m
π̃2
λ(k).

Figure 3.1 demonstrates the target, weight and resulting penalized estimator for r̂(1), when

m = 10 and the test statisitic Q̃ is to be used with nominal Type I error bound α = 0.05. In each

panel, ρ̂ = r̂(1) is restricted to be in the interval (−0.2, 0.2). Here correlations larger than ℓk = 0.099

are increased in magnitude, and (a) includes a plot of r̂2 vs r̂ for reference (solid line).

3.3.2 Asymptotic Distribution

Under the null hypothesis, the plug in choices for ρτ (k) and λk given by (3.9) and (3.10),

respectively, ensure that T̃m and Tm have the same asymptotic distribution. The general asymptotic

distribution for T̃m is as follows.

Define r̂′ = (r̂1, . . . , r̂m) and π̂′ = (π̂1, . . . , π̂m) and using the results of Ljung and Box (1978)

and Monti (1994) that
√
nr̂ and

√
nπ̂ are asymptotically multivariate normal with mean zero vector

and covariance matrix (I−Q), where Q = XΨ−1X′, Ψ is the information matrix for parameters ϕ

and θ, and X is an m × (p + q) matrix with elements ϕ′ and θ′ defined by 1/ϕ(B) =
∑
ϕ′iB

i and

1/θ(B) =
∑
θ′iB

i.

Theorem 2 Let Tm have representation (3.8) and T̃m satisfy (3.12). If f(x2) = x2 + o(x2) as

x2 → 0, and ωk → w̃k as n → ∞ , then under the null hypothesis of an adequately fitted ARMA

model

Tm ⇒
m∑

k=1

γkχ
2
k and T̃m ⇒

m∑
k=1

γkχ
2
k,
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where ⇒ denotes convergence in distribution, {χ2
k} are independent chi-squared random variables

with one degree of freedom, and γk (k = 1, . . . ,m) are the eigenvalues of (I−Q)W, where W is a

diagonal matrix with elements wii = w̃i (i = 1, . . . ,m).

Proof: Assume the data is generated by Xt =
∑p

i=1 ϕiXt−i+
∑q

j=1 θjϵt−j+ϵt, for each n the model

is fit with the correct orders p and q using
√
n-consistent estimators of the ARMA parameters, and

π̂(·) and r̂(·) are the sample (partial) autocorrelations of the residuals. Let Tm have representation

n
∑m

k=1 ωkf(ρ̂
2(k)) and T̃m have representation n

∑m
k=1 ωkf(ρ̃

2
λ(k)). Denote autocorrelation based

tests as Tm(r̂) and partial correlation tests with Tm(π̂). For f and ωk satisfying the conditions of

the theorem, each of the m summands in Tm behaves like

nωkf(r̂
2(k)) = nw̃kr̂

2(k)(1 + op(1)) and nωkf(π̂
2(k)) = nw̃kπ̂

2(k)(1 + op(1)),

so that

Tn(r̂) = n

m∑
k=1

w̃kr̂
2(k) + op(1) and Tn(π̂) = n

m∑
k=1

w̃kπ̂
2(k) + op(1).

Define

W =



w̃1 0 · · · 0

0 w̃2 · · · 0

... · · ·
. . .

...

0 · · · 0 w̃m


.

as the diagonal matrix asymptotic weights. Then Tm(r̂) and Tm(π̂) are asymptotically expressed

as quadratic forms

Tm(r̂) ≃ nr̂′Wr̂ and Tm(π̂) ≃ nπ̂W π̂ as n→ ∞,

respectively, where A′ denotes the transpose operation on vector/matrix A and r̂ (π̂) is the m × 1

vector of the autocorrelations (partial autocorrelations) from lag 1 to m. From the results in Box

(1954) both quadratic forms will be distributed as

m∑
k=1

λkχ
2
k (3.14)

where each χ2
k are independently distributed chi-squared random variables with one degree of free-
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dom, and the λk are the m real nonzero characteristic roots of the matrix (I−Q)W where I−Q is

the m×m covariance matrix of both
√
nr̂ and

√
nπ̂. Q is the m×m information matrix for ϕ and

θ. Box and Pierce (1970) and McLeod (1978) approximate the matrix Q by the projection matrix

X(X′X)−1X′ when m is moderately high.

Let r̃λ(k) and π̃λ(k) be calculated using

r̃λ(k) = wkrτ (k) + (1− wk)r̂(k) and π̃λ(k) = wkπτ (k) + (1− wk)π̂(k), (3.15)

with the target and tuning parameters given as

ρτ (k) =


ρ̂(k) (1 +

√
m(|ρ̂(k)| − ℓk)) |ρ̂(k)| < ℓk

ρ̂(k) + Skm
(r−ℓk)(uk−r)√

n(uk−ℓk)
ℓk < |ρ̂(k)| < uk

ρ̂(k)
(
1 + m+1−k

m (|ρ̂(k)| − uk)(1− |ρ̂(k)|)ℓk
√
nqα/m

)
|ρ̂(k)| > uk,

where ℓk =
√
(n− k)/(n2 + 2n), uk =

√
f−1(u/(nωk)), ρ̂(k) is the lag k sample (PACF) ACF of

the residual sequence, and Sk = sign(ρ̂(k)), and the tuning parameter

λk = |(|ρ̂(k)| − ℓk)(|ρ̂(k)| − uk)|/(ρ̂2(k)(1− ρ̂(k))2).

respectively. Then for each k

√
n(ρ̂(k)− ρτ (k)) =

√
n


ρ̂(k) (

√
m(|ρ̂(k)− ℓk)) |ρ̂(k)| < ℓ

Sm (|ρ̂(k)|−ℓk)(uk−|ρ̂(k)|)√
n(uk−ℓk)

ℓk < |ρ̂(k)| < uk

ρ̂(k) (log(n)(|ρ̂(k)| − u)(1− |ρ̂(k)|)/
√
n) |ρ̂(k)| > uk,

where as n → ∞:
√
nρ̂ is asymptotically normally distributed, ρ̂ → 0 in probability, ℓk → 0, and

uk → 0. Each term on the right hand side of the above equation converges to 0 in probability.

By Theorem 1,
√
nr̃λ and

√
nr̂ have the same limiting distribution, and

√
nπ̃λ and

√
nπ̂ have the

same limiting distribution. Note that Tm(r̃λ) and Tm(π̃λ) are asymptotically expressed as quadratic

forms

Tm(r̂) ≃ nr̃′λWr̂λ and Tm(π̂) ≃ nπ̃λWπ̃λ as n→ ∞.

If follows that Tm and T̃m have the same asymptotic distribution.
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Corollary 1 Let {Xt} be generated by (3.3). Under the null hypothesis of an adequately fitted

model,

1. Q and Q̃ have the same asymptotic distribution.

2. QW and Q̃W have the same asymptotic distribution.

3. M and M̃ have the same asymptotic distribution.

4. MW and M̃W have the same asymptotic distribution.

5. D and D̃ have the same asymptotic distribution.

The improved power and controlled Type I error of the proposed test statistics for a variety of

models will be given in Section 3.5. Here a toy example demonstrates the improved local power as

a function of n.

Example 1 Let {Xt}nt=1 be generated by difference equation

Xt = ϕnXt−2 + ϵt,

where ϕn = 3/
√
n and {ϵt} is an IID standard normal sequence. For each n = 50, 100, 200, 400,

800, and 1600, data was simulated from the above model, the model was correctly fit via Gaussian

maximum likelihood using a second order autoregressive model, and the model was under fit with a

first order autoregressive model. This process was repeated 10, 000 times. Simulated type I error as a

function of n (log2(n) scale) based on Q and Q̃ is given in the first panel of Figure 3.2; the horizontal

lines correspond to .05± 2sd, where sd=
√

0.05(0.95)/10000 is the standard error from the binomial

distribution. The second panel of Figure 3.2 shows simulated power for Q and Q̃ respectively.

Calculating p-values. The proposed test statistics depend on a nominal bound on Type I error,

α. For each fixed α, we reject the model fit if T̃m(α) > qα, with (partial) autocorrelation estimated

using (3.11), and target and tuning parameters calculated using qα. We consider the p-value as the

largest α for which we would reject the model fit:

pvalue = sup{α : T̃m(α) > qα}. (3.16)
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Figure 3.2: Type I error and power as function of n in Example 1; Test statistics calculated using
m = 10. (a) Simulated type I error for Q and Q̃ plotted vs log2(n). (b) Simulated power for Q and
Q̃ plotted vs log2(n).

3.4 Non-linear Models

Linear models cannot capture all observed data features. In financial time series, empirical

evidence motivates modeling the correlation structure of a non-linear function of the process (Engle,

1982). Many authors have considered nonlinear models of the type:

ϵt = g(ht)ηt (3.17)

where ηt are iid with mean zero and variance 1 and {ht} follows an ARMA type recursion. For ex-

ample, the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) process of Boller-

slev (1986) takes g(x) =
√
x, while the stochastic volatility model (SV) of Taylor (1986) assumes

g(x) = exp (x). For these models a nonlinear function of {ϵt} has the correlation structure of

an ARMA process. Here we consider tests to detect the presence of nonlinear effects, as well as

goodness-of-fit of a nonlinear process.
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3.4.1 Detecting nonlinear effects

Transformed residuals of a fitted model can be used to detect nonlinear effects (Pérez and

Ruiz, 2003). Consider the autocorrelation of the transformed residuals:

r̂∗(k) =

∑n
t=k+1(g(ϵ̂t)− ḡ(ϵ̂t))(g(ϵ̂t−k)− ḡ(ϵ̂t))∑n

t=1(g(ϵ̂t)− ḡ(ϵ̂t))2
, (3.18)

where ḡ(ϵ̂t) =
∑
g(ϵ̂t)/n, and let π̂∗(k) denote the lag k sample partial correlation of the trans-

formed residuals. The vector of autocorrelation coefficients based on the squared residuals of a

fitted ARMA model with iid innovations, are asymptotically normally distributed with mean zero

and unit covariance matrix (McLeod and Li, 1983b). The (partial) autocorrelation coefficients of

absolute residuals or the log of the squared residuals can be used detect GARCH or SV structure

(Peña and Rodŕıguez, 2006; Fisher and Gallagher, 2012).

Each of the statistics for ARMA goodness of fit from the previous section can be used to

test for non-linear effects (McLeod and Li, 1983b; Peña and Rodŕıguez, 2002; Fisher and Gallagher,

2012). McLeod and Li (1983b) suggest a Ljung Box type test statistic,

Q∗ = n(n+ 2)

m∑
k=1

r̂∗2(k)

n− k
, (3.19)

where the ∗ represents the squared residuals, and show that Q∗ is asymptotically distributed as

chi-squared with m degrees of freedom. A version of Monti’s statistic to detect non-linear effects

would be

Q∗ = n(n+ 2)

m∑
k=1

π̂∗2(k)

n− k
, (3.20)

where π̂∗ denotes the partial correlation of the transformed residuals. For a fixed function g(·),

consider a general class of test statistics with form:

T ∗
m = n

m∑
k=1

ωkf(ρ̂
∗2(k)), (3.21)

where ρ̂∗(k) is either r̂∗(k) or π̂∗(k), f is an increasing function and each summand contributes to

the potential rejection of the ARMA fit according to the magnitude of ρ̂∗(k); for Q∗,M∗, Q∗
W , and

M∗
W , f(x) = x, while for D∗, f(x) = − log (1− x2).

For any test statistic satisfying (3.21), there is an associated test using the penalized corre-
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lation estimator:

T̃ ∗
m = n

m∑
k=1

ωkf(ρ̃
∗2
λ (k)), (3.22)

where ρ̃∗λ(k) is calculated as in Section 3.3, but with ρ̂(k) replaced with ρ̂∗(k), and using quantiles

from the distribution of T ∗
m.

Theorem 3 Let {ϵ̂t} be residuals from (correctly) fitted ARMA model (3.3). If T ∗
m in (3.21)

and T̃ ∗
m in (3.22) are computed from the squared, absolute or log of the squared residuals, and

f(x2) = x2 + o(x2) as x2 → 0, and ωk → γk as n→ ∞, then

T ∗
m ⇒

m∑
k=1

γkχ
2
k and T̃ ∗

m ⇒
m∑

k=1

γkχ
2
k,

where⇒ denotes convergence in distribution and {χ2
k} are independent chi-squared random variables

with one degree of freedom.

Proof: We give the proof for squared residuals. The proofs for absolute residuals, and of the log of

squared-residuals are similar. From the result in McLeod and Li (1983) the autocorrelations of the

squared residuals are asymptotically normally distribution as
√
nr̂(ϵ̂2t ) → N(0, Im) where Im is an

m×m identity matrix. Applying this result to the results in Monti (1994) provides the asymptotic

distribution
√
nπ̂(ϵ̂2t ) → N(0, Im). T ∗

m(r̂) and T ∗
m(π̂) can be expressed as quadratic forms as in the

proof of Theorem 2. Theorem 1 establishes that T ∗
m and T̃ ∗

m have the same asymptotic distribution.

3.4.2 GARCH and ARCH Goodness-of-fit

In time series econometrics, the ARCH models of Engle (1982) and GARCH models of

Bollerslev (1986) have received much attention. The GARCH(b, a) model is given by g(x) =
√
x in

(3.17) where {ηt} is iid with zero mean and variance of unity and

ht = ω +

b∑
i=1

αiϵ
2
t−i +

a∑
j=1

βjht−j .

Ideally, after fitting the parameters for the GARCH process, checking for the adequacy of

that model should follow. Higgins and Bera (1992) suggested a test based on the sum of squared

residual sample autocorrelations, but Li and Mak (1994) showed that the statistic does not converge

to a chi-squared distribution asymptotically when constructed with the squared residuals. Instead
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they proposed the statistic based on the autocorrelation function developed by the standardized

sample squared residuals,

r̆(k) =

∑n
t=k+1(ϵ̂

2
t/ĥt − ϵ̄)(ϵ̂2t−k/ĥt−k − ϵ̄)∑n
t=1(ϵ̂

2
t/ĥt − ϵ̄)2

where ϵ̄ = (1/n)
∑
ϵ̂2t/ĥt and ĥt are the sample conditional variances. The statistic

L(m) = nr̆′V̂−1r̆ (3.23)

will be asymptotically distributed as a chi-squared random variable with m degrees of freedom. The

statistic requires V̂ to be a consistent estimator for the covariance matrix of r̆.

Li and Mak (1994) also show that for an ARCH(b) model (GARCH(b, 0)) the residual

autocorrelations r̆(k) for k = b+ 1, . . . ,m are asymptotically iid standard normal, and propose the

modified statistic

L(b,m) = n

m∑
k=b+1

r̆2(k). (3.24)

Their simulation study shows only modest improvement using L(m) compared to L(b,m) when the

data follows an ARCH process. They suggest a practitioner may prefer L(b,m) for its simplicity in

checking the adequacy of a fitted ARCH model.

Tse (2002) also proposed a statistic using lagged squared standardized residuals, which can

be calculated via a recursive method. Tsui (2004) gave simulation results showing that the statistics

of Li and Mak (1994) and Tse (2002) are comparable and more powerful than the general regression

based test from Wooldridge (1991). Li and Li (2005) derived the distribution of r̆ using an absolute

deviations approach for fitting the GARCH process and suggest a statistic akin to L(m) in (3.23).

Fisher and Gallagher (2012) showed improved power in detecting ARCH under fit, using a weighted

version of Lb,m:

LW (b,m) = n

m∑
k=b+1

m− k + (b+ 1)

m
r̆2(k). (3.25)

the distribution can be approximated with a gamma distribution with shape and scale parameters:

α =
3

4

(m− b)(m+ b+ 1)2

2m2 + 3m+ 2mb+ 2b2 + 3b+ 1
and β =

2

3

2m2 + 3m+ 2mb+ 2b2 + 3b+ 1

m(m+ b+ 1)
.
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Each of the above statistics can be improved using the penalized M-estimator of autocorrelation,

but we focus on detecting ARCH under fit.

Consider statistics of the form

La(b,m) = n

m∑
k=b+1

ωkf(r̆
2(k)), (3.26)

where f is an increasing function and a is a vector of weights. The penalized correlation version is

L̃a(b,m) = n

m∑
k=b+1

ωkf(r̆
2
λ(k)), (3.27)

where r̆λ(k) is found using (3.11) with qα coming from the asymptotic distribution of La(b,m).

Theorem 4 Let La(b,m) have representation (3.26) and L̃a(b,m) satisfy (3.27). If f(x2) = x2 +

o(x2) as x2 → 0, and ωk → γk as n → ∞ , then under the null hypothesis of an adequately fitted

ARCH model

La(b,m) ⇒
m∑

k=b+1

γkχ
2
k and L̃a(b,m) ⇒

m∑
k=b+1

γkχ
2
k,

where ⇒ denotes convergence in distribution, {χ2
k} are independent chi-squared random variables

with one degree of freedom.

Proof: From the result in Li and Mak (1994), for an ARCH(b) model, the autocorrelations of

the standardized squared residuals are asymptotically normally distributed as N(0, Im−(b+1)) where

Im−(b+1) is an (m − (b + 1)) × (m − (b + 1)) identity matrix. Expressing Lω(b,m) as a quadratic

form and applying Theorem 1 establishes the result.

3.5 Simulation Study

Performance of the proposed tests is compared to tests using the sample ACF/PACF. Fol-

lowing methods from Fisher and Gallagher (2012), where appropriate approximate quantiles from

Gamma distributions are used for their test statistics. Simulation were implemented in the sta-

tistical language R; source code is provided in the functions Penalized.cor.gof, Penalized.Box.test,

Penalized.MahdiMcLeod.test and Penalized.LM.test using the PenalizedPortTest package in R.

The descriptions of functions in our R-package are given in Appendix B. Simulation results con-
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(a) Type I error, AR(1) fitted (b) Relative Change in Power, MA(1) fitted

Figure 3.3: Empirical size (a) and Power change (b) for Q̃W , QW , and D tests when AR(1) or
MA(1) fitted to a series of length n = 100, m = 20 and parameter ϕ = 0.1, 0.2, ...0.9 generated by
AR(1) process.

sistently tell the same story as seen in Figure 3.2: the penalized based tests control type I error,

while improving power over those based on the ordinary sample ACF/PACF. Results are based on

nominal type I error level α = 0.05, and tables containing power results have the highest empirical

power boldfaced in each simulation setting. In every case: (a) the most powerful test uses the pe-

nalized ACF or PACF, and (b) tests based on the penalized ACF/PACF have higher power than

their sample ACF/PACF counterparts.

3.5.1 Size and Power Studies on Fitted ARMA Models

Results are first presented for linear models. Figure 3.3 illustrates the comparison of type

I error and power between Q̃W and QW for several values of AR(1) parameters ϕ, using 1000

replications of sample size n = 100 and m = 20. Figure 3.3a shows that both tests have reason-

able empirical size, while Figure 3.3b shows the relative change of the power levels ((PowerQ̃W
−

PowerQW
)/PowerQW

) for varied parameter ϕ in AR(1) model whenMA(1) is fitted. The penalized

test improves over the non-penalized version, and provides about a 10% improvement in power when

an AR(1) with lag one correlation between 0.1 and 0.3 is incorrectly fit with an MA(1) model.

Table 3.1 provides the empirical significance level of the statistics under AR(1) and MA(1)

models. In each case, 1000 replications of sample size n = 100 where generated using ϕ or θ =
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0.1, 0.3, 0.5, 0.7, 0.9. The new tests have slightly higher simulated size for m = 10, 20 than their

non-penalized counterparts, but Type I errors are controlled. As observed elsewhere, the Ljung and

Box (1978) statistic can have slightly elevated empirical size, while the chi-square approximation for

the Mahdi and McLeod (2012) statistic provides conservative Type I errors (Mahdi and McLeod,

2012; Fisher and Gallagher, 2012).

Table 3.1: Empirical size at 5% for AR(1) and MA(1) models, n = 100, m = 10, 20

m ϕ/θ Q̃ Q M̃ M Q̃W QW M̃W MW D̃ D

Fitted AR(1)

10 0.1 0.058 0.055 0.059 0.055 0.041 0.036 0.041 0.039 0.042 0.039

0.3 0.050 0.049 0.058 0.054 0.033 0.03 0.034 0.033 0.034 0.027

0.5 0.058 0.056 0.049 0.047 0.040 0.039 0.029 0.025 0.028 0.024

0.7 0.043 0.038 0.051 0.049 0.031 0.030 0.036 0.032 0.036 0.029

0.9 0.064 0.061 0.065 0.063 0.062 0.057 0.059 0.053 0.057 0.050

20 0.1 0.065 0.065 0.071 0.066 0.054 0.049 0.047 0.040 0.039 0.032

0.3 0.061 0.059 0.048 0.044 0.041 0.033 0.036 0.031 0.024 0.021

0.5 0.068 0.064 0.052 0.052 0.055 0.048 0.049 0.045 0.037 0.026

0.7 0.065 0.062 0.047 0.043 0.055 0.049 0.040 0.032 0.029 0.022

0.9 0.054 0.052 0.035 0.036 0.051 0.048 0.039 0.033 0.034 0.027

Fitted MA(1)

10 0.1 0.058 0.055 0.068 0.066 0.037 0.036 0.047 0.043 0.045 0.040

0.3 0.051 0.051 0.053 0.047 0.037 0.031 0.041 0.036 0.04 0.036

0.5 0.048 0.047 0.058 0.050 0.036 0.032 0.038 0.034 0.035 0.032

0.7 0.064 0.058 0.061 0.058 0.046 0.041 0.049 0.044 0.047 0.041

0.9 0.070 0.067 0.060 0.057 0.064 0.057 0.061 0.053 0.058 0.046

20 0.1 0.059 0.058 0.050 0.047 0.046 0.043 0.047 0.037 0.031 0.027

0.3 0.067 0.064 0.048 0.047 0.050 0.048 0.042 0.035 0.030 0.027

0.5 0.059 0.057 0.049 0.048 0.042 0.042 0.034 0.028 0.024 0.015

0.7 0.052 0.046 0.050 0.041 0.039 0.035 0.033 0.027 0.022 0.019

0.9 0.083 0.080 0.060 0.057 0.065 0.060 0.059 0.053 0.044 0.034

Power of the proposed penalized statistics are compared with the statistic Q from Ljung

and Box (1978), M from Monti (1994), QW and MW from Fisher and Gallagher (2012), and D
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from Mahdi and McLeod (2012), via a simulation study similar to computational studies appearing

previously in the literature (Monti, 1994; Peña and Rodŕıguez, 2002, 2006; Fisher and Gallagher,

2012).

Table 3.2: Power levels of the tests for ARMA(2,2) models, fitted by AR(1) model, n = 100,
m = 10, 20

(ϕ1, ϕ2, θ1, θ2) Q̃ Q M̃ M Q̃W QW M̃W MW D̃ D

m=10

(-, -, 0.5, -) 0.294 0.282 0.338 0.314 0.369 0.343 0.421 0.402 0.420 0.394

(-, -, 0.8, -) 0.798 0.747 0.966 0.959 0.914 0.901 0.990 0.990 0.989 0.988

(-, -, 0.6, -0.3) 0.814 0.761 0.994 0.992 0.930 0.909 0.998 0.997 0.997 0.997

(0.1, 0.3, -, -) 0.456 0.420 0.455 0.404 0.543 0.517 0.558 0.533 0.564 0.532

(1.1, -0.35, - , -) 0.731 0.711 0.727 0.706 0.821 0.806 0.824 0.812 0.824 0.807

(0.7, -, 0.4, -) 0.554 0.527 0.627 0.603 0.680 0.664 0.765 0.746 0.766 0.746

(0.7, -, 0.9, -) 0.992 0.989 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(0.4, -, 0.6, -0.3) 0.883 0.847 0.997 0.997 0.965 0.958 0.999 0.998 0.998 0.998

(0.7, -, -0.7, 0.15) 0.186 0.178 0.180 0.163 0.202 0.188 0.196 0.178 0.195 0.175

(0.7, 0.2, -0.5, -) 0.779 0.768 0.772 0.756 0.829 0.816 0.835 0.829 0.832 0.823

(0.7, 0.2, 0.5, -) 0.392 0.356 0.487 0.453 0.554 0.507 0.644 0.628 0.645 0.623

(0.9, -0.4, -1.2, 0.3) 0.764 0.716 0.978 0.974 0.876 0.852 0.987 0.985 0.987 0.985

m=20

(-, -, 0.5, -) 0.236 0.223 0.227 0.198 0.297 0.269 0.320 0.291 0.298 0.263

(-, -, 0.8, -) 0.635 0.579 0.883 0.848 0.824 0.786 0.977 0.970 0.971 0.965

(-, -, 0.6, -0.3) 0.704 0.644 0.953 0.936 0.853 0.813 0.991 0.988 0.988 0.984

(0.1, 0.3, -, -) 0.385 0.353 0.327 0.264 0.499 0.463 0.472 0.423 0.463 0.387

(1.1, -0.35, -, -) 0.688 0.656 0.616 0.585 0.805 0.788 0.772 0.756 0.752 0.725

(0.7, -, 0.4, -) 0.467 0.440 0.496 0.455 0.621 0.593 0.678 0.647 0.659 0.623

(0.7, -, 0.9, -) 0.948 0.924 0.999 0.999 0.994 0.991 1.000 1.000 1.000 1.000

(0.4, -, 0.6, -0.3) 0.744 0.688 0.991 0.985 0.914 0.883 0.998 0.998 0.998 0.997

(0.7, -, -0.7, 0.15) 0.169 0.161 0.123 0.114 0.18 0.168 0.159 0.140 0.142 0.131

(0.7, 0.2, -0.5, -) 0.656 0.642 0.630 0.596 0.769 0.754 0.770 0.755 0.753 0.731

(0.7, 0.2, 0.5, -) 0.330 0.298 0.328 0.298 0.428 0.401 0.500 0.46 0.469 0.429

(0.9, -0.4, -1.2, 0.3) 0.605 0.558 0.914 0.900 0.772 0.735 0.984 0.976 0.972 0.957

Table 3.2 and Table 3.3 show the power of the ten statistics for 24 different ARMA(2,2)

models when AR(1) or MA(1) models are fitted. In each case, 1000 time series of sample size

n = 100 were generated and the power was computed at m = 10 and m = 20. The penalized
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tests Q̃, M̃ , Q̃W , M̃W and D̃ proposed in this chapter almost invariably have more power than

the corresponding tests using the sample ACF/PACF, and never have less power. Furthermore, in

each simulation setting, one of the proposed statistics, Q̃W , M̃W , or D̃, is always the most powerful

amongst all considered tests. It appears that penalizing improves performance for all commonly

used ARMA goodness of fit tests.

Table 3.3: Power levels of the tests for ARMA(2,2) models, fitted by MA(1) model, n = 100,
m = 10, 20

(ϕ1, ϕ2, θ1, θ2) Q̃ Q M̃ M Q̃W QW M̃W MW D̃ D

m=10

(0.5, -, -, -) 0.291 0.265 0.254 0.240 0.357 0.336 0.346 0.322 0.355 0.319

(0.8, -, - ,-) 0.982 0.978 0.976 0.972 0.989 0.989 0.990 0.989 0.990 0.989

(1.1, -0.35, -, - ) 0.998 0.997 0.995 0.995 1.000 1.000 1.000 0.999 1.000 0.999

(-, -, -0.8, 0.5) 0.858 0.833 0.949 0.944 0.947 0.939 0.980 0.978 0.978 0.977

(-, -, 0.6, -0.3) 0.396 0.364 0.463 0.430 0.540 0.520 0.618 0.600 0.615 0.592

(0.5, -, 0.7, -) 0.893 0.882 0.868 0.848 0.944 0.943 0.939 0.933 0.942 0.934

(-0.5, -, -0.7, -) 0.897 0.883 0.898 0.880 0.956 0.951 0.954 0.944 0.955 0.943

(0.3, -, -0.8, -0.5) 0.639 0.605 0.762 0.744 0.765 0.745 0.841 0.833 0.841 0.823

(0.8, -, 0.5, -0.3) 0.987 0.982 0.973 0.969 0.995 0.995 0.993 0.990 0.993 0.990

(1.2, -0.5, -0.9, -) 0.487 0.464 0.727 0.709 0.472 0.458 0.657 0.642 0.638 0.615

(0.3, -0.2, 0.7, -) 0.264 0.251 0.275 0.263 0.311 0.294 0.348 0.327 0.338 0.319

(0.9, -0.4, -1.2, 0.3) 0.813 0.778 0.942 0.937 0.912 0.898 0.966 0.966 0.965 0.961

m=20

(0.5, -, -, -) 0.285 0.269 0.210 0.187 0.321 0.304 0.309 0.277 0.287 0.248

(0.8, -, -, -) 0.967 0.963 0.950 0.933 0.987 0.983 0.981 0.976 0.977 0.972

(1.1, -0.35, -, -) 0.989 0.984 0.985 0.983 0.998 0.996 0.997 0.996 0.996 0.996

( -, -, -0.8, 0.5) 0.748 0.717 0.869 0.846 0.905 0.890 0.966 0.962 0.961 0.948

(-, -, 0.6, -0.3) 0.377 0.355 0.393 0.361 0.475 0.443 0.559 0.530 0.526 0.493

(0.5, -, 0.7, -) 0.820 0.794 0.767 0.730 0.911 0.900 0.884 0.870 0.879 0.859

(-0.5, -, -0.7, -) 0.853 0.827 0.799 0.756 0.929 0.918 0.911 0.901 0.903 0.888

(0.3, -, -0.8, -0.5) 0.510 0.480 0.606 0.571 0.669 0.632 0.784 0.762 0.756 0.732

(0.8, -, 0.5, -0.3) 0.974 0.968 0.946 0.929 0.992 0.991 0.976 0.973 0.976 0.970

(1.2, -0.5, -0.9, -) 0.406 0.383 0.598 0.581 0.479 0.449 0.691 0.661 0.643 0.609

(0.3, -0.2, 0.7, -) 0.237 0.231 0.216 0.202 0.286 0.262 0.279 0.261 0.242 0.223

(0.9, -0.4, -1.2, 0.3) 0.648 0.610 0.847 0.826 0.810 0.780 0.935 0.929 0.924 0.916
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3.5.2 Detecting Nonlinear Processes

To detect nonlinearity in time series data using the proposed statistics, several nonlinear

models are considered and the performance is compared to statistics using the sample (partial)

autocorrelation estimator. Typically tests to check the nonlinearity assumption are based on the

squared residuals, the absolute residuals, or the log of the squared residuals. Pérez and Ruiz (2003)

find that statistics based on the squared and absolute residuals are more powerful than these using

log of the squared residuals. Results in Fisher and Gallagher (2012) show that the power of statistics

using squared residuals tends to be larger than that using absolute residuals in most cases. Here the

size and power of the statistics Q̃∗, Q∗, M̃∗, M∗, Q̃∗
W , Q∗

W , M̃∗
W , M∗

W , D̃∗, and D∗ using squared

residuals are studied. The simulation settings of Fisher and Gallagher (2012) are followed.

Table 3.4 provides empirical sizes for the ten statistics of interest when a sample of n = 204

is taken from various AR(1) processes and properly fit. The nominal level 5% sizes are reported for

statistics at lag m = 24. As seen in the table, the size of the proposed statistics are similar to those

of the corresponding tests without penalizing.

Table 3.4: Empirical sizes at size 5% for AR(1) models, n=204, m=24

ϕ Q̃∗ Q∗ M̃∗ M∗ Q̃∗
W Q∗

W M̃∗
W M∗

W D̃∗ D∗

0.1 0.068 0.067 0.058 0.050 0.062 0.056 0.058 0.053 0.049 0.041

0.3 0.051 0.049 0.037 0.034 0.044 0.041 0.042 0.040 0.036 0.029

0.5 0.052 0.049 0.039 0.037 0.043 0.04 0.043 0.039 0.032 0.030

0.7 0.052 0.046 0.043 0.042 0.046 0.045 0.042 0.039 0.034 0.032

0.9 0.066 0.064 0.053 0.050 0.073 0.069 0.060 0.054 0.047 0.044

Consider eight nonlinear models to compare the powers of the testing statistics,

NL-1: Yt = ϵt − 0.4ϵt−1 + 0.3ϵt−2 + 0.5ϵtϵt−2

NL-2: Yt = ϵt − 0.3ϵt−1 + 0.2ϵt−2 + 0.4ϵtϵt−2 − 0.25ϵ2t−2

NL-3: Yt = 0.4Yt−1 − 0.3Yt−2 + 0.5Yt−1ϵt−1 + ϵt

NL-4: Yt = 0.4Yt−1 − 0.3Yt−2 + 0.5Yt−1ϵt−1 + 0.8ϵt−1 + ϵt

NL-5: Yt = 0.4Yt−1 − 0.3Yt−2 + (0.8 + 0.5Yt−1)ϵt−1 + ϵt

NL-6: Yt = 0.5− (0.4− 0.4ϵt−1)Yt−1 + ϵt

NL-7: Yt = 0.8ϵ2t−2 + ϵt
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NL-8: Yt = ϵt + 0.3ϵt−1 + (0.2 + 0.4ϵt−1 − 0.25ϵt−2)ϵt−2,

where {ϵt} in each model is an independent N(0, 1) sequence. The first four models were proposed

by Keenan (1985) and also analyzed by Peña and Rodŕıguez (2002, 2006), whereas the next four

models were analyzed by Psaradakis and Vávra (2019). For each model, 1000 replicates of sample

size n = 204 are generated and an AR(p) model is fitted to the data, where p is selected by the

Akaike information Criterion (AIC) with p ∈ {1, 2, 3, 4}.

Table 3.5: Powers of the tests at 5% for eight nonlinear models, AR(p) model fitted, n=204

m Model Q̃∗ Q∗ M̃∗ M∗ Q̃∗
W Q∗

W M̃∗
W M∗

W D̃∗ D∗

7 NL-1 0.136 0.124 0.138 0.130 0.152 0.145 0.159 0.151 0.158 0.148

NL-2 0.517 0.498 0.519 0.506 0.613 0.604 0.600 0.590 0.595 0.585

NL-3 0.936 0.930 0.931 0.925 0.967 0.962 0.966 0.962 0.966 0.960

NL-4 0.866 0.851 0.850 0.834 0.925 0.921 0.916 0.910 0.916 0.909

NL-5 0.850 0.833 0.836 0.822 0.916 0.907 0.905 0.894 0.903 0.891

NL-6 0.871 0.849 0.868 0.846 0.931 0.925 0.928 0.923 0.928 0.922

NL-7 0.390 0.360 0.395 0.386 0.495 0.467 0.499 0.475 0.500 0.468

NL-8 0.448 0.426 0.440 0.418 0.537 0.520 0.534 0.517 0.531 0.512

12 NL-1 0.116 0.107 0.110 0.101 0.154 0.144 0.150 0.141 0.148 0.138

NL-2 0.423 0.389 0.412 0.387 0.548 0.528 0.537 0.515 0.533 0.504

NL-3 0.894 0.862 0.886 0.848 0.957 0.950 0.947 0.942 0.949 0.941

NL-4 0.815 0.787 0.783 0.749 0.886 0.883 0.876 0.864 0.877 0.865

NL-5 0.821 0.789 0.783 0.749 0.901 0.890 0.891 0.873 0.893 0.873

NL-6 0.772 0.730 0.789 0.745 0.879 0.865 0.884 0.876 0.886 0.874

NL-7 0.322 0.296 0.332 0.300 0.442 0.426 0.440 0.426 0.441 0.420

NL-8 0.377 0.348 0.373 0.345 0.518 0.499 0.505 0.487 0.509 0.479

24 NL-1 0.103 0.089 0.097 0.080 0.145 0.129 0.138 0.130 0.133 0.117

NL-2 0.362 0.326 0.330 0.287 0.499 0.473 0.480 0.455 0.466 0.429

NL-3 0.798 0.755 0.764 0.706 0.907 0.891 0.893 0.874 0.895 0.865

NL-4 0.705 0.656 0.652 0.585 0.833 0.814 0.810 0.784 0.810 0.779

NL-5 0.720 0.674 0.664 0.605 0.836 0.811 0.804 0.787 0.806 0.779

NL-6 0.694 0.648 0.697 0.645 0.841 0.812 0.845 0.823 0.837 0.811

NL-7 0.246 0.203 0.221 0.186 0.356 0.320 0.360 0.328 0.348 0.310

NL-8 0.303 0.271 0.276 0.241 0.446 0.418 0.434 0.409 0.416 0.390
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The results in Table 3.5 show that the statistics based on the proposed penalized (partial)

autocorrelation estimator are more powerful for all nonlinear models and for all values of m. The

penalized weighted Ljung-Box test appears to be the most powerful in detecting a nonlinear process,

with a few exceptions in which the penalized weighted Monti test or penalized Mahdi-McLeod test

is the most powerful.

It’s also interesting to check the behavior of the proposed statistics in the detection of

nonlinearity in GARCH models. Table 6 and 7 show the power of these tests for four covariance

stationary GARCH(1,1) models,

Yt = εtσt

σ2 = 1 + αY 2
t−1 + βσ2

t−1,

where α ≥ 0, β ≥ 0, and α + β < 1, and {εt} is an independent N(0, 1) sequence. Consider the

simulation settings from Peña and Rodŕıguez (2002). Statistics based on the squared residuals are

computed, and the empirical power from 1000 replications is found at lags m = 12 and m = 24. The

first two GARCH(1,1) processes considered in Table 3.6 are generated with two sets of parameters

GF-1, GF-2 which are from financial time series (Carnero et al., 2001). Models in Table 3.7 are

taken from environmental data (Tol, 1996), where the two sets of parameters are GM-1 and GM-2.

GF-1: (ω, α, β) = (1, 0.05, 0.90) GF-2: (ω, α, β) = (1, 0.15, 0.80)

GM-1: (ω, α, β) = (1.21, 0.404, 0.153) GM-2: (ω, α, β) = (1.58, 0.55, 0.105).

Table 3.6: Powers of the tests at 5% for detecting GARCH(1,1) models of financial time series

n m Model Q̃∗ Q∗ M̃∗ M∗ Q̃∗
W Q∗

W M̃∗
W M∗

W D̃∗ D∗

250 12 GF-1 0.341 0.324 0.284 0.268 0.347 0.335 0.313 0.303 0.309 0.294

GF-2 0.823 0.822 0.790 0.777 0.846 0.842 0.823 0.813 0.818 0.807

24 GF-1 0.303 0.294 0.238 0.229 0.339 0.336 0.287 0.275 0.270 0.252

GF-2 0.808 0.797 0.725 0.707 0.857 0.849 0.810 0.804 0.805 0.791

500 12 GF-1 0.544 0.538 0.480 0.474 0.566 0.562 0.519 0.506 0.516 0.503

GF-2 0.987 0.986 0.980 0.979 0.992 0.992 0.988 0.988 0.988 0.987

24 GF-1 0.520 0.514 0.444 0.432 0.589 0.584 0.529 0.521 0.518 0.509

GF-2 0.973 0.972 0.950 0.947 0.989 0.989 0.979 0.979 0.979 0.977
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Table 3.7: Powers of the tests at 5% for detecting GARCH(1,1) models of meteorological time series

n m Model Q̃∗ Q∗ M̃∗ M∗ Q̃∗
W Q∗

W M̃∗
W M∗

W D̃∗ D∗

90 12 GM-1 0.394 0.350 0.346 0.306 0.494 0.466 0.478 0.449 0.476 0.441

GM-2 0.553 0.505 0.518 0.461 0.669 0.642 0.660 0.631 0.651 0.626

24 GM-1 0.346 0.301 0.281 0.225 0.467 0.438 0.425 0.401 0.404 0.364

GM-2 0.445 0.385 0.382 0.327 0.568 0.535 0.539 0.500 0.530 0.470

180 12 GM-1 0.754 0.729 0.742 0.706 0.833 0.818 0.828 0.815 0.829 0.811

GM-2 0.850 0.829 0.825 0.800 0.905 0.898 0.895 0.889 0.896 0.887

24 GM-1 0.657 0.619 0.606 0.547 0.772 0.752 0.744 0.716 0.738 0.702

GM-2 0.780 0.753 0.739 0.680 0.867 0.858 0.845 0.827 0.846 0.820

In general the results show that the proposed statistics are more powerful or tie the unpe-

nalized statistics. The penalized weighted Ljung-Box test performs the best for all cases in Table

3.6 and Table 3.7.

Table 3.8 provides the power for 1000 replicates from a long memory stochastic volatility

(LMSV) model (Pérez and Ruiz, 2003),

Yt = exp(ht/2)ϵt

(1− ϕB)(1−B)dht = ηt

where |ϕ| < 1, and {ϵt} and {η} are assumed to be mutually independent and normally distributed

sequences with variances 1 and σ2
η, respectively. The simulation study follows the design of Fisher and

Gallagher (2012). The log volatility follows an AR fractionally integrated MA model (ARFIMA(p,

d, q)). The power of the statistic is based on the squared residuals after 1000 replicates of each

of the two sample sizes were calculated and tests performed at lags m = 10 and m = 50. The

parameters in six different LMSV models considered are LM-1: (ϕ, d, σ2
η) = (0.98, 0, 0.05), LM-2:

(ϕ, d, σ2
η) = (0.9, 0.2, 0.01), LM-3: (ϕ, d, σ2

η) = (0.9, 0.2, 0.1), LM-4: (ϕ, d, σ2
η) = (0.8, 0.45, 0.01),

LM-5: (ϕ, d, σ2
η) = (0.9, 0.45, 0.01) and LM-6: (ϕ, d, σ2

η) = (0, 0.45, 0.1). Table 3.8 shows that the

proposed tests are more powerful than tests based on sample ACF/PACF for m = 10 and m = 50

and for all LMSV models. The proposed statistic Q̃∗
W is almost always the most powerful.
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Table 3.8: Powers of the tests at 5% for long memory stochastic volatility processes

n m Model Q̃∗ Q∗ M̃∗ M∗ Q̃∗
W Q∗

W M̃∗
W M∗

W D̃∗ D∗

256 10 LM-1 0.894 0.892 0.847 0.844 0.894 0.892 0.867 0.864 0.863 0.861

LM-2 0.284 0.277 0.257 0.244 0.281 0.276 0.268 0.258 0.264 0.245

LM-3 0.932 0.931 0.902 0.898 0.949 0.947 0.933 0.931 0.932 0.929

LM-4 0.440 0.426 0.387 0.375 0.446 0.432 0.412 0.401 0.408 0.398

LM-5 0.835 0.830 0.784 0.773 0.829 0.828 0.795 0.793 0.792 0.788

LM-6 0.175 0.164 0.164 0.155 0.190 0.179 0.180 0.167 0.176 0.159

50 LM-1 0.823 0.814 0.703 0.683 0.876 0.872 0.835 0.826 0.811 0.794

LM-2 0.207 0.199 0.135 0.123 0.273 0.261 0.219 0.197 0.171 0.152

LM-3 0.808 0.781 0.692 0.666 0.891 0.887 0.843 0.829 0.831 0.814

LM-4 0.342 0.337 0.250 0.232 0.425 0.406 0.356 0.336 0.304 0.283

LM-5 0.709 0.696 0.588 0.566 0.807 0.798 0.736 0.720 0.690 0.674

LM-6 0.137 0.131 0.103 0.092 0.164 0.158 0.150 0.139 0.122 0.106

512 10 LM-1 0.996 0.996 0.995 0.995 0.998 0.998 0.998 0.998 0.998 0.998

LM-2 0.477 0.471 0.432 0.421 0.483 0.473 0.455 0.443 0.450 0.440

LM-3 0.995 0.995 0.993 0.993 0.995 0.995 0.994 0.994 0.994 0.994

LM-4 0.717 0.712 0.660 0.653 0.721 0.719 0.686 0.681 0.686 0.678

LM-5 0.990 0.990 0.976 0.975 0.992 0.989 0.975 0.975 0.975 0.975

LM-6 0.310 0.304 0.277 0.269 0.319 0.312 0.305 0.294 0.303 0.290

50 LM-1 0.987 0.987 0.968 0.965 0.993 0.993 0.989 0.989 0.989 0.989

LM-2 0.387 0.381 0.307 0.296 0.479 0.473 0.417 0.403 0.391 0.384

LM-3 0.974 0.969 0.933 0.922 0.991 0.990 0.983 0.982 0.983 0.982

LM-4 0.654 0.652 0.546 0.529 0.748 0.744 0.671 0.661 0.650 0.639

LM-5 0.978 0.976 0.935 0.930 0.988 0.988 0.975 0.973 0.971 0.967

LM-6 0.289 0.281 0.219 0.212 0.342 0.332 0.294 0.280 0.267 0.259

3.5.3 Fitted ARCH Processes

To analyze the empirical size and power of the penalized (weighted) statistic from Section

3.4.2, 1000 ARCH series with sample sizes n = 100, 200, 300, 400 are generated. The simulation

experiment design is from Fisher and Gallagher (2012) and Li and Mak (1994).

Table 3.9 shows the empirical Type I errors where the data are generated from two AR(1)−

ARCH(b) models. The parameters are ARCH-1: (ϕ, ω, α) = (0.2, 0.2, 0.2) where ARCH-1 has b = 1

and ARCH-2: (ϕ, ω, α1, α2) = (0.2, 0.2, 0.2, 0.2) with b = 2. We can observe that the empirical sizes

for the penalized (weighted) Li and Mak statistics are comparable to the ones for (weighted) Li and
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Mak statistics, and all statistics are close to or less than the nominal size 0.05.

Table 3.9: Empirical sizes at 5% for ARCH-1 and ARCH-2 models

m=6 m=12

n L̃(b,m) L(b,m) L̃W (b,m) LW (b,m) L̃(b,m) L(b,m) L̃W (b,m) LW (b,m)

ARCH-1 model, b=1

100 0.022 0.021 0.021 0.019 0.026 0.024 0.027 0.025

200 0.044 0.044 0.037 0.036 0.035 0.034 0.043 0.041

300 0.042 0.041 0.035 0.032 0.046 0.042 0.039 0.034

400 0.043 0.04 0.047 0.044 0.046 0.045 0.045 0.040

ARCH-2 model, b=2

100 0.022 0.018 0.025 0.025 0.025 0.021 0.023 0.021

200 0.044 0.043 0.046 0.046 0.028 0.028 0.034 0.030

300 0.039 0.038 0.039 0.038 0.039 0.038 0.037 0.035

400 0.053 0.053 0.051 0.048 0.038 0.037 0.041 0.040

Table 3.10 shows the power of these tests for 1000 replicates from two ARCH models:

ARCH-2 given above and ARCH-3 where the parameters are (Fisher and Gallagher, 2012)

(ϕ, ω, α1, α2, α3, α4, α5) = (0.2, 0.2, 0.2, 0.2, 0.1, 0.05, 0.05).

For each simulated sample, AR(1)-ARCH(1) and AR(1)-ARCH(2) are fit. The proposed tests are

more powerful for detecting the ARCH processes under fit in all considered cases. The penalized

weighted Li-Mak statistic is the most powerful.
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Table 3.10: Power levels at 5% for ARCH(1) and ARCH(2) models

m=6 m=12

n L̃(b,m) L(b,m) L̃W (b,m) LW (b,m) L̃(b,m) L(b,m) L̃W (b,m) LW (b,m)

AR(1)-ARCH(1) fitted to ARCH-2, b=1

100 0.157 0.148 0.185 0.180 0.097 0.089 0.130 0.120

200 0.344 0.332 0.408 0.400 0.275 0.251 0.362 0.345

300 0.498 0.483 0.598 0.589 0.433 0.414 0.529 0.514

400 0.639 0.630 0.719 0.715 0.546 0.530 0.665 0.651

AR(1)-ARCH(2) fitted to ARCH-3, b=2

100 0.089 0.088 0.1 0.097 0.075 0.069 0.088 0.078

200 0.209 0.202 0.226 0.219 0.159 0.149 0.205 0.193

300 0.311 0.307 0.326 0.321 0.272 0.257 0.339 0.334

400 0.438 0.437 0.451 0.449 0.341 0.336 0.424 0.418

3.6 Applications

In this section, the penalized statistics are employed to two time series. In each case goodness

of fit is assessed using the tests discussed in this chapter. P-values are calculated using (3.16).

Consider the weekly egg prices (per egg in Deutsch Marks/100) paid to the producer from

April 1967 to May 1990 (Fan and Yao, 2003; Fan, 2004; Finkenstädt, 2012). The observed series

and it’s first order differences can be seen in Figure 3.4. Fan and Yao (2003) found that ARMA(1,2)

model provides an adequate fit. Here, both an ARMA(1,1) model and an ARMA(1,2) model are

fit to the sample of first order differences. Table 3.11 provides the p-values of the ten portmanteau

statistics applied to the residuals with lags m = 10, 15, 30 and α = 0.05. Simulations given above

indicate that the penalized version of the ARMA goodness-of-fit statistics are more sensitive in

detecting model under fit. In Table 3.11 the p-value of each penalized test is slightly smaller than

that of it’s non-penalized version. Neither QW nor Q̃W detect the under fit of the ARMA(1,1) at

the 0.05 level, using any of the considered m. In nearly all cases, the penalized and unpenalized

version of the statistic indicate the same conclusion. However, using m = 30, the model adequacy
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is rejected using M̃W , but not rejected using MW (boldface in the table).

Figure 3.4: (a) Weekly egg prices (per egg in Deutsch Marks/100) paid to the producer from April
1967 to May 1990. (b) First differences of the prices.

Figure 3.5: Tesla log returns from January 1, 2020 to December 31, 2020
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Table 3.11: The p-values of statistics after ARMA models have been fit to Egg price series.

m Q̃ Q M̃ M Q̃W QW M̃W MW D̃ D

ARMA(1,1)

10 0.0106 0.0120 0.0068 0.0076 0.0727 0.0763 0.0563 0.0594 0.0454 0.0478

15 0.0793 0.0888 0.0416 0.0475 0.0609 0.0667 0.0382 0.0424 0.0305 0.0345

30 0.0109 0.0126 0.0008 0.0009 0.1006 0.1169 0.0427 0.0511 0.0341 0.0403

ARMA(1,2)

10 0.0984 0.1002 0.1033 0.1051 0.5906 0.5838 0.5997 0.5924 0.1903 0.1898

15 0.3108 0.3154 0.2641 0.2681 0.4942 0.4932 0.4680 0.4672 0.2112 0.2143

30 0.0849 0.0854 0.0859 0.0856 0.571 0.5837 0.5624 0.5743 0.373 0.3794

Consider the log of the daily closing return of Tesla stock (TSLA) on the market days from

Jan 1, 2020, through December 31, 2020. The series is plotted in Figure 3.5.

Table 3.12 presents the p-values of ten statistics using squared returns at various lagsm, with

nearly all tests indicating the presence of nonlinear effects. Once again, in the case of an apparently

under fit model, the p-values for the penalized tests are smaller than those of the standard tests,

and in nearly all cases the two versions of the test provide the same conclusion. However, using a

type I error bound of 0.05 and m = 40, the test statistic M∗ fails to detect the nonlinearity, while

the statistic M̃∗ indicates statistically significant nonlinear effects; similarly, when m = 60, M∗
W and

M̃∗
W give different conclusions.

Table 3.13 contains p-values of Li-Mak and weighted Li-Mak statistics for detecting ARCH

under fit, with nearly all tests rejecting the adequacy of the ARCH(1) model. All of the tests fail

to reject the goodness of fit of the ARCH(2). Note that in all cases the penalized version of the

Li-Mak test has higher p-value for ARCH(2) fit than the ordinary Li-Mak test, and the same holds

for several choices of m in the weighted version. Although, the p-value of the penalized statistics is

typically smaller when the model is under fit, when the fit is adequate, the penalized test can have

a larger p-value, thus providing more confidence in the adequacy of the fitted model.
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Table 3.12: The p-values in detecting nonlinear effects in Tesla returns using squared values

m Q̃∗ Q∗ M̃∗ M∗ Q̃∗
W Q∗

W M̃∗
W M∗

W D̃∗ D∗

10 0.0007 0.0013 0.0082 0.0138 0.0000 0.0001 0.0006 0.0014 0.0005 0.0013

20 0.0068 0.0117 0.0632 0.0876 0.0002 0.0004 0.0054 0.0104 0.0046 0.0108

30 0.0010 0.0017 0.0325 0.0431 0.0005 0.0012 0.0153 0.0245 0.0157 0.0288

40 0.0015 0.0023 0.0402 0.0516 0.0003 0.0007 0.0140 0.0224 0.0192 0.0326

50 0.0056 0.0084 0.1295 0.1528 0.0004 0.0009 0.0199 0.0293 0.0322 0.0492

60 0.0271 0.0367 0.3383 0.3630 0.0008 0.0014 0.0397 0.0506 0.0668 0.0899

Table 3.13: The p-values of statistics after ARCH Models have been fit to Tesla returns

m L̃(b,m) L(b,m) L̃W (b,m) LW (b,m) L̃(b,m) L(b,m) L̃W (b,m) LW (b,m)

ARCH(1) ARCH(2)

10 0.0015 0.0031 0.0001 0.0002 0.1285 0.1282 0.1272 0.1289

20 0.0153 0.0264 0.0006 0.0014 0.1907 0.1883 0.1475 0.1513

30 0.0095 0.0151 0.0021 0.0045 0.3876 0.3698 0.2256 0.2283

40 0.0165 0.0244 0.0028 0.0049 0.5927 0.5677 0.3286 0.3198

50 0.0556 0.0735 0.0048 0.0081 0.7021 0.6681 0.4149 0.3979

60 0.1871 0.2211 0.0108 0.0161 0.8236 0.7933 0.5325 0.4998

3.7 Summary

The general forms of test statistics given in (3.8), (3.21) and (3.26), capture most of the

tests proposed in the literature. Ideally, the power of these tests could be maximized with optimal

choices for weighting sequence {ωk} and function f . It is fairly easy to see that there can be no power

maximizing choice of weights or power maximizing choice of f , since the power depends on the model

under the alternative hypothesis. Gallagher and Fisher (2015) consider general weighting choices

and Mahdi (2016) considers tests for seasonal ARMA models, while Fisher and Robbins (2018) show

that the choice f(x) = −log(1− x) can improve power over f(x) = x. While there can be no power

optimal choices for target and tuning parameters, the test specific choices for target and tuning

parameters given in (3.9) and (3.10), respectively, improve power for each chosen Portmanteau test
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statistic. In theory the target and tuning parameters could adapt to the specific data under study

if these were selected via cross validation (CV). However, special care must be taken when cross

validating dependent data (Burman et al., 1994; Arlot and Celisse, 2010). Adapting these methods

to select tuning parameters in the goodness of fit framework did not provide improvement over the

proposed plug-in choices provided above.

The general penalized M-estimator (1.12) can potentially be used to improve other time

series methods. Formulating the estimation problem in terms of best linear prediction, indicates

a natural application of the estimator to forecasting. Banded and tapered estimators stabilize

autocorrelation and partial autocorrelation estimators as a function of the lag and can improve

forecasting (McMurry and Politis, 2015; Proietti and Giovannelli, 2018). These estimators use the

sample ACF at small lags, shrink moderate lag estimates toward zero and set larger lag estimates

equal to zero. Thus, the estimators still tend to underestimate the magnitude non-zero correlations.

Combining lag-based shrinkage of the banded and tapered estimator with the penalized M-estimator

which can increase the magnitude of estimates, has a potential for improving forecasting. Recently,

Bergmeir et al. (2018) has demonstrated that K-fold cross validation outperforms traditional out of

sample methods for prediction in autoregressive settings. Perhaps their proposed methods can be

used to select parameters in (1.12) to improve autoregressive forecasting. A long standing problem

in time series econometrics is accurate estimation of standard errors when conducting inference with

autocorrelated data (Berk, 1974; Newey and West, 1987). In many cases the goal is to make inference

in terms of regression parameters without assuming a specific model for the correlation structure.

The popular heteroscedasticity and autocorrelation consistent (HAC) methods (Andrews, 1991),

estimate the standard error of the estimated mean (regression) parameters using a weighted linear

combination of estimated autocorrelations, or a spectral estimate which can be expressed as such a

combination. These methods can result in inflated type I error due to the bias of the correlation

estimates, especially in small samples with high amounts of positive correlation (Müller, 2014). The

penalized M-estimators of autocorrelation could potentially improve performance of HAC methods.

These future directions will be explored elsewhere.
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Chapter 4

Prediction Using Penalized

ACF/PACF

4.1 Introduction

In prediction theory and time series analysis, the autocorrelation matrix of a stationary

process plays a key role. The n-dimensional autocorrelation matrix is a Toeplitz matrix that depends

solely on the autocorrelation from lag 0 to n−1 for stationary process. Toeplitz correlation matrices

are special cases with distinct correlations, one for each diagonal away from the main diagonal, which

are used in optimal linear prediction and signal processing. However, the sample autocovaraince or

autocorrelation matrix is not consistent when the dimension is the same as the sample size (Wu

and Pourahmadi, 2003, 2009). Back to the 1920’s, the idea of banding a stationary covariance

matrix or limiting moving average MA and autoregressive AR model fitting was investigated by

Yule and Slutsky. Banding sample covariance matrix and thresholding have been proposed by Wu

and Pourahmadi (2003, 2009) and Bickel and Levina (2008) in longitudinal or time dependent data

analysis. If we wish to use the most recent p observations to predict future values, we can fit an

autoregressive AR(p) model to the observed data; to choose the order p from the data we can use

the Akaike information criterion (AIC). Bickel and Gel (2011) proposed a banded regularization

of autocovariance matrices which can fit a longer AR(p) model,and also control the number of

parameters to be estimated precisely and the level of accuracy. McMurry and Politis (2010) proposed
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a tapered and banded estimator by leaving the main diagonals of the sample autocovariance matrix

intact while gradually shrink off-diagonal entries toward zero. They developed the theory of best

linear prediction using the resulting autocovariance sequences (McMurry and Politis, 2015) and

investigated the asymptotic properties of the tapered and banded estimator. Proietti and Giovannelli

(2018) introduced an alternative estimator which is consistent and positive-definite estimator of the

autocovariance matrix by using a modified Durbin-Levinson algorithm with tapered and banded

sample partial autocorrelation. However, the sample (partial) autocorrelation underestimates the

magnitude of the low lag correlations. In this chapter, we discuss the application of the penalized

ACF and PACF in prediction based on the methods of McMurry and Politis (2015) and Proietti

and Giovannelli (2018).

In order to alleviate the bias and reduce MSE of sample ACF/PACF and improve the predic-

tion for stationary processes, we propose penalized estimators of ACF and PACF where the penalty

is based on the distance between correlation and a target. The general penalized objective function

is in (1.12). The target values and tuning parameters can depend on the prediction application

and the data. This chapter considers using correlation estimators by minimizing (1.12) to reduce

the prediction errors for stationary processes. By selecting target and tuning parameters in (1.12),

one can increase the moderate and large magnitude correlations toward unity and shrink the small

magnitude correlations toward zero to reduce the bias of the correlation estimators and the predic-

tion errors. The penalized ACF and PACF are used for prediction in two ways. First, we propose

a penalized autocorrelation matrix estimator and impose positive definiteness, so that the tapered

and banded method can be used to construct a penalized predictor. Second, we use a regularized

Durbin-Levionson algorithm (Proietti and Giovannelli, 2018; Durbin, 1960) based on tapered and

banded sample partial autocorrelation sequence for prediction.

The remainder of this chapter is structured as follows. Section 2 presents our proposed

PACF/ACF estimator applied to linear prediction. Section 3 provides a comparative study of the

prediction errors for ARMA models, and data application is given in Section 4. Section 5 provides

discussion.
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4.2 Method

4.2.1 Penalized Estimator

Recall that the general form of penalized correlation estimator is a convex combination of

the unpenalized estimator and the target,

ρ̃(h) = whρτ (h) + (1− wh)ρ̂(h)

where wh = λh

1+λh
. It has been shown that the penalized estimator follows the same asymptotic

distribution as the sample ACF ρ̂. To reduce the estimation bias and prediction error, we suggest

to select the target as follows,

• if ρ̂(h) less than one standard error from 0, |ρτ (h)| < |ρ̂(h)|;

• if ρ̂(h) is larger, then ρτ is larger than ρ̂(h) with the increase depending on the sample size

and the magnitude of ρ̂(h).

The choice of target and tuning parameters satisfying the principles above are given as,

ρτ (h) =


0 |ρ̂(h)| ≤ ℓh

min{ρ̂(h) +
√

1
nvh, 1} |ρ̂(h)| > ℓh

(4.1)

and

λh =
ℓh

sin(|ρ̂|(1− |ρ̂|) ∗ 2π)

then the penalized estimator is,

ρ̃(h) =
ρ̂(h) + λhsgn(ρ̂(h))|ρτ (h)|

1 + λh
(4.2)

where ℓh =
√
(n− h)/(n2 + 2n), ρ̂(h) is the lag h sample (PACF) ACF of the residual sequence,

and vh = 1.08
1+exp((h−25))/10 is a lag decay. Figure (4.1) demonstrates the target, weight and resulting

penalized estimator for r̂(1), when h = 1 and n = 100. Part (a) shows how ρτ depends on ρ̂. The

weight function is graphed as a function of ρ̂ in part (b). Finally, part (c) of the figure shows the

map from ρ̂(1) to ρ̃2(1).
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(a) Target (b) Weight (c) Penalized Estimator

Figure 4.1: (a) ρτ , (b) wh, and (c) ρ̃2 as functions of ρ̂ = r̂(1), n = 100, and h = 1.

As in Section 2.2, it is no guarantee that the penalized estimator is non-negative definite.

Since the inverse of R̂ is a important element in prediction, the autocorrelation matrix can be

corrected to achieve finite-sample positive definiteness. We apply one way to modify the estimated

function to be non-negative definite as below. More techniques to impose positively are discussed

in McMurry and Politis (2010). Given the sample autocorrelation matrix and the penalized ACF

matrix,

R̂h =



1 ρ̂(1) ... ρ̂(h− 1)

ρ̂(1) 1 ... ρ̂(h− 2)

. . . . . . ... . . .

ρ̂(h− 1) ρ̂(h− 2) ... 1


R̃h =



1 ρ̃(1) ... ρ̃(h− 1)

ρ̃(1) 1 ... ρ̃(h− 2)

. . . . . . ... . . .

ρ̃(h− 1) ρ̃(h− 2) ... 1


with the smallest eigenvalues α = min(eigenvalue of R̂h) and β = min(eigenvalue of R̃h). Let

c = |β|/(α+ |β|), then

ρ̃∗(h) = αρ̂(h) + (1− α)ρ̃(h)

and

R∗
h =



1 ρ̃∗(1) ... ρ̃∗(h− 1)

ρ̃∗(1) 1 ... ρ̃∗(h− 2)

. . . . . . ... . . .

ρ̃∗(h− 1) ρ̃∗(h− 2) ... 1


.
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Similarly, the penalized partial autocorrelation estimator can be formulated as

α̃(h) = whατ (h) + (1− wh)α̂(h) (4.3)

where α̂(h) is the ordinary sample PACF, ατ (h) is a target value and wh = λh/(1+λh). The target

values and tuning parameters can be selected using the sample PACF.

4.2.2 Tapered and Banded Predictor

Consider a realization {Yt, t = 1, ...n} of a stationary random process with mean zero and

autocovariance function γh = E[YtYt−h]. To predict Yn+1 based on these observed data, the n × n

Toeplitz autocorrelation matrix Rn plays a central role. With respect to mean squared error, the

full sample optimal linear predictor (FSO) is

Ŷn+1 = ϕ̂n1Yn + ϕ̂n2Yn−1 + ...+ ϕ̂nnY1 (4.4)

where the coefficients ϕ̂ni are given by ϕ̂n = [ϕ̂n1, ..., ϕ̂nn] = Γ̂−1
n γ̂n = R̂

−1

n ρ̂n and Γ̂n = [γ̂|i−j|]
n
i,j=1

is the sample autocovariance matrix of Y1, ..., Yn, γ̂n = (γ̂1, ..., γ̂n)
′
is the vector of sample covarainces

at lags 1, ..., n. Bickel and Gel (2011) investigated a predictor of Yn+1 that use the p× p submatrix

of the banded regularization of sample autocovariance matices with p = o(n). In practice, the

coefficient vector ϕ̂n = (ϕ̂n1, ..., ϕ̂nn)
′
is routinely truncated to its first p components in order to be

consistently estimated. This procedure is the same as fitting an AR(p) process to the data. The

resulting predictor, which is called partial sample optimal predictor (PSO), is

Ŷ p
n+1 = ϕ̂p1Yn + ϕ̂p2Yn−1 + ...+ ϕ̂ppYn−p+1 (4.5)

where the coefficients ϕ̂pi are given by ϕ̂p = [ϕ̂p1, ..., ϕ̂pp] = Γ̂−1
p γ̂p and Γ̂−1

p can be corrected to

positive definiteness (McMurry and Politis, 2015). For example, the predictor proposed in Bickel and

Gel (2011) has coefficients with p = n1/2 and the AR prediction chooses by AIC minimization with

p = pAIC . Note the sample autocovariance matrix Γ̂n = [γ̂(|i − j|)], i, j = 1, ..., n is not consistent.

Wu and Pourahmadi (2009) and Bickel and Gel (2011) proposed the banded autocovariance estimator

at lag h which is

γ̂h,B = γ̂(h)I(h ≤ l), 0 ≤ h ≤ n
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where I(.) is the indicator function and l is the banding parameter. This estimator is consistent for

the class of nonlinear short-range dependent processes and under the Frobenius norm (Bickel and

Gel, 2011).

The taper and banded autocovariance estimator at lag h is proposed by McMurry and Politis

(2010) estimates lag h covariance as

γ̂h,TB = γ̂(h)ω(h), 0 ≤ h ≤ n,

with ω(h) = κ(h/l) where l is a banding parameter, and they suggest κ(.) to be the trapezoidal

taper

κ(z) =


1 if |z| ≤ 1

2− |z| if 1 < |z| ≤ 2

0 if |z| > 2.

(4.6)

Using the tapered and banded sample autocovariance, McMurry and Politis (2015) developed the

corresponding optimal linear predictor. Our goal is to predict Yn+1 based on these observed data.

Applying the proposed autocorrelation estimator ρ̃(h) for each lag h = 0, 1, ..., n− 1, we shall define

the estimated ACF using the data-based choice of the banding parameter with corrections towards

positive definiteness. So the tapered and banded autocorrelation estimator using penalized method

is given as

ρ̃h,PTB = κ(h/l)ρ̃(h) (4.7)

Selection of the banding parameter l Both the FSO and PSO predictors of equations (4.4)

and (4.5) are affected by the banding parameter l selection. McMurry and Politis (2010) provided a

data-based rule for picking l that l̂ is the smallest positive integer such that |ρ̂(l+k)| < c(logn/n)1/2

for k = 1, ...,Kn. The empirical rule for picking l remains valid for all c > 0 and 1 ≤ Kn ≤ n.

Following the suggestion of McMurry and Politis (2010, 2015), we use c = 2 and Kn = 5. The rule

entails performing an approximate 95% test of the null hypothesis ρ(l̂ + 1), ..., ρ(l̂ +Kn), which are

all simultaneously equal to zero.

In this work, the proposed autocorrelation estimation ρ̃ in (4.2) is applied at lag h = 1, ..., p
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instead of the sample ACF. Thus the penalized predictor of Yn+1 is defined as

Ỹ p
n+1 = ϕ̃p1(n)Yn + ϕ̃p2(n)Yn−1 + ...+ ϕ̃pp(n)Yn−p+1 (4.8)

where p is the banding parameter and the coefficient vector ϕ̃p = [ϕ̃p1(n), ..., ϕ̃pp(n)]
′
is given by the

Yule-Walker equations: ϕ̃p = (R̃
∗
p)

−1ρ̃∗
p,PTB where R̃

∗
p and ρ̃∗

p,PTB is the penalized autocorrelation

matrix and vector that result after R̃p is corrected to positive definiteness. In practice, We can also

use penalized PACF to calculate AIC to pick the banding parameter p = pAIC . So the banding

parameter can be pAIC or 2l. In this situation, the penalized coefficient vector ϕ̃p can be calculated

by the Durbin-Levinson algorithm using the penalized PACF estimator using equation (4.3).

4.2.3 Regularized Durbin-Levinson Algorithm with Penalized Estimator

Proietti and Giovannelli (2018) introduced the regularized Durbin-Levinson algorithm, which

shrinks the sample partial autocorrelation ϕ̂hh towards zero with π̂hh = ωhϕ̂hh where ωh = κ(h/l)

is the trapezoidal kernel given in (4.6). Along with the estimated autoregressive coefficients π̂hj ,

the regularized sample autocovariance matrix can be obtained. The regularized Durbin-Levinson

autocovariance estimator is consistent and positive definite under some suitable assumptions. In

this section, we modify the regularized Durbin-Levinson algorithm using the penalized estimator to

proposed a new autocorrelation matrix and partial autocorrelation matrix.

Let γr(h) be the regularized autocovariance at lag h, ϕhj , j = 1, ..., h be the usual coefficient

without regularization, πhj , j = 1, ..., h be the coefficient of the regularized predictor, γ̃r(h) be the

regularized autocovariance using the penalized method, ϕ̃hj , j = 1, ..., h be the usual coefficient

without regularization, and π̃hj be the penalized coefficient of the regularized predictor, Algorithm

1 displays the procedure of the penalized and regularized Durbin-Levinson algorithm. We obtain

the penalized PACF as given in equation (4.3) and α̃(h) = ϕ̃hh. If ωh = 1 for all h and the sample

ACF is used, the algorithm is the usual Durbin-Levinson recursion which leads to the sample PACF.

We can obtain the usual coefficient of Yule-Walker predictor based on p lag values when ωh = 1 for

h ≤ p and ωh = 0 for h > p. This regularized algorithm with penalized correlations also yields the

regularized penalized autocovariance matrix Γ̃n = [γ̃r(|i− j|)], i, j = 1, .., n.

In order to predict Yt+1 using this algorithm, the optimal linear predictor can be estimated
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Algorithm 1: Regularized Durbin-Levinson algorithm using penalized estimators

Input: Penalized PACF α̃(h) and ACF ρ̃(h), h = 1, 2, ..n− 1
Output: Penalized coefficients π̃hj , j = 1, .., h and optimal lag h∗

Start:
ν0 = γ̂(0), νr0 = γr(0) = γ̂(0)

ϕ̃11 = α̃(1), π̃ = ω1ϕ̃11, γ̃r(1) = νr0 π̃11

ν1 = (1− ϕ̃211)ν0, νr1 = (1− π̃2
11)ν

r
0

AICC1 = nlog(νr1) + 2

while h = 2, ..., n− 1 do

ϕ̃hh =
γ̃(h)−

∑h−1
j=1 ϕ̃h−1,j γ̃(h− j)

νh−1

π̃hh = ωhϕ̃hh, γ̃ =

h−1∑
j=1

π̃h−1,j γ̃r(h− j) + νrh−1π̃hh

ϕ̃hj = ϕ̃h−1,j − ϕ̃hhϕ̃h−1,h−j , π̃hj = π̃h−1,j − π̃hhπ̃h−1,h−j , j = 1, 2, ..., h− 1

νh = (1− ϕ̃2hh)νh−1, νrh = (1− π̃2
hh)ν

r
h−1

AICCh = nlog(νrh) + 2h

end

The penalized coefficients ϕ̃h and optimal lag h∗ = {h : min{AICC1, ..., AICCp}}

by

Ỹ n
n+1 =

n∑
j=1

π̃njYn+1−j (4.9)

where the coefficients π̃nj are calculated from the regularized Durbin-Levinson algortihm using the

penalized correlations. The proposed estimators follow the assumptions in McMurry and Politis

(2015) and Proietti and Giovannelli (2018).

4.3 Simulations

We conducted simulation experiments to access the performance of our proposed estimator

in prediction and to compare with the methods in the literature (McMurry and Politis, 2015; Proietti

and Giovannelli, 2018). In each case, 1000 replications were performed where an AR(1) or MA(1)

model of sample size n = 101 was generated using several ϕ or θ parameter values. We used the

first n observations to predict the next observation (n + 1’st observation) for each simulated time
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series. Seven approaches are examined in each prediction. For the tapered and banded method,

we selected three predictors based on the sample ACF from McMurry and Politis (2015) and an

usual AR predictor to compare with our proposed predictor which applied the tapered and banded

technique and penalized correlation estimators. Three tapered and banded predictors are computed

by different correction methods towards positive definiteness, see McMurry and Politis (2010, 2015).

AR: the AR predictor with pAIC chosen by AIC minimization.

Pen-PD: the predictor with the penalized ACF/PACF and banded with lag selected via AIC.

TB-WN: the tapered and banded predictor with shrinkage towards white noise.

TB-2o: the tapered and banded predictor with shrinkage towards a 2nd order estimate.

TB-Th: the tapered and banded predictor with threshold correction to positive definiteness.

Using the regularized Durbin Levinson algorithm, the performance of our proposed predictor which

is given in 4.9 against the existing predictor in Proietti and Giovannelli (2018) are examined.

Reg-DL: the predictor from Durbin-Levinson regularized algorithm.

Pen-Reg-DL: the predictor using D-L regularized algorithm with penalized ACF/PACF.

For all simulations, accuracy of the prediction is described by root mean squared prediction

error (RMSPE). For the predictor Pen-Reg-DL, additional way to examine the forecast ability is

applied: Ratio =
RMSPEReg−DL

RMSPEPen−Reg−DL
. If Ratio > 1, it means that Pen-Reg-DL performs better than

Reg-DL for one replicate. We count the number of Ratio > 1 to see the proportion that penalized

predictor outperforms in each simulation.

4.3.1 AR(1) prediction

In this experiment, we simulated time series of length 101 and used the first 100 values to

predict the 101’st. Table 4.1 provides the root mean squared prediction errors for AR(1) processes.

Since it directly fits an AR model, this simulation should favor the AR predictor (McMurry and

Politis, 2015). We see in Table 4.1 the proposed predictor is better or competitive than the AR and

other tapered and banded predictors for most of the cases. For lags greater than 2l, the banding

of sample autocorrelation sequences vanish, affecting an MA model. As a result, the AR predictor
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will outperform a method that uses a very high order MA model to approximate the low order

AR model. The result shows that AR and Pen-PD predictors have smaller RMSPE for most of

parameters, except small values of the AR coefficient. This is similar as the simulation results in

McMurry and Politis (2015). The smallest RMSPE for each setting is bold.

Table 4.1: RMSPE of (penalized) tapered and banded estimators for AR(1) models

Root mean square prediction errors

ϕ AR Pen-PD TB-WN TB-2o TB-Th

-0.95 0.9898 0.9762 1.4117 1.1460 1.3279

-0.9 1.0069 1.0040 1.1374 1.0560 1.1167

-0.7 0.9970 0.9956 1.0428 1.0300 1.0377

-0.5 1.0165 1.0162 1.0328 1.0431 1.0495

-0.3 1.0303 1.0273 1.0453 1.0503 1.0497

-0.1 1.0072 1.0060 1.0034 1.0033 1.0035

0.1 1.0143 1.0141 1.0053 1.0053 1.0053

0.3 0.9775 0.9752 0.9884 0.9901 0.9902

0.5 1.0445 1.0346 1.0729 1.0867 1.0899

0.7 1.0124 1.0082 1.0570 1.0473 1.0490

0.9 1.0023 1.0006 1.1163 1.0435 1.0966

0.95 1.0597 1.0487 1.2963 1.1543 1.2368

Root mean squared prediction errors for the predictors using the regularized Durbin-Levinson

algorithm are shown in Table 4.2. One can see that our proposed predictor Pen-Reg-DL performs

better than the regularized predictor Pen-DL when the coefficient of AR(1) model is large. The

differences in RMSEP between our method and the Reg-DL tend to increase with the magnitude of

the AR parameter. In addition, the proportions of Ratio > 1 are greater than 50% for almost all

the simulation cases.

78



Table 4.2: RMSPE of the (penalized) Durbin-Levinson regularized estimators for AR(1) models

Root mean square prediction errors

ϕ -0.95 -0.9 -0.7 -0.5 -0.3 -0.1

Reg-DL 1.2228 1.0745 1.0040 1.0121 1.0399 1.0033

Pen-Reg-DL 0.9817 1.0030 0.9964 1.0135 1.0399 1.0036

Pr(Ratio> 1) 0.535 0.506 0.525 0.506 0.492 0.706

ϕ 0.1 0.3 0.5 0.7 0.9 0.95

Reg-DL 1.0038 0.9850 1.0398 1.0185 1.0515 1.1855

Pen-Reg-DL 1.0045 0.9845 1.0382 1.0090 1.0075 1.0559

Pr(Ratio> 1) 0.740 0.502 0.522 0.518 0.524 0.548

4.3.2 MA(1) prediction

Similarly, we simulated time series from MA(1) model of length 101 and predicted the next

data point using the first 100 observations. The root mean square prediction errors are provided

in Table 4.3. This experiment should be in favor of the tapered and banded predictors since it

estimates the correlation of an MA model directly. Note that the banded and tapered predictors

is better or competitive with the AR predictor for most of the MA coefficient parameters. Our

proposed predictor Pen-PD is better than AR predictor or tapered and banded predictors when the

coefficient is small |θ| < 0.5, but not for large θ. It is not surprising since the correlation is moderate

when the MA coefficient is large, for example ρ(1) = 0.49 when θ = 0.9, the RMSE of the penalized

ACF/PACF and sample ACF/PACF is slightly less than one in Table 2.3.

Table 4.4 shows the RMSPE and the proportion of Ratio > 1 for the regularized Durbin-

Levinson estimators under MA(1) processes. We see in Table 4.4 that the simulated RMSPE of

proposed Pen-Reg-DL predictor is comparable to that of Reg-DL. The RMSPE of our proposed

predictor is better when |θ| < 0.7. For |θ| < 0.7, The advantage of the proposed predictor is also

showed in Table 4.4 in terms of the proportion of Ratio> 1, where Pr(Ratio> 1) is over 50%.
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Table 4.3: RMSPE of (penalized) tapered and banded estimators for MA(1) models

Root mean square prediction errors

θ AR Pen-PD TB-WN TB-2o TB-Th

-0.9 1.0817 1.1021 1.0798 1.0754 1.0940

-0.7 1.0725 1.0711 1.0450 1.0422 1.0488

-0.5 1.0173 1.0156 1.0026 1.0045 1.0059

-0.3 1.0192 1.0153 1.0319 1.0332 1.0327

-0.1 1.0089 1.0018 1.0062 1.0064 1.0064

0.1 1.0477 1.0467 1.0399 1.0398 1.0398

0.3 1.0009 1.0022 1.0219 1.0225 1.0230

0.5 1.0086 1.0023 1.0125 1.0132 1.0159

0.7 1.0492 1.0585 1.0441 1.0400 1.0535

0.9 1.0760 1.0878 1.0758 1.0712 1.0813

Table 4.4: RMSPE of the (penalized) Durbin-Levinson regularized estimators for MA(1) models

Root mean square prediction errors

θ -0.9 -0.7 -0.5 -0.3 -0.1

Reg-DL 1.1588 1.1019 1.0227 1.0358 1.0050

Pen-Reg-DL 1.1620 1.1021 1.0217 1.0354 1.0054

Pr(Ratio> 1) 0.471 0.491 0.481 0.504 0.715

θ 0.1 0.3 0.5 0.7 0.9

Reg-DL 1.0402 1.0206 1.0381 1.0928 1.1575

Pen-Reg-DL 1.0402 1.0229 1.0375 1.0933 1.1568

Pr(Ratio> 1) 0.748 0.502 0.511 0.470 0.494

4.4 Data Application

To demonstrate the performance of the proposed methods in prediction, consider the analysis

of a data example. Following the application analyzed by Bickel and Gel (2011) and Proietti and
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Giovannelli (2018), we examined the sea surface temperatures in the Pacific region called Niño 3.4.

The monthly time series for the period from Jan. 1950 to Dec. 2019 (N = 840), are available from

the National Oceanic and Atmospheric Administration (NOAA). The series can be seen in Figure

4.2.

Figure 4.2: El Niño 3.4 from January 1950, to December 2016

A rolling one-step ahead prediction exercise is used to compare the forecasting ability of

our proposed predictors using penalized ACF/PACF to the traditional AR predictors, some of

the McMurry and Politis predictors, and the regularized Durbin-Levinson estimator (Proietti and

Giovannelli, 2018). We compute the one-step-ahead predictors using the training sample of size

ntr = 600, starting from January 2000. To calculate the root mean square prediction errors, We

continue by adding one more future data point and removing the initial one until we reach the end of

the sample. Note the number of observations in each prediction is fixed. Then the coefficients of the

linear predictor for each forecast round are estimated. The experiment yields nt = N − ntr = 240

prediction errors for each prediction method. Table 4.5 provides the RMSPE for all predictors we

discussed in Section 4.3. The results show that the proposed predictor Pen-PD outperforms the

tapered and banded predictors (TB-WN, TB-2o, and TB-Th) and the regularized Durbin-Levinson

predictor (Reg-DL). Also, the penalized predictor Pen-Reg-DL performs better than Reg-DL in

terms of RMSPE. Here Pr(Ratio> 1) is based on the total number of forecast rounds nt = 240.

Over 50% of the forecasts the Pen-Reg-DL outperforms.
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Table 4.5: Root mean square prediction errors for El Niño 3.4 data

RMSPE

AR Pen-PD TB-WN TB-2o TB-Th Reg-DL Pen-Reg-DL Pr(Ratio > 1)

0.2440 0.2473 0.3890 0.2683 0.4563 0.2681 0.2678 0.506

4.5 Summary

We have explored the two penalized based predictors based on the tapered and banded

estimator and the regularized Durbin-Levinson estimator. The penalized (partial) autocorrelation

estimator has some properties compared with sample ACF. It shrinks towards zero for weak corre-

lation and tends to increase the magnitude of ACF/PACF estimator for larger correlation. Target

and tuning parameters can be selected to improve the accuracy of prediction . In addition, we intro-

duced a correction towards positive definiteness using a convex combination of sample ACF/PACF

and raw penalized ACF/PACF. When the dimension of the matrix is high or same as the num-

ber of observations, the taper and banded estimators (McMurry and Politis, 2015) and regularized

Durbin-Levinson estimator (Proietti and Giovannelli, 2018) are consistent. Two new predictors are

shown to work well with the penalized ACF/PACF in simulations and application, especially for

strong correlated series. Tasks for future research include the further investigation of the penalized

estimator for time series when the correlation is moderate, the extension to h-step-ahead prediction

in application.
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Appendix A Autocorrelation Function of AR(p), MA(q) and

ARMA(p,q) Processes

Recall that the autoregressive moving average (ARMA) model has gained enormous popu-

larity in various research areas, which is given by:

Xt = µ+

p∑
i=1

ϕiXt−i +

q∑
j=1

θjϵt−j + ϵt, ϵt ∼ N(0, σ2
ϵ ).

This appendix summarizes the autocorrelation functions of some typical ARMA processes.

• AR(1)

The autocorrelation function for AR(1) model is ρ(h) = ϕh1 ,

• AR(2)

The autocorrelation function for AR(2) model is

ρ(0) = 1, ρ(1) =
ϕ1

1− ϕ2

ρ(h) = ϕ1ρ(h− 1) + ϕ2ρ(h− 2), h = 2, 3, ...

• MA(q)

For MA(q),

ρ(h) =


∑q−h

t=0 θtθt+h

1+θ2
1+...+θ2

q
1 ≤ h ≤ q

0 h > q.

• ARMA(1,1)

For ARMA(1,1),

Xt = µ+ ϕXt−1 + θet−1 + et

ρ(1) =
(ϕ+ θ)(1 + ϕθ)

1 + 2ϕθ + θ2

For h ≥ 2, we have

ρ(h) = ϕh−1ρ(1).
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Appendix B Functions in R Package PenalizedPortTest
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Finkenstädt, B. (2012). Nonlinear dynamics in economics: a theoretical and statistical approach to
agricultural markets, Volume 426. Springer Science & Business Media.

Fisher, T. J. and C. M. Gallagher (2012). New weighted portmanteau statistics for time series
goodness of fit testing. J. Amer. Statist. Assoc. 107 (498), 777–787.

Fisher, T. J. and M. W. Robbins (2018). An improved measure for lack of fit in time series models.
Statistica Sinica 28 (3), 1285–1305.

Fuller, W. A. (1976). Introduction to statistical time series. New York: Wiley.

Gallagher, C. M. and T. J. Fisher (2015). On weighted portmanteau tests for time-series goodness-
of-fit. Journal of Time Series Analysis 36 (1), 67–83.
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