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ABSTRACT 
 
 

Heart failure (HF) is a chronic, progressive condition defined as an abnormality of 

cardiac function with the inability of the heart muscle to pump enough blood to meet the 

body’s requirements for metabolism. HF has various contributing pathologies, including 

hypertension (86 million Americans), myocardial infarction (MI, 800,000 Americans per 

year and 300,000 recurrent infarctions each year), both of which promote fibrosis. 

Myocardial fibrosis contributes to left ventricular (LV) dysfunction and is histologically 

defined by excessive deposition of fibrous tissue relative to the mass of cardiomyocytes 

within the myocardial tissue. Quantitatively, myocardial fibrosis is characterized by 

increased collagen volume fraction (CVF) or percentage of myocardial tissue with collagen 

fibers. Currently, there are no prescribed therapeutics for preventing cardiac fibrosis, and 

clinicians are unable to predict which patients at what time and to what extent are more 

likely to develop fibrosis. Collagen accumulation contributes to increased stiffness and loss 

of function in failing hearts, and cardiac fibrosis remains a significant barrier to the 

treatment and prevention of HF. Collagen remodeling is regulated by a complex network 

of extracellular interactions, including: (1) collagen secretion, (2) protease secretion, 

activation, and degradation of collagen (namely Matrix Metalloproteinase (MMP) and 

Cathepsins), and (3) tissue inhibitors of metalloproteinases (TIMP) secretion and inhibition 

of MMPs. Importantly, this network is sensitive to mechanical tension. Fibroblast 

expression of collagen, MMPs, and TIMPs all depend on tension, and it is known that an 

excessive amount of tension can damage matrix fibers. There is also evidence that protease 

degradation of collagen can depend on fiber tension. However, it is unknown how tension 



 iii 

affects collagen degradation by different proteases and protease mixes. The overarching 

objective of this dissertation is to develop a computational model of collagen turnover 

under combinatory chemo-mechano-conditions as a predictive tool for stratifying fibrotic 

risk for HF patients. Firstly, we tested the effect of tensile loading on collagenous tissue 

degradation by proteases. We picked four proteases and quantified the role of mechanical 

loading on the degradation of collagenous tissue by each protease. As matrix degradation 

leads to decaying force levels, sample degradation rate was quantified for different strain 

levels for each protease. Secondly, we developed a detailed biochemical network 

computational model of collagen I proteolysis capturing all interactions of type I collagen, 

four MMPs, and three TIMPs in a cell-free, well-stirred environment. We monitored the 

proteolytic activity of MMPs and inhibitory activity of TIMPs and then used the results 

from experimental data to fit five different hypothetical reaction topologies and determined 

kinetic rate constants for collagen degradation by MMPs, MMP inhibition by TIMPs, 

MMP and TIMP inactivation, MMP cannibalism, and MMP and TIMP distraction. We also 

used post-MI time courses of collagen, MMP, and TIMP levels in animal experiments from 

the literature to perform a parameter sensitivity analysis across the model reaction rates to 

identify which molecules or interactions are the essential regulators of ECM post-MI for 

both early and late time-periods. Lastly, we developed an ensemble classification algorithm 

for diagnosing HF patients with preserved ejection fraction (HFpEF) within a population 

of 459 individuals, including HFpEF patients and referent control patients. We concluded 

that machine learning algorithms could substantially improve the predictive value of 

circulating plasma biomarkers. Additionally, we built a mechanistic model to predict ECM 
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component degradation using a genetic algorithm to connect ECM remodeling to the 

plasma biomarkers to help us with HFpEF patients’ classification. Our findings 

demonstrate that machine learning-based classification algorithms show promise as a non-

invasive diagnostic tool for HFpEF patients’ classification while also suggesting priority 

biomarkers for future mechanistic studies to elucidate more specific regulatory roles. Our 

work suggests that computational modeling can serve as a beneficial tool for HF prognosis 

and potentially developing novel therapeutics. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Study Significance 

 
An estimated 6.2 million American adults ≥20 years of age had heart failure (HF) 

between 2013 and 2016. HF has various contributing pathologies, including hypertension 

(86 million Americans), myocardial infarction (MI) and fibrosis. Myocyte hypertrophy 

resulting as a compensatory reaction to prior pathologies above enlarges the ventricle and 

reduces systolic and diastolic function, while collagen deposition stiffens the myocardial 

wall, further reducing the pump action1–3. 

Experimental studies show that collagen content is a critical determinant in left 

ventricular (LV) remodeling, and collagen content is sensitive to mechanical strain4–6. 

Several drugs used to control hypertension and post-MI HF were found to control 

myocardial remodeling and decrease interstitial fibrosis7,8. Direct stem cell transplantation 

into the healing infarct is already in use as an experimental therapy, and tissue-engineered 

replacement patches of the myocardium can also be a potential treatment7. However, 

collagen sensitivity to mechanical strain shows that many therapies targeting LV 

remodeling may have different results under different degrees of tension or different 

patient-specific biochemical levels. These therapies are developed mainly based on trial-

and-error rather than from an understanding of the mechanical properties of the healing 

infarct and its coupling to the LV7. 
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Collagen remodeling is a result of a network of extracellular interactions, including 

(1) collagen secretion, (2) protease secretion, activation, and degradation of collagen, and 

(3) tissue inhibitors of metalloproteinases (TIMP) secretion and inhibition of proteases9–12. 

The diversity of matrix-protease-TIMP interactions makes it very difficult to intuitively 

predict the effects of any individual matrix-, protease-, or TIMP-targeting therapy. It is 

even more challenging to predict therapeutic effects across patients' variabilities. There is 

great potential benefit in systematically predicting dynamic matrix turnover under various 

matrix, protease, and TIMP levels by constructing a computational network model of their 

interactions. 

Several past studies have shown that mechanical loads can alter protease-mediated 

degradation of collagen, presumably due to altered molecular conformations of the 

collagen molecule's protease-binding sites. However, some groups report increased 

collagen turnover with increased loading, while other groups report decreased collagen 

turnover with loading13–25. Most of these groups used bacterial collagenase in their studies, 

a robust protease but physiologically less relevant than human matrix metalloproteinases 

(MMPs)21. It is also unknown which proteases are sensitive to strain and what are the levels 

of those sensitivities. It is very important to test the effect of strain on human protease 

isoform-specific degradation of collagenous tissue to better understand the sensitivity of 

each protease to strain, thereby elucidating the relative contributions of various protease 

isoforms to collagen turnover in the dynamically loaded heart. 

In order to predict collagen remodeling under mechanical loading, our first step is 

to experimentally test the effect of mechanical strain on collagenous tissue degradation by 
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proteases. Then, we will computationally model collagen degradation by various mixes of 

proteases and TIMPs. Finally, we will test our modeling capability to predict the risk of 

HF within a clinical dataset. 

1.2 Specific Aims 

 
Aim 1: Mechanical Strain Modulates Extracellular Matrix Degradation Kinetics and 

Byproducts in Isoform-Specific Manner. 

Decellularized porcine pericardium samples were treated with recombinant human 

MMP-1, MMP-8, MMP-9, Cathepsin K, or a protease-free control while subjected to 

different levels of mechanical strain (from ~5-40%). Isotropic displacement control was 

provided, and the degradation level of pericardium samples was measured using force 

decay data. The degradation products were also analyzed by mass spectrometry to assess 

how mechanical strain levels altered the degradome signatures. 

Aim 2: Build and Analyze a Computational Model of Collagen Turnover Regulation by 

MMPs and TIMPs. 

A detailed computational model of the biochemical network of collagen I 

proteolysis capturing all type I collagen interactions, four MMPs (MMP-1, -2, -8, and -9), 

and three TIMPs (TIMP-1, -2, and -4) in a cell-free, well-stirred environment were 

presented. Dye Quenched (DQ) collagen was used to monitor the proteolytic activity of 

MMPs and the inhibitory activity of TIMPs. The experimental results were then used to fit 

five different hypothetical reaction topologies using a system of ordinary differential 

equations (ODEs) to determine the kinetic rate constants of the collagen-MMP-TIMP 
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network. Post-MI time-courses of collagen, MMP, and TIMP levels in the animal heart 

were also used from the literature to perform a parameter sensitivity analysis across the 

model reaction rates to identify which molecules or interactions are the important 

regulators of ECM post-MI. 

Aim 3: Integrate Ensemble Machine Learning and Mechanistic Modeling to Identify 

HFpEF Patients from Matrix-Related Plasma Biomarkers 

We developed multiple advanced machine learning frameworks for the 

classification of HFpEF patients within a population of 459 individuals, including HFpEF 

patients and referent control patients. Additionally, we developed a mechanistic model for 

five different ECM component remodeling, including type I and type III collagen and three 

potential ECM candidates. A genetic fitting algorithm was then used to find the best-fit 

combination of rate parameters simultaneously in order to predict ECM components 

turnover for patient-specific data. The patient-specific results from the mechanistic model 

were then applied to all of the multiple machine learning models to improve the models’ 

predictive capabilities.  
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CHAPTER 2 

 
LITERATURE REVIEW 

 
2.1 Heart Failure 

 
Cardiovascular disease (CVD) is the leading cause of death worldwide and 

responsible for 31% of global mortality26. The estimated annual costs for CVD and strokes 

are $316.6 billion per year26. Heart failure (HF) is a chronic, progressive condition and an 

abnormality of cardiac function with the inability of the heart muscle to pump enough 

blood to meet the body’s requirements for metabolism27. An estimated 6.2 million 

American adults ≥ 20 years of age had HF between 2013 and 2016, compared with an 

estimated 5.7 million between 2009 and 2012. The total percentage of the population 

experiencing HF was 2.42% in 2012. Projections show that HF will increase 46% from 

2012 to 2030, resulting in more than 8 million people ≥18 years of age with HF, and the 

total percentage of the population with HF is predicted to increase from 2.42% in 2012 to 

2.97% in 203026,28. 

There are two types of left-sided HF. Systolic failure or HF with reduced ejection 

fraction (HFrEF) happens when the left ventricle (LV) loses its ability to contract normally. 

Diastolic failure or HF with preserved ejection fraction (HFpEF), also called diastolic 

dysfunction, is a condition resulting from the stiffness of heart muscle and causes the 

inability of the LV to relax normally. In this condition, the heart cannot appropriately fill 

with blood during the resting period between each beat27,29. 
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HF has various contributing pathologies, including hypertension (86 million 

Americans), myocardial infarction (MI, 800,000 Americans per year2 and 300,000 

recurrent infarctions each year7), and fibrosis. MI is one of the major causes of death in the 

US and worldwide30. Progression to HF can occur in up to one-third of patients as a result 

of adverse remodeling of the collagenous scar. Excessive collagen accumulation can result 

in a stiff and non-compliant LV, and insufficient collagen in scar tissue can cause LV 

thinning and dilation31. Several studies show LV remodeling is the primary mechanism of 

death and disability after MI31. Myocyte hypertrophy resulting as a compensatory reaction 

to prior pathologies above enlarges the ventricle and reduces systolic and diastolic function, 

while collagen deposition stiffens the myocardial wall, further reducing the pump action. 

Myocardial fibrosis contributes to LV dysfunction and is histologically defined by 

excessive deposition of fibrous tissue relative to the mass of cardiomyocytes within the 

myocardial tissue. Quantitatively, myocardial fibrosis is characterized by increased 

collagen volume fraction (CVF) or percentage of myocardial tissue with collagen fibers. 

Fibrosis stiffens the myocardial wall, thereby decreasing LV distensibility, contractility, 

and pump function. 

2.1.1 Current standards of care for prevention and treatment 

 
Several of the most prescribed drugs for HF include angiotensin-converting enzyme 

(ACE) inhibitors, angiotensin receptor blockers (ARBs), beta-blockers, and neprilysin 

inhibitors. Most treatments that show promising results are for HFrEF and are not effective 

against HFpEF. Treatments for chronic HFrEF are similar across the American and 
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European guidelines. Patients with symptomatic HFrEF should receive a combination of 

an (ACE)-I (or ARB if ACE-I is not tolerated), a beta-blocker, and a mineralocorticoid 

antagonist (MRA). Clinical trials have confirmed the beneficial effects of ACE-I in 

improving mortality in patients with HFrEF32–34. Several past HF trials show that ARBs 

are similarly effective in HFrEF when compared with ACE-I34,35. Currently, no specific 

drug therapy shows significantly improved mortality and morbidity in patients with HF 

and preserved ejection fraction34,36. 

While the use of therapeutics mentioned above has vastly improved patient care, it 

is important to note that many patients do not respond to these lines of treatment as reported 

in the randomized clinical trials. Also, many of these treatments target vasoconstricting 

processes and help with hypertension. But in many cases, residual hypertrophy or fibrosis 

still causes an overall reduction in heart function, leading to hospital admission, reduced 

quality of life, and a high risk of mortality for patients. Hypertension (i.e., highblood 

pressure) is associated with an increased risk of developing HF. A study on 

antihypertensive drug therapy showed a reduction in HF. They concluded that the 

preventive effect of antihypertensive therapy on HF stems from the blood pressure 

lowering effects rather than from drug classes37. 

It is important to develop new therapies that target cardiac fibrosis in addition to 

hypertrophy and high blood pressure. Furthermore, no FDA-approved drugs currently exist 

to target fibrosis, and clinicians cannot predict which patients at what time and to what 

extent are more likely to develop fibrosis. Therefore, understanding the mechanisms of 

cardiac fibrosis can directly impact patient outcomes by developing new therapeutics. 
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2.2 Scar formation 

 
Myocardial fibrosis happens when an excessive amount of extracellular matrix 

(ECM) components accumulates in the myocardium. In this condition, the net ECM 

deposition is greater than ECM degradation by matrix proteases38. Various conditions can 

promote cardiac fibrosis, such as MI, hypertensive heart disease, diabetic hypertrophic 

cardiomyopathy, and idiopathic dilated cardiomyopathy26,38–40. A pathological remodeling 

of the ECM leads to fibrotic scars and the scar tissue in the heart causes several cardiac 

disfunction. Scar tissue causes myocardial matrix stiffening, and as a result, the ejection 

fraction reduces. It also impairs diastolic performance and can lead to death26. 

The human body has an impressive capacity to heal itself, especially after a minor 

injury; however, it cannot heal all defects, which is true for the heart. The most considerable 

fibrotic remodeling happens after acute cardiomyocyte death since mammalian 

myocardium has negligible regenerative capacity. The processes of ECM deposition and 

degradation are typically balanced in healthy myocardium. ECM deposition after an injury 

is a protective mechanism and can be helpful for wound healing and tissue regeneration. 

However, excessive ECM deposition can lead to impaired tissue function. Excessive 

collagen accumulation can result in a stiff and non-compliant LV, and an insufficient 

amount of collagen in scar tissue can cause LV thinning and dilation31. Several studies 

show LV remodeling is the principal mechanism of death and disability after MI31. 

Experimental studies show that collagen content is a critical determinant in LV 

remodeling, and collagen content is sensitive to mechanical strain4–6. Several drugs used 

to control hypertension and post-MI HF were found to control myocardial remodeling and 
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decrease interstitial fibrosis7,8. Direct stem cell transplantation into the healing infarct is 

already in use as an experimental therapy, and tissue-engineered replacement patches of 

the myocardium can also be a potential treatment7. However, collagen sensitivity to 

mechanical strain shows that many therapies targeting LV remodeling may have different 

results under different degrees of tension or different patient-specific biochemical levels. 

These therapies are developed mainly based on trial-and-error rather than an understanding 

of the mechanical properties of the healing infarct and its coupling to the LV7. Collagen 

remodeling is a result of a network of extracellular interactions, including (1) collagen 

secretion, (2) protease secretion, activation, and degradation of collagen, and (3) tissue 

inhibitors of metalloproteinases (TIMP) secretion and inhibition of proteases10–12. 

2.2.1 Collagen 

 
The ECM surrounds cells and forms a connective structure critical for overall tissue 

function. ECM also creates the cellular environments required during development and 

morphogenesis41–43. ECM comprises many substances, but only collagen fibrils and 

proteoglycans are present in all connective tissues; however, they are in different forms 

and shapes44. 

Collagen is the most abundant protein in the human body and comprises one-third 

of the body’s total protein45. Collagen synthesis, formation alteration, and degradation are 

essential processes in many physiological processes such as development and many 

diseases. There are more than 25 types of collagens that vary in the nature, length of helix, 
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and size of the non-helical portions. The most common collagen type is fibrillar types I and 

III, which are composed of three polypeptide subunits that exist in a triple helix form45,46.  

The distinctive feature of collagen is its triple helix structure in which three parallel 

polypeptide strands in a left-handed, helical conformation coil about each other. This 

structure mandates every third residue to be glycine (Gly), and the final formation can be 

a repeating sequence of Xaa Yaa Gly, where Xaa and Yaa can be any amino acids45. 

Type I collagen is the most abundant form of collagen in human tissue and is found 

in skin, tendon, and bone in large amounts. The triple helix structure of the collagen I 

molecule is comprised of two identical “a1” chains and one “a2” chain. The diameter of 

the triple-helical molecule is 1.5 nm, and its length is 300 nm. Form and structure of ECM 

depend mainly on collagen, and stiff collagen fibrils self-assemble into large-scale 

structures such as fibers and sheets. They can make large and long parallel arrays found in 

tendons and ligaments or wide regular sheets found in cornea44,46–50. The primary role of 

fibril forming collagens (collagen I, II, III, V, and XI) is bearing and transmitting 

mechanical loads along their main axis13. 

2.2.2 Proteases 

 
Fibroblasts in vertebrate animals secrete matrix metalloproteinases (MMPs) and 

cathepsins to modulate the ECM and degrade the collagen protein. Both MMP and 

cathepsin are involved in matrix formation, remodeling, and homeostasis. MMPs are zinc-

dependent proteinases that can degrade the native collagen triple helix as well as other 

ECM components relevant to LV remodeling. In normal physiological conditions, the 



 11 

activities of MMPs are regulated at the level of transcription, activation of the precursor 

zymogens, interaction with specific ECM components, and inhibition by inhibitors5,41,51. 

Currently, the MMP family is composed of 25 proteinases that can be categorized into five 

groups based on the substrate they tend to degrade. The collagenases (MMP-1, -8, and -

13) can cleave fibrillar-type collagens at a particular site located between Gly775 and 

Ile776. The gelatinases (MMP-2 and -9) can degrade gelatins. The stromelysins (MMP-3 

and -10) and matrilysins (MMP-7 and -26) are broad-spectrum proteinases, and the 

membrane-type MMPs (MT-MMPs) are anchored to the plasma membrane5,41,51–55. Some 

MMPs can degrade multiple substrates, and these categorizations can sometimes overlap. 

MMP-9 was first thought to be only gelatinase, but recent studies showed its ability to 

degrade full-length interstitial collagens51. 

Cathepsins are the superfamily of cysteine proteases that comprises 11 members. 

Some of its members participate in ECM remodeling and can proteolyze ECM. Cathepsins 

K and S are involved in elastin degradation in cardiovascular diseases. Cathepsin K is the 

most potent mammalian collagenase, which is able to cleave type I and type II collagen in 

the native triple helix as well as in the telopeptide regions. Cathepsin S can degrade elastin 

and maintain its proteolytic activity at neutral pH, making it unique among the cathepsins, 

which generally prefer acidic environments56–59. 

Bacterial collagenases are metalloproteinases involved in the degradation of the 

ECM of animal cells. Until today, bacterial collagenases do not have a proper and well-

defined classification, and there is great disagreement regarding the correct identification 
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of bacterial collagenases. Clostridial collagenases were the first bacterial collagenase 

identified which are the reference for newly discovered collagenolytic enzymes60. 

2.2.3 Tissue inhibitors of metalloproteinases 

 
The TIMP family currently include four different members (TIMPs-1 to 4)61. 

MMPs in active and inactive forms can be inhibited by their physiological TIMPs. 

Typically, the degenerative potential of the MMPs is mainly balanced by TIMPs.  

Disruption of this MMP-TIMP balance can result in disorders such as rheumatoid and 

osteoarthritis, atherosclerosis, tumor growth, metastasis, and fibrosis61. 

 

2.3 Effect of strain on collagen degradation by proteases 

 
In the past few decades, several studies have shown that mechanical loads can alter 

protease-mediated degradation of collagen, presumably due to altered molecular 

conformations of the collagen molecule’s protease-binding sites (Table 1). These studies 

worked on different scales of collagen, from a single molecule to tissue. The primary goal 

of these experiments was to understand whether mechanical strain increases or decreases 

the degradation rate of collagen. The first of these studies was conducted by Huang and 

Yannas in 1977 and found that mechanically loading reconstituted collagen I tapes reduced 

their degradation by bacterial collagenase14. Since then, more reports have agreed with this 

result, but others are contradictory; some groups report increased collagen turnover with 

increased loading, while other groups report decreased collagen turnover with loading13–

25. Most of these groups used bacterial collagenase in their studies which is robust but 
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physiologically less relevant than MMPs21. It is also unknown which proteases are sensitive 

to strain and what are the level of these sensitivities.  

It is important to mention that collagenous structures are well designed to carry 

tensile loads by forming different structures: individual molecules assemble into 

microfibrils, which can form larger fibers, which can organize into interconnected 

networks which can be found in macro-scale gels and tissues23. 

Table 1: Literature report of effect of loading on collagen degradation 
Reference Collagen structure Collagenase type Degradation effect 

Camp (2011) Single molecule Bacterial 
collagenase Decrease 

Adhikari (2011) Homotrimeric 
peptide MMP-1 Increase 

Adhikari (2012) Single molecule MMP-1 Increase 

Bhole (2009) Fibril Network Bacterial 
collagenase Decrease 

Flynn (2010) Fibril Network MMP-8 Decrease 

Flynn (2013) Single fibril Bacterial 
collagenase Decrease 

Huang (1977) Reconstituted tape Bacterial 
collagenase Decrease 

Nabeshima 
(1996) Tendon-tibia units Bacterial 

collagenase Decrease 

Ellsmere (1999) Pericardial tissue Bacterial 
collagenase Increase 

Ruberti (2005) Corneal tissue Bacterial 
collagenase Decrease 

Wyatt (2009) Rat-tail tissue Bacterial 
collagenase Decrease 

Zareian (2010) Corneal tissue Bacterial 
collagenase Decrease 

Yi (2016) Lung tissue Bacterial 
collagenase Increase Decrease 

Ghazanfari 
(2016) Pericardial tissue Bacterial 

collagenase Decrease 
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2.3.1 Molecular Scale 

 
Starting at the individual collagen molecule, Camp et al. and Adhikari et al. both 

worked on the individual collagen molecule and reported that loading could affect collagen 

monomer degradation, but each reported an opposite result16,17,19.  

In 2011 Camp et al. showed that tensile loads higher than 3 pN dramatically reduced 

(10×) the enzymatic degradation rate of recombinant human type I collagen monomers by 

bacterial collagenase compared to unloaded controls. In order to investigate whether the 

change of degradation rate stems from molecular mechanics, they used a parallel, single-

molecule, mechanochemical reaction assay. They modulated the force on the collagen 

tethers by changing the height of the magnet above the glass surface to which the 

superparamagnetic (SPM) beads are connected by the collagen link. A maximum force of 

about 12 pN could be applied to tethered beads. They divided their experimental series into 

three categories: “zero force” (Brownian tether forces ∼0.06 pN), “low force” (averaging 

3.6 ± 1.1 pN), and “high force” (averaging 9.4 ± 1.3 pN). The forces were achieved by 

changing the magnet stack heights to ∞, 2.6 mm or 1.1 mm above the surface of the glass. 

Their loaded and unloaded collagen-tethered beads were exposed to 5.56 µM enzyme 

(Clostridium histolyticum) during the experiment. They reported that the stiffness of the 

collagen encounters a rapid increase from the low to high force. The data obtained from 

the 0 pN experimental series, where the beads were collagen-tethered but unloaded, 

showed a 10-fold increase in the rate of enzymatic digestion relative to the low and high 

force series17. 
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In contrast to Camp et al., Adhikari et al. reported that mechanical load could 

increase protease degradation of collagen. In 2011, Adhikari et al. showed that the 

application of ∼10 pN in extensional force causes a ∼100-fold increase in the degradation 

rate of collagen by MMP-1. They used a single molecule magnetic tweezers assay to study 

the effect of force on collagen degradation by MMP-1. Because of the conflicting result of 

the effects of load on collagen degradation, they provided a quantitative, single-molecule 

assay on a homogeneous substrate instead of whole tissue or reconstituted collagen. 

Proteolysis of a collagen trimer results in bead detachment from the coverslip. They 

measured bead detachment as a function of time and MMP-1 concentration. 

𝑓𝑓(𝑡𝑡) = 𝑎𝑎𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑐𝑐                   (Eq. 1) 

Where f(t) is the fraction of beads still attached at time t, k is the detachment rate, and c 

likely reflects nonspecifically attached beads. They postulate that the apparent differences 

between previous experiments with their results is probably because of the structural 

differences between isolated collagen trimers and collagen fibrils, which contain hundreds 

of trimers. In order to confirm that MMP-1 cleaved the model peptide at the expected 

recognition site, they used matrix-assisted laser desorption/ionization mass spectrometry.  

An important distinction between Adhikari’s results versus Camp et al.’s is that the 

model collagen peptide used by Adhikari et al. was a homotrimeric molecule. In contrast, 

the collagen molecules of Camp et al. were likely to be primarily heterotrimeric19.  

To test the role of this distinction, Adhikari et al. followed up their first report with 

a second similar study with the same magnetic bead-based setup (single-molecule magnetic 

tweezers assay) to test the degradation of heterotrimeric collagen I instead of a 
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homotrimeric molecule by both MMP-1 and bacterial collagenase (Clostridium 

histolyticum). They showed that applying 16 pN of force caused an 8-fold increase in 

collagen proteolysis rates by MMP-1 but did not affect cleavage rates by bacterial 

collagenase. They confirmed that the bead detachment resulted from collagen degradation. 

They investigated the effect of both MMP-1 and bacterial collagenase on both the collagen 

antibody and streptavidin and found neither was degraded by either protease. The 

experiments were performed using 3 µM MMP-1, without applying force and with forces 

between 0.2 pN and 16.5 pN. Their results indicate that an applied force of 16.5 pN leads 

to an 8-fold increase in the observed proteolysis rate. But loading did not affect cleavage 

rates by the bacterial collagenase (contrasting Camp et al., who observed a significant 

decrease in degradation with bacterial collagenase). 

Adhikari’s observations suggest that Clostridium collagenase degrades collagen 

independent of the unwinding process, which is essential for degradation by MMP-1. Since 

different proteases attack and cleave collagen molecules in various sites, the protease type 

and collagen molecular assembly may be the cause of the contradictory degradation rate in 

response to strain. Clearly, there is a difference between the degradation of hetero- vs. 

homotrimer, as well as a difference between mammalian and bacterial collagenases. Still, 

these differences do not fully explain the opposite responses observed by the two groups16. 

In an effort to explore these experimental discrepancies of degradation under strain, 

Teng and Hwang employed computational simulations of collagen molecular dynamics 

and protease binding62. Adhikari et al.’s setup linked individual collagen molecules 

between a magnetic bead and glass surface in a way that allowed the bead to rotate during 
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loading freely. One key distinction in Teng et al.’s simulations was allowing the end of the 

collagen molecule to rotate which facilitated molecular unwinding under load, which could 

enhance protease cleavage. Camp et al.’s setup, however, exposed beads to a volume of 

collagen I molecules; Teng et al. hypothesized that the setup details could result in multiple 

collagen molecules bound together between the relatively large beads and the glass surface, 

thereby restricting the conformational motion of the individual molecules and the beads. It 

is not known, though, whether this was indeed the case. Additional simulations also 

predicted that molecular unwinding of the triple helix could result in either stabilization or 

destabilization depending on specific peptide sequences (e.g., imino-rich vs. imino-poor 

domains). Clearly, there are a variety of very subtle factors that can dramatically affect the 

mechano-sensitivity of collagen molecule degradation by proteases.  

 

2.3.2 Fibril and Fibril Network Scale 

 
 As mentioned above, collagenous structures are not simply a group of individual 

molecules but rather organized hierarchies of many collagen monomers polymerizing into 

fibrils and fibril networks. As such, several studies have also tested how mechanically 

loading these collagen polymer structures affects protease-mediated degradation. These 

studies have collectively agreed that at the fibril scale, load tends to reduce the degradation 

rate of collagen by a variety of collagenases. These reports suggest that the procedures that 

cause a single collagen molecule to respond differently to strain do not apply to collagen 

fibril and micro-networks.  
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 In 2009 Bhole et al. showed that networks of collagen fibrils exposed to collagenase 

(Clostridium histolyticum) persist longer under strain compared with unstrained, free 

collagen fibrils. They used a pair of micropipettes to generate micro-network strain. They 

also investigated the effect of bacterial collagenase on unstrained collagen gels. They used 

DIC microscopy in order to investigate the loss of single collagen molecule as a result of 

degradation even when the fibril diameters become very small (Figure 1). They measured 

the time required for strained and unstrained fibrils exposed to bacterial collagenase to 

degrade and found that the unstrained collagen fibrils were degraded significantly faster. 

In addition to investigating the mechanochemistry of collagen/bacterial collagenase, they 

performed experiments using MMP-8 as the catabolic enzyme. They found that mechanical 

strain causes a decrease in the degradation of collagen fibril by a physiologically relevant 

collagenase22. 

 In 2010 Flynn et al. investigated the effect of mechanical strain on the degradation 

rate of reconstituted collagen fibrils by MMP-8. They strained reconstituted type I collagen 

micronetworks between micropipettes while collagen was exposed to active MMP-8. 

Relative degradation rates for loaded and unloaded fibrils were tracked using DIC imaging. 

They found that mechanical loading significantly increased the degradation time of loaded 

fibrils. They discovered that strained, reconstituted collagen fibrils persist substantially 

longer in the presence of MMP-8 than paired, unstrained control fibrils. They concluded 

that increased resistance of the collagen under loading is the result of a strain-induced 

reduction in enzymatic cleavage rate21. 
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 In 2013 Flynn et al. examined the effect of tensile strain on the individual bovine 

collagen fibrils degradation by bacterial collagenase. They held collagen fibrils at three 

levels of tension. Fibrils held at zero-load failed rapidly and consistently (20 min), while 

fibrils at 1.8 pN/monomer failed more slowly (35-55 min), and fibrils at 23.9 pN/monomer 

did not exhibit detectable degradation. They stretched each fibril to either zero-load, low-

load (2 pN/monomer), or high-load (24 pN/monomer) and exposed to Clostridium 

histolyticum bacterial collagenase. Fibril load was held constant (load-control). The 

enzymes were examined in 300s intervals to quantify enzymatic degradation rate via 

calculated reduction in fibril stiffness. Figure 1B and C demonstrate fibrils with no force 

applied to them failed during the initial 1200 s, low-load fibrils failed during 2100-3300 s, 

and high-load fibrils did not fail at 14400 s, suggesting that applying tensile strain decreases 

the collagen degradation rate by bacterial collagenase18. 
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Figure 1: Optical tracking of collagen networks in vitro has demonstrated slower degradation rates of fibrils stretched 
between micropipettes compared to unstretched fibrils in the same image (A). This optical observation is consistent 

with changes in collagen fibril mechanical properties measured at different time points during protease-mediated 
degradation of fibrils either loaded or unloaded (B/C). Specifically, the slope of load vs. strain plots diminished only 
slightly in loaded fibrils (B), while this slope for unloaded fibrils diminished very quickly, indicating a greater loss in 

mechanical integrity (C). 
 
2.3.3 Gel or Tissue Scale 

 
Motivated by physiologic relevance and/or experimental feasibility, several groups 

have investigated the mechano-dependency of collagen degradation at the macro scale 

using reconstituted gels or explanted tissues. These studies have reported a variety of 

responses, including increased, decreased, and even a V-shaped degradation rate versus 

strain, suggesting that degradation rate has a minimum in a specific strain. One of the main 

reasons for these differences is the collagenase they used. It is believed that the difference 
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between bacterial collagenases and MMP lies in the specificity of the enzyme. Bacterial 

collagenase is capable of degrading both native and denatured collagen at multiple sites; 

however, mammalian collagenases such as MMP-1 are much more restrictive and only 

degrade native collagen at a single site. Moreover, the initial orientation and alignment of 

collagen molecules are important. Collagen molecules in the lung and pericardium are not 

initially aligned; however, corneal tissue consists of layers of aligned collagen. 

Furthermore, in a macro environment, other neighbor collagen molecules may limit the 

motion of the cleavage domain under mechanical strain, thereby protecting it from 

cleavage63,64. 

To our knowledge, the first report characterizing this behavior was by Huang and 

Yannas, who reconstituted bovine collagen into thin tapes and then loaded each tape to a 

range of strains between 1%–7% through a hook and suture connected to a load-cell14. 

They stretched a length of the collagen tape rapidly to a fixed extension and then monitored 

the relaxation of the force exerted by the tape. When the fibers were immersed in a solution 

containing bacterial collagenase, the force relaxed continuously until the specimen failed. 

They have found that up to the failure point, the force (F), could be represented by a single 

negative exponential term: 

𝐹𝐹 = 𝐹𝐹0𝑒𝑒
−𝑡𝑡𝜏𝜏         (Eq. 2) 

Treating the tapes with bacterial collagenase led to matrix degradation as assessed 

by measuring the relaxation rate of the force required to maintain the collagen tape at a 

given strain. Interestingly the relationship between loading and degradation was biphasic, 

with a minimum degradation rate of around 4% strain and higher degradation at strains 
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below and above 4% (Figure 2A). The minimum degradation rate appears to occur at the 

strain level of 4%, where the suggested uncrimping of the fibers is completed and the slope 

of the stress-strain curve shows an abrupt rise.  

One explanation for the decrease in degradation rate at low strain levels (1-4%) can 

be a drop in the enzyme flux rate into the substrate due to the uncrimping process. One 

possible mechanism that can explain the increase in degradation rate with strain at higher 

strain levels (4-7%) is collagen opening the new site of the enzymatic attack.  

In agreement with Huang and Yannas, Nabeshima et al. observed strain-induced 

decreases in collagen degradation for the first time in explanted tissues24. Specifically, they 

subjected rabbit patella-patellar tendon-tibia units to bacterial collagenase with or without 

4% strain, then measured tissue stiffness and maximum failure force. In the unstrained 

tissues, collagenase treatments induced substantial decreases in both stiffness and failure 

force, but these reductions were significantly inhibited in tendons subjected to mechanical 

strain. 

Other investigators have also measured strain-induced protection of collagen to 

proteases across a variety of tissue samples, including the Ruberti group, who found that 

uniaxially loading bovine corneal tissues while treating with bacterial collagenase resulted 

in degradation of collagen fibers perpendicular to the uniaxial load direction (i.e., 

unstrained fibers) but much less degradation of collagen fibers parallel to the load direction 

(i.e., strained fibers)13.  

Wyatt and colleagues degraded rat tail tendon fibers with bacterial collagenase 

while subjecting the tendon to variable strains between 1%–10%65. The stress-relaxation 
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behavior was measured while holding each fiber at a given strain level, and the relaxation 

rate was used as an estimate of degradation. Interestingly, they found no effect of loading 

on degradation at low strains, then a precipitous drop in degradation around 3% strain that 

held constant across higher strains. 

Ghazanfari et al. subjected decellularized porcine pericardial samples to uniaxial or 

biaxial strains in combination with bacterial collagenase, while monitoring the stress-

relaxation response during degradation20. Across a strain range of 0–40%, degradation was 

minimum (in fact, near-zero) around 20% strain, with increasing degradation rates at lower 

and higher strain levels (Figure 2B). Further, the group imaged the resulting matrix 

structure after degradation and found that the tissue matrix (though initially unaligned) 

could become highly aligned after stretching + degradation. This study highlighted two 

significant findings: (1) the biphasic, V-shaped relationship between degradation and strain 

strongly supported the original findings of Huang and Yannas from 40 years prior, and (2) 

the results supported Ruberti’s previous findings that strain-dependent degradation of 

fibers can alter matrix alignment in tissues by preferentially degrading fibers of a particular 

orientation relative to the principal strain directions. 
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Figure 2: Protease-mediated degradation of reconstituted collagen tapes (A) and decellularized pericardial tissue (B) is 
reduced in the presence of mechanical strain. Interestingly, this strain-protection of collagen seems to follow a biphasic 

relationship with minimal degradation at an intermediate strain level 
 

In partial agreement with Ghazanfari et al., Yi et al. subjected mouse lung tissue 

strips to static uniaxial strains of 0%, 20%, 40%, or 80% while treating with bacterial 

collagenase25. Stress-strain curves from before and after degradation treatments indicated 

the highest stiffness (i.e., presumably lowest degradation) in tissues subjected to 20% 

strain, with slightly lower stiffness in the unloaded group. However, the 40% and 80% 

strain groups indicated much lower stiffnesses (i.e., higher degradation) than the unloaded 

group.  

Ellsmere et al. also measured increased degradation of intact tissue in the presence 

of mechanical load15. They subjected bovine pericardium strips to a constant uniaxial force 

until 30% tissue extension was reached (defined as the tissue failure point). In the presence 

of bacterial collagenase, they found that increasing the static load on tissue samples 

decreased their time to failure, that is, increased the degradation rate. 

In sum, studies of the mechano-regulation of collagen degradation at the macro 

tissue scale have highlighted a nuanced relationship between loading and degradation. 
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There are several factors to consider when investigating this relationship at the tissue scale. 

First, it seems that different levels of strain can produce highly variable effects on 

degradation, which is possibly related to the transmission of loads from the macro sample 

(where most strains/loads are applied and monitored) down to the micro individual 

molecule (where protease binding and cleavage occur). Since collagen structures are 

organized via hierarchical packing and crimping, the global strain will engage individual 

molecules nonlinearly (e.g., low strains may simply uncrimp fibers without actually 

straining molecules). It is also important to note that whole-tissue preparations will include 

not just collagen but a host of other matrix proteins, glycoproteins, proteoglycans, and so 

on that can have significant effects on collagen organization, load transmission, and 

resulting conformational changes of individual molecules, and the varied results in 

mechano-dependent degradation seen across studies of individual collagen molecules. 

Lastly, the mechanical loading of tissues can potentially alter matrix porosity and the 

resulting flux of proteases, which could clearly confound degradation measurement results. 

It is important to note these limitations and continue investigating the mechano-regulation 

of degradation across all collagen length scales. 

2.4 Systems Modeling of collagen-protease interactions 

 
Collagen turnover depends on a highly regulated balance between collagens, 

MMPs, and TIMPs. The diversity of matrix-MMP-TIMP interactions makes it very 

difficult to intuitively predict the effects of any individual matrix-, MMP-, or TIMP-

targeting therapy. A computational model of collagen-MMP-TIMP could help us to better 
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understand these interactions, enable us to systematically predict dynamic matrix turnover 

under diverse matrix, MMP, and TIMP levels, and eventually help us to use the model as 

a screening tool across patients with potential heart diseases. Very few computational 

models have been previously published for matrix-MMP-TIMP interactions, and all of 

them are focused on a small number of MMPs and TIMPs.  

Karaggiannis and Popel’s computational model was limited to collagen I, MMP-2, 

MMP-14, and TIMP-2. They included all known interactions between collagen I and two 

MMPs and one TIMP and represented network reactions as mass-action ordinary 

differential equations (ODEs) based on Michaelis-Menten kinetics in their model and 

previously reported reaction rates for rate parameters. Their model could quantitatively 

describe the activation of the MMP-2 proenzyme (pro-MMP2), the ectodomain shedding 

of MT1-MMP, and the collagenolysis caused by both enzymes. Their results indicated that 

pro-MMP-2 activation reaches its maximum at intermediate inhibitor levels and is 

suppressed at high TIMP levels. They also introduced and described quantitively the 

proteolytic synergism of MMP-2 and MT1-MMP66. 

Karaggiannis and Popel continued their work with the same computational model 

limited to collagen I, MMP-2, MT1-MMP, and TIMP-2 to investigate the effect of 

proteolytic potential on endothelial cell migration. The reaction network describes the 

interactions of the proteins, assuming that ability of the cell to carry out proteolysis is the 

rate-limiting step of the migration. They showed that at high collagen content, proteolysis 

was carried out primarily by MT1-MMP, whereas at lower concentrations, MT1-MMP and 
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MMP-2 worked together in the proteolysis process. They indicate that TIMP-2 is a 

regulator of the proteolysis process67. 

Vempati, Karaggiannis, and Popel used a computational model to quantify the 

MMP-9 activation and inhibition rates. They determine kinetic rate constants for MMP-9 

activation by MMP-3, MMP-10, MMP-13, and trypsin; inhibition by the TIMP-1 and 

TIMP-2; and MMP-9 deactivation. They validated their model using existing biochemical 

experimental data and reported that inhibition due to a single binding step could not 

describe MMP-9 inhibition by TIMP-1. They also theoretically characterized the MMP-

3/TIMP-2/pro-MMP-9 and MMP-3/TIMP-1/pro-MMP-9 systems revealing that these 

systems differ significantly in their time scales of activation and inhibition such that MMP-

9 is able to temporarily overshoot its final equilibrium value in the latter68. 

These studies highlighted the ability of computational modeling to elucidate the 

possible interactions between substrate, MMPs and TIMPs which can help us understand 

the kinetics of these interactions. These findings also show that there are possible unknown 

interactions between MMPs and TIMPs which can make complex molecules that can be 

investigated using computational modeling. 

Barry and Platt used a computational model and introduced cathepsin cannibalism, 

a novel mechanism by which cathepsins degrade each other in addition to the substrate. 

They investigated the proteolytic activity of cathepsin S and cathepsin K. They indicated 

that a reduction in total hydrolysis of elastin and type I collagen happened compared with 

computationally predicted values derived from individual cathepsin assays. Furthermore, 

they showed that cathepsin K activity was prevented, and collagen was preserved from 
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degradation by cathepsin K when a 10-fold ratio of cathepsin S cocultured with highly 

collagenolytic cathepsin K. Computational modeling helped them better understand 

combined proteolytic activities of cathepsins toward substrates and each other57. 

The Platt group expanded their work on the cathepsin proteolytic network and 

substrate degradation by developing a mechanistic model consist of a system of ODEs 

characterizing the cathepsin K, L, and S proteolytic network with elastin and gelatin as the 

substrates. They characterized the kinetic rates of individual cathepsins on both elastin and 

gelatin, including cathepsin-on-cathepsin binding and catalytic activity, and obtained 

interaction rates for each pair of cathepsin K, L, and S. At last, they integrated all three 

cathepsin interactions and substrate degradation activities. Their simulations indicated 

improved predictions of substrate degradation in a multiple protease network after 

including reaction terms of autodigestion, inactivation, cannibalism, and distraction. With 

this network model, they simulated the effects of changes to this proteolytic network for 

additional substrates56. 

2.5 Introduction to dissertation aims 

 
The following chapters of this dissertation will focus on mechano-chemo 

interactions across a collagen-MMP-TIMP network through experimental and 

computational studies. In chapter 3, we tested the effect of tensile loading on collagenous 

tissue degradation by proteases. We picked four proteases and quantified the role of 

mechanical loading on the degradation of collagenous tissue by each protease. As matrix 

degradation leads to decaying force levels, the sample degradation rate was quantified for 
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different strain levels for each protease. In chapter 4, we presented a detailed computational 

model of a biochemical network of collagen I proteolysis capturing all interactions of type 

I collagen, four MMPs, and three TIMPs in a cell-free, well-stirred environment. We 

monitored the proteolytic activity of MMPs and inhibitory activity of TIMPs and then used 

the results from experimental data to fit five different hypothetical reaction topologies and 

determined kinetic rate constants for collagen degradation by MMPs, MMP inhibition by 

TIMPs, MMP and TIMP inactivation, MMP cannibalism, and MMP and TIMP distraction. 

We also used post-MI time courses of collagen, MMP, and TIMP levels in animal 

experiments from the literature to perform a parameter sensitivity analysis across the model 

reaction rates to identify which molecules or interactions are the important regulators of 

ECM post-MI for both early and late time-periods. In chapter 5, we developed an ensemble 

classification algorithm for diagnosing HF patients with preserved ejection fraction 

(HFpEF) within a population of 459 individuals, including HFpEF patients and referent 

control patients. We concluded that machine learning algorithms could substantially 

improve the predictive value of circulating plasma biomarkers. Additionally, we built a 

mechanistic model to predict ECM component degradation using a genetic algorithm to 

connect ECM remodeling to the plasma biomarkers to help us with HFpEF patients’ 

classification. Our findings demonstrate that machine learning-based classification 

algorithms show promise as a non-invasive diagnostic tool for HFpEF patients’ 

classification, while also suggesting priority biomarkers for future mechanistic studies to 

elucidate more specific regulatory roles. 
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CHAPTER 3 

 
AIM 1: MECHANICAL STRAIN MODULATES EXTRACELLULAR MATRIX 

DEGRADATION KINETICS AND BYPRODUCTS IN ISOFORM-SPECIFIC 
MANNER 

 

3.1 Introduction 

 
The extracellular matrix (ECM) forms connective tissue around cells and serves as 

a major regulator of tissue structure and function across development and disease41–43. 

ECM is comprised of many underlying molecules, most notably collagen fibrils and 

proteoglycans that are present in all connective tissues in various isoforms and 

assemblies44. Collagen is the most abundant protein in the human body and comprises one-

third of the total protein45. There are more than 25 types of collagens, with the most 

common being fibrillar types I and III, composed of three polypeptide subunits that exist 

in a triple helix form45,46. The form and structure of ECM depend mainly on collagen, and 

stiff collagen fibrils self-assemble into large-scale structures such as fibers and sheets46. 

The primary role of fibril forming collagens (I, II, III, V, and XI) is bearing and transmitting 

mechanical loads along their main axis7. 

Collagen turnover is centrally involved in many diseases, including cardiac fibrosis, 

pulmonary fibrosis, wound healing, cancer metastasis, and myocardial infarction (MI), 

where collagen accumulates in the infarct zone to form collagenous scar tissue18,31. 

Progression to heart failure (HF) can occur in up to one-third of patients as a result of 

adverse remodeling of the collagenous scar31. The degradation of collagen is mediated by 
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various proteases, primarily different isoforms of matrix metalloproteinases (MMPs) and 

cathepsins18. MMPs are zinc-dependent proteinases that can degrade the native collagen 

triple helix as well as other ECM components relevant to LV remodeling. The MMP family 

consists of many different members that can be categorized into different groups based on 

the substrate they prefer to degrade. The collagenases (MMP-1, MMP-8, and MMP-13) 

can cleave fibrillar-type collagens, and the gelatinases (MMP-2 and MMP-9) can degrade 

gelatins21,41,51. MMP-9 was first thought to be only gelatinase, but recent studies showed 

that it is also able to degrade full-length interstitial collagens51. Cathepsins are a 

superfamily of cysteine proteases, and some members can proteolyze ECM. Cathepsin K 

is the most potent mammalian collagenase, and it can cleave type I collagen in the native 

triple helix and the telopeptide regions58,59.  

Notably, previous studies have established that mechanical strain can modulate the 

enzymatic degradation of collagen fibers by altering the ‘mechanochemistry’ of collagen-

protease binding18,20 presumably due to altered molecular conformations of the collagen 

molecule’s protease-binding sites (Table 1). However, some groups report increased 

collagen turnover with increased loading, while other groups report decreased collagen 

turnover with loading4,5,13,15–23,25,69,70. In this current study, we sought to test the hypothesis 

that different types of proteases might exhibit different sensitivities to mechanical loading. 

Specifically, we measured the degradation of porcine pericardium samples treated with 

MMP-1, MMP-8, MMP-9, or cathepsin K while subjected to different levels of mechanical 

loading. We also measured the proteomic signatures of degradation byproducts to assess 
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how mechanical loading  alters the particular types of products released after the 

degradation of porcine pericardium samples by each protease. 

3.2 Materials and Methods 

 
In order to assess the effect of tensile loading on collagenous tissue degradation, 

we subjected porcine pericardium samples to different levels of equibiaxial tensile 

displacement with or without different proteases. Porcine pericardium samples were 

collected from fresh pig hearts at a local slaughterhouse. Pericardium samples were 

decellularized in standard decellularization protocol71. Upon receipt, tissue samples were 

placed in beakers of ddH2O with ice. Tissue samples were then placed in tube containers 

at 4° C for 24 hours for cell lysis. Samples were then placed in decellularization solution 

containing 50 mM Tris, 0.15% (v/v) Triton x-100, 0.25% deoxycholic acid-sodium salt, 

0.1% EDTA and 0.02% sodium azide and gently shaken at room temperature for three 

days. The decellularization solution was changed with a new decellularization solution on 

day three, and samples were shaken for three more days. Samples were then rinsed two 

times with ddH2O for 10 minutes at room temperature, then two times with 70% ethanol 

for 10 minutes at room temperature, and finally another two times with ddH2O for 10 

minutes at room temperature. Samples were then placed in 2x concentration of 

DNase/RNase solution containing DNase (stock = 3480 U/mg), RNase (stock = 97.1 

U/mg), 5 mmol MgCl and DPBS in 37° C for 24 hours with shaking. Samples were then 

washed twice with ddH2O and kept sterile in FBS at 4°C.  



 33 

     Pericardium samples were subjected to different mechanical strains (from ~5-

40%) and different proteases in order to identify the effect of strain on collagenous tissue 

degradation by each protease. Recombinant human proMMP-1, proMMP-8, proMMP-9, 

and cathepsin K solutions were purchased commercially (Enzo Life Sciences, 

Farmingdale, New York), and proMMPs were activated based on provided activation 

protocol. ProMMP-1 was activated by 8µl of 0.5 mg/ml trypsin added to 100 µl of 

proMMP-1 and incubated for 30 minutes at 37°C. ProMMP-8 was activated by 2µl of 0.5 

mg/ml trypsin added to 100 µl of proMMP-1 and incubated for 30 minutes at 37°C. 

ProMMP-9 was activated by 20µl of 0.5 mg/ml TCPK-trypsin added to 100 µl of proMMP-

1 and incubated for 30 minutes at 37°C. After activation, 300 µl of ddH2O was added to 

all MMP samples to reach the final volume of 400 µl and the final concentration of 2.5 

µg/ml. 

Thin, square pericardium samples (7 mm × 7 mm × 0.2 mm) were biaxially 

stretched using a commercially available planar biaxial testing system (BioTester; 

CellScale, Waterloo, Canada) for 30 seconds to different levels of static strain in PBS at 

37°C (Figure 3A). Biaxial tensile displacement control was used in order to load all fibers 

within the tissue regardless of their orientation. A custom rig was designed to hold the 

protease solution to allow us to achieve the desired high protease concentration within a 

temperature-controlled bath. Samples were placed in the rig and kept under protease 

solution during the whole process (Figure 3B). After the loading step, samples were held 

at constant extension under displacement control for one hour to allow for viscoelastic 

stress relaxation, after which the PBS bath was replaced with either a protease solution or 
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protease-free control, and forces were monitored for two additional hours (Figure 3C). 

Matrix degradation led to decaying force levels, and sample stress degradation decay rate 

was quantified as the decay constant (b) of an exponential fit to the force versus time curve 

for every strain level for each protease as done previously20 

𝐹𝐹 = 𝐹𝐹0𝑒𝑒−𝑏𝑏𝑘𝑘               (Eq. 3) 

An F-stat, non-linear, quadratic regression analysis of degradation decay rate on 

strain level was performed in order to test the accuracy of our predictions. The quadratic 

model contains constant, linear, and squared terms. 

Degradation fragments were potentially released into the solution in the form of 

either large degradation products or small degradation products while the degradation 

process was happening. The solution containing either a protease solution or protease-free 

control was preserved after a 3-hour relaxation and degradation process. The solutions were 

then analyzed using silver stain analysis to confirm degradation, study the difference 

between protease treated samples and controls, and compare the level of degradation 

between proteases (Figure 4).   

In addition, samples (i.e., solutions containing the degradation products) were 

prepared for mass spectrometry (MS) analysis first by dissolving the protein lysate in 8M 

Urea/1M NH4HCO3 buffer, followed by 1h reduction at 37°C with 120 mM Tris(2-

carboxyethyl)phosphine (TCEP). Protein alkylation was then performed with 160 mM 

iodoacetamide (IAA) for 30 min at room temperature with shaking. The samples were then 

diluted 8-fold with water to reduce the urea content, pH was adjusted to 8.0, and trypsin 

was added at a ratio of 1:25. Digestion occurred at 37°C overnight with shaking. Trypsin 
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was deactivated by acidifying samples to pH <3.0 using formic acid. Samples were desalted 

and purified using 1cc C18 cartridge columns, and peptides were recovered in 0.1% formic 

acid. Samples were subjected to nano-LC-MS/MS analysis using an UltiMate 3000 

RSLCnano system (ThermoFisher) coupled to a Q Exactive Plus Hybrid Quadrupole-

Orbitrap mass spectrometer (ThermoFisher) via a nanoelectrospray ionization source. For 

each injection, 4µL (~1 µg) of the sample was first trapped on an Acclaim PepMap 100 20 

mm × 0.075 mm trapping column (ThermoFisher Cat# 164,535; 5 μL/min at 98/2 v/v 

water/acetonitrile with 0.1% formic acid). Analytical separation was then performed over 

a 95 min gradient (flow rate of 250 nL/min) of 4–25% acetonitrile using a 2 µm EASY-

Spray PepMap RSLC C18 75 µm × 250 mm column (ThermoFisher Cat# ES802A) with a 

column temperature of 45ºC. MS1 was performed at 70,000 resolution, with automatic gain 

control (AGC) target of 3 × 106 ions and a maximum injection time (IT) of 100 ms. MS2 

spectra were collected by the data-dependent acquisition of the top 15 most abundant 

precursor ions with a charge greater than 1 per MS1 scan, with dynamic exclusion enabled 

for 20 s. Precursor ions isolation window was 1.5 m/z, and normalized collision energy 

was 27. MS2 scans were performed at 17,500 resolution, maximum IT of 50 ms, and AGC 

target of 1 × 105 ions. Proteome Discoverer 2.5 was used for raw data analysis, with default 

search parameters including oxidation (15.995 Da on M) as a variable modification and 

carbamidomethyl (57.021 Da on C) as a fixed modification. Data were searched against 

the NCBI Sus scrofa reference proteome (Taxonomy ID 9823). Peptide-spectrum matches 

were filtered to a 1% false discovery rate (FDR) and grouped into unique peptides while 
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maintaining a 1% FDR at the peptide level. Peptides were grouped into proteins using the 

rules of strict parsimony, and proteins were filtered to 1% FDR. 

 

 

Figure 3: A) Decellularized pericardium stretched biaxially with CellScale and the custom rig used for holding high 
concentration protease solution within a temperature-controlled water bath. B) Decellularized pericardium sample under 
biaxial stretch. C) Example force-time curve of pericardium under constant extension subjected to protease or protease-
free control. 
 

3.3 Results 

 
It has been shown in previous studies that tensile loading can both increase and 

decrease collagen degradation by bacterial collagenase, MMP-1, and MMP-8. We 

stretched collagenous samples to different levels of static strain and treated them with the 

same concentrations of MMP-1, MMP-8, MMP-9, cathepsin K or protease-free buffer 

control. After two hours, we analyzed the stress-strain data, found the force experienced 

by the samples, and observed that collagenous tissue degradation depends on protease type 

and level of mechanical strain. Across different strain levels, pericardium samples treated 

with protease-free buffer control maintained steady forces during the 2-hour treatment 

period, leading to near-zero degradation products by silver stain (Figure 4A, C) and force 

decay constants (Figure 5E). In contrast, samples treated with any of the four proteases 
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exhibited drops in force levels during the treatment period indicating substantial 

degradation of the matrix. Specifically, we found that strain can increase and decrease 

collagenous tissue degradation based on protease type and strain level (Figure 5). 

 Repeating the degradation tests across multiple strain levels demonstrated that the 

particular rate of degradation was affected by the sample strain (as previous studies have 

shown), but the specific influence of strain depended upon the type of protease. 

Specifically, degradation by cathepsin K was increased with increasing strains, and 

degradation by MMP-1, MMP-8, and MMP-9 first decreased and then increased with the 

strain magnitude forming a V-shaped curve. The stress degradation decay rate reaches a 

minimum at a strain level of approximately 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = 20% for MMP-1 and MMP-8 and 

approximately 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = 25% for MMP-9. Across nearly all strain levels, MMP-1 

demonstrated the highest degree of force decay while the other three proteases swapped 

degradation rate rankings based on the particular level of strain. F-stat statistical analysis 

shows that the increase in degradation decay for cathepsin K and the V-shaped curve for 

MMP-1, MMP-8, and MMP-9 are statistically significant (p-value < 0.05)   

Silver stain analysis revealed that the degradation products were released to the 

solution and the level of degradation was significantly higher for protease-treated samples 

compared to control samples. A one-way ANOVA test was performed on both large and 

small degradation products. Analysis of small degradation products shows that MMP-1 

and MMP-9 treated samples produce significantly more of the smaller degradation 

products. Table 2 shows every protein detected in proteomic analysis in most of the 

samples in each protease category after removing all proteins detected in the control 
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samples. Proteomics analysis results show that MMP-9 releases more protein types into 

the solutions. These results reveal that most of the proteins released into the solution by 

each protease are unique to the protease type; however, there are some overlaps between 

the proteases (Figure 6B). Excitingly, the degraded protein signature released into the 

solution depends on strain magnitude. Figure 6C and D show that there are some proteins 

in each protease type that are only released into the solution in either low stretch or high 

stretch. To our knowledge, this finding has never been shown before with any kind of 

protease or tissue. 

 

Figure 4: Silver stain analysis of control samples compared with protease treated samples. A and B) shows the different 
degradation products released to the solution by each protease sample and protease free control. C) Analysis of large 
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degradation products, all proteases degrade collagenous tissue more that protease free control. D) Small degradation 
products, MMP-9 is able to degrade collagen fragment into smaller parts. 

 

Figure 5: Stress degradation decay rates of biaxially loaded pericardium samples subjected to proteases across various 
strains. Stress degradation decay rate depends on sample strain as well as protease type. A) Degradation by cathepsin K 
was increased with increasing strains. B, C, and D) degradation by MMP-1, MMP-8 and MMP-9 first decreased and then 
increased with the strain magnitude forming a V-shaped curve. E) No degradation detected in protease free control 
samples. E) degradation decay regime for all proteases.  
 

Table 2: Complete list of proteins detected in proteomic analysis after removing proteins detected in the control 
samples  

CatK MMP1 MMP8 MMP9 
C1R ACAN FBN2 ACAN LAMA1 A1BG DEFA1 IGHG4 PON3 

COL1A2 ADAM23 FGFR4 ADAMTSL4 LYG1 A2M DNAJC3 IL17B PSMD7 
COL5A3 ADNP GDI2 AHNAK NCAM1 ACTN4 DOCK2 IL4R PZP 
COL6A1 APOLD1 GPC1 ALDOC NINL ACTR10 DST JUP QSOX1 
COL6A3 C1orf54 HDLBP APOB NIT2 ADAM28 EEF2 KERA RAB11FIP3 
DHRS7C CD274 HSPA8 APOLD1 ODAD4 ADM2 EMILIN2 KIF20B RELN 

ERFE CEP131 HYOU1 CD274 PDCD6IP AFM EPHB4 LAMA1 RETN 
FMOD CEP290 IL17B CEP290 PIP ARSG F9 LAMA2 ROCK1 
GDF9 CHADL LAMB1 CHADL PLG CALML5 FAN1 LAMC3 SDCBP 
H4C1 COL1A2 LTBP1 COL1A2 SELP CAT FAP LIPH SEMA3F 
ICOS COL8A1 LYG1 CYRIB SEMA3F CD200R1 FERMT3 LOX SEMA6B 
ITIH2 CYRIB NINL FBN2 SERPINB13 CD274 FGFR4 LRIG3 SERPINB13 
ITIH3 DOCK2 NIT2 GALNT1 SFTPD CEP131 FIBIN LRRTM2 SERPINC1 

LAMA4 DST NUDCD2 HSP90AB1 SLC12A1 CEP290 FRAS1 LYG1 SLC12A1 
SPATA20 F10 HSP90AB1 IL17B WNT10A CES4A GALNT1 MAPT SORL1 

WNT6 FAN1 PDCD6IP KIF20B  CFAP43 GARS1 MVP SPINT1 
 PKD1 SPAG17   CFI GDI2 NCAPH2 SST 
 PLG UNC13D   CHADL GSDMD NINL TSPEAR 
 QSOX1    CLCA3P HMGN2 NIT2 UNC13D 
 RBP3 SEMA6D   COL28A1 HSP90AA1 ODAD4 VWF 
 REN SERPINB13   COL4A3 HSP90AB1 PLA2G3 WNT10A 
 SLC12A1 SERPINB6   CYRIB HUWE1 PLAA PON3 
 TUBB4B WNT10A       
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3.4 Discussion 

 
 In the current study, we aimed to study the effect of strain on collagenous tissue 

degradation by different proteases by applying biaxial displacement to square pericardium 

samples in the presence of protease. Our results demonstrate that the degree of mechanical 

strain can significantly alter protease-mediated stress degradation decay rates of 

collagenous tissues like pericardium, but the particular effect depends on the particular type 

of protease. We showed that cathepsin K-mediated degradation was enhanced with 

Figure 6: Proteomic results for every protease. A) Heat map of all proteins released to the solution in each protease B) 
MMP-9 release more variation of protein types into the solutions. Most of the proteins released into the solution by 

each protease is unique to the protease type, however there are some overlaps between the proteases. C and D) Proteins 
released to the solution depends on strain rate. Some proteins in each protease type are only released into the solution 

in either low stretch or high stretch magnitude. 



 41 

increasing strain, and MMP-1, MMP-8, and MMP-9-mediated degradation was first 

decreased and then increased by strain, forming a V-shaped curve with a minimum at strain 

level of approximately  𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 = 20 − 25%. These findings are consistent with past studies 

by Huang (1977) and Ghazanfari (2016), who found that collagen degradation by bacterial 

collagenase was influenced by strain and discovered bacterial collagenase-mediated 

degradation rate also formed a V-shaped curve14,20. Huang found that the lowest 

degradation rate in a reconstituted collagen occurred at 4% strain. However, Ghazanfari 

reported the minimum degradation value was around 20% strain in pericardial tissue. The 

collagen in the reconstituted construct is comprised of relatively straight fibers compared 

to the pericardium, and the shift in the curve might be a result of the larger strain needed 

to unfold the fibers. Overall, these results highlight that the relative contributions of 

different proteases to tissue turnover depend not only on protease concentrations but also 

on the local level of tissue's mechanical conditions. These results reveal that (1) high 

protease isoform expression doesn't mean that protease dominates degradation – it depends 

on localized tissue mechanics (note this could be dynamically or spatially modulated 

during dynamic/spatial changes in strains like post-MI or tendon healing). (2) 

categorization of proteases as collagenase vs. gelatinase may be modulated by tissue 

mechanics.  

 Silver stain analysis confirms that the force decay is the result of the degradation of 

the load-bearing component of the porcine pericardium samples. It also shows that MMP-

1 and MMP-9 are able to degrade the components of the solution to even smaller fragments. 

One-way ANOVA analysis on large degradation products confirms that all of the proteases 
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degrade collagenous tissue more than protease-free control. These findings align with 

previous findings suggesting that MMP-9 is able to degrade collagen fragments into 

smaller parts. One-way ANOVA analysis also confirms that MMP-9 degrades the 

collagenous tissue into smaller degradation products significantly more than other 

proteases31. Even further, proteomic analysis revealed distinctly different protein 

signatures of the degradation profiles generated by each protease type as well as the profiles 

generated between low strain vs. high strain tests. It is important to mention that change in 

ECM structure is critical in cellular response regulation and tissue remodeling. Degradation 

of ECM proteins generates various ECM proteins that interact with cell surface receptors 

and alters inflammatory, fibrogenic, angiogenic, and reparative cascades72. These ECM 

fragments modulate fibroblast function either directly (changing fibroblast signal 

transduction) or indirectly (changing fibroblast activation process), indicating their role in 

tissue remodeling and fibrosis73.  

 Our approach comes with a few notable limitations. First, the collagen fibers in 

pericardium samples are sometimes aligned in variable directions. This could cause some 

variation in the stress experience in different tissue samples with the same strain. Using 

aligned, pure collagen gels can potentially eliminate these variations. Furthermore, we 

recognize that the pericardium is not only comprised of collagen I, and the cardiac protease 

is not solely MMP-1, 8, and 9. We selected this subset of enzymes as representative of 

different types of MMPs, such as collagenase and gelatinase, and the goal of Aim 1 was to 

investigate the behavior of different protease types on collagen degradation under 

mechanical loading. Expanding this study across more proteases and adding TIMPs, 
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different protease and TIMP cocktails, and a variety of different combinations of 

mechanical strain, including static and dynamic strains, can expand our knowledge of the 

effect of tensile loading on collagenous degradation by proteases. We also acknowledge 

that the stress concentration around the holes made by the tissue holders might cause some 

decay in the force calculated by the load cells. In spite of these limitations, our collective 

results highlight that therapeutic strategies for modulating collagen turnover might benefit 

from tailoring such strategies to the particular mechanical context in-vivo. 
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CHAPTER 4 

 
AIM 2: BUILD AND ANALYSE A COMPUTATIONAL MODEL OF COLLAGEN 

TURNOVER REGULATION BY MMPS AND TIMPS. 
 
 

4.1 Introduction 

 
Collagen is the most abundant structural protein in the human extracellular matrix 

(ECM), comprising one-third of the total protein in the human body45. Matrix 

metalloproteinases (MMPs) are zinc-dependent enzymes that participate in ECM 

degradation, and they cleave all structural components of the ECM. There are different 

groups of MMPs based on their in-vitro substrate preferences, including, for example, the 

collagenases (MMP-1, -8, and -13) that cleave fibrillar type collagens at a highly conserved 

site and the gelatinases (MMP-2 and -9) that degrade gelatins5,41,74. Tissue inhibitors of 

metalloproteinases (TIMPs) are specific inhibitors of MMPs which bind to activated 

MMPs with 1:1 stoichiometry and control the activity of MMPs in tissues to help refine 

the balance between deposition and destruction of collagen5,41,75. 

Collagen turnover is centrally involved in many diseases, including tissue fibrosis, 

cancer metastasis, wound healing, and myocardial infarction (MI)3. Collagen turnover 

depends on a highly regulated balance between collagens, MMPs, and TIMPs, but the 

diversity of matrix-MMP-TIMP interactions makes it very difficult to intuitively predict 

the effects of any individual matrix-, MMP-, or TIMP-targeting therapy. A computational 
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model of collagen-MMP-TIMP could help us to better understand these interactions, 

enable us to systematically predict dynamic matrix turnover under diverse matrix, MMP, 

and TIMP levels, and eventually help us to use the model as a screening tool across patient-

specific disease conditions76–78. 

Very few computational models have been previously published for matrix-MMP-

TIMP interactions66–68, and all of them are focused on a small number of MMPs and 

TIMPs. For example, Karaggiannis and Popel’s computational model was limited to 

collagen I, MMP-2, MMP-14, and TIMP-266. They included all known interactions 

between collagen I and two MMPs and one TIMP and represented each reaction as mass-

action ordinary differential equations (ODEs) based on Michaelis-Menten kinetics in their 

model and previously reported reaction rates for rate parameters. Vempati, Karaggiannis, 

and Popel also used ODE to capture two MMPs and two TIMPs interactions68. These 

studies highlighted the ability of computational modeling to elucidate the possible 

interactions between substrate and MMPs and TIMPs and help us understand the kinetics 

of these interactions. These findings also show that there are possible unknown MMP-

MMP and MMP-TIMP interactions which can make complex molecules that can be 

investigated using computational modeling56.  

We use a systematic approach to 1) characterize the kinetics of individual MMPs 

on the substrate and their substrate degradation potential; 2) characterize the inhibitory 

kinetics of individual TIMP on MMP, and 3) include all MMP and TIMP interactions in 

the system. With this network model, we predicted substrate degradation with four MMPs 

and three TIMPs. 
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4.2 Materials and Methods 

 
In order to experimentally test the effect of different MMP-TIMP combinations on 

collagen degradation, we prepared a 96 well plate with a range of different mixtures of Dye 

Quenched (DQ), MMPs, and TIMPs (Figure 7). We used DQ collagen to monitor the 

proteolytic activity of different MMPs and MMP-TIMP mixtures and used a large-scale 

system of nonlinear ODEs capturing the interactions of collagen I with four MMPs and 

three TIMPs to record reaction rates between these species. The DQ collagen labeled with 

fluorescein so heavily that the fluorescence signal is quenched in intact DQ collagen. This 

substrate can be digested by most collagenases and gelatinases to yield highly fluorescent 

peptides. The increase in fluorescence signal is proportional to proteolytic activity and can 

be monitored using a fluorescence microplate reader. DQ collagen was purchased 

commercially (Thermo Fisher Scientific, Waltham, Massachusetts) and reconstituted to 1 

mg/ml by adding 1 mL of deionized water (ddH2O) to the DQ substrate. The solution was 

then heated to 50°C and agitated in ultrasonic water bath for 5 minutes to facilitate 

dissolving. 

Recombinant human proMMP-1, proMMP-2, proMMP-8, and proMMP-9, 

solutions were purchased commercially (Enzo Life Sciences, Farmingdale, New York). 

ProMMPs were activated using provided activation protocol. ProMMP-1 was activated by 

8µl of 0.5 mg/ml trypsin added to 100 µl of proMMP-1 and incubated for 30 minutes at 

37°C. ProMMP-2 was activated by 2mM APMA (final concentration) for two hours at 

37°C. ProMMP-8 was activated by 2µl of 0.5 mg/ml trypsin added to 100 µl of proMMP-

1 and incubated for 30 minutes at 37°C. ProMMP-9 was activated by 20µl of 0.5 mg/ml 
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TCPK-trypsin added to 100 µl of proMMP-9 and incubated for 30 minutes at 37°C. 

Recombinant protein TIMP-1, TIMP-2, and TIMP-4 in lyophilized form were purchased 

commercially (ProSci, Poway, California) and reconstituted in ddH2O. The starting 

concentration of DQ collagen was 25 µg/ml for all conditions and the final volume of 

collagen-MMP-TIMP in each sample was 200 µl (5 µg of DQ collagen in every sample). 

Two different MMP concentration was used 𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀
𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= 1
50

 (0.1 µg MMP in each well) and  

𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀
𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= 1
25

  (0.2 µg MMP in each well).  𝑚𝑚𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀
𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀

 was either 1/2 or 1/4 by keeping 

𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.05 µ𝑔𝑔 in all samples.  

The samples with lower concentrations of MMPs contain 0.1 µg of either single or 

each MMP in the mix and the samples with higher concentration of MMPs contain 0.2 µg 

of either single or each MMP in the mix. Each sample contains 0.05 µg of either single 

TIMP or each TIMP in the mix. We ran the experiment in a fluorescent microplate reader 

in 37°C letting the proteases, inhibitors and substrate interact with each other. MMPs 

degrade DQ collagen and release fluorescein attached to the collagen and the product 

(degraded collagen) can be measured using fluorescent microplate reader (BioTek, 

Synergy 4) with absorption maxima at 495 nm and fluorescence emission maxima at 515 

nm. 

We then used the results from experimental data to fit the ODE model and we used 

a genetic fitting algorithm to find an optimal (best-fit) combination of rate parameters, 

including MMP degradation rates and TIMP inhibition rates, etc79,80. Mass action kinetics 

was the basis for constructing our ODE models of MMP proteolytic and TIMP inhibition 
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activity. A system of ordinary differential equations (based on Michaelis–Menten kinetics) 

was used to mechanistically describe the MMP-substrate, MMP-TIMP, and MMP-MMP 

interactions. 
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Figure 7: 96 well plate layout showing all of different conditions and included MMPs and TIMPs. All wells contain 5 
µg of DQ collagen. The yellow wells contain 0.1 µg of mentioned MMPs, and blue wells contain 0.2 µg of mention 

MMPs. Each well contain 0.05 µg of mentioned TIMPs.  
 

Computational model ODE solutions of collagen-MMP-TIMP interactions were 

approximated using the built-in ode45 function in MATLAB (MathWorks). These models 

were constructed using mass action kinetics describing MMPs binding and hydrolysis of 

substrates and TIMPs inhibiting the MMPs. Our baseline model assumed one MMP binds 

and catalyzes collagen with associated 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 rates (degradation) and one TIMP binds to one 
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MMP with associated 𝑘𝑘𝑚𝑚𝑚𝑚ℎ rates (inhibition) (Figure 8). Along with this baseline model, 

we tested the predictive accuracies of four additional model reaction topologies based on 

various assumptions (Figure 8). The second model assumed one MMP binds to one 

substrate with associated 𝑘𝑘𝑜𝑜𝑚𝑚 and 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 rates and then cleaves the collagen to form degraded 

collagen and free enzyme with 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 rate. TIMPs binding to MMPs also have “on” and 

“off” reaction rates instead of only one binding reaction rate. In the third model, MMP and 

TIMP inactivation terms were added (𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘). In the fourth model MMP cannibalism terms 

were added which means that MMPs can interact with the same MMP in active and inactive 

form. In the final model, inactive MMPs and inactive TIMPs can be distracted and react 

with other TIMPs and MMPs as previously demonstrated in protease network 

interactions56. Similar interaction terms between different MMPs were also added.  

The initial model had 16 parameters and final model had 163 parameters, indicated 

in supplementary equations. The models were fit to experimental data using the genetic 

algorithm in MATLAB by minimizing the difference between experimental and model 

predicted degraded collagen formation. The objective function that the genetic algorithm 

tries to minimize by finding the best combination of rate parameters was defined by adding 

sum of squared errors of experiment and simulation for all conditions. Experimental data 

were collected every 10 minutes for 6 hours, and thus, the simulations were also performed 

for 6 hours with time steps of 10 minutes generating same number of data point as the 

experimental data. The sum of squared error for each condition was calculated by adding 

the square of the difference of experimental data points and simulation results for each data 

point.  
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The genetic algorithm consisted of 50 generations, each with a population size of 

100 sets of parameters. The model tries to generate combination of parameters that 

minimizes the objective function. We used an ensemble method to minimize the possibility 

of the model being trapped in local minimum. The same genetic algorithm consisted of 50 

generations, each with a population size of 100, was repeated 10 times that uses different 

initial value for parameters sets and tries to find the minimum objective function 

simultaneously. The top 20% of best-fitting parameter sets were used as “parents” for the 

next round of simulations; these sets were re-used in the next series of simulations; 

remaining parameter sets were generated by crossing the values contained in each set81. 

The initial constraints for the upper and lower bounds of kinetic parameters were 

set to 0 and 20 (𝑀𝑀 × ℎ𝑟𝑟−1 for bimolecular reaction coefficients; ℎ𝑟𝑟−1 for unimolecular 

reaction coefficients) in an effort to avoid constraining the algorithm too tightly. The initial 

concentration of DQ collagen and all MMPs and TIMPs are known. For each iteration of 

the genetic algorithm, random sets of rate parameters were generated and used to predict 

degraded collagen as the output using the given initial protein and enzyme levels for that 

condition. For each set of parameters, predicted changes in output levels for each condition 

and difference between experimental data points and model output for each data point was 

calculated. At the end of the simulations, we chose the optimal combination of rate 

parameters which minimized the error. 
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Figure 8: Schematic of all different model topologies showing all included reactions. Blue solid line shows degradation 
of collagen by MMPs. Red, dash line shows inhibition of MMPs by TIMPs. Blue, long dash dot line shows cannibalism 

of MMPs. Green dot line shows inactivation of MMPs and TIMPs. Black dash double dot line shows distraction of 
TIMP with inactive MMPs or distraction of MMPs by inactive TIMPs. A) The final model, containing MMP 

degradation, inhibition, and cannibalism, MMP and TIMP inactivation and MMP and TIMP distraction terms. B) 
Baseline model with one degradation and one inhibition term. C) Second model with “on” and “off” terms for MMP 
degradation and TIMP inhibition terms D) MMP and TIMP inactivation terms were added to the second model. E) 

MMP cannibalism terms were added. MMPs interact with the same MMP in active and inactive form.   
 

A simplified ODE system based on the fifth model network is shown below. 

Equations 4-11 show a simplified interactions of collagen I with one MMP, one TIMP. The 

complete interaction can be found in the supplementary materials. 

𝑑𝑑(𝐶𝐶1)
𝑑𝑑𝑘𝑘

=  (𝑘𝑘𝑝𝑝𝑝𝑝𝑜𝑜𝑑𝑑𝐶𝐶1 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) − �𝑘𝑘𝑜𝑜𝑚𝑚𝑀𝑀1.𝐶𝐶1 × 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝐶𝐶1� + (𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀1.𝐶𝐶1 × 𝑀𝑀1.𝐶𝐶1)  (Eq. 4) 

 
𝑑𝑑(𝑑𝑑𝐶𝐶1)
𝑑𝑑𝑘𝑘

=  (2 × 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀1.𝐶𝐶1 × 𝑀𝑀1.𝐶𝐶1) − �𝑘𝑘𝑜𝑜𝑚𝑚𝑀𝑀1.𝑑𝑑𝐶𝐶1 × 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝑑𝑑𝐶𝐶1� + (𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀1.𝑑𝑑𝐶𝐶1 ×

𝑀𝑀1. 𝑑𝑑𝐶𝐶1)                                                                                                       (Eq. 5) 
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𝑑𝑑(𝑑𝑑𝑑𝑑𝐶𝐶1)
𝑑𝑑𝑘𝑘

=  (2 × 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀1.𝑑𝑑𝐶𝐶1 × 𝑀𝑀1.𝑑𝑑𝐶𝐶1)                                                             (Eq. 6) 

 
𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇1)

𝑑𝑑𝑘𝑘
=  −�𝑘𝑘𝑜𝑜𝑚𝑚𝑀𝑀1.𝐶𝐶1 × 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝐶𝐶1� + �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀1.𝐶𝐶1 × 𝑀𝑀1.𝐶𝐶1� + �𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀1.𝐶𝐶1 ×

𝑀𝑀1.𝐶𝐶1� − �𝑘𝑘𝑜𝑜𝑚𝑚𝑀𝑀1.𝑑𝑑𝐶𝐶1 × 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝑑𝑑𝐶𝐶1� + �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀1.𝑑𝑑𝐶𝐶1 × 𝑀𝑀1.𝑑𝑑𝐶𝐶1� + �𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀1.𝑑𝑑𝐶𝐶1 ×

𝑀𝑀1. 𝑑𝑑𝐶𝐶1� − �2 × 𝑘𝑘𝑜𝑜𝑚𝑚𝑀𝑀1.𝑀𝑀1 × 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝑀𝑀𝑀𝑀𝑃𝑃1� + �2 × 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀1.𝑀𝑀1 × 𝑀𝑀1.𝑀𝑀1� +

�𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀1.𝑀𝑀1 × 𝑀𝑀1.𝑀𝑀1� − �𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝐶𝐶𝑀𝑀1
× 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝑖𝑖𝑀𝑀1� + (𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝑜𝑜𝑜𝑜𝑀𝑀1

× 𝑀𝑀1. 𝑖𝑖𝑀𝑀1) +

(𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝑑𝑑𝐶𝐶𝐶𝐶𝑀𝑀1
× 𝑀𝑀1. 𝑖𝑖𝑀𝑀1) − �𝑘𝑘𝑚𝑚𝑚𝑚ℎ𝐶𝐶𝐶𝐶𝑀𝑀1.𝑇𝑇1

× 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝑇𝑇𝑃𝑃𝑀𝑀𝑃𝑃1� + (𝑘𝑘𝑚𝑚𝑚𝑚ℎ𝐶𝐶𝑜𝑜𝑜𝑜𝑀𝑀1.𝑇𝑇1
×

𝑀𝑀1.𝑇𝑇1) + (𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2𝑇𝑇1 × 𝑀𝑀1.𝑇𝑇1) − �𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖𝑑𝑑𝑀𝑀1 × 𝑀𝑀𝑀𝑀𝑃𝑃1�                                 (Eq. 7) 

 
𝑑𝑑(𝑑𝑑𝑇𝑇1)
𝑑𝑑𝑘𝑘

=  (𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀1.𝑀𝑀1 × 𝑀𝑀1.𝑀𝑀1) + �𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘_𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀1 × 𝑀𝑀1. 𝑖𝑖𝑀𝑀1� + (𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀1.𝐶𝐶1 × 𝑀𝑀1.𝐶𝐶1)  

 

  (Eq. 8) 

 
𝑑𝑑(𝑚𝑚𝑇𝑇1)
𝑑𝑑𝑘𝑘

=  �𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖𝑑𝑑𝑀𝑀1 × 𝑀𝑀𝑀𝑀𝑃𝑃1� −  �𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝐶𝐶𝑀𝑀1
× 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝑖𝑖𝑀𝑀1� + (𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝑜𝑜𝑜𝑜𝑀𝑀1

×

𝑀𝑀1. 𝑖𝑖𝑀𝑀1) + (𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1𝑇𝑇1 × 𝑀𝑀1.𝑇𝑇1) −  �𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝐶𝐶𝑇𝑇1 × 𝑇𝑇𝑃𝑃𝑀𝑀𝑃𝑃1 × 𝑖𝑖𝑀𝑀1� + (𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝑜𝑜𝑜𝑜𝑇𝑇1 ×

𝑇𝑇1. 𝑖𝑖𝑀𝑀1)                                                                                                         (Eq. 9) 

 
𝑑𝑑(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1)

𝑑𝑑𝑘𝑘
=  −�𝑘𝑘𝑚𝑚𝑚𝑚ℎ𝐶𝐶𝐶𝐶𝑀𝑀1.𝑇𝑇1

× 𝑀𝑀𝑀𝑀𝑃𝑃1 × 𝑇𝑇𝑃𝑃𝑀𝑀𝑃𝑃1� + (𝑘𝑘𝑚𝑚𝑚𝑚ℎ𝐶𝐶𝑜𝑜𝑜𝑜𝑀𝑀1.𝑇𝑇1
× 𝑀𝑀1.𝑇𝑇1) +

(𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1𝑇𝑇1 × 𝑀𝑀1.𝑇𝑇1) −   �𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝐶𝐶𝑇𝑇1 × 𝑇𝑇𝑃𝑃𝑀𝑀𝑃𝑃1 × 𝑖𝑖𝑀𝑀1� + (𝑘𝑘𝑑𝑑𝑚𝑚𝑑𝑑𝑘𝑘𝐶𝐶𝑜𝑜𝑜𝑜𝑇𝑇1 × 𝑇𝑇1. 𝑖𝑖𝑀𝑀1) −

�𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖𝑑𝑑𝑇𝑇1 × 𝑇𝑇𝑃𝑃𝑀𝑀𝑃𝑃1�                                                                                   (Eq. 10) 

 
𝑑𝑑(𝑚𝑚𝑇𝑇1)
𝑑𝑑𝑘𝑘

=  +�𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2𝑇𝑇1 × 𝑀𝑀1.𝑇𝑇1� + �𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖𝑑𝑑𝑇𝑇1 × 𝑇𝑇𝑃𝑃𝑀𝑀𝑃𝑃1�                                 (Eq.11) 

 



 53 

We also mined the literature to map time-courses of collagen, MMP, and TIMP 

levels in the heart measured post-MI in animal experiments82,83(Figure 9). The 

concentration of collagen, MMPs and TIMPs varies at different time points after MI. Thus, 

we used these concentrations in each time point as initial condition and performed a 

parameter sensitivity analysis across the model reaction rates wherein we modulate each 

reaction rates in the network from 0.5-2x times their baseline values, one-at-a-time, and 

calculated the resulting changes in the primary simulation output which is degraded 

collagen concentration (e.g., increasing 𝑘𝑘𝑜𝑜𝑚𝑚 for MMP-1 represents increasing MMP-1-

collagen I binding and increasing 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 represents increasing collagen I degradation by 

MMP-1). 

 

Figure 9: Levels of collagen, MMP, and TIMP in the heart measured following MI in mice shows that different MMPs 
are dominant in different time points. 

 
This sensitivity analysis was repeated using inputs that match stimulation levels at 

1-week, 2-weeks, 5-weeks, and 8-weeks post-MI in order to identify which species are the 
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important regulators of ECM post-MI for early and late time periods. We used an ensemble 

method to calculate parameter sensitivity. For each of the five models, we performed 10 

different simulations resulting in 10 different sets of parameter rates. We changed each 

reaction rate in the network from 0.5 - 2x times their baseline values and fit a linear function 

to 9 different collagen remaining values (0.5x 0.8x 0.9x 0.95x 1 1.05x 1.1x 1.2x 2x). The 

mean of the slope of the 10 resulting lines for each kinetic rate parameter calculated from 

10 different simulations for each model was reported as the sensitivity of the model to that 

specific parameter for each time point after MI. We performed the same method for 

calculating the sensitivity of the model to the initial conditions84. 

4.3. Results 

 
We incubated four different MMP isoforms with two different 𝑇𝑇𝑇𝑇𝑇𝑇

𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝑖𝑖𝑑𝑑𝑑𝑑𝑚𝑚
 

concentration ratios and three different TIMP types in different combinations with DQ 

collagen. We performed the experiments to record the degraded collagen concentrations at 

different time points for different concentrations and cocktails of MMP and TIMP. We 

then fit five different model topologies separately to the experimental data. Figure 10 

shows the results of the final model with all possible interactions, fit to experimental data 

for single MMPs and different TIMPs at the same time in low concentrations and high 

concentrations. We used different simulations for low concentrations and high 

concentrations in an effort to accurately fit the model to the experimental data. These 

results show our model's capability to capture different regimes. Overall high concentration 

of MMPs degrades collagen faster and more efficiently. Surprisingly, MMP-2, which is a 
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gelatinase, shows more degradation than MMP-1 and MMP-8 (which are both 

collagenases), especially in low concentrations. We can also highlight that different TIMPs 

are dominant in each MMP solution. For example, TIMP-4 inhibits MMP-1 more 

effectively than other TIMPs, but TIMP-1 inhibits MMP-2 more effectively. 

In order to find the best model describing the mass-action kinetics, we constructed 

five different models and compared their final errors with each other for low concentration 

and high concentration samples of single MMPs with different TIMPs. We took advantage 

of an ensemble method wherein each model has 10 different outputs since every simulation 

was repeated 10 times independently. Figure 11 shows the sum of the squared error of all 

conditions for five different topologies. This comparison indicates that adding "on" and 

"off" terms to the collagen degradation kinetics from the first model to the second model 

substantially improved the objective function. However, the most significant improvement 

is evident when comparing the second and third models. It is also revealed that although 

the most complex model, which captures all possible interactions between species, showed 

the best results (especially in low concentration cases), the third model containing only 

degradation, inhibition, and inactivation terms and without any cannibalism or distraction 

terms was able to minimize the sum of squared errors to a comparable level to model 4 and 

model 5. Additionally, our models generally performed better predicting kinetics of DQ 

collagen with a low concentration of MMPs.  
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Figure 10: The final model results(solid lines) fitted to the experimental data (dots) with all possible interactions for 
single MMPs and different TIMPs fitted at the same time for low concentrations or high concentrations A) Low 

concentration MMP-1 and all TIMPs. B) Low concentration MMP-2 and all TIMPs. C) Low concentration MMP-8 and 
all TIMPs. D) Low concentration MMP-9 and all TIMPs. E) High concentration MMP-1 and all TIMPs. F) High 

concentration MMP-2 and all TIMPs. G) High concentration MMP-8 and all TIMPs. H) High concentration MMP-9 
and all TIMPs. 
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Figure 11: Simulation results (sum of squared error of all conditions) across five different topologies. Each dot is an 
objective function at the end of one of 10 ensemble simulation for each topology A) Low concentration of MMPs and 

B) High concentration of MMPs 
 
 To investigate the difference between the model performances across all samples, 

we tried to fit each model to all conditions at the same time, separately for low and high 

concentrations. Figure 12 shows the heatmaps of relative error (𝐸𝐸𝐸𝐸𝑝𝑝𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑘𝑘𝑖𝑖𝐶𝐶 – 𝑆𝑆𝑚𝑚𝑚𝑚𝑆𝑆𝐶𝐶𝑖𝑖𝑘𝑘𝑚𝑚𝑜𝑜𝑚𝑚
𝐸𝐸𝐸𝐸𝑝𝑝𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑘𝑘𝑖𝑖𝐶𝐶

) 

for each condition across five models and indicates the predictive capability of each model. 

These results show how each model performed for any specific condition, which revealed 

general improvement in predictions with increasing model complexity. 



 58 

 

We also performed a parameter sensitivity analysis across the model reaction rates 

at 1-week, 2-weeks, 5-weeks, and 8-weeks post-MI in order to identify which species are 

the most important regulators of ECM post-MI for both early and late time periods. We 

modulated each reaction rate in the network from 0.5 - 2x times their baseline values, one 

at a time, ran the simulation for 6 hours, and calculated the resulting changes in collagen 

remaining concentration. The sensitivity was then reported as the slope of the line fitted to 

the collagen concentration result from each change in the corresponding parameter. This 

sensitivity analysis was repeated to identify the most important species of ECM post-MI 

for both early and late time periods and investigate which parameter change will change 

the primary simulation output more drastically. Generally, the results from sensitivity 

analysis showed that the concentration of collagen is more sensitive to the parameters at 

later time points. It is revealed that the collagen concentration is not greatly sensitive to 

TIMPs inhibition terms or TIMP inactivation terms. It is also important to mention that 

collagen concentration is more sensitive to MMP-2 degradation and inactivation terms in 

Figure 12: Heatmaps of relative error for each condition across five models’ showing improvement from 
baseline model to the final model. 
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every time point compared to other MMPs. Predictably, collagen concentration changes 

drastically when we modulated the initial values for each species, and it is most sensitive 

to MMP-2 and MMP-9 initial concentration after collagen concentration.  

 

 

 

4.4 Discussion 

 
The network of collagen-MMP-TIMP interactions is complicated by multifaceted 

crosstalk and nonlinear relationships that make it unclear which molecule or reaction is the 

most important. We built a computational model that can integrate all multivariate 

interactions and capture the reaction parameters to investigate the kinetics of collagen-

MMP-TIMP interactions. We fit the model to experimental data to better understand 

possible interactions and identify the key regulators of the system behavior. We were able 

to predict collagen degradation regime to a good extent for single MMP cases for both low 

and high concentrations. In-vitro experimental data helped us understand which MMP is 

Figure 13: Sensitivity analysis for the rate parameters and initial conditions at 1-week, 2-weeks, 5-weeks and 8 weeks 
post-MI showing that the concentration of collagen is more sensitive to the parameters at later time points. A) 

Degradation terms B) Inhibition terms C) Inactivation terms D) Sensitivity of the model to the initial conditions. 
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capable of degrading collagen faster, but only by comparing these models we were able to 

identify which MMP’s kinetic terms are essential for better predicting collagen-MMP-

TIMP interaction. Notably, MMP inactivation terms are more important than cannibalism 

and distraction terms which was impossible to predict without using the models. 

These models can additionally be helpful when used for predicting patients’ in-vivo 

data, especially after MI. Following MI, the concentration of ECM components, MMPs, 

and TIMPs change drastically, and the model can be helpful to predict collagen deposition 

to collagen degradation ratio as a mean to monitor LV remodeling. Predicting collagen 

concentration after MI can help physicians develop potential treatments specifically 

modulated for each patient or for optimizing drug time-course strategies.  

It is important to note a few limitations of this work. First, the models performed 

well when used against single MMPs, but the performance decreased when used to predict 

all conditions simultaneously. We tried to capture all the interactions possible between 

species, but there is not enough evidence to prove that all of these interactions are 

happening. Also, there is not enough insight into the different possible interactions between 

species. For example, there is evidence showing that the activation process of MMPs is not 

a simple one-step process and happens in multiple steps forming complex molecules. We 

restricted the upper band and the lower band for each parameter in the simulations, but 

there is not enough evidence showing the relevance of the calculated rate parameters to 

physiological values since most of the kinetic parameters are still unknown in the literature. 

DQ collagen was used because it enabled us to quantitatively trace the degradation process; 

however, it would be beneficial to monitor collagen degradation within 3-dimensional 
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tissues. It is also possible that the fluorescein released from the DQ collagen to the solution 

interfere with the collagen molecule binding site and the MMP degradation process. Our 

experimental work can be expanded using more conditions and different concentrations of 

MMPs and TIMPs, potentially allowing the model to improve its performance. 
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CHAPTER 5 

 
AIM 3: INTEGRATE ENSEMBLE MACHINE LEARNING AND MECHANISTIC 

MODELING TO IDENTIFY HFPEF PATIENTS FROM MATRIX-RELATED 
PLASMA BIOMARKERS. 

 
 
5.1 Introduction 

 
 Heart failure (HF) is a chronic, progressive condition and an abnormality of cardiac 

function with the inability of the heart muscle to pump enough blood to meet the body’s 

requirements for metabolism27. Diastolic failure or HF with preserved ejection fraction 

(HFpEF) is a condition resulting from the stiffness of heart muscle that causes the inability 

of the left ventricle (LV) to relax and fill normally. Currently, no treatment has yet been 

proven to reduce morbidity and mortality of HFpEF patients29. An estimated 6.2 million 

American adults ≥ 20 years of age had HF between 2013 and 2016, compared with an 

estimated 5.7 million between 2009 and 20122,26. HF has various contributing pathologies, 

including hypertension (86 million Americans), myocardial infarction (MI, 800,000 

Americans per year2, and 300,000 recurrent infarction each year7), and fibrosis. Myocardial 

fibrosis contributes to left LV dysfunction and is histologically defined by excessive 

deposition of fibrous tissue relative to the mass of cardiomyocytes within the myocardial 

tissue. The predominant contributor to cardiac fibrosis is fibrillar collagen concentration 

(type I and III) which is regulated by changes in the relative ratio between collagen 

production and degradation85–91,92. Collagen progression toward remodeling can be tracked 

using certain byproducts. Specifically, the cleavage of the N-terminal propeptide of 
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procollagen type I and type III (PINP and PIIINP) produces fragments which is an indicator 

of collagen production, and the carboxyl-terminal telopeptide of collagen type I (CITP) 

which is a product of collagen degradation93. 

 Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases 

(TIMPs), which can inhibit the activity of MMPs, are key regulators of collagen 

degradation processes. MMPs are zinc-dependent proteinases that can degrade the native 

collagen triple helix as well as other ECM components relevant to LV remodeling. 

Currently, the MMP family is composed of 25 proteinases that can be categorized into five 

groups based on the substrate they prefer to degrade. The MMPs focused herein are MMP-

1 (collagenase), MMP-2 (gelatinase), MMP-3 (stromelysin), MMP-7 (stromelysin), MMP-

8 (collagenase), and MMP-9 (gelatinase). The TIMP family currently includes four 

different members (TIMPs-1 to 4). MMPs in active and inactive forms can be inhibited by 

their physiological TIMPs5,41,51. 

 

 Previous studies attempting the prediction or risk stratification for HFpEF have 

each generally focused on information from just a single domain - for example, either 

demographics/clinical history, imaging-based approaches, or the use of blood-based 

measurements (i.e., biomarkers). However, strategies that use a multidomain approach to 

identify key variables in a predictive model remain to be established. Accordingly, we 

sought to apply machine learning approaches, which provide a comprehensive and 

unbiased approach for evaluating variables from multiple domains in patients with patients 

with HFpEF in order to develop refined prediction models. Recent studies indicate that 
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machine learning techniques can be helpful in the classification of different pathologies 

and have shown predictive capabilities for many different data types and prediction tasks94–

98. In our present study, we look to expand on previous work that investigates the use of 

remodeling-related biomarkers for the classification of diastolic HF.99 To improve the 

predictive power of these biomarkers for classification, we utilized multiple advanced 

machine learning frameworks. 

Additionally, we developed a mechanistic model for five different ECM component 

remodeling, including type I and type III collagen and three potential ECM candidates. A 

genetic fitting algorithm was then used to find the best-fit combination of rate parameters 

simultaneously in order to predict ECM components turnover for patient-specific data. The 

patient-specific results from the mechanistic model were then applied to all of the multiple 

machine learning models to improve the models’ predictive capabilities. 

 

5.2 Methods 

 
Patient data were previously collected for 480 individuals as described by Zile and 

colleagues99. The original study recruited volunteers between 2004-2006 from health fairs, 

physician referral, and echocardiographic studies. All patients provided written informed 

consent and the research protocol was reviewed and approved by the institutional review 

board at the Medical University of South Carolina. Patients were excluded if they had 

evidence of a clinical condition that might modulate circulating plasma profiles including 

pulmonary disease, end stage renal disease, rheumatological disease, poorly controlled 
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diabetes, a recent major surgical procedure, MI, active infection, or other fibrotic and/or 

inflammatory conditions.  

 

The patient data included basic information as well as mechanical biomarkers 

derived from echocardiogram data: sex, age, height, weight, body surface area (BSA), heart 

rate after a brisk, six minute hall walk, systolic blood pressure, diastolic blood pressure, 

pulse pressure, MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, TIMP-1, TIMP-2, 

TIMP-3, TIMP-4, PINP, PIIINP, CITP, cardiotrophin (CT-1), N-terminal propeptide of 

brain natriuretic peptide (NT-proBNP), soluble receptor for advanced glycation end 

products (sRAGE), osteopontin, LV internal diameter end diastole (LVIDd), left 

ventricular internal diameter end systole (LVIDs), left ventricular end diastolic volume and 

index (EDV and EDVi), left ventricular end systolic volume and index (ESV and ESVi), 

stroke volume (SV), ejection fraction (EF), peak systolic stress (PSS), end systolic stress 

(ESS), and end diastolic stress (EDS). The list of biomarkers was chosen to include 

molecules that were (1) established to have some mechanistic link to tissue remodeling 

from previous studies, and (2) previously validated to be detectable in the patient plasma 

samples. 

 

The patients were divided into two categories: referent control patients (n = 400) 

and patients with HFpEF (n = 59). The definitions for these categories were based on 

previous studies and Lahey Clinic and the HF and Echocardiography Associations of the 

European Society of Cardiology99. Briefly, HFpEF diagnosis required (1) clinical signs of 
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HF using Framingham Criteria, Boston Criteria, exercise testing, or quality of life survey, 

(2) preserved EF of >50%, (3) Normal LVEDVi <90 mL/m2, and (4) evidence of diastolic 

LV dysfunction. 

 

 

Across the full dataset of 38 features × 480 patients, 1.3% of data points were 

missing. We excluded patients that had 10 or more of mentioned 38 features missing which 

in result reduces patient number from 480 to 459. For the rest of the patients with missing 

data, we normalized the data using a z-score approach to normalize the data with respect 

to the sample means and standard deviations. We then found the five nearest-neighbors for 

each patient that had minimal mean squared errors across all features, and we imputed each 

individual missing value with the average of that variable across the five nearest-neighbors 

for each patient. Feature averages and variability for each group are shown in Table 3. 

 

 

Figure 14: Biochemical and biomechanical component of all patients showing variability between 
features and patients 
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Table 3: Summary statistics for Controls vs HFpEF patients 
Feature Control HFpEF 
 Average Std. Dev. Average Std. Dev. 
Patient Number 400  60  
Female (%) 65.0  61.0  
Age (y) 57.51 13.15 66.30 11.81 
Height (cm) 168.02 11.41 168.67 9.55 
Weight (kg) 82.44 21.08 92.95 24.07 
Systolic BP (mm Hg) 130.02 12.54 139.63 18.37 
Diastolic BP (mm Hg) 76.88 7.83 76.88 9.32 
Pulse Pressure (mm Hg) 53.14 10.78 62.75 16.19 
Heart Rate  68.24 10.26 68.80 10.71 
     
MMP1 (ng/mL) 0.79 0.64 0.89 0.73 
MMP2 (ng/mL) 340.09 144.50 418.32 170.64 
MMP3 (ng/mL) 9.88 5.88 11.38 5.86 
MMP7 (ng/mL) 1.66 1.19 2.13 1.38 
MMP8 (ng/mL) 2.84 3.70 1.95 1.52 
MMP9 (ng/mL) 110.13 88.17 125.08 67.60 
TIMP1 (ng/mL) 74.64 24.61 84.44 24.89 
TIMP2 (ng/mL) 79.59 14.63 81.83 12.95 
TIMP3 (ng/mL) 8.03 8.54 5.62 6.67 
TIMP4 (ng/mL) 1.47 0.64 1.86 0.76 
PINP (ng/mL) 36.56 21.15 40.58 24.82 
PIIINP (ng/mL) 7.33 1.94 9.14 3.19 
CITP (ng/mL) 3.11 1.90 3.80 3.19 
CT1 (ng/mL 10-3) 0.05 0.10 0.02 0.04 
pro-NT BNP (pg/m) 87.89 93.47 210.67 253.91 
sRAGE (ng/mL) 3.27 2.57 2.86 1.97 
OSTEO (ng/mL) 78.25 42.41 93.15 42.15 
BSA (m2) 1.95 0.27 2.07 0.29 
     
LVIDd (cm) 4.71 0.47 4.80 0.54 
LVIDs (cm) 2.87 0.41 2.93 0.45 
EDV (mL) 102.14 23.50 110.03 29.00 
EDVi (mL/m2) 52.70 11.02 53.41 13.46 
ESV (mL) 32.75 11.26 35.02 13.11 
ESVi (mL/m2) 16.82 5.29 16.86 6.31 
SV (mm Hg) 69.39 16.61 75.02 20.52 
PSS (g/cm2) 50.76 14.07 44.67 12.48 
ESS (g/cm2) 36.96 10.24 31.40 8.98 
EDS (g/cm2) 14.46 4.04 16.44 6.27 
EF (%) 68 7 68 7 
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5.2.1 Mechanistic Model 

 
We built a comprehensive mechanistic model in order to predict ECM remodeling 

using a large-scale system of nonlinear ODEs capturing the interactions of ECM 

components contributing to fibrosis, including type I collagen, type III collagen, three 

potential ECM candidates, procollagen type I and type III (PINP and PIIINP) and a network 

consisting of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, and their tissue 

inhibitors, TIMP-1, TIMP-2, TIMP-3, and TIMP-4. Figure 10 displays the simple 

mechanistic model used for one substrate molecule (for example, collagen type I) turnover, 

where solid blue lines show collagen degradation by MMPs. Red, dash lines show 

inhibition of MMPs by TIMPs. Blue, long dash-dot lines show cannibalism of MMPs. 

Green dot lines show the inactivation of MMPs and TIMPs. Black dash double dot lines 

show distraction of TIMP with inactive MMPs or distraction of MMPs by inactive TIMPs. 

Equations 4-11 show a simplified interactions of collagen I with one MMP, one TIMP. The 

complete interaction can be found in the supplementary materials. 
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Figure 15: Schematic of the model topology showing all included reactions. The model containing MMP degradation, 
inhibition, and cannibalism, MMP and TIMP inactivation and MMP and TIMP distraction terms 

 

The sum of all five ECM components remaining at the end of the simulation for 

each patient will be used to distinguish HF patients from control patients. Due to the lack 

of physiologically relevant studies regarding kinetic coefficients of the various reactions 

involving the proteases and their inhibitors, a genetic fitting algorithm was used to find the 

best-fit combination of rate parameters simultaneously in order to predict ECM turnover 

for patient-specific data. The genetic algorithm consisted of 30 generations, each with a 

population size of 50 sets of parameters. This approach generates a combination of 

parameters that can distinguish HF patients from control patients by ranking them based 

on the remaining ECM components as the parameter we want to monitor that causes 

fibrosis.  
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The model predicts substrate degradation and ranks the patients at the end of the 

simulations based on the ECM degradation product for each patient using measured values 

for MMPs, TIMPs, PINP, and PIIINP of that patient. The initial constraints for the upper 

and lower bounds of kinetic parameters were set to 0 and 15 (𝑀𝑀 × ℎ𝑟𝑟−1 for biomolecular 

reaction coefficients; ℎ𝑟𝑟−1 for unimolecular reaction coefficients) in an effort to avoid 

constraining the algorithm too tightly. Since we have shown that matrix degradation by 

proteases often follows a biphasic relationship with mechanical stimulation, substrate 

degradation parameters were set to a quadradic function of pulse pressure for each patient 

(𝑘𝑘1 × 𝜆𝜆2 +  𝑘𝑘2 × 𝜆𝜆 +  𝑘𝑘3) in order to provide a mechanical strain component to the 

mechanistic model. 

 

The model will go through 80% of patient data as the training data set and uses each 

patient’s MMP value as the initial value for MMPs, each TIMP value as the initial value 

for TIMPs, and PINP and PIIINP as collagen I and collagen III production rate. The initial 

value for each ECM component was set to the product of the average of all MMP values 

and a constant. The initial values for ECM components were approximated since the 

dataset did not include markers that could be used as the initial value for our model. We 

generated five different random training data sets in an effort to minimize the possibility 

of errors stemming from data selection. 

 

The model then uses a genetic fitting algorithm to find an optimal (best-fit) 

combination of rate parameters, including collagen I and collagen III production rate, MMP 
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degradation rates, TIMP inhibition rates, etc79,80. For each iteration of the algorithm, 

random sets of rate parameters will be generated and used to predict normalized output 

levels for each patient, given initial protein and enzyme levels for that patient. For each set 

of parameters, predicted changes in output levels will be calculated for each patient, and 

top 13% of patients with the highest ECM accumulation (as the indicator of fibrosis) were 

chosen as HF patients since 13% in the original data experienced HF. The model compares 

the results from the simulation to the clinical diagnosis and calculates true positive (TP), 

false positive (FP), true negative (TN), false negative (FN), sensitivity ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

), and 

specificity ( 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

). In order to minimize the model bias on either sensitivity or specificity, 

1 − 𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑𝑚𝑚𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑠𝑠+𝑑𝑑𝑝𝑝𝑑𝑑𝑖𝑖𝑚𝑚𝑜𝑜𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑠𝑠
2

 was used as a metric for the best-fitting parameters. The top 20% 

of best-fitting parameter sets were then used as “parents” for the next round of simulations, 

remaining parameter sets were generated by crossing the values contained in each set, and 

this new pool of parameter sets were tested against the clinical diagnosis as before81.  

This sequence was repeated for 30 generation to increase sensitivity and specificity 

of the model predictions for the training patient dataset. The new variables (five ECM 

component content remaining at the end of the simulations) were used as five new features 

within the same training data set in the machine learning framework in order to provide a 

mechanistic component to the classification. 

5.2.2 Machine Learning Algorithms for Classification 

The complete patient matrix was imported into the MATLAB Classification 

Learner within the Statistics and Machine Learning Toolbox, R2021b. We used seven 



 72 

different machine learning algorithms for patient classification: logistic regression, 

discriminate analysis, naïve Bayes, support vector machines, k-nearest neighbors, a built-

in ensemble algorithm, neural network, and also our own ensemble algorithm. 

These supervised algorithms are often used for binary classification problems, and 

they can be used for both probabilistic and deterministic models. The logistic regression 

approach uses a logistic function to model a binary dependent variable, and the classifier 

models the class probabilities as a function of the linear combination of predictors100. [MP 

20]. The discriminant analysis assumes that different classes generate data based on 

different Gaussian distributions101.The naive Bayes algorithm leverages the Bayes theorem 

and assumes that predictors are conditionally independent, given the class102. A support 

vector machine model for classification seeks to find a hyperplane within the subspace that 

can best separate data from each class103. The k-nearest neighbors' approach finds an 

object's k-nearest neighbors through a distance metric and uses the neighbors' classes for 

the object's own classification104. Ensemble approaches use multiple machine learning 

algorithms in order to improve the performance of the model over the individual 

components of the ensemble. Here we used either bagging or boosting approaches. The 

bagging approach uses a training dataset to generate new sample data and then trains the 

model. Boosting method uses a weak learning model to start and then re-weight the model 

in each iteration by adding the weak model to stronger classifiers105,106. The neural network 

model is a feedforward, fully connected model for classification. There is a connection 

between the first fully connected layer of the neural network and the input data, and each 

subsequent layer has a connection from the previous layer. Each fully connected layer 
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multiplies the input by a weight matrix and then adds a bias vector. The final fully 

connected layer produces the network's output. We also used a voting ensemble that 

averaged the classification probabilities from each of the seven individual algorithms and 

then classified each patient according to the average. 

 

5.2.3 Model optimization 

For fitting the algorithms, patients were randomly split into a training subset (80% 

of the patient data) and a testing subset (20% of the patient data); the hyperparameters were 

then optimized using the training subset only, and the performance metrics (accuracy, 

receiver-operator-characteristic curves, etc.) were calculated on the testing subset. All 

reported performance indicators, therefore, represent validation performance with data that 

were not used for model fitting. In order to ensure that our conclusions were not an artifact 

of a single, randomized 80-20 split, we repeated the process five times (i.e., five different 

testing-training splits) and calculated the same performance metrics each time using 

different training sets. Each of the approaches, except the logistic regression approach, was 

optimized using a Bayesian hyperparameter optimization approach over 100 iterations107. 

This method uses a Gaussian process model of an objective function, a Bayesian update 

procedure for modifying the model, and an acquisition function that needs to be 

maximized108.  

The optimizable hyperparameters for each machine learning approach are as 

follows: the discriminate type, including linear, diagonal linear, quadratic, and linear 

quadratic for the discriminate analysis approach; the distribution (Gaussian or Kernel) as 
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well as the kernel type for the naïve Bayes approach; the kernel function (Gaussian, linear, 

quadratic, and cubic), the box constraint level, and the kernel scale for the support vector 

machine approach; the number of neighbors, the distance metric (Euclidean, city block, 

Chebyshev, cubic, Mahalanobis, cosine, correlation, Spearman, Hamming, and Jaccard), 

and the distance weight (equal, inverse, squared inverse) for the k-nearest neighbor 

approach, the method (AdaBoost, RUSBoost, LogitBoost, GentleBoost, Bag), the 

maximum number of splits, the number of learners, the learning rate, and the number of 

sampling predictors fir the ensemble approach, number of fully connected layers, activation 

(ReLU, Tanh, None, Sigmoid),  regularization strength (Lambda), Standardize (Yes or No) 

for the neural network approach107. 

 

5.2.4 Model testing and Feature selection 

After training simulations for every training data sets, the accuracies of the testing 

groups were calculated, with true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN) using the formula for accuracy of a binary classification model: 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑟𝑟𝑎𝑎𝑐𝑐𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

 

Additionally, precision, F1 scores and Matthews Correlation Coefficients were calculated 

as follows: 

𝐹𝐹1 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 1
2 (𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑃𝑃)
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𝑀𝑀𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑃𝑃 × 𝑇𝑇𝑃𝑃 − 𝐹𝐹𝑃𝑃 × 𝐹𝐹𝑃𝑃

�(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)
 

The number of samples in each category is largely different from each other, and 

accuracy is heavily weighted towards the category with the larger number of samples; 

therefore, accuracy is not a complete measure of a classifier's ability. In order to minimize 

this bias, these additional statistical evaluations of the classifiers were used109. The F1 score 

is frequently used to evaluate the predictive power of a classifier, but it doesn't account for 

the true negative group. We employed the Matthews Correlation Coefficient (MCC), which 

is an indicator of the model's capability of correct prediction of both the positive and 

negative classes.110 

 

We used a Minimum Redundancy Maximum Relevancy (MRMR) algorithm to 

help us understand the importance of each feature111. MRMR algorithm uses either mutual 

information of the features or the amount of uncertainty of a feature that can be minimized 

by the use of another feature to find a set of features from the training set that can 

effectively represent the response and minimize the redundancy of the feature MRMR 

algorithm ranks the feature and the higher weighting features are more confident for the 

model in the effort to predict the responses. 
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5.3 Results 

5.3.1 Mechanistic Model 

We performed a genetic algorithm to find the best combination of rate parameters 

and the five ECM components remaining at the end of simulations. Figure 16 shows the 

result of the best-performing simulation curves for each of the five ECM components over 

time for all patients. The new variables (five ECM component content remaining at the end 

of the simulations) were used as five new features within the same training data set in the 

machine learning framework in order to provide a mechanistic component to the 

classification. 
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5.3.2 Machine Learning Algorithms for Classification 

After the simulations for classification were completed, receiver-operating-

characteristic (ROC) curves were recorded to assess predictive performance (Figure 19). 

Figure 16: Concentration change of the five ECM component content for every patient in the dataset. Blue are control patients and 
red are HFpEF patients. We used the remaining ECM component at the end of the simulations as a new feature adding five new 

features to the patient’s data 
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Figure 17: Feature selection by MRMR identified a ranked list of each feature’s importance to HFpEF classification. 
Note the red colors denote higher performance rankings while blue colors denote lower performance ranking. 

 

Most machine learning algorithms overperformed the previously reported, HFpEF 

classification by Zile et al99. (Figure 18) 
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Overall performance of the various algorithms was compared across F1 scores, 

MCCs, AUCs, and accuracy levels, with various algorithms reaching as high as 95% AUC 

and 93% accuracy (Figure 18). Across all classification tasks, our voting ensemble 

algorithm showed the most consistently high performance, reaching as high as 95% AUC. 

 

 

Figure 18: Performance metrics (in %) for five different testing set for each machine learning algorithm included (A) 
Accuracy, (B) ROC area-under-the-curve (AUC), (C) F1 scores, (D)Matthews Correlation Coefficients (MCC), 

classification of HFpEF patients. 
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Figure 19: Receiver operating characteristic (ROC) curves for classification of HFpEF patients for all of the five 
different testing datasets. The voting ensemble approach had the most consistent performance. Figures A through E 

shows the results of five different training testing splits. 
 

These results were largely consistent across five different randomized training-

testing splits of the dataset, which showed only minor variability in performance (standard 

deviations for the ensemble AUC was 3.6%). 

In order to better interpret our modeling predictions, we performed an MRMR 

feature selection approach for generating a ranked list of feature importance (Figure 17). 

The most heavily weighted features for the HFpEF classification included some basic 

features like sex, as well as some plasma biomarkers like TIMP1, MMP2, and MMP8 and 

collagen I coming from mechanistic modeling. 

In general, the non-MMP and non-TIMP plasma biomarkers ranked very low. 

Interestingly, apart from a few volume measures, other echo-based variables ranked 

relatively poorly in the feature importance analysis. 
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5.4 Discussion 

The progression of hypertension-induced HFpEF is complex and utilizes various 

mechanistic pathways. Machine learning approaches offer predictive power without the 

need to fully understand these mechanistic complexities. We used advanced machine 

learning techniques to deal with the need for more detailed kinetic studies involving 

specific roles played by key factors of matrix turnover. After utilizing multiple machine 

learning approaches, the voting ensemble method had consistently high predictive power 

based on accuracy and the AUC. This is not surprising given the ensemble approach's 

ability to combine the high-performing predictions from the individual algorithms while 

discounting the low-performing predictions. 

The MRMR algorithm is used as the feature selection method since it is repeatedly 

used in biological applications, and it can be used for different machine learning methods. 

It uses the relationship of each variable in the training dataset to the response variable in 

order to rank the feature and help with the feature selection process111–113. In this study, 

features were strongly related to each other (such as the proteases and their tissue inhibitors 

or various echo-based features calculated from other echo features). The MRMR algorithm 

helps us investigate the importance of each feature compared to the rest of the features and 

ensures that the variables selected are not similar to one another. After feature analysis was 

conducted with the MRMR algorithm, MMPs 2, 8, and TIMP-1 were found as important 

features for HFpEF classification. These findings corroborate the previous study by Zile et 

al. of HFpEF classification through logistic regression99. Previous work has found that 

MMP-3 and MMP-9 were significant predictive biomarkers of HFpEF. TIMP-2 and TIMP-
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4 plasma levels are also increased in HFpEF patients, and it has been shown that MMP-2 

and MMP-7 are increased while MMP-8 levels are decreased in HFpEF patients compared 

to control patients90,99. NT-proBNP, which is categorized as one of the most important 

biomarkers in hypertrophic disease, ranked relatively low in the feature rankings for the 

classification tasks114. Notably, feature selection revealed that only a few important 

features came from echocardiographic data relating to the heart's structure. For the HFpEF 

classification, ventricular volumes emerged as highly rated features, which is supported by 

previous evidence of ventricular mechanics contributing to pathologies that impair 

ventricular function, such as cardiomyopathy115,116. 

It is important to note several key limitations in the current work that limit the 

model's predictive power. First, the patient dataset consisted of 459 patients. Many of these 

patients were previously associated with cardiology clinics and studies. A larger, 

prospective study with more diverse patients would be needed in order to further validate 

the results and expand these classification models with additional patients. We believe that 

extracellular remodeling is a key factor in the HF process. A limitation of this study is that 

the set of biomarkers that participate in extracellular remodeling is limited. Our machine 

learning methods can benefit from more arrays of biomarkers, specifically ECM 

remodeling biomarkers. 

The mechanistic model was utilized to consider the role of fibrosis in HF and 

consider the interaction between the ECM component and MMP and TIMPs. Although we 

restricted the upper band and the lower band for each parameter in the simulation, there is 

not enough evidence showing the relevance of the calculated rate parameters to 
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physiological values since most of the kinetic parameters are still unknown in the literature. 

Also, we tried to capture all of the interactions possible between species, but there is not 

enough evidence to prove that all of these interactions are happening. We built a 

mechanistic model that includes the interaction of three potential ECM components in 

addition to fibrillar collagen type I and types III since the biomarkers measured in the 

patient dataset have multiple functions in addition to fibrotic turnover. However, each of 

these biomarkers might have a specific role in heart function. Current studies for the 

classification of HFpEF patients show the promise of MR-proANP, MR-proADM, 

troponins, sST2, GDF-15, and galectin-3 as additional biomarkers117. 

 

Our work shows that advanced machine learning techniques could be used as a 

promising tool for the classification of HFpEF patients. These techniques can benefit from 

larger and more diverse patient data with additional physiologically related biomarkers to 

prove the clinical application of our ensemble algorithm. 
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CHAPTER 6 

 
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 

 
6.1 Conclusions 

 
Cardiac fibrosis is critical in a variety of HF patients, including post-MI as well as 

non-ischemic diseases like hypertension, and there are no currently prescribed therapeutics 

for fibrotic scar regulation. The field is also unable to predict fibrosis due to the inability 

to assess which patients at what time and to what extent are more likely to develop fibrosis. 

Confounding variabilities include 1) mechanical variabilities, 2) temporal variabilities, and 

3) patient-to-patient variabilities. Computational modeling can help capture these 

variabilities in order to help us with novel treatments. Our investigation aimed to identify 

key regulators of cardiac fibrosis and understand the ECM turnover mechanism and ECM 

interaction with matrix-related proteins through a combination of in-vitro experiments and 

computational simulations exploring collagen-MMP-TIMP chemo- and mechano-

interactions. 

In the first aim of this investigation, in an effort to study the mechanical 

variabilities, we tested the effect of tensile loading on collagenous tissue degradation by 

proteases. Decellularized porcine pericardium samples were treated with MMP1, MMP8, 

MMP9, Cathepsin K, or a protease-free control while subjected to different levels of 

mechanical strain (from ~5-40%). Isotropic displacement control was provided, and the 

degradation level of pericardium samples was measured using force decay data. The stress 

degradation decay vs. strain rate curves indicate that particular rate of degradation was 
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affected by the sample strain, but the particular influence of strain depended upon the type 

of protease. Specifically, degradation by cathepsin K was increased with increasing strains, 

and degradation by MMP-1, MMP-8, and MMP-9 first decreased and then increased with 

the strain magnitude forming a V-shaped curve. The degradation products were also 

analyzed by mass spectrometry to assess how mechanical strain levels altered the 

degradome signatures, which revealed unique shifts in degradation products for all four 

protease types. Overall, these results highlight that the relative contributions of different 

proteases to tissue turnover depend not only on protease concentrations but also on the 

local level of tissue's mechanical conditions. 

In the second aim of this investigation, in an effort to study the temporal 

variabilities, we presented a detailed computational model of the biochemical network of 

collagen I proteolysis capturing all interactions of type I collagen, four MMPs (MMP-1, -

2, -8, and -9), and three TIMPs (TIMP-1, -2, and -4) in a cell-free, well-stirred environment. 

We used DQ collagen to monitor the proteolytic activity of MMPs and the inhibitory 

activity of TIMPs. We then used the results from experimental data to fit five different 

hypothetical reaction topologies in order to investigate their respective accuracies. We 

determined kinetic rate constants for collagen degradation by MMPs, MMP inhibition by 

TIMPs, MMP and TIMP inactivation rates, MMP cannibalism rates, as well as MMP and 

TIMP distraction rates. We also used post-MI time-courses of collagen, MMP, and TIMP 

levels in the animal heart from the literature to perform a parameter sensitivity analysis 

across the model reaction rates to identify which molecules or interactions are the important 

regulators of ECM post-MI for both early and late time-periods. 
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In vitro experimental data helped us understand which MMP is capable of 

degrading collagen faster and more effectively, but only by comparing these models we 

were able to identify which MMP's kinetic terms are essential for better predicting collage-

MMP-TIMP interaction. Notably, MMP-2 is able to degrade collagen faster and more, and 

MMP inactivation terms are more important than cannibalism and distraction terms which 

were impossible to predict without using the models. Generally, the results from sensitivity 

analysis show that the concentration of collagen is more sensitive to the parameters at later 

time points (8 weeks after MI) compared with earlier time points (1 week after MI). It is 

revealed that the collagen concentration is not greatly sensitive to TIMPs inhibition terms 

or TIMP inactivation terms. It is also worth mentioning that collagen concentration is more 

sensitive to MMP-2 degradation and inactivation terms in every time point. Predictably, 

collagen concentration changes drastically when we modulated the initial values for each 

species, and it is most sensitive to MMP-2 and MMP-9 initial concentration after collagen 

concentration. 

In the third aim of this investigation, in an effort to study the patient-to-patient 

variabilities, we hypothesized that machine learning algorithms could substantially 

improve the predictive value of circulating plasma biomarkers by leveraging more 

sophisticated statistical approaches. We first developed an ensemble classification 

algorithm for diagnosing HFpEF within a population of 459 individuals, including HFpEF 

patients and referent control patients. Algorithms showed strong diagnostic performance 

with receiver-operating-characteristic curve (ROC) areas of 0.95 for identifying HFpEF 

patients using demographic information, plasma biomarkers related to ECM remodeling, 
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echocardiogram data, and ECM component prediction resulting from our mechanistic 

model. We built a mechanistic model to predict ECM components using a genetic 

algorithm to connect ECM remodeling to the plasma biomarkers and help us with HFpEF 

patients' classification. Our findings demonstrate that machine learning-based 

classification algorithms show promise as a non-invasive diagnostic tool for HFpEF while 

also suggesting priority biomarkers for future mechanistic studies to elucidate more 

specific regulatory roles. 

Although no treatment has yet been proven to reduce morbidity and mortality of 

HFpEF patients, and there is still a gap for targeted, anti-fibrotic therapies, computational 

modeling serves as an important tool to investigate the complex matrix-MMP-TIMP 

mechano-chemo-interaction network and can help testing and identifying novel treatments 

in order to address mechanical, temporal, and patient-to-patient variabilities. 

6.2 Recommendations for future studies 

6.2.1 The effect of tensile loading on collagen degradation by proteases 

 
The collagen fibers in pericardium samples are randomly aligned. This could cause 

some variation in the stress experience in different tissue samples with the same strain. 

Using aligned, pure collagen gels can potentially eliminate these variations. Furthermore, 

we recognize that the pericardium is not only comprised of collagen I, and the cardiac 

protease is not solely MMP-1, 8, and 9. We selected this subset of enzymes as 

representative of different types of MMPs, such as collagenase and gelatinase, and the goal 

of Aim 1 was to investigate the behavior of different protease types on collagenous tissue 
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degradation under mechanical loading. Expanding this study across more proteases and 

adding TIMPs, different protease and TIMP concentration and protease cocktails, and a 

variety of different combinations of mechanical strain, including static and dynamic strains, 

can expand our knowledge of the effect of tensile loading on collagenous tissue degradation 

by proteases. 

In addition, we acknowledge that MMPs are activated by MMPs and other 

enzymes, and these interactions are critical to overall MMP activity in vivo. The reason we 

did not test those interactions in our experimental setup is that we are purposefully trying 

to reduce each condition to one protease-matrix interaction per pericardium sample in order 

to quantify the isolated effect of mechanical load on each of those specific interactions 

before we then re-combine all of those interactions (including activation steps) in the 

computational model. Moreover, we studied the effect of tensile loading on collagenous 

tissue with one protease in vitro; however, each of these proteases might have a specific 

role in heart function. Expanding this study to in-vivo applications can reveal some 

interesting facts about ECM remodeling. 

 

6.2.2 Computational Modeling of Collagen Turnover by Protease and Inhibitor 
Combinations 

 
Many studies tried to calculate Michaelis-Menten reaction rates which could be 

used as our model parameters; however, these parameters could potentially be chosen 

incorrectly since these studies have been done in different animals and different 

experimental environments. Thus, we built our own model and tried to come up with the 
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best set of reaction parameters that can explain collagen-MMP-TIMP interactions. The in-

vitro experiments can be expanded across multiple MMP-TIMP combinations (a variety of 

MMP and TIMP types and concentrations). The study can be expanded with more data 

points in order to help the models find better fits to the experimental data. Additionally, 

there could be hidden reactions between MMPs or TIMPs affecting activation, degradation, 

and inhibition rates that are not previously studied and can change the network structure. 

Replacing DQ collagen with collagen gels and quantifying collagen degradation using real-

time imaging enables the possibility of stretching the samples and opens new doors to 

investigate the time-dependent effects of combinations of MMPs and TIMPs on collagen 

degradation. The model then can be expanded by adding terms that can explain the effects 

of mechanical strain. 

6.2.3 Machine Learning Models Identifies HFpEF Patients from Matrix-Related Plasma 
Biomarkers 

 
The machine learning approach shows promising results for the classification of 

HFpEF patients. A more extensive, prospective study with more diverse patients would 

further validate the results and expand these classification models with additional patients. 

Additionally, our machine learning methods can benefit from more arrays of biomarkers, 

specifically ECM remodeling biomarkers. Our mechanistic model of collagen degradation 

using patient-specific protein data allowed us to come up with a set of parameters that, in 

addition to plasma biomarkers, helped us accurately diagnose HF patients. We used serum-

based protein measurements for our model inputs and outputs. We acknowledge serum 

levels are an aggregate of collagen turnover across many organs, not just the heart; thus, 
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future studies could seek to employ micro-dialysis technology currently being used by our 

collaborator to sample interstitial fluid directly from myocardial tissue in these patients. 

Furthermore, the mechanistic model used in this study could be integrated with the machine 

learning models. The models go through every patient, uses a set of arbitrary rate 

parameters for all of the reaction rates, calculates the ECM component remaining at the 

end of the simulations and add that value for each patient to the list of the variables used 

for the classification models. The models then calculate TP, TN, FP, FN, sensitivity and 

specificity and the genetic algorithm tries to make the best sets of parameters to minimize 

objective functions. Future models can benefit from this method in an effort to improve the 

accuracy of the models.    
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Appendix A 

Aim 2 Supplemental Equations 

The code for all of interactions in topology 1: 

function dydt = DQ_ODE_function1(t,y, k_degM1, k_degM2, k_degM8, k_degM9,... 
k_inhT1M1, k_inhT1M2, k_inhT1M8, 
k_inhT1M9,... 
k_inhT2M1, k_inhT2M2, k_inhT2M8, 
k_inhT2M9,... 
k_inhT4M1, k_inhT4M2, k_inhT4M8, 
k_inhT4M9) 

 
 
C1 = 1; 
dC1 = 2; 
 
M1 = 3; 
M2 = 4;  
M8 = 5; 
M9 = 6; 
 
T1 = 7; 
T2 = 8; 
T4 = 9; 
 
M1T1 = 10; 
M1T2 = 11; 
M1T4 = 12; 
 
M2T1 = 13; 
M2T2 = 14; 
M2T4 = 15; 
 
 
M8T1 = 16; 
M8T2 = 17; 
M8T4 = 18; 
 
M9T1 = 19; 
M9T2 = 20; 
M9T4 = 21; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% REACTIONS %%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%% 
dydt = zeros(21,1); 
 
 
dydt(C1) = - k_degM1*y(M1)*y(C1) - k_degM2*y(M2)*y(C1)  - k_degM8*y(M8)*y(C1) 
- k_degM9*y(M9)*y(C1); 
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dydt(dC1) = k_degM1*y(M1)*y(C1) + k_degM2*y(M2)*y(C1) + k_degM8*y(M8)*y(C1) + 
k_degM9*y(M9)*y(C1); 
 
 
 
dydt(M1) =  - k_inhT1M1*y(M1)*y(T1) - k_inhT2M1*y(M1)*y(T2) - 
k_inhT4M1*y(M1)*y(T4); 
 
dydt(M2) =  - k_inhT1M2*y(M2)*y(T1) - k_inhT2M2*y(M2)*y(T2) - 
k_inhT4M2*y(M2)*y(T4); 
 
dydt(M8) =  - k_inhT1M8*y(M8)*y(T1) - k_inhT2M8*y(M8)*y(T2) - 
k_inhT4M8*y(M8)*y(T4); 
 
dydt(M9) =  - k_inhT1M9*y(M9)*y(T1) - k_inhT2M9*y(M9)*y(T2) - 
k_inhT4M9*y(M9)*y(T4); 
 
 
 
dydt(T1) = -k_inhT1M1*y(M1)*y(T1) - k_inhT1M2*y(M2)*y(T1) - 
k_inhT1M8*y(M8)*y(T1) - k_inhT1M9*y(M9)*y(T1); 
 
dydt(T2) = -k_inhT2M1*y(M1)*y(T2) - k_inhT2M2*y(M2)*y(T2) - 
k_inhT2M8*y(M8)*y(T2) - k_inhT2M9*y(M9)*y(T2); 
 
dydt(T4) = -k_inhT4M1*y(M1)*y(T4) - k_inhT4M2*y(M2)*y(T4) - 
k_inhT4M8*y(M8)*y(T4) - k_inhT4M9*y(M9)*y(T4); 
 
 
 
dydt(M1T1) = k_inhT1M1*y(M1)*y(T1); 
dydt(M1T2) = k_inhT2M1*y(M1)*y(T2); 
dydt(M1T4) = k_inhT4M1*y(M1)*y(T4); 
 
 
dydt(M2T1) = k_inhT1M2*y(M2)*y(T1); 
dydt(M2T2) = k_inhT2M2*y(M2)*y(T2); 
dydt(M2T4) = k_inhT4M2*y(M2)*y(T4); 
 
 
dydt(M8T1) = k_inhT1M8*y(M8)*y(T1); 
dydt(M8T2) = k_inhT2M8*y(M8)*y(T2); 
dydt(M8T4) = k_inhT4M8*y(M8)*y(T4); 
 
 
dydt(M9T1) = k_inhT1M9*y(M9)*y(T1); 
dydt(M9T2) = k_inhT2M9*y(M9)*y(T2); 
dydt(M9T4) = k_inhT4M9*y(M9)*y(T4); 
 
 
end 
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The code for all of interactions in topology 2: 

function dydt = DQ_ODE_function2(t,y, k_on_M1C1,k_off_M1C1, k_deg_M1C1,... 
k_inh_on_T1M1, k_inh_on_T2M1, 
k_inh_on_T4M1,... 
k_inh_off_T1M1, k_inh_off_T2M1, 
k_inh_off_T4M1,... 

                                         k_on_M2C1,k_off_M2C1, k_deg_M2C1,... 
                                         
k_inh_on_T1M2, k_inh_on_T2M2, 
k_inh_on_T4M2,... 
k_inh_off_T1M2, k_inh_off_T2M2, 
k_inh_off_T4M2,... 

                                         k_on_M8C1,k_off_M8C1, k_deg_M8C1,... 
                                         
k_inh_on_T1M8, k_inh_on_T2M8, 
k_inh_on_T4M8,... 

k_inh_off_T1M8, k_inh_off_T2M8, 
k_inh_off_T4M8,... 

                                         k_on_M9C1,k_off_M9C1, k_deg_M9C1,... 
                                         
k_inh_on_T1M9, k_inh_on_T2M9, 
k_inh_on_T4M9,... 
k_inh_off_T1M9, k_inh_off_T2M9, 

k_inh_off_T4M9) 
 
C1 = 1; 
dC1 = 2; 
 
M1 = 3; 
M2 = 4;  
M8 = 5; 
M9 = 6; 
 
M1C1 = 7; 
M2C1 = 8; 
M8C1 = 9; 
M9C1 = 10; 
 
 
T1 = 11; 
T2 = 12; 
T4 = 13; 
 
M1T1 = 14; 
M1T2 = 15; 
M1T4 = 16; 
 
M2T1 = 17; 
M2T2 = 18; 
M2T4 = 19; 
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M8T1 = 20; 
M8T2 = 21; 
M8T4 = 22; 
 
M9T1 = 23; 
M9T2 = 24; 
M9T4 = 25; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% REACTIONS %%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%% 
dydt = zeros(25,1); 
 
 
dydt(C1) = - k_on_M1C1*y(M1)*y(C1) + k_off_M1C1*y(M1C1) - 
k_on_M2C1*y(M2)*y(C1) + k_off_M2C1*y(M2C1) - k_on_M8C1*y(M8)*y(C1) + 
k_off_M8C1*y(M8C1) - k_on_M9C1*y(M9)*y(C1) + k_off_M9C1*y(M9C1); 
          
dydt(dC1) = k_deg_M1C1*y(M1C1)  + k_deg_M2C1*y(M2C1)  + k_deg_M8C1*y(M8C1)  + 
k_deg_M9C1*y(M9C1); 
 
 
 
dydt(M1) =   - k_on_M1C1*y(M1)*y(C1)  + k_off_M1C1*y(M1C1) + 
k_deg_M1C1*y(M1C1)+...  
             - k_inh_on_T1M1*y(M1)*y(T1) - k_inh_on_T2M1*y(M1)*y(T2) - 
k_inh_on_T4M1*y(M1)*y(T4) +  k_inh_off_T1M1*y(M1T1) + k_inh_off_T2M1*y(M1T2) + 
k_inh_off_T4M1*y(M1T4);   
 
dydt(M2) =   - k_on_M2C1*y(M2)*y(C1)  + k_off_M2C1*y(M2C1) + 
k_deg_M2C1*y(M2C1)+...  
             - k_inh_on_T1M2*y(M2)*y(T1) - k_inh_on_T2M2*y(M2)*y(T2) - 
k_inh_on_T4M2*y(M2)*y(T4) +  k_inh_off_T1M2*y(M2T1) + k_inh_off_T2M2*y(M2T2) + 
k_inh_off_T4M2*y(M2T4); 
              
dydt(M8) =   - k_on_M8C1*y(M8)*y(C1)  + k_off_M8C1*y(M8C1) + 
k_deg_M8C1*y(M8C1)+...  
             - k_inh_on_T1M8*y(M8)*y(T1) - k_inh_on_T2M8*y(M8)*y(T2) - 
k_inh_on_T4M8*y(M8)*y(T4) +  k_inh_off_T1M8*y(M8T1) + k_inh_off_T2M8*y(M8T2) + 
k_inh_off_T4M8*y(M8T4); 
   
dydt(M9) =   - k_on_M9C1*y(M9)*y(C1)  + k_off_M9C1*y(M9C1) + 
k_deg_M9C1*y(M9C1)+...  
             - k_inh_on_T1M9*y(M9)*y(T1) - k_inh_on_T2M9*y(M9)*y(T2) - 
k_inh_on_T4M9*y(M9)*y(T4) +  k_inh_off_T1M9*y(M9T1) + k_inh_off_T2M9*y(M9T2) + 
k_inh_off_T4M9*y(M9T4); 
   
 
dydt(M1C1) =  k_on_M1C1*y(M1)*y(C1) - k_off_M1C1*y(M1C1) - k_deg_M1C1*y(M1C1); 
 
dydt(M2C1) =  k_on_M2C1*y(M2)*y(C1) - k_off_M2C1*y(M2C1) - k_deg_M2C1*y(M2C1);       
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dydt(M8C1) =  k_on_M8C1*y(M8)*y(C1) - k_off_M8C1*y(M8C1) - k_deg_M8C1*y(M8C1); 
 
dydt(M9C1) =  k_on_M9C1*y(M9)*y(C1) - k_off_M9C1*y(M9C1) - k_deg_M9C1*y(M9C1); 
 
 
 
dydt(T1) =  k_inh_off_T1M1*y(M1T1) - k_inh_on_T1M1*y(M1)*y(T1)+... 
            k_inh_off_T1M2*y(M2T1) - k_inh_on_T1M2*y(M2)*y(T1)+... 
            k_inh_off_T1M8*y(M8T1) - k_inh_on_T1M8*y(M8)*y(T1)+... 
            k_inh_off_T1M9*y(M9T1) - k_inh_on_T1M9*y(M9)*y(T1); 
         
dydt(T2) =  k_inh_off_T2M1*y(M1T2) - k_inh_on_T2M1*y(M1)*y(T2)+... 
            k_inh_off_T2M2*y(M2T2) - k_inh_on_T2M2*y(M2)*y(T2)+... 
            k_inh_off_T2M8*y(M8T2) - k_inh_on_T2M8*y(M8)*y(T2)+... 
            k_inh_off_T2M9*y(M9T2) - k_inh_on_T2M9*y(M9)*y(T2); 
         
dydt(T4) =  k_inh_off_T4M1*y(M1T4) - k_inh_on_T4M1*y(M1)*y(T4)+... 
            k_inh_off_T4M2*y(M2T4) - k_inh_on_T4M2*y(M2)*y(T4)+... 
            k_inh_off_T4M8*y(M8T4) - k_inh_on_T4M8*y(M8)*y(T4)+... 
            k_inh_off_T4M9*y(M9T4) - k_inh_on_T4M9*y(M9)*y(T4); 
 
 
dydt(M1T1) = k_inh_on_T1M1*y(M1)*y(T1) - k_inh_off_T1M1*y(M1T1); 
dydt(M1T2) = k_inh_on_T2M1*y(M1)*y(T2) - k_inh_off_T2M1*y(M1T2); 
dydt(M1T4) = k_inh_on_T4M1*y(M1)*y(T4) - k_inh_off_T4M1*y(M1T4); 
 
dydt(M2T1) = k_inh_on_T1M2*y(M2)*y(T1) - k_inh_off_T1M2*y(M2T1); 
dydt(M2T2) = k_inh_on_T2M2*y(M2)*y(T2) - k_inh_off_T2M2*y(M2T2); 
dydt(M2T4) = k_inh_on_T4M2*y(M2)*y(T4) - k_inh_off_T4M2*y(M2T4); 
 
dydt(M8T1) = k_inh_on_T1M8*y(M8)*y(T1) - k_inh_off_T1M8*y(M8T1); 
dydt(M8T2) = k_inh_on_T2M8*y(M8)*y(T2) - k_inh_off_T2M8*y(M8T2); 
dydt(M8T4) = k_inh_on_T4M8*y(M8)*y(T4) - k_inh_off_T4M8*y(M8T4); 
 
dydt(M9T1) = k_inh_on_T1M9*y(M9)*y(T1) - k_inh_off_T1M9*y(M9T1); 
dydt(M9T2) = k_inh_on_T2M9*y(M9)*y(T2) - k_inh_off_T2M9*y(M9T2); 
dydt(M9T4) = k_inh_on_T4M9*y(M9)*y(T4) - k_inh_off_T4M9*y(M9T4); 
 
 
end 
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The code for all of interactions in topology 3: 

function dydt = DQ_ODE_function3(t,y, k_on_M1C1,k_off_M1C1, k_deg_M1C1,... 
k_inh_on_T1M1, k_inh_on_T2M1, 
k_inh_on_T4M1,... 
k_inh_off_T1M1, k_inh_off_T2M1, 
k_inh_off_T4M1,... 

                                         k_on_M2C1,k_off_M2C1, k_deg_M2C1,... 
                                         
k_inh_on_T1M2, k_inh_on_T2M2, 
k_inh_on_T4M2,... 

k_inh_off_T1M2, k_inh_off_T2M2, 
k_inh_off_T4M2,... 

                                         k_on_M8C1,k_off_M8C1, k_deg_M8C1,... 
                                         
k_inh_on_T1M8, k_inh_on_T2M8, 
k_inh_on_T4M8,... 

k_inh_off_T1M8, k_inh_off_T2M8, 
k_inh_off_T4M8,... 

                                         k_on_M9C1,k_off_M9C1, k_deg_M9C1,... 
                                         
k_inh_on_T1M9, k_inh_on_T2M9, 
k_inh_on_T4M9,... 

k_inh_off_T1M9, k_inh_off_T2M9, 
k_inh_off_T4M9,... 
                                         
k_inact_M1,k_inact_M2,k_inact_M8,k_in
act_M9,... 

                                         k_inact_T1,k_inact_T2,k_inact_T4) 
 
C1 = 1; 
dC1 = 2; 
 
M1 = 3; 
M2 = 4;  
M8 = 5; 
M9 = 6; 
 
M1C1 = 7; 
M2C1 = 8; 
M8C1 = 9; 
M9C1 = 10; 
 
 
T1 = 11; 
T2 = 12; 
T4 = 13; 
 
M1T1 = 14; 
M1T2 = 15; 
M1T4 = 16; 
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M2T1 = 17; 
M2T2 = 18; 
M2T4 = 19; 
 
 
M8T1 = 20; 
M8T2 = 21; 
M8T4 = 22; 
 
M9T1 = 23; 
M9T2 = 24; 
M9T4 = 25; 
 
iM1 = 26; 
iM2 = 27; 
iM8 = 28; 
iM9 = 29; 
 
iT1 = 30; 
iT2 = 31; 
iT4 = 32; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% REACTIONS %%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%% 
dydt = zeros(32,1); 
 
 
dydt(C1) = - k_on_M1C1*y(M1)*y(C1) + k_off_M1C1*y(M1C1) - 
k_on_M2C1*y(M2)*y(C1) + k_off_M2C1*y(M2C1) - k_on_M8C1*y(M8)*y(C1) + 
k_off_M8C1*y(M8C1) - k_on_M9C1*y(M9)*y(C1) + k_off_M9C1*y(M9C1); 
          
dydt(dC1) = k_deg_M1C1*y(M1C1)  + k_deg_M2C1*y(M2C1)  + k_deg_M8C1*y(M8C1)  + 
k_deg_M9C1*y(M9C1); 
 
 
 
dydt(M1) =   - k_on_M1C1*y(M1)*y(C1)  + k_off_M1C1*y(M1C1) + 
k_deg_M1C1*y(M1C1)+...  
             - k_inh_on_T1M1*y(M1)*y(T1) - k_inh_on_T2M1*y(M1)*y(T2) - 
k_inh_on_T4M1*y(M1)*y(T4) +  k_inh_off_T1M1*y(M1T1) + k_inh_off_T2M1*y(M1T2) + 
k_inh_off_T4M1*y(M1T4) - k_inact_M1*y(M1);   
 
dydt(M2) =   - k_on_M2C1*y(M2)*y(C1)  + k_off_M2C1*y(M2C1) + 
k_deg_M2C1*y(M2C1)+...  
             - k_inh_on_T1M2*y(M2)*y(T1) - k_inh_on_T2M2*y(M2)*y(T2) - 
k_inh_on_T4M2*y(M2)*y(T4) +  k_inh_off_T1M2*y(M2T1) + k_inh_off_T2M2*y(M2T2) + 
k_inh_off_T4M2*y(M2T4) - k_inact_M2*y(M2); 
              
dydt(M8) =   - k_on_M8C1*y(M8)*y(C1)  + k_off_M8C1*y(M8C1) + 
k_deg_M8C1*y(M8C1)+...  
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             - k_inh_on_T1M8*y(M8)*y(T1) - k_inh_on_T2M8*y(M8)*y(T2) - 
k_inh_on_T4M8*y(M8)*y(T4) +  k_inh_off_T1M8*y(M8T1) + k_inh_off_T2M8*y(M8T2) + 
k_inh_off_T4M8*y(M8T4) - k_inact_M8*y(M8); 
   
dydt(M9) =   - k_on_M9C1*y(M9)*y(C1)  + k_off_M9C1*y(M9C1) + 
k_deg_M9C1*y(M9C1)+...  
             - k_inh_on_T1M9*y(M9)*y(T1) - k_inh_on_T2M9*y(M9)*y(T2) - 
k_inh_on_T4M9*y(M9)*y(T4) +  k_inh_off_T1M9*y(M9T1) + k_inh_off_T2M9*y(M9T2) + 
k_inh_off_T4M9*y(M9T4) - k_inact_M9*y(M9); 
   
 
dydt(M1C1) =  k_on_M1C1*y(M1)*y(C1) - k_off_M1C1*y(M1C1) - k_deg_M1C1*y(M1C1); 
 
dydt(M2C1) =  k_on_M2C1*y(M2)*y(C1) - k_off_M2C1*y(M2C1) - k_deg_M2C1*y(M2C1);       
 
dydt(M8C1) =  k_on_M8C1*y(M8)*y(C1) - k_off_M8C1*y(M8C1) - k_deg_M8C1*y(M8C1); 
 
dydt(M9C1) =  k_on_M9C1*y(M9)*y(C1) - k_off_M9C1*y(M9C1) - k_deg_M9C1*y(M9C1); 
 
 
dydt(iM1) =  k_inact_M1*y(M1); 
dydt(iM2) =  k_inact_M2*y(M2); 
dydt(iM8) =  k_inact_M8*y(M8); 
dydt(iM9) =  k_inact_M9*y(M9); 
 
dydt(T1) =  k_inh_off_T1M1*y(M1T1) - k_inh_on_T1M1*y(M1)*y(T1)+... 
            k_inh_off_T1M2*y(M2T1) - k_inh_on_T1M2*y(M2)*y(T1)+... 
            k_inh_off_T1M8*y(M8T1) - k_inh_on_T1M8*y(M8)*y(T1)+... 
            k_inh_off_T1M9*y(M9T1) - k_inh_on_T1M9*y(M9)*y(T1) - 
k_inact_T1*y(T1); 
         
dydt(T2) =  k_inh_off_T2M1*y(M1T2) - k_inh_on_T2M1*y(M1)*y(T2)+... 
            k_inh_off_T2M2*y(M2T2) - k_inh_on_T2M2*y(M2)*y(T2)+... 
            k_inh_off_T2M8*y(M8T2) - k_inh_on_T2M8*y(M8)*y(T2)+... 
            k_inh_off_T2M9*y(M9T2) - k_inh_on_T2M9*y(M9)*y(T2) - 
k_inact_T2*y(T2); 
         
dydt(T4) =  k_inh_off_T4M1*y(M1T4) - k_inh_on_T4M1*y(M1)*y(T4)+... 
            k_inh_off_T4M2*y(M2T4) - k_inh_on_T4M2*y(M2)*y(T4)+... 
            k_inh_off_T4M8*y(M8T4) - k_inh_on_T4M8*y(M8)*y(T4)+... 
            k_inh_off_T4M9*y(M9T4) - k_inh_on_T4M9*y(M9)*y(T4) - 
k_inact_T4*y(T4); 
 
 
dydt(M1T1) = k_inh_on_T1M1*y(M1)*y(T1) - k_inh_off_T1M1*y(M1T1); 
dydt(M1T2) = k_inh_on_T2M1*y(M1)*y(T2) - k_inh_off_T2M1*y(M1T2); 
dydt(M1T4) = k_inh_on_T4M1*y(M1)*y(T4) - k_inh_off_T4M1*y(M1T4); 
 
dydt(M2T1) = k_inh_on_T1M2*y(M2)*y(T1) - k_inh_off_T1M2*y(M2T1); 
dydt(M2T2) = k_inh_on_T2M2*y(M2)*y(T2) - k_inh_off_T2M2*y(M2T2); 
dydt(M2T4) = k_inh_on_T4M2*y(M2)*y(T4) - k_inh_off_T4M2*y(M2T4); 
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dydt(M8T1) = k_inh_on_T1M8*y(M8)*y(T1) - k_inh_off_T1M8*y(M8T1); 
dydt(M8T2) = k_inh_on_T2M8*y(M8)*y(T2) - k_inh_off_T2M8*y(M8T2); 
dydt(M8T4) = k_inh_on_T4M8*y(M8)*y(T4) - k_inh_off_T4M8*y(M8T4); 
 
dydt(M9T1) = k_inh_on_T1M9*y(M9)*y(T1) - k_inh_off_T1M9*y(M9T1); 
dydt(M9T2) = k_inh_on_T2M9*y(M9)*y(T2) - k_inh_off_T2M9*y(M9T2); 
dydt(M9T4) = k_inh_on_T4M9*y(M9)*y(T4) - k_inh_off_T4M9*y(M9T4); 
 
 
dydt(iT1) = k_inact_T1*y(T1); 
dydt(iT2) = k_inact_T2*y(T2); 
dydt(iT4) = k_inact_T4*y(T4); 
 
 
end 
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The code for all of interactions in topology 4: 

function dydt = DQ_ODE_function5(t,y, k_on_M1C1,k_off_M1C1, 
k_deg_M1C1,k_on_M1dC1, k_off_M1dC1, k_deg_M1dC1,... 
                                         k_inh_on_T1M1, k_inh_on_T2M1, 
k_inh_on_T4M1,... 
                                         k_inh_off_T1M1, k_inh_off_T2M1, 
k_inh_off_T4M1,... 
                                         k_on_M2C1,k_off_M2C1, 
k_deg_M2C1,k_on_M2dC1, k_off_M2dC1, k_deg_M2dC1,... 
                                         k_inh_on_T1M2, k_inh_on_T2M2, 
k_inh_on_T4M2,... 
                                         k_inh_off_T1M2, k_inh_off_T2M2, 
k_inh_off_T4M2,... 
                                         k_on_M8C1,k_off_M8C1, 
k_deg_M8C1,k_on_M8dC1, k_off_M8dC1, k_deg_M8dC1,... 
                                         k_inh_on_T1M8, k_inh_on_T2M8, 
k_inh_on_T4M8,... 
                                         k_inh_off_T1M8, k_inh_off_T2M8, 
k_inh_off_T4M8,... 
                                         k_on_M9C1,k_off_M9C1, 
k_deg_M9C1,k_on_M9dC1, k_off_M9dC1, k_deg_M9dC1,... 
                                         k_inh_on_T1M9, k_inh_on_T2M9, 
k_inh_on_T4M9,... 
                                         k_inh_off_T1M9, k_inh_off_T2M9, 
k_inh_off_T4M9,... 
                                         
k_inact_M1,k_inact_M2,k_inact_M8,k_inact_M9,... 
                                         k_inact_T1,k_inact_T2,k_inact_T4,... 
                                         k_on_M1M1, k_off_M1M1, k_deg_M1M1, 
k_dist_on_M1, k_dist_off_M1, k_dist_deg_M1,... 
                                         k_on_M2M2, k_off_M2M2, k_deg_M2M2, 
k_dist_on_M2, k_dist_off_M2, k_dist_deg_M2,... 
                                         k_on_M8M8, k_off_M8M8, k_deg_M8M8, 
k_dist_on_M8, k_dist_off_M8, k_dist_deg_M8,... 
                                         k_on_M9M9, k_off_M9M9, k_deg_M9M9, 
k_dist_on_M9, k_dist_off_M9, k_dist_deg_M9) 
 
C1 = 1; 
dC1 = 2; 
 
M1 = 3; 
M2 = 4;  
M8 = 5; 
M9 = 6; 
 
M1C1 = 7; 
M2C1 = 8; 
M8C1 = 9; 
M9C1 = 10; 
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T1 = 11; 
T2 = 12; 
T4 = 13; 
 
M1T1 = 14; 
M1T2 = 15; 
M1T4 = 16; 
 
M2T1 = 17; 
M2T2 = 18; 
M2T4 = 19; 
 
 
M8T1 = 20; 
M8T2 = 21; 
M8T4 = 22; 
 
M9T1 = 23; 
M9T2 = 24; 
M9T4 = 25; 
 
iM1 = 26; 
iM2 = 27; 
iM8 = 28; 
iM9 = 29; 
 
iT1 = 30; 
iT2 = 31; 
iT4 = 32; 
 
M1dC1 = 33; 
M2dC1 = 34; 
M8dC1 = 35; 
M9dC1 = 36; 
 
ddC1 = 37; 
 
M1M1 = 38; 
dM1 = 39; 
M1iM1 = 40; 
 
 
M2M2 = 41; 
dM2 = 42; 
M2iM2 = 43; 
 
M8M8 = 44; 
dM8 = 45; 
M8iM8 = 46; 
 
M9M9 = 47; 
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dM9 = 48; 
M9iM9 = 49; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% REACTIONS %%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%% 
dydt = zeros(49,1); 
 
 
dydt(C1) = - k_on_M1C1*y(M1)*y(C1) + k_off_M1C1*y(M1C1) - 
k_on_M2C1*y(M2)*y(C1) + k_off_M2C1*y(M2C1) - k_on_M8C1*y(M8)*y(C1) + 
k_off_M8C1*y(M8C1) - k_on_M9C1*y(M9)*y(C1) + k_off_M9C1*y(M9C1); 
          
dydt(dC1) = 2*k_deg_M1C1*y(M1C1) - k_on_M1dC1*y(M1)*y(dC1) + 
k_off_M1dC1*y(M1dC1) + 2*k_deg_M2C1*y(M2C1) - k_on_M2dC1*y(M2)*y(dC1) + 
k_off_M2dC1*y(M2dC1) + 2*k_deg_M8C1*y(M8C1) - k_on_M8dC1*y(M8)*y(dC1) + 
k_off_M8dC1*y(M8dC1) + 2*k_deg_M9C1*y(M9C1) - k_on_M9dC1*y(M9)*y(dC1) + 
k_off_M9dC1*y(M9dC1); 
 
 
 
dydt(M1) =   - k_on_M1C1*y(M1)*y(C1)  + k_off_M1C1*y(M1C1) + 
k_deg_M1C1*y(M1C1) - k_on_M1dC1*y(M1)*y(dC1)  + k_off_M1dC1*y(M1dC1) + 
k_deg_M1dC1*y(M1dC1)+... 
             - 2*k_on_M1M1*y(M1)*y(M1)  + 2*k_off_M1M1*y(M1M1) + 
k_deg_M1M1*y(M1M1) - k_dist_on_M1*y(M1)*y(iM1)  + k_dist_off_M1*y(M1iM1) + 
k_dist_deg_M1*y(M1iM1)+... 
             - k_inh_on_T1M1*y(M1)*y(T1) - k_inh_on_T2M1*y(M1)*y(T2) - 
k_inh_on_T4M1*y(M1)*y(T4) +  k_inh_off_T1M1*y(M1T1) + k_inh_off_T2M1*y(M1T2) + 
k_inh_off_T4M1*y(M1T4) - k_inact_M1*y(M1);   
 
dydt(M2) =   - k_on_M2C1*y(M2)*y(C1)  + k_off_M2C1*y(M2C1) + 
k_deg_M2C1*y(M2C1) - k_on_M2dC1*y(M2)*y(dC1)  + k_off_M2dC1*y(M2dC1) + 
k_deg_M2dC1*y(M2dC1)+... 
             - 2*k_on_M2M2*y(M2)*y(M2)  + 2*k_off_M2M2*y(M2M2) + 
k_deg_M2M2*y(M2M2) - k_dist_on_M2*y(M2)*y(iM2)  + k_dist_off_M2*y(M2iM2) + 
k_dist_deg_M2*y(M2iM2)+... 
             - k_inh_on_T1M2*y(M2)*y(T1) - k_inh_on_T2M2*y(M2)*y(T2) - 
k_inh_on_T4M2*y(M2)*y(T4) +  k_inh_off_T1M2*y(M2T1) + k_inh_off_T2M2*y(M2T2) + 
k_inh_off_T4M2*y(M2T4) - k_inact_M2*y(M2); 
              
dydt(M8) =   - k_on_M8C1*y(M8)*y(C1)  + k_off_M8C1*y(M8C1) + 
k_deg_M8C1*y(M8C1) - k_on_M8dC1*y(M8)*y(dC1)  + k_off_M8dC1*y(M8dC1) + 
k_deg_M8dC1*y(M8dC1)+... 
             - 2*k_on_M8M8*y(M8)*y(M8)  + 2*k_off_M8M8*y(M8M8) + 
k_deg_M8M8*y(M8M8) - k_dist_on_M8*y(M8)*y(iM8)  + k_dist_off_M8*y(M8iM8) + 
k_dist_deg_M8*y(M8iM8)+... 
             - k_inh_on_T1M8*y(M8)*y(T1) - k_inh_on_T2M8*y(M8)*y(T2) - 
k_inh_on_T4M8*y(M8)*y(T4) +  k_inh_off_T1M8*y(M8T1) + k_inh_off_T2M8*y(M8T2) + 
k_inh_off_T4M8*y(M8T4) - k_inact_M8*y(M8); 
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dydt(M9) =   - k_on_M9C1*y(M9)*y(C1)  + k_off_M9C1*y(M9C1) + 
k_deg_M9C1*y(M9C1) - k_on_M9dC1*y(M9)*y(dC1)  + k_off_M9dC1*y(M9dC1) + 
k_deg_M9dC1*y(M9dC1)+...  
             - 2*k_on_M9M9*y(M9)*y(M9)  + 2*k_off_M9M9*y(M9M9) + 
k_deg_M9M9*y(M9M9) - k_dist_on_M9*y(M9)*y(iM9)  + k_dist_off_M9*y(M9iM9) + 
k_dist_deg_M9*y(M9iM9)+... 
             - k_inh_on_T1M9*y(M9)*y(T1) - k_inh_on_T2M9*y(M9)*y(T2) - 
k_inh_on_T4M9*y(M9)*y(T4) +  k_inh_off_T1M9*y(M9T1) + k_inh_off_T2M9*y(M9T2) + 
k_inh_off_T4M9*y(M9T4) - k_inact_M9*y(M9); 
   
 
dydt(M1C1) =  k_on_M1C1*y(M1)*y(C1) - k_off_M1C1*y(M1C1) - k_deg_M1C1*y(M1C1); 
 
dydt(M2C1) =  k_on_M2C1*y(M2)*y(C1) - k_off_M2C1*y(M2C1) - k_deg_M2C1*y(M2C1);       
 
dydt(M8C1) =  k_on_M8C1*y(M8)*y(C1) - k_off_M8C1*y(M8C1) - k_deg_M8C1*y(M8C1); 
 
dydt(M9C1) =  k_on_M9C1*y(M9)*y(C1) - k_off_M9C1*y(M9C1) - k_deg_M9C1*y(M9C1); 
 
 
dydt(M1dC1) =  k_on_M1dC1*y(M1)*y(dC1) - k_off_M1dC1*y(M1dC1) - 
k_deg_M1dC1*y(M1dC1); 
 
dydt(M2dC1) =  k_on_M2dC1*y(M2)*y(dC1) - k_off_M2dC1*y(M2dC1) - 
k_deg_M2dC1*y(M2dC1); 
 
dydt(M8dC1) =  k_on_M8dC1*y(M8)*y(dC1) - k_off_M8dC1*y(M8dC1) - 
k_deg_M8dC1*y(M8dC1); 
 
dydt(M9dC1) =  k_on_M9dC1*y(M9)*y(dC1) - k_off_M9dC1*y(M9dC1) - 
k_deg_M9dC1*y(M9dC1); 
 
 
dydt(ddC1) = 2*k_deg_M1dC1*y(M1dC1) + 2*k_deg_M2dC1*y(M2dC1) + 
2*k_deg_M8dC1*y(M8dC1) + 2*k_deg_M9dC1*y(M9dC1); 
 
 
dydt(M1M1) = k_on_M1M1*y(M1)*y(M1)  - k_off_M1M1*y(M1M1) - k_deg_M1M1*y(M1M1); 
dydt(dM1) =  k_deg_M1M1*y(M1M1) + k_dist_deg_M1*y(M1iM1); 
dydt(M1iM1) = k_dist_on_M1*y(M1)*y(iM1) - k_dist_off_M1*y(M1iM1) - 
k_dist_deg_M1*y(M1iM1); 
 
 
dydt(M2M2) = k_on_M2M2*y(M2)*y(M2)  - k_off_M2M2*y(M2M2) - k_deg_M2M2*y(M2M2); 
dydt(dM2) =  k_deg_M2M2*y(M2M2) + k_dist_deg_M2*y(M2iM2); 
dydt(M2iM2) = k_dist_on_M2*y(M2)*y(iM2) - k_dist_off_M2*y(M2iM2) - 
k_dist_deg_M2*y(M2iM2); 
 
 
dydt(M8M8) = k_on_M8M8*y(M8)*y(M8)  - k_off_M8M8*y(M8M8) - k_deg_M8M8*y(M8M8); 
dydt(dM8) =  k_deg_M8M8*y(M8M8) + k_dist_deg_M8*y(M8iM8); 
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dydt(M8iM8) = k_dist_on_M8*y(M8)*y(iM8) - k_dist_off_M8*y(M8iM8) - 
k_dist_deg_M8*y(M8iM8); 
 
 
dydt(M9M9) = k_on_M9M9*y(M9)*y(M9)  - k_off_M9M9*y(M9M9) - k_deg_M9M9*y(M9M9); 
dydt(dM9) =  k_deg_M9M9*y(M9M9) + k_dist_deg_M9*y(M9iM9); 
dydt(M9iM9) = k_dist_on_M9*y(M9)*y(iM9) - k_dist_off_M9*y(M9iM9) - 
k_dist_deg_M9*y(M9iM9); 
 
 
dydt(iM1) =  k_inact_M1*y(M1) - k_dist_on_M1*y(M1)*y(iM1)  + 
k_dist_off_M1*y(M1iM1); 
dydt(iM2) =  k_inact_M2*y(M2) - k_dist_on_M2*y(M2)*y(iM2)  + 
k_dist_off_M2*y(M2iM2); 
dydt(iM8) =  k_inact_M8*y(M8) - k_dist_on_M8*y(M8)*y(iM8)  + 
k_dist_off_M8*y(M8iM8); 
dydt(iM9) =  k_inact_M9*y(M9) - k_dist_on_M9*y(M9)*y(iM9)  + 
k_dist_off_M9*y(M9iM9); 
 
dydt(T1) =  k_inh_off_T1M1*y(M1T1) - k_inh_on_T1M1*y(M1)*y(T1)+... 
            k_inh_off_T1M2*y(M2T1) - k_inh_on_T1M2*y(M2)*y(T1)+... 
            k_inh_off_T1M8*y(M8T1) - k_inh_on_T1M8*y(M8)*y(T1)+... 
            k_inh_off_T1M9*y(M9T1) - k_inh_on_T1M9*y(M9)*y(T1) - 
k_inact_T1*y(T1); 
         
dydt(T2) =  k_inh_off_T2M1*y(M1T2) - k_inh_on_T2M1*y(M1)*y(T2)+... 
            k_inh_off_T2M2*y(M2T2) - k_inh_on_T2M2*y(M2)*y(T2)+... 
            k_inh_off_T2M8*y(M8T2) - k_inh_on_T2M8*y(M8)*y(T2)+... 
            k_inh_off_T2M9*y(M9T2) - k_inh_on_T2M9*y(M9)*y(T2) - 
k_inact_T2*y(T2); 
         
dydt(T4) =  k_inh_off_T4M1*y(M1T4) - k_inh_on_T4M1*y(M1)*y(T4)+... 
            k_inh_off_T4M2*y(M2T4) - k_inh_on_T4M2*y(M2)*y(T4)+... 
            k_inh_off_T4M8*y(M8T4) - k_inh_on_T4M8*y(M8)*y(T4)+... 
            k_inh_off_T4M9*y(M9T4) - k_inh_on_T4M9*y(M9)*y(T4) - 
k_inact_T4*y(T4); 
 
 
dydt(M1T1) = k_inh_on_T1M1*y(M1)*y(T1) - k_inh_off_T1M1*y(M1T1); 
dydt(M1T2) = k_inh_on_T2M1*y(M1)*y(T2) - k_inh_off_T2M1*y(M1T2); 
dydt(M1T4) = k_inh_on_T4M1*y(M1)*y(T4) - k_inh_off_T4M1*y(M1T4); 
 
dydt(M2T1) = k_inh_on_T1M2*y(M2)*y(T1) - k_inh_off_T1M2*y(M2T1); 
dydt(M2T2) = k_inh_on_T2M2*y(M2)*y(T2) - k_inh_off_T2M2*y(M2T2); 
dydt(M2T4) = k_inh_on_T4M2*y(M2)*y(T4) - k_inh_off_T4M2*y(M2T4); 
 
dydt(M8T1) = k_inh_on_T1M8*y(M8)*y(T1) - k_inh_off_T1M8*y(M8T1); 
dydt(M8T2) = k_inh_on_T2M8*y(M8)*y(T2) - k_inh_off_T2M8*y(M8T2); 
dydt(M8T4) = k_inh_on_T4M8*y(M8)*y(T4) - k_inh_off_T4M8*y(M8T4); 
 
dydt(M9T1) = k_inh_on_T1M9*y(M9)*y(T1) - k_inh_off_T1M9*y(M9T1); 
dydt(M9T2) = k_inh_on_T2M9*y(M9)*y(T2) - k_inh_off_T2M9*y(M9T2); 
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dydt(M9T4) = k_inh_on_T4M9*y(M9)*y(T4) - k_inh_off_T4M9*y(M9T4); 
 
 
dydt(iT1) = k_inact_T1*y(T1); 
dydt(iT2) = k_inact_T2*y(T2); 
dydt(iT4) = k_inact_T4*y(T4); 
 
 
end 
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The code for all of interactions in topology 5: 

 

function dydt = DQ_ODE_function7(t,y, k_on_M1C1,k_off_M1C1, 
k_deg_M1C1,k_on_M1dC1, k_off_M1dC1, k_deg_M1dC1,... 
                                         k_inh_on_T1M1, k_inh_on_T2M1, 
k_inh_on_T4M1,... 
                                         k_inh_off_T1M1, k_inh_off_T2M1, 
k_inh_off_T4M1,... 
                                         k_on_M2C1,k_off_M2C1, 
k_deg_M2C1,k_on_M2dC1, k_off_M2dC1, k_deg_M2dC1,... 
                                         k_inh_on_T1M2, k_inh_on_T2M2, 
k_inh_on_T4M2,... 
                                         k_inh_off_T1M2, k_inh_off_T2M2, 
k_inh_off_T4M2,... 
                                         k_on_M8C1,k_off_M8C1, 
k_deg_M8C1,k_on_M8dC1, k_off_M8dC1, k_deg_M8dC1,... 
                                         k_inh_on_T1M8, k_inh_on_T2M8, 
k_inh_on_T4M8,... 
                                         k_inh_off_T1M8, k_inh_off_T2M8, 
k_inh_off_T4M8,... 
                                         k_on_M9C1,k_off_M9C1, 
k_deg_M9C1,k_on_M9dC1, k_off_M9dC1, k_deg_M9dC1,... 
                                         k_inh_on_T1M9, k_inh_on_T2M9, 
k_inh_on_T4M9,... 
                                         k_inh_off_T1M9, k_inh_off_T2M9, 
k_inh_off_T4M9,... 
                                         
k_inact_M1,k_inact_M2,k_inact_M8,k_inact_M9,... 
                                         k_inact_T1,k_inact_T2,k_inact_T4,... 
                                         k_on_M1M1, k_off_M1M1, k_deg_M1M1, 
k_dist_on_M1, k_dist_off_M1, k_dist_deg_M1,... 
                                         k_on_M2M2, k_off_M2M2, k_deg_M2M2, 
k_dist_on_M2, k_dist_off_M2, k_dist_deg_M2,... 
                                         k_on_M8M8, k_off_M8M8, k_deg_M8M8, 
k_dist_on_M8, k_dist_off_M8, k_dist_deg_M8,... 
                                         k_on_M9M9, k_off_M9M9, k_deg_M9M9, 
k_dist_on_M9, k_dist_off_M9, k_dist_deg_M9,... 
                                         k_on_M1M2, k_off_M1M2, k_deg_M1M2,... 
                                         k_on_M1M8, k_off_M1M8, k_deg_M1M8,... 
                                         k_on_M1M9, k_off_M1M9, k_deg_M1M9,... 
                                         k_on_M2M1, k_off_M2M1, k_deg_M2M1,... 
                                         k_on_M2M8, k_off_M2M8, k_deg_M2M8,... 
                                         k_on_M2M9, k_off_M2M9, k_deg_M2M9,... 
                                         k_on_M8M1, k_off_M8M1, k_deg_M8M1,... 
                                         k_on_M8M2, k_off_M8M2, k_deg_M8M2,... 
                                         k_on_M8M9, k_off_M8M9, k_deg_M8M9,... 
                                         k_on_M9M1, k_off_M9M1, k_deg_M9M1,... 
                                         k_on_M9M2, k_off_M9M2, k_deg_M9M2,... 
                                         k_on_M9M8, k_off_M9M8, k_deg_M9M8,... 



 108 

                                         k_dist_on_M1iM2, k_dist_off_M1iM2, 
k_dist_deg_M1iM2,... 
                                         k_dist_on_M1iM8, k_dist_off_M1iM8, 
k_dist_deg_M1iM8,... 
                                         k_dist_on_M1iM9, k_dist_off_M1iM9, 
k_dist_deg_M1iM9,... 
                                         k_dist_on_M2iM1, k_dist_off_M2iM1, 
k_dist_deg_M2iM1,... 
                                         k_dist_on_M2iM8, k_dist_off_M2iM8, 
k_dist_deg_M2iM8,... 
                                         k_dist_on_M2iM9, k_dist_off_M2iM9, 
k_dist_deg_M2iM9,... 
                                         k_dist_on_M8iM1, k_dist_off_M8iM1, 
k_dist_deg_M8iM1,... 
                                         k_dist_on_M8iM2, k_dist_off_M8iM2, 
k_dist_deg_M8iM2,... 
                                         k_dist_on_M8iM9, k_dist_off_M8iM9, 
k_dist_deg_M8iM9,... 
                                         k_dist_on_M9iM1, k_dist_off_M9iM1, 
k_dist_deg_M9iM1,... 
                                         k_dist_on_M9iM2, k_dist_off_M9iM2, 
k_dist_deg_M9iM2,... 
                                         k_dist_on_M9iM8, k_dist_off_M9iM8, 
k_dist_deg_M9iM8,... 
                                         k_TIMP2_T1, k_TIMP2_T2, k_TIMP2_T4, 
k_TIMP1_T1, k_TIMP1_T2, k_TIMP1_T4,... 
                                         k_dist_on_T1, k_dist_on_T2, 
k_dist_on_T4,... 
                                         k_dist_off_T1, k_dist_off_T2, 
k_dist_off_T4) 
 
C1 = 1; 
dC1 = 2; 
 
M1 = 3; 
M2 = 4;  
M8 = 5; 
M9 = 6; 
 
M1C1 = 7; 
M2C1 = 8; 
M8C1 = 9; 
M9C1 = 10; 
 
 
T1 = 11; 
T2 = 12; 
T4 = 13; 
 
M1T1 = 14; 
M1T2 = 15; 
M1T4 = 16; 
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M2T1 = 17; 
M2T2 = 18; 
M2T4 = 19; 
 
 
M8T1 = 20; 
M8T2 = 21; 
M8T4 = 22; 
 
M9T1 = 23; 
M9T2 = 24; 
M9T4 = 25; 
 
iM1 = 26; 
iM2 = 27; 
iM8 = 28; 
iM9 = 29; 
 
iT1 = 30; 
iT2 = 31; 
iT4 = 32; 
 
M1dC1 = 33; 
M2dC1 = 34; 
M8dC1 = 35; 
M9dC1 = 36; 
 
ddC1 = 37; 
 
M1M1 = 38; 
dM1 = 39; 
M1iM1 = 40; 
 
 
M2M2 = 41; 
dM2 = 42; 
M2iM2 = 43; 
 
M8M8 = 44; 
dM8 = 45; 
M8iM8 = 46; 
 
M9M9 = 47; 
dM9 = 48; 
M9iM9 = 49; 
 
M1M2 = 50; 
M1M8 = 51; 
M1M9 = 52; 
M2M8 = 53; 
M2M9 = 54; 
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M8M9 = 55; 
 
 
M1iM2 = 56; 
M1iM8 = 57; 
M1iM9 = 58; 
 
M2iM1 = 59; 
M2iM8 = 60; 
M2iM9 = 61; 
 
M8iM1 = 62; 
M8iM2 = 63; 
M8iM9 = 64; 
 
M9iM1 = 65; 
M9iM2 = 66; 
M9iM8 = 67; 
 
 
T1iM1 = 68; 
T2iM1 = 69; 
T4iM1 = 70; 
 
T1iM2 = 71; 
T2iM2 = 72; 
T4iM2 = 73; 
 
T1iM8 = 74; 
T2iM8 = 75; 
T4iM8 = 76; 
 
T1iM9 = 77; 
T2iM9 = 78; 
T4iM9 = 79; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% REACTIONS %%%%%%%%$%%%%%%%%%%%%%%%%%%%%%%%% 
dydt = zeros(79,1); 
 
 
dydt(C1) = - k_on_M1C1*y(M1)*y(C1) + k_off_M1C1*y(M1C1) - 
k_on_M2C1*y(M2)*y(C1) + k_off_M2C1*y(M2C1) - k_on_M8C1*y(M8)*y(C1) + 
k_off_M8C1*y(M8C1) - k_on_M9C1*y(M9)*y(C1) + k_off_M9C1*y(M9C1); 
          
dydt(dC1) = 2*k_deg_M1C1*y(M1C1) - k_on_M1dC1*y(M1)*y(dC1) + 
k_off_M1dC1*y(M1dC1) + 2*k_deg_M2C1*y(M2C1) - k_on_M2dC1*y(M2)*y(dC1) + 
k_off_M2dC1*y(M2dC1) + 2*k_deg_M8C1*y(M8C1) - k_on_M8dC1*y(M8)*y(dC1) + 
k_off_M8dC1*y(M8dC1) + 2*k_deg_M9C1*y(M9C1) - k_on_M9dC1*y(M9)*y(dC1) + 
k_off_M9dC1*y(M9dC1); 
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dydt(M1) =   - k_on_M1C1*y(M1)*y(C1)  + k_off_M1C1*y(M1C1) + 
k_deg_M1C1*y(M1C1) - k_on_M1dC1*y(M1)*y(dC1)  + k_off_M1dC1*y(M1dC1) + 
k_deg_M1dC1*y(M1dC1)+... 
             - 2*k_on_M1M1*y(M1)*y(M1)  + 2*k_off_M1M1*y(M1M1) + 
k_deg_M1M1*y(M1M1) - k_inact_M1*y(M1) - k_dist_on_M1*y(M1)*y(iM1)  + 
k_dist_off_M1*y(M1iM1) + k_dist_deg_M1*y(M1iM1)+... 
             - k_inh_on_T1M1*y(M1)*y(T1) - k_inh_on_T2M1*y(M1)*y(T2) - 
k_inh_on_T4M1*y(M1)*y(T4) +  k_inh_off_T1M1*y(M1T1) + k_inh_off_T2M1*y(M1T2) + 
k_inh_off_T4M1*y(M1T4)+... 
               k_TIMP2_T1*y(M1T1) + k_TIMP2_T2*y(M1T2) + 
k_TIMP2_T4*y(M1T4)+... 
             - k_on_M1M2*y(M1)*y(M2) + k_off_M1M2*y(M1M2) + k_deg_M1M2*y(M1M2) 
- k_on_M1M8*y(M1)*y(M8) + k_off_M1M8*y(M1M8) + k_deg_M1M8*y(M1M8) - 
k_on_M1M9*y(M1)*y(M9) + k_off_M1M9*y(M1M9) + k_deg_M1M9*y(M1M9)+... 
             - k_on_M2M1*y(M1)*y(M2) + k_off_M2M1*y(M1M2) - 
k_on_M8M1*y(M1)*y(M8) + k_off_M8M1*y(M1M8) - k_on_M9M1*y(M1)*y(M9) + 
k_off_M9M1*y(M1M9)+... 
             - k_dist_on_M1iM2*y(M1)*y(iM2)  + k_dist_off_M1iM2*y(M1iM2) + 
k_dist_deg_M1iM2*y(M1iM2) - k_dist_on_M1iM8*y(M1)*y(iM8)  + 
k_dist_off_M1iM8*y(M1iM8) + k_dist_deg_M1iM8*y(M1iM8) - 
k_dist_on_M1iM9*y(M1)*y(iM9)  + k_dist_off_M1iM9*y(M1iM9) + 
k_dist_deg_M1iM9*y(M1iM9); 
            
dydt(M2) =   - k_on_M2C1*y(M2)*y(C1)  + k_off_M2C1*y(M2C1) + 
k_deg_M2C1*y(M2C1) - k_on_M2dC1*y(M2)*y(dC1)  + k_off_M2dC1*y(M2dC1) + 
k_deg_M2dC1*y(M2dC1)+... 
             - 2*k_on_M2M2*y(M2)*y(M2)  + 2*k_off_M2M2*y(M2M2) + 
k_deg_M2M2*y(M2M2) - k_inact_M2*y(M2) - k_dist_on_M2*y(M2)*y(iM2)  + 
k_dist_off_M2*y(M2iM2) + k_dist_deg_M2*y(M2iM2)+... 
             - k_inh_on_T1M2*y(M2)*y(T1) - k_inh_on_T2M2*y(M2)*y(T2) - 
k_inh_on_T4M2*y(M2)*y(T4) +  k_inh_off_T1M2*y(M2T1) + k_inh_off_T2M2*y(M2T2) + 
k_inh_off_T4M2*y(M2T4)+... 
               k_TIMP2_T1*y(M2T1) + k_TIMP2_T2*y(M2T2) + 
k_TIMP2_T4*y(M2T4)+... 
             - k_on_M2M1*y(M1)*y(M2) + k_off_M2M1*y(M1M2) + k_deg_M2M1*y(M1M2) 
- k_on_M2M8*y(M2)*y(M8) + k_off_M2M8*y(M2M8) + k_deg_M2M8*y(M2M8) - 
k_on_M2M9*y(M2)*y(M9) + k_off_M2M9*y(M2M9) + k_deg_M2M9*y(M2M9)+... 
             - k_on_M1M2*y(M1)*y(M2) + k_off_M1M2*y(M1M2) - 
k_on_M8M2*y(M2)*y(M8) + k_off_M8M2*y(M2M8) - k_on_M9M2*y(M2)*y(M9) + 
k_off_M9M2*y(M2M9)+... 
             - k_dist_on_M2iM1*y(M2)*y(iM1)  + k_dist_off_M2iM1*y(M2iM1) + 
k_dist_deg_M2iM1*y(M2iM1) - k_dist_on_M2iM8*y(M2)*y(iM8)  + 
k_dist_off_M2iM8*y(M2iM8) + k_dist_deg_M2iM8*y(M2iM8) - 
k_dist_on_M2iM9*y(M2)*y(iM9)  + k_dist_off_M2iM9*y(M2iM9) + 
k_dist_deg_M2iM9*y(M2iM9); 
            
            
dydt(M8) =   - k_on_M8C1*y(M8)*y(C1)  + k_off_M8C1*y(M8C1) + 
k_deg_M8C1*y(M8C1) - k_on_M8dC1*y(M8)*y(dC1)  + k_off_M8dC1*y(M8dC1) + 
k_deg_M8dC1*y(M8dC1)+... 
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             - 2*k_on_M8M8*y(M8)*y(M8)  + 2*k_off_M8M8*y(M8M8) + 
k_deg_M8M8*y(M8M8) - k_inact_M8*y(M8) - k_dist_on_M8*y(M8)*y(iM8)  + 
k_dist_off_M8*y(M8iM8) + k_dist_deg_M8*y(M8iM8)+... 
             - k_inh_on_T1M8*y(M8)*y(T1) - k_inh_on_T2M8*y(M8)*y(T2) - 
k_inh_on_T4M8*y(M8)*y(T4) +  k_inh_off_T1M8*y(M8T1) + k_inh_off_T2M8*y(M8T2) + 
k_inh_off_T4M8*y(M8T4)+... 
               k_TIMP2_T1*y(M8T1) + k_TIMP2_T2*y(M8T2) + 
k_TIMP2_T4*y(M8T4)+... 
             - k_on_M8M1*y(M1)*y(M8) + k_off_M8M1*y(M1M8) + k_deg_M8M1*y(M1M8) 
- k_on_M8M2*y(M2)*y(M8) + k_off_M8M2*y(M2M8) + k_deg_M8M2*y(M2M8) - 
k_on_M8M9*y(M8)*y(M9) + k_off_M8M9*y(M8M9) + k_deg_M8M9*y(M8M9)+... 
             - k_on_M1M8*y(M1)*y(M8) + k_off_M1M8*y(M1M8) - 
k_on_M2M8*y(M2)*y(M8) + k_off_M2M8*y(M2M8) - k_on_M9M8*y(M8)*y(M9) + 
k_off_M9M8*y(M8M9)+... 
             - k_dist_on_M8iM1*y(M8)*y(iM1)  + k_dist_off_M8iM1*y(M8iM1) + 
k_dist_deg_M8iM1*y(M8iM1) - k_dist_on_M8iM2*y(M8)*y(iM2)  + 
k_dist_off_M8iM2*y(M8iM2) + k_dist_deg_M8iM2*y(M8iM2) - 
k_dist_on_M8iM9*y(M8)*y(iM9)  + k_dist_off_M8iM9*y(M8iM9) + 
k_dist_deg_M8iM9*y(M8iM9); 
            
 
dydt(M9) =   - k_on_M9C1*y(M9)*y(C1)  + k_off_M9C1*y(M9C1) + 
k_deg_M9C1*y(M9C1) - k_on_M9dC1*y(M9)*y(dC1)  + k_off_M9dC1*y(M9dC1) + 
k_deg_M9dC1*y(M9dC1)+... 
             - 2*k_on_M9M9*y(M9)*y(M9)  + 2*k_off_M9M9*y(M9M9) + 
k_deg_M9M9*y(M9M9) - k_inact_M9*y(M9) - k_dist_on_M9*y(M9)*y(iM9)  + 
k_dist_off_M9*y(M9iM9) + k_dist_deg_M9*y(M9iM9)+... 
             - k_inh_on_T1M9*y(M9)*y(T1) - k_inh_on_T2M9*y(M9)*y(T2) - 
k_inh_on_T4M9*y(M9)*y(T4) +  k_inh_off_T1M9*y(M9T1) + k_inh_off_T2M9*y(M9T2) + 
k_inh_off_T4M9*y(M9T4)+... 
               k_TIMP2_T1*y(M9T1) + k_TIMP2_T2*y(M9T2) + 
k_TIMP2_T4*y(M9T4)+... 
             - k_on_M9M1*y(M1)*y(M9) + k_off_M9M1*y(M1M9) + k_deg_M9M1*y(M1M9) 
- k_on_M9M2*y(M2)*y(M9) + k_off_M9M2*y(M2M9) + k_deg_M9M2*y(M2M9) - 
k_on_M9M8*y(M8)*y(M9) + k_off_M9M8*y(M8M9) + k_deg_M9M8*y(M8M9)+... 
             - k_on_M1M9*y(M1)*y(M9) + k_off_M1M9*y(M1M9) - 
k_on_M2M9*y(M2)*y(M9) + k_off_M2M9*y(M2M9) - k_on_M8M9*y(M8)*y(M9) + 
k_off_M8M9*y(M8M9)+... 
             - k_dist_on_M9iM1*y(M9)*y(iM1)  + k_dist_off_M9iM1*y(M9iM1) + 
k_dist_deg_M9iM1*y(M9iM1) - k_dist_on_M9iM2*y(M9)*y(iM2)  + 
k_dist_off_M9iM2*y(M9iM2) + k_dist_deg_M9iM2*y(M9iM2) - 
k_dist_on_M9iM8*y(M9)*y(iM8)  + k_dist_off_M9iM8*y(M9iM8) + 
k_dist_deg_M9iM8*y(M9iM8); 
 
 
 
dydt(M1C1) =  k_on_M1C1*y(M1)*y(C1) - k_off_M1C1*y(M1C1) - k_deg_M1C1*y(M1C1); 
 
dydt(M2C1) =  k_on_M2C1*y(M2)*y(C1) - k_off_M2C1*y(M2C1) - k_deg_M2C1*y(M2C1);       
 
dydt(M8C1) =  k_on_M8C1*y(M8)*y(C1) - k_off_M8C1*y(M8C1) - k_deg_M8C1*y(M8C1); 
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dydt(M9C1) =  k_on_M9C1*y(M9)*y(C1) - k_off_M9C1*y(M9C1) - k_deg_M9C1*y(M9C1); 
 
 
 
dydt(M1dC1) =  k_on_M1dC1*y(M1)*y(dC1) - k_off_M1dC1*y(M1dC1) - 
k_deg_M1dC1*y(M1dC1); 
 
dydt(M2dC1) =  k_on_M2dC1*y(M2)*y(dC1) - k_off_M2dC1*y(M2dC1) - 
k_deg_M2dC1*y(M2dC1); 
 
dydt(M8dC1) =  k_on_M8dC1*y(M8)*y(dC1) - k_off_M8dC1*y(M8dC1) - 
k_deg_M8dC1*y(M8dC1); 
 
dydt(M9dC1) =  k_on_M9dC1*y(M9)*y(dC1) - k_off_M9dC1*y(M9dC1) - 
k_deg_M9dC1*y(M9dC1); 
 
 
 
dydt(ddC1) = 2*k_deg_M1dC1*y(M1dC1) + 2*k_deg_M2dC1*y(M2dC1) + 
2*k_deg_M8dC1*y(M8dC1) + 2*k_deg_M9dC1*y(M9dC1); 
 
 
 
dydt(M1M1) = k_on_M1M1*y(M1)*y(M1)  - k_off_M1M1*y(M1M1) - k_deg_M1M1*y(M1M1); 
 
dydt(dM1) =  k_deg_M1M1*y(M1M1) + k_dist_deg_M1*y(M1iM1) + k_deg_M2M1*y(M1M2) 
+ k_deg_M8M1*y(M1M8) + k_deg_M9M1*y(M1M9) + k_dist_deg_M2iM1*y(M2iM1) + 
k_dist_deg_M8iM1*y(M8iM1) + k_dist_deg_M9iM1*y(M9iM1); 
 
dydt(iM1) =  k_inact_M1*y(M1) - k_dist_on_M1*y(M1)*y(iM1)  + 
k_dist_off_M1*y(M1iM1) + k_TIMP1_T1*y(M1T1) + k_TIMP1_T2*y(M1T2) + 
k_TIMP1_T4*y(M1T4)+... 
              - k_dist_on_T1*y(T1)*y(iM1) - k_dist_on_T2*y(T2)*y(iM1) - 
k_dist_on_T4*y(T4)*y(iM1)+... 
              + k_dist_off_T1*y(T1iM1) + k_dist_off_T2*y(T2iM1) + 
k_dist_off_T4*y(T4iM1)+... 
              - k_dist_on_M2iM1*y(M2)*y(iM1) + k_dist_off_M2iM1*y(M2iM1) - 
k_dist_on_M8iM1*y(M8)*y(iM1) + k_dist_off_M8iM1*y(M8iM1) - 
k_dist_on_M9iM1*y(M9)*y(iM1) + k_dist_off_M9iM1*y(M9iM1); 
           
dydt(M1iM1) = k_dist_on_M1*y(M1)*y(iM1) - k_dist_off_M1*y(M1iM1) - 
k_dist_deg_M1*y(M1iM1);    
 
 
dydt(M1M2) = k_on_M1M2*y(M1)*y(M2)  - k_off_M1M2*y(M1M2) - k_deg_M1M2*y(M1M2) 
+ k_on_M2M1*y(M1)*y(M2)  - k_off_M2M1*y(M1M2) - k_deg_M2M1*y(M1M2); 
dydt(M1M8) = k_on_M1M8*y(M1)*y(M8)  - k_off_M1M8*y(M1M8) - k_deg_M1M8*y(M1M8) 
+ k_on_M8M1*y(M1)*y(M8)  - k_off_M8M1*y(M1M8) - k_deg_M8M1*y(M1M8); 
dydt(M1M9) = k_on_M1M9*y(M1)*y(M9)  - k_off_M1M9*y(M1M9) - k_deg_M1M9*y(M1M9) 
+ k_on_M9M1*y(M1)*y(M9)  - k_off_M9M1*y(M1M9) - k_deg_M9M1*y(M1M9); 
dydt(M2M8) = k_on_M2M8*y(M2)*y(M8)  - k_off_M2M8*y(M2M8) - k_deg_M2M8*y(M2M8) 
+ k_on_M8M2*y(M2)*y(M8)  - k_off_M8M2*y(M2M8) - k_deg_M8M2*y(M2M8); 
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dydt(M2M9) = k_on_M2M9*y(M2)*y(M9)  - k_off_M2M9*y(M2M9) - k_deg_M2M9*y(M2M9) 
+ k_on_M9M2*y(M2)*y(M9)  - k_off_M9M2*y(M2M9) - k_deg_M9M2*y(M2M9); 
dydt(M8M9) = k_on_M8M9*y(M8)*y(M9)  - k_off_M8M9*y(M8M9) - k_deg_M8M9*y(M8M9) 
+ k_on_M9M8*y(M8)*y(M9)  - k_off_M9M8*y(M8M9) - k_deg_M9M8*y(M8M9); 
 
 
 
dydt(M1iM2) = k_dist_on_M1iM2*y(M1)*y(iM2) - k_dist_off_M1iM2*y(M1iM2) - 
k_dist_deg_M1iM2*y(M1iM2); 
dydt(M1iM8) = k_dist_on_M1iM8*y(M1)*y(iM8) - k_dist_off_M1iM8*y(M1iM8) - 
k_dist_deg_M1iM8*y(M1iM8);    
dydt(M1iM9) = k_dist_on_M1iM9*y(M1)*y(iM9) - k_dist_off_M1iM9*y(M1iM9) - 
k_dist_deg_M1iM9*y(M1iM9);    
 
 
 
 
dydt(M2M2) = k_on_M2M2*y(M2)*y(M2)  - k_off_M2M2*y(M2M2) - k_deg_M2M2*y(M2M2); 
 
dydt(dM2) =  k_deg_M2M2*y(M2M2) + k_dist_deg_M2*y(M2iM2) + k_deg_M1M2*y(M1M2) 
+ k_deg_M8M2*y(M2M8) + k_deg_M9M2*y(M2M9) + k_dist_deg_M1iM2*y(M1iM2) + 
k_dist_deg_M8iM2*y(M8iM2) + k_dist_deg_M9iM2*y(M9iM2); 
 
dydt(iM2) =  k_inact_M2*y(M2) - k_dist_on_M2*y(M2)*y(iM2)  + 
k_dist_off_M2*y(M2iM2) + k_TIMP1_T1*y(M2T1) + k_TIMP1_T2*y(M2T2) + 
k_TIMP1_T4*y(M2T4)+... 
              - k_dist_on_T1*y(T1)*y(iM2) - k_dist_on_T2*y(T2)*y(iM2) - 
k_dist_on_T4*y(T4)*y(iM2)+... 
              + k_dist_off_T1*y(T1iM2) + k_dist_off_T2*y(T2iM2) + 
k_dist_off_T4*y(T4iM2)+... 
              - k_dist_on_M1iM2*y(M1)*y(iM2) + k_dist_off_M1iM2*y(M1iM2) - 
k_dist_on_M8iM2*y(M8)*y(iM2) + k_dist_off_M8iM2*y(M8iM2) - 
k_dist_on_M9iM2*y(M9)*y(iM2) + k_dist_off_M9iM2*y(M9iM2);   
           
dydt(M2iM2) = k_dist_on_M2*y(M2)*y(iM2) - k_dist_off_M2*y(M2iM2) - 
k_dist_deg_M2*y(M2iM2);  
 
dydt(M2iM1) = k_dist_on_M2iM1*y(M2)*y(iM1) - k_dist_off_M2iM1*y(M2iM1) - 
k_dist_deg_M2iM1*y(M2iM1); 
dydt(M2iM8) = k_dist_on_M2iM8*y(M2)*y(iM8) - k_dist_off_M2iM8*y(M2iM8) - 
k_dist_deg_M2iM8*y(M2iM8);    
dydt(M2iM9) = k_dist_on_M2iM9*y(M2)*y(iM9) - k_dist_off_M2iM9*y(M2iM9) - 
k_dist_deg_M2iM9*y(M2iM9);  
 
 
dydt(M8M8) = k_on_M8M8*y(M8)*y(M8)  - k_off_M8M8*y(M8M8) - k_deg_M8M8*y(M8M8); 
 
dydt(dM8) =  k_deg_M8M8*y(M8M8) + k_dist_deg_M8*y(M8iM8) + k_deg_M1M8*y(M1M8) 
+ k_deg_M2M8*y(M2M8) + k_deg_M9M8*y(M8M9) + k_dist_deg_M1iM8*y(M1iM8) + 
k_dist_deg_M2iM8*y(M2iM8) + k_dist_deg_M9iM8*y(M9iM8); 
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dydt(iM8) =  k_inact_M8*y(M8) - k_dist_on_M8*y(M8)*y(iM8)  + 
k_dist_off_M8*y(M8iM8) + k_TIMP1_T1*y(M8T1) + k_TIMP1_T2*y(M8T2) + 
k_TIMP1_T4*y(M8T4)+... 
              - k_dist_on_T1*y(T1)*y(iM8) - k_dist_on_T2*y(T2)*y(iM8) - 
k_dist_on_T4*y(T4)*y(iM8)+... 
              + k_dist_off_T1*y(T1iM8) + k_dist_off_T2*y(T2iM8) + 
k_dist_off_T4*y(T4iM8)+... 
              - k_dist_on_M1iM8*y(M1)*y(iM8) + k_dist_off_M1iM8*y(M1iM8) - 
k_dist_on_M2iM8*y(M2)*y(iM8) + k_dist_off_M2iM8*y(M2iM8) - 
k_dist_on_M9iM8*y(M9)*y(iM8) + k_dist_off_M9iM8*y(M9iM8);   
           
dydt(M8iM8) = k_dist_on_M8*y(M8)*y(iM8) - k_dist_off_M8*y(M8iM8) - 
k_dist_deg_M8*y(M8iM8); 
 
dydt(M8iM1) = k_dist_on_M8iM1*y(M8)*y(iM1) - k_dist_off_M8iM1*y(M8iM1) - 
k_dist_deg_M8iM1*y(M8iM1); 
dydt(M8iM2) = k_dist_on_M8iM2*y(M8)*y(iM2) - k_dist_off_M8iM2*y(M8iM2) - 
k_dist_deg_M8iM2*y(M8iM2);    
dydt(M8iM9) = k_dist_on_M8iM9*y(M8)*y(iM9) - k_dist_off_M8iM9*y(M8iM9) - 
k_dist_deg_M8iM9*y(M8iM9);  
 
dydt(M9M9) = k_on_M9M9*y(M9)*y(M9)  - k_off_M9M9*y(M9M9) - k_deg_M9M9*y(M9M9); 
 
dydt(dM9) =  k_deg_M9M9*y(M9M9) + k_dist_deg_M9*y(M9iM9) + k_deg_M1M9*y(M1M9) 
+ k_deg_M2M9*y(M2M9) + k_deg_M8M9*y(M8M9) + k_dist_deg_M1iM9*y(M1iM9) + 
k_dist_deg_M2iM9*y(M2iM9) + k_dist_deg_M8iM9*y(M8iM9); 
 
dydt(iM9) =  k_inact_M9*y(M9) - k_dist_on_M9*y(M9)*y(iM9)  + 
k_dist_off_M9*y(M9iM9) + k_TIMP1_T1*y(M9T1) + k_TIMP1_T2*y(M9T2) + 
k_TIMP1_T4*y(M9T4)+... 
              - k_dist_on_T1*y(T1)*y(iM9) - k_dist_on_T2*y(T2)*y(iM9) - 
k_dist_on_T4*y(T4)*y(iM9)+... 
              + k_dist_off_T1*y(T1iM9) + k_dist_off_T2*y(T2iM9) + 
k_dist_off_T4*y(T4iM9)+... 
              - k_dist_on_M1iM9*y(M1)*y(iM9) + k_dist_off_M1iM9*y(M1iM9) - 
k_dist_on_M2iM9*y(M2)*y(iM9) + k_dist_off_M2iM9*y(M2iM9) - 
k_dist_on_M8iM9*y(M8)*y(iM9) + k_dist_off_M8iM9*y(M8iM9);   
 
           
dydt(M9iM9) = k_dist_on_M9*y(M9)*y(iM9) - k_dist_off_M9*y(M9iM9) - 
k_dist_deg_M9*y(M9iM9);  
 
dydt(M9iM1) = k_dist_on_M9iM1*y(M9)*y(iM1) - k_dist_off_M9iM1*y(M9iM1) - 
k_dist_deg_M9iM1*y(M9iM1); 
dydt(M9iM2) = k_dist_on_M9iM2*y(M9)*y(iM2) - k_dist_off_M9iM2*y(M9iM2) - 
k_dist_deg_M9iM2*y(M9iM2);    
dydt(M9iM8) = k_dist_on_M9iM8*y(M9)*y(iM8) - k_dist_off_M9iM8*y(M9iM8) - 
k_dist_deg_M9iM8*y(M9iM8);  
 
dydt(T1) =  k_inh_off_T1M1*y(M1T1) - k_inh_on_T1M1*y(M1)*y(T1) + 
k_TIMP1_T1*y(M1T1) - k_dist_on_T1*y(T1)*y(iM1) + k_dist_off_T1*y(T1iM1)+... 
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            k_inh_off_T1M2*y(M2T1) - k_inh_on_T1M2*y(M2)*y(T1) + 
k_TIMP1_T1*y(M2T1) - k_dist_on_T1*y(T1)*y(iM2) + k_dist_off_T1*y(T1iM2)+... 
            k_inh_off_T1M8*y(M8T1) - k_inh_on_T1M8*y(M8)*y(T1) + 
k_TIMP1_T1*y(M8T1) - k_dist_on_T1*y(T1)*y(iM8) + k_dist_off_T1*y(T1iM8)+... 
            k_inh_off_T1M9*y(M9T1) - k_inh_on_T1M9*y(M9)*y(T1) + 
k_TIMP1_T1*y(M9T1) - k_dist_on_T1*y(T1)*y(iM9) + k_dist_off_T1*y(T1iM9) - 
k_inact_T1*y(T1); 
     
         
dydt(T2) =  k_inh_off_T2M1*y(M1T2) - k_inh_on_T2M1*y(M1)*y(T2) + 
k_TIMP1_T2*y(M1T2) - k_dist_on_T2*y(T2)*y(iM1) + k_dist_off_T2*y(T2iM1)+... 
            k_inh_off_T2M2*y(M2T2) - k_inh_on_T2M2*y(M2)*y(T2) + 
k_TIMP1_T2*y(M2T2) - k_dist_on_T2*y(T2)*y(iM2) + k_dist_off_T2*y(T2iM2)+... 
            k_inh_off_T2M8*y(M8T2) - k_inh_on_T2M8*y(M8)*y(T2) + 
k_TIMP1_T2*y(M8T2) - k_dist_on_T2*y(T2)*y(iM8) + k_dist_off_T2*y(T2iM8)+... 
            k_inh_off_T2M9*y(M9T2) - k_inh_on_T2M9*y(M9)*y(T2) + 
k_TIMP1_T2*y(M9T2) - k_dist_on_T2*y(T2)*y(iM9) + k_dist_off_T2*y(T2iM9) - 
k_inact_T2*y(T2); 
 
dydt(T4) =  k_inh_off_T4M1*y(M1T4) - k_inh_on_T4M1*y(M1)*y(T4) + 
k_TIMP1_T4*y(M1T4) - k_dist_on_T4*y(T4)*y(iM1) + k_dist_off_T4*y(T4iM1)+... 
            k_inh_off_T4M2*y(M2T4) - k_inh_on_T4M2*y(M2)*y(T4) + 
k_TIMP1_T4*y(M2T4) - k_dist_on_T4*y(T4)*y(iM2) + k_dist_off_T4*y(T4iM2)+... 
            k_inh_off_T4M8*y(M8T4) - k_inh_on_T4M8*y(M8)*y(T4) + 
k_TIMP1_T4*y(M8T4) - k_dist_on_T4*y(T4)*y(iM8) + k_dist_off_T4*y(T4iM8)+... 
            k_inh_off_T4M9*y(M9T4) - k_inh_on_T4M9*y(M9)*y(T4) + 
k_TIMP1_T4*y(M9T4) - k_dist_on_T4*y(T4)*y(iM9) + k_dist_off_T4*y(T4iM9) - 
k_inact_T4*y(T4); 
 
 
dydt(M1T1) = k_inh_on_T1M1*y(M1)*y(T1) - k_inh_off_T1M1*y(M1T1) - 
k_TIMP1_T1*y(M1T1) - k_TIMP2_T1*y(M1T1); 
dydt(M1T2) = k_inh_on_T2M1*y(M1)*y(T2) - k_inh_off_T2M1*y(M1T2) - 
k_TIMP1_T2*y(M1T2) - k_TIMP2_T2*y(M1T2); 
dydt(M1T4) = k_inh_on_T4M1*y(M1)*y(T4) - k_inh_off_T4M1*y(M1T4) - 
k_TIMP1_T4*y(M1T4) - k_TIMP2_T4*y(M1T4); 
 
dydt(M2T1) = k_inh_on_T1M2*y(M2)*y(T1) - k_inh_off_T1M2*y(M2T1) - 
k_TIMP1_T1*y(M2T1) - k_TIMP2_T1*y(M2T1); 
dydt(M2T2) = k_inh_on_T2M2*y(M2)*y(T2) - k_inh_off_T2M2*y(M2T2) - 
k_TIMP1_T2*y(M2T2) - k_TIMP2_T2*y(M2T2); 
dydt(M2T4) = k_inh_on_T4M2*y(M2)*y(T4) - k_inh_off_T4M2*y(M2T4) - 
k_TIMP1_T4*y(M2T4) - k_TIMP2_T4*y(M2T4); 
 
dydt(M8T1) = k_inh_on_T1M8*y(M8)*y(T1) - k_inh_off_T1M8*y(M8T1) - 
k_TIMP1_T1*y(M8T1) - k_TIMP2_T1*y(M8T1); 
dydt(M8T2) = k_inh_on_T2M8*y(M8)*y(T2) - k_inh_off_T2M8*y(M8T2) - 
k_TIMP1_T2*y(M8T2) - k_TIMP2_T2*y(M8T2); 
dydt(M8T4) = k_inh_on_T4M8*y(M8)*y(T4) - k_inh_off_T4M8*y(M8T4) - 
k_TIMP1_T4*y(M8T4) - k_TIMP2_T4*y(M8T4); 
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dydt(M9T1) = k_inh_on_T1M9*y(M9)*y(T1) - k_inh_off_T1M9*y(M9T1) - 
k_TIMP1_T1*y(M9T1) - k_TIMP2_T1*y(M9T1); 
dydt(M9T2) = k_inh_on_T2M9*y(M9)*y(T2) - k_inh_off_T2M9*y(M9T2) - 
k_TIMP1_T2*y(M9T2) - k_TIMP2_T2*y(M9T2); 
dydt(M9T4) = k_inh_on_T4M9*y(M9)*y(T4) - k_inh_off_T4M9*y(M9T4) - 
k_TIMP1_T4*y(M9T4) - k_TIMP2_T4*y(M9T4); 
 
 
dydt(iT1) =  k_TIMP2_T1*y(M1T1) + k_inact_T1*y(T1) + k_TIMP2_T1*y(M2T1) + 
k_TIMP2_T1*y(M8T1) + k_TIMP2_T1*y(M9T1); 
dydt(iT2) =  k_TIMP2_T2*y(M1T2) + k_inact_T2*y(T2) + k_TIMP2_T2*y(M2T2) + 
k_TIMP2_T2*y(M8T2) + k_TIMP2_T2*y(M9T2); 
dydt(iT4) =  k_TIMP2_T4*y(M1T4) + k_inact_T4*y(T4) + k_TIMP2_T4*y(M2T4) + 
k_TIMP2_T4*y(M8T4) + k_TIMP2_T4*y(M9T4); 
 
dydt(T1iM1) = k_dist_on_T1*y(T1)*y(iM1) - k_dist_off_T1*y(T1iM1); 
dydt(T2iM1) = k_dist_on_T2*y(T2)*y(iM1) - k_dist_off_T2*y(T2iM1); 
dydt(T4iM1) = k_dist_on_T4*y(T4)*y(iM1) - k_dist_off_T4*y(T4iM1); 
 
dydt(T1iM2) = k_dist_on_T1*y(T1)*y(iM2) - k_dist_off_T1*y(T1iM2); 
dydt(T2iM2) = k_dist_on_T2*y(T2)*y(iM2) - k_dist_off_T2*y(T2iM2); 
dydt(T4iM2) = k_dist_on_T4*y(T4)*y(iM2) - k_dist_off_T4*y(T4iM2); 
 
dydt(T1iM8) = k_dist_on_T1*y(T1)*y(iM8) - k_dist_off_T1*y(T1iM8); 
dydt(T2iM8) = k_dist_on_T2*y(T2)*y(iM8) - k_dist_off_T2*y(T2iM8); 
dydt(T4iM8) = k_dist_on_T4*y(T4)*y(iM8) - k_dist_off_T4*y(T4iM8); 
 
 
dydt(T1iM9) = k_dist_on_T1*y(T1)*y(iM9) - k_dist_off_T1*y(T1iM9); 
dydt(T2iM9) = k_dist_on_T2*y(T2)*y(iM9) - k_dist_off_T2*y(T2iM9); 
dydt(T4iM9) = k_dist_on_T4*y(T4)*y(iM9) - k_dist_off_T4*y(T4iM9); 
 
end 
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Appendix B 
Aim 2 Supplemental Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 20: Time of course of all of the conditions, separated by each sample, 
showing increase in signal with time for all of the conditions indicating increase in 
collagen degradation. Red showing the low concentrations and blue showing high 

concentration 
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Figure 21: Time of course of all of the conditions showing increase in signal with time for all of the conditions 

indicating increase in collagen degradation. Red showing the low concentrations and blue showing high concentration 
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