
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

5-2022

The Development of TIGRA: A Zero Latency Interface For The Development of TIGRA: A Zero Latency Interface For

Accelerator Communication in RISC-V Processors Accelerator Communication in RISC-V Processors

Wesley Brad Green
wbgreen@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Green, Wesley Brad, "The Development of TIGRA: A Zero Latency Interface For Accelerator
Communication in RISC-V Processors" (2022). All Dissertations. 2982.
https://tigerprints.clemson.edu/all_dissertations/2982

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2982?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2982&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

The Development of TIGRA: A Zero Latency Interface
for Accelerator Communication in RISC-V Processors

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Computer Engineering

by
Wesley Brad Green

May 2022

Accepted by:
Dr. Melissa C. Smith, Committee Chair

Dr. Jon C. Calhoun
Dr. Walt Ligon
Dr. Rong Ge

Abstract

Field programmable gate arrays (FPGA) give developers the ability to design application

specific hardware by means of software, providing a method of accelerating algorithms with higher

power efficiency when compared to CPU or GPU accelerated applications. FPGA accelerated ap-

plications tend to follow either a loosely coupled or tightly coupled design. Loosely coupled designs

often use OpenCL to utilize the FPGA as an accelerator much like a GPU, which provides a sim-

plifed design flow with the trade-off of increased overhead and latency due to bus communication.

Tightly coupled designs modify an existing CPU to introduce instruction set extensions to provide a

minimal latency accelerator at the cost of higher programming effort to include the custom design.

This dissertation details the design of the Tightly Integrated, Generic RISC-V Accelera-

tor (TIGRA) interface which provides the benefits of both loosely and tightly coupled accelerator

designs. TIGRA enabled designs incur zero latency with a simple-to-use interface that reduces pro-

gramming effort when implementing custom logic within a processor. This dissertation shows the

incorporation of TIGRA into the simple PicoRV32 processor, the highly customizable Rocket Chip

generator, and the FPGA optimized Taiga processor. Each processor design is tested with AES

128-bit encryption and posit arithmetic to demonstrate TIGRA functionality.

After a one time programming cost to incorporate a TIGRA interface into an existing

processor, new functional units can be added with up to a 75% reduction in the lines of code required

when compared to non-TIGRA enabled designs. Additionally, each functional unit created is co-

compatible with each processor as the TIGRA interface remains constant between each design. The

results prove that using the TIGRA interface introduces no latency and is capable of incorporating

existing custom logic designs without modification for all three processors tested. When compared

to the PicoRV32 coprocessor interface (PCPI), TIGRA coupled designs complete one clock cycle

faster. Similarly, TIGRA outperforms the Rocket Chip custom coprocessor (RoCC) interface by

ii

an average of 6.875 clock cycles per instruction. The Taiga processor’s decoupled execution units

allow for instructions to execute concurrently and uses a tag management system that is similar

to out-of-order processors. The inclusion of the TIGRA interface within this processor abstracts

the tag management from the user and demonstrates that the TIGRA interface can be applied to

out-of-order processors.

When coupled with partial reconfiguration, the flexibility and modularity of TIGRA dras-

tically increases. By creating a reprogrammable region for the custom logic connected via TIGRA,

users can swap out the connected design at runtime to customize the processor for a given application.

Further, partial reconfiguration allows users to only compile the custom logic design as opposed to

the entire CPU, resulting in an 18.1% average reduction of compilation during the design process in

the case studies. Paired with the programming effort saved by using TIGRA, partial reconfiguration

improves the "time to design" and "test new functionality" timelines for a processor.

iii

Dedication

I dedicate this Dissertation to my grandfather, Frank Minozzi. The man who taught me the

meaning of hard work while never forgetting to have a little bit of fun.

iv

Acknowledgments

I would first like to acknowledge Dr. Melissa Smith, who has pushed and supported me for

too many long years. Without her guidance, mentorship, and friendship I would not have pushed

through and completed my PhD.

I want to thank my family and friends who have helped me through some of the toughest

times of my life. They all stood by me at the lowest points and helped to lift me up when it was

needed the most.

I want to thank my partner, Caitie B. O’Donnell, who helped kick my butt into gear,

motivate me, and support me as I pushed toward the completion of this work.

I would specifically like to thank (and congratulate) Dillon Todd and Theresa Lê, who’s

Master’s Theses helped bring the TIGRA concept to life!

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

List of Listings . xii

1 Introduction . 1

2 Related Work . 3
2.1 AES . 3
2.2 Posits . 3
2.3 Loosely Coupled Accelerators . 4
2.4 Tightly Coupled Accelerators . 5
2.5 Partial Reconfiguration . 5
2.6 Summary . 6

3 Research Design and Methods . 7
3.1 TIGRA Design . 7
3.2 Custom Logic Design and Usage . 13
3.3 Summary . 15

4 Case Studies . 17
4.1 PicoRV32 . 17
4.2 Rocket Chip Generator . 21
4.3 Taiga Processor . 24
4.4 AES 128-bit Custom Logic . 27
4.5 Posit Arithmetic Custom Logic . 28
4.6 Built-in Functions Custom Logic . 30
4.7 Comparing the Programming Effort . 32
4.8 Summary . 33

5 Simulation Results . 35
5.1 PicoRV32 Simulation Results . 35
5.2 PicoRV32 Hardware Results . 39

vi

5.3 Rocket Chip Results . 41
5.4 Taiga Processor Results . 46
5.5 Summary . 51

6 Partial Reconfiguration . 53
6.1 Taiga Partial Reconfiguration . 54
6.2 Summary . 57

7 Conclusions and Future Work . 58

Appendices . 61
A Code Listings . 62
B Extended Timing Diagrams . 76
C Raw Data from Simulations . 78

Bibliography . 81

vii

List of Tables

4.1 Custom instructions for AES . 28
4.2 Custom instructions for arbitrary Taiga design . 32
4.3 Comparison of the lines of code edited for each design in Chapter 4. 32

5.1 Latency of TIGRA enabled Rocket compared to RoCC when executing AES instruc-
tions. Each value counts the number of clock cycles between instruction fetch and
when the result is stored in a register. 47

6.1 Synthesis and Implementation timing results of the full Taiga processor with each test
case connected via TIGRA and the same designs using Xilinx DFX. 55

6.2 Comparison of synthesis and implementation times of a complete design compared to
the same design using Xilinx DFX. 56

viii

List of Figures

3.1 The main RISC-V instruction type opcodes: Register, Immediate, Upper immediate,
and Store. 8

3.2 A processor coupled with custom logic via the TIGRA interface. The signals con-
necting the Custom Logic to the processor block (shown in orange) are required to
handle communication with the user designed hardware. The multiplexer and the sig-
nal connecting it to the decoder (shown in white) represent the minimal logic added
to the processor to ensure TIGRA instructions follow the standard ALU flow. Clock
and reset signals are not shown. 10

3.3 An example four-stage CPU pipeline, showing how to set each TIGRA control signal
in the host processor and the custom hardware design. 11

3.4 A flowchart detailing the generalized process to setup a TIGRA interface on an ex-
isting processor. The upper orange highlighted area represents the process required
when adding any new execution unit to an existing CPU, and the lower purple area
represents the unique effort required to generalize the new execution unit for TIGRA. 12

3.5 An example custom logic setup implementing many accelerators. The signals external
to the custom logic block represent the TIGRA interface. The necessary instruction
decoder(s) and other logic is not shown to maintain generality and keep the design
readable. 14

4.1 The PicoRV32 state diagram, emphasising the PCPI and TIGRA flows. The boxes
represent the value and timing of TIGRA control signals during execution. 19

4.2 The AWS F1 HDK hierarchy when connected with a full PicoRV32 with TIGRA
enabled and connected to custom logic. 20

4.3 Example execution stall of a TIGRA instruction in the Rocket pipeline. The purple
highlighted instruction (TIGRA) stalls in the execute stage of the pipeline, causing
later instructions (Insn4 and Insn5 highlighted in orange) to stall in decode and fetch. 23

4.4 Execution of a RoCC instruction in the Rocket Chip pipeline. As shown, custom
hardware connected to a RoCC interface begins execution as the instruction exits the
main Rocket Chip pipeline. 25

4.5 Taiga’s general pipeline flow showing the necessary additions to include a TIGRA in-
terface. The added unit is shown separate from the Taiga execution units to represent
that each operates independently of each other. Each vertical stage is separated by a
queue to facilitate the decoupled operation and ensure instructions complete in order. 26

4.6 AES-128 Bit custom logic block diagram. 29
4.7 Posit arithmetic custom logic block diagrams for use with PicoRV32 or hardware

compilation (a) and for use with the Rocket Chip generator and Taiga simulators (b). 30
4.8 Rocket ALU custom logic block diagram. 31

5.1 PicoRV32 with TIGRA and AES: The second two TIGRA instructions which store
the AES state in the custom logic and complete the encryption. The break represents
15 clock cycles during which none of the shown signals change. 36

ix

5.2 PicoRV32 with TIGRA and AES: The first two reads from the AES custom logic,
showing the end of the stall from the last write. 37

5.3 PicoRV32 with TIGRA and Posit Arithmetic: Posit addition showing the data flow
from the custom logic all the way through register write-back. 37

5.4 PicoRV32 with TIGRA and Posit Arithmetic: Posit multiplication showing the data
flow from the custom logic all the way through register write-back. 38

5.5 PicoRV32 with TIGRA and Posit Arithmetic: Posit division showing the data flow
from the custom logic all the way through register write-back. The break represents
6 clock cycles during which none of the shown signals change. 38

5.6 PicoRV32 with TIGRA and multiplication: Multiplication, the break represents 30
clock cycles. 40

5.7 PicoRV32 with PCPI and multiplication: Multiplication, the break represents 31 clock
cycles. 40

5.8 Rocket Chip with AES via TIGRA: The first three AES writes. 42
5.9 Rocket Chip with TIGRA: The remaining instructions to complete AES encryption

in a Rocket Chip generated processor. The break in the diagram represents 18 clock
cycles during which none of the signals shown change. 43

5.10 Rocket Chip with TIGRA: Posit addition of 18 and 3, 0x42100000 and 0x40C00000,
providing the resultant value 21, 0x42280000. 44

5.11 Rocket Chip with TIGRA and Rocket Chip ALU. Results from two XOR instructions
executing within the instruction verification environment provided by the RISC-V Tools. 45

5.12 Rocket Chip with RoCC and AES. The first AES write instruction that writes the
lowest 32-bits of the AES key to the custom logic. The break represents 7 clock cycles
during which none of the shown signals change. 45

5.13 Rocket Chip with RoCC and AES. The first two AES read instructions that return
the lowest 64-bits of the encrypted result. 46

5.14 Simulation of the first two TIGRA instructions when using custom logic with AES.
These instructions both complete within one clock cycle. 48

5.15 Simulation showing the latter five TIGRA instructions executing on the Taiga pro-
cessor with AES hardware connected. The break represents 18 clock cycles during
which none of the shown signals change. 49

5.16 Simulation of two consecutive tigra_0 instructions with Posit addition connected via
the TIGRA interface on the Taiga processor. Each break represents 2 clock cycles
during which none of the shown signals change. 50

5.17 Simulation of the TIGRA instructions 4-7 when using custom logic with arbitrary
return values and stalls. These instructions signal complete at varying times even
though the data is immediately available. 50

5.18 Simulation of the first 7 multiplications to test the multiplication custom logic. . . . 51

6.1 Abstract block diagram for partial reconfiguration. The Custom Logic block is the
reconfigurable region in orange. The PR logic block, shown in white, represents the
extra logic required to partially reprogram the FPGA. 53

6.2 Screenshot showing a portion of the XCVU9P device, including the custom logic block
which is designated as the partially reconfigurable region. 55

1 Simulation of the first two TIGRA instructions in PicoRV32 with AES via TIGRA.
These instructions both complete within one clock cycle. 76

2 Simulation of the last two TIGRA instructions in PicoRV32 with AES via TIGRA.
These instructions all complete within one clock cycle. 76

x

3 Simulation of TIGRA instructions 2 and 3 when using custom logic with AES. In-
struction 2 completes within one clock cycle, while instruction 3 initiates a stall and
completes the encryption. 77

4 Simulation of the first four TIGRA instructions when using custom logic with ar-
bitrary return values and stalls. These instructions all complete within one clock
cycle. 77

5 Original timing diagram showing six of the eight instructions for custom logic with
arbitrary return values and stall lengths. This diagram shows the difficulty of reading
content in this format compared to the transcribed waveforms shown in the paper. . 79

6 Original timing diagram showing the first 7 TIGRA multiplication instructions. This
diagram shows the compiler reordering commands for the code in Listing 7. Here you
can see the processor issue 5 TIGRA instructions consecutively, while the code issues
at most 3 consecutively. 80

xi

Listings

1 The code required to add a TIGRA enabled PicoRV32 processor to an AWS F1
wrapper with posit custom logic. 62

2 The instructions used to test the Posit custom logic within the PicoRV32 with TIGRA. 66
3 The instructions used to test the AES custom logic within the PicoRV32 with TIGRA. 67
4 The instructions used to test multiplication within the PicoRV32 with TIGRA. . . . 68
5 The instructions used to test multiplication within the PicoRV32 using PCPI. 68
6 C code used to test AES encryption in the Rocket Chip and Taiga processors via the

TIGRA interface. 69
7 C code used to test multiplication in the Taiga processor via the TIGRA interface. . 70
8 C code used to test the arbitrary custom logic in the Taiga processor via the TIGRA

interface. 72
9 Module declaration of the TIGRA custom logic in the Taiga processor using a System

Verilog interface and struct to simplify design. 75
10 Flattened module declaration of the TIGRA custom logic for use with Dynamic Func-

tion eXchange. 75
11 Binary object dump of AES test code for the Rocket Chip processor. This shows

the instructions required to complete the code in Listing 6 and demonstrates the
instruction reordering completed by the compiler. 78

xii

Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) give developers the ability to design application

specific hardware by means of software. This enables developers to create custom implementations

of existing algorithms that execute with very little latency and with higher power efficiency than

the algorithm on CPUs or even GPUs, as shown in [35], [11] and [29]. As a result of this capability,

FPGAs uniquely fill a need to combat growing power requirements in high performance computing

(HPC) environments [55]. Developers are also designing application specific accelerators, such as

Google’s TPU [30] and NVIDIA’s tensor cores [39] for machine learning, in an attempt to ensure

HPC applications continue to scale over time. FPGAs are often used to prototype novel designs

before building an application specific integrated circuit (ASIC) such as in [18] where the authors

build an FPGA-based accelerator to process data captured by the Square Kilometre Array (SKA)

telescope with the intention of taping out to an ASIC. The authors in [36] create a real-time power,

temperature and aging monitor system (eTAPMon) used to help predict the ASIC characteristics

from FPGA-based prototypes of multi-processor systems-on-chips (MPSoCs) designs.

With the advent of OpenCL for FPGAs [21][53], developers are given a set of tools to

simplify FPGA programming that enable acceleration of existing algorithms. OpenCL enables the

host computer to use an FPGA as a loosely coupled accelerator, much like when using a general

purpose graphics processing unit (GPGPU) for application development. As a loosely coupled

accelerator, the device communicates to the CPU over a bus which introduces latency. Further,

loosely coupled devices tend to operate on very coarse-grained chunks of an existing application in

an attempt to minimize the communication time required and latency introduced.

1

To minimize the latency introduced for applications that require fine-grained computation or

to introduce improvements and extensions to an existing architecture, many developers use FPGAs

to create tightly coupled accelerators [33][3][42]. These tightly coupled devices require the devel-

oper modify the existing CPU pipeline to incorporate the custom logic in the FPGA into design,

significantly increasing the programming effort required. Existing within the CPU pipeline, these

designs incur very little or no latency penalty and can allow very fine-grained execution. However,

without fabricating the corresponding hardware from a tightly coupled design, these architectural

improvements are only available for use through simulation or a soft-core CPU running within an

FPGA.

Due to the restrictions on tightly coupled accelerators, FPGAs are typically only used for

algorithm acceleration within the loosely coupled OpenCL model. While developers may design

custom hardware that can complete a design with very low latency, most existing mechanisms do

not leverage FPGA custom logic co-processors in real world applications without synthesizing and

running the entire processor and custom design on an FPGA. This drawback, coupled with the

release of the Intel Xeon Scalable processors [43], motivate the research described in this work.

This dissertation introduces TIGRA [13], a tightly integrated generic RISC-V accelerator

interface that provides the benefits of a tightly coupled accelerator without requiring modification

of the underlying CPU architecture. With TIGRA, the researcher aims to provide an architecture

modification that will allow developers to fully leverage FPGA custom designs on a CPU without the

overhead of communication via a standard bus. TIGRA reduces the required programming effort to

incorporate fine-grained, tightly coupled accelerators to existing architectures and has implications

for many common HPC algorithms, such as encryption or compression. The interface also provides

developers with a mechanism for quickly testing proposed extensions to an architecture, such as

built in posit arithmetic or improved hardware for existing functionality.

The remainder of this dissertation is organized as follows: Chapter 2 discusses existing work

for different FPGA based accelerators, Chapter 3 provides the design of TIGRA and experiments

proving the functionality, Chapter 4 explains the design of each case study used to prove TIGRA,

Chapter 5 discusses the results and implications of the use of TIGRA, Chapter 6 shows the benefits

of using partial reconfiguration, and Chapter 7 concludes the paper with a discussion of future work

and summarized results.

2

Chapter 2

Related Work

In this section, we discuss the test cases used in Chapter 4 and the motivation behind these

choices. We will also describe many different loosely and tightly coupled FPGA accelerators and the

improvements they provide over existing architectures and pure software implementations.

2.1 AES

With the rising usage of cloud computing and data transfers via the network, data security

concerns have grown, pushing the need for fast encryption in datacenters. Rijndael, the Advanced

Encryption Standard (AES) algorithm, is one of the most widely used algorithms for data security

in high performance computing [12]. As FPGAs have become more widely used, developers have

been targeting these reprogrammable devices in an attempt to include ultra low latency encryption

hardware in existing designs. In early 2004, the authors of [15] achieve a 21.54 Gb/s AES design

with a clock frequency of only 168.3 Mhz. A more recent design achieves a throughput of 54.52 Gb/s

on FPGA hardware using AES-192 [2]. Both of these designs were executed on FPGAs without a

host computer, restricting their usage in existing applications or within an HPC environment.

2.2 Posits

Posit numbers are a rising data format intended to operate as a drop in replacement for the

floating point number system [14]. Posits are the hardware friendly evolution of Type II Unums,

3

a number format designed to improve upon the floating point system. This newer number system

has proven to provide a higher dynamic range, with higher accuracy at a smaller data size than the

existing floating point standard. Developers have begun testing posits in deep learning applications,

which rely on floating point calculations to achieve high accuracy inference results. The authors in

[10] show that an 8-bit posit implementation of Deep Neural Networks achieve the same classification

results as the same network running on 32-bit floating point architectures. Further, [37] demonstrates

a 51% reduction in power with the same comparison, showing the capabilities of posits. In [26], [25],

and [27], the authors create a posit arithmetic generator for FPGAs that is used in Section 4.5 to

enable Posit arithmetic via the TIGRA interface for each tested processor.

2.3 Loosely Coupled Accelerators

Loosely coupled accelerators, devices that communicate over a bus to a host computer like

a GPU, are very commonly used in HPC applications. OpenCL for FPGAs [21][53] enables the use

of application specific hardware as a loosely coupled accelerator, and many developers have begun

creating designs to leverage usage of these lower power devices for algorithm acceleration. [46]

introduces an OpenCL based AES accelerator that achieves a throughput of 392.173 MB/s. Many

other designs leverage the Rocket Custom Coprocessor (ROCC) interface from the Rocket Chip

generator [7] to enable loosely coupled accelerators within the RISC-V ISA. The RoCC interface

allows developers to more easily include custom logic within a Rocket Chip processor, and the

interface also provides access to the floating point unit (FPU) and memory within the processor.

In [56], the authors create a low power YOLO network accelerator via RoCC that achieves

6.36 GOps/W. [9] introduces a DSP accelerator using the RoCC interface that achieves up to 100

times speedup over existing software based algorithms. The authors in [20] create "Centrifuge" to

leverage high-level synthesis (HLS) and Fire Sim [32] and enable developers to create the interface

for RoCC accelerators without the need to modify RTL directly. And the authors in [47] create

Picos, a hardware based task-scheduler, and Phentos, a full Rocket Chip ecosystem utilizing Picos,

resulting in a 308 times improvement compared to base designs without the hardware task-scheduler.

While these results are promising, loosely coupled accelerators introduce overhead due to the com-

munication latency incurred. [41] and the results in Section 5.3.4 explore the latency incurred when

using the RoCC interface.

4

2.4 Tightly Coupled Accelerators

Tightly coupled accelerators aim to remove the communication overhead incurred from

loosely coupled designs, but often require much more programming effort to implement the acceler-

ator. The developers of [24] create a tightly coupled AES system that achieves a 35% performance

increase when compared to a loosely coupled implementation using an Avalon interface. In [3], a

tightly coupled H.265/HEVC deblocking filter achieves an 11% performance increase when compared

to the standard software implementation. Tightly coupled accelerators are also often used to imple-

ment extensions to an existing instruction set. The authors of [42] propose an out-of-order floating

point extension and [33] introduces ten more bit-manipulation instructions to the RISC-V ISA. In

[38], the authors propose a posit extension to RISC-V. In the described work, the authors replace

the existing FPU in the Rocket Chip generator with custom logic for posit arithmetic and explain

the difficulty in designing custom instructions and adding to an existing Rocket Chip processor. The

authors in [31] develop the RISC-V Architecture Extension for the Number Theoretic Transform

(RANTT) which incorporates a task scheduler and does not require the use of custom instructions.

The RANTT design achieves up to 6x performance over a pure software based design, but pure

hardware accelerator implementations out-perform this implementation.

2.5 Partial Reconfiguration

As development tools mature, more researchers have begun to utilize partial reconfiguration

(PR) in designs to allow for increased functionality of designs and reduce the area and power require-

ments when working with FPGAs. The authors of [16] develop a software defined radio (SDR) design

that allows users to swap networking protocols within the FPGA at runtime to achieve a reduction

of 76.71% power usage compared to a design that implements all required protocols when not using

partial reconfiguration. The authors improve upon their own design by optimizing partitioning in

[17] to further reduce power and area usage of five different communication protocols. In [1], the

authors evaluate using partial reconfiguration within the RoCC interface by implementing the AES

and DES encryption algorithms to achieve a speedup of up to 249.91 times when compared to the

software implementation. This design enables the user to choose which encryption is required at

runtime. PR is also used in video shot boundary detection to allow users to swap between different

algorithms in [48], but the authors note the difficulty in improving the partial reconfiguration design

5

due to limitations within the FPGA development software.

2.6 Summary

The works described here all provide improvements upon existing software based designs.

The loosely coupled designs provide ease of programmability through HLS tools but incur a latency

penalty due to bus communication. Conversely, tightly coupled designs incur no latency overhead

and provide fine-grained control of a design but require much more effort to modify an existing

processor. The TIGRA interface provides the ease of programmability given by loosely coupled

designs while incurring no latency penalty similar to a tightly coupled design. Further, leveraging

partial reconfigurability with the TIGRA interface improves the portability and modularity of custom

logic in designs utilizing FPGAs for the custom logic.

6

Chapter 3

Research Design and Methods

In this chapter, we discuss the proposed design and usage of the Tightly Integrated Generic

RISC-V Accelerator (TIGRA) interface for a generic processor, how to integrate TIGRA into an

existing design, the forward-looking goal for TIGRA, and how to use the interface in a development

environment.

3.1 TIGRA Design

TIGRA is a tightly integrated, generic RISC-V accelerator interface that aims to bridge the

gap between loosely and tightly coupled accelerators. This interface provides a simple interconnect

between FPGA custom logic and a CPU pipeline that reduces the programming effort required to

incorporate custom hardware with existing processors with no latency. The initial addition of a

TIGRA interface incurs a one time programming cost, but reduces the programming effort to add

any future custom logic to the processor. The intended design allows for the connected custom logic

to exist separately from the CPU, but receive the benefits of an integrated hardware element or

instruction set modification.

In this section we describe the design choices made for TIGRA, the minimal signal require-

ments for the interface, and design guidelines for developing and using TIGRA. Here, we target

developers aiming to incorporate a TIGRA interface into RISC-V processors while maintaining sim-

plicity, speed, and flexibility for hardware designs.

7

funct7 rs2 rs1 rdfunct3 opcode

imm[11:0] rs1 rdfunct3 opcode

imm[11:5] rs2 rs1 imm[4:0]funct3 opcode

imm[31:12] rd opcode

31 25 24 20 19 15 14 12 11 7 6 0

R-type

I-type

S-type

U-type

Figure 3.1: The main RISC-V instruction type opcodes: Register, Immediate, Upper immediate,
and Store.

3.1.1 RISC-V ISA

RISC-V is an open-source ISA developed in an effort to provide a standard that drives

innovation and enables easy customization and design of different processors [23]. The authors at

RISC-V International maintain a database of many available designs for developers to download

and test new extensions or designs. The availability and customizability of RISC-V CPUs motivates

the choice to model TIGRA for use within this architecture, and the different instruction designs

help motivate the interface design. Further, while TIGRA is motivated by RISC-V, the concepts

presented are applicable to any existing architecture.

RISC-V is designed with 4 main instruction types, shown in Figure 3.1[50]. As shown,

R-type instructions require two source registers and write a result to a destination register. I-type

instructions are used for instructions that require immediate input values, such as add immediate

or load word instructions, and use one source register and a 12-bit immediate value. As I-type

instructions only allow for 12-bit values and most data-types are at minimum 32-bits wide, the

RISC-V authors needed to create the U-type instructions. These instructions load the upper 20

bits of a register from an immediate value within the instruction. Used together, I and U-type

instructions load a register with a 32-bit value. S-type instructions are used for stores, using one

of the source registers as the base memory address and the other as the data to be written to

memory. The immediate fields of the S-type instructions are used together as a memory offset.

The opcode field of each type shown specifies the major opcode of the instruction. The funct3 and

funct7 fields, when present, represent 3 and 7-bit minor opcodes, respectively, to further distinguish

between instructions. The rs1, rs2, and rd fields point to locations within the processor register file

to specify where to read from and write to as required by each instruction.

8

We choose to model TIGRA using the R-type instruction, as this type provides the most

generality and flexibility with data movement between custom logic and the processor. When cre-

ating TIGRA designs, we will use the major opcodes 0001011 and 0101011 as these are reserved by

the RISC-V authors for custom instructions and guaranteed to not be used by future ISA exten-

sions. As R-type instructions contain both funct7 and funct3 fields, this enables the creation of

1024 unique instructions per major opcode. Therefore, only one major opcode needs to be used for

TIGRA custom instructions.

3.1.2 Interface Requirements

We define a minimum of seven required signals in TIGRA to complete the interface between a

processor and an FPGA based custom logic accelerator. Following the format of R-type instructions,

two data inputs and one data output are required to meet all specifications. The signals cl_rs1 and

cl_rs2 of Figure 3.2 correspond to the rs1 and rs2 fields, respectively, of an R-type instruction.

Specifically, the rsX signals should pass the corresponding values from the register file of the CPU

to TIGRA, the same data that would be passed to the ALU of the processor. The data output

of the custom logic, cl_outData, corresponds to the rd field of the instruction and will ultimately

be written back to this location in the register file. These three signals follow the data-width of

registers within the implemented processor.

To synchronize with the processor without requiring queues or incurring additional latency,

TIGRA uses two main signals, cl_mem_valid and cl_valid. The CPU must send logic high via

cl_mem_valid to signify the CPU has retrieved the values of rs1 and rs2 from the register file

and that this data exists and is valid on the corresponding signals, cl_rs1 and clrs2, to the custom

logic. This allows the custom logic to latch the incoming data and begin execution on the next clock

cycle. The custom logic, in turn, sends logic high via cl_valid to the processor to signify the data

on cl_outData is valid and the CPU can latch this on the next clock cycle. The custom logic sends

a logic low via cl_valid to provide backpressure to the CPU and generate stalls necessary during

execution for multi-clock cycle hardware.

We designed TIGRA with the intention of complex custom logic that may perform more

than one operation. To maintain generality, we require the CPU send the full instruction via cl_insn

to the custom logic. This enables usage of the funct7 and funct3 fields of the opcode, allowing

the custom logic to decode the intended functionality and compute the correct result. For many

9

Custom
Logic

Processor

ALU

cl_insn

cl_rs1

cl_rs2

cl_mem_valid

cl_latch_next_insn

cl_outData

cl_valid

Register
File

Decoder

TIGRA
Interface

Figure 3.2: A processor coupled with custom logic via the TIGRA interface. The signals connecting
the Custom Logic to the processor block (shown in orange) are required to handle communication
with the user designed hardware. The multiplexer and the signal connecting it to the decoder (shown
in white) represent the minimal logic added to the processor to ensure TIGRA instructions follow
the standard ALU flow. Clock and reset signals are not shown.

processors, the next instruction may be decoded before the currently executing instruction completes

operation. This motivates the need for the cl_latch_next_insn signal, used by the processor to

send a logic high when the currently executing instruction switches within the processor pipeline.

3.1.3 Processor Modifications

Figure 3.2 shows the minimum additions to a processor to create the TIGRA interface. As we

intend custom logic connected via TIGRA to act as a tightly coupled accelerator, we require designs

follow the standard ALU flow within the pipeline. The processor sends the current instruction and

register data over the corresponding signals described in Section 3.1.2. It should also multiplex the

data from cl_outData with the output of the ALU, using the correct instruction to determine which

data to send for write back to the register file.

Not shown in the block diagram is the logic required to handle the synchronization signals.

Every processor design needs to handle synchronization logic differently, but the TIGRA interface

must remain constant and general across all designs. Figure 3.3 shows the synchronization of a

simple, four-stage CPU pipeline, similar to that discussed in Section 4.1. The developer integrating

TIGRA in a design is responsible for the following:

10

Fetch Decode Execute Write-back

cl_latch_next_insn = 1
cl_insn = New Instruction

Set by CPU

cl_mem_valid = 1
cl_rs1 = Data from Reg 1
cl_rs2 = Data from Reg 2

Set by CPU

cl_valid = 1
cl_outData = Custom

Logic Result
Set by Custom Logic

cl_valid = 0
Optional: Set by
Custom Logic

Figure 3.3: An example four-stage CPU pipeline, showing how to set each TIGRA control signal in
the host processor and the custom hardware design.

• Ensuring the processor stalls at the correct stages of the CPU when the custom logic sets

cl_valid to a logic low.

• Sending active-high on cl_mem_valid when the data on cl_rs1 and cl_rs2 is guaranteed to

have valid data from the register file.

• Sending active-high on cl_latch_next_insn when the currently executing instruction changes.

• Ensuring all required signals are available outside of the CPU, allowing custom logic to exist

outside of the design to maintain the modularity of the TIGRA interface.

Figure 3.4 provides a simplified and generalized flowchart to explain the process of adding

a TIGRA interface to an existing processor. Much of the effort required to introduce the generic

TIGRA interface matches the effort required to add any new execution unit to a processor, as

shown by the light orange highlighted area in Figure 3.4. These upper steps explain the effort

required to modify the existing processor for any new functionality, starting with understanding

the existing processor functionality to determine if additions must be made to the base CPU logic.

Every processor will require different edits to include custom functionality, with some requiring the

developer to add a mechanism to allow the processor to stall while others already include example

execution units that stall.

After adding and verifying the new execution unit, developers must generalize the logic

and instantiate the TIGRA interface defined in Figure 3.2. This required work is unique to adding

TIGRA and is represented by the purple highlighted box of Figure 3.4. Within the TIGRA execution

unit, developers must handle all synchronization and communication with the processor to maintain

11

Are there example
execution units that stall

the pipeline?

Add a new execution
unit modeled after

this example.

Verify functionality of
the new unit with logic

that stalls.

Remove any existing
functional logic and connect
an empty component via a

TIGRA interface.

Is the stall
generalized?

Does the CPU have a
stalling mechanism?

Add an execution unit
that utilizes this

mechanism.

Analyze the main
CPU state machine

and determine how to
add a stalling
mechanism.

Ensure the execution
unit handles all CPU

communication,
keeping TIGRA simple.

Modify the
mechanism to stall for
an arbitrary length of
time using TIGRA.

Verify functionality
and test known logic

connected via the
TIGRA interface.

Yes

No No

Yes

Yes

No

Figure 3.4: A flowchart detailing the generalized process to setup a TIGRA interface on an existing
processor. The upper orange highlighted area represents the process required when adding any new
execution unit to an existing CPU, and the lower purple area represents the unique effort required
to generalize the new execution unit for TIGRA.

12

the simplicity and generality of the TIGRA interface. Once completed, no further modifications are

required to the processor to introduce new custom logic.

3.2 Custom Logic Design and Usage

In this section, we describe how to develop custom logic to interface with TIGRA and

provide insight into using these custom logic instructions within a normal application. This section

targets developers aiming to create an FPGA based accelerator on a TIGRA enabled processor.

3.2.1 Developing Custom Logic

When developing a custom accelerator for use with TIGRA, users can focus on creating

hardware that meets their requirements. TIGRA is designed to work with any accelerator with

minimal effort and overhead, allowing developers the freedom to design their hardware and test

within any simulation environment. This enables the use of existing custom hardware, such as

Tiny_AES [19] or PACoGen Posits [28] discussed in Chapter 4. Once a given accelerator has been

verified via simulation, the user must create a wrapper to enable communication via the TIGRA

interface. Custom logic developers should be familiar with the functionality of TIGRA described in

3.1.2 and are responsible for the following:

• Connecting their design to the system clock and reset, if necessary.

• Properly decoding the instruction from cl_insn, latching if necessary on a logic high value

from cl_latch_next_insn, to ensure the custom logic accelerator is aware when a TIGRA

instruction is currently in the execute stage of the pipeline.

– For some designs, such as un-clocked hardware that completes quickly, latching the next

instruction may not be necessary as long as the correct answer can be provided on the

next clock edge. These designs should always set cl_valid to a logic-high, ensuring there

are no unnecessary stalls in the CPU pipeline.

– This puts the onus of choosing minor opcodes for each function within the custom logic

on the designer at this stage of development.

• Properly handling the cl_mem_valid signal to only latch the input data values when this

signal is logic-high if required for the given custom hardware.

13

cl_insn

cl_rs1

cl_rs2

cl_mem_valid

cl_latch_next_insn

cl_outDatacl_valid

Valid Bits

Function #1

Custom Logic

Function #2

Function #N

cl_insn cl_insn
Data Bits

Figure 3.5: An example custom logic setup implementing many accelerators. The signals external
to the custom logic block represent the TIGRA interface. The necessary instruction decoder(s) and
other logic is not shown to maintain generality and keep the design readable.

• Setting cl_valid to a logic-high when the custom logic has successfully output the correct data

on cl_outData, allowing the CPU to release any stalls and latch the result on the next clock

edge.

We have designed TIGRA to ensure that no overhead is incurred when connecting a custom

logic accelerator to the interface. Developers must be careful when designing the wrapper to not

introduce latency to their design. They should only use latches when necessary, such as with multi-

cycle designs or hardware that implements more than one functionality. The TIGRA wrapper should

be kept as lightweight as possible to maximize the possible clock frequency within the custom logic.

While the design practices listed above dictate guidelines for a singular custom logic accel-

erator, developers may include multiple accelerators or functions within their custom logic design.

Shown in Figure 3.5, the only additions required are multiplexers to ensure the correct valid and

data bits are sent back to the processor and a decoder to parse the incoming instruction, if necessary.

The diagram shows cl_insn as the select line for the multiplexers, but this may be changed to the

internal latched instruction for designs that execute over many clock cycles. To maintain generality,

developers may pass all signals to each individual accelerator and handle data latching and process-

ing within each accelerator or create a decoder at the top level to handle proper instruction decoding

and latching.

As the TIGRA interface is processor agnostic, custom logic designs connected via this in-

14

terface are completely portable. The generality of the TIGRA interface enables developers to create

a design once and use the same custom logic on any TIGRA enabled processor. The portability of

custom logic designs is further explained in Chapter 4.

3.2.2 Using a TIGRA Instruction

After the custom logic has been wrapped and connected to the TIGRA interface, the device

is ready for use in an application. Devices connected via TIGRA are applicable for testing and usage

in both simulation and hardware based environments, if the hardware exits. Bare-metal applications,

or those used in simulation within design tools, will require developers write instruction level code.

Example instruction calls for the test cases used to test the design in Section 4.1 can be seen in

Appendix A. In these cases, developers must use the major TIGRA instruction opcode and supply

the correct funct7 and funct3 fields to ensure the intended instruction is executed.

When working with a more complex processor such as those generated by Rocket Chip,

bare-metal execution may not be possible. For these cases, modification to the RISC-V toolchain

may be required to enable inline assembly usage of TIGRA instructions. [34] provides a detailed

guide for adding TIGRA instructions to the RISC-V ISA in Appendix D. This enables the RISC-V

compiler to understand inline calls to TIGRA and allows developers to include these instructions

within standard C code. Further, the RISC-V toolchain provides the necessary utilities to generate

the instruction level code described previously, allowing developers to write C code and receive the

necessary code for simulation environments.

3.3 Summary

Completing the one-time TIGRA integration ensures that no further modification to the

underlying processor architecture is required, abstracting the process from end-users. This initial,

one-time programming effort requires in-depth knowledge of the chosen CPU to ensure no side effects

are incurred during development. Connecting via TIGRA and moving the custom logic to outside

the CPU provides many benefits:

• Future developers need not focus on modifying the instruction pipeline, thus simplifying custom

logic integration and reducing the required programming effort to incorporate custom logic

accelerators to a CPU.

15

• Leveraging partial reconfiguration on FPGAs, developers testing designs in simulation only

need to recompile the custom logic portion of the design, speeding up design time.

• The custom logic may be swapped out more easily in simulation and real hardware via partial

reconfiguration, mimicking the flow used by OpenCL and other loosely coupled accelerators.

• TIGRA connected custom logic designs can be used on any TIGRA enabled processor.

• The custom logic will perform as a tightly coupled accelerator with fine-grained execution,

zero added latency, and enables more efficient testing of future instruction set extensions.

• Developers can create C-based algorithms with inline assembly to use TIGRA instructions

within an existing algorithm.

16

Chapter 4

Case Studies

The case studies of this work implement TIGRA in the simple PicoRV32 [51] processor,

the Rocket Chip [7] processor generator, and the Taiga [40] processor. Each of these designs were

tested with the same two applications: AES 128-bit encryption and posit arithmetic. The test

cases chosen to verify TIGRA are meant to simulate real use cases of the interface in an HPC or

hardware design environment. The AES 128-bit test case uses Tiny AES [19] and represents an

FPGA based hardware accelerator that can compute an iteration of the algorithm in a fraction of

the time of software based designs. The posit test case uses the PACoGen posit arithmetic core

generator [28] and represents a custom instruction set extension based in FPGA hardware. And

finally, we also test on a built-in functionality as a baseline comparison for TIGRA, demonstrating

that TIGRA introduces no added latency and provides the same functionality as a built-in design. In

this chapter, we discuss the implementation of TIGRA within these processors and provide hardware

based verification of the PicoRV32 design on Amazon Web Services (AWS) F1 cloud services with

Xilinx XCVU9P-FLGB2104-2-i FPGAs.

4.1 PicoRV32

[49] implements TIGRA within the PicoRV32 processor from [51]. PicoRV32 is an in-order,

non-pipelined processor based on the RISC-V instruction set architecture that aims to reduce area

and increase possible clock speeds to serve as an auxiliary CPU for FPGA and ASIC designs. This

processor comes equipped with an optional Pico Co-processor Interface (PCPI) that acts as a tightly

17

coupled accelerator to enable the multiplication and division instructions from the RISC-V ISA. This

interface is required to enable the "M" extension for RISC-V which enables integer multiplication

and divison. The PCPI interface acts as a direct comparison to the generic TIGRA interface, and

will help verify that TIGRA introduces no latency to designs.

4.1.1 PicoRV32: TIGRA Integration

The simple design of PicoRV32 facilitated a very straightforward integration of TIGRA. Fig-

ure 4.1 represents the state diagram of PicoRV32, with TIGRA following the ALU flow represented

as the bold orange line in the diagram. PicoRV32 fetches the next instruction during the fetch state

of the diagram, and once decoded will set the cl_latch_next_insn signal of the TIGRA interface

to logic high. This will enable connected custom logic to latch the instruction that is beginning

to execute on the CPU. When PicoRV32 reaches the ld_rs1 state, it begins fetching data from

the register file and sets cl_mem_valid to a logic high. This allows the custom logic to latch the

incoming data, if necessary, on the transition to the exec state by guaranteeing valid data on cl_rs1

and cl_rs2 signals of the TIGRA interface.

During the exec state, if the custom logic requires more than one clock cycle to complete,

the design sets cl_valid to logic low and cause a stall in the PicoRV32 pipeline. Once custom logic

finishes execution and can guarantee data on cl_outData is correct, it sets the cl_valid signal which

ends the stall in the CPU on the next clock edge. The CPU transitions back to fetch, during which

write back occurs and the cycle begins again. PicoRV32 spends 2 clock cycles in fetch, one for write

back and the other for fetch, meaning this CPU executes in four stages. Developers can abstract

the decisions made to integrate TIGRA in this design to other four stage CPUs.

The PicoRV32 with TIGRA design requires a few extra signals to handle proper communi-

cation between the CPU and connected custom logic and ensure stalls occur only when necessary

and within the execute stage of the pipeline. We edited the CPU decoder to understand custom

instructions and verify these instructions follow the same flow as the built in ALU. As PicoRV32 is

a simple processor that is capable of running without an operating system, we chose not to edit the

RISC-V compiler to include TIGRA instructions and supplied the instructions for each test manu-

ally. Overall, including TIGRA into PicoRV32 required the modification or addition of 32 lines of

code in the main source file for the processor.

18

fetch ld_rs1

exec

ld_rs2

ldmem

shift stmem

reset

ALU flow
PCPI flow

TIGRA stall

cl_mem_valid = 1
Set by CPU

cl_valid = 0
Set by CLcl_valid = 1

Set by CL

cl_latch_next_insn = 1
Set by CPU

Figure 4.1: The PicoRV32 state diagram, emphasising the PCPI and TIGRA flows. The boxes
represent the value and timing of TIGRA control signals during execution.

4.1.2 Hardware Verification with AWS

PicoRV32 allows for bare-metal execution of the processor, allowing developers to directly

supply instructions and enable hardware verification of the device. We implemented the PicoRV32

processor with and without TIGRA on AWS F1 FPGAs utilizing the AWS HDK [4]. The AWS

HDK allows users to implement hardware based designs on FPGAs and communicate with them

via a PCIe shell interface. The AWS F1 shell handles partial reconfiguration of the available FPGA

logic and all communication to and from the device. Utilizing C function calls provided by the

AWS HDK, fpga_pci_peek and fpga_pci_poke, users can read from and write to defined memory

spaces within a custom logic design during runtime.

Figure 4.2 represents the layout of an AWS F1 node when connected with the designed

wrapper for PicoRV32. As shown, the AWS wrapper requires 3 main components: memory, the

PicoRV32 processor, and the custom logic under test. Listing 1 demonstrates the mapping of each of

these components for the posit test case. This listing begins on line 217 as the signal declarations are

19

F1 Shell

Host CPU

PicoRV32 Custom LogicMemory
TIGRA

Memory
Bus

PCIe Peek and Poke

AXI Memory Interface

AWS F1 Node
Xilinx XVU9P FPGA

PicoRV32 AWS Wrapper

Figure 4.2: The AWS F1 HDK hierarchy when connected with a full PicoRV32 with TIGRA enabled
and connected to custom logic.

omitted for brevity. Examples from [4] provide the basic write (poke) and read (peek) functionality,

and this code is demonstrated in lines 217-281. For these designs, we do not utilize the poke function

and therefore do not modify the write request and response blocks shown on lines 217-244. However,

we do intend to read from memory using peek, and simply need to provide the memory locations to

return when the host computer requests data from a valid address. The required modifications are

shown on lines 276-278, where BASE_REG_ADDR is a user defined value and memory is the

Verilog reg array used to store instructions and program data.

Lines 287-308 of the listing show mapping the PicoRV32 processor with TIGRA, which re-

mains the same for any custom logic accelerator. As each accelerator connects via TIGRA to the

processor, lines 310-320 should also remain constant except for the device instantiated. The remain-

der of the code shows the synchronization required with the PicoRV32 memory interface and the

reg array that acts as the data storage for the device. Lines 326-354 initialize the instruction mem-

ory and initial long-term storage values, while lines 355-386 represent the minimal synchronization

20

required to write or read data from memory. The instructions on lines 347-350 represent a NOP

loop to prevent accessing invalid memory locations. This is necessary as designs loaded onto an F1

FPGA begin execution immediately and continue until manually cleared by the user.

This design is replicated with for use with AES-128 bit encryption, multiplication over

the TIGRA interface, and multiplication using PCPI. To switch the custom logic, we only need

modify the component instantiation on lines 310-320 of Listing 1. For the PCPI multiplication, we

switch out the PicoRV32 core with the unmodified version and remove the custom logic from the

design. Each test case utilizes a unique set of instructions, found in Appendix A. Listing 3 shows the

instructions required to complete one block of AES-128 encryption, and Listings 4 and 5 show the

changes made to implement multiplication with TIGRA and PCPI, respectively. The multiplication

programs differ only on line 4, where the TIGRA implementation uses the custom instruction while

the PCPI version uses the standard RISC-V multiplication instruction.

4.2 Rocket Chip Generator

[34] implements TIGRA within the Rocket Chip generator from [7]. Rocket Chip is a pa-

rameterizable design generator built on Chisel that allows users to select between in or out-of-order

processors (Rocket or BOOM), enable different RISC-V extensions or a RoCC accelerator, and gen-

erate synthesizable RTL that can boot Linux. Rocket Chip generated processors are designed with

a standard 5-stage RISC-V pipeline which include fetch, decode, execute, memory, and writeback

stages. These cores allow for pipelined execution with up to 5 instructions executing concurrently,

each in a different processor stage. The developers include a Simple Custom Instruction Extension

(SCIE) interface that allows the integration of custom logic directly into a Rocket Chip generated

processor. However, SCIE instructions only support single clock cycle instructions as these designs

do not communicate with the stalling mechanisms in the CPU.

The developers of the Rocket Chip generator package the cycle accurate simulator, Verilator

[44], to test modifications to the processor. Verilator is capable of simulating the boot process,

executing compiled executables from the RISC-V compiler, and emitting the waveform traces of all

signals during an execution run. Using GTKWave [8] or similar wave viewer, developers can view

the output waveform traces to verify signals update as expected, view registers to validate processor

writeback, and check simulation specific traces or debug values to help troubleshoot design issues.

21

We rely on the Verilator output when testing TIGRA to ensure the processor modifications function

as expected.

4.2.1 Rocket Chip: TIGRA Integration

Inclusion of TIGRA aims to solve the drawbacks of SCIE and RoCC, giving developers

the ability to easily create new hardware that executes in an arbitrary number of clock cycles

without adding latency to the design. We modeled the initial design of TIGRA after the SCIE

pipelined interface, but we added backpressure mechanisms to allow any connected custom hardware

to stall the processor pipeline as necessary. We modified 5 files within the Rocket Chip source code

to ensure the generator maps RISC-V custom-0 and custom-1 instructions to TIGRA, stalls the

processor pipeline when the cl_valid output is logic low, and allows users to enable the interface

as a parameter during configuration. Most of the changes centered on ensuring the processor will

stall correctly for multi-cycle instructions and did not introduce latency for simple hardware that

executes in one cycle or less.

As shown in Figure 4.3, the CPU sets the cl_mem_valid signal to a logic high when a

TIGRA instruction enters the execute stage of the pipeline, this guarantees data on the cl_rs1

and cl_rs2 lines are valid and is the earliest this data is available in the Rocket processor. The

custom logic will in turn latch the incoming data, if necessary, on the next clock edge. The

cl_latch_next_insn signal is not required here as Rocket Chip generated processors maintain a

register that contains the value of the instruction occupying each stage of the pipeline. We simply

supply this on the cl_insn signal and lock cl_latch_next_insn to a logic high and the instruction

value will not change during a stall. The custom logic then sets cl_valid to a logic low, if required,

and finally sets the same signal to a logic high once cl_outData contains a valid result. This initiates

a stall for multi-clock cycle instructions and clears it once completed.

Stalling in Rocket requires stalling more than a single instruction, as shown by the shaded

boxes in Figure 4.3. This is handled by a series of latched signals that update on every edge of the

clock, beginning in the decode stage of the pipeline. The currently executing instruction may initiate

a stall in decode to prevent instructions from attempting to move to execute during the stall. This

stall is also directly applied to the fetch stage, which prevents increments to the program counter

to ensure no future instructions are lost. On the next rising clock edge, instructions occupying the

memory and write back stages advance and a stall is initiated in the now empty memory stage.

22

cl_insn = Exec Instruction
cl_rs1 = Data from Reg 1
cl_rs2 = Data from Reg 2

Set by CPU

cl_mem_valid = 1
Set by CPU

cl_valid = 1
cl_outData = Result

Set by Custom Logic

cl_valid = 0
Set by Custom Logic

Insn1

Insn2

TIGRA

Insn4

Insn5

Insn6

FETCH

FETCH

FETCH

FETCH

FETCH

DECODE

DECODE

DECODE

DECODE

EXECUTE

EXECUTE

EXECUTE EXECUTE EXECUTE MEMORY

MEMORY

WRITE BACK

MEMORY

MEMORY

DECODE DECODE

FETCH FETCH

FETCH

EXECUTE

DECODE

DECODE

EXECUTE

WRITE BACK

WRITE BACK

Stalled
Stages F D E F D E M M W W

Figure 4.3: Example execution stall of a TIGRA instruction in the Rocket pipeline. The purple
highlighted instruction (TIGRA) stalls in the execute stage of the pipeline, causing later instructions
(Insn4 and Insn5 highlighted in orange) to stall in decode and fetch.

Next, the instruction in the write back stage completes and this stage is stalled to prevent erroneous

writes back to the register file. Once the custom logic sets cl_valid to a logic high, the stalls are

lifted in the fetch, decode, and execute stages immediately. The stalls in memory and writeback are

lifted as new instructions occupy these stages of the pipeline.

As Rocket Chip designs are capable of booting Linux, designers can modify the RISC-V

compiler to understand custom instruction opcodes, which allows users to write C programs using

inline assembly to test designs. This feature requires the developer to create the opcode masks and

matching strings for each individual instruction, modify 2 more files in the RISC-V compiler by

adding 3 lines of code per custom instruction, and recompile the tools to ensure these instructions

are understood by future programs. In total, adding a TIGRA interface with 16 instructions to the

Rocket Chip source in Chisel and the RISC-V compiler required the addition or modification of 180

lines of code to meet the specifications. Each new instruction introduces, at minimum, 4 new lines

of code and requires a recompile of the RISC-V toolchain.

These totals are counted with no custom logic connected to the TIGRA interface and can

serve as an estimate for the minimum work required to introduce a tightly coupled accelerator or

introduce a new instruction set to Rocket Chip generated processors. Further, developers seeking to

modify the Rocket Chip generator will be required to understand the processor pipeline and make

23

equivalent modifications in the Chisel source code.

4.2.2 Rocket Custom Coprocessor (RoCC)

Developers generating Rocket Chip processors have the ability to include a coprocessor

interface, the Rocket Custom Coprocessor (RoCC). RoCC aims to provide designers with a built-

in interface that allows for custom hardware integration without requiring modifications to the

connected CPU. This interface provides connections to the Floating Point Unit (FPU) and processor

memory which enables connected designs to utilize existing processor resources, when available, to

provide more flexibility within connected custom hardware. When compared with the TIGRA

interface, the RoCC interface provides more functionality at the cost of requiring users to handle

more processor communication when connecting a custom logic design.

RoCC instructions do not follow the standard instruction flow of other Rocket Chip func-

tions. As shown in Figure 4.4, custom hardware connected via a RoCC interface begin execution

as the calling instruction exits the writeback stage of the Rocket Chip pipeline. When occupying

the different stages of the pipeline, RoCC instructions set up data and prepare dedicated signals for

custom hardware execution. These instructions utilize a series of signals to provide synchronization

with the main CPU, allowing for arbitrary execution times. Once complete, the custom logic signals

that data is valid and ready for writeback. The resultant data is written to the CPU registers when

the writeback interface is available, or the CPU may stall to allow writeback in the case of data

dependencies or if an upcoming instruction requires usage of the RoCC connected hardware. A

further analysis of data movement is shown in Section 5.3.4.

4.3 Taiga Processor

The Taiga processor [40] was developed for optimized usage within an FPGA, aiming to

reduce resource utilization and improve maximum clock speed in hardware. Similar to Rocket Chip

generated designs, Taiga allows users to customize available RISC-V ISA extensions, cache sizes,

and multiple other parameters. This processor is also fully synthesizable and capable of booting

Linux and running compiled RISC-V programs. Taiga utilizes only 26% of the FPGA resources

with nearly double the clock frequency of a similarly configured Rocket Chip CPU when synthesized

for a Xilinx FPGA.

24

RoCC latches data and
begins execution

RoCC completes, data is
sent back to the CPU

Arbitrary execution time
for RoCC Instructions

RoCC

Insn2

Insn3

Insn4

Insn5

Insn6

FETCH

FETCH

FETCH

FETCH

FETCH

DECODE

DECODE

DECODE

DECODE

EXECUTE

EXECUTE

EXECUTE MEMORY WRITEBACK

MEMORY

MEMORY

EXECUTE MEMORY

DECODE EXECUTE

FETCH

WRITEBACK

MEMORY

DECODE

WRITEBACK

WRITEBACK

WRITEBACK

RoCC BEGIN RoCC
EXECUTE

RoCC
EXECUTE

RoCC
WRITEBACK

RoCC writes data back
once a write channel is

clear or the CPU stalls for
data dependecy

EXECUTE MEMORY

Figure 4.4: Execution of a RoCC instruction in the Rocket Chip pipeline. As shown, custom
hardware connected to a RoCC interface begins execution as the instruction exits the main Rocket
Chip pipeline.

Taiga processors utilize a four-stage RISC-V pipeline that merges the memory and writeback

stages of a standard five-stage design into a single load/store stage as shown in Figure 4.5. The design

decouples each of the RISC-V pipeline stages via queues and uses parallel execution units that help

mask the latency of multi-clock cycle instructions, requiring extra hardware to ensure instructions

write back in the correct order. The authors created a tag management system with a priority queue

that prevents out-of-order writeback and only stalls the CPU when a requested execution unit is

busy or data dependencies force the CPU to wait for the appropriate write back. Taiga’s decoupled

design facilitates customization and does not require developers to modify the instruction pipeline

to incorporate hardware that takes more than one clock cycle to stall.

4.3.1 Taiga Processor: TIGRA Integration

Modifying Taiga to include a TIGRA interface required the addition of a new execution

unit to build the logic to communicate with the base processor and create the interface. New Taiga

execution units require developers to manage a tag to ensure the return data is associated with

the appropriate instruction during write-back, and these units must handshake with the write-back

unit to prevent unnecessary processor stalls. To avoid adding signals to the user-side of TIGRA,

we handled all of the tag management and handshaking within the new TIGRA execution unit to

25

Fetch Stage

Decode/Issue Stage

Taiga Execution UnitsTIGRA Unit

Load/Store (Writeback) Multiplexer

Custom Logic

TIGRA
Interface

Registers

cl_mem_valid=1
cl_latch_next_insn=1

Set by CPU

cl_valid=0 (if stall needed)
Set by CL

Figure 4.5: Taiga’s general pipeline flow showing the necessary additions to include a TIGRA in-
terface. The added unit is shown separate from the Taiga execution units to represent that each
operates independently of each other. Each vertical stage is separated by a queue to facilitate the
decoupled operation and ensure instructions complete in order.

maintain simplicity when adding custom hardware via the interface. We followed the multiplication

unit’s design as an example to build the new execution unit, which required further modification

of 7 more files to allow the processor to issue RISC-V custom-0 and custom-1 instructions to the

TIGRA execution unit and generate the necessary write-back units and hardware during synthesis

or simulation. The result allows users to optionally include a TIGRA interface during configuration,

maintaining the decoupled and customizable design of the Taiga processor. Figure 4.5 demonstrates

the additions to the processor, where each vertical arrow represents an instruction queue. Taiga sets

both the cl_mem_valid and cl_latch_next_insn signals to logic high when a TIGRA instruction

enters the execute stage of the pipeline as this is when the CPU sends the data to the TIGRA

execution unit. The instruction must be latched here as new instructions will continue to be issued

even if the custom logic requires a stall.

The hardware may set cl_valid to a logic low to stall in the Load/Store stage until com-

pleted, and the Taiga processor will stall the pipeline if an upcoming instruction requires an execution

unit that is busy or waiting to writeback due to the hardware stall. The writeback multiplexer re-

quires a handshake with each execution unit in order to verify data is returned in the proper order

and allow the execution unit to accept new inputs.

Enabling TIGRA instructions in the RISC-V compiler required modification of 2 more files,

3 lines of code per custom instruction, before rebuilding the tool-chain to allow the compiler to

understand inline assembly for TIGRA instructions. Verilator can then simulate the boot process,

26

run a program, and save the output waveform for verification. Adding the TIGRA interface with

16 instructions as a configuration option within the Taiga processor required the addition or mod-

ification of 147 lines of code total. As with Rocket, these totals are counted with no custom logic

connected to the TIGRA interface and can serve as an estimate for the minimum work required

to introduce a tightly coupled accelerator or introduce a new instruction set to a Taiga processor.

While the decoupled design eases the programming effort to introduce new execution units to the

processor, new developers still need to learn the write-back handshake protocol and tag management

to ensure new designs work properly. Each additional instruction introduces at least 4 lines of code

and each execution unit will require the developer to modify multiple files within the Taiga source

code.

4.4 AES 128-bit Custom Logic

Tiny AES [19] provides very small and quick AES encryption on 128-bit, 192-bit, and 256-

bit data. We choose to operate in the 128-bit encryption as a proof as both processors described in

this chapter are restricted to 32-bit registers, meaning there is no built in support for larger data.

Because of this, we must develop the custom logic in a way that let’s us transfer and work with

the required 128-bit state, key, and result data-width. To do this, we take advantage of the R-type

instruction that allows transfer of two registers at a time as input when writing data to the custom

logic. To write the state and key, 2 instructions each are required to write 64 bits at a time of each

value. As R-type instructions only include a single destination register, we can only read 32 bits per

instruction from the result, dictating that we must include 4 instructions to read 32-bit chunks from

the resulting data into the CPU registers. These minimal 8 instructions require 3 bits to encode each

with a unique instruction value, which fits perfectly within the funct3 field of R-type instructions

as shown in Table 4.1. To keep logic minimal, we set the custom logic to begin encryption once the

full state and key are received from the connected CPU.

Figure 4.6 shows the block diagram of the AES custom logic. The decoder receives the CPU

instruction to decode the appropriate functionality and starts the counter when the last bits of the

state are written to it’s 128-bit register via the tigra_3 instruction. The demultiplexer on the left

selects which part of the state or key to latch the incoming data for the first four instructions and

sets the startCounter signal to logic high once all data is latched. The counter begins on this clock

27

Table 4.1: Custom instructions for AES

funct3 Instruction Function
000 tigra_0 Store lower half of key
001 tigra_1 Store upper half of key
010 tigra_2 Store lower half of state
011 tigra_3 Store upper half of state and start encryption
100 tigra_4 Return AES output[31:0]
101 tigra_5 Return AES output[63:32]
110 tigra_6 Return AES output[95:64]
111 tigra_7 Return AES output[127:96]

cycle, setting cl_valid to logic low until the tiny_aes core completes the encryption 21 clock cycles

later. This will cause the connected processor to stall until until the encrypted result is available.

The larger multiplexer sends either the appropriate 32-bit quarter of the AES output or a string of

all zeroes to the cl_outData signal.

This hardware connects to the TIGRA interface on the PicoRV32, Rocket Chip, and Taiga

processors without any modification. Building this custom logic required the addition of only 92

lines of code, the bulk of which are simple assignments within Verilog case statements to latch the

incoming data or provide the correct output when reading the encrypted result. The tiny_aes core

was unmodified and used as a design component within the designed wrapper.

4.5 Posit Arithmetic Custom Logic

PACoGen includes 3 built in functions for posit<32,6> encoded numbers, addition, multi-

plication, and division. Each of these implementations is fully pipelined and takes 5, 6, and 12 cycles

to compute the result, respectively. This design facilitates use with TIGRA and requires very little

additional logic, as shown in Figure 4.7a. The custom logic wrapper decodes the input instruction

and sends the start signal to the correct function on a logic high from cl_mem_valid. The added

multiplexer uses the funct3 field of the instruction to determine which function’s data and valid bit

to pass through the TIGRA interface via cl_outData and cl_valid.

The design in Figure 4.7a is unusable for simulation purposes for the Rocket Chip and Taiga

processors as the PACoGen cores for multiply and divide use Xilinx specific constructs to optimize

multiplication operations. As both of these processors utilize the cycle accurate Verilator simulator,

they are unable to compile and test designs when using the posit multiply and divide units. We

28

KeyState

tiny_aes

Counter

Decoder

aes_clk

{data2,data1}

cl_rs2

cl_rs1

funct3 startCounter

0

cl_outData

cl_valid

cl_latch_next_insn

cl_insn

cl_mem_valid Custom Logic
for AES

1

funct3

Figure 4.6: AES-128 Bit custom logic block diagram.

29

Decode

cl_rs2

cl_rs1

cl_outData

cl_valid

cl_latch_next_insn

cl_insn

cl_mem_valid
Custom Logic for
Posit arithmetic

Add Multiply Divide

addStart mulStart divStart

funct3

(a) Posit Block Diagram with all arithmetic functionality.

Decode

cl_rs2

cl_rs1

cl_outData

cl_valid

cl_latch_next_insn

cl_insn

cl_mem_valid

Custom Logic for
Posit Addition

Add

addStart

funct3

1

(b) Posit Block Diagram with only addition.

Figure 4.7: Posit arithmetic custom logic block diagrams for use with PicoRV32 or hardware com-
pilation (a) and for use with the Rocket Chip generator and Taiga simulators (b).

modified the design of the custom logic as shown in Figure 4.7b by removing the offending multiply

and divide units. The decoder logic remains unchanged and we modified the multiplexer to output

a default value of logic high on cl_valid for the unused instructions.

The design including addition, multiplication, and division functionality required 80 addi-

tional lines of code to connect to the TIGRA interface, while the addition only wrapper required

only 48 additional lines of code. Both designs utilize the unmodified source directly from [28] as

components within the designed wrappers to communicate via the TIGRA interface.

4.6 Built-in Functions Custom Logic

For PicoRV32, multiplication is provided as a co-processor via the PCPI interface. The

co-processor signals are very similar to TIGRA, requiring no modification to exist within TIGRA

and is implemented by simply creating an instance of the multiplication and connecting it to the

TIGRA signals. This enables multiplication within TIGRA and provides a direct test case against

a known tightly coupled extension that completes the same operation.

For Rocket, we implement the functionality of many standard ALU functions: ADD, XOR,

30

cl_rs2

cl_rs1

cl_outData

cl_valid

cl_latch_next_insn

cl_insn

cl_mem_valid Custom Logic for
a Rocket ALU

ADD

1

XOR OR AND SLTSRASUB

Figure 4.8: Rocket ALU custom logic block diagram.

OR, AND, SUB, SRA, and SLT . Each of these instructions complete in one clock cycle, making

inclusion within TIGRA very simple. When the instructions complete in one clock cycle, there is

no need to latch the instruction or the data, and cl_valid will always output a logic high. Figure

4.8 shows these design choices. Both cl_mem_valid and cl_latch_next_insn are not used within

the custom logic. Each functionality of the ALU receives both input operands and a multiplexer

decodes cl_insn and outputs the correct result on cl_outData. The CPU will handle movement of

data as necessary, making this inclusion straightforward.

In Taiga, the researcher created two smaller designs, one to test against the built in multiplier

and another to test multiple instructions with arbitrary stall lengths and return values. The Taiga

multiplier was copied into a custom logic wrapper to connect with the TIGRA interface and give

a direct comparison against existing functionality. The other design returns known values for 8

different instructions and each requires an arbitrary amount of time to complete to verify Taiga

stalls correctly when executing multiple concurrent instructions with varying timings. Table 4.2

shows the return value and execution length of each implemented TIGRA instruction.

31

Table 4.2: Custom instructions for arbitrary Taiga design

Instruction Return Value Stall Cycles
tigra_0 0 0
tigra_1 1 0
tigra_2 2 0
tigra_3 3 0
tigra_4 4 2
tigra_5 5 2
tigra_6 6 1
tigra_7 7 1

Table 4.3: Comparison of the lines of code edited for each design in Chapter 4.

Processor Lines Edited for TIGRA
PicoRV32 32

Rocket Chip 180
Taiga 147

Custom Logic Lines Edited for Wrapper
AES 128-bit 92

Posit Arithmetic - Full 80
Posit Arithmetic - Add Only 48
RoCC with AES 128-bit 107

Application Specific Taiga Unit Lines Edited for Taiga
AES 128-bit 224

Posit Addition 189

4.7 Comparing the Programming Effort

Adding any tightly coupled accelerator or instruction set extension to each processor requires

modification of the source code of the CPU to enable understanding of custom instructions, ensure

multi-clock cycle instructions do not add any unnecessary latency, and verify the added functionality

does not interfere with any of the default functionality of the CPU. Integrating the TIGRA interface

to each processor requires developers complete the same modifications as described in Section 3.1.3,

but the interface is left open and made generic for connecting with any custom logic design, as shown

in Figure 3.4. Table 4.3 shows the number of lines edited to include the TIGRA processor to each

of the processors and to write each custom logic wrapper use in testing via the TIGRA interface.

The lines edited for TIGRA indicate the final code product after including the interface

with no connected logic. This programming effort represents a one-time cost required to modify the

base processor and include the TIGRA interface. The lines edited for the wrapper detail the code

required to connect an existing custom logic design via the TIGRA interface without modification to

32

the functionality of the downloaded source. As described in Section 3.1.3, adding a TIGRA interface

to an existing processor is a similar process to adding any custom functionality. However, the TIGRA

execution unit requires additional logic to ensure the interface remains simple and general for usage

with connecting custom logic. By adding the total effort to add Taiga and include AES 128-bit

and Posit addition from Table 4.3, 239 and 195 lines of code are required in total. When compared

to the application specific designs, the full TIGRA with connected custom logic requires 15 and

6 additional lines of code for AES and Posit addition respectively. These extra lines of code are

attributed to the logic required in the TIGRA execution unit to handle processor communication.

As a comparison, Table 4.3 also shows the number of lines required to add application

specific execution units for AES 128-bit encryption and Posit Addition to the Taiga processor using

the same unmodified sources described in Sections 4.4 and 4.5. These application specific execution

units required the modification or addition of 224 and 189 lines of code, respectively, compared

to the 92 and 48 required to create the custom logic wrapper to connect these designs via the

TIGRA interface. By using TIGRA, adding AES 128-bit encryption and Posit addition to the Taiga

processor required 41.1% and 25.4% less modified or added code when compared to adding the

custom instructions directly.

The table also includes the lines of code required to include AES 128-bit encryption via

the RoCC interface on Rocket Chip processors. The RoCC connected design requires 15 extra

lines of code when compared to the equivalent TIGRA connected design. These extra lines of code

are attributed to the extra complexity included with the RoCC interface, which allows users to

communicate to the Rocket Chip FPU or directly access memory. The simplicity of the TIGRA

interface allows users to create less logic to connect a custom logic design within an existing processor.

4.8 Summary

This chapter describes how TIGRA affects the instruction pipeline of the PicoRV32, Rocket

Chip generator, and Taiga processors. We demonstrate during which stage of the instruction pipeline

all TIGRA synchronization signals are set to enable custom logic integration to each of the generated

processors. We also create custom logic for the different described test cases, detailing the necessary

additions to existing cores to ensure proper functionality with the TIGRA interface. Each custom

logic design explained is compatible with every TIGRA enabled processor and does not require any

33

modification due to the portability provided by the TIGRA interface.

Overall, while the initial TIGRA incorporation requires similar programming effort when

compared to application specific custom logic, this is only a one-time cost incurred when integrating

the interface. All future custom designs require significantly less code to incorporate and use a much

more simple interface that does not require any further modifications to the CPU. This initial, one-

time cost consumes most of the effort as developers must understand the intricacies of a given CPU

and make modifications as necessary. The TIGRA interface removes the need to understand the

inner workings of a processor and allows future additions to utilize less code to add new functionality.

TIGRA provides a level of abstraction that eases the programming effort for all future designs.

34

Chapter 5

Simulation Results

In this chapter, we present the results of testing the TIGRA interface with the PicoRV32,

Rocket Chip generator, and Taiga processors. We discuss the data from simulation for all processors,

as well as initial FPGA hardware results on Amazon Web Services (AWS) F1 instances with the

PicoRV32 processor. All timing diagrams are transcribed into a more readable format, as screenshots

within the simulator do not represent the data very clearly as shown in Appendix C and Figures 5

and 6.

5.1 PicoRV32 Simulation Results

Similar to the design described in Section 4.1.2, each of the following test cases uses the

simple PicoRV32 memory interface and instructions provided in Appendix A. The simulations are

performed with Xilinx Vivado 2020.1 and target the XCVU9P-flgb2104-2-i FPGA for synthesis

information.

5.1.1 AES

Figures 5.1 and 5.2 show encryption via custom logic connected via TIGRA to the PicoRV32

processor. The first figure demonstrates the final two writes into the custom logic, which write the

128-bit state value and initiate the execution stall. As expected, the first write shown completes

in one clock cycle, and returns 0x0 via cl_outData as all AES write instructions have no return

value. Further, the CPU sets cl_mem_valid to high for one clock cycle, representing valid and

35

Figure 5.1: PicoRV32 with TIGRA and AES: The second two TIGRA instructions which store the
AES state in the custom logic and complete the encryption. The break represents 15 clock cycles
during which none of the shown signals change.

correct data on the cl_rs1 and cl_rs2 registers which is then latched into the custom logic on the

next clock cycle. The instructions are color coded to demonstrate which instruction is responsible

for changes within the custom logic, and we see the TIGRA_2 instruction write the lowest 64-bits

of the state value and TIGRA_3 latch the upper 64-bits of the state and initiate a stall in the

execute stage. The TIGRA_3 instruction sets cl_valid to a logic low, stalling the processor until

encryption completes 21 clock cycles later. The TIGRA_0 and TIGRA_1 instructions can be seen

in Appendix B as their execution mimics that shown in Figure 5.1.

Figure 5.2 shows the first two reads from the AES result, storing the lowest 64-bits of

aes_output. The values from cl_outData are color coordinated to clearly represent the flow of data

from the custom logic and through the CPU. As TIGRA aims to follow the ALU flow as closely as

possible, output data from the interface is latched into the native alu_out_q signal when cl_valid

is high and the processor moves out of the execute stage of the pipeline. This signal is used by

the PicoRV32 processor’s ALU to store results and prepare for writes to the CPU registers, and

this data flow is shown clearly in the timing diagram. The next clock cycle writes data back to the

register used in the instruction, as specified on line 19 of Listing 3. The TIGRA_5 instruction then

reads the next 32-bits of the AES result and writes this into the appropriate register. The remaining

reads are not shown here as they follow the exact flow, and they can be found in Appendix B.

As shown, only one of the AES instruction generates a stall in the execution pipeline. This

instruction stalls for 21 clock cycles in exec, spends 1 clock cycle in ld_rs1, and 2 clock cycles

in fetch for the initial decode and the final write back. Every other instruction spends a total

of 4 clock cycles from decode to write back, with no added latency introduce between instruction

execution. I total, PicoRV32 with TIGRA encrypts one 128-bit block via AES in a total of 52 clock

36

Figure 5.2: PicoRV32 with TIGRA and AES: The first two reads from the AES custom logic, showing
the end of the stall from the last write.

Figure 5.3: PicoRV32 with TIGRA and Posit Arithmetic: Posit addition showing the data flow from
the custom logic all the way through register write-back.

cycles. By comparison, efficient computation of one 128-bit block in software on RISC-V requires on

average 645 clock cycles to complete [45]. This exhibits the usefulness of using the TIGRA interface

to connect custom logic into the CPU, as this simple design exhibits a 12.4 times speedup when

encrypting 128-bit data with AES.

5.1.2 Posit Arithmetic

The results of posit addition, multiplication, and division are represented via figures 5.3, 5.4,

and 5.5 respectively. For each diagram, the completed result is highlighted first on cl_outData, then

on alu_out_q, and finally on the corresponding register. Posit addition and division each complete

in the number of clock cycles expected as discussed in Section 4.5. Multiplication, however, completes

in only four cycles instead of the six clock cycles detailed by the developer. Further inspection of

the code in [28] shows the multiplication case may be mislabeled and does only require four clock

cycles to complete.

37

Figure 5.4: PicoRV32 with TIGRA and Posit Arithmetic: Posit multiplication showing the data
flow from the custom logic all the way through register write-back.

Figure 5.5: PicoRV32 with TIGRA and Posit Arithmetic: Posit division showing the data flow from
the custom logic all the way through register write-back. The break represents 6 clock cycles during
which none of the shown signals change.

38

The results for figures 5.4 and 5.5 appear on cl_outData well before each sets its respective

done and cl_valid bit. This can be attributed to the fully-pipelined design of the PACoGen posit

cores used and the choice of using the same values for testing each instruction. By design, each

posit core runs freely and synchronizes results using the opStart and opDone bits shown in each

figure, replacing op with the operation shown.. The logic-high value is simply passed through a shift

register for the requisite number of clock cycles before writing a logic high on the output. Therefore,

as the input values do not change between instruction calls, the result has already been computed

by the PACoGen core, but the done signals are not set until the result can be guaranteed. Overall,

these tests show a functional posit extension to RISC-V without requiring any modifications to the

PACoGen code, validating the use of the TIGRA interface for the design.

5.1.3 Multiplication

The final simulation test case for PicoRV32 compares TIGRA with the packaged co-processor

interface, PCPI. Figures 5.6 and 5.7 show these results. Both diagrams achieve the same result,

0x0054 or 84 in decimal, and successfully write data into register file. However, using TIGRA with

the same multiplication logic produces the result 1 clock cycle quicker than when used with PCPI.

Figure 5.6 shows the mul_start signal, which is built into the multiplier logic for PicoRV32, is

driven high 2 clock cycles after the fetch state, compared to 3 in Figure 5.7 when using PCPI. Both

designs complete the multiplication in the same time from mul_start to cl_valid and pcpi_ready,

respectively. The extra clock cycle of latency can be attributed to extra synchronization required as

PCPI does not follow the standard ALU execution flow. This further demonstrates the benefits of

using the TIGRA interface to connect custom logic accelerators.

5.2 PicoRV32 Hardware Results

We test hardware functionality on the AWS F1 cloud service, which hosts Xilinx XCVU9P-

flgb2104-2-i FPGAs. The current iteration of the design only allows for a simple fpga_pci_peek

into a user defined memory space. This returns a single value that can be compared with results

from simulation, and does not allow for any complex testing of the device. As such, visual results

are currently omitted until this design is improved.

39

Figure 5.6: PicoRV32 with TIGRA and multiplication: Multiplication, the break represents 30 clock
cycles.

Figure 5.7: PicoRV32 with PCPI and multiplication: Multiplication, the break represents 31 clock
cycles.

40

5.3 Rocket Chip Results

Developers cannot easily perform hardware verification of Rocket Chip generated processors

but are provided a robust set of simulation utilities to test all designs. [34] details the necessary

steps to test Rocket Chip with TIGRA using the packaged Verilator simulator and receive the results

shown in this section. The timing diagrams in this section are color coded to help represent data

flow through the Rocket Chip processor and represent which instructions are responsible for changes

in the custom logic and within the processor.

5.3.1 AES

To test the Rocket AES design, we compiled a simple C program, shown in Listing 6 that

initializes the AES key and state values and then calls all 8 TIGRA instructions consecutively to

complete encryption and store the result. Figure 5.8 shows the two writes to the AES key and the

first write to the AES state, all instructions that do not require a stall. The instructions perform

the operations listed in Table 4.1 and we coordinate the data flow for each instruction by color

within the figure. For each instruction entering the execute stage of the pipeline, the Rocket Chip

processor sets the cl_mem_valid signal to high to indicate data may be latched on the next clock

edge. The first instruction, TIGRA_0 latches data into the lower 64 bits of the key register and is

arbitrarily set to return the value 1. The CPU latches this return value into the mem_reg_wdata

signal as the instruction moves to the memory stage, the same signal used by the Rocket Chip ALU

to save these results. The data is then copied into the wb_reg_wdata signal and finally into a CPU

register as the instruction moves to the writeback stage and then finally retires. The remaining two

instructions, TIGRA_1 and TIGRA_2 latch the upper 64 bits of the key and lower 64 bits of the

state, respectively, and follow the same data flow.

While these first three instructions are programmed to execute consecutively, as shown in

Listing 6, the compiler reorders instructions based on data dependencies. Listing 11 shows the order

of instructions after compilation, with data setup surrounding the first three TIGRA instructions to

prepare the values used for the AES key and state. This reordering explains the gap between the

initial writes in Figure 5.8.

Figure 5.9 shows TIGRA instructions 3-7. The first instruction on the diagram writes the

upper 64 bits of the AES state and initiates a stall in the Rocket Chip processor to complete the

41

Figure 5.8: Rocket Chip with AES via TIGRA: The first three AES writes.

42

Figure 5.9: Rocket Chip with TIGRA: The remaining instructions to complete AES encryption in a
Rocket Chip generated processor. The break in the diagram represents 18 clock cycles during which
none of the signals shown change.

encryption. The custom logic stalls the CPU for 22 total clock cycles by setting cl_valid to a

logic low. This value is immediately copied to the ctrl_stalld signal, which stalls the TIGRA_4

and TIGRA_5 instructions in decode and fetch, respectively. In the subsequent two clock cycles,

ctrl_killx and ctrl_killm are set to logic high to stall in the memory and writeback stages of

the pipeline as they are vacated. Once encryption completes, the custom logic sets the cl_valid

signal and the internal Rocket Chip control signals are cleared in reverse order. The processor then

continues as normal and TIGRA instructions 4-7 read the encrypted result into CPU registers.

5.3.2 Posit Addition

Figure 5.10 shows the full execution of a posit addition instruction, TIGRA_0. Mirroring

the stall shown for AES, this instruction pushes ctrl_stalld high, followed by ctrl_killx and then

ctrl_killm. Once complete, the custom logic sends the data from add_result within the addition

PACoGen core to cl_outData to be latched by the Rocket Chip processor as the instruction moves

to the memory stage. The stalls are then lifted to enable the CPU to resume normal execution. The

output data is copied to mem_reg_wdata as the instruction enters the memory stage. This is then

43

Figure 5.10: Rocket Chip with TIGRA: Posit addition of 18 and 3, 0x42100000 and 0x40C00000,
providing the resultant value 21, 0x42280000.

written to wb_reg_wdata for write back into the register file as the instruction enters the last stage

of the pipeline and finally is latched into a register as the instruction retires.

5.3.3 Rocket ALU

The final Rocket test case implements a series of single clock cycle instructions as defined

in Section 4.2.1. Figure 5.11 shows the results from the XOR instruction using the RISC-V tool’s

instruction verification capabilities. When using the instruction verification libraries, chosen in-

structions are executed very and the expected results are compared with those returned by the

given instruction. The chosen commands will not execute consecutively due to this comparison,

explaining the break in the diagram. Figure 5.11 shows the output appearing on cl_outData im-

mediately within the execute stage, as expected, before the instruction moves on to the next stage

of the pipeline. The results are copied through mem_reg_wdata and wb_reg_wdata before being

copied into a register as the instruction retires. We do not show the other functions from Figure 4.8

as their execution is the same, simply with different results.

5.3.4 RoCC Results and Comparison to TIGRA

Figure 5.12 shows the first AES instruction executing within the rocket custom coprocessor.

Accelerators and designs connected with this interface do not begin executing until after the instruc-

tion exits the writeback stage of the normal Rocket Chip pipeline, as shown by the rocc_cmd_valid

44

Figure 5.11: Rocket Chip with TIGRA and Rocket Chip ALU. Results from two XOR instructions
executing within the instruction verification environment provided by the RISC-V Tools.

Figure 5.12: Rocket Chip with RoCC and AES. The first AES write instruction that writes the
lowest 32-bits of the AES key to the custom logic. The break represents 7 clock cycles during which
none of the shown signals change.

signal going to a logic high as the instruction leaves the writeback stage. This guarantees that any

RoCC enabled instruction incurs at least a 4 clock cycle penalty after being fetched. To further

this, RoCC instructions can not write back to the register file at any predictable time depending

on the compiler optimizations and reordering, as the RoCC interface must wait for the writeback

bus to clear or stall the processor to force a write. This wait introduces a variable latency for each

instruction executed through the RoCC interface and is represented in Figure 5.12. The result of the

RoCC_0 instruction shown is latched to a register 15 cycles after the fetch stage, or 10 clock cycles

after the custom logic returned a high value on the rocc_resp_valid signal. This figure also shows

that RoCC uses different signals to write data back to the register file, io_rocc_resp_bits_data,

which will require overhead in logic to route responses correctly.

RoCC instructions behave more predictably when compiler reordering allows them to exe-

45

Figure 5.13: Rocket Chip with RoCC and AES. The first two AES read instructions that return the
lowest 64-bits of the encrypted result.

cute consecutively, which removes the contention when RoCC attempts to write back to the register

file. Figure 5.13 shows two AES read instructions near the end of the C program that execute

in sequence after the Rocc_3 instruction which completed the encryption. With no remaining in-

structions available to mask the latency of the interface, each invocation of RoCC stalls the Rocket

Chip processor pipeline, adding additional overhead for subsequent calls to the attached accelerator.

RoCC instructions fetched before, but executing after a multi-clock cycle stall, such as RoCC_4

and RoCC_5 suffer the largest penalty as they stall in the Rocket Chip pipeline while the RoCC_3

instruction executes.

Table 5.1 shows the comparison of RoCC instructions against the TIGRA equivalents. In-

structions 3, 4, and 5 require the longest time for both the RoCC and TIGRA interfaces, as both

designs stall the Rocket Chip processor when encrypting the data in instruction 3. Each correspond-

ing RoCC instruction incurred extra overhead when compared to the TIGRA equivalent. For one

iteration of AES-128, RoCC instructions added 6.875 clock cycles per instruction on average when

compared to the corresponding TIGRA implementation.

5.4 Taiga Processor Results

Similar to the Rocket Chip designs, the Taiga modifications are tested using the packaged

Verilator simulator to receive the results shown in this section. The timing diagrams are color coded

46

Table 5.1: Latency of TIGRA enabled Rocket compared to RoCC when executing AES instructions.
Each value counts the number of clock cycles between instruction fetch and when the result is stored
in a register.

AES Instr. Latency TIGRA Latency RoCC Difference
0 4 15 11
1 4 12 8
2 4 7 3
3 26 29 3
4 26 30 4
5 26 33 7
6 4 12 8
7 4 15 11

to help represent data flow through the processor and represent which instructions are responsible

for changes in the custom logic and within the processor.

5.4.1 AES

We tested AES encryption on the Taiga processor using the same C program described in

Section 5.3. Figure 5.14 shows the results of the first two AES instructions writing the full AES key

to the custom logic. Each of these instructions complete in one clock cycle, and return arbitrary

values to follow data flow through the Taiga processor. As shown, the custom logic maintains a

logic high on cl_valid, and the TIGRA execution unit sets tigra_unit_done signal to high during

the load/store stage of the pipeline. The Taiga processor’s writeback multiplexer acknowledges this

instruction as complete by signaling high on the load_store_ack signal, and data is placed on the

retiring_data signal before being written to a register as the instruction retires. Similar to the

Rocket Chip processor, these instructions do not execute consecutively due to compiler reordering.

Figure 5.15 shows the results of the last five TIGRA instructions described in Table 4.1

executing within the Taiga processor with the AES custom hardware attached. As AES encryption

begins in the load/store stage of the TIGRA_3 instruction, Taiga sets the tr_unit_stall signal as

high until the custom logic outputs a high output valid signal. This signal shows the processor has

stalled as the execution unit needed for the next instruction is unavailable, preventing new TIGRA

instructions from entering the custom hardware and preventing new instructions from continuing out

of the fetch stage until the current instruction completes. Further, the timing diagram shows that the

Taiga processor stalls the currently executing instruction in the load/store stage of the pipeline until

data is available for writeback. This stall occurs in the load/store stage to allow other instructions

47

Figure 5.14: Simulation of the first two TIGRA instructions when using custom logic with AES.
These instructions both complete within one clock cycle.

to enter available execution units, and the writeback multiplexer will stall the CPU if necessary.

Once the TIGRA execution unit sets tigra_unit_done to logic high, Taiga’s writeback multiplexer

immediately responds with an acknowledgement on the load_store_ack signal and supplies the

correct output to the retiring_data signal. The processor writes the result to the appropriate

register on the next clock cycle, following the same flow as built-in Taiga execution units.

The remaining instructions complete as the Taiga processor issues new requests to the

TIGRA execution unit, and all instructions complete consecutively following the same pathway as the

TIGRA_3 instruction. It is important to note that both the TIGRA_6 and TIGRA_7 instructions

are listed as in the fetch stage of the pipeline while the processor stalls to complete the encryption.

Taiga’s decoupled design allows up to 8 in flight instructions by default. The processor fetches

upcoming instructions and schedules them to complete, even when current instructions require more

than one clock cycle to complete or will use the same execution unit of a former instruction. This

design allows multiple TIGRA instructions to occupy the fetch stage, but only one instruction may

occupy all subsequent stages as each uses the same hardware.

5.4.2 Posit Addition

Figure 5.16 shows the completion of posit addition 18 and 3, 0x42100000 and 0x40C00000

respectively, followed by the addition of 21 and 3, with 0x42280000 representing 21. As there

48

Figure 5.15: Simulation showing the latter five TIGRA instructions executing on the Taiga processor
with AES hardware connected. The break represents 18 clock cycles during which none of the shown
signals change.

are no other instructions left in the program, the Taiga processor does not set the tr_unit_stall

signal. The host CPU recognizes the explicit data dependencies defined by the compiler and the

consecutive TIGRA instructions do not cause an unnecessary stall in the pipeline. The AES example

sets tr_unit_stall as multiple instructions were fetched that could not enter the decode or execute

stages of the Taiga pipeline until the previous instructions completed. Both these results and those

shown by the AES example prove that the TIGRA interface adds no latency to the Taiga processor

and the processor stalls only when neeeded.

5.4.3 Taiga Testing

The instructions shown in Table 4.2 are completed via a simple C program that calls all

8 TIGRA instructions with inline assembly as shown in Listing 8. Figure 5.17 shows the latter 4

instructions, those that require arbitrary stalls, completing in the Taiga processor. Each instruction

immediately supplies the return value, but this value is not latched by the processor until the custom

logic sets cl_valid to a logic high. cl_rs1 and cl_rs2 are not shown on the timing diagram here,

as the custom logic ignores these inputs and sets the outputs based on the input instruction. The

C program provided, however, does set the inputs to each instruction by overwriting the temp0 and

49

Figure 5.16: Simulation of two consecutive tigra_0 instructions with Posit addition connected via
the TIGRA interface on the Taiga processor. Each break represents 2 clock cycles during which
none of the shown signals change.

Figure 5.17: Simulation of the TIGRA instructions 4-7 when using custom logic with arbitrary
return values and stalls. These instructions signal complete at varying times even though the data
is immediately available.

temp1 values shown in Listing 8 immediately before calling the next instruction. This extraneous

overwrite causes the TIGRA instructions to be fetched 2 clock cycles apart, the gap shown in the

timing diagram. As none of the arbitrary delays exceed 2 clock cycles, this custom logic does not

cause the Taiga processor to stall due to the parallel execution unit design.

Listing 7 provides the code used to test multiplication within the Taiga processor via the

TIGRA interface. Figure 5.18 shows the first 7 multiplications performed by the custom logic in this

design. Each multiplication immediately provides a result when the instruction enters the load/store

stage of the pipeline, and the results are written through the processor pipeline as expected. This

timing diagram further shows 5 TIGRA instructions executing concurrently, while the test code calls

50

Figure 5.18: Simulation of the first 7 multiplications to test the multiplication custom logic.

at most 3 TIGRA instructions in a row. As the results of the computations on lines 45 and 54 of

Listing 7 are not required until line 89, the compiler reordered the instructions to more efficiently use

processor resources when computing multiple sums. Figure 6 in Appendix C shows the waveform

capture of the execution of this program.

It may be noted that multiplication in TIGRA does not require 2 clock cycles when compared

to the default Taiga implementation. The Taiga multiplier uses a clock cycle to sign extend the inputs

to provide a correct result for any number supplied. The multiplication design implemented within

TIGRA removes this extra clock cycle to complete multiplication immediately upon latching the

input data from cl_rs1 and cl_rs2

5.5 Summary

The results from this section show that incorporating TIGRA with a CPU can allow users

to enable different functionality through usage of custom logic. In the PicoRV32, Rocket Chip,

and Taiga processors, we successfully demonstrate that TIGRA introduces zero latency when using

custom logic accelerators and enables developers to build custom instruction extensions that operate

in the same pipeline as the ALU of the CPU. We also show that interfaces that require extra

synchronization logic or diverge from the standard ALU execution flow, such as PCPI or ROCC,

51

may incur latency penalties similar to loosely coupled accelerators.

52

Chapter 6

Partial Reconfiguration

Partial Reconfiguration is the process of compiling and reprogramming a subset of an FPGA

design instead of completing the process on the entire project. This introduces modularity to a design

by allowing developers to create multiple compatible custom modules and dynamically reprogram the

reconfigurable region at runtime while the base logic continues to function. Partial reconfiguration

requires extra logic to perform the reprogramming of only specific regions of the FPGA as a trade-off

for the flexibility provided. Figure 6.1 shows a high level block diagram of the partial reconfiguration

design using the TIGRA interface. Partial reconfiguration also allows developers to recompile each

module separately while leaving the main processor unchanged.

Both Intel’s Partial Reconfiguration (PR) [22] and AMD/Xilinx’s Dynamic Function eX-

change (DFX) [6] supply tools to enable partial reconfiguration within designs. In this chapter, we

discuss how DFX is leveraged to enhance the functionality of the TIGRA interface.

Custom Logic

Connected via TIGRA
as a PR Region

Main Processor

FPGA

PR Logic

Figure 6.1: Abstract block diagram for partial reconfiguration. The Custom Logic block is the
reconfigurable region in orange. The PR logic block, shown in white, represents the extra logic
required to partially reprogram the FPGA.

53

6.1 Taiga Partial Reconfiguration

Setting up Partial Reconfiguration with DFX requires some modifications to the original

design in order to be compatible with the partial reconfiguration process. The original design of

TIGRA utilized System Verilog interfaces and structures to simplify design of the TIGRA execution

unit and mimic existing execution units within Taiga. Listing 9 shows the module declaration,

interface declaration, and tigra_inputs_t struct definition. Interfaces are not compatible with

DFX, requiring that we specify each signal individually or "flatten" the module declaration as

shown in Listing 10. Further, when building Taiga for usage on an FPGA, the authors provide

scripts to automatically set up the required memory and wrappers to run on the Xilinx ZedBoard.

The process automatically packages the Taiga CPU as a block diagram design, meaning the design

is static and therefore incompatible with DFX. We then needed to enable DFX on the CPU before

packaging as a block diagram, removing the capability of using the automated scripts to generate

the full processor system for use on the Xilinx ZedBoard platform. As we are no longer using the

automated scripts, we changed the target device to the Ultrascale+ XCVU9P-FLGB2104-2-i FPGA

to provide more FPGA resources when setting up partial reconfiguration, allowing larger custom

logic designs to exist in the reprogrammable region.

We first enabled partial reconfiguration on the TIGRA interface within the Taiga processor

using AMD/Xilinx’s DFX within Vivado. We then follow the guides in [54] and [52] to enable

DFX for the attached custom logic and created a profile for each function described in Chapter 4.

When enabling partial reconfiguration within a design, developers must select a region within the

FPGA to designate for partial reconfiguration. This restricts the FPGA resources such as memory,

look-up tables (LUTs), and slices for usage only within custom modules for partial reconfiguration.

Figure 6.2 shows a small portion of the XCVU9P device, with the custom logic block highlighted

and programmed with the arbitrary design described in Section 4.6. This region covers over 50,000

LUTs, 100,000 registers, and over 200 RAM blocks which supplies more than enough resources for

the designs tested in this paper.

6.1.1 Results

One of the goals for implementing partial reconfiguration is to reduce compilation time when

modifying and testing designs. Each child design for the reconfigurable region is compiled separately,

54

Figure 6.2: Screenshot showing a portion of the XCVU9P device, including the custom logic block
which is designated as the partially reconfigurable region.

Table 6.1: Synthesis and Implementation timing results of the full Taiga processor with each test
case connected via TIGRA and the same designs using Xilinx DFX.

Synthesis Time (s) Implementation Time (s)
Complete Arbitrary 56.6 327

Complete AES 73.0 346.2
Complete Multiply 56.8 318.8
Complete Posit 61.0 323.8
Base Design 96.6

Parent Module (Arbitrary) 46.0 317.6
Child (AES) 64.0 289.2

Child (Multiply) 48.2 262.6
Child (Posit Addition) 50.6 258.4

or out-of-context, meaning smaller designs are placed and routed for each module. Out-of-context

compilation also ensures that no optimizations occur when between the CPU and the custom logic,

which could remove unused signals or attempt to re-route some designs outside of the locked region.

To test DFX with TIGRA, we ran synthesis and implementation on the Taiga processor

with AES connected via TIGRA with the design using partial reconfiguration. Synthesis is the

process of generating the hardware required to complete a given design, and implementation is the

process of placing and routing the synthesized design on the designated FPGA. Table 6.1 shows

the average timing results of 5 runs of synthesis and implementation on the Taiga processor for the

complete designs of all test cases and the partial reconfiguration results. The "Base Design" refers

to the non-reprogrammable region of the design and does not have an implementation time as this

is completed with the parent of the reconfigurable region.

The parent design is the first module and all children re-use parts of the implementation

55

Table 6.2: Comparison of synthesis and implementation times of a complete design compared to the
same design using Xilinx DFX.

Synthesis
Speedup Percentage Time Saved

Arbitrary 1.23 18.7%
AES 1.14 12.3%

Multiply 1.18 15.1%
Posit 1.21 17.0%

Implementation
Speedup Percentage Time Saved

Arbitrary 1.03 2.3%
AES 1.20 16.5%

Multiply 1.21 17.6%
Posit 1.25 20.2%

to further reduce the time of these stages of the compilation process. Specifically, the parent im-

plementation run creates the FPGA routing and logic required to implement partial reconfiguration

and this is locked into the overall design for re-use when building more custom modules. The par-

ent design is usually chosen as the most complicated design that will be implemented within the

reprogrammable region, as this module will require the most logic and routing. However, a bug in

the Xilinx Vivado software [5] causes the implementation stage to fail and prevents manual selection

of the parent and child modules. The fix forces the software to automatically select the arbitrary

test design described in Section 4.6 and Table 4.2 as the parent implementation, which can affect

the implementation time of the child designs which are more complicated, such as the AES custom

logic.

Table 6.2 shows the speedup gained in the synthesis and implementation stages of com-

pilation for each test case. As expected, each design’s synthesis run completes in less time than

the respective run for an entire compilation when switching out the custom logic. The implemen-

tation run of the arbitrary design only saves 2.3% of the time compared to the complete design,

but this places and routes the locked logic required for partial reconfiguration. On average, partial

reconfiguration saves 15.78% of the time for each synthesis run and 14.15% of the time for each

implementation run. If we remove the parent module from the implementation average, this result

changes to 18.1% of the time saved on average for each new child module designed.

56

6.2 Summary

This section demonstrates the capabilities of using partial reconfiguration with TIGRA to

speed up the hardware design process for custom logic accelerators or instruction set extensions.

The results in Table 6.2 show up to 20.2% time saved in compilation to add new instructions to a

processor. Developers using a TIGRA enabled processor can compile modules with any custom logic

design and reprogram only the reserved region of the FPGA at runtime, improving the flexibility of

the processor. The modularity introduced by using the TIGRA interface allows for smaller custom

logic designs as only the hardware needed at a given time is used, which can reduce area usage and

further improve maximum clock speed and reduce the power required during execution.

57

Chapter 7

Conclusions and Future Work

This dissertation aims to bridge the gap between loosely coupled and tightly coupled acceler-

ators and simplify the process of adding custom logic to existing processors. By giving developers the

ability to quickly swap out and more easily create tightly coupled accelerators, designs can benefit

from a zero latency interface and with partial reconfiguration can be chosen and switched at run-

time. Incorporating the TIGRA interface with an existing RISC-V processor requires a non-recurring

programming effort, as described in Section 4.7, to ensure all pre-existing processor functionality

remains consistent and confirm that the TIGRA interface does not introduce overhead for connected

custom logic designs. All further usage of the interface requires no modifications of the underly-

ing CPU architecture or instruction pipeline, and developers can focus on building custom logic

and then communicate via the simplified TIGRA interface. Additionally, all custom logic designs

are completely portable across different TIGRA enabled processors and require no modification to

connect to a new CPU.

Chapter 3 provides insight into incorporating TIGRA into an existing processor pipeline,

designing custom logic for use within TIGRA, and how to use the custom instructions with the RISC-

V compiler. Chapter 4 gives implementation details of three very different RISC-V CPU’s that were

TIGRA enabled as proof of concept designs. The simple PicoRV32 processor with TIGRA was used

to prove that TIGRA adds no latency overhead when comparing to the built-in coprocessor interface,

PCPI. Adding TIGRA to the Rocket Chip generator demonstrates that the TIGRA interface works

on fully pipelined processors, can be implemented in the Chisel environment, and reduces latency

when compared to the Rocket Chip Custom Coprocessor Interface, RoCC. Custom designs connected

58

via RoCC have more functionality, FPU and memory access, when compared to the TIGRA interface,

but this added functionality adds latency and programming effort penalties. The modifications in

the Taiga processor, which utilizes decoupled execution units, show promise toward the inclusion of

TIGRA in an out-of-order processor, such as the Berkeley Out-of-Order Machine [57]. Taiga required

that the TIGRA design manage tags and return data in the correct order similar to out-of-order

processors, all while maintaining the simplicity of the user facing interface. Future work will explore

the inclusion of TIGRA in out-of-order processors.

Coupled with Chapter 5, we show that TIGRA can work on architectures with differing

complexity and pipeline lengths to provide many benefits in the fields of HPC and hardware design by

removing the latency associated with hardware based accelerators. TIGRA can further be extended

to allow multiple instances of custom logic and execute them concurrently, by managing currently

executing instructions through the addition of tags to the interface. While adding tags and managing

multiple in flight instructions may require more initial work when adding TIGRA to a processor,

the user side development of the custom logic will require minimal additional programming effort to

return the appropriate tag as each instruction retires from the custom logic.

Further, building TIGRA with Partial Reconfiguration shows the capabilities of using the

interface in a real-world processor. Based on the case studies, developers can save, on average,

18.1% of the compilation time during the design process to more quickly prototype hardware-based

accelerators or instruction set extensions. These modifications can then be applied at runtime

by reprogramming the custom logic region connected via the TIGRA interface, providing further

flexibility within a TIGRA enabled processor by allowing the user to swap between execution units

while the processor continues to run. PR designs also improve the modularity of designs and may

reduce resource usage of connected custom logic, which can lead to reduced power usage of running

designs and improve overall clock-speed of the custom logic.

Chapters 4 and 5 show the design and results of encryption and posit arithmetic connected

via TIGRA as two future looking extensions for RISC-V processors, but any custom design can be

connected via the interface. Further work is being completed to test machine learning inference via

custom logic connected by the TIGRA interface. Further, Figure 3.5 shows that many accelerators

can be used within the TIGRA interface by adding minimal logic to decode the input instructions

and select the correct output to return to the CPU. These capabilities demonstrate the potential of

using the TIGRA interface for multiple applications and in differing environments. Developers can

59

couple all necessary logic for an application in one custom logic design, and partial reconfiguration

can allow users to swap the connected hardware at runtime to customize the processor to any given

application.

Overall, adding the TIGRA interface to a processor has been shown to reduce the program-

ming effort by reducing the lines of code edited or added to include an accelerator by up to 75% in the

case studies. The simplified interface allows developers to include existing custom logic, such as the

PACoGen posit arithmetic cores or AES encryption hardware, with minimal extra design when using

existing logic. Further, the TIGRA interface is shown to execute 6.875 clock cycles per instruction

faster than the Rocket Custom Coprocessor, a commonly used interface to include custom hardware

into the Rocket Chip processor. The TIGRA interface works well with the parameterizable designs

of the Rocket Chip generator and Taiga processors, working as an extension on these processors

that may be enabled during compilation time. This dissertation proves the benefits of including

a TIGRA interface on future processors to improve the modularity and ease of customizability of

RISC-V processors without any latency overhead.

60

Appendices

61

Appendix A Code Listings

This appendix shows some of the code required to implement TIGRA on different processors

or test the designs described in Chapter 4. These listings provide supplemental information to

describe how the work in this dissertation was carried out.

217 // Write Request

218 logic wr_active;

219 logic [31:0] wr_addr;

220

221 always_ff @(posedge clk_main_a0)

222 if (! rst_main_n_sync) begin

223 wr_active <= 0;

224 wr_addr <= 0;

225 end

226 else begin

227 wr_active <= wr_active && bvalid && bready ? 1’b0 :

228 ~wr_active && awvalid ? 1’b1 :

229 wr_active;

230 wr_addr <= awvalid && ~wr_active ? awaddr : wr_addr ;

231 end

232

233 assign awready = ~wr_active;

234 assign wready = wr_active && wvalid;

235

236 // Write Response

237 always_ff @(posedge clk_main_a0)

238 if (! rst_main_n_sync)

239 bvalid <= 0;

240 else

241 bvalid <= bvalid && bready ? 1’b0 :

242 ~bvalid && wready ? 1’b1 :

243 bvalid;

244 assign bresp = 0;

245

246 // Read Request

247 always_ff @(posedge clk_main_a0)

248 if (! rst_main_n_sync) begin

249 arvalid_q <= 0;

250 araddr_q <= 0;

251 end

252 else begin

253 arvalid_q <= arvalid;

254 araddr_q <= arvalid ? araddr : araddr_q;

255 end

62

256

257 assign arready = !arvalid_q && !rvalid;

258

259 // Read Response

260 always_ff @(posedge clk_main_a0)

261 if (! rst_main_n_sync)

262 begin

263 rvalid <= 0;

264 rdata <= 0;

265 rresp <= 0;

266 end

267 else if (rvalid && rready)

268 begin

269 rvalid <= 0;

270 rdata <= 0;

271 rresp <= 0;

272 end

273 else if (arvalid_q)

274 begin

275 rvalid <= 1;

276 rdata <= (araddr_q == ‘BASE_REG_ADDR) ? memory [32]:

277 (araddr_q == (‘BASE_REG_ADDR +4)) ? {memory [33] }:

278 (araddr_q == (‘BASE_REG_ADDR +8)) ? {memory [34] }:

279 ‘UNIMPLEMENTED_REG_VALUE ;

280 rresp <= 0;

281 end

282

283 // ---

284 // PicoRV32 with POSIT CL

285 // ---

286

287 picorv32_TIGRA #(

288) uut (

289 .clk (clk_main_a0),

290 .resetn (rst_main_n_sync),

291 .trap (trap),

292 .mem_valid (mem_valid),

293 .mem_instr (mem_instr),

294 .mem_ready (mem_ready),

295 .mem_addr (mem_addr),

296 .mem_wdata (mem_wdata),

297 .mem_wstrb (mem_wstrb),

298 .mem_rdata (mem_rdata),

299

300 //TIGRA Interface

301 .cl_insn (cl_insn),

63

302 .cl_rs1 (cl_rs1),

303 .cl_rs2 (cl_rs2),

304 .cl_mem_valid (cl_mem_valid),

305 .cl_latch_next_insn (cl_latch_next_insn),

306 .cl_outData (cl_outData),

307 .cl_valid (cl_valid)

308);

309

310 pico_cl_posits pico_posits(

311 .clk (clk_main_a0),

312 .resetn (rst_main_n_sync),

313 .insn_from_pico (cl_insn),

314 .data1 (cl_rs1),

315 .data2 (cl_rs2),

316 .mem_valid_from_pico (cl_mem_valid),

317 .latch_next_insn (cl_latch_next_insn),

318 .outData (cl_outData),

319 .out_valid (cl_valid)

320);

321

322

323 always_ff @(posedge clk_main_a0) begin

324 mem_ready <= 0;

325

326 if (! rst_main_n_sync) begin // Reset

327 memory [0] = 32’ b000000010010_00000_000_00001_0010011; // addi x1 ,18

328 memory [1] = 32’ b000000000011_00000_000_00010_0010011; // addi x2 ,3

329 memory [2] = 32’ b0000000_00010_00001_000_00011_0110011; // add x3,x1 ,x2

330

331 //Load from memory [16], posit value 18

332 memory [3] = 32’ b000001000000_00000_010_00100_0000011; // lw x4 ,64(x0)

333 //Load from memory [17], posit value 3

334 memory [4] = 32’ b000001000100_00000_010_00101_0000011; // lw x5 ,68(x0)

335 memory [5] = 32’ b0000000_00101_00100_000_00110_0101011; // posit add x6 ,x4,x5

336

337 //Store sum in memory [32]

338 memory [6] = 32’ b0000100_00110_00000_010_00000_0100011; // sw x6 ,128(x0)

339 memory [7] = 32’ b0000000_00101_00100_001_00111_0101011; // posit mult. x7 ,x4,x5

340 memory [8] = 32’ b0000000_00101_00100_010_01000_0101011; // posit divide x8,x4,x5

341

342 //Store product in memory [33]

343 memory [9] = 32’ b0000100_00111_00000_010_00100_0100011; // sw x7 ,132(x0)

344 //Store quotient in memory [34]

345 memory [10] = 32’ b0000100_01000_00000_010_01000_0100011; // sw x8 ,136(x0)

346

347 memory [11] = 32’ b000000000000_00000_000_00000_0010011; // addi x0 ,0 (nop)

64

348 memory [12] = 32’ b000000000000_00000_000_00000_0010011; // addi x0 ,0 (nop)

349 memory [12] = 32’ b000000000000_00000_000_00000_0010011; // addi x0 ,0 (nop)

350 memory [13] = 32’h ff5ff06f; // jal back to first nop

351

352 memory [16] = 32’ b01000010000100000000000000000000; // 18 as posit <32,6>

353 memory [17] = 32’ b01000000110000000000000000000000; // 3 as posit <32,6>

354 end

355 else if (mem_valid && !mem_ready) begin

356 if(mem_addr < 1024) begin

357 mem_ready <= 1;

358 mem_rdata <= memory[mem_addr >> 2];

359

360 if(mem_wstrb [0]) memory[mem_addr >> 2][7: 0] <= mem_wdata[7: 0];

361 if(mem_wstrb [1]) memory[mem_addr >> 2][15: 8] <= mem_wdata [15: 8];

362 if(mem_wstrb [2]) memory[mem_addr >> 2][23:16] <= mem_wdata [23:16];

363 if(mem_wstrb [3]) memory[mem_addr >> 2][31:24] <= mem_wdata [31:24];

364 end

365 end

366 end

Listing 1: The code required to add a TIGRA enabled PicoRV32 processor to an AWS F1 wrapper

with posit custom logic.

65

1 memory [0] = 32’ b000000010010_00000_000_00001_0010011; //addi x1 ,18

2 memory [1] = 32’ b000000000011_00000_000_00010_0010011; //addi x2 ,3

3 memory [2] = 32’ b0000000_00010_00001_000_00011_0110011; //add x3 ,x1,x2

4 memory [3] = 32’ b000001000000_00000_010_00100_0000011; //lw x4 ,64(x0) (x4 = mem [16])

5 memory [4] = 32’ b000001000100_00000_010_00101_0000011; //lw x5 ,68(x0) (x5 = mem [17])

6

7 memory [5] = 32’ b0000000_00101_00100_000_00110_0101011; //posit add x6,x4,x5

8

9 //Store posit sum in mem [32]

10 memory [6] = 32’ b0000100_00110_00000_010_00000_0100011; //sw x6 ,128(x0) (mem [32] = x6)

11 memory [7] = 32’ b0000000_00101_00100_001_00111_0101011; //posit multiply x7 ,x4,x5

12 memory [8] = 32’ b0000000_00101_00100_010_01000_0101011; //posit divide x8,x4 ,x5

13

14 //Store posit product in mem [33]

15 memory [9] = 32’ b0000100_00111_00000_010_00100_0100011; //sw x7 ,132(x0) (mem [33] = x7)

16 //Store posit quotient in mem [34]

17 memory [10] = 32’ b0000100_01000_00000_010_01000_0100011; //sw x8 ,136(x0) (mem [34] = x8)

18

19 memory [11] = 32’ b000000000000_00000_000_00000_0010011; //addi x0 ,0 (nop)

20 memory [12] = 32’ b000000000000_00000_000_00000_0010011; //addi x0 ,0 (nop)

21 memory [12] = 32’ b000000000000_00000_000_00000_0010011; //addi x0 ,0 (nop)

22 memory [13] = 32’h ff5ff06f; //jal back to first nop

23

24 memory [16] = 32’ b01000010000100000000000000000000; //18 in posit <32,6> format

25 memory [17] = 32’ b01000000110000000000000000000000; //3 in posit <32,6> format

Listing 2: The instructions used to test the Posit custom logic within the PicoRV32 with TIGRA.

66

1 memory[0] = 32’ b000000101010_00000_000_00001_0010011; //addi x1 ,42

2 memory[1] = 32’ b000000010001_00000_000_00010_0010011; //addi x2 ,17

3 memory[2] = 32’ b0000000_00010_00001_000_00010_0110011; //add x2 ,x1,x2

4 memory[3] = 32’ b000010000000_00000_010_01000_0000011; //lw x8 ,128(x0) (x8 = mem [32])

5 memory[4] = 32’ b000010000100_00000_010_01001_0000011; //lw x9 ,132(x0)

6 memory[5] = 32’ b000010001000_00000_010_01010_0000011; //lw x10 ,136(x0)

7 memory[6] = 32’ b000010001100_00000_010_01011_0000011; //lw x11 ,140(x0)

8 memory[7] = 32’ b000010010000_00000_010_01100_0000011; //lw x12 ,144(x0)

9 memory[8] = 32’ b000010010100_00000_010_01101_0000011; //lw x13 ,148(x0)

10 memory[9] = 32’ b000010011000_00000_010_01110_0000011; //lw x14 ,152(x0)

11 memory [10] = 32’ b000010011100_00000_010_01111_0000011; //lw x15 ,156(x0)

12

13 memory [11] = 32’ b000010100000_00000_000_00011_0010011; //addi x3 ,160

14

15 memory [12] = 32’ b0000000_01001_01000_000_00000_0101011; // wr_key_lo x8,x9

16 memory [13] = 32’ b0000000_01011_01010_001_00000_0101011; // wr_key_hi x10 ,x11

17 memory [14] = 32’ b0000000_01101_01100_010_00000_0101011; // wr_state_lo x12 ,x13

18 memory [15] = 32’ b0000000_01111_01110_011_00000_0101011; // wr_state_hi x14 ,x15

19 memory [16] = 32’ b0000000_00000_00000_100_10000_0101011; // rd_res_lo x16

20 memory [17] = 32’ b0000000_00010_00001_000_00010_0110011; //add x2 ,x1,x2

21 memory [18] = 32’ b0000000_00000_00000_101_10001_0101011; // rd_res_midlo x17

22 memory [19] = 32’ b0000000_00000_00000_110_10010_0101011; // rd_res_midhi x18

23 memory [20] = 32’ b0000000_00000_00000_111_10011_0101011; // rd_res_hi x19

24

25 memory [21] = 32’ b0000000_10000_00011_010_00000_0100011; //sw x16 ,0(x3)

26 memory [22] = 32’ b0000000_10001_00011_010_00100_0100011; //sw x17 ,4(x3)

27 memory [23] = 32’ b0000000_10010_00011_010_01000_0100011; //sw x16 ,8(x3)

28 memory [24] = 32’ b0000000_10011_00011_010_01100_0100011; //sw x19 ,12(x3)

29

30 memory [25] = 32’ b000000000000_00000_000_00000_0010011; //addi x0 ,0 (nop)

31 memory [26] = 32’ b000000000000_00000_000_00000_0010011; //addi x0 ,0 (nop)

32 memory [27] = 32’ b000000000000_00000_000_00000_0010011; //addi x0 ,0 (nop)

33 memory [28] = 32’h ff5ff06f; //jal back to first nop

34

35 memory [32] = 32’ h09cf4f3c; //key lo

36 memory [33] = 32’ habf71588; //key midlo

37 memory [34] = 32’ h28aed2a6; //key midhi

38 memory [35] = 32’ h2b7e1516; //key hi

39 memory [36] = 32’ he0370734; //state lo

40 memory [37] = 32’ h313198a2; //state midlo

41 memory [38] = 32’ h885a308d; //state midhi

42 memory [39] = 32’ h3243f6a8; //state hi

Listing 3: The instructions used to test the AES custom logic within the PicoRV32 with TIGRA.

67

1 memory [0] = 32’ b000000010101_00000_000_00001_0010011; //addi x1 ,21

2 memory [1] = 32’ b000000000101_00000_000_00010_0010011; //addi x2 ,5

3 memory [2] = 32’ b0000000_00010_00001_000_00011_0110011; //add x3,x1,x2

4 memory [3] = 32’ b0000001_00010_00001_000_00100_0101011; //mul x4,x1,x2

5

6 memory [4] = 32’ b0000010_00100_00000_010_00000_0100011;//sw x4 ,64(x0) (mem [16] = x4)

7 memory [5] = 32’ b0000000_00011_00001_000_00011_0110011; //add x3,x1,x3

8 memory [6] = 32’ b0000000_00011_00010_000_00011_0110011; //add x3,x2,x3

9

10 memory [7] = 32’ b000000000000_00000_000_00000_0010011; //nop (addi x0 ,0)

11 memory [8] = 32’ b000000000000_00000_000_00000_0010011; //nop (addi x0 ,0)

12 memory [9] = 32’ b000000000000_00000_000_00000_0010011; //nop (addi x0 ,0)

13 memory [10] = 32’h ff5ff06f; //jal back to first nop

Listing 4: The instructions used to test multiplication within the PicoRV32 with TIGRA.

1 memory [0] = 32’ b000000010101_00000_000_00001_0010011; //addi x1 ,21

2 memory [1] = 32’ b000000000101_00000_000_00010_0010011; //addi x2 ,5

3 memory [2] = 32’ b0000000_00010_00001_000_00011_0110011; //add x3,x1,x2

4 memory [3] = 32’ b0000001_00010_00001_000_00100_0110011; //mul x4,x1,x2 21*5 = 105

5

6 memory [4] = 32’ b0000010_00100_00000_010_00000_0100011;//sw x4 ,64(x0) (mem [16] = x4)

7 memory [5] = 32’ b0000000_00011_00001_000_00011_0110011; //add x3,x1,x3

8 memory [6] = 32’ b0000000_00011_00010_000_00011_0110011; //add x3,x2,x3

9

10 memory [7] = 32’ b000000000000_00000_000_00000_0010011; //nop (addi x0 ,0)

11 memory [8] = 32’ b000000000000_00000_000_00000_0010011; //nop (addi x0 ,0)

12 memory [9] = 32’ b000000000000_00000_000_00000_0010011; //nop (addi x0 ,0)

13 memory [10] = 32’h ff5ff06f; //jal back to first nop

Listing 5: The instructions used to test multiplication within the PicoRV32 using PCPI.

68

1 int main(int argc , char* argv[])

2 {

3 unsigned int key0 = 0x09cf4f3c;

4 unsigned int key1 = 0xabf71588;

5 unsigned int key2 = 0x28aed2a6;

6 unsigned int key3 = 0x2b7e1516;

7 unsigned int state0 = 0xe0370734;

8 unsigned int state1 = 0x313198a2;

9 unsigned int state2 = 0x885a308d;

10 unsigned int state3 = 0x3243f6a8;

11

12 int tig0 , tig1 , tig2 , tig3 , tig4 , tig5 , tig6 , tig7;

13 asm volatile ("tigra1_0 %0, %1, %2;\n"

14 :"=r" (tig0)

15 :"r" (key0), "r" (key1)

16 :

17);

18 asm volatile ("tigra1_1 %0, %1, %2;\n"

19 :"=r" (tig1)

20 :"r" (key2), "r" (key3)

21 :

22);

23 asm volatile ("tigra1_2 %0, %1, %2;\n"

24 :"=r" (tig2)

25 :"r" (state0), "r" (state1)

26 :

27);

28 asm volatile ("tigra1_3 %0, %1, %2;\n"

29 :"=r" (tig3)

30 :"r" (state2), "r" (state3)

31 :

32);

33 asm volatile ("tigra1_4 %0, %1, %2;\n"

34 :"=r" (tig4)

35 :"r" (tig0), "r" (tig1)

36 :

37);

38 asm volatile ("tigra1_5 %0, %1, %2;\n"

39 :"=r" (tig5)

40 :"r" (tig2), "r" (tig3)

41 :

42);

43 asm volatile ("tigra1_6 %0, %1, %2;\n"

44 :"=r" (tig6)

45 :"r" (tig4), "r" (tig5)

46 :

69

47);

48 asm volatile ("tigra1_7 %0, %1, %2;\n"

49 :"=r" (tig7)

50 :"r" (tig6), "r" (tig0)

51 :

52);

53

54

55 return 0;

56 }

Listing 6: C code used to test AES encryption in the Rocket Chip and Taiga processors via the

TIGRA interface.

1 int main(void) {

2 // Platform Initialization

3 platform_init ();

4

5 // Records cycle and instruction counts

6 start_profiling ();

7

8 //Set up variables

9 unsigned int key0 = 7;

10 unsigned int key1 = 3;

11 unsigned int key2 = 19;

12 unsigned int key3 = 22;

13 unsigned int res0;

14 unsigned int res1;

15 unsigned int res2;

16 unsigned int res3;

17

18 // Perform first multiplication: tigra_mul0

19 asm volatile ("tigra0 %0, %1, %2;\n"

20 :"=r" (res0)

21 :"r" (key0), "r" (key1)

22 :

23);

24

25 // Multiply using the result of the TIGRA instruction to ensure

26 //the operation is not optimized out by the compiler.

27 unsigned int temp0 = res0 * key0;

28

29 // tigra_mul1

30 asm volatile ("tigra0 %0, %1, %2;\n"

31 :"=r" (res1)

32 :"r" (key2), "r" (key3)

70

33 :

34);

35

36 unsigned int temp1 = res1 * key1;

37

38 // tigra_mul2

39 asm volatile ("tigra0 %0, %1, %2;\n"

40 :"=r" (res2)

41 :"r" (key0), "r" (key2)

42 :

43);

44

45 unsigned int temp2 = res2 * key2;

46

47 // tigra_mul3

48 asm volatile ("tigra0 %0, %1, %2;\n"

49 :"=r" (res3)

50 :"r" (key1), "r" (key3)

51 :

52);

53

54 unsigned int temp3 = res3 * key3;

55

56 // tigra_mul4

57 asm volatile ("tigra0 %0, %1, %2;\n"

58 :"=r" (res0)

59 :"r" (temp1), "r" (key2)

60 :

61);

62

63 // tigra_mul5

64 asm volatile ("tigra0 %0, %1, %2;\n"

65 :"=r" (res1)

66 :"r" (res2), "r" (key3)

67 :

68);

69

70 // tigra_mul6

71 asm volatile ("tigra0 %0, %1, %2;\n"

72 :"=r" (res2)

73 :"r" (temp1), "r" (key0)

74 :

75);

76

77 unsigned int temp4 = res2 * key1;

78

71

79 // tigra_mul7

80 asm volatile ("tigra0 %0, %1, %2;\n"

81 :"=r" (res3)

82 :"r" (temp4), "r" (key2)

83 :

84);

85

86 unsigned int temp6 = res0 * 5;

87 unsigned int temp5 = res1 * 7;

88

89 unsigned int all_temp = temp0+temp1+temp2+temp3+temp4+temp5+temp6;

90

91 unsigned int tigra_tmp = 2;

92 // tigra_mul8

93 asm volatile ("tigra0 %0, %1, %2;\n"

94 :"=r" (tigra_tmp)

95 :"r" (all_temp), "r" (tigra_tmp)

96 :

97);

98

99 unsigned int testing;

100

101 /tigra_mul9

102 asm volatile ("tigra0 %0, %1, %2;\n"

103 :"=r" (testing)

104 :"r" (tigra_tmp), "r" (key1)

105 :

106);

107

108

109 // Records cycle and instruction counts

110 // Prints summary stats for the application

111 end_profiling ();

112

113 return 0;

Listing 7: C code used to test multiplication in the Taiga processor via the TIGRA interface.

1 int main(void) {

2 int temp0 = 1;

3 int temp1 = 3;

4 int tig0 , tig1 , tig2 , tig3 , tig4 , tig5 , tig6 , tig7;

5

6 asm volatile ("tigra0 %0, %1, %2;\n"

7 :"=r" (tig0)

8 :"r" (temp0), "r" (temp1)

72

9 :

10);

11

12 temp0 = 2;

13 temp1 = 6;

14 asm volatile ("tigra1 %0, %1, %2;\n"

15 :"=r" (tig1)

16 :"r" (temp0), "r" (temp1)

17 :

18);

19

20 temp0 = 4;

21 temp1 = 12;

22 asm volatile ("tigra2 %0, %1, %2;\n"

23 :"=r" (tig2)

24 :"r" (temp0), "r" (temp1)

25 :

26);

27

28 temp0 = 8;

29 temp1 = 24;

30 asm volatile ("tigra3 %0, %1, %2;\n"

31 :"=r" (tig3)

32 :"r" (temp0), "r" (temp1)

33 :

34);

35

36 temp0 = 16;

37 temp1 = 48;

38 asm volatile ("tigra4 %0, %1, %2;\n"

39 :"=r" (tig4)

40 :"r" (temp0), "r" (temp1)

41 :

42);

43

44 temp0 = 32;

45 temp1 = 96;

46 asm volatile ("tigra5 %0, %1, %2;\n"

47 :"=r" (tig5)

48 :"r" (temp0), "r" (temp1)

49 :

50);

51

52 temp0 = 64;

53 temp1 = 192;

54 asm volatile ("tigra6 %0, %1, %2;\n"

73

55 :"=r" (tig6)

56 :"r" (temp0), "r" (temp1)

57 :

58);

59

60 temp0 = 128;

61 temp1 = 384;

62 asm volatile ("tigra7 %0, %1, %2;\n"

63 :"=r" (tig7)

64 :"r" (temp0), "r" (temp1)

65 :

66);

67 return 0;

68 }

Listing 8: C code used to test the arbitrary custom logic in the Taiga processor via the TIGRA

interface.

74

1 module tigra_cl(

2 input logic clk ,

3 input logic rst ,

4 tigra_interface.tigra_side tigra

5);

6

7 interface tigra_interface;

8 tigra_inputs_t tigra_inputs;

9 logic latch_next_insn;

10 logic tigra_valid;

11 logic mem_valid;

12 logic [XLEN -1:0] tigra_out;

13

14 modport tigra_side(input tigra_inputs , latch_next_insn , mem_valid ,

15 output tigra_valid , tigra_out);

16 modport taiga_side(input tigra_valid , tigra_out , output tigra_inputs ,

17 latch_next_insn , mem_valid);

18

19 endinterface

20

21 typedef struct packed{

22 logic [XLEN -1:0] rs1;

23 logic [XLEN -1:0] rs2;

24 logic [31:0] instruction;

25 } tigra_inputs_t;

Listing 9: Module declaration of the TIGRA custom logic in the Taiga processor using a System

Verilog interface and struct to simplify design.

1 module tigra_cl(

2 input logic clk ,

3 input logic rst ,

4 input tigra_inputs_t tigra_inputs ,

5 input logic latch_next_insn ,

6 output logic tigra_valid ,

7 input logic mem_valid ,

8 output logic [31:0] tigra_out

9);

Listing 10: Flattened module declaration of the TIGRA custom logic for use with Dynamic Function

eXchange.

75

Appendix B Extended Timing Diagrams

This appendix includes extra timing diagrams not included within the main body of the

dissertation. These images are not required to explain the benefits of using the TIGRA interface,

but do provide the full implementation for each design described in Chapter 5.

Figure 1: Simulation of the first two TIGRA instructions in PicoRV32 with AES via TIGRA. These
instructions both complete within one clock cycle.

Figure 2: Simulation of the last two TIGRA instructions in PicoRV32 with AES via TIGRA. These
instructions all complete within one clock cycle.

76

Figure 3: Simulation of TIGRA instructions 2 and 3 when using custom logic with AES. Instruction
2 completes within one clock cycle, while instruction 3 initiates a stall and completes the encryption.

Figure 4: Simulation of the first four TIGRA instructions when using custom logic with arbitrary
return values and stalls. These instructions all complete within one clock cycle.

77

Appendix C Raw Data from Simulations

The information in this section shows some of the raw data obtained when testing the

different processors. This data is provided to back up claims made by the researcher in different

sections of this dissertation.

1 80002898: 09 cf57b7 lui a5 ,0x9cf5

2 8000289c: abf716b7 lui a3 ,0 xabf71

3 800028 a0: f3c78793 addi a5 ,a5 ,-196 # 9cf4f3c <buflen .2800+0 x9cf4efc >

4 800028 a4: 58868693 addi a3 ,a3 ,1416 # abf71588 <__global_pointer$ +0x2bf6e17c >

5 800028 a8: 00 d786ab tigra1_0 a3,a5 ,a3

6 800028 ac: 28 aed7b7 lui a5 ,0 x28aed

7 800028 b0: 2b7e1737 lui a4 ,0 x2b7e1

8 800028 b4: 2a678793 addi a5 ,a5 ,678 # 28 aed2a6 <buflen .2800+0 x28aed266 >

9 800028 b8: 51670713 addi a4 ,a4 ,1302 # 2b7e1516 <buflen .2800+0 x2b7e14d6 >

10 800028 bc: 00 e797ab tigra1_1 a5,a5 ,a4

11 800028 c0: e0370737 lui a4 ,0 xe0370

12 800028 c4: 3131 a637 lui a2 ,0 x3131a

13 800028 c8: 73470713 addi a4 ,a4 ,1844 # e0370734 <__global_pointer$ +0x6036d328 >

14 800028 cc: 8a260613 addi a2 ,a2 ,-1886 # 313198 a2 <buflen .2800+0 x31319862 >

15 800028 d0: 00 c7272b tigra1_2 a4,a4 ,a2

16 800028 d4: 885 a3637 lui a2 ,0 x885a3

17 800028 d8: 3243 f5b7 lui a1 ,0 x3243f

18 800028 dc: 08 d60613 addi a2 ,a2 ,141 # 885 a308d <__global_pointer$ +0x859fc81 >

19 800028 e0: 6a858593 addi a1 ,a1 ,1704 # 3243 f6a8 <buflen .2800+0 x3243f668 >

20 800028 e4: 00 b6362b tigra1_3 a2,a2 ,a1

21 800028 e8: 00 f6c7ab tigra1_4 a5,a3 ,a5

22 800028 ec: 00 c7572b tigra1_5 a4,a4 ,a2

23 800028 f0: 00 e7e7ab tigra1_6 a5,a5 ,a4

24 800028 f4: 00 d7f7ab tigra1_7 a5,a5 ,a3

Listing 11: Binary object dump of AES test code for the Rocket Chip processor. This shows the

instructions required to complete the code in Listing 6 and demonstrates the instruction reordering

completed by the compiler.

78

Figure 5: Original timing diagram showing six of the eight instructions for custom logic with arbitrary
return values and stall lengths. This diagram shows the difficulty of reading content in this format
compared to the transcribed waveforms shown in the paper.

79

Figure 6: Original timing diagram showing the first 7 TIGRA multiplication instructions. This
diagram shows the compiler reordering commands for the code in Listing 7. Here you can see the
processor issue 5 TIGRA instructions consecutively, while the code issues at most 3 consecutively.

80

Bibliography

[1] Jairo Walber Abdala Castro and Aurelio Morales-Villanueva. Exploring dynamic partial recon-
figuration in a tightly-coupled coprocessor attached to a risc-v soft-processor on a fpga. In 2021
IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing
(INTERCON), pages 1–4, 2021.

[2] M. S. Abdul-Karim, K. H. Rahouma, and K. Nasr. High Throughput and Fully Pipelined
FPGA Implementation of AES-192 Algorithm. In 2020 International Conference on Innovative
Trends in Communication and Computer Engineering (ITCE), pages 137–142, 2020.

[3] M. Alizadeh and M. Sharifkhani. Extending RISC- V ISA for Accelerating the H.265/HEVC De-
blocking Filter. In 2018 8th International Conference on Computer and Knowledge Engineering
(ICCKE), pages 126–129, 2018.

[4] Amazon Web Services. AWS EC2 FPGA Development Kit. https://github.com/aws/
aws-fpga, 2020.

[5] AMD/Xilinx. 76386 - vivado 2019.1 - [drc vivado - dfx - inbb-3 black box error within dfx
project mode. https://support.xilinx.com/s/article/76386?language=en_US, 2021.

[6] AMD/Xilinx. High level design features - dynamic function exchange. https://www.xilinx.
com/products/design-tools/vivado/high-level-design.html#dfx, 2022.

[7] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christo-
pher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar Karandikar,
Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert Magyar,
Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian Richards, Colin Schmidt,
Stephen Twigg, Huy Vo, and Andrew Waterman. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17, EECS Department, University of California, Berkeley, Apr 2016.

[8] Anthony Bybell. Welcome to gtkwave. http://gtkwave.sourceforge.net/, Sep 2021.

[9] L. Calicchia, V. Ciotoli, G. C. Cardarilli, L. di Nunzio, R. Fazzolari, A. Nannarelli, and M. Re.
Digital Signal Processing Accelerator for RISC-V. In 2019 26th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pages 703–706, 2019.

[10] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Kudithipudi.
Deep Positron: A Deep Neural Network Using the Posit Number System. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1421–1426, 2019.

[11] Doris Chen and Deshanand Singh. Fractal video compression in opencl: An evaluation of
cpus, gpus, and fpgas as acceleration platforms. In 2013 18th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 297–304, 2013.

81

https://github.com/aws/aws-fpga
https://github.com/aws/aws-fpga
https://support.xilinx.com/s/article/76386?language=en_US
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html#dfx
https://www.xilinx.com/products/design-tools/vivado/high-level-design.html#dfx
http://gtkwave.sourceforge.net/

[12] Joan Daemen and Vincent Rijmen. The design of Rijndael: the wide trail strategy explained.
Springer, 2001.

[13] Brad Green, Dillon Todd, Jon C. Calhoun, and Melissa C. Smith. Tigra: A tightly integrated
generic risc-v accelerator interface. In 2021 IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 779–782, 2021.

[14] Gustafson and Yonemoto. Beating Floating Point at Its Own Game: Posit Arithmetic. Super-
comput. Front. Innov.: Int. J., 4(2):71–86, June 2017.

[15] A. Hodjat and I. Verbauwhede. A 21.54 gbits/s fully pipelined aes processor on fpga. In 12th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pages 308–309,
2004.

[16] Sherif Hosny, Eslam Elnader, Mostafa Gamal, Abdelrhman Hussien, Ahmed H. Khalil, and
Hassan Mostafa. A software defined radio transceiver based on dynamic partial reconfiguration.
In 2018 New Generation of CAS (NGCAS), pages 158–161, 2018.

[17] Sherif Hosny, Eslam Elnader, Mostafa Gamal, Abdelrhman Hussien, and Hassan Mostafa.
Multi-partitioned software defined radio transceiver based on dynamic partial reconfiguration.
In 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4, 2020.

[18] Junjie Hou, Yongxin Zhu, Sen Du, Shijin Song, and Yuefeng Song. Fpga-based scale-out proto-
typing of degridding algorithm for accelerating square kilometre array telescope data processing.
IEEE Access, 8:15586–15597, 2020.

[19] Homer Hsing. tiny_aes. https://opencores.org/projects/tiny_aes, 2013.

[20] Qijing Huang, Christopher Yarp, Sagar Karandikar, Nathan Pemberton, Benjamin Brock, Liang
Ma, Guohao Dai, Robert Quitt, Krste Asanovic, and John Wawrzynek. Centrifuge: Evaluat-
ing full-system hls-generated heterogenous-accelerator socs using fpga-acceleration. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–8, 2019.

[21] Intel. Intel FPGA SDK for OpenCL. https://www.intel.com/content/www/us/en/
programmable/products/design-software/embedded-software-developers/opencl/
support.html, 2021.

[22] Intel. Partial reconfiguration. urlhttps://www.intel.com/content/www/us/en/software/programmable/quartus-
prime/partial-reconfiguration.html, 2022.

[23] RISC-V International. RISC-V International, 2021.

[24] A. Irwansyah, V. P. Nambiar, and M. Khalil-Hani. An AES Tightly Coupled Hardware Ac-
celerator in an FPGA-based Embedded Processor Core. In 2009 International Conference on
Computer Engineering and Technology, volume 2, pages 521–525, 2009.

[25] M. K. Jaiswal and H. K. . So. Universal number posit arithmetic generator on FPGA. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE), pages 1159–1162, 2018.

[26] M. K. Jaiswal and H. K. So. Architecture Generator for Type-3 Unum Posit Adder/Subtractor.
In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5, 2018.

[27] M. K. Jaiswal and H. K. So. PACoGen: A Hardware Posit Arithmetic Core Generator. IEEE
Access, 7:74586–74601, 2019.

[28] Manish Kumar Jaiswal. PACoGen: Posit Arithmetic Core Generator, 2019.

82

https://opencores.org/projects/tiny_aes
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/support.html

[29] Zheming Jin and Hal Finkel. Power and performance tradeoff of a floating-point intensive
kernel on opencl fpga platform. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 716–720, 2018.

[30] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium
on computer architecture, pages 1–12, 2017.

[31] Emre Karabulut and Aydin Aysu. Rantt: A risc-v architecture extension for the number
theoretic transform. In 2020 30th International Conference on Field-Programmable Logic and
Applications (FPL), pages 26–32, 2020.

[32] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee,
Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle
Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanovic. Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA), pages 29–42, 2018.

[33] B. Koppelmann, P. Adelt, W. Mueller, and C. Scheytt. Risc-v extensions for bit manipulation
instructions. In 2019 29th International Symposium on Power and Timing Modeling, Optimiza-
tion and Simulation (PATMOS), pages 41–48, 2019.

[34] Theresa T. Lê. A tightly integrated generic instruction risc-v accelerator (tigra) for the rocket
core. Master’s thesis, Clemson University, 2021.

[35] Shuai Li, Yukui Luo, Kuangyuan Sun, Nandakishor Yadav, and Kyuwon Ken Choi. A novel
fpga accelerator design for real-time and ultra-low power deep convolutional neural networks
compared with titan x gpu. IEEE Access, 8:105455–105471, 2020.

[36] Alexandra Listl, Daniel Mueller-Gritschneder, Fabian Kluge, and Ulf Schlichtmann. Emulation
of an asic power, temperature and aging monitor system for fpga prototyping. In 2018 IEEE
24th International Symposium on On-Line Testing And Robust System Design (IOLTS), pages
220–225, 2018.

[37] Jinming Lu, Chao Fang, Mingyang Xu, Jun Lin, and Zhongfeng Wang. Evaluations on deep neu-
ral networks training using posit number system. IEEE Transactions on Computers, 70(2):174–
187, 2021.

[38] Arunkumar M V, Ganesh Bhairathi, and Harshal Hayatnagarkar. Perc: Posit enhanced rocket
chip. In Fourth Workshop on Computer Architecture Research with RISC-V (CARRV 2020),
05 2020.

[39] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S. Vetter.
Nvidia tensor core programmability, performance amp; precision. In 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 522–531, 2018.

[40] Eric Matthews and Lesley Shannon. Taiga: A new risc-v soft-processor framework enabling
high performance cpu architectural features. In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–4, 2017.

[41] Davide Pala. Design and programming of a coprocessor for a RISC-V architecture, 2017.

[42] V. Patil, A. Raveendran, P. M. Sobha, A. David Selvakumar, and D. Vivian. Out of order
floating point coprocessor for RISC V ISA. In 2015 19th International Symposium on VLSI
Design and Test, pages 1–7, 2015.

83

[43] Thomas M Schulte and Steve Leibson. Intel® FPGAs Accelerate Intel® Xeon® Scalable
Processors in Servers and High-End Embedded Systems. Technical report, Intel, 2019.

[44] Wilson Snyder. Welcome to verilator. https://www.veripool.org/verilator/, 2022.

[45] Ko Stoffelen. Efficient Cryptography on the RISC-V Architecture, pages 323–340. 09 2019.

[46] Tsubasa Takaki, Yang Li, Kazuo Sakiyama, Shoei Nashimoto, Daisuke Suzuki, and Takeshi
Sugawara. An optimized implementation of aes-gcm for fpga acceleration using high-level syn-
thesis. In 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), pages 176–180,
2020.

[47] Xubin Tan, Jaume Bosch, Miquel Vidal, Carlos Álvarez, Daniel Jiménez-González, Eduard
Ayguadé, and Mateo Valero. General purpose task-dependence management hardware for task-
based dataflow programming models. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 244–253, 2017.

[48] Balkis Tej, Marwa Hannachi, and Abdessalem Ben Abdelali. Partial dynamic reconfiguration
for efficient adaptive implementation of a video shot boundary detection system. In 2020 4th
International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pages
327–331, 2020.

[49] Dillon W. Todd. Tightly coupling the picorv32 risc-v processor with custom logic accelerators
via a generic interface. Master’s thesis, Clemson University, 2021.

[50] Andrew Waterman and Krste Asanović. The RISC-V Instruction Set Manual, Volume I: Base
User-Level ISA, December 2019.

[51] Clifford Wolf. PicoRV32 - A Size-Optimized RISC-V CPU. https://github.com/
cliffordwolf/picorv32, 2019.

[52] Xilinx. Vivado design suite tutorial - dynamic function exchange. Technical Report UG947,
2020 [Online].

[53] Xilinx. Vitis Unified Software Platform. https://www.xilinx.com/products/design-tools/
vitis/vitis-platform.html#documentation, 2021.

[54] Xilinx. Vivado design suite user guide - dynamic function exchange. Technical Report UG909,
2022 [Online].

[55] O. Yanovskaya, M. Yanovsky, and V. Kharchenko. The concept of green cloud infrastructure
based on distributed computing and hardware accelerator within fpga as a service. In Proceed-
ings of IEEE East-West Design Test Symposium (EWDTS 2014), pages 1–4, 2014.

[56] G. Zhang, K. Zhao, B. Wu, Y. Sun, L. Sun, and F. Liang. A RISC-V based hardware accelerator
designed for Yolo object detection system. In 2019 IEEE International Conference of Intelligent
Applied Systems on Engineering (ICIASE), pages 9–11, 2019.

[57] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Sonicboom: The 3rd gener-
ation berkeley out-of-order machine. May 2020.

84

https://www.veripool.org/verilator/
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#documentation
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#documentation

	The Development of TIGRA: A Zero Latency Interface For Accelerator Communication in RISC-V Processors
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Related Work
	AES
	Posits
	Loosely Coupled Accelerators
	Tightly Coupled Accelerators
	Partial Reconfiguration
	Summary

	Research Design and Methods
	TIGRA Design
	Custom Logic Design and Usage
	Summary

	Case Studies
	PicoRV32
	Rocket Chip Generator
	Taiga Processor
	AES 128-bit Custom Logic
	Posit Arithmetic Custom Logic
	Built-in Functions Custom Logic
	Comparing the Programming Effort
	Summary

	Simulation Results
	PicoRV32 Simulation Results
	PicoRV32 Hardware Results
	Rocket Chip Results
	Taiga Processor Results
	Summary

	Partial Reconfiguration
	Taiga Partial Reconfiguration
	Summary

	Conclusions and Future Work
	Appendices
	Code Listings
	Extended Timing Diagrams
	Raw Data from Simulations

	Bibliography

