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Abstract

Chapter 1 examines delegation and communication as strategies in coordination games with

uncertainty and social preferences. I construct a model where other-regarding partners attempt to

coordinate over a binary choice with privately known utilities. Players can choose to either commu-

nicate by signaling their preferences or delegate the choice entirely to their partner. I characterize

equilibrium behavior under various assumptions on information transmission and coordination risk.

If coordination is risky, there is a type of “first mover advantage” where the first player to commu-

nicate her own-preference guarantees her ideal outcome when communication is honest revelation.

When preference signals are cheap talk, players cannot credibly communicate own-preferences to

solve the coordination problem, leading to equilibria where one player always delegates. When coor-

dination is not risky, the game becomes one of pure information transmission where communication

is inhibited by strong other-regarding preferences.

Chapter 2 presents a model of decision making comparing expertise and altruism as ratio-

nales for delegating decision rights. I show that these rationales have different underlying motiva-

tions, leading to different predictions in equilibrium delegation. For expertise-driven delegation, a

decision maker is more likely to delegate to experts who agree with him. However, this “ally princi-

ple” is not present in altruistic delegation. An altruistic decision maker is more willing to delegate

to individuals with whom she disagrees.

Chapter 3 presents a theoretic model and the results of a subsequent laboratory experiment

to understand voter preferences over leader characteristics. We develop a two-stage model of elections

where agents with heterogeneous competence and pro-social preferences must elect a representative

entrusted with resources whose growth depends on their competence, but can extract resources for

private gain. Voter decisions are informed by observation of candidate competence and decisions in

a preceding trust game. A three category representative typology emerges from the model, wherein
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incentives for performative trustworthiness by “crooks” are counter-balanced by opportunities for

costly signaling by “fair” and “honest” candidates. We find support for the models predictions

in treatments varying in leader compensation and compulsory contributions to public resources.

Incentives for “performative trustworthiness” result in voters conditionally weighting their decisions

towards competence while also serving as a costly signal to earn risk-minimizing voters’ benefit of

the doubt.
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Chapter 1

“The Lovers’ Dilemma:” Two-sided

Uncertainty in Coordination

Games

1.1 Introduction

Unlike standard coordination games with complete information like the battle of the sexes

(BoS), when people attempt to coordinate on a decision, they may not know their partners’ pref-

erences. Additionally, when decisions are made in a social setting, the people involved often care

about how their partners feel about the decision. For example, a husband may not know whether

his spouse would rather pizza or tacos when trying to decide on dinner on a particular night. He

may prefer pizza, but only if his spouse also prefers pizza. Communicating to each other their pref-

erences may seem like a straightforward solution to the information problem, but other-regarding

preferences and cheap talk make committing to honesty difficult. If a husband cares more about his

spouse’s preference than his own, he may want to lie and say he is indifferent. Oftentimes he may

prefer to delegate the decision to his spouse entirely.

In this paper I construct a model where partners with social preferences attempt to co-

ordinate over a binary choice with privately known own-preferences. Players can choose to either

communicate and signal their preference or to delegate the choice entirely to their partner. Like clas-
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sic models of information transmission (Crawford & Sobel, 1982; Milgrom & Roberts, 1982; Kreps

& Wilson, 1982), players can better communicate when their utilities are more aligned. “Aligned

utilities” in this model means that players care about themselves the same amount as their partners

cares about them, and vice versa. Additionally, I show that the threat of coordination failure further

limits the players’ abilities to communicate, and players will always choose to delegate to avoid risky

coordination.

Communication is first treated as honest revelation. When players can commit to honestly

revealing their own-preferences, a type of “first-mover advantage” emerges in which the first player

to reveal her own-preference is guaranteed her ideal outcome. After the first player reveals her own-

preference, the second player will choose to communicate and coordinate only if their ideal outcomes

are aligned. If they are not aligned, he delegates. In doing so, based on his sympathy he reveals

enough information about his own-preference for the first player to choose her ideal outcome with

certainty.

When communication is cheap talk, the first-mover advantage described above is not as

strong. If an honest signal reveals that ideal outcomes are not aligned, the second player has an

incentive to understate a relatively strong preference when he is selfless and to overstate a relatively

weak preference when he is selfish. He does this to convince his partner that ideal outcomes are

aligned when they actually are not. This incentive to lie causes a breakdown in the reliability of

communication when there is risk of coordination failure, leading to equilibria in which either player

1 or player 2 always delegates.

This “Lovers’ Dilemma” coordination game with two-sided uncertainty provides a general

model of coordination behavior applicable to social decision-making involving family, friends, co-

workers, or even strangers. Beyond social settings, the Lovers’ Dilemma is applicable to joint

decision-making when each person has private information that is payoff-relevant to both of them.

Industrial organization applications include coordination problems across different departments in

a firm, vertically integrated firms, or firms selling complementary goods. Public choice applications

include coordination between connected governments and decision-making from altruistic leaders.

There are large potential gains from enriching the strategy space in coordination games

to improve expected outcomes. Mixed strategy Nash equilibria in coordination games are generally

inefficient, resulting in expected outcomes worse than either pure strategy Nash equilibrium. Despite

mixing being the inferior equilibrium, experimental evidence from coordination games like the BoS
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have shown that it is what occurs in practice, and play often results in coordination failures even

with complete information (Cooper et al., 1989).

Allowing for some form of communication between players prior to coordination is a common

extension added to coordination models. Farrell (1987) first showed that Crawford & Sobel (1982)

style cheap talk pre-communication of a player’s action can improve the equilibrium probability of

coordination in a BoS game, and Cooper et al. (1989) presents experimental evidence of this result.

More recently, models and experiments have shown cheap talk communication of player types can

improve the ex-ante probability of coordination in BoS games with incomplete information (Li et al.,

2019; Hu et al., 2020).

Delegation is a less common extension. When coordinating on a group decision, delegating

the choice involves an inherent trade-off. By delegating, a player guarantees coordination but gives

up any influence over the chosen outcome. Aghion & Tirole (1997) model delegation to experts in

principal-agent models. Experiments with delegation in voluntary-contribution public goods games

show that delegating decisions to an altruistic trustee can improve coordination on giving (Corazzini

et al., 2020; Makowsky et al., 2014). This paper is the first to model delegation and communication

as competing strategies in a BoS style game.

In addition to contributing to the literature on delegation and communication in coordi-

nation games, this paper also contributes to the growing literature on strategic games with social

preferences. Charness & Rabin (2002a) introduced social preferences in dictator games. Since then,

social preferences have been incorporated into other types of strategic settings (Balafoutas et al.,

2013). Gueye et al. (2020) apply social preferences specifically to coordination games in an experi-

mental setting.

The rest of the paper is organized in the following way. Section 2 introduces and gives

formal structure to the coordination game. Section 3 characterizes equilibrium behavior for both

honest revelation and cheap talk communication when coordination is risky. Section 4 provides an

example of communication with uncertainty and social preferences when coordination is not risky.

Section 5 discusses the implications of the results and concludes.
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1.2 Coordination with communication and delegation

The following model is an extension of the standard BoS game. Consider players 1 (she) and

2 (he) attempting to coordinate over options A and B. Before simultaneously choosing an option,

players will have the opportunity to either communicate via some signaling method or to delegate

the choice entirely to the other player. Specifics of the model are described below.

1.2.1 Preferences

Players’ payoffs from coordination on option A are normalized to 0.1 Letting bi ∈ [−1, 1]

be player i’s own-utility from option B, player i’s payoff from coordination on option B is the

sympathetic utility function

Ui = (1− αi)bi + αibj , (1.1)

where αi ∈ [0, 1] measures player i’s relative sympathy. Player i is fully selfish when αi = 0 and

fully selfless when αi = 1. For the remainder of this paper, a player’s “preferred” outcome is A when

Ui < 0 and B when Ui > 0, while a player’s “own-preferred” outcome is A when bi < 0, and B when

bi > 0. If the players fail to coordinate, they incur a punishment of −δ < −1. Like traditional BoS

games, failing to coordinate is worse than any coordinated outcome.

1.2.2 Timing and Actions

The formal timing of the game is described in the simplified game tree in Figure 1.1. First,

player 1 either communicates to player 2 or delegates the choice. If player 1 delegates, player 2

chooses A or B. If player 1 communicates, player 2 either communicates or delegates the choice. If

player 2 communicates, the players simultaneously choose A or B. If player 2 delegates, player 1

chooses A or B. Let Di ⊂ [−1, 1] be the set of values of bi for which player i delegates. Communi-

cation takes the following form. Player i sends some message mi(bi) =⇒ bi ∈ Bi(mi) ⊂ [−1, 1]. I

analyze the model both when players can commit to honest revelation and when communication is

cheap talk.

A strategy s1 ∈ S1 for player 1 specifies for all b1 a message or delegation at his first

information set and a choice of A or B if player 2 delegates or communicates. A strategy s2 ∈ S2 for

1Option A can be considered the “status quo.” For binary choices with no status-quo, bi can be considered player
i’s preference for option B over A.
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player 2 specifies for all b2 a choice of A or B if player 1 delegates, a message or delegation if player

1 communicates some message, and a choice of A or B if they reach the coordination stage.

Figure 1.1: Simplified game tree

1.2.3 Beliefs

The sympathy parameters α1 and α2 are commonly known, but own-preferences b1 and b2

are privately known. Player 2 is commonly known to believe b1 is drawn from the density function

f(b) with support [−1, 1] and distribution function F (b), and player 1 is commonly known to believe

b2 is drawn from the density function g(b) with support [−1, 1] with distribution function G(b).

Player i’s prior belief over bj has expected value b̄j . Let b̂j represent player i’s posterior belief over

bj after strategy sj .

1.2.4 Equilibrium concept

The appropriate equilibrium concept for this dynamic game of incomplete information is

a perfect Bayesian equilibrium (PBE). Letting ui(si, sj) represent the expected utility for player i

given strategies si, sj , a PBE of this game consists of a set of strategies s∗ = (s∗1, s
∗
2) and beliefs

(b̂1, b̂2) such that ui(s
∗
i , s

∗
j ) ≥ ui(si, s

∗
j ) for all si ∈ Si, i = 1, 2 given players’ beliefs. Additionally,

a PBE requires players to play rationally at each information set and beliefs to be consistent with

the strategies played and Bayes’ rule where possible.
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1.2.5 Coordination

If neither player delegates, they must simultaneously choose either A or B. The payoff matrix

for the coordination stage is described in Table 1. Ignoring the prior stages of the game, if the game

represented by Table 1 was played as a static game with beliefs b̂1, b̂2, there are two pure strategy

Bayesian Nash equilibria (PSNE) with the players choosing the same option (A,A and B,B) and a

mixed strategy Bayesian Nash Equilibrium (MSNE) with the players randomizing over the options.

Table 1.1: Payoff matrix for the coordination stage.

In the MSNE, players are randomizing over A and B to make their partner indifferent

between choosing either option. Letting pi represent the probability for which player i chooses

option B,

pi(−δ) = pi((1− αj)b̂j + αjbi) + (1− pi)(−δ)

pi =
δ

(1− αj)b̂j + αjbi + 2δ
. (1.2)

Player i’s expected payoff from the MSNE is

pjpi((1− αi)bi + αibj) + pj(1− pi)(−δ) + (1− pj)pi(−δ)

= − δ2

(1− αi)bi + αibj + 2δ
. (1.3)

An important proposition about player 2 follows immediately from Equation 1.3. To establish useful

notation, notice that the discrete nature of the choice set allows player 2’s equilibrium messaging

strategy to be simplified. Ultimately, any message m2 will fall into one of three types in equilibrium.

Let mA
2 be the set of m2 that result players coordinating on the PSNE {A, A}, mB

2 be the set of m2
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that result in coordination on the PSNE {B, B}, and mX
2 be the set of m2 that result in the players

playing the MSNE.

Proposition 1.1: No PBE strategy s∗2 includes any mX
2 .

Proof: See Appendix A.1.

The primary result of Proposition 1.1 is the players will never play the MSNE in any PBE.

Player 2 would always rather delegate entirely than risk coordination failure in the MSNE, so any

strategy dictating player 2 communicate when it leads to mixing is a non-credible threat. This

limits player 2’s viable strategy space, especially when players are more prone to mixing in the

coordination stage. Therefore, the conditions under which each coordination equilibrium is played

greatly affects equilibrium play in earlier stages. In light of this, I analyze equilibria under two

different assumptions of coordination behavior. I first consider equilibria when players play the

MSNE whenever there is a chance of conflict. I then relax this assumption and consider equilibria

when there is no threat of coordination failure.

1.3 Equilibria when coordination is risky

To capture the risk of coordination failure observed in BoS games, I first consider equilibria

under the following assumption on coordination play.

Assumption 1: Given messages m1,m2, players will behave in the following way during the co-

ordination stage. If b1 > − α1

1−α1
b̂2 and b2 > − α2

1−α2
b̂1, players will coordinate and play the PSNE

{B, B}. If b1 < − α1

1−α1
b̂2 and b2 < − α2

1−α2
b̂1, players will coordinate and play the PSNE {A, A}.

Otherwise, players will randomize and play the MSNE.

Assumption 1 states that players will only play pure strategies when their messages reveal

that there is a Pareto-dominant PSNE in the coordination stage. A Pareto-dominant PSNE exists

when both players have the same preferred outcome. This occurs when the players’ own-preferences

are aligned or if one player is sufficiently selfish while the other is sufficiently sympathetic.

1.3.1 Honest revelation

Consider the case where communication from a player is both fully informative and always

honest. Formally, communication takes the form Bi(mi) = bi and players can fully commit to this

messaging strategy by assumption. Under Assumption 1, the game with this information setting
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has the following strategies in any PBE.2

Proposition 1.2: If s∗ is a PBE with revelation and satisfies Assumption 1, the following is true

of s∗.

1. Player 1 communicates for all b1.

2. Following communication, player 2 communicates if b1 > − α1

1−α1
b2 and b2 > − α2

1−α2
b1 or if

b1 < − α1

1−α1
b2 and b2 < − α2

1−α2
b1, and delegates otherwise.

3. If player 2 delegates and α1 < 1− α2, player 1 chooses A if b1 < 0 and B if b1 > 0. If player

2 delegates and α1 > 1− α2, player 1 chooses A if b1 > 0 and B if b1 < 0.

4. Off the equilibrium path, if player 1 delegates player 2 chooses A if b2 < − α2

1−α2
b̂2(D1) and

chooses B otherwise.

Proof: See Appendix A.2

The players’ strategies are illustrated in Figure 1.2. The term “Lovers’ Dilemma” is used

to refer to when α1 > 1 − α2. In a Lovers’ Dilemma, each player cares about herself less than her

partner cares about her and cares about her partner more than her partner cares about himself.

Unlike in a standard BoS setup, when preferred outcomes are not aligned in a Lovers’ Dilemma

(regions V and VIII), each player actually prefers the own-preference of her partner.

If player 1 communicates, player 2 now has complete information and knows whether or not

they agree on their preferred outcomes. If they have the same preferred outcome (regions II, III,

VI, and VII), player 2 will optimally communicate to player 1 and they can successfully coordinate

by Assumption 1. If preferred outcomes are not aligned (regions I, IV, V and VIII), Proposition 1.1

requires player 2 to delegate to avoid playing the MSNE. Since sympathies are common knowledge,

delegation from player 2 will reveal enough about b2 for player 1 to learn, then choose, his preferred

outcome over player 2’s. For example, if player 1 reveals b1 > 0 when α1 < 1 − α2 and player 2

delegates, then player 1 knows that they are in region IV and then optimally chooses B. This reveals

a type of “first-mover advantage” when sympathies are common knowledge and preference signals

are fully informative. The first player to reveal her own-preference will always receive her preferred

outcome. However, this first-mover advantage is not as strong if talk is cheap.

2The PBE is unique up to information sets reached with positive probability. Here set D1 is empty and therefore
Bayes’ rule cannot be used, so any assumption on how player 2 updates his beliefs can be specified.
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Figure 1.2: Equilibrium play with honest revelation and Assumption 1
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1.3.2 Cheap talk communication

Now consider the case of cheap talk signals where players cannot commit to honesty. In this

paper I focus on n-partition equilibria similar to those in Crawford & Sobel (1982). Formally, player

i can choose to either delegate or send a message mk
i (bi) =⇒ bi ∈ [Rk−1

i , Rk
i ], where k = 1, ..., n,

R0
i = −1, and Rn

i = 1. However, when the coordination stage is played according to Assumption 1,

cheap talk communication breaks down in equilibrium when players are not identical.

Proposition 1.3: If s∗ is a PBE with cheap talk, satisfies Assumption 1, and α1 ̸= 1−α2, then in

it player 2 delegates following any m1.

Proof: See Appendix A.3.

The intuition for Proposition 1.3 is straightforward. Figure 1.3 depicts a general cheap talk

message mk
1 from player 1 in a Lovers’ Dilemma game. After receiving the message, player 2 knows

Rk−1
1 < b1 < Rk

1 . If an equilibrium contains some mA
2 and mB

2 , any b2 > − 1−α1

α1
Rk−1

1 must belong

to a mB
2 since both players prefer option B, and any b2 < −α2

1−α2
Rk

1 must belong to a mA
2 since both

prefer A. Player 2 must delegate if −α2

1−α2
Rk

1 < b2 < − 1−α1

α1
Rk−1

1 by Proposition 1.1.

When Rk−1
1 > 0, player 2 prefers option B for any b1 in the message space when −α2

1−α2
Rk−1

1 <

b2 < − 1−α1

α1
Rk−1

1 . Therefore, if any mB
2 exists in equilibrium, a player 2 with b2 in this region can

profitably deviate from delegation by sending that message. If Rk−1
1 < 0, the upper bound of the

necessary delegation region is −α2

1−α2
Rk−1

1 . However, there exists some b2 < −α2

1−α2
Rk−1

1 for which the

expected payoff of delegating is less than the expected payoff of sending some mB
2 . Since player

2 must delegate here, there cannot be any mB
2 in equilibrium. Similar arguments rule out the

possibility of any mA
2 in equilibrium, leaving delegation as player 2’s only available action.

The players’ inability to commit to honesty combined with the threat of coordination failure

from Assumption 1 prevents player 2 from communicating even when preferences are aligned. He

becomes a passive player in equilibrium, only affecting the outcome if player 1 chooses to delegate.

Therefore, player 1’s decision is either delegate or ultimately choose A or B. If player 1 delegates,

player 2 will choose option B if b2 > θ, where

θ = − α2

1− α2
b̂i. (1.4)
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Figure 1.3: Cheap talk signaling in a Lovers’ Dilemma Game

Player 1 therefore chooses to delegate when the expected payoff from delegating is greater

than both 0 and the expected value of choosing option B. This yields lower and upper bounds for

D1. Player 1 delegates when

− α1

1− α1

∫ 1

θ
b2g(b2)db2

1−G(θ)
< b1 < − α1

1− α1

∫ θ

−1
b2g(b2)db2

G(θ)
, (1.5)

and communicates otherwise.

How player 1 partitions her communication regions in this case is irrelevant, as player 2

delegates regardless. Ironically, communicating does not generate any meaningful information for

player 1’s decision, while delegating to player 2 can provide him some information about b1. As in

the honest revelation setting, equilibrium play will always avoid coordination failure in the cheap
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talk setting. However, equilibrium play will sometimes fail to reach a Pareto-dominant outcome

when players cannot commit to honesty.

Player 1 strictly benefits from being able to commit to revelation because she always gets

her preferred outcome. Player 2’s preferred information setting is unclear. Revelation guarantees

his preferred outcome when it is Pareto-dominant, but he never receives his preferred outcome when

the players disagree. When talk is cheap and player 1 is making her decision without learning

about b2, she may fail to choose a Pareto-dominant option. However, she could actually choose

player 2’s preferred outcome when preferences are not aligned, especially in a Lovers’ Dilemma.

For example, player 1 communicates and then chooses A when b1 is sufficiently low. If it is the

case where b2 is high and the players are in a Lovers’ Dilemma, player 1 chooses player 2’s preferred

outcome. Additionally, player 2 gets to make the decision under cheap talk when player 1 is relatively

indifferent and selfless. This is particularly valuable to player 2 when he is relatively selfish and has

a strong own-preference, as that lowers his risk of choosing the wrong option.

1.4 Relaxing Assumption 1

This section considers cheap talk communication equilibria under less punishing assump-

tions in the coordination stage. While the assumption that players default to the MSNE in the

coordination stage when there is uncertainty over whether preferences align is supported by ob-

served play of BoS games in experiments such as Cooper et al. (1989), relaxing Assumption 1 gives

insight to the impact of uncertainty and social preferences in information transmission games. The

only way to get communication from player 2 in equilibrium is when the coordination stage is played

with the following assumption.

Assumption 2: Given messages m1,m2, If E2[U2] > 0, players will coordinate and play the PSNE

{B, B}. If E2[U2] ≤ 0, players will coordinate and play the pure strategy {A, A}.

To understand why Assumption 2 is the only situation where player 2 communicates in equi-

librium, consider any equilibrium play in the coordination stage following m1 and m2. Proposition

1.1 still rules out any mX
2 strategies, so any message player 2 sends must result in coordination on

either A or B. For any mA
2 to exist in equilibrium, it must be true that player 2 sends some mA

2 for

all b2 such that the expected value of option A is greater than the expected value of both delegation

and option B, given player 1’s message. Otherwise, there would be incentives to deviate for player
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2. Likewise any equilibrium with mB
2 requires player 2 sending some mB

2 whenever the expected

value of option B is greater than both the expected value of delegation and option A. Therefore,

any cheap talk equilibrium with communication from player 2 will ultimately be player 2 “choosing”

which PSNE on which they coordinate. By relaxing Assumption 1, this model becomes a problem

of strategic information transmission with uncertainty and social preferences.

1.4.1 An example: Information transmission

For simplicity, I consider here a specification where player 2 cannot delegate to player 1.

Then, as coordination play is entirely determined by player 2, the difference between “delegate”

and “communicate” for player 1 is now arbitrary and can be ignored. A strategy for player 1

in this modified specification is then a set of messages {mk}nk=1, where she sends message mk if

b1 ∈ [Rk−1, Rk]. A strategy for player 2 can be expressed as a choice of A or B after receiving

any message from player 1. For a tractable example, I assume density functions f, g are distributed

uniformly over their supports.

Following message mk
1 , b̂1 = Rk−1+Rk

2 , and player 2 will choose B when b2 > − α2

1−α2

Rk−1+Rk

2

and choose A otherwise. In equilibrium, player 1 must be indifferent from sending mk−1
1 and sending

mk
1 at b1 = Rk−1. Setting E1[U1(R

k−1)|mk−1
1 ] = E1[U1(R

k−1)|mk
1 ] and solving for Rk yields

Rk = γ(Rk−1 +Rk+1), (1.6)

where γ = α1α2

4(1−α1)(1−α2)−2α1α2
. With fixed R0 = −1 and Rn = 1, the n-partition equilibrium exists

if Rk < Rk+1, k = 0..n − 1. The following propositions are made regarding various n−partition

equilibria.

Proposition 1.4: The n = 2 partition equilibrium exists for all α combinations, with m1 = [−1, 0]

and m2 = [0,−1].

Proof: If n = 2, then it is clear from Equation 6 that R1 = γ(−1 + 1) = 0. ■

In other words, player 1 can always tell her partner which option she prefers, but not

necessarily how strong her preference is, which differs from the Crawford and Sobel model where

only the n = 1 partition (babbling) equilibrium is guaranteed to exist. This result is due to the

simplifying assumptions made on prior beliefs, however it is still interesting as this example can

represent a situation where players know nothing about their partner. Regardless of sympathies, the
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minimum amount of information strangers can communicate is the direction of their own-preference.

Whether players can communicate anything about the strength of their own-preferences will depend

on their relative sympathies.

Proposition 1.5: Perfect communication (n = ∞ and B(m) is singleton for all m) is

possible if and only if α1 = 1− α2.

Proof: If α1 = 1 − α2, then U1 = U2 for all combinations of b1 and b2. Communicating b1

perfectly to player 2 allows player 2 to choose the Pareto-optimal option with certainty. Consider

perfect communication if α1 ̸= 1 − α2. Player 1 wants B when b2 > − 1−α1

α1
b1, and 2 will choose B

when b2 > − α2

1−α2
m1. Therefore, player 1 then can profitably deviate by sending message m1 such

that − 1−α1

α1
b1 = − α2

1−α2
m1, or m1 = (1−α1)(1−α2

α1α2
b1 ̸= b1. ■

It makes intuitive sense that identical players should be able to perfectly communicate to

maximize information and guarantee the mutually optimal outcome, but any difference in their

utility functions makes perfect communication impossible. This is consistent with Crawford and

Sobel.

The derivation of the value of a general partition boundary Rk in a n−partition equilibrium

as a function of α1, α2, k and n is given in Appendix A.4. While the general solution is too complex

for tractable analysis and comparable statics, interesting results on the impact of sympathetic pref-

erences on communication can be seen by analyzing specific n > 2 partition equilibria. Below I use

the 3-partition equilibrium as an illustration.

1.4.1.1 3-partion equilibrium

With 3 partitions, player 1 can now signal indifference as well as the direction of her own-

preference. Using Equation 1.6, the inner boundaries for the 3-partition equilibrium are R1 = − γ
1+γ

and R2 = γ
1+γ . Figure 1.4 shows a heatmap for the value of R1 for all combinations of α1, α2. Above

the α1 = 1−α2 diagonal is the Lovers’ Dilemma region and below is the standard BoS region. When

α1 = 1−α2, R
1 = − 1

3 and R2 = 1
3 , dividing the space evenly. In general, the 3-partition equilibrium

exists if − γ
1+γ < γ

1+γ < 1, which is true when

α2 <
2α1 − 2

α1 − 2
. (1.7)
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This condition is not met in the black shaded region in Figure 1.4. The 3-partition equilibrium

breaks down for high levels of sympathy.

Taking the derivative of R1 with respect to α1 yields

∂R1

∂α1
= − 1

(1 + γ)2
∂γ

∂α1
,

= − 1

(1 + γ)2

(
α2

(4(1− α1)(1− α2)− 2α1α2)2
α1α2(4− 2α2)

4(1− α1)(1− α2)− 2α1α2

)
, (1.8)

which is negative if when γ > 0. The derivative with respect to α2 is symmetric. Below the

diagonal, as players become more selfish, R1(R2) is increasing (decreasing), approaching 0. The

middle partition shrinks while the outer ones grow, which means player 1 is more likely to signal a

preference over indifference. Conversely, above the diagonal, as players become more sympathetic,

R1(R2) is decreasing (increasing). Higher sympathies cause player 1 to more often state indifference

over stating a preference. While any departure from identical partners results in lower quality

communication, much of the Lovers’ Dilemma region cannot support any communication above the

2-partition equilibrium.

Figure 1.4: Value of R1 for the 3-partition equilibrium
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This asymmetry about the diagonal is caused by the added risk communication entails in the

Lovers’ Dilemma. The only problem with communication below the diagonal is lack of credibility. As

a player becomes more selfish, she is more inclined to overstate her preference. Otherwise, the worst

communicating to a selfish partner can do is not influence his decision at all. However, for mutual

relatively high sympathies, communication is undesirable when own-preferences are not aligned.

For example, if player 1’s own-preference is A and player 2’s is B, a sympathetic player 1 might

ultimately prefer option B. If player 2 is sympathetic enough to prefer A despite his own-preference,

honest communication is risky for player 1. The reason much of the Lovers’ Dilemma region cannot

support a third partition is because if there is any message of indifference, player 1 would always

deviate to sending that message.

1.5 Conclusion

This paper provides insight on how other-regarding preferences affect communication in co-

ordination and information transmission games. In both settings, mutual high sympathies restrict

players’ ability to communicate. While motivated by issues in social decision making, the results

of the model apply to principal-agent problems, business partnerships, and joint-ventures. Addi-

tionally, another interpretation of the Lovers’ Dilemma could be the break-down of communication

in codependent relationships. While many studies in the psychology literature document the diffi-

culty codependent people have honestly communicating with others (Carson & Baker, 2009; Hall &

Wray, 1989), to my knowledge this is the first paper documenting codependent behavior in a formal,

strategic model. An immediate extension of the present model is to examine possible equilibria of

a repeated version of the game. In a repeated setting, players have access to more sophisticated

solutions to coordination, such as alternating delegation or alternating which PSNE on which they

coordinate. If own-preferences are constant throughout each round, communication becomes both

more valuable and riskier as players learn.
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Chapter 2

Altruistic Delegation of Decision

Rights

2.1 Introduction

While it is often assumed that an individual would consider the right to make a decision

a valuable asset, people commonly give up decision rights to others voluntarily. Bosses delegate

certain decisions to their subordinates. On the other hand, employees sometimes elect to escalate

an issue and defer to their boss’ opinion instead of making a decision on their own. When presented

with multiple treatment options, a patient might defer to the decision of the doctor. Perhaps the

most common form of delegation individuals experience everyday is the act of deferring a decision to

a group-member in social situations. For example, when a couple is deciding where to go to dinner,

one might delegate the decision to his spouse, saying something like, “I don’t care, you pick.”

The existing literature offers two similar explanations for delegation behavior. The first set

of papers are principle-agent models where a principle considers delegating some decision rights to

an agent in order to convince him to incur some costly effort to gain expertise on an issue (Aghion &

Tirole, 1997; Bartling et al., 2014; Burdin et al., 2018). For example, a boss delegates authority to a

subordinate to work harder, or a legislator can delegate full or partial decision power to a bureaucrat

to encourage her to acquire knowledge on a specific policy (Gailmard & Patty, 2007). The benefit

of delegation to the decision maker in these models is the generation of expertise without having to
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incur the cost of learning himself. As long as the “intrinsic value” of the decision right is lower than

the cost of learning, the preferences of the principle and agent are relatively aligned, and delegation

is a sufficient incentive for the agent to learn, a decision maker will optimally remain uninformed,

delegate the decision right to his subordinate and rubber-stamp his decision.

The second set of papers assume expertise is exogenously determined and argue that decision

makers may choose to delegate decision rights to a knowledgeable but biased expert (Li & Suen,

2004; Dessein, 2002; Alonso & Matouschek, 2008; Ambrus et al., 2021). There is some uncertain

quality of the potential outcomes of a decision and the decision maker is either uninformed or less

informed than the expert. Here the value of delegating comes from the ability of the expert to make

the decision maker’s preferred choice better than he can, as well as the proclivity of the expert to

choose the decision maker’s preferred choice given the quality.

The primary result of almost every model of delegation is the so-called “Ally Principle”

(Bendor et al., 2001). Decision makers generally prefer to delegate to agents who have similar

preferences as them. The value of delegating is directly related to how closely aligned the two are

in terms of their biases. In all models of delegation the ally principle has been supported except for

cases where commitment is not credible.

Additionally, in both sets of papers the decision maker’s motivation for delegating comes

from uncertainty on the quality of the options, so they are unable to explain delegation behavior

where the outcomes have a perfectly known quality. I argue delegation of this nature can be explained

by altruistic preferences in the decision maker. The existing delegation literature does not consider

that the individuals in their models might care about each other’s preferences, but in many of the

examples they give the actors are socially connected. A boss and her subordinate likely have a

relationship beyond the one decision in question and repeated interaction with each other makes

them care about each other’s outcome. Kősegi (2006) shows that doctors exhibit altruism towards

their patients and want to tailor their treatments to their patient’s preferred options. Moreover,

instead of altruism in the traditional sense, an individual’s payoff can depend on the preferences for

less emotional or even selfish reasons. For example, an employee might care more about his boss’

preferred choice than his own because making the boss unhappy could have detrimental consequences

for his future career prospects.

I consider a model where altruistic players’ payoffs can depend on the preferences of others

involved in a decision. If a decision maker is uncertain about his partner’s preferences, he might be
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willing to delegate the decision right to his partner even if the quality of the options are perfectly

known. The motivation for altruistic delegation is different than the existing expertise-based models.

Instead of delegating because the expert can better choose the decision maker’s preferred option,

the value of altruistic delegation comes from the decision maker’s ability to use delegation to signal

indifference over the decision to induce his partner to choose his preferred option. Because of this,

altruistic delegation does not follow the ally principle; an altruistic decision maker is more willing

to delegate to someone who he thinks has different preferences than his own.

The rest of the paper is formatted in the following way. Section 2 presents a model of dele-

gation with both altruistic preferences and choices with unknown quality and solves for equilibrium

delegation behavior. Section 3 analyzes two specific cases of the model, pure expertise and pure

altruism, to illustrate the difference in the motivations/value of delegation. Section 3 also looks at

the how the ally principle holds up in each case by analyzing delegation behavior for different expert

biases. Section 4 concludes.

2.2 A General Model of Delegation

The present model can be framed quite generally as one individual considering the delegation

of some binary decision to another. However, to facilitate the comparisons of this model to the

Li & Suen (2004) model of expertise-based delegation, I adopt their language of policy evaluation.

Consider a game where a decision-maker (D) must choose between enacting some policy, not enacting,

or delegating the decision to some “expert” (E). Each player has some privately known intrinsic

utility from the policy ui, i ∈ {D,E}. The utility from not enacting the policy is normalized to

zero for both players, representing the status quo1. Unlike Li & Suen (2004), which have a policy

with objectively positive or negative net benefits ex-post, D and E here can ultimately disagree on

whether the policy ends up being good or bad.

Beliefs over a partner’s utility are constructed in the following way. The utility of i is drawn

from a density function fi(u) with support [ui, ui]
2 and distribution function Fi(u). Then i’s prior

belief over uj is

1If the context is changed from policy evaluation to simply choosing between two alternatives, ui can be interpreted
as i’s preference (positive or negative) for one option over the other.

2The support can be [−∞,∞].
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θj =

∫ uj

uj

ujfj(uj)duj . (2.1)

To capture the value of expertise, the players’ utilities from the policy can be affected by

some objective quality shock. There is a chance the policy can be high-quality, and i receives

additional utility hi if the policy is enacted. The decision maker believes that the policy is high-

quality with probability ρ. If D chooses to delegate, E receives a signal s ∈ {H,L} about the quality

of the policy, which is correct with probability q ≥ 1
2 . Let π(s) be E’s belief that the policy is high

quality after receiving signal s. Then beliefs update according to Bayes’ Rule,

π(H) =
ρq

ρq + (1− ρ)(1− q)
, (2.2)

and

π(L) =
ρ(1− q)

ρ(1− q) + (1− ρ)q
. (2.3)

In this way E is weakly more knowledgeable than D over quality.

Unlike other models of delegation, I assume a player’s payoff can depend the utility of his

partner. Let αi be i’s level of altruism towards his partner. Then i’s payoff from enacting the policy

is

Vi = ui + αiuj (2.4)

if the policy is low-quality, and is

Vi = ui + hi + αi(uj + hj) (2.5)

if the policy is high-quality.

The timing of the game is the following. First, the D’s and E’s preferences and the quality

of the policy are determined by their respective distributions. Then, D chooses to enact, not enact,

or to delegate the decision right to E. If D does not delegate, the game ends and the players receive

their payoffs. If D chooses to delegate, E receives signal s and decides.

The appropriate equilibrium concept for this dynamic game of incomplete information is

perfect Bayesian equilibrium. Equilibria analyzed below will be ones in which D chooses to defer for

some set of ud. I first solve for E’s best-response for some arbitrary delegation set. Then, given E’s
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strategy I derive expressions for the bounds of D’s delegation region.

2.2.1 E’s best-response to delegation

Assume D uses a semi-separating strategy of the following form: delegate if ud ∈ D ⊂ [ui, ui],

and decide if not3. Then if D delegates, E believes D’s utility of the policy is in D. His updated

belief over D’s type is the conditional expectation

θ̃D =

∫
ud∈D udfd(ud)dud∫
ud∈D fd(ud)dud

. (2.6)

After receiving the quality signal, E chooses to enact the policy if his expected payoff of enacting is

greater than zero and does not enact otherwise. If E receives the high signal (s = H), he enacts if

ue > −[αeθ̃d + π(H)(he + αehd)]. (2.7)

If E receives the low signal (s = L), he enacts if

ue > −[αeθ̃d + π(L)(he + αehd)]. (2.8)

Letting zH and zL respectively denote the right-hand sides of Equations 2.7 and 2.8, Figure 2.1

summarizes E’s best-response to D’s assumed strategy.

Figure 2.1: E’s Equilibrium Decision Strategy

E’s decision is straightforward and the comparative statics are intuitive. Based on his beliefs

over D’s utility from the policy and the quality signal, he enacts if his utility is above some threshold.

He is more willing to enact the policy if he receives the high-quality signal (zH < zL). The region

in which E’s decision is dependant on his signal (enacts when s = H and does not enact if s = L) is

larger when he has more expertise. If E is altruistic (αe > 0), then he will be more willing to enact

the policy the higher he believes D’s utility of the policy is. As E becomes more altruistic towards

3It is not necessary to differentiate the types in which D enacts/does not enact here. It is only relevant to E’s
strategy whether D delegates or not.
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D, he will enact more as long as D’s quality-dependant expected utility is positive4. If it is negative,

E is less likely to enact as he becomes more altruistic.

2.2.2 D’s optimal delegation strategy

D will delegate when his expected payoff from delegating is greater than his expected payoff

from both enacting the policy and not enacting the policy (zero). Let θ̃es =
1

1−Fe(zs)

∫ ue

zs
uefe(ue)due

be the expected value of ue given E enacts the policy after receiving signal s, let γ be the probability E

enacts the policy given his strategy, γs be the probability E enacts the policy given he receives signal

s, and γHQ be the probability E enacts and the policy is high-quality. Table 2.1 gives expressions

for these probabilities. His expected payoff from delegating can then be written as

E[Vd, delegate] = γud + αd(γH θ̃eH + γLθ̃eL) + γHQ(hd + αdhe). (2.9)

If this expected payoff is negative, D would prefer to choose to not enact the policy over delegating.

Letting uLB be the value of ud for which E[Vd, delegate] = 0, the following result is established.

Lemma 2.1: D will not delegate if ud < uLB.

Proof: See Appendix B.1.

This provides a lower bound for D’s delegation region. If D’s utility from the policy is

sufficiently low, he is better off deciding to not enact himself over delegating the decision to E. If

uLB < 0, then there is a region of ud where D’s own-utility of the policy is negative yet it is beneficial

for him to delegate for altruistic or expertise-based reasons.

D will not delegate if his expected payoff from choosing to enact it greater than choosing to

delegate. If D enacts, he receives expected payoff

E[Vd, enact] = ud + αdθe + ρ(hd + αdhe). (2.10)

Letting uUB be the value of ud for which E[Vd, delegate] = E[Vd, enact], the following result is estab-

lished.

Lemma 2.2: D will not delegate if ud > uUB.

Proof: See Appendix B.2.

4For signal s, increasing αe increases the region of enacting the policy if θ̃e > −π(s)hd.
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This provides an upper bound for D’s delegation region. If D’s utility from the policy

is sufficiently high, he is better off deciding to enact himself over delegating the decision to E. If

uUB > 0, then there is a region of ud where D’s own-utility of the policy is positive yet it is beneficial

to delegate for altruistic or expertise-based reasons.

Table 2.1: Expressions for relevant probabilities

Probability Expression

γH (1− Fe(zH))(ρq + (1− ρ)(1− q))

γL (1− Fe(zL))(ρ(1− q) + (1− ρ)q)

γ γH + γL

γHQ ρq(1− Fe(zH)) + ρ(1− q)(1− Fe(zL))

Using Lemmas 2.1 and 2.2, D’s optimal strategy is summarized in Figure 2.2. A perfect

Bayesian equilibrium for this model is then D not enacting if ud < uLB , delegating if uLB < ud <

uUB , and enacting if ud > uUB ; E enacting if ue > zs, and not enacting otherwise; with the beliefs

and updating processes described previously in this section.

Figure 2.2: D’s Equilibrium Delegation Strategy

2.3 Delegation motivations and the Ally Principle under ex-

pertise vs altruism

While the expressions for the equilibrium bounds of delegation in the general model are too

complex to provide any informative comparative statics, some insights about the differences between

expertise-driven and altruistic delegation can be gained by looking at the cases of pure expertise and

pure altruism. In this section I analyze both pure cases and discuss D’s motivation for delegating in

each case. To illustrate these motivations, I show how D’s delegation behavior changes as E becomes

more altruistic.

Additionally, I look at how E’s bias towards enacting/not enacting impacts the types of D

that choose to delegate for each case. The Ally Principle predicts that decision makers are more
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willing to delegate to individuals who share the same bias. Since D and E do not know each other’s

preferences, for the sake of this analysis E will be considered more “biased” towards enacting the

greater his θe, and vice versa. In this way E’s bias is measured as the distance his expected utility

is from zero. While the pure expertise case follows the Ally Principle, a purely altruistic D prefers

to delegate to an E who disagrees with him.

2.3.1 Pure expertise

In the case of pure expertise, both αd and αe are 0. For simplicity assume D is uninformed

(ρ = 0.5) and E has perfect expertise (q = 1). If E is delegated to, his decision does not depend on

D’s delegation strategy. After receiving signal s, E enacts if ue > −he if he gets the high quality

signal and enacts if ue > 0 if he gets the low signal. The lower bound for D’s delegation region in

this case is

uLB = −γHQ

γ
hd = −hd

1− Fe(−he)

[1− Fe(−he)] + [1− Fe(0)]
, (2.11)

and the upper bound is

uUB = −hd
ρ− γHQ

1− γ
= −hd

Fe(−he)

1 + Fe(−he) + Fe(0)
. (2.12)

Without altruism, a change in E’s expected utility has no direct effect on the D’s payoff and

therefore no direct effect on his delegation strategy. The value of delegating comes from both the

ability to and the likelihood of the expert choosing the outcome the decision maker prefers. Notice

that the delegation region in the pure expertise case will always be between −hd and 0. In other

words, D only delegates when his preferences are quality-dependent: when he would rather enact

the policy only if it is high-quality and would prefer the policy not be enacted if it is low-quality.

However, even an E with perfect knowledge about quality may not always listen to the signal. D

wants to delegate to E more when his decision strategy is more signal-dependant. Since D only

delegates when his preference is quality-dependent, an “ally” for D is an E with quality-dependent

preferences. Therefore, the more likely E’s utility is in the range [−he, 0], the better an ally he is to

D. An ideal E for a self-interested D is one where q = 1, zH = ue and zL = ue. In the absence of

altruism, the following Proposition is made for an uninformed D and expert E.

Proposition 2.1: If αd, αe = 0, ρ = 0.5, and q = 1, then any increase in [Fe(0) − Fe(−he)]
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will decrease uLB and increase uUB.

Proof: See Appendix B.3.

Expertise-driven delegation here follows the ally principle. D is more willing to delegate

the more likely he thinks E agrees with him. This is consistent with the story in Li & Suen (2004)

and the rest of the expertise-based delegation literature that expertise is more valuable when an

expert and decision maker are closely aligned. If E is not a perfect expert, as he becomes more

knowledgeable (q increases), the value of delegating increases. E is both more likely to both get the

correct signal - therefore less likely to make a mistake - and then listen to his signal and enact when

he gets the high signal and not enact when he gets the low signal.

D’s motivation in the pure expertise case is that E is able to more accurately choose the

option that D prefers than D himself can. This motivation is easy to see when looking at how

the players’ behavior changes as E becomes altruistic while D remains self-interested. As shown in

Figure 2.3, as αe increases, E is more likely to enact if he gets the high signal (zH decreases) and is

more likely to not enact if he gets the low signal (zL increases). Since E knows D will only delegate

when D’s preference is quality-dependent, E is going to listen to his signal more often if he cares

about D’s utility. With E moving closer to D’s ideal expert as E becomes more altruistic, D will

become more willing to delegate on both sides (uLB decreases and uUB increases).

Figure 2.3: Equilibrium behavior as E becomes more optimistic: Pure expertise
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2.3.2 Pure altruism

In the pure altruism case, there is no unknown quality of the policy, and E is no longer an

“expert” on anything other than his own utility. Since he receives no quality signal, E’s strategy

will simply be to enact if ue > z, where z = −αeθ̃d. Let θ̂e =
1

Fe(z)

∫ z

ue
uefe(ue)due be E’s expected

utility of enacting the policy given his strategy tells him to not enact. Then, the upper and lower

bounds for delegation can be written as

uLB = −αdθ̃e, (2.13)

and

uUB = −αdθ̂e. (2.14)

It is easy to show that θ̂e ≤ θe ≤ θ̃e and therefore always a region where the decision maker would

choose to delegate in the pure altruism case. Moreover, altruistic preferences and uncertainty over

E’s utility is sufficient to see delegation behavior in equilibrium. Unlike previous delegation models,

it is not necessary for there to be any unknown quality of the options.

While expertise-driven delegation was motivated by E’s ability to better select D’s preferred

option than D himself, a purely altruistic D uses delegation as a way to induce E to choose his own

preferred option. D delegates to avoid the risk of choosing an option that E dislikes a lot. D uses

his delegation strategy to force E’s updated expectation of D’s utility to be close to zero, signalling

to E that he is relatively indifferent between enacting and not enacting. A particularly illustrative

example of this motivation is shown in Figure 2.4. Figure 2.4 shows the change (or lack of change

in this case) in E’s and D’s equilibrium behavior as E becomes more altruistic when D is altruistic

(αd > 0), there is no unknown quality, and ud and ue are uniformly distributed with an expectation

of 0. E’s degree of altruism is irrelevant here because if D is delegating, E’s updated belief over D’s

type is that ud = 0. Therefore E will just enact if he prefers enacting and not enact if he prefers not

enacting.

To understand altruistic delegation’s relation to the ally principle, a more specific definition

of “bias” is needed. D’s belief over E’s type is determined by the underlying distribution Fe. If this

distribution changes in a way that causes θe to increase, θ̃e will increase or not change, but the effect

on θ̂e will depend on how Fe changes. Similarly, a change causing θe to decrease will cause θ̂e to
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Figure 2.4: Equilibrium behavior as E becomes more optimistic: Pure altruism

decrease or not change, but the effect on θ̃e will depend on how Fe changes. If we further specify

the definition of a more biased E towards enacting a policy as his θe being higher as well as both θ̃e

and θ̂e being higher, then we can see how bias in E affects D’s delegation strategy5.

Proposition 2.2: in the absence of expertise, uLB and uUB decrease as θ̂e, θ̃e increase.

Proof: Obvious.

The pure altruism case does not follow the ally principle. As E becomes more biased towards

enacting(rejecting) a policy, both uLB and uUB decrease(increase). More extreme “experts” are only

delegated to by decision makers who are extreme in the opposite direction. In other words, a more

extreme decision maker is less willing to delegate to someone he agrees with and more willing to

delegate to someone he disagrees with. This suggests that altruistic delegation more often occurs

when D believes preferences are conflicting, unlike delegation for expertise which is more valuable

when D believes preferences are aligned.

2.4 Conclusions

This paper seeks to fill a gap in the existing delegation literature. While in existing models

delegation was always driven by some unknown quality of the available choices, it is common to see

5While it is possible that changing the distribution in a way that increases θe could actually decrease θ̂e, or
decreasing θe could result in a higher θ̃e, I think it is reasonable to call a more biased expert one where these
conditional expected values move in the same direction as θe.
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decision makers delegate in situations where they perfectly know how they feel about the options.

I present altruism as an alternative explanation for delegation and show that altruistic preferences

and uncertainty over the utilities of others are sufficient conditions for relatively indifferent decision

makers to delegate. Unlike expertise-driven delegation or using decision rights as an incentive to

induce effort, altruistic delegation contradicts the ally principle. Altruistic decision makers are more

willing to delegate to someone when they think they disagree with them.

“Altruism” as depicted in this model can interpreted in a number of ways. Many decisions

affecting groups involve people who will truly care how the decision affects their partner, such as

household and other types of social decision making. On the other hand, someone can be “altruis-

tic” for selfish reasons, like an employee caring about her superior’s opinion because it affects her

promotion chances. The framework in this paper is flexible enough to model decision delegation in

situations like automobile manufacturer contracts with dealerships or franchisee-franchisor relation-

ships, where instead of altruism, αi can represent the fraction of ownership of some some jointly

shared asset.

Two potential extensions of the altruism model in this paper could offer interesting insight

into delegation behavior. First, the present model does not allow the players to communicate.

The only way D can inform E about his preferences is through his delegation strategy. In reality,

especially with social/household group decisions, it is likely that the group may talk about their

preferences with each other. Allowing D to communicate something about his preferences to E

when he delegates might yield some implications about honesty in group decision making.

Second, it is not uncommon for someone who has been delegated to to refuse the decision

right and delegate back to the original decision maker. Moreover, social decisions like choosing a

restaurant can often devolve into an Alphonse-Gaston style back and forth of “I don’t care, you

decide.” The present model, like the existing delegation literature, is a one-shot game. Extending

the framework in this paper to a repeated game, allowing both players to delegate endlessly, could

better explain delegation behavior in social or household settings.
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Chapter 3

Voting for Crooks: Theory and

Laboratory Evidence

3.1 Introduction

Why do we vote for candidates we don’t trust? Perhaps the simplest answer is that rationally

ignorant voters prefer virtuous candidates, but given limits on their time and resources, they can be

deceived at minimal cost to the candidates. However, in the long-term context of a 60-year decline

in public trust in elected representatives (Chanley et al., 2000; Van der Meer, 2017; Webster, 2018;

Thomson & Brandenburg, 2019) it is surprising that the political marketplace has been unable to

supply a candidate attribute for which there is, at least ostensibly, significant demand. Conversely,

there may be a lack of demand for trustworthiness—unvirtuous, yet skillful, candidates may in

fact be preferred for their superior willingness and capacity to siphon off resources from the public

largess, acting as proxies to acquire rents on voters’ behalf. Such an explanation, however, implies a

considerable amount of duplicity in voters who are broadly persistent in their preferences for more

trustworthy candidates (Woon & Kanthak, 2019; Besley, 2005, 2006; Funk, 1996). Neither story,

that of voter myopia nor avarice, offers a satisfying explanation.

In this paper we develop a model, which we subsequently test in a laboratory experiment, in

which voters prefer leaders who are both competent and trustworthy, but incentives to gain access to

public resources via deception limit candidate ability to credibly signal their virtue. The resulting
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equilibrium behavior leave voters with little option but to weight their preferences towards the

capacity that leaders can credibly demonstrate, namely their competence in growing the the group’s

pool of resources. Predictions eliminating any weighting towards candidate trustworthiness, however,

are partially mitigated by voter and candidate incentives to pursue second-best channels through

which costly signaling bounds equilibria to be, at least minimally, inclusive of trustworthiness. Voters

may never be able to find the candidate of ideal talent and virtue, but under the right conditions

they may be able to suss out most of the crooks while identifying the candidates sufficient to the

task.

In our model group member outcomes depend on both the competence of an elected rep-

resentative in deploying resources and their trustworthiness not to extract those resources for their

own private benefit. The representative chosen will be entrusted with resources taken from each

member. The representative then has the opportunity to take any portion of the entrusted resources

for his own private gain. Any group resources not taken by the representative will grow in accordance

with the representative’s investment competence before being redistributed evenly to the constituent

members.1 In making their electoral decisions, voters have two key pieces of information about each

candidate. First, they are able to observe the decisions made previously within a classic trust game,

revealing their willingness return resources entrusted to them absent interpersonal communication

or punishment incentives. Second, they are able to observe their capacity for growing entrusted re-

sources derived from their performance in an investment game. How agents weight these two pieces

of observable information in their ordered preferences over candidates will depend on, the relative

importance that voters place on each attribute and the credibility that each observable holds as

a signal of the true underlying candidate attribute in question, and their idiosyncratic beliefs of

optimism/pessimism towards others.

Agents in our model are characterized by utility functions with both private and social

preferences, where social preferences take the form of inequity aversion. Agents are heterogeneous

in two dimensions: their aversion to payoff inequity and the amount group resources can grow if

they are elected the representatives (their competence). While immediate intuition might predict

voters to weight their choices towards trustworthiness given the expectation that selfish agents

1The group account is effectively a classic linear public goods game, with the important differences that i) con-
tributions are involuntary (i.e. taxes) ii) the representative can take any portion for themselves, iii) the growth rate
within the group account is a function of the representatives individual investment aptitude.

30



will maximally extract public resources,2 in equilibrium our model predicts voter decisions to to

be weighted towards the observed investment competence of candidates. The key constraint on

voters is the nature of information gleaned from observed behavior in the trust game. The value

of this information is limited by incentives to “perform” trustworthy behavior in order to win an

election for subsequent private gain. While there exists a minimal threshold for observed behavior

in the trust game necessary for receiving votes, there is not amount of generosity in the trust game

sufficient to eliminate the risk associated with any candidate. Further, the model predicts that for

any observed behavior in the trust game, the risk of maximal embezzlement by a given candidate is

always decreasing with their competence in managing resources. Candidates who prefer to win an

election for themselves may return super-normal amounts in the trust game, which we refer to as

“costly signaling”, but this signaling can never entirely remove the risk for voters of embezzlement.

Instead, it can changes the “benefit of the doubt” that voters must give a candidate in order to vote

for them. The minimum benefit of the doubt a candidate needs to be given decreases with both the

amount returned in the trust game and their investment competence.

Our model generates comparative statics on the equilibrium behavior of leaders to both the

level of citizens‘ compulsory contribution to the public fund (taxes) and leader compensation. The

model predicts that higher contribution levels, generating a larger pool of resources available to the

leader, results in higher rates of embezzlement at both the intensive and extensive margin. Higher

leader pay, on the other hand, improves leader behavior in our model.

We tested our model in a laboratory experiment. Subjects were assigned investment com-

petence attributes based on their ranked results in a series of payoff-salient mathematical tasks.

They then made decisions in a series of trust game-representative game couplets, each identical to

our model, each time randomly matched with other anonymous participants. We find that subjects

cannot effectively differentiate trustworthy candidates from bad actors, leading to voter rankings

strongly favoring competence as a criteria, subject to a minimal necessary level of giving. We find

consistent support for our model’s predictions regarding compulsory member compensation’s impact

of leader behavior, however our results on leader pay contrast our predictions.

2In a previous experiment by Galeotti & Zizzo (2018), voters were informed of the competence generating group
payoffs and their actual rates of embezzlement. In this setting of perfectly observed past trustworthiness by uncom-
pensated group decision-makers, voters preferred trustworthiness to competence.
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3.2 Voter preferences over leadership attributes

Risking stating the obvious, leaders matter. When Jefferson (Adams & Jefferson, 1925)

referred to his hope for a “natural aristocracy” of the talented and virtuous, he was joining other

thinkers, including Montesquieu and Rousseau, in favoring democratic elections specifically because

they believe that it would select for a superior ruling class born of noble attributes rather than

noble blood lines (Besley, 2005). Who is selected into positions of power and influence will always

remain key determinants of welfare outcomes for the population subject to their governance. This

is not to say that choice of leaders is more important than the institutions they operate within,

but to dismiss the election outcomes as trivial consequence of coins flipped on the knife edge of

the median voter would be folly. Absent costless monitoring and punishment, outcomes will always

remains in part dependent on the individual preferences and abilities of leaders and how they choose

to execute their duties.3 Similarly, it is an accepted tenant of political economy that the institutions

governing how leaders are selected are critical determinants of which candidates succeed within

democratic elections. Regardless of the institutions in question, however, the preferences of voters

over candidate policy positions and attributes will always, with little in the way of exception, remain

of first-order importance.4

The quality of any leader is estimable in countless dimensions, but it is without too much

trepidation that we will here reduce it to trustworthiness and competence (Besley, 2005). Trustwor-

thiness implies both honesty and safety in granting access to resources, the latter being more easily

translated into classic economic dilemmas. Competence reflects ability to execute appointed tasks

in a manner that maximizes welfare. It is without controversy that we can theorize a world where

candidates for group representation vary in both their trustworthiness and competence. Similarly,

we can comfortably theorize that the voters who weigh the evidence of candidate quality will them-

selves vary in which attribute they consider more important and how much credence they give the

evidence of either.

The notion that the quality of a leader depends on her ability to perform the job for which

she is elected is by no means novel. Besley et al. (2011) find historical evidence that economic

3The question Quis custodiet ipsos custodes, or how to monitor and enforce good behavior at the highest levels
of power, is nearly 2,000 years old and unlikely to be reconciled here. But at least one feasible answer is to elect
individuals we hope might monitor themselves.

4When weighing candidates, most models of voter rankings reduce candidates to two sets of dimensions—policy
positions and candidate quality, the latter often referred to as candidate valence attributes.
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growth is higher when leaders are more educated. Gagliarducci & Nannicini (2013) find that better

paid political leaders perform better, and that this effect is driven by the selection of more skilled

candidates for office.

There are contexts where trustworthiness (broadly conceived) might be considered to be

a net negative by candidates. In the oft zero-sum games of inter-state and inter-caste resource

acquisition and rent-seeking, voters in several Indian parliamentary districts have consistently shown

preferences for heavy-handed criminals willing extract resources on their behalf (Vaishnav, 2017).

Woon & Kanthak (2019) find that laboratory subjects vying in an election lie not because they don’t

have a preference against lying, but because they expect high levels of dishonesty from the other

candidates and that they expect voters will discount all statements accordingly.

3.3 A Two-Stage Election Model

In this section we describe a two-stage election model, comprising a pre-election trust game

and an representative game. This model will serve as the foundation for our theoretic analysis and

experimental design. In each stage, players are endowed with 10 “tokens.” The number of tokens

a player has at the end of each stage will determine her monetary payout for that stage. Token

balances from prior stages do not affect balances of future stages.

3.3.1 The Trust game

In the trust game (Johnson & Mislin, 2011), players are put into pairs and assigned the

role of “sender” or “receiver.” The sender chooses an amount ts ≤ 10 of her endowment to transfer

to the receiver. That amount is then multiplied by 3, and the receiver then chooses an amount

tr ≤ 10 + 3ts to transfer back to the sender. The token payoff from the trust game for the sender is

then

πs = 10− ts + tr, (3.1)

and the token payoff for the receiver is

πr = 10 + 3ts − tr. (3.2)
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3.3.2 The Representative Game

In the representative game, players are assigned to groups of n, within which one member

is elected as the representative. The other players are required to contribute c ≤ 10 to a group

fund. The representative then chooses how much of the group fund to place into her private account

and how much to invest. Any amount invested then grows by the value of rrep assigned to the

representative, and is then evenly distributed to the group members. The representative always gets

a flat fee of b regardless of her decisions, but does not receive a share of the investment returns. The

token payoff for the representative is then

πrep = 10 + b+ (n− 1)ce, (3.3)

and the token payoff for the group members is

πi = 10− c+ c(1− e)rrep, (3.4)

where e is the fraction of the fund the representative embezzles, and rrep is the return rate on the

invested money. Players’ return rates will be determined via an investment game in the experiment,

but the model treats competencies as being exogenously determined and commonly known.

3.4 Theory and Predictions

A standard model, comprised of purely selfish agents (i.e., Ui = πi), yields straightforward

Nash Equilibrium predictions. Agents will neither send nor return funds in the trust game. Voter

preferences in the representative game are moot, as the representative will inevitably transfer all

group funds into her private account. These predictions have consistently run counter to the observed

evidence, supporting a richer model inclusive of social preferences alongside preferences for private

gain (Chaudhuri, 2011). Employing a utility function similar to (Charness & Rabin, 2002b) and

(Makowsky et al., 2014), the agents in our model will be characterized by both private and social

preferences, and these preferences will remain consistent when they are acting as either constituent

voters or elected trustees. Consider players within our model that in each stage maximize the utility
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function

Ui = (1− λi)πi + λi min[πi, π−i], (3.5)

where λi ∈ [0, 1] characterizes player i’s inequity aversion, and π−i is the set of payoffs other than

player i.

We assume prior beliefs over player types are characterized in the following way. Let r be the

commonly held expected value of representative competence. We allow for heterogeneity in players’

optimism/pessimism about their peers. Formally, player i believes that each λ−i is an independent

draw from density function fi(λ) with distribution function Fi(λ). From these assumptions we

discuss equilibrium behavior and generate testable predictions for our experiment.

3.4.1 Equilibrium in an isolated trust game

Consider 2 players playing the trust game in isolation. We are only concerned with trust-

worthiness, not trust, so we will treat the sender’s behavior as exogenous and simply say the sender

transfers amount ts to the receiver. The receiver chooses tr to maximize Ur. The following Lemma

is established characterizing optimal receiver behavior.

Lemma 3.1: In an isolated trust game where a sender sends ts, a receiver will return tr = 2ts if

λr ≥ 1
2 , and returns tr = 0 if λr < 1

2 .

Proof: See Appendix C.1.

Therefore, the maximum amount the receiver will ever return is tr = 2ts, or the amount

that will make πs = πr. While players in our model do not play the trust game as a stand-alone

game, the behavior described in Lemma 3.1 is an important benchmark voters use in updating their

beliefs when considering candidates to vote for.

3.4.2 Behavior in the Representative game

Once elected, the representative chooses to embezzle fraction e∗ to maximize

Urep = (1− λrep)πrep + λrep min[πrep, πmember], (3.6)

with πrep = 10+b+ec(n−1) and πmember = 10−c+(1−e)rrepc. The following lemma characterizes

a representative’s optimal behavior.
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Lemma 3.2: A representative will embezzle everything (e = 1) if λrep < n−1
rrep+n−1 . If λrep >

n−1
rrep+n−1 , the representative will embezzle e = max[0, e∗], where e∗ = (r−1)c−b

(r+n−1)c .

Proof: See Appendix C.2.

Figure 3.1 describes a representative’s optimal behavior for a given λ, r. Letting z = n−1
r+n−1 ,

we call a candidate with return rate r “crooked” if λ < z and embezzles the entire group fund. We call

a candidate “honest” if she embezzles nothing. We call a candidate with a λ above the z-threshold

that is sufficiently competent “fair,” as she embezzles just enough to where πrep = πmember. For a

fair representative, e∗ can be considered her “fee.” It can be shown that ∂e∗

∂r > 0, so a more skilled

fair representative charges a higher fee. However, despite this, ∂πmember

∂r > 0, so members prefer a

more skilled representative even with her higher fee, given she is fair. Lemma 3.2 yields the following

testable predictions for our experiment.

Figure 3.1: Optimal rep behavior in the rep game
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Prediction 3.1: Whether a player is crooked (embezzles everything) or honest/fair does not vary

with c or b.

Remarks: The model predicts a representative will embezzle everything if λ > n−1
r+n−1 , which

does not depend on the representative’s salary or the size of the public fund. Therefore, we expect

to see players consistently act either honest/fair or crooked in each round of the experiment.

Prediction 3.2: The fraction embezzled, e∗, from a fair representative is increasing with c.

Prediction 3.2a The fraction of representatives who are honest (embezzle nothing) is de-

creasing in c.

Remarks: Increasing member contributions increases πmember when the representative is

fair. Therefore, a fair representative must embezzle a larger share to keep πrep = πmember. Similarly,

increasing c shrinks the pool of honest representatives, and we expect to see some relatively low-

skilled representatives go from embezzling nothing to embezzling e∗.

Prediction 3.3: The fraction embezzled, e∗, from a fair representative is decreasing with b.

Prediction 3.3a The fraction of representatives who are honest (embezzle nothing) is in-

creasing in b.

Remarks: Increasing representative pay increases πrep and does not directly affect πmember.

Therefore, a fair representative will embezzle a smaller share to keep πrep = πmember, with some

becoming honest.

Ignoring any signaling behavior in the trust game for a moment, higher competence makes

a candidate more appealing for two reasons. First, as noted above, a group member’s payoff from an

honest representative is increasing in r despite e∗ increasing. Second, not only does a more competent

rep make more for the members if she’s honest, but she is also more likely to be honest. For a given

competence level, the probability that a candidate will be an honest rep is Pr(λ > z|r) = 1−Fi(z),

which is increasing in r. Because she commands a higher fee, the threshold inequity aversion value

for a more competent rep is lower. Therefore, in the absence of any trust game signaling, voters

would always vote for the candidate with the highest r.

3.4.3 Costly Signaling and Deceit

If we restrict the range of r to [0, n− 1], it is clear that for any candidate to be considered

for the position of rep, she must return at least tr = 2ts in the trust game, as no honest/fair

representatives have a λ < 1
2 . Thus, returning 2ts in the trust game is a necessary condition to
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receive votes in the representative game. However, it is not a sufficient signal to convince voters of

honesty/fairness for two reasons. First, it is clear from Figure 3.1 that there are crooked candidates

with λ’s above 1
2 for r < n − 1. Second, as we will show in the following paragraphs, crooked

candidates with λ < 1
2 might have an incentive to return 2ts in the trust game to deceive voters.

Consider a potential candidate’s marginal benefit of becoming the representative. It is

simply the difference between her utility of being the rep and her expected utility of being a group

member:

MBi,rep = Ui,rep − E[Ui,member]. (3.7)

A player’s utility of being the representative depends on whether she is a crooked or fair/honest

candidate. A fair/honest representative will embezzle e∗ such that she earns exactly as much as the

group members, leading to utility Uf/h,rep = 10+ b+ e∗(n− 1)c. Notice that the utility of being the

representative for a fair/honest candidate is not dependent on λ. For a crook, however, the utility

of being the rep does depend on λ: Uc,rep = (1− λ)(10 + b+ (n− 1)c) + λ(10− c). Notice that the

most selfish crooks have the highest utility of being the rep.

The pre-trust game expected utility of being a group member depends on the candidate’s

beliefs over the behavior of the would-be representative. The expected payoff from being a group

member for player i is

E[πi(member)] = 10− c+ (1− Fi(z))((1− e∗)rc), (3.8)

where e∗ and z are the values of e∗, z when r = r, and the probability Fi(z) is a player’s ex-ante

degree of pessimism about her peers. If the expected marginal benefit is greater than the utility cost

of sending tr = 2ts for a crook, then the crooked candidate will be willing to give tr = 2ts in the

trust game to deceive voters into believing she is fair/honest. Since voters do not observe λ, only r

and tr, voters could be deceived and cast their votes for this crooked candidate if she is sufficiently

competent.

Since giving 2ts is not enough to signal honesty or fairness, is there any amount that an

aspiring representative can transfer such that the cost is sufficient to signal she is not crooked?

Clearly, for signaling to be believable, the expected marginal benefit of the honest or fair candidate

must be greater than the expected marginal benefit of a crooked candidate for a given r. A crooked

candidate cannot have more to gain from being the representative than a fair/honest candidate,
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otherwise he would always be able to give more in the trust game. Therefore, we can make the

following proposition.

Proposition 3.1: If candidates are perfectly homogeneous in their beliefs about others,

regardless of their optimism or pessimism, then no amount of tr is sufficient to signal trustworthiness.

Proof: See Appendix C.3.

This begs the question: is there any state of the world where costly signaling could work,

or do crooks always have more to gain via signaling to deceive voters? It immediately follows

from Proposition 3.1 that signaling is never possible if crooks are more pessimistic than fair/honest

candidates. Let Fc(z) be the probability which a crooked candidate expects his peers to be crooked,

and Ff/h(z) similarly be a fair/honest candidate’s degree of pessimism. Then, the only crooks a

fair/honest candidate can prove she is not via costly signaling are the ones for which

MBf/h,rep > MBc,rep,

λ >
c(n− 1)(1− e∗)− (Ff/h(z)− Fc(z))(1− e∗)rc

nc+ b
. (3.9)

Substituting 1− e∗ = nc+b
(r+n−1)c yields

λ >
n− 1

r + n− 1
−

(Ff/h(z)− Fc(z))r

r + n− 1
. (3.10)

Letting τ be the RHS of Equation 3.10, we can describe the signaling ability of a fair/honest

candidate with competence r. If τ > z, then a fair/honest candidate can prove nothing by sending

tr > 2ts. If τ ≤ 0, then the fair/honest candidate can use costly signaling to prove he will be a fair or

honest representative by giving tr = MBc,rep for λ = 0. If 0 < τ < z, then a fair/honest candidate

has partial signaling power. There is no amount that a candidate can transfer in the trust game

sufficient to credibly signal they will not be a crook; there are no riskless candidates in this case. A

candidate can, however, feasibly reduce the subjective risk that they will be a crook by transferring

an amount tr > 2ts. Specifically, by sending tr = MBc,rep for λ = τ , a candidate credibly signals

that her λ is either greater than z (she is fair/honest) or less than τ . In this manner, τ represents

the “benefit of the doubt” that a candidate must enjoy to receive a vote from a group member.5

5In still plainer language, as τ is lowered, it gives greater leeway to the voter to embrace, in choosing a candidate,
that: “Sure, this candidate is probably selfish, but they will only be a crook if they are really, really selfish.”
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Put in a narrative context, a voter examining a candidate will ascertain the candidate’s risk of being

crooked such that “Candidate i will only be a crook if their underlying selfishness, 1− λi, is worse

than λτ . As a candidate increases the amount they return in the trust game, tr, they lower their

implied value of τ , and in turn reduce the probability of being a crook (
∫ τ

0
f(λ)). The expression for

τ can be rewritten as τ = z − (Ff/h(z)−Fc(z))(1− z). Notice that costly signaling is only possibly

(in any meaningful capacity) if Ff/h(z) > Fc(z), or fair/honest candidates are more pessimistic than

crooked candidates. Figure 3.2 shows how τ varies with r.

Figure 3.2: Minimum benefit of the doubt from costly signaling

3.5 Experiment Design

We test the predictions of our model within a laboratory setting where voluntary participants

made compensation-salient decisions in a series of games designed to explicitly replicate the sub-

games and overall theoretic structure of our model. Participants first played an investment game from

which both earned direct rewards and were assigned investment “return factor” attributes, which
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served as analogues to player “competence” r in our model and affected outcomes controlled by them

in subsequent games. Subsequent to to the investment rounds, participants played a series of Trust

and Election games identical in structure to those in our model. Participants remained anonymous

to each other within the experiment at all times and at no point were able to communicate with

each other. Prior to the data-generating decisions subjects were provided with hard copies and were

read the instructions, followed by a series of quizzes within which correct answers yielded payoffs.

A full copy of the instructions and the quizzes can be found in Appendix C.4.

3.5.1 Investment portfolio round

In the investment game subjects were asked to algebraically solve a series of simultaneous

equations under a 5 minute time constraint. The equations were presented in random order for

each subject. The solutions to each pair show the rate of return and the probability of a positive

return for five separate investments. Subjects had to allocate a 10 token endowment over the five

investments. One was designed to be much better than the others — it had a return factor of 2.5

with a probability of 1. Two of the others had return factors and probabilities of 1 and 0.5, one had

a return factor of 1.5 and a probability of 0.5, and one had a return factor of 2 and a probability of

0.5. Subjects’ portfolio return was then calculated, and based on their rank ordering of the amount

earned, subjects were assigned an r value which determined how much group resources would grow

if they were the “leader” in the representative game. The top 5 earners were assigned an r value

of 2.6, the next 5 were assigned 2.1, the next 5 were assigned 1.6, and finally the bottom 5 were

assigned r = 1.1.

3.5.2 Trust game

Following the investment portfolio round, subjects were randomly matched into pairs and

played two rounds of the classic trust game — once as sender and, subsequent to being randomly

re-matched with another player, once as receiver. Each subject was endowed with 10 tokens. The

sender could choose any amount from 0 to 10 to send to the receiver, and any amount sent was

tripled. The receiver could then send back any amount they chose.
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3.5.3 Random leader selection

After the first iteration of the trust game, subjects played the representative game with

random leader selection. To maximize the efficient use of experimental resources, and because subject

beliefs and expectations are an important feature of our theoretical model, each representative game

was conducted using the strategy elicitation method introduced by Fischbacher et al. (2001). They

were first asked their choices as leader – how much of the group account they would invest, and how

much they would keep for themselves. They were then shown an anonymized screen with the other

members of their group listed as A, B, and C. For each person, they were shown how much that

person was sent in the trust game, and how much they returned, as well as their r based on their rank

in the investment portfolio game. For each group member, subjects were asked to enter their beliefs

about how much that person would keep for themselves as representative, and the probability that

person would keep the entire amount. Next, a representative was randomly chosen in each group

and subjects were told their role and payoff.

3.5.4 Elected leaders

Next, subjects played five rounds of the following sequence: two rounds of the trust game,

once as sender and once as receiver; followed by the representative game. However, instead of the

leader being selected randomly, subjects voted for a representative. The elicitations were identical

to the random leader selection round, but before the belief elicitation about other players, subjects

were shown a screen with the amount each person was sent in the trust game and their r, and asked

to rank their choice of representative. We used a Borda rule of voting to better elicit the relative

intensity of subject preferences across candidates – a winner was the subject in each group with the

lowest sum of ranks, with ties broken randomly. Payoffs were then assigned based on the choices

made by the eventual winner of the election. Finally, at the end, subjects completed a demographic

and political survey.

3.5.5 Treatment Design

To test the model’s comparative statics predictions, we employed a 2-by-2 treatment design,

varying both the compulsory contribution to the group account (c) and the base payment to the

elected representative (b).
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Table 3.1: Experiment Treatment matrix
b = 5, c = 4 b = 5, c = 9
b = 8, c = 4 b = 8, c = 9

Our experiment also benefits from within-session variation as groups first find their repre-

sentatives chosen randomly before democratically choosing them in subsequent rounds. A round of

random elections serves two purposes. First, it allows for the observation of within-subject variation

when electoral aspirations might provide incentive to change their behavior or engage in deceitful

signaling of trustworthiness. Second, it allows for comparisons of group outcomes when representa-

tives are elected democratically relative to outcomes when elections are random, which is unto itself

an historically interesting question(Levy, 1989).6

3.6 Results

We first report our observations of voter preferences over candidate competence and trust

game behavior. Second, we compare subjects’ observed actions to the testable predictions of our

model. Our experiment finds support for our predictions on tax rates (compulsory contribution c),

but our results regarding representative compensation b contrast our predictions. We then report

our observations of subjects’ expectations of their fellow group members.

Table 3.2 presents summary statistics of our subjects’ trust game and representative game

behavior. On average, subjects return less than the “fair” 200% in the trust game, and only 15%

of subjects give more than the fair amount. The average percent embezzled is 41%, however we

observe many subjects at either extreme, with 11% of subjects embezzling the entire public fund

12% embezzling nothing.

6The most common means of acquiring political power have, historically, been through hereditary birthright,
violence, random lots, and democratic election. Within our model and experiment we abstained from examining the
first two. Athens famously selected its representatives via random lots from its full citizens. Even in this seemingly
random selection mechanism, however, Athens was keenly aware of the dangers of incompetent leaders—those selected
were rigorously reviewed for disqualifying flaws in character or capacity (Besley, 2005; Manin, 1997)
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Table 3.2: Summary statistics

Statistic Min Median Max Mean St. Dev.

Percent returned in trust game 0.000 157.143 633.333 154.810 71.843

Returned > 200% 0 0 1 0.115 0.319

Percent Embezzled 0.000 37.037 100.000 41.989 30.882

Embezzled 100% 0 0 1 0.114 0.317

Embezzled Nothing 0 0 1 0.126 0.332

Total Earnings 1.000 12.665 45.000 14.398 8.610

Female 0 0 1 0.338 0.473

3.6.1 Voter Preferences: Trust and Competence

Figure 3.3 shows binscatters of the average voter ranking for candidates based on their return

rates and trust game behavior over our treatments on leader compensation and compulsory member

contribution. Candidates with higher return rates are consistently ranked higher than candidates

with lower rates. Conversely, the percent returned in the trust game has no significant impact

on voter rankings. Neither treatment significantly affects these relationships. Voters consistently

respond more to a candidate’s ability than to their displayed honesty.
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Figure 3.3: Voter preferences over competence and trust game behavior

However, a candidate’s behavior in the trust game does impact her likelihood of getting

elected. Figure 3.4 shows histograms of the percentage returned in the trust game for candidates

who ultimately were elected leader and those who were not in the following election. While both

groups have a modal return percentage of 200%, successfully elected candidates are more likely to

return the “fair” amount in the trust game. Table 3.3 presents Mann-Whitney tests on trust game

behavior between elected leaders and group members. Successful candidates return more in both

absolute and percentage terms.
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Figure 3.4: Trust game behavior: Percent returned in Elected leader rounds
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Note: Our model predicts returning double the amount sent is necessary, but not sufficient to be elected.

Table 3.3: Summary of trust game behavior for elected leaders and group members

Elected Leader Group Member (not elected) Difference (p-value)

Average return amount 13.1 10.5 0.00

Average return % 172 150 0.00

Returned > 200% 0.155 0.125 0.27

Returned 0 0.030 0.047 0.30

One possible reason voters do not value observed honesty as much as competence is that

trust game behavior is a noisy signal of trustworthiness; they cannot know whether giving is genuine

or performative. Figure 3.5 shows a histogram of the difference between candidates’ trust game

return percent in the election rounds (rounds 2-6) and the non-election round (round 1). Many

successful candidates are engaging in “performative giving” in election rounds; they are increasing
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their giving only when they need to be elected leader.

Figure 3.5: Within-subject change in trust game behavior: Elected vs Random leader selection
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Note: Elected candidates return more in the election rounds than in their baseline trust game.

Are voters correctly weighing competence and trustworthiness? Figure 3.6 compares a

candidate’s voter ranking and the payout for group members if that candidate were elected. For the

most competent candidates, higher amounts returned in the trust game result in lower payouts for

group members, yet voters tend to rank them higher if they return more. The opposite occurs for

the second-best candidates: returns in the trust game are positively correlated with group payouts,

yet voters do not respond to this. This suggests that voters over-value trust game behavior for the

highest competence candidates and under-value trust game behavior for the second most competent

candidates.

47



Figure 3.6: Candidate Potential Performance vs Ranking
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3.6.2 Testable predictions across treatments

3.6.2.1 Crooked behavior

Figure 3.7 gives the percent of subjects who chose to embezzle everything (“crooks”) over our

treatments. Consistent with Prediction 3.1 of our model, there is no significant difference between

the percentage of crooks in high and low compulsory member contribution sessions. However, there

was a significantly higher percentage of crooks when leader compensation was high than when it

was low. Contrary to Prediction 3.1, higher leader salaries resulted in worse leader behavior.
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Figure 3.7: Percent of leaders with maximal extraction
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Note: Prediction 3.1: Whether a player is crooked (embezzles everything) or honest/fair does not vary with c or b.

3.6.2.2 “Fair” leaders: Theoretical e∗ vs Observed Behavior

Our model predicts that a fair leader will embezzle min[0, e∗], where e∗ = (ri−1)c−b
(ri+n−1)c . How-

ever, we observe players embezzling significantly higher rates than e∗. Table 3.4 gives the embezzle

rate for each type of fair leader over the different treatments as predicted by the model, and Table 3.5

gives the average embezzle rate of players who did not embezzle the entire public fund (sub-max

extractors). We observe that not only are players consistently embezzling more than the “fair” e∗,

but also that the average sub-max extraction rate did not vary with representative competence nor

treatment. This result is inconsistent with Predictions 3.2 and 3.3.

Table 3.4: Value of e∗ for players across treatments

r-value High c, Low B High c, High b Low c, Low b Low c, High b

1.1 0.00 0.00 0.00 0.00

1.6 0.01 0.00 0.00 0.00

2.1 0.11 0.04 0.00 0.00

2.6 0.19 0.13 0.06 0.00
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Table 3.5: Average embezzle rate for fair players across treatments

r-value High c, Low B High c, High b Low c, Low b Low c, High b

1.1 0.3753 0.3564 0.3476 0.3720

(0.23) (0.22) (0.22) (0.20)

1.6 0.4329 0.3111 0.4059 0.4550

(0.19) (0.23) (0.23) (0.19)

2.1 0.4386 0.4321 0.4643 0.4697

(0.19) (0.22) (0.19) (0.19)

2.6 0.4092 0.4213 0.3874 0.4101

(0.25) (0.13) (0.27) (0.25)

Figure 3.8: Fair extractors: Percent embezzled as leader
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Note: Prediction 3.2: Fraction embezzled by a fair representative is increasing with c. Prediction 3.3: Fraction

embezzled by a fair representative is decreasing with b.

3.6.2.3 Honesty over treatments

Figure 3.9 gives the percentage of subjects who chose to embezzle nothing over treatments.

Consistent with Prediction 3.2a, there are significantly fewer honest leaders when compulsory con-
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tribution is large. However, there is no significant difference in the percentage of honest leaders

when we vary leader compensation, which is inconsistent with Prediction 3.3a.

Figure 3.9: Percent of leaders with zero extraction
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Note: Prediction 3.2a The fraction who embezzle nothing is decreasing in c. Prediction 3.3a The fraction who

embezzle nothing is increasing in b.

3.6.3 Expectations and Beliefs

Our model does not make any assumptions on subjects’ prior expectations of potential can-

didates. We asked subjects two questions regarding their beliefs about their fellow group members.

When ranking their group members, we asked subjects “How much do you think the player will take

from the group account?” and “What is the probability that the player will take everything in the

group account?” Figure 3.10 shows how expected embezzlement and actual embezzlement changed

over the multiple rounds for our treatments. While subjects begin to embezzle more in later rounds,

subjects’ expectations do not vary significantly over rounds.

Table 3.6 reports results from an OLS regression expected embezzle percent on character-

istics of the individual and the candidate. We find that the percent a subject chooses to embezzle

is significantly, positively related to her expectations of others. This is also shown in Figure 3.11.
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Subjects were also significantly more pessimistic in high leader compensation treatment sessions,

while the member contribution treatment did not significantly affect expectations. Low-competence

subjects (r = 1.1) were significantly more optimistic than more competent subjects.

Figure 3.10: Embezzlement behavior and expectations over rounds
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Table 3.6: Regression results (OLS)

Dependent variable:

Expected Embezzle Percent

Individual percent embezzled 0.226∗∗∗

(0.017)

High compulsory contribution −1.441
(1.044)

High leader compensation 3.520∗∗∗

(1.044)

Candidate rate = 1.6 −1.311
(1.559)

Candidate rate = 2.1 −2.712∗

(1.559)

Candidate rate = 2.6 −2.303
(1.559)

Individual rate = 1.6 6.853∗∗∗

(1.559)

Individual rate = 2.1 7.954∗∗∗

(1.571)

Individual rate = 2.6 6.662∗∗∗

(1.565)

Constant 31.697∗∗∗

(2.122)

Observations 2,400
R2 0.108
Adjusted R2 0.103
Residual Std. Error 25.454 (df = 2386)
F Statistic 22.137∗∗∗ (df = 13; 2386)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 3.11: Candidates’ embezzlement decisions and expectations of others

3.7 Discussion and Conclusion

We develop a simple two-stage election model in which heterogeneous voters elect candi-

dates according to their known ability and observed virtuosity. We tested our model in a one-to-one

recreation in a laboratory experiment. When ranking candidates, voters consistently valued com-

petence more than trust game behavior across all rounds and treatments. The potential for selfish

candidates to engage in performative giving to win the election limits the salience of giving as a

signal of trustworthiness. This leads to voters employing a voting strategy in which they rank can-

didates based on their competence subject to them meeting a minimum, necessary level of trust

game giving. Costly signaling above the “fair” amount is not effective at proving honesty; virtuous

candidates cannot separate themselves from bad actors in the eyes of the voters.

Our model’s predictions regarding compulsory member contribution are supported by the

laboratory results. While increasing the size of the resource pool available to steal from does not
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significantly change the fraction of leaders whole stole everything, there is a dramatic decrease

in leaders who take nothing. Our results on leader compensation do not align with the model’s

predictions. Raising leader pay increased the prevalence of crooked leaders embezzling the entire

group fund did not affect the fraction of honest leaders or the embezzle decisions of fair leaders.

While this divergence from the model’s predictions could potentially be due to idiosyncratic

differences in the subjects in the high compensation rounds or some component of utility being

absent from our assumed utility function, a more interesting plausible explanation for this result

is that leader pay elicits a behavioral response to voters and leaders that is exogenous from the

present model. Our model does not make any assumptions about prior beliefs of players, but the

results of our experiment suggest that leader compensation significantly increases voter pessimism

about candidates. If people’s own behavior is influenced by their beliefs of others and they think

high salaries attract the wrong kind of representatives, paying representatives more can create a

“self-fulfilling prophecy” of crooked leaders.
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Appendix A Chapter 1 Appendix

A.1 Proof of Proposition 1.1

The expected value of the MSNE for player 2 can be written as − δ2

U2+2δ , which is always

negative since U2 ∈ [−1, 1] and δ > 1. When U2 ≥ 0, the worst outcome from delegating is player

1 choosing A, which gives 2 a payoff of 0. Therefore, even if player 1 chooses A with certainty,

the expected payoff of delegation is greater than the MSNE. If U2 < 0, the worst outcome from

delegating is player 1 choosing B, and it is clear that − δ2

U2+2δ < U2 for all possible values of U2.

Thus, even if player 1 chooses B with certainty, the expected payoff of delegation is greater than the

MSNE. ■

A.2 Proof of Proposition 1.2

Consider player 2’s decision following revelation from player 1. If b1 > − α1

1−α1
b2 and b2 >

− α2

1−α2
b1, players will coordinate and play the Pareto-dominant PSNE {B, B} if player 2 reveals b2

by Assumption 1. Player 2 prefers option B when b2 > − α2

1−α2
b1 and therefore optimally reveals

his type. Similarly, if b1 < − α1

1−α1
b2 and b2 < − α2

1−α2
b1, player 2 optimally reveals and the players

coordinate on the Pareto-dominant PSNE {A, A}. If neither of the above are true, then revelation

from player 2 results in the MSNE and player 2 delegates according to Proposition 1.

Therefore, if player 2 reveals after player 1 reveals, player 1 receives her preferred outcome.

If player 2 delegates after player 1 reveals b1 > 0 and α1 < 1−α2, then it must be that b2 < − α2

1−α2
b1

and b1 > − α1

1−α1
b2. Player 1 therefore knows with certainty that she prefers option B. Similarly if

player 2 delegates after player 1 reveals b1 < 0 and α1 < 1− α2, player 1 knows with certainty she

prefers option A. A symmetric argument follows for α1 > 1 − α2. Revelation guarantees player 1

her preferred outcome and therefore dominates delegation as an action for player 1. The sequential

rationality requirement for a PBE therefore requires player 1 to reveal for all b1. ■

A.3 Proof of Proposition 1.3

Lemma 1: In equilibrium, given message m1
k from player 1, player 2 must delegate if b2 ∈

[min[− α2

1−α2
R1

k,−
1−α1

α1
R1

k],max[− α2

1−α2
R1

k−1,−
1−α1

α1
R1

k−1]].

Proof If any message includes a b2 in the above region, it is clear that it must be of type
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m2
X by Assumption 1. Then by Proposition 1, that message is dominated by delegation. ■

Lemma 2: Neither m2
A nor m2

B can exist in equilibrium.

Proof: Consider a message m1
k with R1

k−1, R
1
k. From L1, we know that in equilibrium 2

must delegate if b2 ∈ [min[− α2

1−α2
R1

k,−
1−α1

α1
R1

k],max[− α2

1−α2
R1

k−1,−
1−α1

α1
R1

k−1]]. For b2 above this

necessary delegation region, Player 2 knows B is Pareto-dominant, so if he can credibly send m2
B ,

he will do so. Similarly, for b2 below the necessary delegation region, he will want to send m2
A if

possible. Define θ2A as the expected value of b2 given 2 sends message m2
A, θ

2
B as the expected value

of b2 given 2 sends message m2
B , and θ2D as the expected value of b2 given 2 delegates. It is clear

that θ2A < θ2D < θ2B .

Consider the case when − α2

1−α2
R1

k < − 1−α1

α1
R1

k, or when R1
k > 0. Further consider a

b2 = − α2

1−α2
R1

k + ϵ in the delegation region. The expected utility for player 2 is then

Pr(b1 > − α1

1− α1
θ2D|m1

k)[(1− α2)(−
α2

1− α2
R1

k + ϵ) + α2E[b1| −
α1

1− α1
θ2D < b1 < R1

k]].

If 2 deviates and sends m2
A, they coordinate on A, and 2’s utility is 0. As ϵ → 0, delegation is only

better if E[b1] > R1
k. But, for continuous f1, E[b1] < R1

k. Thus, there is some b2 in the delegation

region who would profitably deviate by sending false message m2
A. Therefore, any m2

A is not credible

to player 1, leading to the MSNE.

If − α2

1−α2
R1

k > − 1−α1

α1
R1

k, or R
1
k < 0, consider any b2 such that − 1−α1

α1
R1

k < b2 < − α2

1−α2
R1

k.

Player 2 then prefers option A for sure (even if b1 is R1
k−1, A is preferable to B for 2). So if there is

a m2
A in equilibrium, 2 can profitably deviate by falsely signalling it when it is the delegation region.

Therefore, m2
A cannot be credible to player 1, forcing any potential m2

A into a m2
X type.

Similar arguments rule out m2
B in equilibrium. This leaves delegation as player 2’s only

possible equilibrium strategy. ■

A.4 Derivation of a general Rk in an n−partition equilibrium

The homogeneous difference equation is

Rk+1 =
1

γ
Rk −Rk−1, (11)
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where k = 0, ..., n, with R0 = −1 and Rn = 1. Guess Rk = λk, then rewrite

λk+1 =
1

γ
λk − λk−1. (12)

Divide by λk−1 to get characteristic equation

λ2 − 1

γ
λ+ 1 = 0, (13)

which has 2 roots λ =
1±

√
1−4γ2

2γ . Therefore we can write

Rk = C(
1 +

√
1− 4γ2

2γ
)k +D(

1−
√
1− 4γ2

2γ
)k (14)

and solve for constants C and D using the initial conditions from above. We have

−1 = C +D, (15)

and

1 = C(
1 +

√
1− 4γ2

2γ
)n +D(

1−
√
1− 4γ2

2γ
)n. (16)

Substituting C = −(1 +D) and solving for D yields

D =
(2γ)n + (1 +

√
1− 4γ2)n

(1−
√
1− 4γ2)n − (1 +

√
1− 4γ2)n

. (17)

Similarly we can solve for C, then we have Rk as a function of α1, α2, k and n. ■
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Appendix B Chapter 2 Appendix

B.1 Proof of lemma 2.1

It is clear that
∂E[Vd, delegate]

∂ud
= γ. As long as E chooses to enact with some positive probabil-

ity, the expected value of delegating is increasing in ud. Thus, for any ud < uLB , E[Vd, delegate] < 0

and D will choose to not enact.

B.2 Proof of lemma 2.2

It can be shown that
∂E[Vd, delegate]−E[Vd, enact

∂ud
= γ − 1 < 0. Then, for any ud > uUB ,

E[Vd, delegate] < E[Vd, enact] and D will choose to enact.

B.3 Proof of Proposition 2.1

We must show that uLB decreases and that uUB increases as either Fe(0) decreases or

(1− Fe(0)) decreases.

Lemma: ∂uLB

∂Fe(−he)
> 0.

Proof: Assume not. Then

∂uLB

∂Fe(−he)
= −hd[

1− Fe(−he)

[(1− Fe(−he)) + (1− Fe(0))]2
− 1

[(1− Fe(−he)) + (1− Fe(0))]
] < 0,

1− Fe(−he)

[(1− Fe(−he)) + (1− Fe(0))]2
>

1

[(1− Fe(−he)) + (1− Fe(0))]
],

1− Fe(−he) > (1− Fe(−he)) + (1− Fe(0)),

0 > 1− Fe(0).

But 1− Fe(0) > 0. This is a contradiction.

Lemma: ∂uLB

∂(1−Fe(0))
> 0.

Proof:

∂uLB

∂(1− Fe(0))
= hd[

1− Fe(−he)

[(1− Fe(−he)) + (1− Fe(0))]2
] > 0.

The above two lemmas prove uLB behaves as we claimed.

Lemma: ∂uUB

∂(1−Fe(−he))
< 0.
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Proof: Assume not. Then

∂uUB

∂Fe(−he)
= −hd[

1

[1 + Fe(−he) + Fe(0)]
− Fe(−he)

[1 + Fe(−he) + Fe(0)]]2
] > 0,

1

[1 + Fe(−he) + Fe(0)]
<

Fe(−he)

[1 + Fe(−he) + Fe(0)]]2
,

1 + Fe(−he) + Fe(0) < Fe(−he),

1 + Fe(0) < 0.

But 1 + Fe(0) > 0. This is a contradiction.

Lemma: ∂uUB

∂Fe(0)
> 0.

Proof:

∂uUB

∂Fe(0)
= hd[

Fe(−hd)

[1 + Fe(−hd) + Fe(0)]
> 0.

If uUB is increasing in Fe(0), then it must be decreasing in (1− Fe(0). Thus the above two lemmas

prove uUB behaves as we claimed.
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Appendix C Chapter 3 Appendix

C.1 Proof of Lemma 3.1

Lemma 3.1: In an isolated trust game where a sender sends ts, a receiver will return tr = 2ts if

λr ≥ 1
2 , and returns tr = 0 if λr < 1

2 .

Proof: If πs < πr, then

Ur = (1− λr)πr + λrπs. (18)

Differentiating with respect to tr yields

∂Ur

∂tr
= 2λr − 1, (19)

which is negative if λr > 1
2 . If πs ≥ πr, then Ur = πr, and the marginal utility of tr is positive for

all λr. ■

C.2 Proof of Lemma 3.2

Lemma 3.2: A representative will embezzle everything (e = 1) if λrep < n−1
rrep+n−1 . If λrep >

n−1
rrep+n−1 , the representative will embezzle e = max[0, e∗], where e∗ = (r−1)c−b

(r+n−1)c .

Proof: It can be shown that πrep = πmember when e = e∗. If πrep < πmember, then

Urep = πrep and
∂πrep

∂e > 0. The representative always wants to embezzle more until πrep = πmember.

If πrep > πmember, then
∂Urep

∂e = (1− λrep)(n− 1)c− λreprc., which is positive when λrep < n−1
n−1+r .

C.3 Proof of Proposition 3.1

Proposition 3.1: If candidates are perfectly homogeneous in their beliefs about others,

regardless of their optimism or pessimism, then no amount of tr is sufficient to signal trustworthiness.

Proof: If fi = f for all i, then both crooked and fair/honest candidates have the same

expected utility of being a group member. Therefore, we can simply compare their utilities of

being the representative to determine who has more to gain from being the representative. Since

Urep(e = e∗) does not vary with λ, then it is clear that for any λ < z (ie, crooks), that Urep(e = 1) is

greater. Therefore, for a given r, a crook will always have more to gain from being the representative

than an honest/fair candidate. ■
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C.4 Experiment Instructions
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Consent Form:  Investment and Representative Behavior in Groups 
 

You are invited to participate in a research study about economic decision making in groups.  This study is 
designed to help us to better understand how investment and group behavior relate to the decisions individuals 
make.  The primary investigator is Dr. Wafa Hakim Orman, from the University of Alabama in Huntsville.    
 
PROCEDURE TO BE FOLLOWED IN THE STUDY:   Participation in this study is completely voluntary. Once 
written consent is given, you will receive instructions that explain in detail how you and the other participants in 
the study, who have been randomly selected, will make certain decisions that will influence how much money 
you can earn in the experiment. Your earnings will be determined by your decisions, as well by as the decisions 
of the other participants. Your actions and responses will be kept completely confidential. This session will take 
approximately 80 minutes.   
 
DISCOMFORTS AND RISKS FROM PARTICIPATING IN THIS STUDY:  There are no expected risks associated 
with your participation. There is no cost to you except for a few minutes of your time 
 
EXPECTED BENEFITS:  Results from this study can benefit society by helping us better understand human 
decision-making and how groups function. Please see the section below for incentives and compensation for 
participation in this study.  
 
INCENTIVES AND COMPENSATION FOR PARTICIPATION: In addition to your participation fee, compensation 
will be paid commensurate with the payoffs to decisions made at each step of the experiment, based on your 
decisions and the decisions of other participants. The showup fee is $5, and the additional earnings will range 
from $20-$50 for the single session. 
 
CONFIDENTIALITY OF RESULTS:  Participant numbers will be used to record your data, and these numbers 
will be made available only to those researchers directly involved with this study, thereby ensuring strict 
confidentiality.  This consent form will be destroyed after 3 years.  The data from your session will only be 
released to those individuals who are directly involved in the research and only using your participant number. 
 
FREEDOM TO WITHDRAW: You may withdraw from the study at any time, and you will still receive your 
participation fee.  You are free to withdraw from the study at any time.  You will not be penalized because of 
withdrawal in any form.  Investigators reserve the right to remove any participant from the session without regard 
to the participant’s consent. 
 
CONTACT INFORMATION: If you have any questions, please ask them now. If you have questions later on, you 
may contact the Principal Investigator Dr. Wafa Hakim Orman, at (256) 824-5674, or by email at 
wafa.orman@uah.edu. If you have questions about your rights as a research participant, or concerns or 
complaints about the research, you may contact the Office of the IRB (IRB) at 256.824.6992 or email the IRB 
chair Dr. Ann Bianchi at irb.@uah.edu. 
This study was approved by the Institutional Review Board at UAH and will expire in one year from <date of IRB 
approval>.  
 
 
________________________________   ______________________________ 
Name (Please Print)      Signature  Date 
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Experiment Instructions 

 

Welcome. Thank you for participating in today’s experiment. You have earned a $5 show-up fee for participating. 

During the experiment you and the other participants will be given tasks that will give you an opportunity to earn 
significantly more. When you are asked to work with other players or assigned to groups, none of the players 
know who they are working with or are told their names. 

Throughout the experiment you will earn tokens. At the end of the experiment, you will be paid $0.10 for every 
token earned in the game. 

During the experiment, you and the other people participating will be placed into groups, with 4 people in each 
group. You will not be told the names of those you are partnered or placed in groups with, and they will not be 
told your name. All participants have identical instructions. 

The experiment has three phases and will take approximately 1 hour in total. 

Phase one will consist of an individual investment game. You will earn tokens based on your investment 
performance. Phase two will consist of a partner game and a group game. You will earn tokens based on your 
decisions and the decisions of the other players in your group. Phase three will consist of multiple rounds, where 
each round will include a partner game and a group game. You will earn tokens based on your decisions and the 
decisions of the other players in your group. 

Groups and partners will remain anonymous in each round of phases two and three. Groups and partners will be 
reshuffled in each round.  

At the end, there will be a brief survey. 

When the experiment concludes, you will be paid in cash. You will be paid 1 US dollar for every 5 tokens you 
have earned over all phases of the experiment, plus your $5 show-up fee. 

 

Instructions For The Investment Game  
 
 Phase 1: The Investment Game 

• You will have 10 tokens to invest in any of five available investments: A, B, C, D, or E. 

• You may invest some, all, or none of the 10 tokens. 

• You may invest all your earnings in one of them or divide them between two, three, four, or all five of the 
investments in any way you like. 

• Remember to enter whole numbers and ensure that the total across all portfolios is less than or equal to 
10. 

• Enter 0 if you do not wish to invest in a given portfolio. 

• Investments may have a positive or zero return. 

• Any tokens left uninvested will be held left untouched until the end of the round, without any possibility of 
gain or risk of loss, and will then be returned to your private account. 

• Each investment is defined by two characteristics: 

• The probability of a positive return, p. This is the probability that investments in it will grow. 
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• Its return factor, r. This is the amount investments in the portfolio will be multiplied by if the 
portfolio has a positive return. 

Example 1: 
 
Suppose Investment A has a 70% probability of a positive return (p = 0.70), and a return factor of 2 (r = 2). 
 
You choose to invest 8 tokens in Investment A, leaving 2 tokens uninvested. 
 
The computer will draw a random number from 0 to 1. If that random number is between 0 and 0.7 ( < p), your 
investment will have a positive return. Your 8 token investment will be multiplied by 2 (r), leaving you with 16 
tokens from your investment that will be returned to your private account along with the 2 tokens that you chose 
not to invest. 
 
If the random number is between 0.7 and 1(> p), your investment will return 0. Your 8 token investment will be 
multiplied by 0, leaving you with 0 tokens from your investment along with the 2 tokens that you chose not to 
invest. Your private account will now hold 2 tokens before you start the round. 
 
Example 2: 
 
Investment A has a 60% probability of a positive return, and a return factor of 2. 
 
Investment B has an 80% probability of a positive return, and a return factor of 1.5. 
 
Investment C has a 40% probability of a positive return, and a return factor of 1.1. 
 
You invest 4 tokens in A, 4 tokens in B, and 2 tokens in C. 
 
The random number drawn for A is 0.9, so you earn zero from A. 
 
The random number drawn for B is 0.7, so you earn a positive return from B. 
 
The random number drawn for C is 0.3, so you earn a positive return from C. 
 
The results from your investment this round will add (4 x 0) + (4 x 1.5) + (2 x 1.1) = 8.2 tokens back to your 
private account. 
 
Determining p and r: 
 
You will not be told the probability, p, or the return factor, r, for any of the investments. 
 
Instead, you will be presented with five pairs of simultaneous equations with two unknown variables: p and r. 
 
p represents the probability for the relevant portfolio. r represents the return factor. 
 
You will need to solve the pairs of simultaneous equations to obtain the probability p and the return factor r for 
each investments in order to decide which portfolio would be the best one to choose. 
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Phase 2: Sender-Receiver Game  
This game has two players: a sender and a receiver. You will play this game twice, once as the sender and 
once as the receiver. Each time, both the sender and the receiver will begin with 10 tokens in their account. You 
will be randomly partnered with a different participant each time. Neither you nor your partners will ever learn the 
identity of the other.  
Sender Phase: 
As a sender, you must decide how much of their 10 token endowment you want to transfer to the receiver you 
are matched with. You may transfer between 0 to 10 tokens, which will be tripled and placed in the Receiver’s 
account. For example, if you transfer 2 tokens, then 6 tokens will be added to the Receiver’s account. You will 
have 8 tokens in your account, and the Receiver will have 6 tokens in theirs.  
Receiver Phase: 
The receiver’s decision depends on how many tokens the sender transferred into their account. You will be 
shown how much your account has increased, and then make your decision. You can transfer from your 
account, back to the sender, any amount from 0 up to the total number of tokens in your account. For 
example, if the sender transfers 2 tokens, then the receiver’s account now has 10 + 3 x 2 = 16 tokens. The 
Receiver can then choose to transfer between 0 and 16 tokens back to the sender. The receiver will keep 
whatever remains in their account.  
Example 1: In the Sender Phase, you choose to transfer 2 of your 10 tokens to the person you are randomly 
matched with.  
The person you are randomly matched with sees in the Receiver Phase that they were sent 3, which is 
multiplied by 3 so that they have 9 tokens in their account. They choose to transfer 4 back to your account.  
At the end of this round, you have 10 – 3 + 4 = 11 tokens. The receiver you were matched with has 10 + 9 – 4 = 
15. 
Example 2: In the Receiver Phase you find out that the sender you are randomly matched with chose to 
transfer 5 tokens. This 5 is multiplied by 3 so that you have 10 + 15 = 25 tokens in your account. You choose to 
transfer 6 back to the Sender.  
At the end of this round, your private account has 10 + 15 – 6 = 19 tokens. The sender you were matched has 
10 – 5 + 6 = 11. 
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The Group Game 
 
In this round each participant will be endowed with 10 tokens and randomly placed into groups of 4. Within each 
group, 3 participants will be group members and one will be randomly chosen to be the representative. 4 
tokens will be taken from each of the 3 group members and placed into a group account.  
Every token in the group account will be multiplied by the representative’s growth rate R and then divided equally 
among the 3 group members. Each participant in the experiment has their own R value based on how much 
their investments grew in the Investment game in Phase 1 of today’s experiment. The R value for a group 
account depends on who is randomly chosen to be the representative.  
Representatives will not receive any tokens from the group account. Instead, they are paid a flat fee of 5 tokens. 
The representative may also choose to transfer some tokens from the group account to their own private 
account. Tokens transferred to the representative’s private account will not be multiplied by R or returned to 
the group members.  
For the three members, their payoff from this round is the 6 tokens remaining in their private account plus their 
earnings from the group account: 
 Member payoff from their private account = 6 
 Member payoff from the group account = 

(12−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑥𝑥𝑥𝑥
3

 
 Total Member payoff = payoff from private account + payoff from group account 
For the representative, their payoff will include a 5 token fee for being the representative in addition to any 
tokens they transferred from the group account into their private account: 
 Total Representative payoff = 10 +  5 + the amount they transferred from the group account 
Each of you will make this decision in advance as if you are the group's representative. When entering your 
decisions, you will not know whether you have been selected as the group's representative. This will not be 
revealed to you until after you make your decisions. Your decisions have no impact on whether or not you are 
chosen as the representative. 
On the next screen, you will see the amounts sent to and returned by the other members of your group in the 
sender-receiver game, and their values of R. They will be labeled anonymously as Player A, Player B, and 
Player C. You will be able to enter your best guess about each of the other players’ decisions – how much you 
think they will transfer to their private accounts if they are the representative, and what is the probability that they 
will transfer all the money in the group account to their private account.  
Summary of Group Game: 

• You will decide how many tokens you will transfer from the group account to your private 
account if you are selected to be the representative 

• You will guess the decisions made by the other players in the group 
• After all players have made their decisions and guesses, the representative will be selected.  
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Phase 3: The Election Game 
 
In this phase you will play multiple rounds of a two-part game.  
The first part of each round will be identical to the Sender-Receiver game you played in phase 2 of today’s 
experiment. Players will be given 10 tokens and then assigned to the role of sender or receiver. After all 
participants have made their decisions, they will be endowed with 10 more tokens and then assigned to play the 
opposite role.  
The second part of each round will be identical to the Group game, with one important change: each group will 
elect the member that will act as their representative using a ranked choice voting system.  
Each participant will be endowed with 10 tokens and randomly placed into groups of 4. Same as in the Group 
game, 4 tokens will be taken from each of the 3 group members and placed into a group account.  
Each of you will make the decision regarding the amount transferred to your private account from the group 
account as if you are the group's representative in advance of the representative being elected. When entering 
your decisions, you will not know whether you have been elected as the group's representative. This will not be 
revealed to you until after you make your decisions. Your decisions have no impact on whether or not you are 
elected as the representative. 
On the next screen, you will see the amounts sent to and returned by the other members of your group in the 
sender-receiver game, and their values of R. They will be labeled anonymously as Player A, Player B, and 
Player C. You will rank the other 3 members of their group, assigning 1 to the player you most want to be the 
representative and 3 to the player you least want to be the representative. When making their decision, they will 
be given three pieces of information about each player: 

• The amount of tokens that were sent to them in the trust game when they were the Receiver 
• Of those tokens, the amount of tokens they returned in the trust game when they were the 

Receiver 
• The R value that was assigned to them based on the Investment game. 

On the next screen, you will be able to enter your best guess about each of the other players’ decisions – how 
much you think they will transfer to their private accounts if they are the representative, and what is the 
probability that they will transfer all the money in the group account to their private account.  
Each group member will receive 2 points for each 1st place vote, 1 point for each 2nd place vote, and 0 points for 
each 3rd place vote. The member with the most points will be the group representative. Ties will be broken 
randomly.  
You will play this game sequence 5 times – the sender-receiver game, followed by the representative election 
game. After each round you will be informed which member was elected the representative and the results from 
the round. At the beginning of each round you will be randomly re-matched into a new group of 4 members.  
 
Summary of Election Game: 
You will play multiple rounds of the following game sequence: 

• First you will play the Sender-Receiver game twice: Once as Sender, Once as Receiver. 
• You will decide how many tokens you will transfer from the group account into your private 

account if you are selected to be the representative 
• Next, you will vote on who will vote on who will be the representative in the Group-game.  You 

will be told each candidate’s R value and their decision they last made as the Receiver in the 
Sender-Receiver Game. You will be asked to guess how many tokens each candidate would 
transfer into their private account as the Representative.  

• After all players have made their decisions, the representative will be selected.  

Reminder of Payoffs: 
 For the three members, their payoff from this round is the 6 tokens remaining in their private account 
plus their earnings from the group account: 
 Member payoff from their private account = 6 
 Member payoff from the group account = 

(12−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑥𝑥𝑥𝑥
3

 
 Total Member payoff = payoff from private account + payoff from group account 
For the representative, their payoff will include a 5 token fee for being the representative in addition to any 
tokens they transferred from the group account into their private account: 
 Total Representative payoff = 10 +  5 + the amount they transferred from the group account 
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C.5 Experiment - Subject Interface

Figure C.1: Investment Game - Subject Interface

Figure C.2: Trust game subject interface: Sender phase
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Figure C.3: Trust game subject interface: Receiver phase
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Figure C.4: Candidate - Subject Interface

Figure C.5: Voter interface: Candidate ranking
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Figure C.6: Voter interface: Belief elicitation
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