
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

5-2022

Scalable and Reliable Sparse Data Computation on Emergent Scalable and Reliable Sparse Data Computation on Emergent

High Performance Computing Systems High Performance Computing Systems

Zheng Miao
zmiao@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Recommended Citation Recommended Citation
Miao, Zheng, "Scalable and Reliable Sparse Data Computation on Emergent High Performance Computing
Systems" (2022). All Dissertations. 2972.
https://tigerprints.clemson.edu/all_dissertations/2972

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2972?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Scalable and Reliable Sparse Data Computation on
Emergent High Performance Computing Systems

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Zheng Miao

May 2022

Accepted by:

Dr. Rong Ge, Committee Chair

Dr. Jon C. Calhoun, Committee Co-chair

Dr. Amy Apon

Dr. Shuangshuang Jin

Dr. Jiajia Li

Abstract

Heterogeneous systems with both CPUs and GPUs have become important system archi-

tectures in emergent High Performance Computing (HPC) systems. Heterogeneous systems must

address both performance-scalability and power-scalability in the presence of failures. Aggressive

power reduction pushes hardware to its operating limit and increases the failure rate. Resilience

allows programs to progress when subjected to faults and is an integral component of large-scale

systems, but incurs significant time and energy overhead. The future exascale systems are expected

to have higher power consumption with higher fault rates. Sparse data computation is the funda-

mental kernel in many scientific applications. It is suitable for the studies of scalability and resilience

on heterogeneous systems due to its computational characteristics.

To deliver the promised performance within the given power budget, heterogeneous com-

puting mandates a deep understanding of the interplay between scalability and resilience. Managing

scalability and resilience is challenging in heterogeneous systems, due to the heterogeneous compute

capability, power consumption, and varying failure rates between CPUs and GPUs. Scalability and

resilience have been traditionally studied in isolation, and optimizing one typically detrimentally

impacts the other. While prior works have been proved successful in optimizing scalability and re-

silience on CPU-based homogeneous systems, simply extending current approaches to heterogeneous

systems results in suboptimal performance-scalability and/or power-scalability.

To address the above multiple research challenges, we propose novel resilience and energy-

efficiency technologies to optimize scalability and resilience for sparse data computation on hetero-

geneous systems with CPUs and GPUs. First, we present generalized analytical and experimental

methods to analyze and quantify the time and energy costs of various recovery schemes, and develop

and prototype performance optimization and power management strategies to improve scalability

for sparse linear solvers. Our results quantitatively reveal that each resilience scheme has its own

ii

advantages depending on the fault rate, system size, and power budget, and the forward recovery can

further benefit from our performance and power optimizations for large-scale computing. Second, we

design a novel resilience technique that relaxes the requirement of synchronization and identicalness

for processes, and allows them to run in heterogeneous resources with power reduction. Our results

show a significant reduction in energy for unmodified programs in various fault situations compared

to exact replication techniques. Third, we propose a novel distributed sparse tensor decomposition

that utilizes an asynchronous RDMA-based approach with OpenSHMEM to improve scalability on

large-scale systems and prove that our method works well in heterogeneous systems. Our results

show our irregularity-aware workload partition and balanced-asynchronous algorithms are scalable

and outperform the state-of-the-art distributed implementations. We demonstrate that understand-

ing different bottlenecks for various types of tensors plays critical roles in improving scalability.

iii

Acknowledgments

First and foremost, I am incredibly grateful to my PhD advisors, Dr. Rong Ge and Dr. Jon

C. Calhoun, for their guidance, patience, expertise, and support. I would like to thank Dr. Rong

Ge and Dr. Jon C. Calhoun for leading me into the research area of High Performance Computing.

They gave me the freedom to choose research topics that interest me and taught me how to do

research of high quality and make good presentations in many details. Without their help, I would

not have been here.

I am very grateful to Dr. Jiajia Li for advising me during my internship at Pacific Northwest

National Laboratory and for the following research work. She provided me with valuable suggestions

to correct my shortcomings and taught me how to make efficient work schedules. I would like to

thank Dr. Jiajia Li for connecting me with good job opportunities.

I would like to thank Dr. Amy Apon and Dr. Shuangshuang Jin for serving on my PhD

dissertation committee. They provided me with insightful comments and valuable suggestions to

help me finish a well-structured and high-quality thesis.

I am very lucky to work with all members of the Scalable Computing and Analytics Lab at

Clemson University, Dr. Xizhou Feng, Dr. Pengfei Zou, Tyler Allen, Tim Ransom, Thomas Randall,

Bennett Cooper, and Naman Kulshreshtha. I would like to thank everyone for their good advice,

collaboration, and assistance.

Last but not least, I would like to thank my family and my girlfriend for all their love and

encouragement. For my parents who raised me with a love of science and supported me in all my

pursuits. For my girlfriend Yu Li, who has been supporting me all these years and has motivated

me to work hard for our bright future together. Thank you!

I acknowledge that part of this thesis was published previously and submitted in the follow-

ing conferences and journals:

iv

• Zheng Miao, Jon C. Calhoun, Rong Ge. ”Relaxed Replication for Energy Efficient and

Resilient GPU Computing”, 2021 IEEE/ACM 11th Workshop on FTXS. IEEE, 2021.

• Zheng Miao, Jon C. Calhoun, Rong Ge, Jiajia Li. ”Sparsity-Aware Distributed Tensor

Decomposition”, The International Conference for High Performance Computing, Networking,

Storage, and Analysis (SC), ACM Student Research Poster, 2020.

• Zheng Miao, Jon C. Calhoun, Rong Ge. ”A Framework for Resilient and Energy-efficient

Computing for GPU-accelerated Systems”, The International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC), ACM Student Research Poster, 2019.

• Zheng Miao, Jon C. Calhoun, Rong Ge. “Energy Analysis and Optimization for Resilient

Scalable Linear Systems”, 2018 IEEE International Conference on Cluster Computing (CLUS-

TER). IEEE, 2018.

• Under Review: Zheng Miao, Jon C. Calhoun, Rong Ge. “Towards Resilient and Energy

Efficient Scalable Linear Solvers”, IEEE Transactions on Parallel and Distributed Systems,

2021.

• Under Review: Zheng Miao, Jon C. Calhoun, Rong Ge, Jiajia Li. “Performance Impli-

cation of Tensor Irregularity and Optimization for Distributed Tensor Decomposition”, ACM

Transactions on Parallel Computing, 2021.

• Under Review: Zheng Miao, Jiajia Li, Jon C. Calhoun, Rong Ge. “BA-CPD: Balanced

Asynchronous Tensor Decomposition on Distributed Memory Systems”, European Conference

on Parallel Processing, 2022.

v

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 The Interplay between Scalability and Resilience Challenges in HPC 1
1.2 Model-based Approach for Resilient and Energy-efficient Sparse Linear Slovers . . . 3
1.3 Relaxed Replication for Energy Efficient and Resilient Sparse Linear Solvers on Het-

erogeneous Systems . 5
1.4 Scalable Algorithms for Large-Scale Sparse Tensor Decomposition 7
1.5 Summary of Contributions . 8

2 Background and Related Work . 10
2.1 Fault Tolerance for HPC . 10
2.2 Resilience for Linear Solvers . 14
2.3 Interplay between Power-scalability and Resilience 16
2.4 Performance-scalability for Sparse Tensor Decomposition 19

3 Resilient and Energy Efficient Scalable Linear Solvers 25
3.1 Performance, Energy, and Resilience Co-Modeling 26
3.2 Minimizing Recovery Cost . 32
3.3 Experimental Results . 41
3.4 Summary . 51

4 Relaxed Replication for Energy Efficient and Resilient GPU Computing 54
4.1 Framework Design . 55
4.2 Relaxed Replication for GPU Computing . 58
4.3 Experimental Results . 66
4.4 Summary . 76

5 Scalable Algorithms for Large-Scale Sparse Tensor Decomposition 77
5.1 Learning the Performance of Distributed Tensor Decompositions 78
5.2 Irregularity-Aware Algorithm for Workload Partition 86
5.3 The BA-CPD Algorithm . 92
5.4 Experimental Results . 98
5.5 Summary . 110

vi

6 Conclusion and Future Work .112
6.1 Conclusion . 112
6.2 Future Work . 113

Bibliography .115

vii

List of Tables

2.1 Symbols and notations. 19

3.1 Metrics and Model Parameters. 27
3.2 Recovery schemes under study . 29
3.3 Properties for matrices taken from Suite Sparse Matrix Collection. 42
3.4 Time cost of weak scaling in seconds. 50

4.1 Performances of our CG implementations. DP: double precision; MS: mixed double-
single precision; MH: mixed double-half precision. 67

5.1 Time complexity of the key steps in Mgbs-Cpd. 84
5.2 Time complexity of steps changed in BA-2D. 96
5.3 Description of sparse tensors. 98
5.4 Imbalance of tensor nonzero and communication volume. 102

viii

List of Figures

2.1 Estimated MTBF for exascale systems from petascale systems. 11
2.2 Recovery pattern of an iterative solver. (a) Matrix A, Vector x and b are parallelized

to four processors. (b) When a fault occurs in Processor P1, the data stored in it is
erroneous or lost. 15

2.3 Cpd for a third-order sparse tensor X ∈ RI1×I2×I3 . 20
2.4 Tensor and matrix distribution over a 12 = 2 × 3 × 2 process grid. Dotted lines

on matrices indicate local matrix storage in one process. The tensor is partitioned
into 2 × 3 × 2 subtensors, each mapped to a process. Each factor matrix is first
partitioned by the layers affiliated with tensor partition, and then evenly split among
the corresponding process subgrid. 22

3.1 Reconstruction algorithms for Matrix Kuu with 5 faults (black vertical lines). LI/LSI-
CG: CG-based LI/LSI forward recovery; LI-LU: LU-based LI forward recovery; LSI-
QR: QR-based LSI forward recovery. 34

3.2 Convergence of LI or LSI in matrix ex15 and kuu . 34
3.3 Error and Convergence factor in matrix ex15 and nd24k 36
3.4 Average values of last c derivatives of convergence factors 37
3.5 Normalized time breakdown of LI and LSI for ex15 and nd24k. 38
3.6 Iterations of LI with different thresholds for all matrices. 40
3.7 Iterations to converge for different matrices using 256 processes with 10 faults. Each

matrix uses its own normalization base, which is the fault free case. 42
3.8 residual∼#iteration relation and correction under various recovery mechanisms. FF

and RD are overlapped. F0 and FI are overlapped. 44
3.9 Normalized time and energy breakdown of LI for matrix cvx in different fault rates

on 512 processors. 45
3.10 Normalized time breakdown of LI and LSI for matrix wathen and 5-points stencil in

different fault rates. 46
3.11 Power reduction and energy savings with LI-DVFS and LSI-DVFS. (a):Power profile

of nd24k with simple LI and LI-DVFS; (b) average time, power, and energy for 14
matrices included in Figure 3.7. T , E, and P are normalized based on the fault-free
case. Eres / Esolve is the ratio of energy cost for resilience and for fault-free case. . . 48

3.12 Normalized Time and Energy for all matrices, with ten faults on 512 processors. . . 49
3.13 Scalability of resilience mechanisms . 52

4.1 Design of REESE. A energy-efficient redundancy-based resilience framework for GPU
computing. 55

ix

4.2 MPI process-level redundancy, the synchronous execution, and soft error recovery. (a)
MPI communication between main and replica in normal situation (for simplicity, the
message from P0

′ to P1 not shown); (b) Upon the fault detection of the main process
P0, the corresponding replica P0

′ does the double duty to communicate in both main
and shadow sets; (c) P0 is recovered by data copy of replica P0

′. (d) Recovery back to
normal situation as (a). Synchronous execution is similar, but without communication
across main and replica in (a) and (d). 61

4.3 Residual history for: main and replica processes compute with different precision (a)
without rejuvenation; (b) with periodic rejuvenation every 100 iterations. SP: single
precision; MS: mixed double-single precision. 64

4.4 Resilience to various errors. Solid lines show current main processes and dash lines
show current replica processes. 66

4.5 Resilience support for soft errors. CG is running on 16 GPUs with 8 main and 8 replica
processes respectively. Two faults are injected at 800 ms and 1200 ms respectively. 69

4.6 residual∼time under a node failure impacting one main process when CG is running
on 16 GPUs with 8 main and 8 replica processes respectively. A hard fault occurs at
800 ms. 71

4.7 Normalized performance metrics under various precision for CG benchmark with 10
faults injected. The baseline is set as fault-free case with MS. SP —— MH represents
SP for main and MH for replica. MS: mixed double-single; MH: mixed single-half;
HP: half precision. 72

4.8 Power reduction with mixed double-single precision and fL. MS-fL has a similar
execution time as DP-fH , but with 30% less power. Main processes are running with
fH , and replica processes are running with fL. 73

4.9 Overall improvement of performance, power, and energy for DeepBench running with
relaxed replication. Base represents exact replication used in existing redundancy
schemes. The others represent our relaxed replication and enabled optimizations.
One fault is injected in each experiment. The rejuvenation period is set as every 1000
iterations. 74

4.10 Normalized energy in weak scaling under our relaxed replication, RedMPI, and CR.
Data points on each #processes are normalized to the fault-free execution with the
same #processes. The illusive linear change at large #processes is due to the loga-
rithmic X-axis. 75

5.1 Computation and communication percentage of Cpd. 80
5.2 Time percentage of computational kernels of Cpd. 82
5.3 Load imbalance ratios (rnnz, rvol, and rIp) for sparse tensors. 83
5.4 Normalized time of all possible grid configurations to the one performs the slowest

for tensor amazon on 16 MPI processes. 83
5.5 Two example grid configurations for 12 processes. 86
5.6 Six grid candidates on 16 (=2× 2× 2× 2) processes for tensor amazon with np = 2.

We assign two smallest primes (2× 2) to Gint and obtain six grid candidates. 88
5.7 Distribution policy on 12(=2×3×2) processes. Layer boundaries in red are adjusted

in the 2nd dimension; boundaries in gray are fixed and in the 1st and 3rd dimensions. 89
5.8 Tensor and matrix partitions in BA-1D algorithm, where P(0,0,0) locally stores sub-

tensor and submatrices in blue and needs communication with submatrices in gray.
. 94

5.9 Tensor and matrix partitions in BA-2D algorithm, where P(0,0,0) locally stores sub-
tensor and submatrices in blue and needs communication with submatrices in gray.
. 96

5.10 ATA in SX-2D algorithm. 97

x

5.11 Overall performance comparison and scalability. 99
5.12 Overall performance comparison and scalability. 101
5.13 Time percentage of MTTKRP for flic and deli on 1280 processors. 102
5.14 Time percentage of main kernels for darpa and amazon on 1280 processors. 103
5.15 The effect of different distribution policies: matrix-balancing (set), two ordered ad-

justments (ordered-1 and ordered-2), and max-to-min adjustment (max-min). 104
5.16 Load imbalance ratios (rnnz, rvol, and rIp). 104
5.17 Time percentage of main kernels on 1536 processors. 106
5.18 Time percentage of main kernels for fb−m and fb− s on 768 processors. 107
5.19 Time overhead of our method (Algorithm 2 and 3). The time of our method is

normalized to Cpd time. 107
5.20 Scalability of Mgbs-opt applied on ParTI for COO and HiCOO formats. 108
5.21 Time percentage of Mttkrp and MAT NORM for nell2 of our prototype on 4 GPU

nodes compared to BA-CPD and splatt on 4 CPU nodes. 110

xi

Chapter 1

Introduction

1.1 The Interplay between Scalability and Resilience Chal-

lenges in HPC

Scalability, including performance-scalability and power-scalability, is always the major ob-

jective of high performance computing (HPC). As the top supercomputers’ performance keeps in-

creasing fast, their power consumption is also increasing rapidly due to the expansion of the system

size. The U.S. Department of Energy (DOE) has set 20 MW as the power limit for future exascale

systems [14]. However, since 2010 to 2021, the performance of the top supercomputers has grown

from 2 Peta FLoating-point OPerations per Second (PFLOPS) to 400 PFLOPS, while their power

consumption has grown from 7 megawatts (MW) to 30 MW based on the TOP500 list [3]. Future

exascale systems are expected to have a higher power budget under the projection of the performance

per Watt today. Reducing energy consumption while maintaining or increasing the performance of

HPC is an urgent problem for both economic and environmental reasons.

Resilience is another major challenge in emergent HPC systems. Today’s top Petascale

computers have a mean time between failure (MTBF) in 1-7 days [48]. Future exascale systems are

expected to have an MTBF within an hour, due to massive concurrency and unreliability induced

mainly by huge numbers of hardware components and miniaturizing feature size. Resilience tech-

niques allow programs to continue progressing in the presence of failures in hardware or software

through redundancy and recomputing, The design of appropriate resilience solutions is indispens-

1

able in exascale systems because the current solutions used on petascale computers do not scale up

to exascale systems. Unfortunately, power and resilience are intertwined challenges that can not

be addressed separately. Running hardware components at lower voltages will lower power but also

increase the effects of noise sources, and thus increasing the failure rate in HPC. Improving resilience

incurs significant power and time overhead and exacerbates the power challenge. Thus, emergent

HPC systems mandate simultaneously addressing power-scalability and resilience.

GPUs provide a majority of the computational capacity for HPC systems. They appear

in five of the top ten supercomputers [3], and will appear in the first exascale computers [2, 1].

scalability issues and fault situations are more complex in GPU-accelerated systems [124]. Balancing

power and resilience is more complex on GPU-accelerated systems. In such systems, complexities

stem from heterogeneity in multiple aspects. First, compared to host CPUs, GPUs have different

computation capabilities, power consumption, and energy efficiency. Second, GPUs are mainly

used to accelerate the execution of kernels offloaded by CPUs and stay idle otherwise, while CPUs

handle communication, services, and kernel offloading. Third, GPUs have different failure patterns

and higher failure rates, and are more sensitive to temperature [124]. Such heterogeneity requires

sophisticated management that distinguishes GPUs and CPUs and leverages their differences, in

order to optimally achieve performance goals and meet power constraints.

Previous studies have mainly focused on improving either resilience or power- scalability for

HPC, usually at the expense of one another. Resilience technologies aim to reduce time-to-solution

(TTS) for programs in case of failures without considering energy requirements. For example,

checkpoint-restart (CR) investigates and balances checkpointing time and rollback distance [46],

and triple modular redundancy consumes 3× the power to provide error detection and correction.

Algorithm based fault tolerance [64, 36] exploits partial redundancy, and forward recovery [67,

7] explores approximations of lost or corrupted data to recover from faults. Meanwhile, power

management technologies — e.g., near-threshold voltage — generally increases the cost of resilience

by making computing software and device more complex and unreliable [9].

Sparse data computation is the fundamental kernel in many scientific applications. It is

suitable for the studies of scalability and resilience due to its computational characteristic. Previous

works have studied resilience or scalability for sparse data computation in isolation. It is difficult

to co-optimize resilience and scalability because optimizing one typically detrimentally impacts the

other. To address the challenges of scalability and resilience, We need to understand the interplay

2

between performance-scalability, power-scalability and resilience for sparse data computation. We

propose novel resilience and energy-efficiency technologies to optimize scalability and resilience for

sparse data computation on heterogeneous systems with CPUs and GPUs. First, we present gen-

eralized analytical and experimental methods to analyze and quantify the time and energy costs of

various recovery schemes on homogeneous systems with CPUs, and develop and prototype perfor-

mance optimization and power management strategies to improve scalability for sparse linear solvers.

Second, we design a novel resilience technique that relaxes the requirement of synchronization and

identicalness for processes, and allows them to run in heterogeneous resources with power reduction.

Third, we propose a novel distributed sparse tensor decomposition that utilizes an asynchronous

RDMA-based approach with OpenSHMEM to improve scalability on heterogeneous systems.

1.2 Model-based Approach for Resilient and Energy-efficient

Sparse Linear Slovers

Sparse data computation is a key kernel in many scientific applications spanning a wide range

of domain areas, such as machine learning, computer vision, and fluid-dynamics. The linear system

Ax = b is solved by either direct methods [45] or iterative methods [103]. Direct methods incur

increasingly long execution time and large computational resources as the problem size increases.

While iterative algorithms take advantage of these sparse systems and solve the equation iteratively,

approximate the solution. Krylov subspaces are used in iterative algorithms for finding approximate

solutions to linear algebra problems [96]. In this dissertation, we consider one of the main Krylov

subspace methods, namely conjugate gradient (CG), and evaluate various resilience schemes on it.

Prior work investigates the energy cost of resilience, but is limited to checkpointing and

message logging [86] and the energy impact of checkpointing frequency [15] and Dynamic Voltage

and Frequency Scaling (DVFS) [88]. More comprehensive studies are needed to answer multiple

prominent research questions: (1) what is the resilience ability of various recovery mechanisms? (2)

what is the power requirement of resilience and how does power management help? (3) what are

the time and energy costs of resilience? and (4) how does the resilience cost scale with system size

and MTBF?

Answering these questions requires deep understanding of performance, energy efficiency,

resilience, and their interplay in faulty environments. Different resilience techniques incur different

3

amounts of time and energy. Moreover, a resilience technique responds differently to algorithms,

workload characteristics, failure rate, hardware, and power allocation. For example, forward recovery

for iterative Krylov solvers approximates lost or corrupted data in multiple ways [7]. Typically, better

approximations take longer time and more energy to be constructed but allow faster progress to the

solution than poor approximations. Quantifying the time and energy costs accurately is necessary to

evaluate the time-energy trade-offs and identify the optimal resilience technique for a given situation.

Analytical models built from fine-grain measurement data are a promising approach to

project time, energy, and resilience on large-scale systems for multiple reasons. First, generalized

analytical models capture the first-order cost factors for various resilience techniques. Second, ana-

lytical models can be customized to reflect unique features of specific techniques. Third, fine-grained

measurement of performance, power and resilience at a thread-level and of computer components

can accurately capture model parameters. Fourth, fine-grain models can be used to predict the effect

of power management at the system and component levels.

In this dissertation, we present a set of analytical models that describe the performance-

scalability, power-scalability and resilience of scientific applications under faults on homogeneous

systems with CPUs. We examine the impact of various fault recovery schemes for iterative linear

solvers and further propose techniques to minimize time and energy overhead. We propose the

matrix-aware optimization for forward recovery to achieve a better trade-off between scalability and

resilience. We find that the input matrix impacts the reconstruction cost, the main computation

cost, and their trade-off. In general, a more accurate reconstruction takes more time to build but

less main computation time to continue with this reconstruction. Depending on the input matrix,

the extra time taken to improve reconstruction accuracy is more or less than the time saved in the

main computation. The condition number of a matrix can be used to determine the cost of the

linear solver and therefore the trade-off between the reconstruction cost and the main computation

cost. Nevertheless, obtaining the condition number of a high-dimension matrix is computationally

costly, i.e., with the complexity of O(n3) where n is the dimension size. To address this challenge,

we propose a new practical metric — convergence factor. Based on this metric, we evaluate the

given matrix and approximate its specific optimal reconstruction accuracy that minimizes the total

time cost. To the best of our knowledge, this is the first work to explore matrix-awareness to control

the resilience overhead and guide low-cost optimization. Based on model parameters we derive from

experiments on a cluster, we parameterize a model and use weak scaling to project program behavior

4

for large-scale systems.

1.3 Relaxed Replication for Energy Efficient and Resilient

Sparse Linear Solvers on Heterogeneous Systems

There are several commonly accepted fault detection and recovery techniques for soft and

hard faults on homogeneous systems with CPUs. Checkpoint-restart (CR) [109] periodically saves

data to levels of storage devices and rollbacks to previous states when failures occur. Studies demon-

strate that CR-based solutions are prohibitively costly on extreme-scale systems with frequent fail-

ures [30]. Redundancy-based approaches replicate computations and use replicas to replace faulted

processes. Prior work has shown that redundancy-based approaches are more energy-efficient than

CR at extreme-scales [110, 53], but current solutions such as RedMPI [56] and rMPI [54] only

support parallel programs running on CPU-based homogeneous systems. Algorithm-based fault-

tolerance (ABFT) is limited in matrix operations with checksums verification [33]. Existing redun-

dancy based solutions typically rely on identical replicas to support fault detection and recovery.

There are two main challenges for previous redundancy solutions: First, exact replication requires

the same hardware, resources, execution environment, and thus power for the replicas. Second, fine-

grained synchronization between main and replica processes is expensive because the replicas need

to be concurrent at every message for MPI workloads. Simply extending such exact replication to

GPU computing would waste GPU resources and computational capacity, and suffer severe energy

inefficiencies, as GPUs consume more power than CPUs. Other recent work of shadow replica-

tion [89] shows better energy-efficiency among fault tolerance mechanisms in homogeneous systems

with replicas running at lower processor speeds. However, their solution is not developed and op-

timized for heterogeneous systems with GPUs due to more expensive synchronization of main and

replica processes in different devices.

To address the above limitations, we explore the feasibility of energy-efficient techniques

to optimize replication for GPU-accelerated systems running workloads parallelized with MPI. Par-

ticularly, we explore a novel replication scheme that relaxes the synchronization and identicalness

requirements. Our scheme supports periodical synchronization called rejuvenation or asynchroniza-

tion between replica and main processes, thus allowing replica processes to run in lower precision,

on lower power devices, and at lower performance states than the main processes. Our scheme pro-

5

vides different solutions to address both hard and soft faults. For soft faults, we recover faulty main

processes by receiving dynamic data from the corresponding replicas. For hard faults, we replace

faulty main processes with the corresponding replicas. This relaxed replication mechanism enables

a reduction of resources and power requirements using today’s GPU architecture and hardware. For

example, GPUs support multiple levels of precision — e.g., double, single, half — for floating-point

operations, where double precision delivers the highest accuracy and half precision consumes the

least power. We run replicas in low precision for energy saving. In addition, GPUs transition among

many performance states through the dynamic voltage and frequency scaling (DVFS) technology.

Running GPUs at a low performance state significantly reduces power consumption [89]. Further-

more, there are plenty of hardware resources in GPU-accelerated systems to choose for running

replica processes, e.g., running a kernel on one or more CPU cores consumes less power than on a

powerful GPU card.

By relaxing synchronization and identicalness between the main and replica processes, our

replication scheme complicates fault detection and recovery. First, as replicas use fewer resources and

less power, they typically make less computation progress than the corresponding main processes. As

a result, using them to recover faulty main processes loses progress, which takes time and consumes

power and energy to recompute. Second, with replicas different from the main processes, we can

not directly compare replicas against the main processes for silent data corruption (SDC) detection.

To address these issues, we first introduce a periodic update that rejuvenates replicas with the

progress of main processes. This periodic update controls the progress gap and thus progress loss

during recovery. To support SDC detection, we leverage application specific detection and introduce

an application specific discrepancy threshold, and flag SDC only when the gap is larger than the

threshold.

We present, in detail, this relaxed replication redundancy mechanism and the energy-efficient

techniques and discuss its employment on real systems. We implement a prototype and evaluate

the impact on energy efficiency and resilience under both process/node failures and silent data

corruption. Our evaluation environment includes a 16-GPU cluster and three representative HPC

applications: CG [21], MiniQMC from QMCPACK [73], and DeepBench [92]. Results show that

our scheme reduces energy by up to 19% for unmodified programs and 32% for programs that are

able to adapt the precision of the replicas over a direct extension of the redundancy based resilience

framework RedMPI for CPU systems.

6

1.4 Scalable Algorithms for Large-Scale Sparse Tensor De-

composition

Tensors are multidimensional arrays and often sparse that are utilized by applications span-

ning a wide range of domain areas, such as quantum chemistry, (healthcare, social network, brain

signal, electrical grid) data analytics, signal processing, machine learning, and recommendation sys-

tems [70, 97, 95, 5, 12, 98, 74, 40, 63]. Tensor decompositions are a class of tensor methods for

data analytics, low-rank approximation, data compression, and so on. In this work, we study the

CANDECOMP/PARAFAC decomposition (Cpd), one of the most popular tensor decompositions.

Large data generated from these applications requires distributed memory implementations

due to the large amount of memory requirements and the need for fast execution time. For example,

the amazon tensor comprises reviews and contains more than 1 billion nonzeros, the state-of-the-

art Cpd implementation could not analyze it on fewer than 8 CPU nodes. Some studies show

impressive performance for sparse distributed Cpd algorithms [114, 72, 39]. The previous works

present medium-grained decomposition that performs a N -dimensional decomposition of the tensor,

where N is the number of modes, and one-dimensional decompositions of the factor matrices [114,

17, 101]. They have achieved good performance and scalability in Cpd for tensors with relatively

regular dimension sizes and nonzero distribution because both computation and communication are

balanced well. However, the sparsity and irregularity features and their influence on stages of the

Cpd algorithm have not been well investigated, which hinders further performance improvement and

machine scalability. Other recent works use a fine-grained decomposition of tensors to co-optimize

computation and communication [72, 71]. But they require significant time overhead in hypergraph

partitioning.

We categorize the irregularity of a sparse tensor based on two aspects: very different di-

mension sizes and a non-uniform nonzero distribution. Analyzing sparse tensors from various data

sources, we observe a tensor could have dimension(s) much longer relative to the others. This phe-

nomenon is typical for tensors from real data because of different information contained in diverse

dimensions: short dimensions could come from a small range of time-stamps, types of relations,

etc., while long dimensions could be users, pages, keywords, papers, etc. Sparse tensors from real

applications tend to have a non-uniform nonzero distribution; while different dimension sizes make

it worse. The nonzeros could be extremely dense in a couple of regions, but much sparser in other

7

regions in an irregular tensor.

There are three types of load imbalance that play critical roles in what bottlenecks perfor-

mance on sparse tensors: tensor nonzero, communication volume, and matrix computation imbal-

ance. To measure these imbalances, we introduce three ratios as metrics. The state-of-the-art works

such as medium- [114, 17, 101] and fine-grained [72, 71] distributed Cpds have made efforts to

optimize these three types of imbalance. Medium-grained distributed Cpd chooses to optimize them

separately. However, when it focuses on balancing tensor nonzero, the other imbalances increase sig-

nificantly for irregular tensors. Fine-grained distributed Cpd [72, 71] utilizes hypergraph partitioners

to co-optimize these imbalances, but it requires significantly more time overhead in partitioning than

actual Cpd computation for large tensors. To address these limitations, we present irregularity-aware

Cpd that co-optimizes different types of imbalance with a low overhead during preprocessing. Our

solution provides two insights: First, by evaluating SPLATT theoretically and experimentally, we

reveal that these two irregularities lead to unacceptable load imbalance when distributing a sparse

tensor among multiple computing nodes. Furthermore, we outline four findings that influence the

performance of existing methods. These findings demonstrate that two stages in the preprocessing

grid configuration and distribution policy are critical for the overall Cpd performance-scalability.

Second, we leverage the sparsity and irregularity information that reflects in the large imbalance of

matrix computation. The matrix computation is usually the bottleneck of performance and scal-

ability. Therefore, we identify the dominant imbalance ratio as matrix computation imbalance for

irregular tensors and optimize it with higher priority. However, focusing only on the balancing of

matrix computation makes other imbalances worse. It is important to achieve the best trade-offs

between different imbalances to improve performance-scalability.

1.5 Summary of Contributions

To summarize, this dissertation focuses on improving scalability and resilience for sparse

data computation on emergent HPC systems. Our contributions are as follows:

• We present a generalized analytical model to quantitatively co-study performance-scalability,

power-scalability and resilience for common resilience technologies to enable resilient and

energy-efficient large-scale scientific computing on homogeneous systems with CPUs. The pro-

posed analytical models capture the first order time and energy cost factors for various fault

8

recovery schemes and can be used to identify the best recovery schemes for given fault situ-

ations. This work investigates matrix-aware optimization for forward recovery and proposes

the convergence factor metric, which makes it practical to determine the optimal lost data

reconstruction for high-order matrices. Our results quantitatively reveal that each resilience

scheme has its own advantages depending on the fault rate, system size, and power budget,

and the forward recovery can further benefit from matrix-aware optimizations for large-scale

computing.

• We propose a novel redundancy mechanism that relaxes the requirement of synchronization

and identicalness for replicas for MPI programs running on GPU-accelerated systems. Our

mechanism supports replicas to run in lower-precision and at lower power/performance states

with periodical rejuvenation or asynchronization. Our redundancy mechanism supports both

asynchronous and synchronous execution between the main and replica processes, where the

former is capable of fast progress, and the latter is capable of detecting errors. We prototype

the relaxed replication mechanism and evaluate it on a cluster. Our results can benefit real

applications and GPU-accelerated systems.

• We investigate the common algorithm structure of state-of-the-art distributed tensor decom-

position from theoretical and experimental analysis and observe important findings to guide

optimization for performance-scalability. We demonstrate that the imbalance of computation

and communication, and their trade-offs, are critical to the overall Cpd performance-scalability.

We identify the dominant imbalance ratio as matrix computation imbalance for irregular ten-

sors. We propose irregularity-aware Cpd that co-optimizes these imbalances with high priority

in matrix computation imbalance in grid configuration and distribution policy with a low time

overhead. To achieve better scalability of Cpd on large-scale systems, we optimize the com-

munication overhead by designing and implementing an asynchronous RDMA-based approach

with OpenSHMEM, and prove that our method works well in heterogeneous systems.

9

Chapter 2

Background and Related Work

In this chapter, we present the background about resilience and energy-efficiency of HPC,

sparse linear solver and sparse tensor decomposition. We introduce existing works related to the

dissertation and discuss their limitations.

2.1 Fault Tolerance for HPC

2.1.1 Faults and Fault tolerance

Faults are caused by incorrect states of various factors, including hardware, software, and

environment. For example, processor failure and hard disk drive malfunction are common faults in

hardware. Bugs, race conditions, and deadlock are examples of faults in software. Faults can be

classified into hard and soft faults based on their impacts. Hard faults cause an application or system

to crash [16] Soft faults cause an erroneous deviation in applications but without an interruption

or include bit-flips which can lead to silent data corruption (SDC) [117]. Soft fault is usually not

visible to the application or end user. In this dissertation, we consider both hard and soft faults

in hardware and assume that the software environment is faultless. We assume that the software

environment is still able to propagate errors generated by hardware faults. Soft faults are commonly

grouped into three categories [117]: Detected and Corrected Error (DCE), Detected but Uncorrected

Error (DUE), and Silent Data Corruption (SDC). Hard faults have more categories. For example,

there are three common and frequent hard faults at system level [48]: System-Wide Outage (SWO),

10

Single Node Failure (SNF), Link and Node Failure (LNF).

Faults are expected to occur more frequently on exascale systems as the hardware and

software become more complex. A common measurement of fault frequency is MTBF. Let the MTBF

of a single node be λ, Λ—MTBF of the whole system with N nodes—is estimated as Λ = λ/N with

a Poisson distribution of faults [117]. Figure 2.1 indicates that the MTBF of an exascale system

is within an hour if projected from Petascale systems [48]. Here we assume a petascale machine

consists of 20K compute nodes built with today’s technology and an exascale machine consists of

1M compute nodes with 11 nm technology [14, 117]. We use the same method as in [48, 117]

to estimate the MTBF of various fault classifications on a single node or the whole system. We

conservatively assume that MTBF is only affected by system size and node-level technology. The

actual situation might be worse [30, 117].

DCE DUE SDC SWO SNF LNF
Failure Category

10 2

100

102

104

M
TB

F
(h

)

Petascale MTBF Exascale MTBF

Figure 2.1: Estimated MTBF for exascale systems from petascale systems.

Fault tolerance is indispensable at exascale systems where MTBF is small — i.e., within

hours or minutes [48]. Without resilience, most applications will make little forward progress in

computation or return erroneous results. Resilient computing requires fault detection and recovery.

In this work, we focus on fault recovery and assume that faults are detected and confined to a subset

of data structures [29]. There are three main recovery approaches for soft and hard faults: Double

Modular Redundancy (RD), Checkpoint-restart (CR), and Forward-recovery (FW).

11

2.1.1.1 Rollback Recovery

Rollback recovery reverts the application to the previous correct state when a fault occurs.

It is widely used to provide resilience in current HPC environments. Mechanisms of rollback recovery

can be classified into checkpoint-restart approaches [117, 61] and message logging approaches [69].

Checkpoint-restart periodically saves data to levels of stable storage devices and rollbacks to the

latest correct state in case of a fault. To avoid rollback of a global state, message logging restarts

only the failed processes. Message logging protocols require that each process periodically saves its

local state and log the messages received since the previous state. When a fault occurs, the failed

processes are replaced by new processes, and the rest of processes will re-send the messages to the

new processes and make progress or wait idle until recovery is finished. In this dissertation, we

evaluate the checkpointing/restart technique as a typical example of rollback recovery.

In large-scale systems, fault tolerance mechanisms involve checkpointing /restart (CR) from

a parallel file system [117]. In related research for CR, Berkeley Lab Checkpoint Restart (BLCR) [61]

are system-level CR with disks for HPC applications that communicate through MPI. Disadvantages

of classical CR strategy exist as the unacceptable time to checkpoint, and the global restart even if

only one process fails. Diskless checkpointing [100] is proposed to reduce the checkpointing overhead

by storing the checkpoints locally in CPU memory. However, diskless checkpointing can not survive

node failures or the failures of the whole system. To reduce the checkpoint time with disks and

support resilience for more types of failures, Fault Tolerance Interface (FTI) [18] and Scalable CR

(SCR) [91] uses multi-level CR that combines several storage technologies to store the checkpoint,

including local storage, storage on another partner node, distributed storage in multiple nodes, and

the parallel file system. In addition to the above optimizations by using faster checkpoint storage,

another approach to reduce the checkpointing overhead is reducing the checkpoint size. Recent

works explore compression techniques to reduce the checkpoint data size, but at the expense of

adding error into the checkpoint. Sasaki et al. [105] proposes a lossy compression approach based on

wavelet transformation to reduce the checkpoint size for climate applications while minimizing the

errors. Calhoun et al. [28] leverages the numerical properties of partial differential equation (PDE)

simulations to evaluate the feasibility of using lossy compression in checkpointing PDE simulations.

These optimizations of reducing the checkpoint size can not provide adaptive data protection because

they require the understanding of the critical data in some particular scientific application.

12

2.1.1.2 Redundancy

Modular redundancy duplicates computation, communication, and data to recover a faulted

process with the healthy replication. Modular redundancy can be partial, dual, or triple based on

the number of replicas for each process. Typically, dual modular redundancy (DMR) can detect soft

errors via replica comparison, and recover the faulty replica identified by another technique [47].

Triple modular redundancy (TMR) can detect and correct the faulty replica via majority voting.

Prior work shows that redundancy-based approaches are more energy-efficient than CR at extreme-

scales [53].

Studies of modular redundancy have been developed significantly in recent years, which

focus on thread-level [58], process-level [110], and state-machine replication [118]. Previous studies

make efforts to reduce the replication overhead from the management of extra messages required for

replication. rMPI [54], MR-MPI [53], and RedMPI [56] are proposed to provide transparent fault

detection and recovery to MPI programs via the MPI profiling interface. rMPI implements protocols

that ensure identical message ordering between replicas. It addresses the replication overhead by

reducing the number of communications between replicated processes. MR-MPI utilizes the MPI

performance tool interface to intercept MPI calls from the application and to hide all redundancy

related mechanisms. Unlike rMPI and MR-MPI which focus only on hard faults, RedMPI compares

the messages sent by replicated processes for the detection of silent data corruptions. RedMPI still

has the limitation of extra communication overhead because it synchronizes main and replicated

processes whenever there is inter-process communication.

Recent works on redundancy mainly focus on reducing overhead instead of consuming 2×

or 3× the resources. Previous studies on partial replication [19, 57] explores asymmetry of more

fragile resources in reliability and smartly replicates only those processes. Other similar ideas such as

selective redundancy [119, 120] and intra-parallelization [102] studies how to identify and selectively

replicate only the reliability-critical tasks or computation instead of complete replication. Another

scheme of shadow or lazy replication [42] executes the replicated process at a reduced CPU rate to

save power and energy.

13

2.1.1.3 Forward Recovery

Instead of rollback recovery or redundancy, forward-recovery schemes [67, 7] have been

studied to create a new correct state and avoid resilience overhead when no fault occurs. In forward

recovery mechanisms, the application runs forward recovery steps to reconstruct a correct or partially

correct state via past or remote data after the detection of a fault. Therefore, forward recovery

mechanisms make sense when a relatively small portion of the global state changes and requires that

the runtime environment stays alive. Forward recovery can not handle system-level failures, but

they can be widely used in parallel applications where data in most processes is correct.

Previous studies of forward recovery have explored to reconstruct the lost data with extra

computation and focus more on the recovery accuracy. Bland et al. [24] proposes an approach that

handles the failure and executes some actions to recover failed data without relying on periodic

checkpointing. Their protocol allows each surviving MPI process to create a checkpoint only after

a fault and to recover failed processes based on it. Jaulmes et al. [67] presents a general resilience

solution for detectable, but uncorrectable errors based on the algorithmic properties. They exact

redundancy relations in iterative solvers and leverage them to recover lost data after faults. Agullo

et al. [7] utilizes interpolation strategies to reconstruct the lost data for Krylov subspace linear

solvers. Their reconstruction via direct solvers has non-negligible computational costs associated

as the expense of achieving higher recovery accuracy. In this dissertation, we explore the trade-off

between the accuracy and the overhead of forward recovery and optimize forward recovery strategies

with low overhead.

2.2 Resilience for Linear Solvers

2.2.1 Resilient Linear Solvers

In many HPC applications, the solution of linear systems is the most computational-intensive

kernel. We consider one basic form of it as follows:

Ax = b (2.1)

where the matrix A ∈ Rn×n is symmetric, positive-definite (SPD) and real, the solution x is a

column vector with n entries and the right-hand side b is a column vector with n entries. For the

14

solution of a linear system like this, we focus on parallel iterative solvers as the common method in

many HPC applications. And we take the Conjugate Gradient (CG) method (Algorithm 1) as an

example to research fault recovery of the iterative solver. We assume that all A, x, b are parallelized

to several processors via a block-row partition, as Figure 1 (a) shows. Let A;,pi , xpi , and bpi be the

block-rows stored in processor i.

(a) Before faults (b) After a fault in P1

Figure 2.2: Recovery pattern of an iterative solver. (a) Matrix A, Vector x and b are parallelized to
four processors. (b) When a fault occurs in Processor P1, the data stored in it is erroneous or lost.

Algorithm 1: The conjugate gradient method (CG)

Require: A symmetric positive definite (SPD) matrix A ∈ RI×I ;
Ensure: Vector x;

1: Initial guess x0;
2: Compute r0 = Ax0 − b;
3: p0 = r0;
4: for k = 1, 2, ..., until convergence do
5: αk = rTk rk/p

T
k Apk;

6: xk+1 = xk + αkpk;
7: rk+1 = rk −αkApk;
8: βk = rTk+1rk+1/r

T
k rk;

9: pk+1 = rk+1 + βkpk;
10: end for

2.2.1.1 Algorithm-Based Fault Tolerance

Algorithm-Based Fault Tolerance (ABFT) techniques detect and recover from errors in linear

algebra operations by the use of checksums [64]. Significant research has been proposed for different

ABFT schemes to address soft faults [35, 44] or hard faults [8, 36, 67] or both [129, 37, 41]. These

ABFT schemes can address faults in a certain type of matrices or linear systems. One important

15

research branch of ABFT focuses on algorithms involving sparse matrices with iterative methods

because they are often the most computational intensive kernel in many scientific applications. To

overcome the major limitation of ABFT for its considerable computational overhead, in [49, 34, 78],

related research is proposed as ”lossy approach”, which leverages recomputation of the lost data and

describes an approach redundancies of a parallel linear solver implementation instead of recovering

by checkpoint or checksum. Sloan et al. [112] propose the use of fine-grained partial recomputation

based on finding the location of errors efficiently to achieve forward recovery. Agullo et al. [8] address

hard faults by exploiting interpolation to define a new guess of the lost data to restart and recover the

Krylov solvers. A related approach by Chen et al. [35] can detect soft errors in Krylov methods by

using the properties of the algorithm. Some research of ABFT focus on Fast Fourier Transform [83],

Matrix Factorizations [128], and general iterative methods [122]. ABFT has more general type and

could also work in FT-GMRES [52] and multigrid [90]. In the latest research of ABFT, Huber et

al. [65] combines domain partitioning with geometric multigrid methods to obtain resilient solvers

based on the redundant storage of ghost values. Scholl et al. [107] proposes a fault tolerance approach

to implicitly provide error locations and to enable partial recomputations for erroneous outputs after

error detection. These ABFT algorithms are often combined with a rollback-recovery mechanism,

which brings an overhead for a fault-free situation. In this dissertation, we propose optimizations

based on forward-recovery schemes in [7] to avoid an overhead when no fault occurs.

2.3 Interplay between Power-scalability and Resilience

Besides resilience, another major concern for HPC is to reduce energy consumption for both

economic and environmental reasons. Previous studies mainly focus on improving either resilience

or energy efficiency, usually at the expense of one another. However, resilience incurs power and

time overheads and exacerbates the power challenge. A deep understanding of the interplay among

scalability, energy-efficiency and resilience are required to achieve the best trade-off between them.

2.3.1 Energy-efficiency for resilience mechanisms

Prior works investigate the energy cost of resilience, but is limited to the execution time of

checkpointing and message logging [51, 86] and the energy impact of checkpointing frequency [15]

and Dynamic Voltage and Frequency Scaling (DVFS) in checkpointing [88]. Diouri et al. [51] eval-

16

uates CR and other existing fault tolerance protocols from energy consideration by running real

HPC applications and monitoring energy consumption. They conclude that the difference in energy

consumption mainly depends on the execution time because operations of computing, checkpointing,

and message logging consumes similar amounts of power. Meneses et al. [86] evaluates how fault tol-

erance and energy consumption interplay for three rollback-recovery schemes, including CR, message

logging and parallel recovery. Their paper shows that parallel recovery consumes less energy because

it reduces the restart time. Aupy et al. [15] explores energy reduction for CR via optimization on

the checkpointing period. Their approach obtains different optimal periods for either minimizing the

total execution time or minimizing the total energy consumption. Mills et al. [88] utilizes DVFS to

throttle CPU speed during checkpoint writes to achieve energy savings with little impact in time to

solution. Rajachandrasekar et al. [32] proposes a power-aware checkpointing framework via efficient

utilization of I/O and CPU by data funneling and selective core power capping. Their approach

addresses the problem that the naive use of power capping during checkpointing phases can incur

considerable performance degradation.

Recent studies explore energy-efficiency for resilience mechanisms other than CR. Grant

et al. [59] proposes a power-reliability metric that imposes a quantifiable penalty to energy savings

techniques for increased time providing reliability. They compare energy saving techniques that take

into account reliability of HPC systems at scale and account for the probability of failure increase

due to time overhead from energy saving techniques. Yetim et al. [131] presents an energy opti-

mization framework based on Mixed-Integer Linear Programming (MILP) that meets performance

and resilience constraints. Their framework demonstrates energy, performance, and resilience can be

flexibly exploited as needed for different HPC applications. Scholl et al. [108] adapts the underlying

precision in Preconditioned Conjugate Gradient (PCG) solvers on approximate computing hardware

to gain energy-efficiency.

Instead of only looking into execution time or power individually, we investigate energy opti-

mizations of reducing the communication overhead via localized reconstruction and DVFS during the

recover/restart phase. We further extend our recovery schemes with the matrix-aware optimization

to lower overhead.

17

2.3.2 Model-based analysis for energy-efficiency and resilience

Analytical models built from fine-grain measurement data are promising approaches to

project time, energy, and resilience on large-scale systems. Scalability models are widely used to

evaluate the performance of parallel applications. Amdahl’s law [11] and Gustafson’s law [60] are two

well-known models to capture fault-free parallel execution time for fixed-size problems or fixed-time

problems, respectively.

Recent works of scalability models evaluate failure impact and therefore can account for

application performance in the presence of failures. Since CR is widely used for HPC applications in

large scale systems, several models have been studied to capture job execution time with CR [132, 43,

133]. Young’s and Daly’s models [132, 43] compute the optimal checkpoint interval and predict the

execution time with faults. Their models are applicable for single-level checkpointing and typically

imply expensive checkpointing overhead for large-scale jobs. Wang et al. [126] presents a model that

takes into account failures during checkpointing and recovery, and correlated failures. They leverage

Stochastic Activity Networks (SAN) to model coordinated checkpointing for large-scale systems.

Their model also defines the optimal number of processors that maximize the amount of total useful

work with CR. Models by Zheng et al. [133] focus on extending Amdahl’s law and Gustafson’s law

by considering system failures, and use Daly’s model to derive reliability-aware scalability models

with checkpointing. They use the models to demonstrate the benefits of fast recovery and proactive

failure prevention via process migration. Tan et al. [121] models the integrated effects of energy-

efficiency and resilience for CR with DVFS in large-scale systems by extending the Amdahl’s Law

and the Karp-Flatt Metric. Their model demonstrates that typical HPC parameters, such as the

number of CPU cores, frequency/voltage, and failure rates, have an inherent causal relationship with

each other.

Unlike these models focusing on energy-efficiency and resilience for checkpointing, this disser-

tation presents generalized models to evaluate and compare time and energy across several resilience

schemes, such as CR, module redundancy, and forward recovery.

18

2.4 Performance-scalability for Sparse Tensor Decomposition

2.4.1 Tensor and tensor decomposition

Tensors are multidimensional arrays and often sparse that are utilized by applications span-

ning a wide range of domain areas, such as quantum chemistry, (healthcare, social network, brain

signal, electrical grid) data analytics, signal processing, machine learning, and recommendation sys-

tems [70, 97, 95, 5, 12, 98, 74, 40, 63]. Tensor decompositions are a class of tensor methods for

data analytics, low-rank approximation, data compression, and so on. In this work, we study the

CANDECOMP/PARAFAC decomposition (Cpd), one of the most popular tensor decompositions.

Symbols Description

X A sparse tensor
X(n) Matricized tensor X in dimension-n

A,B,C, Ã Dense matrices
ar,br, cr Dense vectors

λ Weight vector

N Tensor order
In Tensor dimension sizes
M #Nonzeros of the input tensor X

R Approximate tensor rank (usually a small value)
Il Layer dimension size
Ip #Local matrix rows
P #MPI processes

Table 2.1: Symbols and notations.

We use different fonts for tensors (X ∈ RI×J×K), matrices (A ∈ RI×J), and vectors (x ∈ RI)

in this paper following the work [74]. A nonzero (i, j, k)-element of tensor X is xijk. Figure 2.3 shows

a sparse third-order tensor with dots representing nonzero entries. We assume a Nth-order sparse

tensor X ∈ RI1×I2×···×IN with M nonzeros in the subsequent context, sometimes we use a third-

order tensor for simplicity. If a tensor X has one or more dimension(s) that are very small relative to

the other dimensions or the nonzero values are not uniformly distributed in one or more dimensions,

then we call it an irregular tensor. A slice is a two-dimensional cross-section of a tensor, obtained

by fixing all indices but two, e.g., S::k = X(:, :, k). We summarize the symbols and notations in

Table 2.1.

19

≈ ･･･+ +
𝜆1 𝜆𝑅

I1
=

A B

C

𝜆

I2

I3

Figure 2.3: Cpd for a third-order sparse tensor X ∈ RI1×I2×I3 .

2.4.2 Distributed Cpd

CANDECOMP/PARAFAC decomposition (Cpd) factorizes a tensor into a sum of compo-

nent rank-one tensors [74]. Figure 2.3 illustrates a third-order Cpd. In general, Cpd approximates

a Nth-order tensor X ∈ RI1×···×IN as

X ≈
R∑

r=1

λra
(1)
r ◦ · · · ◦ a(N)

r ≡ Jλ; A(1), . . . ,A(N)K, (2.2)

where R is the canonical rank of tensor X, the number of component rank-one tensors [74]. In

a low-rank approximation, R is usually chosen to be a small number less than 100. The outer product

of the vectors a
(1)
r , . . . ,a

(N)
r produces R rank-one tensors. A(n) ∈ RIn×R, n = 1, . . . , N are the factor

matrices, each formed by taking the corresponding vectors as its columns. We normalize these vectors

to unit magnitude and store the factor weights in the vector λ = {λ1, . . . , λr}. Typically, the factor

matrices A(n) are given initial values and solved iteratively.

Data decomposition and distribution. For large tensors, the number of nonzeros M

and the resulting factor matrices A(n) are large and easily exceed the memory capacity of a single

node. To meet the needs of large-scale data processing, distributed Cpd algorithms, such as coarse-

grained [39], medium-grained [114, 6], and fine-grained [72, 71] strategies, have been developed.

Medium-grain is one of the most successful from the studies [114, 101, 6, 17] and is the baseline

for this work (described in Section 2.4.3). To efficiently store large tensors, we consider one state-

of-the-art tensor format, Compressed Sparse Fiber (CSF) for general unstructured sparse tensors.

CSF [114] is a hierarchical and fiber-centric format that effectively generalizes the Compressed Sparse

Row (CSR) sparse matrix format to tensors.

Distributed algorithm. We focus on the most popular medium-grained, bulk-synchronous

distributed Cpd algorithms [114, 17, 101, 6], adopted in multiple libraries including Splatt, the

20

Surprisingly ParalleL spArse Tensor Toolkit [116] and ENSIGN [77]. It has shown outstanding

performance and scalability as well as efficient memory usage compared to the counterparts [39, 72],

evaluated in the work [114, 17, 101, 6]. Medium-grained tensor distribution, an N -dimensional

partitioning (N as tensor order) on a tensor, corresponds to a 2D stationary algorithm in traditional

dense matrix multiplication [106] which has been proven to be performance efficient in the SUMMA

algorithm [125] included in ScaLAPACK [38] and PLAPACK [10] libraries.

Algorithm 2: Medium-grained, bulk-synchronous distributed Cpd-ALS algorithm (Mgbs-Cpd).

Require: An Nth-order sparse tensor X ∈ RI1×I2×···×IN with M nonzeros, P MPI processes;
Ensure: Vector λ and dense matrices A(n) ∈ RIn×R, n = 1, . . . , N ;

// Variables

Initialize matrices A(n), n = 1, . . . , N ;

A
(n)
l is the layer-distributed matrix, needed by Mttkrp computation on p.

Un ∈ RR×R, n = 1, . . . , N is local temporary data.
// Preprocessing

1: Distributedly load X to P MPI processes’ local memory
2: Grid configuration G: Get rank dimensions Pn, n = 1, . . . , N decomposed from P and initialize

MPI communicator
3: Determine a distribution policy D

. Tensor partitioning, Xp locally owned by process p.

4: Redistribute X according to D
. Matrix partitioning, A(n)

p locally owned by process p.

5: Distribute all A(n) to A
(n)
l and A(n)

p , n = 1, . . . , N according to D
6: Get Xp after removing empty slices and get index mapping from Xp to X

7: Get the indices in A(n)
p that need to communicate in AlltoAll(A(n)

p)

8: Randomly initialize A
(n)
l

// Computation

9: A
(n)
l = AlltoAll(A(n)

p); Un = AllReduce (A(n)T
p A(n)

p)
10: do
11: for n = 1, . . . , N do

12: Ã
(n)

l = MTTKRP(Xp, A
(1)
l , . . . , A

(n−1)
l , A

(n+1)
l , . . . , A

(N)
l) . Mttkrp

13: Ã
(n)

p = AlltoAll(Ã
(n)

l)

14: Ã
(n)

p = Ã
(n)

p (U1 ∗ · · · ∗UN)† . MAT SOLVE

15: λ̃ = Normalize (Ã
(n)

p) . MAT NORM

16: Ũn = AllReduce(Ã
(n)T

p Ã
(n)

p) . MAT ATA

17: Ã
(n)

l = AlltoAll(Ã
(n)

p)
18: end for
19: while fit not change or maximum iterations exhausted

21

2.4.3 Medium-Grained, Bulk-Synchronous Distributed Cpd Algorithm

We extract the general medium-grained, bulk-synchronous distributed Cpd algorithm as a

template in Algorithm 2, named as Mgbs-Cpd, extracted from the state-of-the-art work [114, 17, 6].

Medium-grained data distribution. The medium-grained decomposition uses a nonzero-

oriented data decomposition strategy. After loading a tensor file into each process’ memory in a

distributed way, two performance critical steps follow: process grid configuration and distribution

policy determination. Based on these two steps, a tensor X is N -dimensional partitioned into subten-

sors in a non-overlapping fashion and distributed to processes; each factor matrix A(n) is distributed

to the processes according to the distribution policy on each dimension-n.

B

I2

I1

X
I3

A

C

Il
Ip

IL[1] IL[2] IL[3]

Figure 2.4: Tensor and matrix distribution over a 12 = 2 × 3 × 2 process grid. Dotted lines on
matrices indicate local matrix storage in one process. The tensor is partitioned into 2 × 3 × 2
subtensors, each mapped to a process. Each factor matrix is first partitioned by the layers affiliated
with tensor partition, and then evenly split among the corresponding process subgrid.

Take a P = 2×3×2 process grid 1 in Figure 2.4 as an example. The tensor X is partitioned

to 2 × 3 × 2 subtensors, each associated with a process and saved in its memory. Meanwhile, each

A(n) is partitioned to P submatrices along its dimension with two levels: the layer-level corresponds

to the tensor computation and splits each matrix to sub-matrices A
(n)
l affiliated to its row dimension

(blank boxes on A), and the process-level further evenly splits A
(n)
l to A(n)

p for each process p in the

corresponding subgrid (dashed lines on A). Note that A(n)
p is the actual local matrix storage per

process, while A
(n)
l is only stored during tensor-matrix computation (Mttkrp, described below).

Bulk-synchronous parallel algorithm. Computation is accordingly partitioned with

1Due to our hybrid MPI+OpenMP implementation, the MPI processes count is referred in grid configuration.

22

the above data decomposition — i.e., each process only does local tensor/matrix computation and

updates its own matrix partition A(n)
p . Thus, the grid configuration and distribution policy, which

determines the data decomposition, play critical roles in the performance of the Cpd algorithm.

Algorithm 2 shows the bulk-synchronous parallel algorithm for an Nth-order tensor using

a traditional alternating least square algorithm [74]. The bulk-synchronous parallel algorithm is

generalized from almost all existing distributed Cpd-ALS implementations [114, 17, 101, 6, 72, 71,

39, 22]. This is an iterative implementation. In each iteration, matrices are updated one-by-one;

each time, all but one matrix are fixed to update the matrix Ã
(n)

. The algorithm comprises four

main computation kernels. Mttkrp is the only kernel that computes on the sparse tensor, and

has been studied most for optimization in previous work [114, 72, 71]. The other three compute on

dense matrices only. Note that all the four steps except MAT SOLVE have mixed computation and

communication.

• Mttkrp: each process computes the Khatri-Rao product of its subtensor with all but one

layer-partitioned A
(1)
l , . . . , A

(n−1)
l , A

(n+1)
l , . . . , A

(N)
l , which are obtained from remote mem-

ory by communicating with other processes.

• MAT SOLVE: each process updates Ã
(n)

p using the Cholesky method based on the temporary

results from Mttkrp.

• MAT NORM: each process normalizes Ã
(n)

p locally and then performs a parallel reduction to

obtain λ.

• MAT AT A: each process uses symmetric matrix multiplication locally and then performs a

reduction to form the new Ũn for the next iteration.

• Mttkrp COMM: Ã
(n)

p is updated by communicating Ã
(n)

l after local Mttkrp computation.

Consequently, communications are involved to update Ã
(n)

l from Ã
(n)

p to prepare the layer-

partitioned Ã
(n)

l for the next Mttkrp.

The complexity lies in both communication and local computations influenced by the grid

configuration and distribution policy from the preprocessing steps. All communication within CPD

computation is for dense matrices, while sparse communication only exists in preprocessing for sparse

tensors. Due to the sparsity of the tensor, the communication volume for dense matrices could be

very imbalanced.

23

2.4.4 Related Work of distributed Cpd

Three major bulk-synchronous distributed Cpd algorithms have been proposed: coarse-

grained [39], medium-grained [114, 6, 17], and fine-grained [72]. DFacTo [39] designs a coarse-

grained distributed Cpd implementation. DFacTo uses an efficient MTTKRP algorithm that is

posed as a series of sparse matrix vector multiplications (SpMVs). DFacTo consists entirely of

SpMV operations and therefore can take advantage of a wealth of existing research that can be

applied to an efficient parallel implementation. Splatt [116] is a popular sparse tensor library

which includes medium- and fine-grained distributed Cpd implementations. The medium-grained

decomposition uses an m-mode decomposition over the tensor and related 1D decompositions on the

factor matrices. HyperTensor [72] uses a fine-grained decomposition that nonzeros of a tensor are

individually assigned to processes. The most successful computation of fine-grained decomposition

relies on hypergraph partitioning. A balanced partitioning of the hypergraph leads to a load-balanced

computation with low communication volume.

In addition to these three major bulk-synchronous distributed Cpd algorithms, recent works

explore optimization in distributed Cpd. ENSIGN [77] uses special sparse tensor data structures

mode-specific sparse (MSS) and mode-generic sparse (MGS) with an optimization that improves

data reuse and reduces redundant computations in tensor decompositions [17]. But ENSIGN re-

quires significantly higher memory usage due to its special data structures. Other efforts employed

MapReduce/Hadoop or Spark programming models on cloud platforms, such as GigaTensor [70],

HaTen2 [68], and CSTF [22]. These works utilize the parallelism of MapReduce by reformulat-

ing MTTKRP as a series of Hadamard products. There are no dependencies during a Hadamard

product, and each element of the output can be computed in parallel.

Prior studies [114, 101] have shown that medium-grained Cpd generally obtains the opti-

mal state-of-the-art performance. The medium-grained decomposition addresses the limitations of

coarse-grained methods by avoiding complete replication and communication of the factors. In addi-

tion, the medium-grained decomposition does not require computationally expensive pre-processing

such as hypergraph partitioning to have a low communication volume. Our work develops upon

medium-grained distributed Cpd and through optimizing grid configuration and distribution policy

to improve performance and scalability.

24

Chapter 3

Resilient and Energy Efficient

Scalable Linear Solvers

Exascale computing must simultaneously address both energy efficiency and resilience as

power limits impact scalability and faults are more common. Unfortunately, energy efficiency and

resilience have been traditionally studied in isolation and optimizing one typically detrimentally

impacts the other. To deliver the promised performance within the given power budget, exascale

computing mandates a deep understanding of the interplay among energy efficiency, resilience, and

scalability.

In this chapter, we propose novel methods to analyze and optimize the costs of common

resilience techniques, including checkpoint-restart and forward recovery. We focus on sparse linear

solvers as they are the fundamental kernels in many scientific applications. In particular, we present

generalized analytical and experimental methods to analyze and quantify the time and energy costs

of various recovery schemes on computer clusters, and develop and prototype performance optimiza-

tion and power management strategies to improve energy efficiency. Moreover, we take a deep dive

into the forward recovery that recently started to draw attention from researchers, and propose a

practical matrix-aware optimization technique to reduce its recovery time. The result shows that

while the time and energy costs of various resilience techniques are different, they share the common

components and can be quantitatively evaluated with a generalized framework. This analysis frame-

work can be used to guide the design of performance and energy optimization technologies. While

25

each resilience technique has its advantages depending on the fault rate, system size, and power

budget, the forward recovery can further benefit from matrix-aware optimizations for large-scale

computing.

3.1 Performance, Energy, and Resilience Co-Modeling

We focus on three performance metrics for a given workload w: time-to-solution T , power

P , and energy-to-solution E. T had been the sole measure in parallel computing until power and

energy began to constrain performance and scalability [82]. These metrics interact and their inter-

play depends on workload characteristics, performance optimization, and power and energy saving

technologies.

Each of the metrics is altered by faults and the resilience techniques employed to tolerate

faults. Faults, if occurring frequently, can have a dominating effect in large scale computing. In this

work, we analytically model the impact of faults and evaluate the inherent time and energy costs of

different resilience techniques.

We use CG as a case of study and examine workload properties commonly in parallel com-

puting. Particularly, we focus on sparse banded matrices. We investigate weak scaling to project

the performance and costs for large-scale systems. Specifically, we adopt the fixed time scaling ap-

proach [111], i.e., the execution time is constant for scaled workloads if parallel overhead is negligible.

In our context, the number of non-zero entries and the number of degrees-of-freedom per process

remains constant.

3.1.1 Generalized Models

We first present general models to capture the time, power, and energy costs of all resilience

techniques under study. The metrics and parameters are presented in Table 3.1.

Time-to-solution for the original workload T1(w): the amount of time to complete a workload

w sequentially on a single core. We denote this time as Tsolve:

T1(w) = Tsolve (3.1)

Time-to-solution for the scaled workload TN (w′): the amount of time to complete a scaled

26

Symbol Description

Metric
T Time to solution
P Power consumption
E Energy to solution

Workload
w Original workload
w′ Scaled workload (fixed time)

Parameter
λ Failure rate
N Number of cores

Table 3.1: Metrics and Model Parameters.

workload w′ on a system with N ≥ 1 CPU cores. Equation 3.2 includes the time to solve the scaled

problem and parallel overhead in a fault-free situation.

TN (w′) = Tsolve + TO(N) (3.2)

Here TO is the parallel overhead and is a function of N . Note the same problem-solving

time for the original and scaled workloads when the parallel overhead is not considered. The scaled

workload w′ has the same characteristics as the original workload w, but requires N× the computa-

tion. In the CG case, the size of the matrix A scales accordingly to keep a constant amount of work

per process.

In faulty environments with a failure rate of λ, resilience incurs extra cost. We focus on

recovery and assume fault detection is performed by other techniques [29] and the detection overhead

is factored into the base running time for the solver. Therefore, we extend Equation 3.2:

TN (w′) = Tsolve + TO(N) + Tres(w
′, N, λ) (3.3)

where Tres is the total time overhead for resilience, including time to checkpoint, recompute

lost progress, reconstruct an approximate state, and restart the external environments.

Power consumption for the original workload P1(w): the amount of power consumed by a

workload w during a sequential execution. Conceptually, the power consumption is summed over all

computer components. For simplicity, we only account for the CPU core’s power for two reasons: (1)

cores are the dominant power consumer; (2) their power varies the most across resilience techniques.

Power consumption for the scaled workload PN (w′): the amount of power consumed by N

processor cores when executing the scaled workload w′. For the fixed time workload scaling, each

27

processor core maintains the same computational intensity and thus power. Therefore,

PN (w′) = N × P1(w) (3.4)

In a fault-free situation, the application execution consists of useful problem progress periods

and parallel overhead time such as communication and synchronization. Since we are more interested

in the impacts of resilience, we assume that the application power profile is the same during progress

phases and parallel overhead.

In faulty environments, the power profiles may alter between disjoint normal execution

phases and recovery phases, and overlapped execution-recovery phases.

PN (w′) =

N × P1(w) execution phase

PN,res recovery phase

N × P1(w) + PN,res overlapped phase

(3.5)

The power consumption during the recovery phase PN,res is discussed and quantified for

each resilience technology in Section 3.1.2 and Section 3.3.

Energy-to-solution for the original workload E1(w): the total amount of energy to complete

the workload w on a single core in a fault-free situation. It is the product of power and time — i.e.,

E1(w) = P1(w) · T1(w) (3.6)

Energy-to-solution for the scaled workload EN (w′): the total amount of energy to complete

the scaled workload w′ with N processor cores.

In a fault-free situation, it accounts for the energy to solve the problem and the parallel

overhead.

EN (w′) = N · P1(w) ·
(
Tsolve + TO(N)

)
(3.7)

In faulty environments with a failure rate of λ, additional energy is consumed to support

resilience (see Section 3.1.2).

EN (w′) =PN (w′)avg ·
(
Tsolve + TO(N) + Tres(w

′, N, λ)
)

(3.8)

28

3.1.2 Specific Models for Recovery Schemes

We analyze the recovery cost of a hard or a soft fault, which causes data loss or corruption

on a single process pi. Recovery is needed for the computational environment, lost static data, and

lost dynamic data [78]. We assume that the computational environment and the lost static data are

recovered immediately, as in [7]. Thus, the challenge is to recover the lost dynamic data — i.e., xkpi

on the failed process pi for CG — see Figure 2.2.

We discuss several recovery schemes: Checkpoint/Restart (CR), Redundancy (RD), and

Forward Recovery (FW) as shown in Table 3.2. CR and FW include multiple variations. The

general models are applicable to all these schemes. However, Tres(w
′, N, λ) and PN,res are further

refined for each resilience technique.

Type Scheme Description

CR
CR-D Checkpoint to/rollback from disk

CR-Mul Multi-level Checkpoint/rollback

RD DMR Double modular redundancy

FW

F0 Assign 0 to xkpi

FI Assign initial guess to xkpi

LI linearly interpolate lost xkpi

LSI Interpolate lost xkpi
with least squares

Table 3.2: Recovery schemes under study

Checkpoint/Restart. The iterative solution, e.g., vector x of CG, is checkpointed to

storage periodically at certain iterations and recovered from the most recent correct checkpoint

after a fault. Let xCm be the most recent checkpointing of x performed after the mth iteration when

a fault occurs in the kth (k ≥ m) iteration, the resilience cost Tres(w
′, N, λ) with CR includes time

to checkpoint the solution vector x and the time lost to compute from xCm to xk.

Tres(w
′, N, λ) = Tchkpt(w

′, N, λ) + Tlost(w
′, N, λ) (3.9)

where Tchkpt is the total time spent checkpointing, and Tlost is the total time spent in recomputing

to arrive at the state before the failure/error occurred.

Tchkpt is the product of per checkpointing cost tC and the number of checkpoints taken.

29

The latter is derived from the total execution time and checkpointing interval IC , i.e.,

Tchkpt = tC ·
TN (w′)

IC
(3.10)

tC differs with the checkpoint storage — e.g. local-memory(cheap) or remote disk(expensive).

The optimal checkpointing interval, IC , is a function of failure rate and is commonly approximated

with Young’s and Daly’s approaches [132, 43].

Tlost is dependent on the failure rate and the average amount of recomputation time tlost.

The latter is approximated as a half of the checkpointing interval. For a failure rate λ, Tlost is

derived as

Tlost = tlost · λ · TN (w′) ≈ IC
2
· λ · TN (w′) (3.11)

In general, CPUs are not highly utilized during checkpointing and thus consume less power

than in the computation phase. That is, PN,res < N · P1(w). For cases when checkpointing takes a

long time, transitioning the CPU’s power to a lower power state saves power.

Redundancy. A dual-modular redundancy (DMR) resilience scheme requires 2X CPUs

to support redundant computation. Assuming an unlimited number of CPUs without a power

budget and two independent sets, the recovery time for xk from the redundant replica after a fault

is negligible. Nevertheless, the resilience phases are always concurrent with the normal program

progress phases. Resilience causes additional power PN,res for the duration of the application by

requiring double the power.

PN,res = N · P1(w) (3.12)

Forward Recovery. Forward recovery approximates lost data with simple assignments or

reconstruction techniques. A more precise approximation of xk takes more time/energy to construct

but takes fewer extra iterations to converge to the final solution.

The time cost for FW resilience is modeled as:

Tres(w
′, N, λ) = Tconst + Textra (3.13)

Where Tconst captures the cost of reconstructing an approximation for xk, and Textra captures the

cost of extra iterations required to converge. The former is the product of the reconstruction count

30

and the cost per reconstruction tconst.

Tconst = λ · TN (w′) · tconst (3.14)

Constructing an approximation of the lost data may or may not involve all CPUs depending

on the recovering algorithm. For example, Ñ = 1 during reconstruction for the FW methods under

study. Given Ñ ≤ N processes actively constructing the approximation and N − Ñ CPUs idle, the

power during construction is less than that during normal execution.

PN,const = Ñ · P1(w) + (N − Ñ) · Pidle, if constructing

Pextra = N · P1(w), if extra iter.

(3.15)

here Pidle is the power consumption when the core is idle.

The energy cost for resilience is the sum of the reconstruction and extra iterations, i.e.,

EN,res = PN,const · Tconst +N · P1(w) · Textra (3.16)

We investigate four FW schemes: filling xkpi
with all zeros (F0) and the initial guess (FI),

linear interpolation (LI) [78] and least squares interpolation (LSI) [7]. These schemes have different

reconstruction costs and accuracy. F0 and FI are assignment based and thus do not incur a con-

struction cost — i.e., Tconst = 0. However, they incur a large Textra to converge. On the contrary,

LI and LSI are interpolation based and take time to construct more accurate approximations, but

require fewer extra iterations to converge. The specific construction cost and extra iteration cost

are determined by the workload and matrix properties.

Let xLI
pi

be the approximation of xkpi
for the linear system solved by CG, LI constructs it

with linear interpolation:

xLI
pi

= A−1pi,pi
(bpi
−∑j 6=iApi,pj

xkpj
) for j = i

xLI
pj

= xkpj
for j 6= i

(3.17)

LSI uses a more complex interpolation scheme and provides a more accurate approximation

31

than LI. Let xLSI
pi

be the interpolation of xkpi
, LSI approximates it with:

xLSI
pi

= min
xpi

‖b− ∑
j 6=i

A;,pj
xkpj
−A;,pi

xpi
‖ for j = i

xLSI
pj

= xkpj
for j 6= i

(3.18)

The analytical modeling distinguishes between different resilience schemes. Corresponding

model parameters are derived from experimental data in the following section.

3.2 Minimizing Recovery Cost

The four FW options (F0, FI, LI, LSI) for filling xkpi
have two extremes: minimum recon-

struction time or minimum convergence time. None is likely to minimize the total recovery time for

all workloads. As we show, there is a trade-off between the construction cost and extra iteration

cost, and their best combination is determined by workload and matrix properties.

In this section, we present several optimization strategies to reduce the overhead of the LI

and LSI recovery schemes. We dismiss the assignment based options as they are workload agnostic.

Our optimizations include localized approximate reconstruction, matrix-aware accuracy selection,

and power reduction.

3.2.1 Localized Approximate Reconstruction

LI Approximation: LI reconstructs the lost dynamic data xLI
pi

by solving a linear system. Let

y = bpi −
∑

j 6=iApi,pjx
k
pj

. The failed process pi solves the following equation:

Api,pix
LI
pi

= y (3.19)

where all entries of Api,pi
are static and are recovered from local storage on process pi, and y is

calculated using entries of x from all the other processes. After a communication step, this problem

is solved locally on process pi.

Previous work [7] uses a sequential LU factorization of Api,pi
to get the exact solution of

xLI
pi

. LU factorization requires a large amount of memory [62], and incurs high time and energy costs

due to the complexity of O(n3) for the matrix size n. A possible faster alternative is to parallelize

32

LU factorization. However, parallelization increases communication time and can increase energy

consumption by using all the cores.

We propose a more efficient approach to solve Equation 3.19. The key idea is to derive an

approximation of xLI
pi

locally on process pi, i.e., using the CG iterative algorithm. The rationale

is that the exact solution is not necessary because itself is an approximation of the lost data xkpi
.

Its benefit comes from two sources: (1) the local execution eliminates communications, and (2) the

other processes can enter into sleep states for power savings.

LSI Approximation: LSI reconstructs xLSI
pi

by solving a least-squares linear systems, where β =

b−∑j 6=iA;,pj
xkpj

:

(AT
;,pi
A;,pi

)xLSI
pi

= AT
;,pi
β. (3.20)

A;,pi
is a parallel matrix across N processes. Previous work [7] uses a parallel sparse QR factorization

of A;,pi to get the exact solution of xLSI
pi

with a high communication volume depending on the sparsity

pattern of A.

We use CG to locally solve for xLSI
pi

on process pi. We first transform the problem to enable

local computation. Given the SPD matrix A, then A;,pi = AT
pi,;. Thus, we transform Equation 3.20

as follows:

(Api,;A
T
pi,;)x

LSI
pi

= Api,;β (3.21)

Figure 3.1 shows that CG-based LI and LSI have a shorter time-to-solution than the re-

spective exact solutions. The improvement is 4–15%, depending on the tolerance. By computing a

less accurate approximation, CG-based LI and LSI require less recovery time and total time than

LU-based LI and QR-based LSI.

3.2.2 Matrix-Aware Approximation Accuracy Selection

This subsection discusses limitations in the CG-based LI and LSI algorithms in [87], and

illustrates the challenges to addressing these limitations. It then presents a practical new convergence

factor to describe matrices and a matrix-aware overhead control.

Limitations of accuracy oriented reconstruction. The previously proposed CG-

based LI and LSI focus on maximizing the accuracy of the lost data reconstruction, disregarding

33

0 0.4 0.8 1 1.2 1.6 2.0 2.3
Normalized Time

10 12

10 9

10 6

10 3

100
R

es
id

ua
l

FF
LI-CG
LI-LU

(a) LI based

0 0.4 0.8 1 1.2 1.6 2.0 2.3
Normalized Time

10 12

10 9

10 6

10 3

100

R
es

id
ua

l

FF
LSI-CG
LSI-QR

(b) LSI based

Figure 3.1: Reconstruction algorithms for Matrix Kuu with 5 faults (black vertical lines). LI/LSI-
CG: CG-based LI/LSI forward recovery; LI-LU: LU-based LI forward recovery; LSI-QR: QR-based
LSI forward recovery.

the overhead associated with the target accuracy [7, 87]. For example, the exact reconstruction [7]

achieves the highest possible accuracy for reconstruction with the complexity of O(n3), where n is

the matrix size. And the CG-based approximation algorithms in Section 3.2.1 uses low residual

values or large iteration numbers, e.g., 1e−12 or 5,000 respectively, to terminate the iterations for all

input matrices.

10-12

10-10

10-8

10-6

10-4

10-2

100

 0 2000 4000 6000

E
rr
or

 o
r
R
es
id
ua
l

Convergence of LI in ex15

relative error
relative residual

10-12
10-10
10-8
10-6
10-4
10-2
100

 200 400 600 800

Convergence of LSI in nd24

relative error
relative residual

Figure 3.2: Convergence of LI or LSI in matrix ex15 and kuu

There are two major limitations for the accuracy oriented reconstruction algorithms. First,

the previous algorithms have one certain and costly criterion for all matrices. They typically set a

34

certain tolerance for relative residual or maximum iterations across all cases, without differentiating

the input matrices and reconstruction algorithms. As such, the default values must be conservative

to achieve a sufficiently accurate approximation, which incurs unnecessary excessive time and energy

costs without improving the quality of the final problem solution for many cases. For example, a

matrix with a uniform nonzero distribution may be able to tolerate large residuals and thus only need

a coarse approximated reconstruction, but a matrix with non-uniform nonzero distribution needs fine

approximations for efficient recovery because it is more difficult to converge. To support both types

of matrices, prior work has to set the default tolerance low, which wastes computation resources and

time for the matrices with uniform nonzero distribution. Second, the residual used by the previous

algorithms doesn’t truthfully reflect the accuracy of reconstruction. The relative residual rk in

iteration k is defined as ||Axk−b||/||b||, where xk and b are column vectors. The ultimate evaluation

of accuracy instead should be the relative error to solution, i.e., errk = ||xk − xt||/||xt||, where xt is

the solution vector before a fault and the target reconstruction of LI or LSI recovery. rk and errk

are different but correlated by the matrix A in that rk · ||b|| = A · errk||xt||, and rk = 0 if and only if

errk = 0 by the uniqueness of the solution. Because xt is unobtainable in practice to calculate errk

due to the failure, alternatively, the residual is adopted to evaluate accuracy. However, errk might

have already reached convergence when rk still varies due to the impact of A [26]. For this reason,

the residual-based method would incur more cost than necessary.

As shown in Figure 3.2, the residual-based evaluation takes more time overhead than the

error-based evaluation to reach a small target change for the LI-CG and LSI-CG algorithms. For the

matrix ex15 with non-uniform nonzero distribution, LI takes more than 6,000 iterations to reach the

tolerance for the residual of 1e−12 and 3,000 iterations to reach the tolerance for the error. That is,

the residual-based evaluation takes about 50% more time overhead than the error-based evaluation

with the LI recovery for matrix ex15. The example of the matrix nd24k with uniform nonzero

distribution and the LSI algorithm demonstrates the same conclusion.

Challenges of Matrix-Awareness. Unlike the accuracy oriented reconstruction, better

solutions should aim to minimize the resilience overhead, which is Tres = Tconst + Textra as in

Eq 3.13. Typically, a more accurate reconstruction incurs larger Tconst and requires smaller Textra.

Nevertheless, the addition of Tconst may be larger or smaller than the saving of Textra, depending

on the matrix under study and the accuracy improvement. As reconstruction accuracy typically

has diminishing gain, consequently the accuracy oriented methods incur excessive Tconst. Better

35

solutions should target the reconstruction accuracy that achieves the best trade-off specific to the

matrix under study.

It is challenging to identify the matrix-aware optimal reconstruction in practice, due to

the data loss of target reconstruction. In addition, the LSI algorithms typically converge slower

than the LI algorithms for the same input matrix. As shown in Figure 3.3 from one fault for two

different matrices on 8 nodes, where point D shows the global minimal value of the relative error.

The relative error converges to 1e−1 at D in LI with more than 3500 iterations for matrix ex15 in

Figure 3.3(a), to 1e−5 at D with 600 iterations for LSI in matrix nd24k in Figure 3.3(b). These

examples demonstrate that matrix-awareness is needed for not only the convergence of errors, but

also the difference between LI and LSI algorithms.

A B C
CBA

D

D

Figure 3.3: Error and Convergence factor in matrix ex15 and nd24k

Our New Convergence Metrics. To evaluate reconstruction for a given matrix, an

alternative to the convergence of error is the condition number based on the Gershgorin circle

theorem [127]. However, computing the condition number for a matrix usually takes several hours

as its computational complexity is O(n3) where n is the matrix size. This time overhead is too

expensive, as it is much larger than solving the linear system.

In this work, we propose an on-line and low-cost method and corresponding metric to

evaluate the recovery reconstruction of lost dynamic data. The metric emulates the convergence

of error. We define the convergence factor as (rk/r0)
1/k

at iteration k, where r0 is the initial

residual [103]. The computational complexity is O(I) where I is the number of iterations the linear

solver needs to converge. This real-time metric captures the convergence of the error better than the

36

residual for several reasons. First, the convergence factor has a direct correlation with the residual

and an inherent correlation with the error due to the definition of rk and errk. The term rk/r0

captures the relative difference between the current residual to the initial residual. rk/r0 has the

same trend of decreasing as rk in Figure 3.2 because r0 is a constant regardless of the difference in

x0. Second, the power of 1/k is able to reflect this small difference in rk/r0 as k increases. Therefore,

the convergence factor converges smoothly regardless of the difference of the error trend from various

matrices.

Figure 3.3 plots the convergence factor of LI and LSI for matrix ex15 and nd24k. We

mark three points in the convergence factor. Point A indicates the beginning to converge. From

point B, it changes very slowly and point C approximates that it has almost converged. When the

convergence factor is about to converge at point C, the error also approaches to convergence with

the local minimal value. For matrix nd24k, point D indicates both the global and local minimal

value. While the error reaches the global minimal value when the convergence factor is near B and

then reaches the global minimal value when the convergence factor is near C for matrix ex15. Any

of the three points in the convergence factor might match better with the global minimal value of

the error for different types of matrices. We can terminate the recovery at each of the three points,

as the recovery is not required to be very accurate. These observations demonstrate that we can use

the derivative of the convergence factor to approximate the convergence of error.

1e-7

1e-5

1e-3

1

 671 1492 3034 5000

D
er
iv
at
iv
e

Derivative of factor in ex15

1e-7

1e-5

1e-3

1

 203
 277

 558
 800

Derivative of factor in nd24k

Figure 3.4: Average values of last c derivatives of convergence factors

We assume that the derivative of the convergence factor indicates the speed of convergence

37

of error, and a value approaching zero suggests a stabilized solution. Figure 3.4 shows the derivatives

of the convergence factor in LI and LSI for matrices ex15 and nd24k. The values are averaged over

the last c iterations of the derivatives of the convergence factor. We set c=5 by the experimental

results, and different values of c show similar behaviors. The derivative generally decreases, i.e.,

the error to solution decreases, as the number of iterations increases. There is the oscillation in the

derivative for matrix ex15 due to the inherent property of the derivative and the residual. However,

its overall trend is decreasing for both matrices. Thus, we can set a threshold value and use it to

select the lost data reconstruction. A low threshold selects a more accurate reconstruction, which

takes more iterations in construction but less time in extra solving time.

0%

20%

40%

60%

80%

100%

LI-o3 LI-o2 LI-o1 LI

N
or
m
al
iz
ed

 T
im
e

ex15

Comp
Recover

0%

20%

40%

60%

80%

100%

LSI-o3 LSI-o2 LSI-o1 LSI

nd24k

Figure 3.5: Normalized time breakdown of LI and LSI for ex15 and nd24k.

Matrix-Aware Reconstruction and Accuracy Selection. We propose to select the

reconstruction and its accuracy by using the derivative of the converge factor. We search the

number of iteration where the error has the global minimal value based on a smaller derivative.

We set multiple different thresholds to estimate the points A, B and C in Figure 3.3, i.e., three

thresholds 1e−7, 1e−5 and 1e−3 as three options LI-o1 to LI-o3 and LSI-o1 to LSI-o3 respectively,

to evaluate different trade-offs in Eq 3.13. These three thresholds are obtained by experimental

results of all matrices in our dataset.

Algorithm 3 shows our matrix-aware reconstruction based on CG algorithm [7]. Our method

shares the same steps for CG loops and has extra steps for the convergence factor and derivative

38

Algorithm 3: Matrix-aware reconstruction (LI-MA, LSI-MA)

Require: LI-CG, LSI-CG, thresholds th = {th1, th2, th3};
Ensure: LI-MA = {LI-o1, LI-o2, LI-o3}, LSI-MA = {LSI-o1, LSI-o2, LSI-o3};

1: Initial guess x0;
2: for k = 1, 2, ..., until der < th do
3: Same steps in CG loops

4: cfk = (rk/r0)
1/k

5: derk = |cfk − cfk−1|
6: der = (derk + derk−1 + ...+ derk−c−1)/c
7: end for

computation in Step 4 to 6. A lower threshold selects a more aggressive and accurate reconstruction.

Thus, when changing from LI-o1 to LI-o3, the construction time Tconst decreases while the extra

time Textra increases. Figure 3.5 shows this trade-off for various matrices on 64 processors with

one fault injected. For a smaller matrix ex15 with non-uniform nonzero distribution, the recovery

time accounts for a larger portion of the total time. LI-o2 performs best for ex15 and achieves the

best trade-off. The reconstruction with low accuracy with LI-o3 reduces the reconstruction time

but incurs more extra solve time. For a larger matrix nd24k with uniform nonzero distribution, the

recovery time accounts for a small portion of the total time. All three thresholds lead to the reduced

total time for LSI, and LSI-o1 performs best.

Matrix ex15 obtains 25% maximum reduction for the total time, while matrix nd24k obtains

6% maximum reduction. In the above cases, our optimization obtain 69% and 42% reduction in

recovery cost for matrix ex15 and nd24k. Matrix ex15 and nd24k have different convergence factors

in both the main CG computation and recovery. The main CG computation solves the initial linear

system Ax = b, while the recovery solves a linear system using the matrix Api,pi
in LI or AT

;,pi
A;,pi

in

LSI. The convergence factors of the main CG computation tend to be stable. After a fault injection

and recovery, the convergence factor has an immediate change in derivative. These derivatives are

decreasing from LI-o3 to LI because the recovery is more and more accurate. For matrix ex15, the

convergence factor of the main CG computation shows a significant impact from the fault recovery

only for LI-o3. The resilience and computation time obtains the best trade-off with LI-o2 for

ex15. While in matrix nd24k, the derivatives from LI-o3 to LSI are decreasing smoothly, and

the resilience and computation time obtains the best trade-off with LI-o1. Therefore, the trade-off

between resilience and computation time needs to be considered, particularly for different matrices.

We explore this with more experimental results in Section 3.3.3.

39

The recovery cost of LI and LSI is different for various matrices with our three thresholds.

Figure 3.6 shows these behaviors for all matrices in our benchmark. Generally, all matrices can

obtain a significant reduction in recovery cost with our three thresholds. Some larger matrices reach

the maximum iterations (5000) we set for LI or LSI, while most smaller matrices require fewer

than 600 iterations to recovery for LI. Our optimization obtains a larger reduction in recovery if the

convergence factor takes longer to be stable, like matrix t2dahe. The reduction in recovery is smaller

if the convergence factor is easier to be stable, like matrix ex15. The differences among matrices

come from several features comprehensively, such as size, density, and nonzero distribution.

 0

 100

 200

 300

 400

 500

 600

bcs06

ex10
wathen

bcs16

nd24k

Kuu
crys
cvx
Andrews

stencil

#I
te
ra
tio
n

1e-3
1e-5
1e-7
LI

 0

 1000

 2000

 3000

 4000

 5000

m
sc

ex15
t2dahe

x104

Figure 3.6: Iterations of LI with different thresholds for all matrices.

3.2.3 Power Reduction

Besides reducing the time-to-solution, using CG for the LI and LSI schemes provides power

saving opportunities during the reconstruction phases. Since only pi constructs the lost data of xi,

cores running other processes are able to transition to low speed states to reduce power consumption

without impacting application performance.

In this work, we exploit DVFS commonly available on HPC CPUs for power reduction [79].

We bind processes to cores and adjust the core speed during the reconstruction phases for the LI

and LSI schemes. Process-core binding is a common resource management technique, and typically

a one-to-one mapping is adopted for HPC applications. The core with process pi always runs at

the highest CPU frequency, while the other cores scale down to the lowest CPU frequency before

40

reconstruction and scale up to the highest CPU frequency when reconstruction finishes.

Employing this power optimization techniques reduces power consumption during recon-

structions by 40% with the power-aware LI scheme on a 24-core node (detailed results in Section

5.3). During reconstruction, 23 CPUs are idle, and the node power drops to 0.75× of normal power

consumption during execution phases without DVFS scheduling, and 0.45× with DVFS scheduling.

The power-aware LSI scheme achieves similar power savings.

3.3 Experimental Results

This section evaluates the resilience and energy efficiency of different recovery schemes, and

answers the research questions raised in the introduction section. We first present our experimental

setup and benchmarks. We then evaluate the resilience of recovery mechanisms, and lastly assess

their time and energy costs.

3.3.1 Experiment Setup

The experiment platform consists of 8 dual-socket nodes. Each node has two 12-core

Xeon(R) E5-2670v3 processors and 128 GB DDR4 DRAM evenly distributed between the two

NUMA sockets. DVFS is controlled using the CPUfreq interface. Each core can independently

transition from 1.2 GHz to 2.3 GHz with a step of 0.1 GHz. Each core supports 2-way hyper-

threading, which is only enabled for resilience evaluation and disabled for power and energy related

experiments. Execution time is collected from benchmark reports, and processor power is collected

with the Intel Running Average Power Limit (RAPL) interface.

We focus on symmetric positive definite (SPD) matrices with various sizes, densities, and

convergence speeds, as shown in Table 3.3 from the Suite Sparse Matrix Collection [4]. Each matrix

is distributed among all parallel MPI processes in our experiment. CG and all resilience schemes

are implemented from routines in RAPtor [21].

3.3.2 Resilience of Recovery Mechanisms

What is the resilience of various recovery mechanisms? To answer this question,

we investigate how resilient each recovery mechanism is, how it performs for different problems, and

how it reacts to multiple faults.

41

Name #Rows NNZ/row Problem Kind #Iters

bcsstk06 420 19 structural 4,476
msc01050 1,050 25 structural 35,765

ex10hs 2,548 22 CFD 3,217
bcsstk16 4,884 59 structural 553

ex15 6,867 17 CFD 1,074
Kuu 7,102 24 structural 849

t2dah e 11,445 15 model reduction 82,098
crystm02 13,965 23 materials 1,154

wathen100 30,401 16 random 2D/3D 355
cvxbqp1 50,000 7 optimization 11,863
Andrews 60,000 13 graphics 216

nd24k 72,000 399 2D/3D 10,019
x104 108,384 80 structure 96,704

5-point stencil 640,000 5 structure 3162

Table 3.3: Properties for matrices taken from Suite Sparse Matrix Collection.

bcsstk06 ex10hs wathen100 bcsstk16 nd24k msc01050 ex15 Kuu t2dahe crystm02 cvxbqp1 Andrews x104 stencil Average
Matrix

0

1

2

3

4

R
el

at
iv

e
It

er
at

io
ns FF RD F0 FI LI LSI CR

Figure 3.7: Iterations to converge for different matrices using 256 processes with 10 faults. Each
matrix uses its own normalization base, which is the fault free case.

42

The work evaluates recovery schemes for CG, but our results are applicable to other iterative

solvers. CG iteratively refines an initial guess at each iteration. The algorithm terminates when

the iterative solution is deemed accurate enough based on a small relative residual or when a fixed

number of iterations is reached. In the presence of faults, the number of iterations to reach the same

accuracy can increase. A recovery mechanism that takes fewer iterations to reach a desired accuracy

is more resilient.

Note the resilience analyses in this subsection only accounts for iterations. Section 3.3.4

extends this discussion to cover time, energy, and power. In the following experiments, 10 faults are

inserted evenly over the iterations required by the fault-free execution (no more faults are inserted

after the fault-free execution converges). The solver tolerance is set at 1e−12. Since the number

of iterations is the same regardless of where the checkpoint is stored, we do not delineate between

memory and disk checkpointing in this subsection. Instead, we present results of disk checkpointing

with a frequency of every 100 iterations.

Mechanisms vs. Problems. We examine how the recovery mechanisms perform on

different matrices. Figure 3.7 presents the number of iterations normalized to the fault-free perfor-

mance. Overall, F0 and FI take the highest number of iterations (2.5× on average) to converge. RD

takes the lowest number of iterations. LI, LSI, and CR perform similar to F0 and FI for matrices

such as bcsstk06 and ex10hs, but perform much better for other matrices such as ex15 and t2dah e.

This is due to the fact that LI and LSI construct less accurate solutions for the matrices with an

irregular structure. In this experiment CR checkpoints in low frequency. CR requires more iterations

than LI and LSI because it rolls back to a prior iteration state. LI and LSI do not require as many

iterations because of more accurate reconstruction of x.

Number of Iterations to Converging and Correction. Recovery mechanisms takes a

number of extra iterations due to faults/failures. Figure 3.8 shows the variation in the residual history

when solving two different linear systems with various numbers of faults and recovery schemes.

With a single fault injected at the 200th iteration, Figure 3.8(a), the residual increases for

all recovery schemes except for RD, which overlaps with the FF case. This is due to the fact that RD

recovers the exact solution. Different recovery schemes result in a different change in the residual.

F0 and FI (overlapped) have the largest increase, while LI and LSI (overlapped) get a minimal

increase by constructing a more accurate approximation. Note that CR has a noticeable increase by

rolling back to a previously checkpointed result. Figure 3.8(b) shows an example with 10 faults for a

43

0 200 400 600
Iteration

10 12

10 9

10 6

10 3

100
R

el
at

iv
e

R
es

id
ua

l FF
RD
F0
FI
LI
LSI
CR

(a) One fault and 8 processes for matrix wathen100.

0 1000 2000 3000 4000 5000
Iteration

10 12

10 9

10 6

10 3

100

R
el

at
iv

e
R

es
id

ua
l FF

RD
F0
FI
LI
LSI
CR

(b) Ten faults and 64 processes for 5-point stencil ma-
trix.

Figure 3.8: residual∼#iteration relation and correction under various recovery mechanisms. FF and
RD are overlapped. F0 and FI are overlapped.

5-point stencil matrix. LI and CR take fewer iterations to converge. In CG, reconstructing x forces

reconstruction of others renew other variables in each iteration, including CR. In this example, their

constructed solution makes the path to converge shorter.

3.3.3 Optimization for Forward Recovery

This subsection presents how resilience overhead and the main CG computation interplay

for our optimization for forward recovery. As we discussed in Section 3.2.2, the trade-off between

the accuracy of recovery and extra main computation are determined by the convergence factors

of both the initial matrix (A) and the matrix in LI (Api,pi
) or LSI (AT

;,pi
A;,pi

) solving. Our three

options of accuracy selection terminate the recovery at different levels to control the trade-offs for

various matrices.

Impacts of our optimization. We examine the trade-off between the accuracy of recovery

and extra major computation by the detailing time and energy in CG for different matrices under

various fault situations. Figure 3.9 shows the normalized time and energy of the computation and

recovery kernels in CG for one large matrix cvx in different fault rates on 512 processors.

cvx is a large matrix with a low convergence speed. The recovery time accounts for a small

portion of the total time, even though it takes thousands of iterations of LI to recover from one

fault. Among our three options for LI, LI-o2 performs best with reduced recovery time by 68.9%

and energy by 67.8% compared to LI without optimization in low fault rate. The total reduction

44

0%

20%

40%

60%

80%

100%

LI-o3 LI-o2 LI-o1 LI

N
or
m
al
iz
ed

 T
im
e

Comp
Recover

0%

20%

40%

60%

80%

100%

LI-o3 LI-o2 LI-o1 LI

0%

20%

40%

60%

80%

100%

LI-o3 LI-o2 LI-o1 LI

N
or
m
al
iz
ed

 E
ne
rg
y

Low Fault Rate

0%

20%

40%

60%

80%

100%

LI-o3 LI-o2 LI-o1 LI

High Fault Rate

Figure 3.9: Normalized time and energy breakdown of LI for matrix cvx in different fault rates on
512 processors.

45

for time and energy are 9.0% and 8.5%. As the fault rate increases, recovery time accounts for an

increased portion of the total time. However, it is still a small portion due to the low convergence

speed of matrix cvx. In a high fault rate, LI-o2 performs best with reduced total time by 15.8% and

energy by 13.5%. The percentages of reduction for recovery is similar to those in a low fault rate

because the reduction for each fault is similar with our matrix-aware optimization. O2 performs

best because it achieves a better trade-off in Eq 3.13 for matrix cvx. The impact of time and energy

for LSI is similar to that in LI for our matrix-aware optimizations.

0%

20%

40%

60%

80%

100%

LI-o3 LI-o2 LI-o1 LI

N
or
m
al
iz
ed

 T
im
e

Comp
Recover

0%

20%

40%

60%

80%

100%

LI-o3 LI-o2 LI-o1 LI

0%

20%

40%

60%

80%

100%

LSI-o3 LSI-o2 LSI-o1 LSI

N
or
m
al
iz
ed

 T
im
e

Wathen in Low Fault Rate

0%

20%

40%

60%

80%

100%

LSI-o3 LSI-o2 LSI-o1 LSI

5-stencil in High Fault Rate

Figure 3.10: Normalized time breakdown of LI and LSI for matrix wathen and 5-points stencil in
different fault rates.

We focus on time for other matrices, as time and energy show a similar behavior. Figure 3.10

shows the normalized time of major computation and recovery kernels in CG for a small matrix

wathen100 in low fault rate and the 5-point stencil matrix with 640,000 rows in high fault rate on

46

512 processors. Wathen100 is a small matrix with a high convergence speed. It takes hundreds of

iterations to converge in main computation of CG and tens of iterations for LI or LSI to recover from

a fault. Therefore, the recovery time accounts for a large portion of the total time. For wathen,

o3 performs best with reduced recovery time by 66.4% in LI and 62.7% in LSI. We obtain reduced

total time for all three optimization methods and maximum by 10.6% in LI and by 18.2% in LSI

with o3 for wathen. This is because wathen100 is less sensitive from fault and can tolerate a coarse

approximated reconstruction. For the 5-point stencil matrix, o2 performs best with reduced recovery

time by 53.1% in LI and 62.5% in LSI. We obtain reduced total time by 6.2% in LI and by 11.7% in

LSI with o2. This is because the 5-point stencil matrix with 640,000 rows can tolerate the accuracy

of LI until the reconstruction in o2. When the accuracy is less as o3, the main CG computation has

a significant increase.

Guideline for choosing strategies. The results show that the trade-off between Tsolve

and Tres in Equation 3.3 is significantly different for various matrices. For large matrices with non-

uniform nonzero distribution like cvx, a small reduction in Tres can result in a large increase in

Tsolve. While for small matrices with uniform nonzero distribution like wathen, reducing Tres has

little impact on Tsolve.

Figure 3.9 and 3.10 show different behaviors of time and energy among various matrices.

When changing from o1 to o3, the construction time Tconst decreases while the extra time Textra

increases. There is no one option in our matrix-aware optimization that always performs best

because this trade-off depends on convergence factors in both main CG computation and recovery.

It is comprehensively impacted by the size, density and nonzero distribution of the matrix. For

example, o1 works better for large matrices with the non-uniform nonzero distribution that require

accurate recovery, while o3 works better for small matrices with uniform nonzero distribution that do

not require very accurate recovery. For some matrices, o2 achieves a better trade-off. We recommend

o1 if the user does not have such information of the matrix because it always performs better than

LI or LSI without optimization.

3.3.4 Power Optimization

The previous analysis only captures extra iterations required by resilience. Iterations do

not tell the entire time cost. In this subsection, we analyze the time, power, and energy costs of

resilience, and begin with power consumption. From this subsection, MTBF is set as the same of

47

that in Section 3.3.2. The checkpointing frequency of CR is computed via Young’s formula [132].

What is the power requirement of resilience and how does power management

help? Here we focus on the LI and LSI mechanisms and how they benefit from power manage-

ment. We limit our discussion on power management for checkpointing as it has been previously

investigated [86].

Figure 3.11(a) illustrates how DVFS-based power management changes the power profiles

of the matrix nd24k on a single node with the LI scheme. We compare our optimization denoted

LI-DVFS with the OS-level power management. The OS-level management uses the “ondemand”

governor and scales up CPU speed if the CPU utilization is high or scales the frequency down if low.

LI-DVFS uses the “userspace” governor. It runs all CPUs at 2.3 GHz in the computation phase,

and runs all but one CPU at 1.2 GHz during the construction phase. The one CPU that actively

reconstructs an estimation of lost data runs at 2.3 GHz. LI-DVFS reduces power by 39% during the

construction phase without performance degradation. While not shown, LSI-DVFS achieves similar

power reduction.

0 20 40 60 80
Time (s)

50

100

150

200

250

C
PU

 P
ow

er
 (

W
)

LI LI-DVFS

(a) Power reduction for nd24k

T E P Eres/Esolve

Metric
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

LI
LI-DVFS
LSI
LSI-DVFS

(b) Energy savings for 14 matrices

Figure 3.11: Power reduction and energy savings with LI-DVFS and LSI-DVFS. (a):Power profile of
nd24k with simple LI and LI-DVFS; (b) average time, power, and energy for 14 matrices included
in Figure 3.7. T , E, and P are normalized based on the fault-free case. Eres / Esolve is the ratio of
energy cost for resilience and for fault-free case.

Figure 3.11(b) presents the overall performance, power, and energy impact for the 14 ma-

trices presented in Figure 3.7. LI-DVFS and LSI-DVFS maintains the same performance, and

reduce energy by 11% and 16% respectively. With these optimizations, more energy is allocated to

problem-solving rather than resilience, as demonstrated by Eres / Esolve.

48

 0

 0.5

 1

 1.5

 2

 2.5

FF F0 FI RD LI-DVFS

LSI-DVFS

CR-M
ul

CR-D

N
or
m
al
iz
ed

 T
im
e
an
d
E
ne
rg
y

Time Energy

Figure 3.12: Normalized Time and Energy for all matrices, with ten faults on 512 processors.

What are the time and energy costs of resilience? Since LI-DVFS and LSI-DVFS

consume less energy than LI and LSI, we only include the former in discussions henceforth. We

implement both multi-level CR (CR-Mul) and CR with disk (CR-D) to give a range of checkpoint-

ing/restart cost. We apply various recovery mechanisms to the benchmark matrices under study,

and analyze the time, energy, and power cost of resilience.

Figure 3.12 presents the normalized time and energy costs of resilience for various schemes.

The values are averaged over all the matrices under study. Overall, LI-DVFS incurs the least energy

overhead, and CR-Mul incurs the least time overhead except for RD. In contrast, FI takes the most

time and energy. We assume that the disk is shared between multiple users and consumes a constant

amount of power regardless of configuration.

3.3.5 Scalability of Recovery Mechanisms

How does the resilience cost scale with system size and a decreasing MTBF? To

answer this question, we need to use the experimental data and project Tres from our experimental

platform to a very large system. We implement multi-level checkpointing (CR-Mul) as every ten

checkpoints from memory with one checkpoint from disk. Figure 3.13 plots the performance scala-

bility for LI-opt and LSI-opt compared with CR-Mul and CR-D. We assume a constant per-processor

49

#Nodes TFF tCdisk tCmem tconst textra

32 9.78 0.24 0.00011 0.04 0.22
128 11.98 0.44 0.00012 0.09 0.29
512 14.72 0.86 0.00010 0.17 0.24
2K 17.95 1.72 0.00011 0.34 0.25
8K 21.67 3.44 0.00011 0.68 0.25
32K 25.83 6.88 0.00011 1.36 0.25
128K 30.61 13.76 0.00011 2.72 0.25

Table 3.4: Time cost of weak scaling in seconds.

MTBF of 6K hours; thus, the application’s MTBF decreases as it uses more processors.

Figure 3.13(a) shows strong scalability for one large matrix x104 from 32 to 512 processors.

We show the best version of our optimization for LI-opt and LSI-opt. All time performance is

normalized based on the fault-free case on 32 processors. Generally, all four resilience methods

show good, strong scalability. As the number of processors increases, the time overhead for our

optimized strategies decreased significantly because the matrix size in LI-opt and LSI-opt solutions

halves. CR-D shows the worst performance because the resilience overhead of writing and reading

a checkpoint file in NFS by each processor core is heavy as the system size increases.

To evaluate how the resilience cost scale with a larger system size, we compute overhead for a

scaled workload via the models from Section 3.1. First, we project TFF for a fault-free baseline, where

TFF = Tsolve + TO. In our measured data, parallel overhead TO roughly equals the communication

overhead. In each CG iteration, communication incurs to transfer data for sparse matrix-vector

multiplications (SpMV) and vector-inner products. We use the average communication time cost of a

SpMV from experimental data from a large system [20], where the SpMV’s weak scaling performance

is studied for matrices with 50K nnz per processor ranging from 2K to 128K processes. The time

cost of a vector-inner product is linear with system size [130]. We project TO with the average

communication time cost of SpMV and vector-inner product. We run the workload for 10K iterations

at each system size from 32 to 512 in the fault-free situation and set the final residual as the target

tolerance for other faulty cases. TFF is prjected as Table 3.4 shows.

We project resilience overheads for the best case of FW, CR-Mul, and CR-D from our

experimental data to a larger system. We project Tres to the large system based on our models in

Section 3.1. tCdisk of CR-D increases linearly as system size increases in our experimental data.

We assume it continues to increase linearly in the large system. The average tCmul of CR-Mul is

tCmem+0.1tCdisk, where tCmem is stable, and we assume this continues in the large system. tconst

50

of FW increases linearly as system size increases in our experimental data. We assume that this

trend continues in large systems. For textra of FW, we adopt an average normalized overhead based

on the fault-free case. We adopt this average data to project FW in the large system. Table 3.4

shows the above parameters used in weak scalability projection.

Figure 3.13(b) presents weak scalability of normalized resilience time (Tres) for 5-point

stencil matrices with 50K nnz per processor under the situation we described above. We present

experimental data from 32 to 512 processors and project Tres from 2K to 128K processors. Tres is

normalized to the fault-free case for each system size. As system size increases and MTBF decreases,

Tres of FW increases roughly linearly because tconst is linear and tlost per fault is fixed. Tres of CR-

D increases faster because of tC and more frequent checkpointing. Tres of CR-Mul and CR-D

increases faster because of tCdisk and more frequent checkpointing. This projection emphasizes the

importance of developments of efficient resilience mechanisms, as resilience overhead keeps increasing

on a larger system. This analysis also indicates that CR-Mul can reduce the effect of significant

failure rates compared to CR-D, while our optimized forward recovery mechanism shows better

efficiency and scalability in CG.

3.4 Summary

This chapter proposes a novel approach to analyze and optimize the cost of resilience tech-

niques for iterative linear solvers. We present a set of models to better understand the resilience

and energy overhead of applications in a faulty environment, and we perform power optimizations to

reduce the overhead of forward recovery. Our experiments show that our optimized forward-recovery

algorithm significantly reduces the resilience overhead and provides insights for selecting recovery

schemes for certain workloads. Our projection result reveals trends of resilience cost on large systems

and provides direction for optimization of resilience schemes. In future work, we plan to extend our

models to capture more resilience mechanisms and study the performance and energy optimization

for more applications. Overall, our major findings and contributions include:

• We present a generalized analytical model to quantitatively co-study performance, scalabil-

ity, resilience and energy efficiency for common resilience technologies to enable resilient and

energy-efficient large-scale scientific computing.

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

32 64 128 256 512

N
or
m
al
iz
ed

 T
im
e
O
ve
rh
ea
d

LI-opt LSI-opt CR-Mul CR-D

(a) Strong scalability for x104

 0.02

 0.04

 0.08

 0.16

32 128 512

N
or
m
al
iz
ed

 T
im
e
O
ve
rh
ea
d

experiment

LI-opt
LSI-opt

CR-Mul
CR-D

 0.08

 0.16

 0.32

 0.64

 1.28

 2.56

2K 8K 32K 128K

projection
(b) Weak scalability for 5-points stencil

Figure 3.13: Scalability of resilience mechanisms

52

• Our proposed analytical models capture the first order time and energy cost factors for various

fault recovery schemes and are customized to fit specific ones. They are used to identify the

best recovery schemes for given fault situations.

• Our optimization techniques reduce the time and energy overhead of recovery schemes by

16% for parallel iterative algorithms. We investigate matrix-aware optimization for forward

recovery and proposes the convergence factor metric, which makes it practical to determine

the optimal lost data reconstruction for high-order matrices. This matrix-aware optimization

further improves energy efficiency by 13.5% on large-scale systems.

• We quantitatively reveal that each resilience scheme has its own advantages depending on the

fault rate, system size, and power budget, and the forward recovery can further benefit from

matrix-aware optimizations for large-scale computing.

53

Chapter 4

Relaxed Replication for Energy

Efficient and Resilient GPU

Computing

Power and reliability are two intertwined challenges in GPU-accelerated large-scale comput-

ing. Managing power and resilience are challenging, due to the heterogeneous compute capability,

power consumption, and varying failure rates between CPUs and GPUs. Previous works have shown

that redundancy-based approaches are more energy-efficient than checkpointing/restart at extreme-

scales, but current solutions only support parallel programs running on CPU-based homogeneous

systems. Simply extending redundancy approaches from CPU-based systems results in subopti-

mal performance and/or energy efficiency because existing redundancy solutions typically rely on

identical replicas with expensive synchronization.

In this chapter, we explore redundancy techniques and energy-efficient techniques for GPU-

accelerated systems running MPI parallel workloads. Specifically, we design a novel redundancy

technique that relaxes the requirement of synchronization and identicalness for replica processes

and allows them to run in lower-precision and at lower power/performance states with periodical

rejuvenation or asynchronization, enabling resources and power reduction. This relaxed replication

mechanism complicates fault detection and recovery over the homogeneous exact replication. We

discuss techniques to handle and mitigate these complexities for both process/node failures and

54

Figure 4.1: Design of REESE. A energy-efficient redundancy-based resilience framework for GPU
computing.

silent data corruption. Evaluation results on a 16-GPU cluster show our techniques reduce energy

by up to 15% for unmodified programs and 32% for programs that are able to adapt the precision

of the replicas.

4.1 Framework Design

We design a Resilient and Energy-Efficient ScalE (REESE) computing framework to provide

MPI-level redundancy for GPU applications as Figure 1. REESE extends the redundancy solutions

for homogeneous systems to support GPU-accelerated systems and programs. Redundancy is im-

plemented through MPI libraries and runtime by replicating processes and communications [56].

REESE provides resilience to various fault scenarios.

REESE supports synchronous and asynchronous execution of main and replica processes.

The asynchronization mechanism enables flexible hardware resource allocation for main and replica

processes, and higher performance for main work progress.

REESE supports adjustable precision and power management to reduce overhead of replica-

tions. It further utilizes acceleration technologies like CUDA-aware MPI to provide high-bandwidth

and low-latency communications with NVIDIA GPUs [75].

55

This REESE framework has multiple features:

1. provide redundancy-based resilience for GPU-accelerated systems. It allows main and replica

processes to run on either GPUs or CPUs for higher performance or other performance and

power objectives.

2. support double precision and its mix with single or half precision on CPUs and GPUs to

provide controllable performance and power consumption. Supporting of adjustable precision

significantly reduces time and energy overhead of replication.

3. support DVFS on CPUs and GPUs to achieve flexible power management. Upon faults, main

and replica processes dynamically adjust their execution rates. It also enables main and replica

processes to take over the role of each other alternatively after faults.

4. reduce resilience overhead in GPU-accelerated systems by utilizing optimized MPI communica-

tions between GPUs. It results in significant time overhead reduction in MPI-level redundancy

on NVIDIA GPUs.

4.1.1 Fault Scenarios

Applications in GPU-accelerated systems could be impacted by either soft errors (such as

bit-flips and SDC) causing an erroneous deviation but without an interruption, or hard faults (such as

processor or node failures) causing the application to crash. Applications should be protected against

these fault scenarios. We focus on recovery from hard and soft faults in hardware (CPU/GPU) and

assume the faults can be detected.

We assume that data in an application are classified into static data and dynamic data

based on their types of storage and variation. For example, CG iteratively solves linear equations

in the form of Ax = b, where entries of the matrix A and the column vector b are constant values,

and entries of the column vector x iteratively changes in the computation. When a soft or hard

fault occurs in one CPU or GPU, data in its memory is erroneous or lost. A and b are static as

they don’t change and can be restored from persistent storage, and x is dynamic and needs to be

recovered via redundancy, checkpointing, or other schemes [87]. We focus on recovering dynamic

data in application progress.

56

Considering different overhead of resilience between soft and hard errors, our framework

provides two distinct resilience mechanisms to address them.

Fault recovery for soft errors. When a soft fault occurs in the memory of one CPU or

GPU running one main MPI process, the data of this faulty process is erroneous. This soft fault

does not immediately cause interruption or crash of the application. Thus, our framework recovers

the faulty main process by receiving dynamic data from the corresponding replica process. Another

scenario of soft faults is that an SDC has propagated to impact more than one main process. In this

case, REESE recovers all faulty main processes by receiving dynamic data from all replica processes.

Upon fault detection, replica processes may increase their speed and take over the role of main

processes. Simultaneously, the old main processes decrease their speed and power consumption and

transit to the role of replicas, as shown in Figure 2.

Redundancy for hard errors. In the hard error scenario, we assume the long-running

application is interrupted or crashed by a CPU/GPU error or a node failure in a GPU-accelerated

system. In these cases, requesting new resource and recovering from the crashed failure might be in-

feasible due to resource limitations or incur more time and energy overhead. Under this assumption,

utilizing the remaining healthy resource to continue application execution is a better choice [56, 89].

Hard errors at different degrees have various impacts, and we handle them differently. If a

hard fault occurs in a CPU core binding one MPI process, the core is down and data in its memory is

lost. In this situation, we replace the faulty main process with the corresponding replicated process.

If a hard fault occurs in a node and the node is down, we use the whole replica set to continue the

execution. Upon the detection of a crashed failure in one or more main processes, our framework

increases the execution rate of replicated processes to catch up with the lost progress.

4.1.2 MPI process-level redundancy for GPU

This base of REESE is transparent MPI process-level redundancy for GPU applications.

This subsection introduces the design of synchronization and asynchronization of MPI process-level

redundancy.

Synchronization of main and replica. Previous work like RedMPI [56] compares re-

ceived messages or hashes from main and replicated processes to detect if SDC occurs in a process’s

communication data. This message verification mechanism requires concurrency of main and repli-

cated MPI processes. We keep the same feature.

57

Asynchronization of main and replica. For the purpose of energy-efficiency, we might

run replica processes on low-power devices with lower performance than main processes running on

higher-power devices. Synchronization would hurt the performance of main processes. This.

To enable higher performance and energy-efficiency for applications in heterogeneous sys-

tems, this framework designs asynchronization of main and replicated processes by using two distinct

MPI communicator groups. This approach excludes MPI communication between main and repli-

cated processes for message verification. Thus, this new redundancy mechanism focuses on crashed

failures detection and recovery instead of SDC.

To optimize MPI process-level redundancy in GPU-accelerated systems, REESE applies

advanced techniques to GPU communication cost. This resilience overhead mainly comes from

the increased amount of MPI communication due to replicated processes. The common practice

of running MPI applications on multi-GPUs is to assign one MPI process to one CPU core and

offload kernels to one GPU core, where CPUs serve as communication and service processors [18].

As a result, data in the source GPU’s memory are first copied to the host memory, and then sent

across the network to the destination host, and finally to the destination GPU memory. This data

movement incurs significant cost due to additional memory copy between GPUs and CPUs. Our

framework utilizes CUDA-aware MPI [75] to enable low-latency communications between NVIDIA

GPUs by eliminating unnecessary memory copies. It significantly improves performance for MPI

process-level redundancy with NVIDIA GPUs.

4.2 Relaxed Replication for GPU Computing

In this section, we discuss how we relax requirements of replication based resilience for GPU

computing while still handling fail-stop failures and silent data corruption.

4.2.1 Relaxed Replication for MPI Process-Level Redundancy

We focus on MPI process-level redundancy, where we use the profiling interface (PMPI) to

the MPI runtime to replicate and handle MPI processes, their computation, and communication [56].

When an MPI program starts running, we transparently partition its MPI processes into two sets,

similar to prior work [56]. We denote the first set of MPI processes that run at user-specified settings

as main, and the other set as replica or shadow that may run in a modified way to lower the power

58

consumption overhead. Furthermore, these sets are not static. As failures occur in the system

leading to the loss of a main or a replica process, until its restoration, the corresponding process in

the other set becomes the sole owner of that data and is associated with both sets in communication

and ensures both sets have the correct number of processes.

We enable MPI-level redundancy on GPU-accelerated systems and programs as shown in

Figure 4.1. To optimize MPI communication between GPUs, we leverage CUDA-aware MPI for

NVIDIA GPUs [75]. Without CUDA-aware MPI, communicated data is first copied from GPU

memory to the host, and then sent across the network to the destination host, and lastly copied

to the destination’s GPU memory. Such data movement incurs significant cost due to multiple

memory copies between GPUs and CPUs [18]. By using CUDA-aware MPI [75] we eliminate un-

necessary memory copies and significantly improve performance for MPI process-level redundancy

with NVIDIA GPUs.

Our redundancy scheme has a key feature: replicas can run in different configurations from

the main processes yet still be effective at detecting and recovering failures. We relax the requirement

of exact replication and lock-step execution to achieve this. Thus, we run replicas with lower-clock

frequencies or on computational elements with different capabilities. For convergent applications,

we explore relaxed-precision of replica processes to further lower power consumption.

One challenge we face in our design is that the replica processes likely lag due to lower com-

putational speed than the main processes. Should fine-grain synchronization be used like in [56], this

relaxed replication results in main processes waiting at each communication operation for the slower

replicas, hurting performance. To account for this execution drift and mitigate performance issues,

we further relax the level of synchronization between the main and replica processes from every mes-

sage to a prescribed period (detailed below) and rely on message buffering to compare corresponding

messages asynchronously using a helper thread. At the synchronization point, we rejuvenate the

state of the replica processes to be consistent with the main processes. Furthermore, implementing

loose synchronization requires special care to handle failures, as discussed in Section 4.2.3. In the

remainder of this subsection, we focus on the design of different synchronization modes between

main and replica processes.

59

4.2.1.1 Synchronous Execution

Our scheme supports the common execution mode of synchronization at every message;

however, this forces the corresponding processes to be at the same communication step before exe-

cution continues. In our design, we create two communicators; one for the main processes and one

for the replicas. Within each communicator, the program executes as normal with processes sending

messages to another in their communicator. In order to enable synchronization, we require extra

communication between the main and replica processes. Figure 4.2(a) shows that for every message

sent from a main to a main, there is a corresponding replica message sent from a replica to a replica

in the replica set. Furthermore, each main process sends the same message to the corresponding

replica receiver, and each replica process sends the same message to the corresponding receiver pro-

cess in the main set (not shown in Figure 4.2(a)). Instead of the full message to the receiver in

the other set, sending a hashed version dramatically decreases the communication volume, enabling

better scalability and performance [56].

Because we do not require the execution rate of the main and replica processes to be equiv-

alent, discrepancies in message arrival times between main and replica senders are possible. To

account for this, we use buffers to cache messages enabling the senders to proceed without block-

ing and use threads to compare asynchronously with the simulation. Furthermore, if the main

and replica processes compute using different precision the comparison between the two message

buffers must rely on a metric — e.g., absolute error, relative error, mean-squared error – to compute

the acceptability of each element and/or the full message. In this relaxed synchronization case,

we exchange the use of a hash function for a checksum function to enable comparison based on a

tolerance.

To control the progress gap, avoid the buffer overflowing, and reduce the cost of fault recov-

ery, our scheme periodically rejuvenates the state of replica processes based on the current state of

the main processes. Rejuvenation requires knowledge of key data structures for replacement. In our

prototype, we require the registration of this key data using an API that records a starting address

and a size1. This API is similar to those in widely used in application based checkpointing [18].

The period of the rejuvenation is configurable and tied to the application’s execution — e.g., after

a fixed number of iterations, a fixed number of communications, or a certain MPI communication.

1Future work will explore intercepting memory allocation calls to record metadata on the data structures similar
to [29].

60

Figure 4.2: MPI process-level redundancy, the synchronous execution, and soft error recovery. (a)
MPI communication between main and replica in normal situation (for simplicity, the message from
P0
′ to P1 not shown); (b) Upon the fault detection of the main process P0, the corresponding replica

P0
′ does the double duty to communicate in both main and shadow sets; (c) P0 is recovered by data

copy of replica P0
′. (d) Recovery back to normal situation as (a). Synchronous execution is similar,

but without communication across main and replica in (a) and (d).

The rejuvenation is materialized through message passing — e.g., each main process sends to its

corresponding replica all the required data structures; upon the receipt of the messages, the replica

replaces its local values with the newly received ones.

4.2.1.2 Asynchronous Execution

In addition to synchronous execution, our redundancy scheme allows replicas to be fully out

of synchronization with the main processes. As the computational speed of the replica processes

decreases to save energy, the replica processes’ execution begins to lag behind the main processes’

execution. If synchronizing, the main processes must wait for replica processes, leading to larger

overheads and increased time-to-solution. The asynchronous execution mode eliminates the needs of

synchronizing communication between the main and replica processes. Only when a failure occurs or

a rejuvenation occurs do the main and replica processes communicate. To establish communication,

61

all processes post a MPI Irecv when initializing MPI to receive the fault signals. If the commu-

nication completes, then there was an error detected in the system. With the enlarged progress

gap, recovering a faulty main process with its replica is more complex and may suffer a loss in

computational progress.

4.2.2 Improving Energy Efficiency

4.2.2.1 Energy Efficient Techniques

Our relaxed replication scheme allows replica processes’ configurations to be different from

main processes. This enables us to exploit multiple techniques to reduce the resource and energy

usage for replica processes. Here we introduce several techniques to apply individually or in combi-

nation to improve energy efficiency.

Adjustable Precision for Replicas. Prior work shows that mixed precision improves the

performance and energy efficiency of dense and sparse linear algebra algorithms [27] and maintains

the double precision accuracy in the resulting solution. Another prior study [13] demonstrates that

computation in lower precision reduces energy consumption. For iteratively convergent applications

where lower precision does not have a strong impact on accuracy, our replication scheme supports

main and replica processes using different precision. For example, the main processes compute

in mixed double and single or half precision, and the replica processes compute in single or half

precision. Therefore, we save energy while maintaining accuracy and progress.

Presently, for a proof-of-concept, we manually configure codes to use alternative precision if

the code does not natively support it. In the future, we plan to build automated support of multiple

precision. Specifically, we rely on an LLVM compiler pass to generate the alternative precision version

of the application’s routines, similar to [29] in which an application’s source code is duplicated and

interleaved for redundant lock-step execution. The user can optionally set the precision of the replica

processes using a command line argument that we intercept using PMPI Init. The compiler lowers

the precision level for the duplicated code. Moreover, it prefixes the duplicated function calls with

logic that ensures the correct routine is called based on if a process is a main or a replica. If

the program calls an external library, the compiler pass inserts code to marshal the data into the

appropriate precision as needed.

Adjustable Performance States for Replicas. Today’s CPUs [79] and GPUs [85] are

62

capable of transitioning between multiple performance states through dynamic voltage and frequency

scaling (DVFS), selecting high-performance states to achieve high-performance and throughput or

low-performance states for power savings and energy efficiency [89]. Our replication scheme supports

adjustable power management to meet the user’s demand of performance and energy-efficiency.

In our prototype, we bind processes to processing units and set core speed through the

cpufreq or nvidia-smi utilities. The CPU and GPU speed setting is applied to each set of main

and replica processes. We can set a fixed speed for the entire processes through PMPI Init or certain

speeds for certain kernels using an LLVM compiler pass. As we are currently exploring the energy-

efficient techniques and studying the benefits, in this work we try various speeds for the two sets.

In the future, we will study technologies to autotune the speed settings.

Flexible Hardware Resource Selection. There are plenty of hardware resources

(high/low-speed GPUs/CPUs) in a large-scale, heterogeneous system. Besides the regular mapping

where one GPU binds with one CPU core for one MPI process, our replication scheme supports

arbitrary combinations for GPU applications for users’ preference of performance, resilience, or

energy-efficiency. For example, given a program providing both CPU and GPU versions, users may

select high-speed dedicated GPUs for the main processes and low-speed or shared GPUs for the

replicas. On systems where the CPUs have comparable performance as GPUs, the replicas can

also run on the CPUs as indicated in command line arguments or inside the program. We have

implemented this option in the prototype, but we find the CPUs have a much lower performance

capability than the GPUs on our system, and thus don’t provide the results.

4.2.2.2 Mitigating the Impacts on Resilience

When replicas run in a low-precision, lower performance state, or on lower performance

hardware than main processes, their progress lags behind, creating a progress gap that increases

over time. For example, consider the iterative linear solver conjugate gradients (CG) in which the

main processes compute using mixed-precision (double with single) and the replica processes use

just single precision. Figure 4.3 shows that after 200 iterations, the residual of replica processes

is two orders of magnitude larger than that of the main processes. The increasing progress gap

introduces two potential issues. First, it mistakenly flags SDC if message based comparison expects

exact matches. Second, in the case of true soft errors for the main processes, recovering them directly

with the replicas suffers significant loss of progress.

63

1e-7

1e-4

1e-1

10

0 100 200 300

R
e

s
id

u
a

l

#Itr

MS

SP

(a) No update in replica

1e-7

1e-4

1e-1

10

0 100 200 300

R
e

s
id

u
a

l

#Itr

MS

SP

(b) Periodic rejuvenation in replica

Figure 4.3: Residual history for: main and replica processes compute with different precision (a)
without rejuvenation; (b) with periodic rejuvenation every 100 iterations. SP: single precision; MS:
mixed double-single precision.

The periodic rejuvenation of replicas using main processes is effective to mitigate the im-

pacts. At the rejuvenation point, we trigger SDC detection for the main and replica processes using

application defined self-detection [47]. This periodical checking lowers the cost of checking for SDC

and thus is more energy-efficient than prior work detecting at every message passing. If we detect

SDC, we handle the fault and recover the corrupted process (see Section 4.2.3). Otherwise, we

rejuvenate the replicas with the aid of an extra buffer, which allows precision conversion before com-

munication and rejuvenation. Figure 4.3 shows the result of rejuvenation of lower-precision replicas

for CG at a period of 100 iterations. Without periodic rejuvenation, the residual of replicas in lower

precision decreases at a slower rate and subsequently diverges from that of main, as Figure 4.3(a)

shows. With periodic rejuvenation, the lag in the replica’s residual is bounded, as Figure 4.3(b)

shows. The replica’s residual is not equal to that of the main process after each rejuvenation be-

cause we update only key data in the replica. Here, we assume application SDC self-detection with

a generic detection model [47]. The rejuvenation frequency should be set based on the application’s

sensitivity of different precision and users’ requirement for SDC checking. A higher frequency re-

duces the divergence between main processes and the lower-precision replicas, but increases the cost

of SDC checking.

4.2.3 Fault Handling

Applications on GPU-accelerated systems are impacted by both soft errors — e.g., bit-

flips — that cause an erroneous deviation but without an interruption and hard faults — such

64

as processor or node failures — causing the application to crash. Applications must be protected

against both of these scenarios. In this work, we focus on recovery from hard and soft faults in

hardware (CPU/GPU) and assume the faults can be detected in software or hardware. In our

design, we assume that data in an application are classified as static or dynamic based on if the data

is ever written after initialized. We leverage this classification to optimize recovery.

Fault recovery from soft errors. Synchronous execution readily supports the detection

of silent data corruption. Upon the receipt of a full length message, it is compared directly to the

corresponding message from the other set, or the original message is hashed and then compared. Any

disagreement is an indication of SDC. In the asynchronous case, we rely on application integrated

detectors to notify the presence of SDC through a function call. This function will broadcast the

result to all other MPI processes.

When a soft error occurs in the memory of one running main MPI process, the data of this

faulty process is erroneous. This soft error does not immediately cause an interruption or a crash of

the application. Thus, our framework recovers the faulty main process by receiving dynamic data

from the corresponding replica process. If executing with loose synchronization, the main processes

wait until the replicas catch up. In this case, the main processes decrease their speed and the replica

processes increase their speed to quickly close the gap (see Figure 4.4(a)). If the application iter-

atively coverages — e.g., linear solvers — then we replace the data from the replica process and

note that the convergence rate is diminished. If the fault is on the replica process, then rejuve-

nation immediately occurs on all replica processes. When leveraging asynchronous execution, the

processes establish communication by completing non-block communication calls initially launched

in MPI Init(). After recovering the faulted process, performance states return to what they were

prior to initiating recovery.

Another scenario to deal with when considering soft errors is that SDC has propagated to

impact multiple main processes. In this case, we recover all faulty main processes by receiving the

dynamic data from all the replica processes. Again, replica processes increase their speed while

main processes lower their speed. To recover from corruption in multiple replica processes, we use

rejuvenation on the corrupted processes.

Fault recovery from hard faults. In the hard fault scenarios, we assume the long-

running application is interrupted or crashed by a CPU/GPU error or a node failure in the system.

In these cases, requesting new node(s) and recovering from crash might be infeasible due to resource

65

(a) Resilience to multiple soft errors (b) Resilience to hard errors

Figure 4.4: Resilience to various errors. Solid lines show current main processes and dash lines show
current replica processes.

limitations or recovery may incur high time and energy overhead. Under this assumption, utilizing

the remaining healthy resources to continue application execution is a better choice [56, 89].

Hard faults occurring at different degrees have various impacts; therefore, we handle them

differently. If a hard fault occurs in a CPU core binding one MPI process, the core is down and data

in its memory is lost. In this situation, we replace the faulty main process with the corresponding

replica process. If a hard fault occurs and impacts an entire node and several main processes, we use

the replica set to continue the execution. Assuming no new processes are created to reinstantiate

the faulty main processes, the replicas will take the place of the main processes (see Figure 4.4(b)).

In both of these cases, if the replicas lag behind the main processes, the speed of the main processes

are switched to a low-power state and the replica processes are increased in speed. If the replica

runs a lower precision than the main, their data is promoted to the same precision as the main. If

the crashed process is a replica, we rejuvenate the replicas and continue in synchronous mode. New

processes can also be created and linked to the target communicators after computation resumes.

In this case, processes will be relieved from double duty before work completes.

4.3 Experimental Results

We implement a prototype of the proposed redundancy scheme and evaluate it on a cluster

with 16 GPUs. Each node consists of two 20-core Intel Xeon processors and two NVIDIA Tesla

V100 GPUs. Each CPU core can vary its frequency from 1.2 GHz to 2.4 GHz, and each GPU

card from 780 MHz to 1380 MHz. We only account for the power consumption of CPU and GPU

processing units involved in computation and exclude unused ones. We also exclude components

66

such as memory, motherboard, and others that consume a relatively constant low amount of power.

We use RAPL and nvidia-smi interfaces to monitor power and set frequency for CPUs and GPUs,

respectively.

The application programs used for evaluation need to satisfy several conditions: parallelized

with multithreading, MPI, and CUDA or another GPU programming technique, and with support

for multiple precision — double, single, half, and their mixes. In addition, to evaluate the effects

of disparate precision between main and replica processes, we need the applications to be iterative

and converging. Implementing all these versions for an application would be tremendously time-

consuming, and optimizing them typically requires teams of expertise. Limited by these conditions,

we choose MiniQMC from QMCPACK [73], Convolution benchmarks in DeepBench [92], where the

MiniQMC benchmark comes with all configurations, and DeepBench has all but mixed precision

which we implement. We add a third application CG which iteratively solves a series of linear

equations in the form of Ax = b. The widely used HPCG benchmark [50] is a good choice and

optimized. Nevertheless, its full source is unavailable to the public to instrument and apply our

energy efficient techniques. We implement our own version of CG based on routines in RAPtor [21]

and CUDA libraries [104]. The solver tolerance is set at 1× e−12 for double precision (DP), 1× e−7

for single precision (SP), and 1× e−4 for half precision (HP).

Table 4.1 shows the performance of our implementation and its comparison with the HPCG

benchmark for a 27-point stencil matrix. We run HPCG and ours on four GPUs in a fault-free en-

vironment. Our implementation achieves 173.2 GFLOPS in comparison to HPCG’s 182.7 GFLOPS

with DP, and 200.5 GFLOPS with mixed double and single precision on four GPUs. This perfor-

mance gives us confidence that the findings using our CG implementation are valid.

Impl. GFLOP/s

HPCG GPU DP 182.7

Ours
CG GPU DP 173.2
CG GPU MS 200.5
CG GPU MH 231.6

Table 4.1: Performances of our CG implementations. DP: double precision; MS: mixed double-
single precision; MH: mixed double-half precision.

In the rest of the section, we present detailed evaluation results under various fault situations,

the effects of optimization techniques, and compare our relaxed redundancy with other resilience

solutions. For simplicity, all results are with dual modular redundancy (DMR) — i.e., one replica

67

process for each main process.

4.3.1 Resilience Support for Various Faults

We first evaluate how our redundancy scheme supports resilience under soft errors and hard

failures. In all our experiments, we use dual redundancy and application-specific fault detection [66],

and focus on how our redundancy scheme recovers the detected faults. Without loss of generality,

we generate faults at certain times over the course of the execution instead of randomly, to remove

the overhead of fault injection from the power and timing experiments. For simplicity, we consider

a faulty main processes in our examples, even though our scheme recovers both faulty main and

replica processes.

4.3.1.1 Soft Errors on Process Data

We first consider soft errors that corrupt data on one or more processes. Soft errors are

common cases where one or more bits flip in the logic or storage of GPUs or CPUs running MPI pro-

cesses. We mimic the effect of soft error by injecting faults — flipping bits — to corrupt applications’

data structures. That is, the corresponding data stored in memory is corrupted.

Upon the detection of soft errors and faulty processes, our scheme recovers the corrupted

data with the corresponding healthy copies so that the processes continue to perform correct com-

putations. Prior studies show that data corruption in data structures may result in only a single

wrong message that is detectable, or cascade to multiple wrong messages originating from the cor-

rupted sender [56]. We choose to recover only the faulty process for the former case, and recover the

tainted processes for the latter case. In case that it is difficult to determine between the two cases,

our scheme conservatively recovers the entire set using the healthy set upon the notification of soft

errors to ensure correctness. While this handling involves unnecessary message passing between the

two sets, it is much less costly than schemes using fine-grain synchronization, as the communications

are only performed once.

We use the execution of CG to illustrate the process of fault recovery and continued com-

putation afterwards in Figure 4.5. In this experiment, 8 main processes run in mixed double-single

precision where fGPU = 1.38 GHz, and 8 replicas run in single precision where fGPU = 0.78 GHz.

We use the asynchronous execution mode between main and replica processes. In the beginning,

the main processes progress faster, their residual value decreases faster, and the replica processes

68

Figure 4.5: Resilience support for soft errors. CG is running on 16 GPUs with 8 main and 8 replica
processes respectively. Two faults are injected at 800 ms and 1200 ms respectively.

lag behind due to a low GPU speed. We insert two errors to the data of the same main process

rank, one at 800 ms and the other at 1200 ms. After each fault injection, our scheme recovers the

data of the entire main set using the replica processes to highlight the worst case performance. As

the recovered data lags behind the main copy, we observe an increase in the main’s residual. There

is also a notable delay from the fault injection to recovery completion. This delay accounts for

data recovery using message passing. Once computation resumes, our scheme decides if it should

maintain the roles of mains and replicas, or switch them. Figure 4.5 shows the role switch, where

the initial replicas become the new mains and thus scale up the GPU speed, while the initial mains

do the opposite. Upon the detection of the second error, our scheme again recovers the lost data,

switches the roles of the main and its replica, and changes their GPU speeds.

4.3.1.2 Hard Failures

We now examine recovery from hard faults like process, node, or link failures. Hard failures

directly terminate processes and cause data loss or disable their communications. In our experiments,

we mimic the effect of hard failures by disabling a node and its link.

With our redundancy scheme, upon the detection of hard failures, a corresponding healthy

process takes up the double role — its own and the faulty copy’s, and resumes the computation. Once

69

computation resumes, we decide whether to restore the terminated processes depending on the time

overhead, available resources, and the chance of more failures on the same process ranks. Restoring

involves creating new processes using tools such as ULFM [23], linking it to the right communicator,

and mapping it to the right ranks. Among these, the first step is most time-consuming, the second

takes a similar time as a collective communication, and the rest is less costly. These newly created

processes need to be assigned to healthy nodes, which may not be available. Nevertheless, should the

faulted processes not be restored, an application only tolerates one hard failure for each process rank

during its execution; however the probability that failures strike both a main and its corresponding

replica is low, 1/p, and decreases as the number of processes p increases.

We use the execution of CG as an example to illustrate the process of hard fault handling

in Figure 4.6. Here we run CG with 16 GPUs, and use the asynchronous execution mode without

rejuvenation, similar as for the soft error recovery case study. When there are no faults, main

processes run on GPUs with higher speeds and progress faster. When encountering a node failure

injected at 800ms, our scheme immediately makes replica processes to take over the main role and

resumes computation. The residual of main increases due to the replacement with a replica, which

lags in progress. The execution speed of the new main processes increases to catch up the lost work

progress. For the new replica processes to continue, they need to involve some main processes with

double duty to form a full set. While not shown in Figure 4.6, the execution of CG can tolerate

more faults on different processes if no new processes are created, and on any processes otherwise.

4.3.2 Effects of Energy Optimization Techniques

Here, we use the GPU version of the programs to examine energy savings from individual

energy-efficient techniques and their combinations. As mentioned, our reported power and energy

values only account for GPU cards and the involved CPUs.

4.3.2.1 Effects of Various Precisions

Multiple prior studies have shown that iterative and convergence workloads can run in

multiple precision, including mixed precision to obtain correct results [27]. Two particular questions

we have for computation subject to faults are: would running replicas in a lower precision than

the main processes be beneficial? and should programs always run in the lowest (mixed) correct

precision? In this work, we use experimental results to provide answers. For simplicity, we run all

70

Figure 4.6: residual∼time under a node failure impacting one main process when CG is running on
16 GPUs with 8 main and 8 replica processes respectively. A hard fault occurs at 800 ms.

GPUs at the highest frequency, and thus energy savings come from the precision selection. We set

the rejuvenation period at every 100 iterations. Figure 4.7 shows the performance, power, and energy

of CG with 27-point stencil matrix with 10 soft faults on 16 GPUs. There are multiple precision

settings for main and replica processes, representing various exact and relaxed replications. The

tolerance is set as 1e−12 for main processes with mixed double-single precision (MS), 1e−7 with SP

and mixed single-half precision (MH), and 1e−4 with half precision (HP) for replicas in Figure 4.7.

We make several observations from Figure 4.7. First, reducing the data precision for CG

lowers execution time, power and energy consumption and keep the accuracy of double precision in

main processes. When main processes are recovered with less accurate data of SP, MH, and HP in

replicas after faults, it takes longer time to converge. Changing the precision from MS —— MS to

MS —— HP increases the execution time by about 14%. Meanwhile, such precision change reduces

power by 15%. Resultantly, energy consumption reduces slightly more than execution time. Second,

for a given precision for the main processes, running the replica at a lower precision leads to reduced

power but increased execution time. In this CG’s example, MS —— MH takes less time and energy

than MH —— HP due to more accurate replicas.

71

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Time AVG Power Energy

N
o
rm

a
liz

e
d
 M

e
tr

ic
s

MS||MS
MS||SP
MS||MH
MS||HP

Performance Metrics vs Precisions

Figure 4.7: Normalized performance metrics under various precision for CG benchmark with 10
faults injected. The baseline is set as fault-free case with MS. SP —— MH represents SP for main
and MH for replica. MS: mixed double-single; MH: mixed single-half; HP: half precision.

4.3.2.2 Effects of DVFS

We examine the variation of power with GPU frequency. We use the NVIDIA System

Management Interface (nvidia-smi) to set the frequency of the streaming multiprocessors (SMs)

on GPUs. For clarity, we only present power when main processes run at the maximum GPU

frequency fH and replicas are run at the minimum GPU frequency fL. The resulting time and

power values are the upper and lower bounds. Time and power of other configurations are roughly

proportional in between.

In our experiments, we apply both DVFS and precision selections on the main and replica

processes. Figure 4.8 illustrates how mixed precision and DVFS-based power management changes

the power profile of CG. We use a 27-point stencil matrix with 10M rows under fault-free environment

as a study case. By default, CG runs with DP. Both mixed double-single precision and lowest

GPU frequency show a significant power saving compared to DP with fH . Among all of these

configurations, mixed double-single precision (MS) with fH shows the best performance improvement

(20%) while mixed double-single precision with fL shows the best energy saving.

Figure 4.8 indicates that relaxed replication is able to meet the users’ various requirements

for applications, such as higher performance or lower power consumption, by supporting a flexible

72

Figure 4.8: Power reduction with mixed double-single precision and fL. MS-fL has a similar exe-
cution time as DP-fH , but with 30% less power. Main processes are running with fH , and replica
processes are running with fL.

combination of configurations. One interesting observation is that a main processes with DP-fH

takes a similar time as a replica process with MS-fL. This observation suggests that we can use

the synchronization mechanism for a combination of configurations, to simultaneously support fault

recovery and energy saving.

4.3.2.3 Overall Improvements from Combined Optimizations

Figure 4.9 shows the overall benefits from each individual energy-efficient techniques and in

combination for the DeepBench. The base is the exact replication that runs both main and replica

processes in the same precision (DP) and at the highest frequency. Existing modular redundancy

schemes such as RedMPI employ this strategy. The other three case are from our relaxed replication

where main processes and replicas run in DP —— MS, the acceptable lowest GPU speed, and their

combination. In comparison to exact replication (Base), our scheme supports combined optimization

of mix precision and DVFS, and improves performance by 8%, power by 29%, and energy by 35%.

One interesting observation is that the DP —— MS precision achieves better performance and energy

than DVFS, but DVFS is more effective for power reduction. While their combination achieves the

best energy and power, it still underperforms mixed precision in time.

73

 0.6

 0.7

 0.8

 0.9

 1

 1.1

Time AVG Power Energy

N
o
rm

liz
e
d
 M

e
tr

ic
s

Base
mixed
DVFS

mixed+DVFS

Performance Metrics vs Various Configurations

Figure 4.9: Overall improvement of performance, power, and energy for DeepBench running with
relaxed replication. Base represents exact replication used in existing redundancy schemes. The
others represent our relaxed replication and enabled optimizations. One fault is injected in each
experiment. The rejuvenation period is set as every 1000 iterations.

4.3.3 Comparisons with Existing Solutions

We compare our redundancy scheme against the checkpointing technique. We first compare

them using experimental results collected from our small cluster. In our experiments, we use the

same fault situations — an MTBF of 5 year per-socket — used in previous resilience studies for

large-scale systems [55, 56]. It means one failure occurs during application execution. As the

redundancy based resilience scheme is meant to be used on large-scale systems, we then use the

direct measurement and analytical model to project their performances on large-scale systems. For

checkpointing, we checkpoint one copy of protected data to remote memory to mimic level-2 of

multilevel checkpointing scheme VeloC [93], which is an efficient asynchronous checkpointing scheme.

Specifically, we checkpoint the data of the MPI process running on node i to CPU memory on node

(N − 1− i) for i ∈ [0, N − 1] for N total number of nodes.

Figure 4.10 shows the results where data points are from experiments for 16 or fewer GPUs,

and projection for larger numbers of GPUs. We project energy for RedMPI, CR, and the best case

of relaxed replication on large-scale systems from our experimental data. The fault model is still a

MTBF of 5 year per-socket [55, 56]. For each system size, we use a half for either main or replica

processes for the two redundancy schemes, and all for computation for checkpoint-restart (CR). We

74

use CG’s weak scaling performance for matrices with 50K non-zeros per processor and estimate the

time-to-solution of relaxed replica, RedMPI and CR with the method in studies [87, 55]. We always

use double precision for RedMPI and CR, and MS —— SP for relaxed replica. Therefore, the power

per process can be assumed roughly constant for each scheme.

We observe that while energy overhead increases with system size under each scheme, it in-

creases only slightly with redundancy based schemes but significantly with CR. While our data may

not accurately reflect the actual overheads on specific systems, it captures the changes in their com-

parative relation: even though redundancy based schemes incur a higher overhead on small systems,

they become more energy efficient on large scale systems. Relaxed replication has a better scala-

bility compared to CR. As system size increases to exascale systems, CR could incur prohibitively

large time overhead and consume more time to solution than dual redundancy mechanisms. The

energy gap between relaxed replication and RedMPI is roughly stable. As this gap is normalized,

the actual difference in energy amounts is significant as the base power with hundreds of thousands

of processors could be megawatts, e.g., assuming 10 Watts/processor.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 1
6

 6
4

 2
56

 1
02

4

 4
09

6

 1
63

84

 6
55

36

 2
62

14
4

N
o
rm

a
liz

e
d
 E

n
e
rg

y

#Processors

Normalized Energy with Decreasing MTBF

Relaxed Replica
RedMPI

CR

Figure 4.10: Normalized energy in weak scaling under our relaxed replication, RedMPI, and CR.
Data points on each #processes are normalized to the fault-free execution with the same #processes.
The illusive linear change at large #processes is due to the logarithmic X-axis.

75

4.4 Summary

This chapter proposes a novel redundancy technique, relaxed replication, for resilient and

energy-efficient HPC applications in GPU-accelerated systems. Relaxed replication provides MPI-

process level redundancy, enabling optimizations for GPU applications. It supports multiple tech-

nologies including heterogeneous processors, mixed precision computation, and power management

to reduce time and energy overhead of replication. Experimental results show that our approach sig-

nificantly reduces the resilience overhead while maintaining energy-efficiency compared to previous

resilience mechanisms. Overall, this work makes the following contributions:

• We present a novel redundancy mechanism that relaxes the requirement of synchronization

and identicalness for replicas for MPI programs running on GPU-accelerated systems. Our

mechanism supports replicas to run in lower-precision and at lower power/performance states

with periodical rejuvenation or asynchronization.

• We explore multiple energy-efficient techniques and study their applicability to HPC appli-

cations, their impact on energy efficiency, resilience overhead, and their trade-offs. These

techniques leverage readily available GPU architectures and technologies. Results can benefit

real applications and GPU-accelerated systems.

• We prototype the relaxed replication mechanism and evaluate it on a cluster. Our results show

up to a 19% reduction in energy for unmodified programs in various fault situations compared

to exact replication techniques.

76

Chapter 5

Scalable Algorithms for

Large-Scale Sparse Tensor

Decomposition

Tensors are multidimensional arrays, and tensor decomposition generates lower-rank repre-

sentation of the data for a wide range of applications, including machine learning and social networks.

The extremely large size of tensors for real-world applications requires parallel tensor decomposi-

tion algorithms for distributed memory systems. Load imbalance and communication cost are two

major bottlenecks for performance and scalability. Nevertheless, improving them is challenging due

to various complex tradeoffs between computation and communication within and among the ker-

nels. Existing work in Cpd focuses on computation balance in tensor-related kernels, leading to

imbalanced computation and communication for other kernels.

In this chapter, we present a performant scalable distributed algorithm BA-CPD, including

irregularity-aware algorithm for workload partition and asynchronous Cpd implementation. Our

BA-CPD improves workload balance and reduces communication cost in comparison to existing

work. Our irregularity-aware algorithm employs a workload partition scheme that co-optimizes

load imbalance and communication. Unlike previous works those focus on balancing tensor nonzero

values, our scheme finds a partition with the smallest tensor nonzero imbalance from a mode-

balanced base that leads to less commutation volume. Based on our irregularity-aware algorithm

77

for workload partition, we further present asynchronous algorithms to reduce the communication

overhead of collective communication operations in traditional bulk-synchronous Cpd. We perform

on fine-grain decoupling of computation and communication tailored for different kernels in Cpd.

The decoupling enables our asynchronous algorithms to leverage one-sided communication to best

hide latency.

In this chapter, we present the detailed design of irregularity-aware algorithm for workload

partition which best balances across the kernels and the tailored decoupling of computation and

communication to leverage asynchronous communication. The workload decomposition achieves

balances for all but computation in tensor-related kernel and co-optimizes computation and com-

munication imbalance. We present two strategies for asynchronous algorithm: X-Stationary 1D

and X-Stationary 2D. In each strategy, we decouple computation and communication for different

kernels to take the advantage of asynchronous communication and hide latency. Our result shows

that BA-CPD is scalable and outperforms the state-of-the-art distributed implementations.

5.1 Learning the Performance of Distributed Tensor Decom-

positions

This section illustrates the general medium-grained, bulk-synchronous distributed Cpd al-

gorithm and its performance problem abstraction and analysis along with our findings. We highlight

six findings distilled from an extensive evaluation of the state-of-the-art medium-grained Cpd imple-

mentation in Splatt [115]. The experimental hardware and software configurations are described

in Section 5.4. This is the first work that studies the distributed Cpd in depth by carefully profiling

all stages of the algorithm on diverse datasets with different process settings.

5.1.1 Problem Statement and Analysis

We first present general models to capture the execution time of medium-grained distributed

Cpd in Algorithm 2. Our target is to find the optimal data distribution by designing a grid config-

uration and distribution policy, to obtain the best Cpd performance, expressed in Equation (5.1).

The optimal grid configuration Gopt and distribution policy Dopt have the minimum overall execution

time. The execution time of Cpd is dominated by the iterations (Line 7-16) in Algorithm 2. We use

78

the time of one iteration to represent the Cpd execution time, noted by Tcpd, which aligns with our

experiments.

Gopt,Dopt = argminG,DTcpd (5.1)

5.1.1.1 Execution time analysis

Tcpd consists of the aforementioned five steps: Mttkrp, MAT SOLVE, MAT NORM, MAT

AT A, and Mttkrp COMM. Due to the bulk synchronous feature of Mgbs-Cpd, Tcpd is expressed

in Equation (5.2).

Tcpd = Tmttkrp(cN , R,Mp) + Tmcomm(P, Il, Ip)+

(Tsolve(R, Ip) + Tnorm(P,R, Ip) + Tata(P,R, Ip))

(5.2)

The time complexity of each step is listed in Table 5.1. Two collective communications are

employed to synchronize and update local data, MPI Alltoall in Mttkrp COMM and MPI Allreduce

in MAT NORM and MAT AT A. The communication time is modeled as α+βn, where α and β are

the memory latency and bandwidth respectively, and n is the number of bytes to be transferred [123].

We assume the tensor rank R (usually a small value < 100) and cN < N are constants 1. Tcpd is

mainly determined by the number of nonzeros of a local sparse tensor Mp, layer size Il and local

matrix size Ip though computation and communication are different functions of these variables.

Mp dominates Tmttkrp; Ip affects the time complexity of all matrix steps, Tsolve, Tnorm, Tata; Il and

Ip both influence the other communications Tmcomm.

Comparing these steps, we see that, in general, Mp is several orders of magnitude larger than

Il and Ip for relatively small or mildly sparse tensors, where Tmttkrp might take a larger percentage

in Tcpd. However, Mp could be in the similar order-of-magnitude as Il and Ip for relatively sparse

tensors or tensors with irregular shapes, where matrix computations and communication might have

non-negligible costs. Besides, we also observe that some configurations of G,D could decrease the

execution time of one step but increase that of other step(s). (Experiments in Section 5.1.2 verify this

analysis.) Thus, it is non-trivial to infer the optimal settings for G,D to gain the highest distributed

performance only relying on theoretical analysis even with cN , P,R all fixed, plus the analysis is

1cN is a constant for a given tensor in an Mttkrp algorithm [114, 81].

79

closely related to the features of input sparse tensors.

5.1.1.2 Load imbalance ratios

Thus far, we consider Mp, Il, and Ip as the average values on each process, which is the

ideally balanced data distribution. However, in reality, especially for irregular sparse tensors, the

data distribution could be very skewed. We present three imbalance ratios as metrics to measure

this effect.

We use a more accurate imbalance ratio r, adopted from the one used in [114] 2 , to repre-

sent the imbalance of sparse tensor computation, matrix computation, and communication. From

Table 5.1, sparse tensor computation, Mttkrp, is influenced by Mp. Nonzero imbalance ratio

rnnz = (max{Mp} −min{Mp})/max{Mp} represents the gap between the maximal and minimal

number of nonzeros assigned to a process among P processes. Our imbalance ratio r, always less

than 1.0, better evaluates long and short jobs per process. A ratio close to 0.0 means an ideal, even

nonzero distribution; while a ratio close to 1.0 means extreme imbalance indicating that the gap

between the longest and shortest Mttkrp execution time is huge. Analogously, rIp represents the

imbalance ratio of Ip thus for matrix computation; rvol is the imbalance ratio of communication

volume. We use the imbalance ratio for communication volume rather than Il because the commu-

nication volume is influenced by both Il and Ip; therefore, rvol better represents the communication.

The three imbalance metrics help determine the Gopt,Dopt by reflecting features of real sparse tensors

from three distribution-related perspectives.

0%

20%

40%

60%

80%

100%

choa
darpa

nell2
fb-m

fb-s
deli

nell1
am
azon

patents

T
im
e
P
er
ce
nt
ag
e

COMP
COMM

Computation and Communication Percentage

Figure 5.1: Computation and communication percentage of Cpd.

2The nonzero imbalance in the work [114] represents the gap between the maximal and average number of nonzeros
assigned to a process, which cannot measure the imbalance from the short tasks well.

80

5.1.2 Findings

Based on our theoretical analysis and the proposed imbalance ratios, we discuss performance

findings on Mgbs-Cpd. The tests are run on the open-source Splatt MPI library [116], representing

a fast state-of-the-art Mgbs implementation from studies [114, 17, 101, 6].

Finding 1: Both computation and communication have non-negligible costs, and the dom-

inance varies with tensors.

We only use Tmttkrp and Tocomm in Equation (5.2) as representatives to computation and

communication to enlighten this finding theoretically. Comparing the dominant parameters: Mp

and Il, either one could be larger for different sparse tensors. For example, tensor choa has a max-

imum Mp = 400K, Il = 15K while tensor deli has Mp = 2M , Il = 4M on 768 processors. Thus,

it is hard to tell whether computation or communication is dominant. We further study the overall

performance of the Splatt Cpd implementation running on 768 processors. Figure 5.1 depicts the

percentage of the execution time taken by computation and all types of communication operations

in Algorithm 2 respectively on nine sparse tensors from real applications (refer to Section 5.4 for

tensor descriptions). Computation takes 35-81% while communication takes 19-65% of the total

execution time. Computation largely dominates the Cpd execution on two tensors: choa and darpa;

communication largely dominates on tensors nell1 and deli. This matches the Mp and Il examples

given above. On the rest of five tensors, computation and communication take a similar amount of

time, with a percentage difference less than 10%. The shifting of dominance between computation

and communication among tensors raises the difficulty of performance optimization. Taking tensor

dimension sizes into consideration, fb-m, fb-s, choa, and patents are more irregular tensors in Ta-

ble 5.3, and tend to be computation dominated, while the other tensors are more communication

dominated or without significant dominance.

Finding 2: Computation cost is not always dominated by sparse tensor computation, but

also dense matrix computations.

Compare the computation complexity of matrix operations, MAT SOLVE, NORM, AT A,

versus the Mttkrp complexity in Table 5.1 shows Ip < cN ×Mp is generally true if there are not

many empty slices in dimension-n. However, R× Ip < cN ×Mp is not necessarily true and depends

on the values of R, the constant cN (R > cN usually), the distribution policy which determines

the sparsity pattern of the local tensor Xp and influence value Ip in the next process-distribution

81

0%

20%

40%

60%

80%

100%

fb-m fb-s nell1 amazon

T
im
e
P
er
ce
nt
ag
e

MTTKRP
MAT-NORM
MAT-ATA

MAT-SOLVE

Time Percentage of Computational Kernels

Figure 5.2: Time percentage of computational kernels of Cpd.

for matrices. This is especially prudent for irregular tensors with I = Θ(M) on one dimension. If

R × Ip > cN × Mp, then the complexity of MAT ATA and SOLVE steps could take more time

than Mttkrp. While these matrix operations are all dense and generally perform more efficiently

than the sparse Mttkrp, dense matrix computation can influence computational performance. We

conclude Finding 2 that Mttkrp is not always the dominant computational kernel in Cpd, the

matrix computation kernels are also expensive as tensor rank grows and for tensors with preferable

sparse patterns (e.g. irregular tensors). Therefore, the state-of-the-art work [114, 39, 6] that focuses

on minimizing the computational cost of Mttkrp may not gain much performance improvement

for all types of tensors.

Figure 5.2 shows the time percentage of the four computational steps on four representative

tensors: fb-m, fb-s, nell1, and amazon, verifying our theoretical analysis above. For the four tensors,

Mttkrp, MAT NORM, MAT AT A, and MAT SOLVE take 2-47%, 23-61%, 6-33%, and 4-27% of

the Cpd computation time respectively. The other three computations easily takes more execution

time than Mttkrp, which needs to be optimized as well for better performance. These insights

about dominating costs of Findings 1 and 2 could guide our following optimization for distribution

policy.

Finding 3: Different load imbalance factors influence computation and communication

overhead.

Figure 5.3 shows these three ratios rnnz, rvol, and rIp for sparse tensors as the increasing

order of rnnz, where rnnz and rIp reflect computation imbalance and rvol reflects communication

imbalance. The nonzero imbalance is less than 0.2 for the left six tensors, while tensors patents, fb-m,

and fb-s have a much higher nonzero imbalance, all of which are very irregular in dimension sizes.

82

 0

 0.2

 0.4

 0.6

 0.8

 1

darpa

nell1
nell2

choa
am
azon

deli
patents

fb-m
fb-s

Im
ba
la
nc
e
R
at
io
s

r(nnz)
r(vol)
r(Ip)

Figure 5.3: Load imbalance ratios (rnnz, rvol, and rIp) for sparse tensors.

All the tensors have much higher volume and Ip imbalance ratios than nonzero imbalance ratios.

Different from the dominance perspectives in Findings 1 and 2, the imbalance ratios expose the

load imbalance issues which influence the overhead of all the key steps in Table 5.1 correspondingly.

Almost all tensors have at least one imbalance ratio with the value higher than 0.8, which indicates

the difficulty to do a good tradeoff among the three imbalance ratios. The state-of-the-art work puts

efforts on optimizing the nonzero imbalance [114, 31], which only influences sparse tensor computa-

tion. Therefore, they only target minimizing the tensor computation imbalance not communication

or the other matrix computation imbalances.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

16x1x1

8x1x2

1x1x16

4x2x2

8x2x1

2x1x8

4x1x4

1x2x8

2x2x4

1x4x4

2x4x2

1x8x2

4x4x1

2x8x1

1x16x1

N
or
m
al
iz
ed

 T
im
e

Normalized-Time

Figure 5.4: Normalized time of all possible grid configurations to the one performs the slowest for
tensor amazon on 16 MPI processes.

Finding 4: Different grid configurations could lead to very different distributed Cpd per-

83

formance.

For a given tensor, the process grid on which the tensor is mapped determines the com-

putation and communication costs from the first sight, even before the distribution policy takes

effect. Figure 2.4 shows the tensor and matrix decomposition on 12 processes as a 2 × 3 × 2 grid.

Given 12 processes, there are 18 unique configurations on which the tensor can be mapped to the

processes. Configurations 12 × 1 × 1, 1 × 12 × 1, and 1 × 1 × 12 are considered as different ones

due to partitioning the first, second, and third dimensions correspondingly. A cluster with hundreds

of nodes will have thousands of configuration, or more. Figure 5.4 shows all grid configurations for

16 MPI processes, with the execution time varies up to 3.5×. Thus, finding the optimal process

grid is critical to choosing the distribution policy and overall performance, which also requires an

intelligent approach over the costly brute-force method.

Finding 5: Workload partition can not simultaneously balance computation and communi-

cation for all kernels in irregular tensors.

There are four computation kernels in the iterative CPD algorithm. Below, we analyze

the distribution in each kernel and illustrate that no data composition can simultaneously balance

computation and communication for all kernels for irregular tensors.

Workload Partition and Inherent Communications. For each kernel, a processor

only performs a portion of the computation using its local and remote data. The computation

distribution and necessary communication among the processors is determined by the data decom-

position. Table 5.1 shows local computational complexity and communication volume, where Ip is

the number of local matrix rows and Il is the layer dimension size in current mode. Il and Ip are

different across processes depending on how the workload is partitioned.

Key Steps Local Comp Local Comm Volume

MTTKRP O(cN ×R×Mp) 2(Il − Ip)×R+ 2Ip ×R
MAT SOLVE Θ

(
R2 × Ip

)
0

MAT NORM Θ(R× Ip) R
MAT ATA Θ

(
R2 × Ip

)
R2

Table 5.1: Time complexity of the key steps in Mgbs-Cpd.

Mttkrp. Each process first performs its local Khatri-Rao product (Line 11), and then

send this local results to all other processes in the same layer as partial Mttkrp results (Line 12).

Each process then sums all partial dense matrices to obtain the final Mttkrp result in submatrix

84

Ã
(n)

p . The local computation is usually imbalanced because Mp is different for a sparse tensor

from real applications, as Table 5.1 shows. The communication of Mttkrp has a complexity of

O(αP + βRIp) +O(αP + βR(Il − Ip)) via MPI collective operations.

MAT SOLVE. Each process updates Ã
(n)

p using the Cholesky method based on the tem-

porary results from Mttkrp (Line 13). The local computation is imbalanced if Ip is different. Ip

of each process can be different or not depending on how the workload is partitioned. There is no

communication in MAT SOLVE for bulk-synchronous algorithm.

MAT NORM. Each process normalizes Ã
(n)

p locally and then performs a parallel reduction

to obtain λ̃ (Line 14). The local computation is imbalanced if Ip is different. The communication

has a complexity of O(αlogP + βR · logP).

MAT ATA. Each process uses symmetric matrix multiplication locally and then performs a

reduction to form the new Ũn for the next iteration (Line 15). The local computation is imbalanced

if Ip is different. The communication has a complexity of O(αlogP + βR2 · logP).

Complex Computation-Communication Tradeoffs within Kernels It is impossible

to simultaneously have balanced computation and balanced communication for an irregular tensor

with non-uniform nonzero distribution in Mttkrp. Focusing on balancing Mp must leads to imbal-

anced Il and vice versa. Figure 5.7 shows workload partitions for an irregular tensor on 2 × 3 × 2

processes. Balancing nonzero computation by evenly partitioning tensor nonzeros among the pro-

cesses leads to a partition in Figure 5.7(a). While balancing communication by evenly partitioning

matrix size leads a partition in Figure 5.7(b).

Complex Tradeoffs among Kernels. Either tensor- or matrix-related kernels can

dominate in Cpd depends on the size, sparsity, and nonzero distribution of the tensor. The execution

time of tensor-related kernels is a function of M , Il, and Ip while the time of matrix-related kernels

is a function of R and Ip from Table 5.1. Mttkrp dominates for a relatively small and dense matrix

where Ip × R < M/P . However, either types of kernels could dominate, depending on the nonzero

distribution of a large and sparse matrix. Matrix-related kernels are more likely to dominate for

very sparse large tensors.

Finding 6: There is no execution overlap between computation and communication. In

Algorithm 2, the steps of computation and communication are executed sequentially such that

every step waits for the complete results from the prior step before executing. However, this is

not necessary for some steps like Mttkrp and the AlltoAll used to update Ã
(n)

p and MAT ATA.

85

By using point-to-point non-blocking communication, it is possible to transfer partial results from

Mttkrp and matrix multiplication in pipeline. Thus, some computation is overlapped with the

communication to reduce the overall execution time of Cpd.

5.2 Irregularity-Aware Algorithm for Workload Partition

The findings above motivate our optimizations in considering different tensor irregularities

and finding the optimal grid configuration G and distribution policies D to improve runtime perfor-

mance. This subsection presents our proposed irregularity-aware CPD. We propose new methods

for grid configuration and distribution policy, and the implementations of them are detailed in

Algorithms 4 and 5.

5.2.1 Prediction-Based Grid Configuration

K

I

J

K

I

J

Conf. 2

A

B

C

A

B

Conf. 1

C

Figure 5.5: Two example grid configurations for 12 processes.

It is important to find the optimal process grid because the performance varies a lot between

different grid configurations, based on our Finding 4 in Section 5.1. Figure 5.5 compares two example

grid configurations: 2 × 3 × 2 and 2 × 2 × 3. In Conf. 1, tensor X is split to two pieces in mode-

I and three pieces in mode-J ; Conf. 2 is the opposite. Distribution on mode-K is the same.

Assume J > K, ostensibly, Conf. 1 should be more reasonable than Conf. 2 by splitting the larger

dimension. For a dense tensor X, this is true. The different matrix distribution on A and B could

lead to uneven matrix communications, thus influence overall Cpd performance. We prove this using

a dense, cubical third-order tensor X ∈ RI×I×I along with three matrices A(n) ∈ RI×R, n = 1, 2, 3,

86

distributed on P = P1 × P2 × P3. From Algorithm 2, the data to be communicated is dominated

by Ã
(n)

l − Ã
(n)

p and Ã
(n)

p to communicate in its own layer. For each inside loop, its communication

volume in the first dimension is P2P3(I
P + (I

P1
− I

P)) = P I
P 2

1
. Thus, the total volume of Cpd in all

dimensions is

V OLcomm = I × P × (
1

P 2
1

+
1

P 2
2

+
1

P 2
3

). (5.3)

According to Cauchy-Schwarz inequality, the minimum of the total volume is obtained when P1 =

P2 = P3. For a cubical dense tensor, equally split the dimension sizes obtains the minimum com-

munication cost. For a tensor with an irregular shape, we proportionally assign more processes to

a longer dimension to maintain the minimum communication. The state-of-the-art work [114, 71]

developed an easy-to-use prediction algorithm based on the above idea. It assigns the number of pro-

cesses based on the tensor dimension sizes. However, for irregular sparse tensors with a non-uniform

nonzero distribution, their method leads to a severe imbalance for computation and communication.

To solve their problem, we propose a new online prediction algorithm that simultaneously

considers communication volume and nonzero balance when deciding the process grid. Our key

idea is to find a process grid with the smallest nonzero imbalance from a mode-balanced base. We

have two steps to achieve the above goal. First, we build an intermediate process grid that leads

to balanced communication and matrix computations based on the existing work [114, 71]. This

intermediate grid uses most but not all the processes. Second, we construct the grid candidates by

adjusting the intermediate grid with the remaining process(es) and predict the optimal grid among

them. Prediction on a virtual data distribution is leveraged to make a balance among the imbalance

ratios in Section 5.1.1.2.

Algorithm 4 illustrates our method. Our goal in the first step is to form an intermediate

grid as a base of all candidates. The brute-force results indicate those girds with better performance

are more likely to share the same base. For example, 4 of the top 5 grids has the base of 4× 1× 1 in

Figure 5.4. Therefore, we need to build this balanced base first. To form this intermediate grid, we

first find all the prime factors of the total process count and sort them in descending order in prso.

Using all but the last np factors, we form an intermediate grid Gint (Line 8). For example, np = 1

indicates the smallest prime factor is unused in the intermediate grid. Specifically, it repeatedly

assigns the largest prime factor to the current longest tensor dimension, which dynamically changes

after each loop iteration. After the loop ends, the intermediate grid Gint has the best effort in

87

Gint : 4× 1× 1 (prso : 2× 2)

8×1× 1

16×1× 1

G1 (Gopt)

8×2× 1

G2

4×2× 1

4×4× 1

G3

4×2× 2

G4 (Gsplatt)

4×1× 2

4×1× 4

G5

8×1× 2

G6

Figure 5.6: Six grid candidates on 16 (=2× 2× 2× 2) processes for tensor amazon with np = 2. We
assign two smallest primes (2× 2) to Gint and obtain six grid candidates.

balancing communication and matrix computations. We assign the remaining np primes to form a

complete process gird in the following step.

The key idea in the second step is to build all possible candidates and identify the optimal

grid among them by predicting their nonzero imbalance. We form six grid candidates from G1 to G6
with Gint by assigning two smallest primes to each dimension. Figure 5.6 displays how we form all

candidates from Gint for tensor amazon with 16 MPI processes. The first step, build Gint as 4×1×1

based on amazon’s dimension size as 4.8M × 1.8M × 1.8M . We build six candidates after assigning

the remaining np primes 2×2. These six candidates are considered having an equal chance to obtain

the optimal performance from the first step with tensor dimension size and implied communication

information. To identify the optimal grid among them, we need to predict the nonzero imbalance

ratio rnnz for each candidate on a virtual data distribution. If we want to compute the actual rnnz

with the nonzeros of each process (Mp) as stated in Section 5.1.1.2, we need to take the tensor slice

information to determine the index range of each process. However, the above computation of rnnz

in a virtual distribution has a complexity of O(cN × P ×Mp) for each candidate. This is expensive

for tensors with large amounts of nonzeros. We present a new metric rlayer nnz as the imbalance

radio of nonzeros among different layers to predict rnnz. Figure 2.4 displays the layers affiliated with

the tensor partition. In mode I2 there are three layers each with 4 subtensors. Particularly, we take

the tensor slice information to compute the nonzeros of each layer Lnp in each mode. In mode In,

rlayer nnz(n) = (max{Lnp} −min{Lnp})/max{Lnp}. We then compute rlayer nnz as the average

rlayer nnz(n) for all modes. The total complexity is O(cN × In). rlayer nnz = rnnz = 0 in a dense

88

Algorithm 4: Prediction-based grid configuration with np = 2.

Require: Number of processes P , tensor X ∈ RI1×I2×I3 ;
Ensure: Grid configuration Gopt = {P1, P2, P3}, P1 × P2 × P3 = P ;

1: Initialize intermediate grid Gint = {1, 1, 1}
// Step 1: intermediate grid generation

2: prso = getPrimes(P); . Ordered from large to small
3: Iavg = (I1 + I2 + I3)/3
4: for pr in prso[1 : −1] do
5: Gint[n]∗ = pr, s.t.In = max{I1, I2, I3}
6: In− = Iavg
7: end for

// Step 2: sparsity-aware grid trimming
8: Initialize six grid candidates G1, ...,G6 = Gint
9: Gi∗ = (prso[−2] ∗ prso[−1]), i = {1, 2, 3, 4, 5, 6} . Assign two smallest primes to six candidates

10: Compute rlayer nnz to predict rnnz of G1, ...,G6 with virtual data distribution
11: Gopt = Gi, s.t.minrnnz

{G1, ...,G6}
12: Return Gopt;

tensor or a sparse tensor with an even nonzero distribution. In a sparse tensor with an imbalanced

nonzero distribution, rlayer nnz is able to predict rnnz by considering several subtensors as a group.

Therefore, compared to rnnz, rlayer nnz can capture the imbalance of nonzero distribution by a

low-cost estimation. Finally, we select the grid candidates with the best nonzero balance as the

optimal grid Gopt. Figure 5.6 shows that Algorithm 4 predict the optimal grid as 16× 1× 1 as with

smallest rlayer nnz for tensor amazon on 16 MPI processes. And Figure 5.4 indicates that our Gopt
has a better performance than Gsplatt built from Splatt’s grid configuration. The selected grid

configuration is used for the following distribution policy and Cpd computation.

(b) Matrix Balanced (c) Adjustment(a) Nonzero Balanced

Figure 5.7: Distribution policy on 12(=2 × 3 × 2) processes. Layer boundaries in red are adjusted
in the 2nd dimension; boundaries in gray are fixed and in the 1st and 3rd dimensions.

89

Algorithm 5: Matrix-oriented distribution policy generation in tensor dimension n.

Require: Sparse tensor X ∈ RI1×I2×I3 , number of processes Pn in dimension-n;
Ensure: Distribution policy D (a.k.a. layer configuration {IL});

1: // Matrix-balancing strategy: set
2: for i in Pn do
3: ILi

= In/Pn; . Initial layer size
4: end for
5: if Ordered adjustment then
6: // Ordered adjustment strategy: ordered-c
7: for i in Pn do
8: mi = #nonzeros in layer Li . c is a user-given parameter
9: ILi -= (mi −M/Pn)/(c � SLi)

10: end for
11: else if Max-to-min adjustment then
12: // Max-min adjustment strategy: max-min
13: I ′L: Sorted {ILi

, i = 1, . . . , Pn} by #nonzeros in a descending order
14: for i in Pn/2 do
15: I ′L[i]− = (I ′L[i]− I ′L[Pn − i])/Sn

16: I ′L[Pn − i]+ = (I ′L[i]− I ′L[Pn − i])/Sn

17: end for
18: I ′L = IL
19: end if
20: Return D = {IL};

5.2.2 Matrix-Oriented Distribution Policy

Once we decide on a process grid, the next challenge is to choose a distribution policy

which leads to an optimal partitioning of the tensor and matrices, and balanced computation and

communication and their trade-offs among the processes. Thus, three parameters Mp, Ip, and Il

in Table 5.1 are influenced by a distribution policy D. The optimal strategies effectively eliminate

performance bottlenecks, resulting in balanced computation and communication and their trade-offs.

The state-of-the-art work [114] takes a strategy that balances nonzero computation by evenly

partitioning tensor nonzeros among the processes, shown in Figure 5.7(a). It only considers Mp

and targets to minimize rnnz. Thus, it is advantageous for Cpd dominated by the sparse tensor

computation kernel Mttkrp. In general, such tensors have moderate sparsity and uniform nonzero

distributions along the dimensions. Nevertheless, this strategy may not be beneficial for irregular

tensors. For example, tensor fb-m has one dimension size multiple orders-of-magnitude smaller

than the others, and its nonzeros mainly reside along a diagonal with increasing density while most

nonzeros concentrate at a bottom corner. Applying the nonzero balancing strategy to such tensors

results in severe imbalances, in all aspects including nonzero computation, matrix computations,

90

and communication (See Figure 5.16). Furthermore, Cpd on some tensors under study do not

benefit from balanced nonzero computation as the execution is dominated by communication or

matrix computations in Figures 5.1 and 5.2. We leverage the sparsity and irregularity information

that reflects in matrix computation imbalance. We identify the dominant imbalance ratio as matrix

computation imbalance for irregular tensors. Therefore, all our strategies are based on balancing

matrix computations and then achieve the best trade-offs between different imbalances.

To balance matrix computations, we first propose an easy-to-use set strategy that balances

Ip by evenly partitioning matrices among the processes in every dimension, shown as Figure 5.7(b).

This results in minimal rIp and balanced matrix computation, but could exacerbate the imbalance

for nonzero computation. Set strategy is advantageous for Cpd dominated by matrix computations,

typically very sparse tensors with a uniformed distribution of nonzeros, and could tolerate irregular

tensor dimension sizes. On the other hand, applying the matrix balancing strategy improves the

balance for matrix computations and communication but exacerbates the imbalance for nonzero

computation. Yet, neither of these two strategies works well for irregular sparse tensors like fb-m,

because they target to minimize only one imbalance ratio, either rnnz or rIp , without considering

the trade-offs among the three ratios counting rvol for communication.

The challenge for irregular sparse tensors is extremely high imbalance in both computation

and communication, as our Finding 3 in Section 5.1 shows. Focusing only on optimizing one of the

imbalance ratios might cause the other two ratios higher. To support irregular sparse tensors, we

propose new distribution policies to achieve better trade-offs between these imbalance ratios. Our

proposed distribution policies begin with the matrix-balancing strategy, but adjust according to the

nonzero-balancing strategy, illustrated in Figure 5.7(c) where red lines are shifted based on (b) but

not as skewed as (a). Algorithm 5 shows the three generation strategies of distribution policies:

set, ordered-c, and max-min. From Figure 5.7, a distribution policy is a layer configuration and

represented by {IL}, an array of dimension sizes distributed to each process which sum up to the

dimension size in dimension-n. Assume the processor grid is P = P1 × P2 × · · · × PN . We first

employ set strategy by partitioning In/Pn consecutive slices of X to each process in dimension n,

yielding balanced matrix computations but potentially skewed nonzeros among processes. We then

adjust layer boundaries to mitigate nonzero imbalance using either ordered-c or max-min strategies.

The key idea of the ordered-c strategy is to reduce nonzero imbalance of each partition

independently. It adjusts layer boundaries along with the index in each tensor dimension. To

91

achieve this, we first calculate M/Pn as the target nonzero size of each partition in dimension-n,

and add/remove slices if the nonzeros in a partition are greater/less than the target size. Second,

we need to move layer boundaries to make nonzeros in each partition closer to the target nonzero

size M/Pn. Assume the current nonzeros in the ith partition is mi and the average number of

nonzeros for one slice in this partition is SLi
, then the number of slices to be adjusted is given

by (mi −M/Pn)/(c � SLi
), where c is a user-given integer. The larger the c value, the finer the

adjustment granularity. Partitioning with c = 1 is the same as Splatt for dense tensors or sparse

tensors with uniformed nonzero distribution. With larger c, our partitioning keeps more balanced IP

rather than nonzeros for irregular sparse tensor. When c is extremely large, the ordered-c strategy

has little difference with the set strategy, as it has little adjustment. Therefore, we set c as 1 or 2 to

achieve better trade-offs between nonzero and IP imbalance, and distinguish with the set strategy.

Instead of adjusting each partition independently, the key idea of the Max-min method is

to balance nonzeros in partitions based on the differences between them. There is no target nonzero

size in this strategy. It moves slices from partitions with the maximal nonzeros to the ones with the

minimal nonzeros. We first sort the layer configuration IL in descending order and save it as I ′L. By

looping the first half of I ′L, the max-min pair is I ′L[i], I ′L[Pn − i] respectively. Second, we adjust the

layer boundaries of each max-min pair. Let Sn be the average number of nonzeros per slice for all

partitions of dimension-n. The number of slices to be adjusted is (I ′L[i]− I ′L[Pn − i])/Sn. Max-min

adjusts only the maximal and minimal nonzero partitions, but might be less accurate in partitioning

nonzeros by considering the global slice information with Sn among partitions rather than the local

SLi within a partition. As each partition must contain continuous slices, this method might involve

adjusting the boundaries of all partitions. Therefore, we expect lower performance than the first

method, but it still outperforms the nonzero-balancing strategy for irregular tensors.

Our proposed prediction-based grid configuration and matrix-oriented distribution policy

are directly applied to medium-grained, bulk-synchronous distributed Cpd (Algorithm 2) as Lines

2 and 3 separately, to gain performance improvement and better scalability.

5.3 The BA-CPD Algorithm

In this section, we describe our BA-CPD distributed tensor decomposition algorithm with

asynchronous Cpd implementation. The key idea of our asynchronous algorithms is to take ad-

92

vantages of RDMA-based one-sided communication in Cpd. RDMA allows processes to arbitrarily

access data from shared memory of other processes. However, simply changing collective com-

munication to RDMA operations will not make many benefits in Cpd because computation and

communication are in a sequential order in each kernel, where every step waits for the complete

results from the prior step before executing. We need to overlap some computation with communi-

cation to obtain better performance of RDMA operations. Thus, we perform on fine-grain decoupling

of computation and communication and optimization for different kernels. The main challenge of

this optimization is that each kernel has different computation and communication patterns. Some

kernels worth fine-grain decoupling, but others do not. For example, there is no need to optimize

MAT SOLVE for zero communication. In this decoupling, we also need to make sure that none of

communication operations depends on explicit synchronization with any other process. We design

two strategies as BA-1D and BA-2D.

5.3.1 BA-1D Strategy

Algorithm 6: Balanced Asynchronous Cpd algorithm.
...
// Cpd Computation

1: Un = Async (A(n)T
p A(n)

p)
2: do
3: for n = 1, . . . , N do

4: Ã
(n)

p = MTTKRP(Xp,A(1)
p ,. . . , A(n−1)

p ,A(n+1)
p ,. . . ,A(N)

p) . Mttkrp

5: Ã
(n)

p = Ã
(n)

p (U1 ∗ · · · ∗UN)† . MAT SOLVE

6: λ̃ = Normalize (Ã
(n)

p) . MAT NORM

7: Ũn = Async(Ã
(n)T

p Ã
(n)

p) . MAT ATA

8: end for
9: while fit not change or maximum iterations exhausted

Partition. In BA-1D algorithm, we use N -D partitionings for tensor distribution while 1D

partitionings for matrix distribution, as Figure 5.8 shows. There are two major changes of BA-

CPD algorithm in Algorithm 6 compared to Algorithm 2: First, all collective communication is now

implemented with asynchronous communication. Second, we do not store Al for Mttkrp and thus

there is no MAT UPDATE kernel. The original communication for Mttkrp in Algorithm 2 (Line

12 and 16) are now implicitly in the Mttkrp asynchronous implementation. The computation and

communication volume for each process is similar to those in Table 5.1. While Il and Ip are balanced

93

A

A0

Ap

B C
X

a0
a1
a2
a3

X0 X1

X3 X2

B0

B1

C0

C1A1

b0 c0

Figure 5.8: Tensor and matrix partitions in BA-1D algorithm, where P(0,0,0) locally stores subtensor
and submatrices in blue and needs communication with submatrices in gray.

and, so are local computation of matrix-related kernels.

Listing 5.1: Optimized Mttkrp in BA-1D

for i in 0...I-1:

for j in 0...J-1:

for k in 0...K-1:

for q in (0...layer_size-1 and q!=rank()):

local_b = B.get_tile();

local_c = C.get_tile(); //retrieves matrix tiles on demand

buff_a = local_x * local_b * local_c; //partial results for comm

buff_a.put();

local_b = B.get_tile();

local_c = C.get_tile();

local_a = local_x * local_b * local_c; //result in local A

for q in (0...layer_size-1 and q!=rank()):

local_a += buff_a;

Mttkrp. We decouple computation and communication in q (q is the number of processes in the

same layer) stages for each process. In each stage, each process first retrieves tiles of the matrix on

demand, and then performs on partial local Mttkrp followed by sending it. In the final stage, each

process performs it own local computation and then sums up all partial results received from other

94

processes. From Stage 0 to q − 2, P (0) in Figure 5.8 computes a portion of its local nonzeros in

Mttkrp computation. This portion of nonzero corresponds to the matrix A update, which needs to

be sent to one of the other processes in the same layer (P (1) to P (3)). After the local computation

P (0) sends the partial results to one of the other processes via one-sided asynchronous operations

in each stage. In the last Stage q− 1, the rest computation is completed to update the local matrix

portion of A. And P (0) then sums up all partial results received from other processes. In this

procedure, We overlap the local A computation and communication for each process in the same

layer. Its effectiveness depends on the number of nonzeros involved in Mttkrp computation and

the transferred matrix volume.

MAT NORM. The computation in MAT NORM is column normalization of dense-matrix locally

stored in each process. We do not decouple computation here as it will increase the communication

volume. After local computation, each process asynchronous sends the normalized vector to all

other processes. Each process then sums up the local normalized vector with those from all other

processes.

MAT ATA. In ATA, each process performs symmetric matrix multiplication locally and then

asynchronous sends this local result to all other processes. Each process then sums up partial

results from all other processes.

Strengths and Limitations BA-1D is a natural extension from the medium-grained decompo-

sition. It keeps the advantages from medium-grained decomposition and provides opportunities to

further optimize Mttkrp. It can achieve better performance for tensors that Mttkrp has dom-

inant overhead in Cpd. However, it still has a limitation that matrix-related kernels are not best

optimized.

5.3.2 BA-2D Strategy

Partition. In BA-2D algorithms, we use N -D partitionings for tensor distribution while 2D

partitionings for matrix distribution, as Figure 5.9 shows. The main stages of BA-2D algorithm are

similar to those in Algorithm 6. The difference is that Ap is column-wise distributed in each layer

now. 2D partitionings for matrix also lead to different local computation and communication, as

Table 5.2 shows, where layer size is the num of processes in one layer.

95

A

A0

Ap

X

X0 X1

X3 X2

a0 b0 B0

B C

C0

B1 C1

c0

A1

Figure 5.9: Tensor and matrix partitions in BA-2D algorithm, where P(0,0,0) locally stores subtensor
and submatrices in blue and needs communication with submatrices in gray.

Key Steps Local Comp Local Comm Volume

MAT NORM Θ(R/layer size× Il) R/layer size
MAT ATA Θ

(
R2/layer size× Il

)
R2

Table 5.2: Time complexity of steps changed in BA-2D.

Mttkrp. In Mttkrp each process performs on local computation and then decouples communi-

cation in q (q is the number of processes in the same layer) stages. In each stage, each process

sends partial result local Mttkrp to other processes in the same layer, and then sums up all partial

results received from other processes. After local Mttkrp, from Stage 0 to q − 2, P (0) in Fig-

ure 5.9 prepares partial results needing to be sent to one of the other processes in the same layer

(P (1),P (2),P (3)), and then sends the partial results to one of the other processes via one-sided

asynchronous operations in each stage. P (0) then sums up all partial results received from other

processes.

MAT NORM. In MAT NORM, we do not decouple computation for the same reason in BA-

1D strategy. Each process computes a local normalization and then asynchronous sends the result

to processes in the same column on other layers. Each process then sums up all received local

normalized vectors. P (0) in Figure 5.9 computes a local normalization and then asynchronous sends

the result to the process in the column (P (4)). P (0) then sums up the local normalized vector with

those from P (4).

96

AT
(Ap

0)T

(Ap
1)T

(Ap
2)T

(Ap
3)T

Ap
0Ap

1Ap
2 Ap

3

A

Al
0

Al
1

Figure 5.10: ATA in SX-2D algorithm.

ATA. We decouple computation and communication in q (q is the number of processes in the same

layer) stages. In each stage, each process first retrieves tiles of the matrix on demand, and then

performs on partial local ATA followed by sending it to processes in other layers. Each process then

sums up all received partial results. In the ith stage P (0) computes R/q rows of matrix multiplication

locally in the form of Ã
(i)T

p Ã
(0)

l as Figure 5.10 shows. And P (0) then asynchronous sends the result

to all processes in other layers. Finally, P (0) sums up partial results from all processes in other

layers to obtain the result of ATA.

Listing 5.2: Optimized ATA in BA-2D

for i in 0...P-1:

Block_A = A.get_block(); //retrieves matrix tiles on demand

for q in 0...layer_size-1:

local_at = A.get();

local_ATA(q,:) = ATA(Block_A,local_at); //partial ATA

buff_a = local_ATA(q,:);

buff_a.put();

local_ATA += buff_a;

Strengths and Limitations BA-2D uses a 2D partitioning of matrix and provides opportunities

for fine-grain decoupling of computation and communication for matrix-related kernels. It can

achieve better performance for tensors, those matrix-related kernels have dominant overhead in Cpd.

However, it has a limitation of coarser optimization on Mttkrp compared to BA-1D algorithm.

97

Tensors Dimensions #Nonzeros Density

stac 545K × 96K × 1.2K 1.3M 2.1× 10−8

choa 712K × 10K × 767 27M 5.0× 10−6

darpa 22K × 22K × 24M 28M 2.4× 10−9

nell2 12K × 9K × 29K 77M 2.4× 10−5

fb-m 23M × 23M × 166 100M 1.1× 10−9

flic 319K × 28M × 1.6M 113M 7.8× 10−12

fb-s 39M × 39M × 532 140M 1.7× 10−10

deli 533K × 17M × 2.5M 140M 6.1× 10−12

nell1 2.9M × 2.1M × 25M 144M 9.1× 10−13

amazon 4.8M × 1.8M × 1.8M 1742M 1.1× 10−10

patents 46× 239K × 239K 3597M 1.4× 10−3

Table 5.3: Description of sparse tensors.

5.4 Experimental Results

Platform. We perform experiments on the Constance cluster at the Pacific Northwest

National Laboratory; each node has 2×12-core Intel Xeon CPU E5-2670 v3 CPUs. The Constance

system has 520 2×12-core nodes (totaling 12480 cores), 64GB DDR4 memory per node on a 56Gb/s

FDR Infiniband interconnect. We use up to a total number of 1536 cores, with 128 nodes and 12

cores/node, GCC 7.3.0 and OpenMPI 4.0.1 as compilers. Our experiments consume 25% of the

whole system. The default BLAS and LAPACK libraries v3.2.1 on Linux are used for the dense

matrix routines.

Dataset. We evaluate sparse tensors from real-world applications in Table 5.3, ordered by in-

creasing number of nonzeros. Most of these tensors are from the Formidable Repository of Open

Sparse Tensors and Tools (FROSTT) [113]. The stac is from Koblenz Network Collection [76]. The

darpa (source IP-destination IP-time triples), fb-m, and fb-s (entity-entity-relation triples) are from

HaTen2 [68], and choa (patient-visit-time triples) is built from electronic health records (EHRs) [99].

Baseline. We use Splatt as our baseline, representing a medium-grained, bulk-synchronous dis-

tributed Cpd [114]3, which is generally considered faster than MapReduce implementations [70, 68].

We also compare to the fine-grained distributed Cpd algorithm (represented as FGBS) from Hyper-

Tensor [72] 4. We implement our irregularity-aware algorithm for workload partition, represented

as MGBS-opt or BS-opt. We then implement and evaluate our asynchronous algorithms as BA-1D

and BA-2D. Both medium- and fine-grained Cpd are hybrid MPI+OpenMP parallelized. We use 12

3ENSIGN [77] is a closed-sourced, commercial library and CarHP [6] is not open-sourced.
4Implemented in Splatt as its open-source version.

98

threads (referred to as processors uniformly) for each CPU for all experiments and set R = 32 as us-

ing a different R has no impact on our evaluation. All experiments use single-precision floating point

values, and the average execution time of 5 iterations is reported. Due to the Cpd execution time

variance on different tensors, we normalize the time of other implementations to medium-grained

Splatt.
1

2
8

x
1

x
1

1
x
1

x
1

2
8

4
x
4

x
8

4
x
2

x
1

6

8
x
1

6
x
1

1
x
1

2
8

x
1

8
x
1

6
x
1

1
x
1

2
8

x
1

1
x
3

2
x
4

4
x
1

6
x
2

2
x
2

x
3

2
2

x
1

x
6

4

8
x
4

x
4

8
x
8

x
2

1
x
1

2
8

x
1

1
x
1

6
x
8

(a) Overall performance speedup for Cpd on 1536 processors.

 7.5

 15

 30

 60

 120

96 192 384 768 1536

T
im
e
(S
)

fb-s

splatt
MGBS-opt

 0.75

 1.5

 3

 6

96 192 384 768 1536

amazon

 0.3

 0.6

 1.2

 2.4

96 192 384 768 1536

patents

(b) Strong scalability from 96 to 1536 processors.

Figure 5.11: Overall performance comparison and scalability.

5.4.1 Overall Performance

Figure 5.11(a) shows the speedup of our distributed Cpd (Mgbs-opt) compared to medium-

grained (Splatt) and fine-grained (FGBS) Cpd when using 1536 processors. The speedup over

99

Splatt ranges from 1.2× to 4.4× for all nine tensors. The two irregular tensors, fb-m and fb-s,

benefit the most from our methods because they suffer severe rnnz, rvol, and rIp imbalance in prior

implementations (see Figure 5.16). Relatively small sparse tensors like choa, darpa, and nell2 have

a speedup from 1.5× to 1.7×. Other tensors such as deli and amazon gain a speedup from 1.2× to

1.4× from our methods, even though they have decent balances with Splatt.

Comparing to fine-grained distributed Cpd (FGBS) with hypergraph partitioning generated

by Zoltan [25], Mgbs-opt always performs better by 3.1− 11.4×. The missing bars on large and/or

irregular tensors, amazon, patents, fb-m, and fb-s are due to failures of generating hypergraph

partitions by Zoltan on 1536 processors. We observe that Splatt achieves higher performance than

FGBS on all cases, aligned with the work [114].

Figure 5.11(a) also presents the performance effect of our prediction-based grid configuration

(Algorithm 4) as Mgbs-GC. By comparing Splatt, Mgbs-GC, and Mgbs-opt, we see the incremen-

tal performance from our optimizations. The prediction-based grid configuration and matrix-oriented

distribution policy increase the performance by 0− 296% and 7− 91% separately. The labels on top

of Splatt and Mgbs-GC bars show their chosen process grids. Mgbs-GC and Splatt obtain the

same grid thus lead to the same performance on choa and darpa. Our prediction-based grid config-

uration accelerates performance for 7 out of 9 tensors. Tensor fb-m gets the highest gain at 2.96×

with a better grid configuration. These results verify that irregularity-aware grid configuration is

critical to Cpd performance.

Figure 5.11(b) demonstrates that Mgbs-opt obtains better strong scalability than Splatt

on three large tensors from 96 to 1536 processors. Mgbs-opt shows significantly better scalability

than Splatt on irregular yet sparse tensor fb-s. This is because rIp that impacts matrix computation

and communication time reduces significantly in Mgbs-opt. Detailed profiling shows that both

communication and computation time are closed to be halved as the number of processors doubles

in Mgbs-opt. Mgbs-opt scales slightly better for matrix computation and communication on tensors

amazon and patents, where Mttkrp occupies a larger time percentage. For other tensors: fb-m

shows similar scalability to fb-s; deli and nell1 are similar to patents; both Splatt and Mgbs-opt

show good scalability on small tensors choa, darpa, and nell2.

Figure 5.12(a) shows the speedup of our BS-opt and BA methods compared to Splatt when

using 1280 processors. The best speedup of our methods over Splatt ranges from 1.2× to 1.8× for

all eight tensors. BA-1D gains the best speedup in 3 of 8 tensors and BA-2D gains the best speedup

100

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

stac
choa

darpa

nell2
flic deli

nell1
am
azon

S
pe
ed
up

splatt
BS-opt
BA-1D
BA-2D

(a) Overall performance speedup for Cpd on 1280 processors.

 0.25

 0.5

 1

 2

 4

 8

80 160 320 640 1280

T
im
e
(S
)

darpa

splatt
BS-opt
BA-1D
BA-2D

 0.5

 1

 2

 4

80 160 320 640 1280

flic

 1.5

 3

 6

 12

160 320 640 1280

amazon

(b) Strong scalability from 80 to 1280 processors.

Figure 5.12: Overall performance comparison and scalability.

on 5 of 8 tensors. BA-1D performs better in tensors those have dominant overhead in Mttkrp as it

focuses more on optimizing it. Figure 5.12(a) also indicates the impact of our workload partitioning

on bulk-synchronous Cpd as BS-opt. The speedup of BS-opt over Splatt ranges from 1.1× to 1.4×

for all eight tensors.

Figure 5.12(b) shows that our methods obtain better strong scalability than Splatt on

three different tensors from 80 to 1280 processors. Our BA-CPD shows significantly better scalability

than Splatt on irregular yet sparse tensor like darpa and flic. This is because BA-CPD balances

Ip much better and reduces more communication cost than Splatt in matrix-related kernels, those

are dominant in irregular tensors. For relatively regular tensor amazon, both Splatt and BA-CPD

gain good scalability. But BA-CPD always shows better performance as it achieves a better balance

of computation and communication in Mttkrp that is dominant in amazon.

101

5.4.2 Detailed Analysis

Splatt Irregularity-aware Cpd
Tensors imb(nnz) imb(comm) imb(nnz) imb(comm)

stac 97.9% 93.3% 88.6% 80.4%
choa 3.0% 87.5% 23.2% 2.9%
darpa 0.0% 98.7% 20.4% 69.0%
nell2 2.7% 44.7% 23.6% 6.5%
flic 24.9% 84.2% 23.1% 47.5%
deli 10.2% 29.2% 9.6% 1.3%
nell1 1.2% 36.9% 9.3% 2.4%

amazon 12.1% 58.3% 5.5% 11.2%

Table 5.4: Imbalance of tensor nonzero and communication volume.

Workload Partitioning Analysis. Table 5.4 shows the imbalance of tensor nonzero

and communication volume among processes with workload partition in BA-CPD compared to

Splatt. As we discussed in Section 3.1, Splatt focuses only on balancing tensor nonzero for all

tensors. However, for irregular tensor the imbalance of communication volume is much more severe

than that of tensor nonzero, such as darpa and flic. BA-CPD optimizes both tensor nonzero and

communication volume and significantly reduces the imbalance of communication. BA-CPD gains

more balanced nonzero in 4 of 8 tensors and more balanced communication in all tensors. The results

of Table 5.4 and Figure 5.12(a) demonstrate that balancing only tensor nonzero leads to suboptimal

performance, and trade-offs are required among nonzero and communication volume.

 0

 0.2

 0.4

 0.6

 0.8

 1

splatt BS-opt BA-1D BA-2D

N
or
m
al
iz
ed

 T
im
e

flic

MTTKRP-comp
MTTKRP-comm

 0

 0.2

 0.4

 0.6

 0.8

 1

splatt BS-opt BA-1D BA-2D

nell2

Figure 5.13: Time percentage of MTTKRP for flic and deli on 1280 processors.

Mttkrp Kernel Analysis. Figure 5.13 shows detailed time percentages of communication

and computation in Mttkrp. BS-opt optimizes both computation and communication in flic by

our workload partitioning in flic. While it sightly increases computation overhead in nell2 by larger

imbalance of tensor nonzero as Table 5.4 shows. Among our three methods, BA-1D always performs

102

the best, as it enables better computation and communication overlap in Mttkrp by fine-grained

decoupling. BA-2D performs better than BS-opt by utilizing asynchronous communication. BA-2D

performs worse than BA-1D in Mttkrp as its 2D partition focuses more on optimizing matrix-

related kernels.

Detailed Performance Analysis. We show how our methods optimize each kernel of

Cpd and gain a better trade-off among them for tensors darpa and amazon in Figure 5.14. For

darpa, BS-opt slightly increases Mttkrp-comp but optimizes Mttkrp-comm and matrix-related

kernels by our workload partition. Based on the partition, BA-1D further optimizes Mttkrp-comm

by fine-grained decoupling of computation and communication in Mttkrp. BA-2D performs the

best as its 2D partition focuses more on optimizing matrix-related kernels, those are more dominant

for darpa. For amazon, our three methods show similar behaviors as darpa except that BA-1D

performs the best. This is because it focuses more on optimizing Mttkrp that is more dominant

for amazon.

 0

 0.2

 0.4

 0.6

 0.8

 1

splatt BS-opt BA-1D BA-2D

N
or
m
al
iz
ed

 T
im
e

darpa

MTTKRP-comp
MTTKRP-comm

MAT-SOLVE
MAT-NORM
MAT-ATA

 0

 0.2

 0.4

 0.6

 0.8

 1

splatt BS-opt BA-1D BA-2D

amazon

Figure 5.14: Time percentage of main kernels for darpa and amazon on 1280 processors.

5.4.3 Balanced Distribution Policy Analysis

Figure 5.15 shows the speedup of Cpd from our four matrix-oriented distribution policies

against Splatt on 1536 processors. Set, ordered-1, ordered-2, and max-min represent the strategies

of matrix-balancing, two types of ordered adjustment, and max-min adjustment separately. Ordered-

1 and ordered-2 incline the adjustment to nonzero and Ip balance respectively. Overall, our strategies

obtain speedup on all tensors. The set strategy performs the best on three, ordered-1 on one, ordered-

2 on three, and max-min on one tensor respectively. All the four strategies achieve significant

speedups on the two most-irregular tensors fb-m and fb-s, with ordered-2 the most advantageous.

103

An interesting observation is that simple strategies (set and max-min) could perform the best.

These results verify our findings that balancing only nonzeros results in suboptimal performance,

and trade-offs are required among nonzero, matrix computation and communication volume.

 0

 1

 2

 3

 4

choa
darpa

nell2
fb-m

fb-s
deli

nell1
am
azon

S
pe
ed
up

splatt
set

ordered-1
ordered-2
max-min

Figure 5.15: The effect of different distribution policies: matrix-balancing (set), two ordered adjust-
ments (ordered-1 and ordered-2), and max-to-min adjustment (max-min).

 0

 0.2

 0.4

 0.6

 0.8

 1

r(nnz) r(vol) r(Ip)

Im
ba
la
nc
e
R
at
io
s

fb-m

splatt
set

ordered-1
ordered-2
max-min

 0

 0.1

 0.2

 0.3

 0.4

 0.5

r(nnz) r(vol) r(Ip)

nell1

Figure 5.16: Load imbalance ratios (rnnz, rvol, and rIp).

To further understand why some tensors benefit more from our strategies than others, we

look into how their imbalance ratios change. We explore two representative tensors in Figure 5.16.

Two general observations are obtained: First, no strategy simultaneously obtains the lowest imbal-

ance ratios from all the three aspects: nonzero, matrix computation, and communication. Second, all

strategies trade higher rnnz for lower rvol and rIP to gain performance improvement. The irregular

tensor fb-m suffers very high imbalance ratios for all strategies in all three aspects. Splatt has the

104

smallest rnnz balance, set has nearly perfect rIp balance (around 0, invisible in bars), while ordered-1

gets the best rvol balance. However, ordered-2 obtains the best performance in Figure 5.15, since

none of Splatt, set, and ordered-1 obtains a good tradeoff among the three ratios. Different from

irregular tensors, regular tensors like nell1 have much lower imbalance ratios in each category. Its

rnnz imbalance ratio is actually under control at 1% with Splatt. Set, which gets the highest

performance gain, has the worst rnnz imbalance but the best rIp and rvol balance. Regular tensors

tend to be easier to get balanced in all categories and the differences among them are small. These

results demonstrate that the trade-off among different load balances is complex and the optimal

solution is determined by tensor properties, i.e., sparsity, shape, and distribution of nonzeros among

the modes. We identify the dominant imbalance ratio as rIp for irregular tensors because of its

impact on matrix computation. However, the best performance of Cpd is usually not achieved by

the optimal rIp because other imbalance ratios are also important. It is still very difficult or impos-

sible to obtain the optimal balance simultaneously among all categories, thus a careful trade-off is

required for the best performance.

Guideline for choosing strategies. We provide general guidelines for users to easily pick

from the strategies for their own tensors. Our strategies try to find the best trade-off among three

imbalance ratios though it is difficult to match each strategy for one certain type of tensors. If rIp is

the dominant imbalance factor in Cpd and we need to control it as small as possible, the ascending

order of rIp in our strategies is set < ordered-2 < ordered-1. Generally, users could safely choose

set if lacking of statistical information on a sparse tensor because it always performs better than

Splatt on a large cluster as Figure 5.15 shows. Our recommendations are as follows: 1) Use set

for relatively small or regular tensors as it obtains the smallest rIp while the other two imbalance

ratios have little increase in those tensors like choa and nell2 ; 2) Use ordered-2 for relatively large

and irregular tensors as it optimizes both rvol and rIP well on tensors like fb-m and fb-s.

5.4.4 Bottleneck Shifting

We show how Mgbs-opt influences the performance bottleneck of major computation and

communication kernels of Cpd for tensors choa and fb-m in Figure 5.17. For choa, Mgbs-opt

shifts the performance bottleneck from communication in Splatt to MAT-SOLVE as a result of

communication time reduction, while also decreasing the time of MAT NORM. For fb-m, the Mgbs-

opt performance is still dominated by COMM as in Splatt, but largely reduced. Since Splatt

105

 0

 0.2

 0.4

 0.6

 0.8

 1

splatt MGBS-opt

N
or
m
al
iz
ed

 T
im
e

choa

MTTKRP
MAT-NORM
MAT-ATA

MAT-SOLVE
COMM

 0

 0.2

 0.4

 0.6

 0.8

 1

splatt MGBS-opt

fb-m

Figure 5.17: Time percentage of main kernels on 1536 processors.

focuses on optimizing the nonzero imbalance for Mttkrp which only accounts for a negligible portion

(invisible in Figure 5.17), Mgbs-opt correctly identifies bottlenecks and significantly improves their

execution.

5.4.5 Partitioning Strategies Comparison

Several previous works have compared Mgbs with coarse-grained Cpd [39]. It has been

proved that Splatt is 41× to 76× faster than DFacTo on 1024 cores [114]. Therefore, we no longer

compare Mgbs-opt with coarse-grained Cpd in this work. We examine the fine-grained distribution

with hypergraph partitioning of each tensor generated by Zoltan [25]. Large tensors such as amazon

and patents are unable to compute a hypergraph partitioning due to their memory requirements.

Figure 5.11(a) already shows FGBS achieves lower performance than both Splatt and Mgbs-opt

for 5 tensors on 1536 processors. The hypergraph partitions of fb-m and fb-s can be generated on

768 processors. Splatt achieves higher performance than fine-grained distribution in 5 out of 7

tensors on 768 processors except for fb-m and fb-s. Figure 5.18 displays the normalized time of

major computation and communication kernels in FGBS, Splatt and Mgbs-opt on 768 processors.

We first disclose that FGBS performs faster than Splatt on tensors fb-m and fb-s by 3.2× and

1.3×, but only achieves 70% and 30% of the performance of Mgbs-opt, which further strengthens

our motivation of study on irregular tensors. Compared to Splatt, both FGBS and Mgbs-opt

significantly improve the performance of matrix-related computations on fb-m and achieve similar

speedups. While on fb-s FGBS only gains a small improvement over Splatt. This demonstrates

the performance improvement of Mgbs-opt is more stable than FGBS on different irregular tensors.

106

To purely compare with a hypergraph-partitioning model based on medium-grain distributed

Cpd computation, we also compare Mgbs-opt with CartHP [6] built upon Mgbs algorithm with

Splatt. Due to the lack of access of CartHP code and dataset, we are unable to compare CartHP

and Mgbs-opt on the same dataset. CartHP achieves an average of 1.32× and up to 2.34× speedup

over Splatt on their dataset in the paper [6], inferring that Mgbs-opt generally gains higher speedup

by comparing these numbers.

 0

 0.2

 0.4

 0.6

 0.8

 1

FGBS splatt MGBS-opt

N
or
m
al
iz
ed

 T
im
e

fb-m

MTTKRP
MAT-NORM
MAT-ATA

MAT-SOLVE
COMM

 0

 0.2

 0.4

 0.6

 0.8

 1

FGBS splatt MGBS-opt

fb-s

Figure 5.18: Time percentage of main kernels for fb−m and fb− s on 768 processors.

0.125%

0.25%

0.5%

1%

2%

4%

8%

192 384 768 1536

N
or
m
al
iz
ed

 ti
m
e
ov
er
he
ad

 o
f
ou
r
m
et
ho
d

Number of Processors

overhead on 10-iters CPD
overhead on 50-iters CPD

Figure 5.19: Time overhead of our method (Algorithm 2 and 3). The time of our method is normal-
ized to Cpd time.

107

5.4.6 Time overhead of irregularity-aware method.

We evaluate the time overhead of our irregularity-aware method and compare it with Cpd

time. Our proposed prediction-based grid configuration incurs trivial time cost in the virtual distri-

bution as it needs to compute the nonzero imbalance ratio rlayer nnz for each candidate. The cost

of our matrix-oriented distribution policy is negligible because its complexity is O(P). The time

cost of irregularity-aware method is mainly determined by the total dimension sizes of the tensor

cN in the complexity of O(cN × In) in computation of rlayer nnz. Our method does not incur ex-

pensive data redistribution because we only do data distribution once as Splatt. The number of

Cpd iterations is determined comprehensively by the size, nonzero distribution, and sparsity of a

tensor. We set 10 and 50 as the minimum and maximum iterations because we observe tensors in

our dataset converge for Cpd in this range of iterations. Figure 5.19 displays the average, maximum

and minimum time overhead of irregularity-aware method normalized to 10 and 50 Cpd iterations

all tensors in our dataset. As the system size increases, the normalized time overhead increases for

both cases. This is because our proposed irregularity-aware method is sequential with relatively

stable time on different system sizes. The average overhead is 4.5% to 10 Cpd iterations and 0.9%

to 50 iterations on 1536 processors. Overall, the time cost of irregularity-aware method is low and

acceptable compared to Cpd time. And its time overhead is negligible compared to hypergraph

partitioning in both fine-grained [72, 71] and medium-grained Cpd [6].

 0.04

 0.08

 0.16

 0.32

 0.64

48 96 192 384 768 1536

T
im
e
(S
)

choa

coo hicoo

 1.5

 3

 6

 12

 24

48 96 192 384 768 1536

darpa

 0.75

 1.5

 3

 6

 12

 24

48 96 192 384 768 1536

deli

Figure 5.20: Scalability of Mgbs-opt applied on ParTI for COO and HiCOO formats.

108

5.4.7 Application of irregularity-aware method to Other Formats

We extend Mgbs-opt to support other sparse tensor formats such as the coordinate (COO)

and Hierarchical Coordinate (HiCOO) [81] by extending the ParTI library [80]. COO, the simplest

yet arguably most popular format by far, stores each nonzero value along with all of its position

indices. Hierarchical Coordinate (HiCOO) [81] format improves upon COO by compressing the

indices in units of sparse tensor blocks. Figure 5.20 plots strong scalability of Mgbs-opt applied

to COO and HiCOO formats for three tensors on 48 to 1536 processors. Mgbs-opt obtains near-

linear scalability for HiCOO on these tensors. With COO format darpa on 96 to 192 and deli on

48 to 96 processors show super-linear speedup. Detailed profiling shows that computation time for

matrix-related kernels reduces more than halve in both cases because of much better matrix-balance.

Mgbs-opt is flexible to support to other variant formats in CSF or COO families [94, 84].

5.4.8 Prototype of Asynchronous Cpd on GPUs.

We implement the prototype of asynchronous Cpd on GPUs to prove that our BA-CPD

algorithm works in heterogeneous systems with GPUs. We implement Mttkrp and matrix-related

kernels with asynchronous algorithms on GPUs. We utilize cuSPARSE routines in CUDA to imple-

ment computation and use NVSHMEM to implement communication for these kernels. Figure 5.21

shows our prototype of asynchronous Cpd on GPUs achieves 4.23× speedup over Splatt and 3.27×

speedup over BA-CPD on CPUs for Mttkrp, and achieves 2.44× speedup over Splatt and 1.97×

speedup over BA-CPD on CPUs for MAT NORM. The result shows that our prototype of asyn-

chronous Cpd on GPUs mainly benefits from the high performance of computation on GPUs. The

difference between asynchronous communication via OpenSHMEM and NVSHMEM is not obvious

on a small scale of distribution.

There are two main challenges to implementing asynchronous Cpd on multiple GPUs. First,

it is necessary to design a better workload partition to exploit the storage format of sparse tensors and

dense matrices in the GPU memory to save computation and memory space. The current workload

partition works well on CPUs while it has space to optimize on GPUs. Second, the computation

and communication percentages on GPUs are vastly different from those on CPUs. Thus we need

to employ new optimization techniques to distributed Cpd on GPUs.

109

0%

20%

40%

60%

80%

100%

splatt BA-CPU BA-GPU

N
or
m
al
iz
ed

 T
im
e

MTTKRP

comp
comm

0%

20%

40%

60%

80%

100%

splatt BA-CPU BA-GPU

MAT NORM

Figure 5.21: Time percentage of Mttkrp and MAT NORM for nell2 of our prototype on 4 GPU
nodes compared to BA-CPD and splatt on 4 CPU nodes.

5.5 Summary

Distributed CANDECOMP/PARAFAC decomposition is well-studied due to the increasing

needs of processing large-scale data. This work presents a sparsity-aware tensor decomposition on a

distributed memory system. We thoroughly investigate the distributed Cpd performance behavior

using a state-of-the-art implementation and find three performance factors, grid configuration, load

imbalance, and communication/computation overlap along with five observations. Based on these

observations, we propose three optimization strategies: prediction-based grid configuration, tensor

dimension-oriented data distribution, and overlap of computation and communication. Our proposed

sparsity-aware distributed CANDECOMP/PARAFAC decomposition, outperforms the state-of-the-

art distributed Splatt library by up to 4.41× on 768 processors and 4.36× on 1,536 processors.

Overall, the major findings and contributions of this work include:

• Our work investigates the common algorithm structure of state-of-the-art distributed imple-

mentations from theoretical and experimental analysis and observes four findings to guide

performance optimization.

• We demonstrate that the imbalance of computation and communication, and their trade-offs,

are critical to the overall Cpd performance and scalability. We identify the dominant imbalance

ratio as matrix computation imbalance for irregular tensors. We propose irregularity-aware

Cpd that co-optimizes these imbalances with high priority in matrix computation imbalance

in grid configuration and distribution policy with a low time overhead.

• Our irregularity-aware method supports different sparse tensor formats like compressed sparse

fiber (CSF), coordinate (COO), and Hierarchical Coordinate (HiCOO), and gain good scala-

110

bility for all of them.

• We present a performant scalable algorithm, BA-CPD. It advances the state-of-the-art by

best balancing computation and communication within and across the kernels and hiding

communication costs. We propose techniques to enable fine-grained overlap for computation

and communication tailored for each kernel.

• We demonstrate that our method scales well when using up to 1536 processors and obtains up

to 4.4× and 11.4× performance improvement over the distributed medium- and fine-grained

Cpd libraries [114, 72] respectively.

111

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Emergent HPC systems must address challenges from both performance-scalability and

power-scalability in the presence of failures. Resilience allows programs to progress when subjected

to faults and is an integral component of large-scale systems, but incurs significant time and energy

overhead. Sparse data computation is the fundamental kernel in many scientific applications. It is

suitable for the studies of scalability and resilience on heterogeneous systems due to its computational

characteristics. There is an urgent need for efficient, reliable and scalable sparse data computing

to maximize utilization of HPC systems under constraints of failures. This thesis presents various

algorithms and optimizations for enabling reliable and scalable sparse data computing on large-scale

systems.

In Chapter 3, we present a novel approach to analyze and optimize the cost of resilience

techniques for sparse linear solvers. We present a set of models to better understand the resilience

and energy overhead of applications in a faulty environment, and we perform power optimizations

to reduce the overhead of forward recovery. Our experiments show that our optimized forward-

recovery algorithm significantly reduces the resilience overhead and provides insights for selecting

recovery schemes for certain workloads. Our projection result reveals trends of resilience cost on large

systems and provides direction for optimizing resilience schemes. We demonstrate the importance

of the development of efficient resilience mechanisms, as current resilience schemes do not meet

the requirements of future larger and more faulty systems. We need more optimizations to further

112

reduce time overhead in checkpointing, recovery or reconstruction phases. Decreasing them can

significantly improve the full application’s performance.

In Chapter 4, we propose a novel redundancy technique, relaxed replication, for resilient

and energy-efficient HPC applications in GPU-accelerated systems. Relaxed replication provides

MPI-process level redundancy, enabling optimizations for GPU applications. It supports multiple

technologies including heterogeneous processors, mixed precision computation, and power manage-

ment to reduce the time and energy overhead of replication. Experimental results show that our

approach significantly reduces the resilience overhead while maintaining energy-efficiency compared

to previous resilience mechanisms. We demonstrate that relaxed replication can address the chal-

lenge of high replication cost, and achieve energy-efficiency in GPU-accelerated systems with multiple

computation and power optimizations.

In Chapter 5, we present an irregularity-aware algorithm for workload partition and a per-

formant scalable distributed algorithm, BA-CPD. It improves workload balance and reduces com-

munication cost in comparison to existing work. Our workload partition achieves balances for all but

computation in tensor-related kernel and co-optimizes computation and communication imbalance.

Based on our workload partition, we further present asynchronous algorithms to reduce the commu-

nication overhead of collective communication operations in traditional bulk-synchronous Cpd. We

prove that the prototype of our algorithms works well in heterogeneous systems. We demonstrate

that understanding different bottlenecks for various types of tensors plays critical roles in improving

the scalability of distributed tensor decomposition.

6.2 Future Work

This dissertation has laid the groundwork for research on the scalability and resilience

of sparse data computing on emergent HPC systems. Long term future directions can seek to

develop the ideas around scalability, resilience, and their trade-off for various resilience mechanisms,

emerging hardware, and different applications of sparse data computing. In each of the following

future directions, optimization for resilience and scalability of future HPC systems will be the focus.

And each direction has significant, very interesting and challenging unsolved problems.

113

6.2.1 Optimization for Various Resilience Mechanisms

We focus on two types of resilience mechanisms: forward recovery and redundancy in this

dissertation due to their opportunities in optimization for sparse linear solvers. We believe it is

worth to explore improving scalability and reducing resilience overhead for other fault-tolerance

mechanisms.

One future direction will be exploring how to reduce overhead of checkpoints in checkpoint-

ing/restart mechanism when there is no fault. One of the research ideas is to combine checkpoint-

ing/restart with fault prevention technologies like failure prediction. Failure prediction aims to

predict faults by certain patterns of behaviors in systems. The main challenge for failure prediction

is the relatively low accuracy of prediction. Another important challenge for this direction is still

achieving a good trade-off between scalability and resilience.

6.2.2 Optimization for Emerging Hardwares

The main computational components have evolved from CPU to various processor compo-

nents including GPU, Field-Programmable Gate Array(FPGA), etc. FPGA provides opportunities

for better energy-efficiency than CPU and GPU. But it also incurs challenges like resilience and

power management. Further work can extend our algorithms and optimizations in Chapter 3 and 4

to deal with heterogeneous systems with FPGAs. We present scalable algorithms for sparse tensor

decomposition in homogeneous systems and prove that our prototype works well in heterogeneous

systems with GPUs. Future work can extend our prototype with more optimizations in GPU com-

puting to support tensor decomposition in heterogeneous systems with GPUs.

6.2.3 Optimization for Other Sparse Data Computing

We focus on optimizing scalability and resilience for sparse linear solvers in Chapter 3 and 4.

One future direction will be exploring optimization for scalability and resilience of other computa-

tions like sparse-sparse matrix-matrix multiplication or sparse-dense matrix-matrix multiplication.

These directions will provide both new opportunities and new challenges for optimization. Chapter

5 focuses on the optimization of CANDECOMP/PARAFAC decomposition for sparse tensors. Fur-

ther work can extend our algorithms or ideas in Chapter 5 to deal with other tensor decompositions

like Tucker decomposition.

114

Bibliography

[1] El capitan exascale supercomputer. https://www.cray.com/company/customers/

lawrence-livermore-national-lab.

[2] Frontier exascale supercomputer. https://www.olcf.ornl.gov/frontier.

[3] Top 500 supercomputers. https://top500.org.

[4] University of florida sparse matrix collection. https://sparse.tamu.edu/.

[5] Mart́ın Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015.

[6] Seher Acer, Tugba Torun, and Cevdet Aykanat. Improving medium-grain partitioning for
scalable sparse tensor decomposition. IEEE Transactions on Parallel and Distributed Systems,
29(12):2814–2825, 2018.

[7] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman, and Mawussi Zounon.
Numerical recovery strategies for parallel resilient krylov linear solvers. Numerical Linear
Algebra with Applications, 23(5):888–905, 2016.

[8] Emmanuel Agullo, Luc Giraud, and Mawussi Zounon. On the resilience of parallel sparse
hybrid solvers. In HiPC, pages 75–84. IEEE, 2015.

[9] Rob Aitken, Ethan H Cannon, Mondira Pant, and Mehdi B Tahoori. Resiliency challenges in
sub-10nm technologies. In VLSI Test Symposium (VTS), 2015 IEEE 33rd, pages 1–4. IEEE,
2015.

[10] Phillip Alpatov, Greg Baker, H Carter Edwards, John Gunnels, Greg Morrow, James Overfelt,
and Robert Van de GEijn. PLAPACK parallel linear algebra package design overview. In
SC’97: Proceedings of the 1997 ACM/IEEE Conference on Supercomputing, pages 29–29.
IEEE, 1997.

[11] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, pages
483–485, 1967.

[12] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky.
Tensor decompositions for learning latent variable models. J. Mach. Learn. Res., 15(1):2773–
2832, January 2014.

[13] Hartwig Anzt, Björn Rocker, and Vincent Heuveline. Energy efficiency of mixed precision
iterative refinement methods using hybrid hardware platforms. Computer Science-Research
and Development, 25(3-4):141–148, 2010.

115

https://www.cray.com/company/customers/lawrence-livermore-national-lab
https://www.cray.com/company/customers/lawrence-livermore-national-lab
https://www.olcf.ornl.gov/frontier
https://top500.org
https://sparse.tamu.edu/

[14] Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins, Dona Crawford, Jack
Dongarra, Doug Kothe, Rusty Lusk, Paul Messina, et al. The opportunities and challenges of
exascale computing. ASCAC, pages 1–77, 2010.

[15] Guillaume Aupy, Anne Benoit, Thomas Hérault, Yves Robert, and Jack Dongarra. Optimal
checkpointing period: Time vs. energy. In International Workshop on Performance Model-
ing, Benchmarking and Simulation of High Performance Computer Systems, pages 203–214.
Springer, 2013.

[16] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput.,
1(1):11–33, January 2004.

[17] Muthu Baskaran, Thomas Henretty, and James Ezick. Fast and scalable distributed tensor
decompositions. In 2019 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2019.

[18] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. Fti: High performance fault tolerance interface for hy-
brid systems. In SC’11, pages 1–12. IEEE, 2011.

[19] Eduardo Berrocal, Leonardo Bautista-Gomez, Sheng Di, Zhiling Lan, and Franck Cappello.
Exploring partial replication to improve lightweight silent data corruption detection for hpc
applications. In European Conference on Parallel Processing, pages 419–430. Springer, 2016.

[20] Amanda Bienz, William D Gropp, and Luke N Olson. Node aware sparse matrix-vector
multiplication. Urbana, 51:61801, 2016.

[21] Amanda Bienz and Luke N. Olson. RAPtor: parallel algebraic multigrid v0.1, 2017. Release
0.1.

[22] Zachary Blanco, Bangtian Liu, and Maryam Mehri Dehnavi. CSTF: Large-scale sparse tensor
factorizations on distributed platforms. In Proceedings of the 47th International Conference
on Parallel Processing, ICPP 2018, pages 21:1–21:10, New York, NY, USA, 2018. ACM.

[23] Wesley Bland. User level failure mitigation in mpi. In European Conference on Parallel
Processing, pages 499–504. Springer, 2012.

[24] Wesley Bland, Peng Du, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack J
Dongarra. Extending the scope of the checkpoint-on-failure protocol for forward recovery
in standard mpi. Concurrency and computation: Practice and experience, 25(17):2381–2393,
2013.

[25] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. The Zoltan and Isorropia
parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring.
Scientific Programming, 20(2):129–150, 2012.

[26] William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. SIAM,
2000.

[27] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimir Tomov. Using
mixed precision for sparse matrix computations to enhance the performance while achieving
64-bit accuracy. TOMS, 34(4):17, 2008.

[28] Jon Calhoun, Franck Cappello, Luke N Olson, Marc Snir, and William D Gropp. Exploring
the feasibility of lossy compression for pde simulations. The International Journal of High
Performance Computing Applications, 33(2):397–410, 2019.

116

[29] Jon Calhoun, Marc Snir, Luke N. Olson, and William D. Gropp. Towards a more complete
understanding of sdc propagation. In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’17, pages 131–142, New York,
NY, USA, 2017. ACM.

[30] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. Toward
exascale resilience: 2014 update. Supercomputing frontiers and innovations, 1(1):5–28, 2014.

[31] Venkatesan T Chakaravarthy, Jee W Choi, Douglas J Joseph, Prakash Murali, Shivmaran S
Pandian, Yogish Sabharwal, and Dheeraj Sreedhar. On optimizing distributed tucker decom-
position for sparse tensors. In Proceedings of the 2018 International Conference on Supercom-
puting, pages 374–384, 2018.

[32] Raghunath Raja Chandrasekar, Akshay Venkatesh, Khaled Hamidouche, and Dhabaleswar K
Panda. Power-check: An energy-efficient checkpointing framework for hpc clusters. In 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages
261–270. IEEE, 2015.

[33] Jieyang Chen, Sihuan Li, and Zizhong Chen. Gpu-abft: Optimizing algorithm-based fault
tolerance for heterogeneous systems with gpus. In NAS, pages 1–2. IEEE, 2016.

[34] Zizhong Chen. Algorithm-based recovery for iterative methods without checkpointing. In
Proceedings of the 20th international symposium on High performance distributed computing,
pages 73–84. ACM, 2011.

[35] Zizhong Chen. Online-abft: An online algorithm based fault tolerance scheme for soft error
detection in iterative methods. In ACM SIGPLAN Notices, volume 48, pages 167–176. ACM,
2013.

[36] Zizhong Chen and Jack Dongarra. Algorithm-based fault tolerance for fail-stop failures. IEEE
Transactions on Parallel and Distributed Systems, 19(12):1628–1641, 2008.

[37] Zizhong Chen, Graham E Fagg, Edgar Gabriel, Julien Langou, Thara Angskun, George
Bosilca, and Jack Dongarra. Fault tolerant high performance computing by a coding ap-
proach. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 213–223. ACM, 2005.

[38] Jaeyoung Choi, James Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Ostrouchov, Antoine
Petitet, Ken Stanley, David Walker, and R Clinton Whaley. ScaLAPACK: A portable linear
algebra library for distributed memory computers—design issues and performance. Computer
Physics Communications, 97(1-2):1–15, 1996.

[39] Joon Hee Choi and S. Vishwanathan. DFacTo: Distributed factorization of tensors. In
Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 27, pages 1296–1304. Curran Associates,
Inc., 2014.

[40] Andrzej Cichocki. Era of big data processing: A new approach via tensor networks and tensor
decompositions. CoRR, abs/1403.2048, 2014.

[41] Tao Cui, Jinchao Xu, and Chen-Song Zhang. An error-resilient redundant subspace correction
method. Computing and Visualization in Science, 18(2-3):65–77, 2017.

[42] Xiaolong Cui, Taieb Znati, and Rami Melhem. Adaptive and power-aware resilience for
extreme-scale computing. In 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Com-
puting, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud

117

and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld), pages 671–679. IEEE, 2016.

[43] John T Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future generation computer systems, 22(3):303–312, 2006.

[44] Teresa Davies and Zizhong Chen. Correcting soft errors online in lu factorization. In Pro-
ceedings of the 22nd international symposium on High-performance parallel and distributed
computing, pages 167–178. ACM, 2013.

[45] Eduardo D’Azevedo and Jack Dongarra. The design and implementation of the parallel out-
of-core scalapack lu, qr, and cholesky factorization routines. Concurrency: Practice and Ex-
perience, 12(15):1481–1493, 2000.

[46] Sheng Di, Mohamed Slim Bouguerra, Leonardo Bautista-Gomez, and Franck Cappello. Op-
timization of multi-level checkpoint model for large scale hpc applications. In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, pages 1181–1190. IEEE,
2014.

[47] Sheng Di and Franck Cappello. Adaptive impact-driven detection of silent data corruption for
hpc applications. IEEE Trans. Parallel Distrib. Syst., 27(10):2809–2823, October 2016.

[48] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico, Joseph Ful-
lop, and William Kramer. Lessons learned from the analysis of system failures at petascale:
The case of blue waters. In Dependable Systems and Networks (DSN), 2014 44th Annual
IEEE/IFIP International Conference on, pages 610–621. IEEE, 2014.

[49] Jack Dongarra, George Bosilca, Zizhong Chen, Victor Eijkhout, Graham E Fagg, Erika
Fuentes, Julien Langou, Piotr Luszczek, Jelena Pjesivac-Grbovic, Keith Seymour, et al.
Self-adapting numerical software (sans) effort. IBM Journal of Research and Development,
50(2.3):223–238, 2006.

[50] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance computing systems. The International
Journal of High Performance Computing Applications, 30(1):3–10, 2016.

[51] Mohammed el Mehdi Diouri, Olivier Glück, Laurent Lefevre, and Franck Cappello. Energy
considerations in checkpointing and fault tolerance protocols. In DSN Workshops, pages 1–6.
IEEE, 2012.

[52] James Elliott, Mark Hoemmen, and Frank Mueller. Evaluating the impact of sdc on the
gmres iterative solver. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th
International, pages 1193–1202. IEEE, 2014.

[53] Christian Engelmann and Swen Böhm. Redundant execution of hpc applications with mr-mpi.
In PDCN, pages 15–17, 2011.

[54] Kurt Ferreira, Rolf Riesen, Ron Oldfield, Jon Stearley, James Laros, Kevin Pedretti, and
Ron Brightwell. rmpi: increasing fault resiliency in a message-passing environment. Sandia
National Laboratories, Albuquerque, NM, Tech. Rep. SAND2011-2488, 2011.

[55] Kurt Ferreira, Jon Stearley, James H Laros III, Ron Oldfield, Kevin Pedretti, Ron Brightwell,
Rolf Riesen, Patrick G Bridges, and Dorian Arnold. Evaluating the viability of process repli-
cation reliability for exascale systems. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, page 44. ACM, 2011.

118

[56] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron
Brightwell. Detection and correction of silent data corruption for large-scale high-performance
computing. In Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC ’12, Washington, DC, USA, 2012. IEEE Computer
Society Press.

[57] Cijo George and Sathish Vadhiyar. Fault tolerance on large scale systems using adaptive
process replication. IEEE Transactions on Computers, 64(8):2213–2225, 2014.

[58] Amit Golander, Shlomo Weiss, and Ronny Ronen. Ddmr: Dynamic and scalable dual modular
redundancy with short validation intervals. IEEE Computer Architecture Letters, 7(2):65–68,
2008.

[59] Ryan E Grant, Stephen L Olivier, James H Laros, Ron Brightwell, and Allan K Porterfield.
Metrics for evaluating energy saving techniques for resilient hpc systems. In 2014 IEEE In-
ternational Parallel & Distributed Processing Symposium Workshops, pages 790–797. IEEE,
2014.

[60] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31(5):532–533,
1988.

[61] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart (blcr) for linux clusters.
In Journal of Physics: Conference Series, volume 46, page 494. IOP Publishing, 2006.

[62] Michael T Heath. Scientific computing. McGraw-Hill New York, 2002.

[63] Joyce C. Ho, Joydeep Ghosh, and Jimeng Sun. Marble: High-throughput phenotyping from
electronic health records via sparse nonnegative tensor factorization. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14,
pages 115–124, New York, NY, USA, 2014. ACM.

[64] Kuang-Hua Huang et al. Algorithm-based fault tolerance for matrix operations. IEEE trans-
actions on computers, 100(6):518–528, 1984.

[65] Markus Huber, Bjorn Gmeiner, Ulrich Rude, and Barbara Wohlmuth. Resilience for massively
parallel multigrid solvers. SIAM Journal on Scientific Computing, 38(5):S217–S239, 2016.

[66] Saurabh Hukerikar, Pedro C Diniz, Robert F Lucas, and Keita Teranishi. Opportunistic
application-level fault detection through adaptive redundant multithreading. In 2014 Inter-
national Conference on High Performance Computing & Simulation (HPCS), pages 243–250.
IEEE, 2014.

[67] Luc Jaulmes, Marc Casas, Miquel Moretó, Eduard Ayguadé, Jesús Labarta, and Mateo Valero.
Exploiting asynchrony from exact forward recovery for due in iterative solvers. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, page 53. ACM, 2015.

[68] Inah Jeon, Evangelos E. Papalexakis, U Kang, and Christos Faloutsos. HaTen2: Billion-scale
tensor decompositions. In IEEE International Conference on Data Engineering (ICDE), 2015.

[69] David B Johnson and Willy Zwaenepoel. Sender-based message logging. Rice University,
Department of Computer Science, 1987.

[70] U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. GigaTensor: Scaling
tensor analysis up by 100 times - algorithms and discoveries. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pages
316–324, New York, NY, USA, 2012. ACM.

119

[71] O. Kaya and B. Uçar. Parallel Candecomp/Parafac decomposition of sparse tensors using
dimension trees. SIAM Journal on Scientific Computing, 40(1):C99–C130, 2018.

[72] Oguz Kaya and Bora Uçar. Scalable sparse tensor decompositions in distributed memory
systems. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15, pages 77:1–77:11, New York, NY, USA, 2015.
ACM.

[73] Jeongnim Kim, Andrew D Baczewski, Todd D Beaudet, Anouar Benali, M Chandler Ben-
nett, Mark A Berrill, Nick S Blunt, Edgar Josué Landinez Borda, Michele Casula, David M
Ceperley, et al. Qmcpack: an open source ab initio quantum monte carlo package for the
electronic structure of atoms, molecules and solids. Journal of Physics: Condensed Matter,
30(19):195901, 2018.

[74] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500,
2009.

[75] Jiri Kraus. An introduction to cuda-aware mpi. Weblog entry]. PARALLEL FORALL, 2013.

[76] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd interna-
tional conference on world wide web, pages 1343–1350, 2013.

[77] Reservoir Labs. ENSIGN: Multi-domain analytics. Available from https://www.reservoir.

com/ensign/.

[78] Julien Langou, Zizhong Chen, George Bosilca, and Jack Dongarra. Recovery patterns for
iterative methods in a parallel unstable environment. SIAM Journal on Scientific Computing,
30(1):102–116, 2007.

[79] Jungseob Lee and Nam Sung Kim. Optimizing throughput of power-and thermal-constrained
multicore processors using dvfs and per-core power-gating. In Design Automation Conference,
2009. DAC’09. 46th ACM/IEEE, pages 47–50. IEEE, 2009.

[80] Jiajia Li, Yuchen Ma, and Richard Vuduc. ParTI! : A parallel tensor infrastructure for
multicore CPUs and GPUs (Version 1.0.0), Oct 2018.

[81] Jiajia Li, Jimeng Sun, and Richard Vuduc. HiCOO: Hierarchical storage of sparse tensors.
In Proceedings of the ACM/IEEE International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), Dallas, TX, USA, November 2018.

[82] Jian Li and José F Mart́ınez. Power-performance considerations of parallel computing on
chip multiprocessors. ACM Transactions on Architecture and Code Optimization (TACO),
2(4):397–422, 2005.

[83] Xin Liang, Jieyang Chen, Dingwen Tao, Sihuan Li, Panruo Wu, Hongbo Li, Kaiming Ouyang,
Yuanlai Liu, Fengguang Song, and Zizhong Chen. Correcting soft errors online in fast fourier
transform. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, pages 30:1–30:12, New York, NY, USA, 2017. ACM.

[84] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi. A unified optimization approach for sparse
tensor operations on GPUs. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pages 47–57, Sept 2017.

[85] Xinxin Mei, Qiang Wang, and Xiaowen Chu. A survey and measurement study of gpu dvfs on
energy conservation. Digital Communications and Networks, 3(2):89–100, 2017.

120

https://www.reservoir.com/ensign/
https://www.reservoir.com/ensign/

[86] Esteban Meneses, Osman Sarood, and Laxmikant V Kalé. Energy profile of rollback-recovery
strategies in high performance computing. Parallel Computing, 40(9):536–547, 2014.

[87] Zheng Miao, Jon Calhoun, and Rong Ge. Energy analysis and optimization for resilient scalable
linear systems. In 2018 IEEE International Conference on Cluster Computing (CLUSTER),
pages 24–34. IEEE, 2018.

[88] Bryan Mills, Ryan E Grant, Kurt B Ferreira, and Rolf Riesen. Evaluating energy savings
for checkpoint/restart. In Proceedings of the 1st International Workshop on Energy Efficient
Supercomputing, page 6. ACM, 2013.

[89] Bryan Mills, Taieb Znati, and Rami Melhem. Shadow computing: An energy-aware fault
tolerant computing model. In ICNC, pages 73–77. IEEE, 2014.

[90] Amitabh Mishra and Prithviraj Banerjee. An algorithm-based error detection scheme for the
multigrid method. IEEE Transactions on Computers, 52(9):1089–1099, 2003.

[91] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R de Supinski. Design, model-
ing, and evaluation of a scalable multi-level checkpointing system. In Proceedings of the 2010
ACM/IEEE international conference for high performance computing, networking, storage and
analysis, pages 1–11. IEEE Computer Society, 2010.

[92] S Narang and G Diamos. Baidu deepbench, 2017.

[93] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck Cappello.
Veloc: Towards high performance adaptive asynchronous checkpointing at large scale. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 911–920.
IEEE, 2019.

[94] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram Krishnamoor-
thy, and Ponnuswamy Sadayappan. An efficient mixed-mode representation of sparse tensors.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–25, 2019.

[95] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing
neural networks. CoRR, abs/1509.06569, 2015.

[96] Chris C Paige, Beresford N Parlett, and Henk A Van der Vorst. Approximate solutions and
eigenvalue bounds from krylov subspaces. Numerical linear algebra with applications, 2(2):115–
133, 1995.

[97] Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D. Sidiropoulos. ParCube: Sparse
parallelizable tensor decompositions. In Proceedings of the 2012 European Conference on
Machine Learning and Knowledge Discovery in Databases - Volume Part I, ECML PKDD’12,
pages 521–536, Berlin, Heidelberg, 2012. Springer-Verlag.

[98] Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. Sparse hierarchical Tucker
factorization and its application to healthcare. In Proceedings of the 2015 IEEE International
Conference on Data Mining (ICDM), ICDM ’15, pages 943–948, Washington, DC, USA, 2015.
IEEE Computer Society.

[99] Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard Vuduc, Elizabeth Searles,
Michael Thompson, and Jimeng Sun. SPARTan: Scalable PARAFAC2 for large & sparse
data. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’17, pages 375–384, New York, NY, USA, 2017. ACM.

121

[100] James S Plank, Kai Li, and Michael A Puening. Diskless checkpointing. IEEE Transactions
on parallel and Distributed Systems, 9(10):972–986, 1998.

[101] Thomas B Rolinger, Tyler A Simon, and Christopher D Krieger. Performance considerations
for scalable parallel tensor decomposition. Journal of Parallel and Distributed Computing,
129:83–98, 2019.

[102] Thomas Ropars, Arnaud Lefray, Dohyun Kim, and André Schiper. Efficient process replication
for mpi applications: sharing work between replicas. In 2015 IEEE International Parallel and
Distributed Processing Symposium, pages 645–654. IEEE, 2015.

[103] Yousef Saad. Iterative Methods for Sparse Linear Systems - Second Edition. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2003.

[104] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010.

[105] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. Exploration of lossy com-
pression for application-level checkpoint/restart. In 2015 IEEE International Parallel and
Distributed Processing Symposium, pages 914–922. IEEE, 2015.

[106] Martin D Schatz, Robert A Van de Geijn, and Jack Poulson. Parallel matrix multiplication:
A systematic journey. SIAM Journal on Scientific Computing, 38(6):C748–C781, 2016.

[107] Alexander Schöll, Claus Braun, Michael A Kochte, and Hans-Joachim Wunderlich. Efficient
algorithm-based fault tolerance for sparse matrix operations. In Dependable Systems and
Networks (DSN), 2016 46th Annual IEEE/IFIP International Conference on, pages 251–262.
IEEE, 2016.

[108] Alexander Schöll, Claus Braun, and Hans-Joachim Wunderlich. Energy-efficient and error-
resilient iterative solvers for approximate computing. In On-Line Testing and Robust System
Design (IOLTS), 2017 IEEE 23rd International Symposium on, pages 237–239. IEEE, 2017.

[109] Lin Shi, Hao Chen, and Ting Li. Hybrid cpu/gpu checkpoint for gpu-based heterogeneous
systems. In International Conference on Parallel Computing in Fluid Dynamics, pages 470–
481. Springer, 2013.

[110] Alex Shye, Joseph Blomstedt, Tipp Moseley, Vijay Janapa Reddi, and Daniel A Connors. Plr:
A software approach to transient fault tolerance for multicore architectures. IEEE Transactions
on Dependable and Secure Computing, 6(2):135–148, 2009.

[111] Jaswinder Pal Singh, John L Hennessy, and Anoop Gupta. Scaling parallel programs for
multiprocessors: Methodology and examples. Computer, 26(7):42–50, 1993.

[112] Joseph Sloan, Rakesh Kumar, and Greg Bronevetsky. An algorithmic approach to error lo-
calization and partial recomputation for low-overhead fault tolerance. In Dependable Systems
and Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on, pages 1–12.
IEEE, 2013.

[113] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George
Karypis. FROSTT: The Formidable Repository of Open Sparse Tensors and Tools, 2017.

[114] Shaden Smith and George Karypis. A medium-grained algorithm for distributed sparse ten-
sor factorization. In Parallel and Distributed Processing Symposium (IPDPS), 2016 IEEE
International. IEEE, 2016.

122

[115] Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis. SPLATT:
Efficient and parallel sparse tensor-matrix multiplication. In Proceedings of the 29th IEEE
International Parallel & Distributed Processing Symposium, IPDPS, 2015.

[116] Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis. SPLATT:
The Surprisingly ParalleL spArse Tensor Toolkit (Version 1.1.1). Available from https://

github.com/ShadenSmith/splatt, 2016.

[117] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi, Pavan
Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al. Addressing failures in
exascale computing. The International Journal of High Performance Computing Applications,
28(2):129–173, 2014.

[118] Paulo Sousa, Nuno Ferreira Neves, and Paulo Veŕıssimo. Resilient state machine replication.
In 11th Pacific Rim International Symposium on Dependable Computing (PRDC’05), pages
5–pp. IEEE, 2005.

[119] Omer Subasi, Osman Unsal, and Sriram Krishnamoorthy. Automatic risk-based selective
redundancy for fault-tolerant task-parallel hpc applications. In Proceedings of the Third Inter-
national Workshop on Extreme Scale Programming Models and Middleware, pages 1–8, 2017.

[120] Omer Subasi, Gulay Yalcin, Ferad Zyulkyarov, Osman Unsal, and Jesus Labarta. Designing
and modelling selective replication for fault-tolerant hpc applications. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 452–457.
IEEE, 2017.

[121] Li Tan. The interplay between energy efficiency and resilience for scalable high performance
computing systems. University of California, Riverside, 2015.

[122] Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo Wu, Xin Liang, Eddy Z.
Zhang, Darren Kerbyson, and Zizhong Chen. New-sum: A novel online abft scheme for
general iterative methods. In Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, HPDC ’16, pages 43–55, New York, NY,
USA, 2016. ACM.

[123] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective commu-
nication operations in mpich. The International Journal of High Performance Computing
Applications, 19(1):49–66, 2005.

[124] Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech, Sudharshan Vazhku-
dai, Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe Navaux, et al. Understand-
ing gpu errors on large-scale hpc systems and the implications for system design and operation.
In HPCA, pages 331–342. IEEE, 2015.

[125] Robert A Van De Geijn and Jerrell Watts. SUMMA: Scalable universal matrix multiplication
algorithm. Concurrency: Practice and Experience, 9(4):255–274, 1997.

[126] Long Wang, Karthik Pattabiraman, Zbigniew Kalbarczyk, Ravishankar K Iyer, Lawrence
Votta, Christopher Vick, and Alan Wood. Modeling coordinated checkpointing for large-
scale supercomputers. In 2005 International Conference on Dependable Systems and Networks
(DSN’05), pages 812–821. IEEE, 2005.

[127] Eric W Weisstein. Gershgorin circle theorem. https://mathworld. wolfram. com/, 2003.

123

https://github.com/ShadenSmith/splatt
https://github.com/ShadenSmith/splatt

[128] Panruo Wu, Nathan DeBardeleben, Qiang Guan, Sean Blanchard, Jieyang Chen, Dingwen
Tao, Xin Liang, Kaiming Ouyang, and Zizhong Chen. Silent data corruption resilient two-
sided matrix factorizations. SIGPLAN Not., 52(8):415–427, January 2017.

[129] Panruo Wu, Qiang Guan, Nathan DeBardeleben, Sean Blanchard, Dingwen Tao, Xin Liang,
Jieyang Chen, and Zizhong Chen. Towards practical algorithm based fault tolerance in dense
linear algebra. In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, pages 31–42. ACM, 2016.

[130] Zhiwei Xu and Kai Hwang. Modeling communication overhead: Mpi and mpl performance
on the ibm sp2. IEEE Parallel & Distributed Technology: Systems & Applications, 4(1):9–24,
1996.

[131] Yavuz Yetim, Sharad Malik, and Margaret Martonosi. Eprof: An energy/performance/reli-
ability optimization framework for streaming applications. In 17th Asia and South Pacific
Design Automation Conference, pages 769–774. IEEE, 2012.

[132] John W Young. A first order approximation to the optimum checkpoint interval. Communi-
cations of the ACM, 17(9):530–531, 1974.

[133] Ziming Zheng and Zhiling Lan. Reliability-aware scalability models for high performance
computing. In 2009 IEEE International Conference on Cluster Computing and Workshops,
pages 1–9. IEEE, 2009.

124

	Scalable and Reliable Sparse Data Computation on Emergent High Performance Computing Systems
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	The Interplay between Scalability and Resilience Challenges in HPC
	Model-based Approach for Resilient and Energy-efficient Sparse Linear Slovers
	Relaxed Replication for Energy Efficient and Resilient Sparse Linear Solvers on Heterogeneous Systems
	Scalable Algorithms for Large-Scale Sparse Tensor Decomposition
	Summary of Contributions

	Background and Related Work
	Fault Tolerance for HPC
	Resilience for Linear Solvers
	Interplay between Power-scalability and Resilience
	Performance-scalability for Sparse Tensor Decomposition

	Resilient and Energy Efficient Scalable Linear Solvers
	Performance, Energy, and Resilience Co-Modeling
	Minimizing Recovery Cost
	Experimental Results
	Summary

	Relaxed Replication for Energy Efficient and Resilient GPU Computing
	Framework Design
	Relaxed Replication for GPU Computing
	Experimental Results
	Summary

	Scalable Algorithms for Large-Scale Sparse Tensor Decomposition
	Learning the Performance of Distributed Tensor Decompositions
	Irregularity-Aware Algorithm for Workload Partition
	The BA-CPD Algorithm
	Experimental Results
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

