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Abstract

Applications ranging from video meetings, live streaming, video games, au-

tonomous vehicle operations, and algorithmic trading heavily rely on low latency

communication to operate optimally. A solution to fully support this growing demand

for low latency is called dual-queue active queue management (AQM). Dual-queue

AQM’s functionality is reduced without network traffic throughput prediction.

Perhaps due to the current popularity of machine learning, there is a trend

to adopt machine learning models over traditional algorithmic throughput predic-

tion approaches without empirical support. This study tested the effectiveness of

machine learning as compared to time series forecasting algorithms in predicting per-

flow network traffic throughput on two separate datasets. It was hypothesized that

a machine learning model would surpass the accuracy of an autoregressive integrated

moving average algorithm when predicting future network per-flow throughput as

measured by the mean absolute difference between the actual and predicted values of

two independent datasets created by sampling network traffic.

Autoregressive integrated moving average (ARIMA), a deep neural network

(DNN) architecture, and a long short-term memory (LSTM) neural network archi-

tecture were used to predict future network throughput in two different datasets.

Dataset one was used in establishing the initial performance benchmarks. Findings

were replicated with a second dataset. The results showed that all three models per-
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formed well. ANOVA failed to demonstrate a statistically significant advantage of

machine learning over the algorithmic model. From dataset one, ANOVA F = 0.138

and p = 0.983. From dataset two, F = 0.087 and p = 0.994. The coefficient of de-

termination tested the fit of models in the two datasets. The r squared value ranged

from 0.971 to 0.983 in the machine models to 0.759 to 0.963 in the algorithmic model.

These findings show no evidence that there is a significant advantage of apply-

ing machine learning to per-flow throughput prediction in the two datasets that were

tested. While machine learning has been a popular approach to throughput predic-

tion, the effort and complexity of building such systems may instead warrant the use

of algorithmic forecasting models in rapid prototyping environments. Whether these

findings can be generalized to more extensive and variable datasets is a question for

future research.

iii



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Dual-queue AQM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Explicit Congestion Notification . . . . . . . . . . . . . . . . . . . . . 6
1.3 Dual-Queue and Queuing Delay . . . . . . . . . . . . . . . . . . . . . 8
1.4 Flow Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Flow Throughput Prediction . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 General Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . 13
2.2 ARIMA and LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Deep Learning Throughput Prediction . . . . . . . . . . . . . . . . . 16

3 Methods and Implementation . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Network Traffic Collection . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Computational Workspace . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 ARIMA Setup and Parameters . . . . . . . . . . . . . . . . . . . . . 23
3.5 DNN Setup and Parameters . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 RNN Setup and Parameters . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Accuracy and Validation . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Computational Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Review of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



4.3 First Dataset Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Second Dataset Predictions . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . 42
5.1 Answering the Research Question . . . . . . . . . . . . . . . . . . . . 43
5.2 Levels of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Interesting Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



List of Tables

4.1 Computational delay performance data . . . . . . . . . . . . . . . . . 31
4.2 Characteristics of datasets . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Characteristics of model prediction on the first dataset . . . . . . . . 33
4.4 Characteristics of model prediction on the second dataset . . . . . . . 36
4.5 Coefficient of determination, r2 values, for assessment of the goodness-

of-fit between predicted and expected distributions . . . . . . . . . . 40

vi



List of Figures

1.1 Diagram illustrating the general structure of Dual-Queue AQM and
the flow of data through it with respect to the work of this study . . 7

3.1 Diagram illustrating this study’s LSTM (top) and RNN (bottom) ar-
chitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Box and whisker plots comparing the distributions of predicted and
expected data (left), and a box and whisker plot of the distribution of
error (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 ARIMA on dataset 1, absolute error distribution (left) and predicted
v. expected distribution (right) . . . . . . . . . . . . . . . . . . . . . 34

4.2 DNN on dataset 1, absolute error distribution (left) and predicted v.
expected distribution (right) . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 RNN on dataset 1, absolute error distribution (left) and predicted v.
expected distribution (right) . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 ARIMA on dataset 2, absolute error distribution (left) and predicted
v. expected distribution (right) . . . . . . . . . . . . . . . . . . . . . 37

4.5 DNN on dataset 2, absolute error distribution (left) and predicted v.
expected distribution (right) . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 RNN on dataset 2, absolute error distribution (left) and predicted v.
expected distribution (right) . . . . . . . . . . . . . . . . . . . . . . . 38

vii



Chapter 1

Introduction

In October of 1986, the Internet experienced its first large-scale congestion

collapse, where the Internet’s throughput dropped by a factor of almost 1000. At

that rate, a computer would take over 20 seconds to send a 100-character email.

A solution to the congestion collapse had to be made for the Internet to continue

its growth. The congestion collapse event spawned a seminal paper in computer

networking authored by Jacobson [9]. It detailed methods and algorithms to prevent

congestion collapse from happening again. The paper was highly influential, and the

detailed core concepts are still used today.

Similar to 1986, the Internet is approaching another bottleneck in performance.

TCP, the most commonly used Internet protocol today, has a problem with through-

put fairness. As it is currently, TCP is a greedy protocol that attempts to obtain as

much network bandwidth as possible. This behavior can cause unfair and inefficient

performance for small communication messages traveling along the same network

paths. This issue has been partially solved with active queue management (AQM)

algorithms like RED and CoDel, which aim to slow TCP’s bandwidth acquisition.

These algorithms are adequate from a throughput perspective, but there is room for
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improvement from a latency perspective. Low latency networking is the next fron-

tier of computer networking, and current Internet traffic control techniques are not

enough to support this frontier.

It is critical to discuss real-world cases for low latency networking on the

open Internet. Queueing delays can be orders of magnitude greater than that of

the propagation delay (the time it takes for information to move across physical

network lines) for a network message sent halfway around the world [5]. According to

Carlucci et al. [5], adding bandwidth is comparatively inexpensive but is ineffective

for reducing latency. Instead, these authors argued that the better approach is to

focus on AQM algorithms to reduce Internet latency. Real-time applications like

video meetings (Zoom, WebEx, Teams), live streaming (Twitch), video games (many

multiplayer first-person shooters), autonomous vehicle operations (including airborne

drones swarms), and algorithmic trading applications that demand low latency to

function effectively [2, 5]. Such applications perform noticeably worse or not at all

when their low latency needs are not met.

Improvement in latency performance positively affects a user’s experience with

the application’s efficiency (and vice versa), as shown by Amin et al. [1]. These au-

thors specifically demonstrated that degradation in network latency and increased

network jitter negatively affected a user’s perceived experience while playing an on-

line game. The previously mentioned applications that can suffer from poor latency,

if implemented correctly, stand to gain orders of magnitude improvement from sup-

porting their low latency needs.

A critical piece of technology that needs to be introduced before discussing

solutions to providing low latency is time series forecasting methods. Before the pop-

ularization of the GPU and, consequently, neural networks, the primary method for

predicting future trends with past data were time series forecasting algorithms. In
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1970, a seminal paper was published by Box and Pierce [3]. These authors intro-

duced ARIMA (autoregressive integrated moving average) as an effective method for

predicting future trends. Since then, ARIMA has successfully been applied in many

fields, including economics, medicine, astronomy, and computer networking. How-

ever, ARIMA can fall short when multiple data features and small subtleties exist

in the historical data. In 2012 there was a resurgence in neural network popularity

following the publication of a paper by Hinton et al. [8]. The paper showcased the

merits of neural networks run on the GPU. Until that point, ARIMA was the defacto

standard for trend prediction in every area it was applied. Nowadays, the hierarchies

for the most effective prediction methods almost always contain some form of a neural

network at the top of the hierarchy.

With a proven and reliable way to predict future trends, a new AQM technique

called dual-queue has been proposed as a solution to delivering low latency to the

Internet. Dual-queue active queue management (AQM) was proposed by Briscoe

et al. [4] then adopted by White et al. in a white paper [17]. Prior to [4], the

best forms of low latency supporting AQMs could not provide low enough latency

or the needed consistency to support applications when subjected to extreme traffic

loads. Both CoDel and RED fall short in providing latency below five milliseconds.

Briscoe states that even current state-of-the-art AQMs like Fair/Flow Queueing and

CoDel (FQ CoDel) achieve an average of 5-20ms latencies. This is far from optimal

for increasingly demanding, low latency applications. Further, queuing latency can

easily reach upwards of 100ms during the extreme loads of peak Internet use when

using CoDel or RED. White et al. argued that this new form of low latency queueing

would positively impact business applications and end-users alike [17].

Dual-queue AQM has promising prospects to be a powerful supporting mech-

anism in the effort to create a low latency Internet. Part of the reason dual-queue
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AQM is promising is that before now, no mainstream queuing algorithm has logically

separated network traffic that needs lower latency from the bulk of latency agnostic

traffic. Previously, a video call across the country using respectively low bandwidth

would need to wait in the same queues as network traffic mass downloading family

photo libraries from the cloud and thousands of Netflix streams with a decent buffer

of video already received. The Netflix streams and photo library downloads could

cause an extreme delay, creating a poor real-time experience for the video call users.

The underlying component of this mechanism needs to be evaluated and re-

fined to support dual-queue AQM’s rise in popularity and effectiveness. Dual-queue

AQM relies heavily on per-flow network throughput prediction to make its decisions.

Essentially, the dual-queue AQM needs to know how network flows will behave in the

future so it may queue current traffic accordingly.

Currently, there are two methods for predicting future network flow through-

put. The first is a classical algorithmic approach using time series forecasting, and

the second method uses machine learning to predict network flow throughput.

At the top level, machine learning may seem like the obvious option because

of its proven capabilities in predicting future trends. This view, however, may not

be correct as machine learning is very computationally expensive and burdensome to

custom tailor for variations in its various deployment environments. On the other

hand, algorithmic approaches are simpler to implement and deploy as they are ”plug

and play.” One pitfall of algorithmic approaches like ARIMA is that they are known

not to recognize subtle features in the data. Both approaches have their merits and

drawbacks.

For the above reasons, this study tested the classical algorithm and modern

machine learning approaches to predicting network per-flow throughput to determine

which approach is better suited for the open Internet. This study aimed to test and
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discuss the benefits and limitations of each approach in terms of computational cost,

accuracy, viability at scale, and in constrained domain areas under a predefined set

of assumptions and operating conditions.

1.1 Dual-queue AQM

Dual-queue AQM separates queue building and non-queue building network

application flows into separate packet switching queues. This queue separation al-

lows latency-sensitive application flows to be ”fast-tracked” as they are generally

non-queue building and can skip to the front of the queue to reduce their latency.

The queue building application flows that are typically not latency sensitive are put

into a low-priority queue. Both of these actions taken by a dual-queue AQM help

support the low latency requirements of the modern-day Internet. An important note

about dual-queues is that although the fast queue has priority, all applications using

the dual-queue system have fair and comparable throughput for their respective flows.

Fair and comparable throughput is possible because the low latency queue enforces a

minimal amount of data transfer allowed by each application flow. The low latency

queue attempts to maintain the smallest possible queue size. Any offending applica-

tion flows that hinder its attempts to maintain a minimal queue size will be relocated

either partially or totally to the standard queue.

Small queue size enforcement is one of the primary motivations behind creating

an accurate and consistent application throughput predictor. Machine learning and

time series forecasting algorithms are the main two methods for predicting application

and network throughput. This study directly compares these throughput prediction

methods to ascertain if there is an optimal choice for per-flow throughput prediction.

Many studies have investigated the performance differences between machine learning
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and algorithmic approaches to time series forecasting, but to this author’s knowledge,

not within the domain of network throughput prediction on a per-flow basis. A direct

comparison between the two methods was not found during a review of the literature.

Each technique has potential associated benefits and costs that need to be tested

before either solution is adopted for helping maintain a minimal low latency queue

size.

1.2 Explicit Congestion Notification

In conjunction with the previous prediction methods, dual-queue AQM sys-

tems can also take advantage of a mechanism in internet communications called Ex-

plicit Congestion Notification (ECN). ECN is a process for marking internet packets

to notify relevant systems and services of network congestion as proposed by Ra-

makrishnan et al. [14]. These authors state that while using ECN, the waiting time

for retransmission timeouts becomes far less, enabling more efficient communication

in worst-case scenarios. ECN is an extension of the IP standard but is in no way

a requirement of IP. For this reason, the ECN flag in a network packet can signify

other information if the network it is traversing has been set up to interpret that flag.

For instance, if a network has a predetermined set of applications allowed on the low

latency queue, then packets from these applications may be marked with the ECN

flag to be let onto the low latency queue.

Another scenario where ECN is used is in conjunction with machine learning

and algorithmic flow classification. A flow in the context of this study is a series of

network packets sent in a single direction from a specific set of addresses and ports.

Using ECN in conjunction with machine learning and algorithmic thresholding works

by marking a flow’s packets to notify down and upstream senders of imminent con-
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Figure 1.1: Diagram illustrating the general structure of Dual-Queue AQM and the
flow of data through it with respect to the work of this study
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gestion, as explored by Majidi et al. [12]. These authors found that using a machine

learning-based dynamic thresholding to mark packets with the ECN flag allowed for

support of low latency and low loss in datacenters. This study will specifically not

include ECN because this study deals with throughput prediction over the open In-

ternet, and ECN serves a different purpose on the open Internet.

To explain the 1) relationship between network throughput prediction, flow

classification, and dual-queue AQM systems; 2) what each system does; 3) how they

feed into each other are all necessary topics to discuss. All three components must be

refined, integrated, and appropriately evaluated to build genuinely robust and func-

tional dual-queue systems. As illustrated below, in Figure 1.1, there is considerable

data sharing needed between each component to decide in what queue a flow belongs.

Each of the blue squares in Figure 1.1 represents a component needed to make a

fair, efficient, robust, and reliable dual-queue system. Between each of these compo-

nents are colored arrows representing data flow between components. The color of

these arrows signifies the relative amount of data transfer needed to support the next

component in the system.

1.3 Dual-Queue and Queuing Delay

As loosely defined in the previous section, dual-queue active queue manage-

ment is a form of traffic management (built on top of congestion control) centered

around reducing latency and variance in queuing latency stemming from queuing de-

lays [17]. Queuing delay is wildly variable. If no packets are in front of an incoming

packet in a queue, the queuing delay will be zero. Conversely, suppose a packet ar-

rives at a fully saturated queue. According to Kurose and Ross [10], the queuing delay

can take a tremendous amount of time proportional to the other delays a packet can

8



experience.

Dual-queue AQM partially solves this issue of variable and disproportional

queuing delay by creating two queues. One queue accepts non-queue building net-

work traffic while the other accepts all traffic rejected by the low latency queue.

Applications that require low latency networking tend to create network traffic in

a non-queue building way. This non-queue building behavior means that network

traffic self identifies in which queue it should belong.

1.3.1 Integration of Dual-Queue AQM With Flow Classifica-

tion

In a classic dual-queue AQM system, the flow class (to which queue a flow

belongs) is decided retroactively. Flow class is decided by defining or calculating a

threshold of throughput. When this throughput threshold is passed, a flow will be

categorized as queue building and will no longer be put on the low latency queue.

Oljira et al. [2] raised an issue when evaluating dual-queue performance using data

center TCP (DCTCP). Suppose a non-queue building flow creates a temporary burst

of packets through one mechanism. In that case, the latency-sensitive flow will ex-

perience an extreme degradation in performance because of the single burst incident.

Oljira argued that the next step was to look at other TCP protocols to see if this issue

could be solved using a different protocol. A different solution to the problem Oljira

discussed is to instead try and account for the burstiness of TCP and correctly classify

a flow that may have unexpected but short bursts in throughput. This solution can

is grouped under flow classification.
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1.4 Flow Classification

1.4.1 Flow Classification Defined

In the context of this study, there are two types of flow classification techniques,

but they both have the same goal. The goal of flow classification is to identify and

prioritize short non-queue building flows as defined by Guo and Matta [6]. The first

and current technique of classic dual-queue AQM is retroactive classification. This

classification technique takes recent data of each flow and classifies that flow based

on how it has recently behaved. This technique has two variants: the first waits until

a flow breaks the throughput threshold and permanently classifies it as a classic flow.

The second variant decides the class of a flow actively based on recent flow behavior

and will allow reclassification often.

Each of these two variants has its benefits and drawbacks. The first variant

(wait and see, no reclassification) has the advantage of never letting a repeat queue

building offender back into the low latency queue, preserving the performance of the

low latency queue. The drawback to this approach is that if a latency-sensitive flow

temporarily breaks the throughput boundary, it will have a permanent and severe

hit on its latency performance. The second variant has exactly the opposite advan-

tages and disadvantages to the first variant. The second variant will let repeat queue

building offenders back into the low latency queue if their traffic behavior is sinu-

soidal with dips and peaks in throughput. This disadvantage will temporarily and

frequently ruin the low latency performance of the dual-queue. On the other hand,

the second variant will never permanently remove a non-queue building flow from the

low latency queue, meaning that a latency-sensitive flow will never have a permanent

hit to performance.

Both of the variants of the first method have substantial drawbacks that the
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second method addresses. The second method obtains the best of both variants in

terms of advantages and disadvantages from the first method’s two variants. The

second method attempts to proactively decide a flow’s class to prevent the disadvan-

tages of the two variants of the first method. In proactively predicting which class

a flow will be before that flow’s data reaches the queue, this technique achieves two

new positive outcomes. First, the dual-queue has a better chance of moving flows

that will break the throughput threshold before they can cause a performance hit.

Second, the dual-queue can preemptively move a flow back to the low latency queue

once it predicts the flow will no longer produce queue-building traffic.

1.4.2 Integration of Flow Classification With Flow Through-

put Prediction

With the convincing benefits of proactive flow classification discussed above,

the next step needed to create a functional and robust dual-queue is a way to predict

what class a flow will be in the future before it becomes that class. The simple answer

to this step is to predict the future throughput and apply the usual throughput thresh-

old to the predicted throughput. The tricky part is to predict the future throughput

accurately. Attempting to predict future throughput is where the techniques of time

series forecasting and machine learning come into play.

1.5 Flow Throughput Prediction

The final component of a robust and functional dual-queue AQM is the predic-

tion of the future throughput of a network flow given past flow data. The prediction

needs to be relatively accurate, accounting for the scale of the network, i.e., 0.01Mb
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of average prediction error on a 1Mb/s network path and 1Mb of average prediction

error on a 100Mb/s network path. There are two main methods for predicting the

throughput of a flow. The first and more traditional computer networking approach

uses time series forecasting algorithms to understand the direction a flow’s through-

put is headed. The second and more modern approach uses the subsets of machine

learning, either deep neural networks (DNN) or recursive neural networks (RNN).

Flow throughput prediction research using RNN has previously been explored

by Zhong et al. [18]. The research primarily involved the integration of an RNN

into the flow queue classification process and evaluated performance based on latency

in the network. Zhong’s work was a great showcase of the potential of machine

learning when applied to a dual-queue AQM system. However, it provided little to

no comparison of an algorithmic classification baseline. Another area of interest that

was not covered was when machine learning approaches did well at prediction and

when they failed to meet a baseline. Producing a set of assumptions under which

the prediction model will operate builds a more stable and reliable model that yields

control to a baseline algorithm when its operating assumptions are not met.

1.6 Research Question

This study tests the viability of classical algorithmic time series forecasting

against a modern machine learning approach for network flow throughput prediction

to support dual-queue AQM traffic (flow) management. It was hypothesized that a

machine learning model would surpass the accuracy of an autoregressive integrated

moving average algorithm when predicting future network per-flow throughput as

measured by the mean absolute difference between the actual and predicted values of

two independent datasets created by sampling network traffic.
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Chapter 2

Related Works

The studies that have particular weight and importance to this study are

reviewed here. The first study entails a direct comparison of ARIMA and LSTM

models as they relate to general time series forecasting. The following and most

relevant study involves the prediction of per-user throughput in cellular networks

using ARIMA and LSTM models. Lastly, a similar analysis to the previous study

uses a DNN instead of an LSTM.

2.1 General Time Series Forecasting

In a paper by Siami-Namini et al. [16], the general performance of ARIMA,

DNN, and LSTM forecasting models was tested. Siami-Namini et al. reported that

their DNN implementation of time series forecasting acted randomly and did not con-

verge on a particular amount of error. The study in this paper found similar behavior

in DNNs, having randomness in training at low error rates. This phenomenon did

not transfer to the testing set after the DNN finished training.

Siami-Namini et al. used historical data from financial and economic indices
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to train and test their models in their experimental setup. To judge the accuracy of

their models, a root mean square error (RMSE) metric was used. This metric places

greater importance on high error values while mean absolute error (MAE) provides

the absolute unscaled magnitude of the error. The study in [16] uses financial and

economic data where high levels of error are particularly undesirable. Siami-Namini

et al. found that the LSTM produced about six times less error than the ARIMA

forecasting algorithm.

2.1.1 Limitaitons of the Study

In [16] the scales of error are not put into perspective. The RMSE values lack

any associated units to help the reader understand their significance. Along with a

lack of scale, the paper does not contain any statistical analysis of the two prediction

sets to see if they differ statistically. The reader is left to guess whether the decrease

in error is significant and, if so, by what amount.

Further, the authors state an 84% to 87% reduction in error when migrating

from ARIMA to the LSTM. This percent reduction in error can be a misleading

metric. Take, for example, an RMSE of 0.01 on values that range in the millions.

This should be considered a low error for any models at this scale. Now imagine a

new model with an RMSE of 0.0001, which is a 99% reduction in error. The 99% can

be misleading because, on a scale of millions, the difference between 0.01 and 0.0001

should be negligible except in extreme cases. The same case applies to [16] where

the readers have no idea of the scales involved. A better metric would have been the

decrease in percent error.

With the previously mentioned issues of the study in [16], the reduction in the

errors reported may be significant both in scale and in terms of statistical difference.
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The problem is that the reader is left to guess. If the reported error is assumed to be

a significant reduction, there would be strong evidence that LSTMs are more capable

than ARIMA in predicting financial and economic data. The reader may go one

step further and incorrectly abstract this finding to all forecasting domains. For this

reason, research and testing in all domain areas of time series forecasting are essential

to expanding the understanding and differences between LSTM and ARIMA models.

2.2 ARIMA and LSTM

The study by He et al. in [7] is highly relevant to the current project. He et

al. compares ARIMA and LSTM forecasting models, similar to the previous work

discussed in [16]. These authors evaluated LSTM and ARIMA performance in pre-

dicting cellular encrypted user traffic throughput. He et al. found that the LSTM

model was either on par or outperformed the ARIMA model. One intriguing aspect

of the study was that the training and deployment context was the same. He et al.

proposed using ”on-line” training where the deployed machine learning model would

first train on network data flowing through the network switch. At the same time, an

algorithmic prediction approach handles the prediction decisions. When the machine

learning model is mature enough (i.e., lower average absolute error than the algo-

rithmic model), the model may take over traffic prediction. This ”on-line” training

approach solves a generalizability problem most machine learning models face when

exposed to wide ranges and types of Internet traffic.

A critical difference between the work of He et al. and this study is the type

of network flow being predicted. He et al. predicts throughput on a per-user basis,

while this study predicts on a per-flow basis. The distinction is minor but has pro-

found impacts on granularity and use cases of the prediction. User-level throughput
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prediction can be helpful in scaling the proportioned bandwidth in multiple-input and

multiple-output (MIMO) cellular networks, for instance, a stadium hosting a large

sporting event. Flow level throughput may be used for the same purpose. However,

it can also support low latency networking because of its ability to distinguish queue

building and non-queue building flows within a single user’s network traffic. The lim-

itation of user-level throughput prediction is that all users’ network traffic must be

considered equal. If a user is running a queue-building application, other applications

they may be using at the time are not eligible for the low latency queue.

2.2.1 Limitations of the Study

The main limitation of [16] was briefly discussed by themselves: computational

cost. The computational cost of training may be mitigated with several cloud-based

training strategies. A computational cost that is more problematic to deal with is

the exponential decrease in handleable network flows when dealing with time scales

between 10 to 100 milliseconds. As the resolution of the time scale increases, so

do the number of predictions needed in a second. An average execution time of

0.0001 seconds can support up to 10,000 predictions per second while only making

100 predictions in 10 milliseconds. The decrease in the number of network flows

a 10ms prediction resolution can maintain discounts that model from any MIMO

network as tens of thousands of users may be active at a time.

2.3 Deep Learning Throughput Prediction

In Zuo [19], a less common machine learning approach to time series forecasting

was tested. Zuo [19] tested the prediction performance of a deep neural network on

per-user throughput in cellular networks. Zuo also assesses the generalizability of
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DNN models when presented with new networks and their traffic. ARIMA was not

considered in Zuo’s paper. Instead, support vector regression, LSTM, and random

forests were compared to a DNN. All error was measured with MSE in megabytes.

The random forest machine learning algorithm obtained the highest error in all

test datasets, followed by the support vector regression (SVR) model with a slightly

better error. Interestingly the DNN and SVR scored almost the same error on both

datasets. This error scored by the DNN and SVR was about 0.038MB less than the

0.64MB to 0.56MB of error from the random forest algorithm. Lastly, it was noted

that the LSTM model was very unreliable during training and possibly required more

data to become reliable during training. In the dataset the LSTM was capable of

being trained on, the LSTM scored the lowest error rate at 0.48MB.

One of the study’s research questions was whether the machine learning models

were generalizable to other datasets. Zuo found that in the case of the chosen best

model from the study, the DNN performed worse on the second dataset. This finding

provides further evidence that the ”on-line” train proposed in [7] may become a

standard solution to generalizability.
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Chapter 3

Methods and Implementation

A comprehensive overview of the methods and techniques used is outlined

below. The topics of interest are the production of test data, model creation, training,

prediction, and calculations used to judge the accuracy and generalizability of the

models. Much consideration was put into providing both methods a fair and equal

opportunity for reasonable performance by supporting their particular requirements.

Therefore, this study created two unique datasets to provide a broader variation in

network topography and application traffic for testing.

3.1 Network Traffic Collection

The study used two datasets for training and accuracy validation. These

datasets were created by capturing network traffic on two separate and geographi-

cally disconnected networks. The perspective of the captured network traffic is that

of a client performing various online activities. The length of time for which the

study recorded network traffic varied depending on the main task performed while

the capture was active. During each capture, user activities that generate network
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traffic were performed. These activities ranged from website browsing, video stream-

ing, music streaming, online multiplayer games, and moderately sized ( 500MB) file

uploads and downloads.

Network traffic was captured from a laptop and a desktop depending on the

dataset in question. This was to add real-world variability to the datasets. Both

machines were running the Windows 10 Operating system. Wireshark was the packet

capture program used. No filters were applied to Wireshark, and all packets on

the relevant Internet-facing network interface were captured. Once the data were

captured and recorded, it was exported to a JSON file format where every packet

had a corresponding entry. The JSON file was then stored and processed later in the

study.

3.1.1 First Dataset

This dataset was recorded on a Windows 10 desktop with a 1 Gbps network

interface. The maximum throughput of the network is about 800 Mbps downlink and

24 Mbps uplink. The traffic workload was kept relevant but straightforward in the

first recorded dataset. The main application and traffic generator for this dataset

was a competitive first-person shooter game called Apex Legends. Its game sessions

consist of 59 other players grouped into teams of two or three. The players are spread

across a large map and forced closer by an ever-shrinking cylinder. The goal is to

be the last team left standing by the end of the game. In first-person shooters, low

latency is an essential aspect of the game. The lower the game’s latency, the fairer the

gameplay will become. Apex Legends is considered a non-queue building application

and would be a great candidate for using dual-queue AQM’s fast queue.

The second application running during the recording of the first dataset was
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Spotify. Spotify is a music streaming service that works in a similar buffered fashion to

YouTube. Spotify is considered a queue-building application as it uses TCP. Spotify’s

data bursts are small compared to other internet traffic; however, the application’s

flow may still increase latency under the right conditions. These two applications

were recorded for about twenty minutes, or the length of an entire Apex Legends

game.

3.1.2 Second Dataset

The second dataset was recorded on a Windows 10 laptop with a 600 Mbps

WiFi interface card. The maximum throughput of the network is about 20 Mbps

downlink and 3 Mbps uplink. The location from which this sample was taken is

geographically separate from the United States and uses WiFi 2.4Ghz as its primary

connection medium. This dataset’s main application and traffic generator was a

GitHub repository upload. The total upload payload size was around 350MB. During

this upload website, browsing and Spotify streaming were also performed. In this

scenario, the interesting aspect of the data is that all applications are considered

queue building. It is crucial to correctly predict the expected throughput of each

workload to ensure the flows of these applications are not added to the low latency

queue.

3.2 Computational Workspace

Model training, validation, and accuracy testing were performed on the same

desktop environment. The computer was running Windows 10 Pro. Visual Studio

Code (VS Code) was the environment of preference for code development and as an

execution interface. Within VS Code, a custom Python environment containing all
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necessary libraries runs the study’s models. Python kernel version 3.8.5 was used for

code execution. The main two libraries that support this work are Pytorch by Paszke

[13], a machine learning framework library, and statsmodels by Seabold et al. [15], a

statistical modeling library including time series forecasting algorithms.

The hardware specifications of the desktop are as follows.

• CPU: 12th Gen Intel(R) Core(TM) i7-12700KF 3.61 GHz

• Motherboard: ASUS PRIME Z690-P D4

• Memory: 2x 16GB G. Skill DDR4 SDRAM 4608MHz

• GPU: NVIDIA GeForce GTX 1080

3.3 Dataset Preprocessing

Much data reduction had to be done to make the collected datasets usable

by the ARIMA and neural network models. The size of the capture files ranged

from 1.5 gigabytes to 47 gigabytes. These captures have all possible information

Wireshark could gather about the packet and some calculated metrics like time since

the last packet. Neither ARIMA nor the neural networks need collected information

like interface name, IP version, or packet checksums, so much of the captured packet

information was discarded. On the first pass of the raw capture, every packet had

seven items recorded and stored for further processing. Those items were Linux epoch

time, frame length (bytes), network protocol, source address, destination address,

source port, and destination port.

The recorded data were then filtered again using the last four collected items

as a key to identify flows. Given the destination address and port and the source
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address and port, any packet can be grouped with its respective flow. Time series for

each flow could then be generated as the whole timeline of each flow was grouped.

Packets may have arrived out of order during collection, so their recorded Linux epoch

times were used to reorder them correctly. During this reorder, each packet was put

into an appropriate bin along the flows timeline. To clarify, along the timeline of a

flow from zero to n seconds, a bin representing one second was placed for each second

on the flows timeline. Within each bin, packets were discarded, and only their length

and count were added to the total of each respective bin. At this point, the dataset

contains everything needed to train and test every model discussed in this study.

Before feeding the datasets into the various prediction models of the study,

the grouping of data flows was partially undone. This degrouping was performed

because, in real-world workloads, flows are constantly being created and terminated.

There is no reliance on flow identity as it reduces the model’s generalizability. This

partial degrouping does not affect ARIMA’s performance as its training data is also

the input sequence. When partially degrouping flows, segments of a flow’s series must

be maintained; otherwise, the information generated is random.

To preserve the segments of every flow, each flow was cropped into blocks

of time. The study settled on 10-second blocks as it allowed smaller burst flows to

contribute their data while maintaining enough data to train and test an accurate

model. Five of the seconds in a block are used as the input sequence. One second is

used as the prediction target, and the last four seconds are used as a buffer space for

the next flow segment. A rolling window algorithm for increasing the training data

was assessed, but the performance increase was marginal as enough training data

already existed.

Next, every flow’s throughput bin was in units of bytes. Due to the scale

and variation of throughput measured in bytes, the machine learning models did not
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perform well. To remedy this problem, a simple multiplicative conversion of 1ê-6 was

applied to each bin. The resulting units of each bin became in terms of megabytes.

Lastly, when the dataset was fully assembled, the minima and maxima were

calculated to support the normalization of the input and output data for the machine

learning models. The dataset inputs were normalized to be between zero and one

(inclusive). The special exception to this normalization was the DNN model, which

received normalized data between zero and ten. Pytorch’s data loader class used the

normalized data to split and shuffle the data into training and testing sets. These

sets were then fed into each model (test set only for ARIMA) during training and

evaluation.

3.4 ARIMA Setup and Parameters

ARIMA has only three parameters to consider, and the algorithm is well de-

fined, so the setup is straightforward. Further simplifying things, the study used

a Python library containing a premade version of the ARIMA algorithm. Since

ARIMA is an algorithm, no implementation-specific parameters should affect per-

formance. During testing, all parameters were iterated to find the best combination.

By best combination, it is meant that the best produced the smallest error compared

to other combinations of parameters. The computational cost of iterating through

these parameters depends on the dataset, but the cost was acceptable for the two

aforementioned datasets.

The first parameter, the lag order (number of trailing observations in the

model), produced the best results when set to a value of one. A lag order of one

was counterintuitive as trends are usually observed over more data. The differencing

order is the second parameter the ARIMA model needs to create an accurate predic-
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tion. The differencing order is essentially the differencing (subtracting) of previous

observations in the time series to attempt to make the series stationary [3]. Higher

differencing orders are computationally more intensive, but the study found the best

differencing order to be one. The last ARIMA parameter is the moving average win-

dow. This parameter controls the window size of the moving average. For the study,

a value of zero was found to be the best window size. When the moving average

window was more than zero, the model tended to be less accurate on burst traffic.

The model performs best on the parameters ARIMA(1,1,0).

3.5 DNN Setup and Parameters

This study tests two machine learning approaches to the problem of through-

put prediction. The first approach utilizes a deep neural network (DNN) built in

Python using the Pytorch library. The DNN model, illustrated by Figure 3.1, con-

tains four linear layers with three ReLUs in between each linear layer. All outputs

are passed through a soft plus function at the end of the model. The first linear layer

broadcasts the input sequence into 1024 neurons. These broadcasted values then flow

through each layer of neurons and ReLUs, progressively being gathered into the soft

plus function. The output from the neural network is then denormalized to undo the

previous normalization in the data preprocessing stage.

Much tuning was done for the hyperparameters of the model to produce hyper-

parameters that yielded fast and accurate models. A mean absolute error criterion (a

function to judge the model’s progress during training) was chosen as this is also one

of the metrics used to evaluate the accuracy of the models. The AdamW optimizer

was selected for parameter tuning as it generally improves the widely accepted Adam

algorithm [11]. The learning rate and weight decay used in AdamW were found to
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work best when set to 0.00001 and 0.001, respectively. During training, a learning

rate scheduler was used to decay the learning rate of the AdamW optimizer by a rate

of 0.98 (multiplicative decay; a smaller number means more decay) in every training

epoch. The training epoch number was found to start overfitting the model past 100

epochs, so the epoch number was set to be 75. At the end of every epoch, the model

was evaluated on the test set, and if it outperformed the best-saved model, it would

become the new best-saved model. This model-saving method prevents models from

being ruined by overfitting.

3.6 RNN Setup and Parameters

The study’s second machine learning approach is a recurrent neural network

(RNN) built in Python using the Pytorch library. Specifically, the RNN uses a recur-

sion architecture (internal input-output loop) called long short-term memory (LSTM).

LSTMs are favored in machine learning when attempting time series prediction; for

this reason, the LSTM architecture was chosen as a candidate for comparison. The

LSTM model, illustrated by Figure 3.1, contains two linear layers and two LSTM

layers. Other than LSTM layers, an essential distinction between the RNN and DNN

models is that the RNN model has no activation functions like ReLU or soft plus.

When building and testing the RNN model, the study found that activation functions

severely hinder the model’s performance.

The RNN model’s hyperparameters are similar to the DNN hyperparameters

discussed previously. There is, however, one slight difference that is important to

note. The RNN’s learning rate was found to work best when set to 0.0001 instead

of 0.00001. The reason is that the loss of the model does not converge to its minima

fast enough when using the lower learning rate of the DNN.
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Figure 3.1: Diagram illustrating this study’s LSTM (top) and RNN (bottom) archi-
tectures
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Figure 3.2: Box and whisker plots comparing the distributions of predicted and ex-
pected data (left), and a box and whisker plot of the distribution of error (right)

3.7 Accuracy and Validation

When testing the accuracy of the models, it was important that the models had

never been fitted to or trained on the test dataset. This constraint was straightforward

for the ARIMA model as the fitting process happens during testing, so it can be said

that the ARIMA model has not seen the testing data before being tested. Separating

the training and test sets required more work for neural network models. As the data

preprocessing section mentioned, the Pytorch loader class was used to shuffle and

split the given dataset into a training and test set. The split used in this study was

70% training data and 30% testing and validation data.

3.7.1 Testing

The models are first presented with the input data of the test set. They

then iterate over all test inputs predicting the 6th second of each 5-second input.

The results are denormalized and recorded with the target (actual) data. The mean

absolute error (MAE) is calculated using the equation below. For the equation below,

pi is the predicted value of the ith input sequence of the test set, and ei is the expected
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value of the ith input sequence of the test set.

MAE =

∑n
i=1 |pi − ei|

n

A general understanding of the model’s performance can be obtained with

the calculated MAE. Along with the MAE, two derived graphs are also created. An

example of these graphs can be found in Figure 3.2. The first graph is two box and

whisker plots comparing the distribution of expected data points with predicted data

points. The second graph shows the absolute error distribution from the previously

mentioned data. The maxima, minima, average, median, and standard deviation are

gathered for all models. With these interpretations of a model’s accuracy, the study

can adequately assess the effectiveness of each model.

Lastly, the study applied two statistical analysis techniques to the output

distributions produced by each model. The first technique used was the Pearson

Correlation test applied to the expected (observed outcome) distributions for each

dataset and their corresponding model prediction distributions. This test was used to

judge the goodness of fit for each model without the subjective problems of evaluating

the scale of error. Using the p-value produced by this correlation test in conjunction

with the error comparison between each model, a better understanding of each model’s

performance was obtained.

3.7.2 Statistical Analysis

The first statistical analysis technique used is the coefficient of determination.

This value, denoted as r2, is a common measure of the goodness of fit of a model’s

predictions to their expected values. The statistic is derived from the Pearson Cor-

relation test, which measures the correlation between two distributions mapped to x
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and y. The less correlation between the two values, the further away from the linear

line x = y a point will lie. The Pearson correlation coefficient r is squared to obtain

the coefficient of determination. The coefficient of determination multiplied by 100

gives a percentage of how much expected data the forecasting model was able to fit.

In general, a higher coefficient of determination indicates a better fitting model for

the data.

The second analysis technique used to support the assumption that the models

predicted or performed differently was the analysis of variance (ANOVA). This test

was applied between the three predicted distributions of each model within a dataset.

This technique was repeated by the study for both datasets. When using the ANOVA

test, the null hypothesis is that there is no statistically significant difference between

the means of all distributions tested. An ANOVA test allows for the three prediction

distributions from the models to be tested in a combined way to avoid interpreting

the results from two or more comparisons of the distributions. The ANOVA test

produces an F value with an associated p-value. That p-value may be analyzed as

rejecting the null hypothesis to be true if p is below 0.05. When p is close to one, the

distributions are very similar. A low ANOVA p score between all three prediction

distributions is needed to support the claim that a model performs differently than

the other two models.

3.8 Computational Delay

Computational delay or delay of results incurred by computation time is a

crucial assessment metric. If a model can predict one second into the future with

perfect accuracy but takes 2-seconds to produce that prediction, the model would

be very remarkable but ultimately useless. The motivation for this study lies in the
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ability to make performance-enhancing decisions based on a prediction, so it stands

to reason the forecast should be produced with enough time left over to take action

based on that decision. In this study, the computational delay of a model is measured

as the average time taken to predict. Given each sample from the test set, the time

a model takes to predict will be collected and averaged. The study measures the

average execution time of all models while they are running on the CPU.

Furthermore, the execution time of the machine learning models are measured

while running on the GPU. This second GPU measurement is not meant to be com-

pared with the algorithmic approach’s CPU execution time. Instead, this metric

should be used to understand how effective a machine learning model may be when

used inside a data center or packet routing hub.

30



Chapter 4

Results

The methods discussed in this study were developed to answer specific ques-

tions of interest surrounding the performance of algorithmic and machine learning

attempts to predict network flow throughput. In this chapter, the results of this

study’s methods are reviewed.

4.1 Execution Time

Table 4.1: Computational delay performance data

Model CPU Time GPU Time CPU Max Flows GPU Max Flows

ARIMA 0.000745 NA 1343 NA

DNN 0.000424 0.000101 2360 9930

LSTM 0.000519 0.000104 1927 9592

Table 4.1 provides data surrounding the average execution time of each model.

It lists both CPU and GPU execution times along with a rough estimate of maximum

supportable flows for each model. All models were found to have an average execution

time ranging between 0.000101 and 0.000745 seconds. This range is about a seven
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times increase from best to worst. The range also accounts for GPU execution times.

GPU execution times were tightly grouped with a difference of 3.54452E-06 seconds.

The average CPU execution results are more distributed, with ARIMA having the

slowest execution time at 0.000745 seconds and DNN having the fastest execution time

at 0.000424 seconds. The difference between the slowest and fastest CPU execution

time was about 0.000321 seconds. These execution times are for predicting a single

input sequence or flow.

Dividing one second by the average execution time of each model gives a rough

estimate of the maximum amount of concurrent flows a model can support with this

study’s hardware and environment setup. The most amount of flows capable of being

supported by the GPU is 9930 and 2360 on a CPU. ARIMA specifically can support

1343 concurrent flows.

A hardware monitoring application, Performance Monitor (built into Windows

10), measured CPU utilization during testing. CPU utilization during DNN and RNN

testing was 95.736% on core zero, while core one averaged 91.559% utilization. The

neural networks utilized no other CPU cores. GPU utilization, measured with MSI

Afterburner, averaged 40% utilization. ARIMA is a CPU-bound application in this

study’s setup and was measured to have 89.710% and 100% core utilization on cores

zero and one, respectively.

4.2 Review of Datasets

As a reminder, the first dataset in this study contains the network traffic data

associated with playing a multiplayer game and streaming music. Music streaming,

file upload, and web browsing were all occurring in the second dataset.

The characteristics of each dataset may be found in Table 4.2. The maxima,
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Table 4.2: Characteristics of datasets

Datasets Max Min Mean Std Median

First 0.066193 0.000000 0.011399 0.014994 0.000000

Second 0.348852 0.000000 0.035227 0.092890 0.000000

minima, average, standard deviation, and median are listed for each dataset. The first

dataset can be said to have the smallest scale, while the second dataset is progressively

bigger in scale. The maxima of each dataset increased by an order of magnitude of

one. The maximum order of magnitude of the first dataset is negative one, while the

second dataset is zero. All datasets share a minimum of zero. The median of the

two datasets is zero. Finally, the datasets’ average and standard deviation follow a

similar trend to the maxima column.

4.3 First Dataset Predictions

Table 4.3: Characteristics of model prediction on the first dataset

Model Max Min Mean Std Median

ARIMA 0.073655 0.000000 0.011206 0.014877 0.000000

DNN 0.061891 0.000038 0.011101 0.014252 0.000046

LSTM 0.066120 0.000127 0.012046 0.015330 0.000364

Dataset 1 0.066193 0.000000 0.011399 0.014994 0.000000

Table 4.3 contains the characteristics of the prediction set produced by each

model using the first dataset as input. Differencing Table 4.3 with the expected

set’s characteristics in 4.2, a few behaviors of each model are shown. Within the

Max column, ARIMA produced a significant over-prediction. At the same time,

the DNN underpredicted the maximum expected value, and the RNN very closely

(within 0.000073MB of error) predicted the maximum value of the expected set. The
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DNN and RNN overpredicted the expected set’s minimum, while ARIMA perfectly

predicted the minimum at zero. The average produced by all models was relatively

close to the true average, with ARIMA being the closest and the RNN being farthest

from the true average. The standard deviation behaved similarly to the average, but

the DNN was farthest from the true standard deviation. The median and minimum

are the same in dataset one, so the models performed similarly between these two

metrics.
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Figure 4.1: ARIMA on dataset 1, absolute error distribution (left) and predicted v.
expected distribution (right)

The box and whisker plots for each model give further details and interpretable

information. On the left side in Figure 4.1, the absolute error distribution is shown

for ARIMA on dataset one. The upper quartile range does not exceed 0.0015MB of

error, and the upper extreme is at 0.0030MB of error. The box plot agrees with the

reported MAE of 0.00101MB. On the right in 4.1 are the distributions of both the

predicted and expected data. Both plots look identical with some minor differences

at the upper extremes.

Next in dataset one is the DNN found in Figure 4.2. On the left side in

the figure, the absolute error distribution looks similar to the ARIMA error plot.

However, the median and lower quartile do not lie as close to zero as in the ARIMA
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Figure 4.2: DNN on dataset 1, absolute error distribution (left) and predicted v.
expected distribution (right)

plot. The MAE of the DNN confirms this with a reported MAE of 0.00114MB.

On the right in 4.2 are the distributions of both the predicted and expected data.

Both plots look identical with some minor differences at the upper extremes. This is

similar to the ARIMA model.
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Figure 4.3: RNN on dataset 1, absolute error distribution (left) and predicted v.
expected distribution (right)

Last in dataset one is the RNN found in Figure 4.3. On the left side in the

figure, the absolute error distribution looks similar to both the ARIMA and DNN

error plots. The median and lower quartile do not lie as close to zero as the ARIMA

plot. The MAE of the RNN affirms this with a reported MAE of 0.00168MB. On
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the right in 4.2 are the distributions of both the predicted and expected data. Both

plots look identical with some minor differences at the upper extremes. Removing

outliers from dataset one does not produce any significant change in the MAE of all

three models.

4.4 Second Dataset Predictions

Table 4.4: Characteristics of model prediction on the second dataset

Model Max Min Mean Std Median

ARIMA 0.561002 0.000000 0.038412 0.100727 0.000002

DNN 0.349408 0.000028 0.033331 0.093964 0.000028

LSTM 0.066120 0.000127 0.012046 0.015330 0.000364

Dataset 2 0.348852 0.000000 0.035227 0.092890 0.000000

Table 4.4 contains the characteristics of the prediction set produced by each

model using the second dataset as input. Differencing Table 4.4 with the expected

set’s characteristics from 4.2, some behaviors of each model are shown. ARIMA pro-

duced a significant over-prediction within the Max column similar to its performance

in dataset one. The DNN was the closest (within 0.000556MB of error) to the true

maximum expected value. The RNN significantly underpredicted the maximum value

of the expected set. The DNN and RNN overpredicted the expected set’s minimum

by a negligible amount (almost the same values as dataset one). ARIMA perfectly

predicted the minimum at zero. The average produced by the ARIMA and DNN

models was relatively close to the true average, with DNN being the closest. The

RNN was farthest from the true average by 0.023181MB. The standard deviation had

ARIMA and the DNN close. The RNN was farthest from the true standard deviation

by one order of magnitude. The median and minimum are the same in dataset two,
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so the models performed similarly between these two metrics.
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Figure 4.4: ARIMA on dataset 2, absolute error distribution (left) and predicted v.
expected distribution (right)

On the left side in Figure 4.4, the upper quartile range does not exceed

0.0006MB of error, and the upper extreme does not pass 0.0012MB of error. The

box plot does not agree with the reported MAE of 0.006933MB. This is due to

extreme outliers (not displayed on the plot) shifting the mean error higher than if the

outcome was binary. The box plot’s upper quartile better measures ARIMA’s predic-

tion capabilities in this instance. On the right, in Figure 4.4 ARIMA’s upper extreme

is 0.002MB higher than the expected upper extreme. This is another indicator that

outliers in the dataset and ARIMA’s prediction set caused a skewed representation

of its error.

On the left side in Figure 4.5, the upper quartile range does not exceed

0.00075MB of error, and the upper extreme does not pass 0.00175MB of error. The

box plot does not agree with the reported MAE of 0.004836MB. This is again

due to extreme outliers shifting the mean error by a disproportional amount. The

box plot’s upper quartile better measures the DNN’s prediction capabilities in this

instance. On the right, in Figure 4.5, the DNN’s upper extreme is about 0.002MB

higher than the expected upper extreme. This indicates that outliers in the dataset
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Figure 4.5: DNN on dataset 2, absolute error distribution (left) and predicted v.
expected distribution (right)

and DNN’s prediction set caused a skewed representation of its error.
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Figure 4.6: RNN on dataset 2, absolute error distribution (left) and predicted v.
expected distribution (right)

Finally, on the left side in Figure 4.6, the upper quartile range is about

0.001MB of error, and the upper extreme is just over 0.002MB of error. The box

plot does not agree with the reported MAE of 0.004095MB. This is from ex-

treme outliers shifting the mean error by a disproportional amount. The box plot’s

upper quartile better measures the RNN’s prediction capabilities in this instance. On

the right, in Figure 4.6, the RNN’s upper extreme is about 0.008MB higher than the

expected upper extreme. The upper extreme of 0.008MB is the largest of the three
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models. This indicates that outliers in the dataset used to test and train the RNN

have caused a skewed representation of its error.

4.4.1 Outliers

When outliers are filtered out of the input training and test data (the expected

set is not filtered directly) using the interquartile range method, the RNN and DNN

models outperform the ARIMA model. When filtering the input for outliers, the

ARIMA model’s MAE is unchanged compared to when outliers exist in the input

data. When comparing the filtered RNN and DNN MAEs to the ARIMA, the new

filtered RNN and DNN have better performance. All MAEs produced using the

filtering methods discussed are in the list below.

• ARIMA Unfiltered Dataset Two MAE: 0.006933MB

• DNN Unfiltered Dataset Two MAE: 0.004836MB

• RNN Unfiltered Dataset Two MAE: 0.004095MB

• ARIMA Filtered Dataset Two MAE: 0.006932MB

• DNN Filtered Dataset Two MAE: 0.000364MB

• RNN Filtered Dataset Two MAE: 0.000513MB
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4.5 Statistical Tests

4.5.1 Coefficient of Determination

Table 4.5: Coefficient of determination, r2 values, for assessment of the goodness-of-
fit between predicted and expected distributions

Dataset RNN DNN ARIMA

1 0.970928 0.976824 0.983093

2 0.758740 0.963230 0.855665

In Table 4.5 the coefficient of determination, calculated by squaring the Pear-

son correlation coefficient r values for each model’s prediction distribution and the

associated dataset’s expected distribution, are listed. In this study, the coefficient of

determination is used to measure goodness-of-fit for each model. The value is ab-

stracted away from metrics like MAE, so the interpretation is less subjective when

defining what good and bad errors are considered. In dataset one, all three models

received a r2 score between 0.97 and 0.98. These scores heavily support the idea that

all models fit dataset one well. The RNN scored the lowest r2 value in dataset two at

0.759. This statistic should not discount the RNN as a well-fitting model for dataset

two as it scored the best in terms of MAE. The discussion section will discuss further

reasons for this low r2 score, but it is essential due to the training set size. ARIMA

also scored lower with a r2 score of 0.856. Taking into account that the RNN with

the lowest MAE and ARIMA with the highest MAE in dataset two both scored lower

than the DNN, it can be interpreted that all three r2 scores are considered good fits.
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4.5.2 Analysis of Variance

Finally, when applying an ANOVA test between all model prediction distri-

butions for dataset one, a p-value of 0.983331 was scored. This p-value fails to

reject the null hypothesis that any predicted distributions are statistically different

for models predicting on dataset one input. In dataset two, the same ANOVA analy-

sis was performed and produced a p-value of 0.994318. Again, this p-value fails to

reject the null hypothesis that any predicted distributions are statistically different

for models predicting on dataset two input.
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Chapter 5

Conclusions and Discussion

The Internet has a growing need for low latency networking. Dual-queue AQM

is a technique that was developed to support low latency networking. For dual-queue

AQM to be truly useful on the open Internet, it requires accurate prediction of future

flow throughput. Machine learning and algorithmic time series forecasting are the two

most popular approaches to solving this problem. With the popularity of machine

learning compared to traditional algorithmic approaches, the former technique is often

used without empirical support. This study aimed to address the lack of empirical

evidence by testing the efficacy of machine learning against classical algorithmic time

series forecasting techniques for network per-flow throughput prediction to support

dual-queue AQM traffic (flow) management. It was hypothesized that deep and

recurrent neural networks would surpass the accuracy of an autoregressive integrated

moving average algorithm when predicting future network per-flow throughput as

measured by the mean absolute difference between the actual and predicted values of

two independent datasets created by sampling network traffic.
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5.1 Answering the Research Question

5.1.1 Statistical Findings

According to the coefficient of determination used to judge the goodness of

fit, all models fit well to their associated expected distributions. This goodness of fit

means that when encountering new but similar data to that of the test or train sets,

the models have a good chance of predicting the new expected throughput with low

error. All models had negligible differences in error on the first dataset. The machine

learning approaches had a slightly better MAE on dataset two.

An ANOVA test was performed on the models’ prediction distributions be-

cause of the minor differences in error between the models on dataset two. This test

was to see if there were any statistically significant differences in the means of the

distributions. The ANOVA test failed to reject the null hypothesis that there is no

difference in means for both datasets. This failure to reject the null hypothesis means

no significant difference between the predicted distributions exists. A finding of no

significant difference between the prediction distributions means that there is no

evidence to support the hypothesis that machine learning is more accurate at

predicting per-flow network throughput.

5.2 Levels of Error

An example is helpful to put the scale and amount of error occurring in these

models into perspective. In this example, a small packet switch is placed somewhere

on the open Internet. This packet switch uses a dual-queue AQM with one of the

models tested in this paper. This dual-queue is actively supporting low latency flows.

The low latency queue can support a threshold of 1MB/s of combined throughput
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from all of its low latency flows. If this threshold is broken, the queue cannot guarantee

low latency times for all flows it contains. During operation, it experiences 80%

threshold utilization caused by 80 flows, each averaging 0.01MB/s of throughput.

The model that is predicting for this dual-queue AQM has an MAE of 0.001MB (a

finding similar to the current study). To cause problematic slow down for flows inside

the low latency queue, a simultaneous underprediction of 0.001MB by the model

would have to occur for over 200 flows. This is a highly improbable event and would

be required to continuously occur for an extended network slowdown.

5.3 Interesting Findings

5.3.1 ARIMA

The ARIMA algorithm had slightly more error when predicting on dataset

two. An explanation for this requires a look at dataset two. In dataset two, both

upload and download flows were occurring simultaneously. It is possible that machine

learning algorithms like LSTM can recognize and distinguish upload and download

flows from each other. This recognition could likely lead to slightly better performance

by tailoring the model’s weights to predict differently based on the flow type. This

behavior leads to the topic of input features discussed in the limitations section.

5.3.2 Outliers and Datasets

Dataset one contained very few outliers, and because of that, the resulting

MAEs from each model were also agreed with the visual box and whisker plots.

Specifically, all MAEs were well within the bounds of the upper quartile. This is

interpreted to mean that no extreme single data point error values significantly in-
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creased the MAE of the models.

In dataset two, this was not the case. Dataset two contained many extreme

outliers. When predicting on dataset two, all models experienced MAEs well outside

the upper extreme of their respective box and whisker plots. This indicated that the

extreme outliers increased the MAEs by a disproportional amount. When filtering by

interquartile range multiplied by 1.5, the machine learning models had a significant

reduction in error. Interestingly, the ARIMA model’s error did not change signif-

icantly. One explanation is that ARIMA is not affected by outliers like the DNN

and RNN models. The problem lies within every point of error being given weight

equal to its magnitude. The amount of error for a single data point should only be so

significant. A further explanation of this phenomenon can be found in the limitations

section, with a proposed solution to the problem.

5.3.3 Execution Time

As shown in the results section, CPU execution times for all models were fast

enough to support over a thousand flows a second. If needed, this process could be

parallelized to any number of CPU cores to increase performance when the number of

incoming and outgoing flows increases. Alternatively, in critical infrastructure where

the number of flows exceeds the limits of CPU-bound computation, a GPU may be

used to support close to ten thousand flows. GPU utilization during testing showed

there was possible room for a second machine learning model to run in parallel, giving

a theoretical maximum of close to twenty thousand flows.

At this time, the GPU implementation of ARIMA available on Python is slower

than its CPU counterpart when predicting single time series. It would be interesting

to test the batch prediction capabilities of both ARIMA and the machine learning
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models on the GPU. Another interesting study would be to test the capabilities of

each model when using hardware like field-programmable gate arrays (FPGAs) or

Nvidia Jetson.

5.4 Limitations

5.4.1 Dataset Collection

When collecting the datasets for this study using Wireshark, some issues were

encountered. Wireshark, when capturing packets, stores the whole packet in main

memory. The storage methods Wireshark utilizes are not efficient, and it takes more

than the size of a packet to store the packet. This inefficient storage results in main

memory running out faster than the amount of data being recorded. For short or

low throughput captures, this is not a problem. The system’s main memory would

run out in just a few minutes when attempting to record high throughput traffic.

This resulted in very short captures for high throughput traffic. The resulting failed

captures had many outliers compared to datasets one and two. The number of outliers

in high throughput captures decreases the longer the capture is allowed to run. In a

repeat of this study, it would be better to use a Linux interface with tcpdump or a

similar program.

5.4.2 Data Features

Another limitation of the study involves dataset features. The datasets were

made to be univariate time series to maintain an ”apples to apples” comparison

of the prediction methods. This was done because ARIMA cannot take additional

input features. In a different scenario where DNNs and RNNs are given more input
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features, like the average time between packets in a flow or the type of protocol a flow

was using, the machine learning approaches may outperform multi-feature forecasting

algorithms.

5.4.3 Measuring Effective Error

The last limitation experienced in this study is the previously mentioned issue

with assigning the weight of an error based on the magnitude. The magnitude of

prediction error only matters up to a certain point. Also, the type of error, under-

prediction or overprediction, should be weighted differently. An overprediction only

affects a single flow, while an underprediction affects all flows. Further, the magnitude

of an over- or underprediction should only matter until the flow is kicked out of the

low latency queue or the low latency queue experiences increased latency. Any error

penalty past these points is misleading and skewing the amount of average error in

the upwards direction. Zuo proposed a solution to this problem [19] where a piecewise

function was used to control the threshold of the maximum acceptable error for under

and over predictions, essentially bounding the error function.

5.5 Implications

5.5.1 Future Research

As mentioned previously, the scale of error is hard to assess. A more definitive

evaluation of model error would be changing the throughput prediction problem into a

classification problem. This can be done by creating a threshold of throughput. Flows

below this threshold are considered low latency flows, and flows above this threshold

are considered classical flows. In this setup, there is less information to process and
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evaluate as the models directly tell the dual-queue AQM to which queue to send

packets. The measuring of error also becomes more straightforward as accuracy can

be measured as a binary outcome for each data point.

Further studies may be done with a multi-feature forecasting algorithm com-

pared against similar DNN and RNN with extra features as input. One of the main

selling points of machine learning algorithms is their ability to process multi-feature

data and find obscure correlations in data to produce better results. Additionally,

reproducing this study on datasets with more variability and higher throughput levels

may show more variable error and influence the behavior of the models and thus yield

different results.

5.5.2 Recommendations

The algorithmic model took one day of setup and tuning to see the performance

metrics stated in this study, while the machine learning approaches took about five

days each to achieve similar performance. When the development time is critical and

the requirements for accuracy are not strict, an algorithmic approach has a much

smaller cost of failure as compared with machine learning models.

When deploying prediction models to the field, it is best to use the concept

of ”on-line” training suggested by He et al. [7]. This training scheme allows for

heavy optimization of a model to the type of flows it will encounter during operation.

Generalizability is a problem for models needing to be deployed to a wide range

of applications. ”On-line” training solves this generalizability issue by training the

model on the traffic it is deployed to predict. It is unnecessary to test generalizability

if a model can be trained on the data it encounters.

Based on this study’s findings, the data obtained recommends that an algo-
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rithmic approach should be attempted before using machine learning if the maximum

amount of acceptable error is known. If an algorithmic approach fails to achieve the

required performance and accuracy, a machine learning approach may be considered

for a better fit. Another specific advantage of the algorithmic approach being used

first is because of the small amount of development and tuning needed compared with

machine learning approaches.
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