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Abstract

Wildfires are extreme weather events that exist at the interface of atmospheric,

ecological, and human processes. Ongoing anthropogenic climate change is expected

to impact the distribution, frequency, and behavior of wildfires on a grand scale,

however the exact nature of this change remains shrouded in a great deal of uncer-

tainty. This study takes a statistical approach to the question over the fire-prone

Northern California region of the western United states. Climate model projections

are analyzed to investigate changes in a major driver of fire weather in the region.

The relationship between wildfire severity and climate factors is then explored sep-

arately, utilizing a historical data set of California wildfires and climate reanalysis

data to analyze the impact of environmental factors on the burned area associated

with historical wildfires.
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Chapter 1

Introduction

1.1 Background: Wildfires

Wildfires are unplanned, unwanted, and uncontrolled fires in areas of com-

bustible vegetation [22]. These fires can be ignited by a variety of natural and man-

made sources and, once burning, their behavior is dictated by a number of factors

including the type, quantity, and moisture of the vegetation available as fuel, at-

mospheric factors like wind and temperature, topography, and human suppression

attempts [36].

These events pose a significant threat to infrastructure and human life, both

directly and as a public health risk through associated air and water pollution [69].

Recent years have seen an increasing trend in the frequency, duration, and severity of

wildfires in many parts of the world, including the American west, as shown in figure

1.1 [68].

Understanding the physical dynamics that govern the spread and behavior of
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Figure 1.1: California Wildfires by year.

individual wildfires is one of the primary goals of fire science, and an active area of

research [65]. These physical properties are the ultimate determinant of fire behavior,

and a basic understanding is necessary before any serious modeling effort can take

place.

The shape of a fire is complex, and is closely tied to the fire’s rate of spread.

Fast-moving fires generally have a high area/perimeter ratio [3]. Fires spread primar-

ily along fronts, which are the boundaries between flames and unburned fuel sources.

In windy conditions, large fires also spread via a process called spotting. A mass of

burning plant matter, called a firebrand, is blown from the main fire into an unburned

area, which ignites another small fire. Depending on the surrounding conditions, this

spot can burn backwards towards the front, or spread on its own accord. Spotting in

2



exceptionally large fires has been observed more than five miles away from the front

[42].

Starting from the point of ignition, fires can be broadly classified based on

fuel type and flame height relative to the surrounding environment [11]. This is a

convenient classification system as the mechanisms of spread differ depending on the

height of the fire. Flame height is also closely related to the intensity of the fire, and

the influence of atmospheric factors on fire behavior is strongest mid-flame [3].

• Ground fires are subterranean, and consist of smoldering organic matter in

the oxygen-permeable upper layers of soil. These fires are often ignited as a

byproduct of larger fires, and can burn for months undetected. [90]

• Surface fires are low-temperature fires that burn low-lying vegetation, includ-

ing grasses and shrubbery. These fires are generally slow-moving, but are easily

exacerbated by atmospheric drivers [3].

• Crown fires are large enough to ignite fuels in the canopy layer of a forest.

Fires at this stage are unpredictable and difficult to control, and produce enough

heat to influence local atmospheric conditions [19] [3].

Fuels that are taller than the shrubs and grasses burned by surface fires but

shorter than the treetops consumed in crown fires are referred to as ladder fuels.

These provide an intermediary fuel source that enables the transition between sur-

face and crown fires, giving the flames a path to the treetops. Ladder fuels often

consist of invasive plants, such as kudzu vine in the western US [59].
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1.2 Statistical Modeling of Wildfire Behavior

Past approaches to modeling wildland fires can be loosely categorized into

physical and empirical paradigms. Physical models represent the interaction between

a fire and its environment as a physical system then conduct numerical simulation

to analyze specific aspects of behavior [65], while empirical models use data collected

from past wildfires to try and understand the behavior of these events more generally

[73]. More recent modeling approaches have focused on combining these two frame-

works to construct models that are informed by both data and physical principles [54].

A purely statistical approach - and not in the sense of statistical thermody-

namics - falls decidedly under the empirical banner, and is distinguished from de-

terministic empirical models by the use of probabilistic assumptions and emphasis

on uncertainty quantification [98]. This approach is particularly useful in problems

where data quality and availability are potential issues or where the modeling goal is

inherently probabilistic, e.g. spatial estimation of burn probabilities as in [68].

[75] and [98] provide a fairly comprehensive survey of the statistical approach

to wildfire modeling, with the former highlighting a number of important historical

papers, and the latter giving of the more modern view of the field. Modeling the

behavior of specific wildfires - factors like their shape, spread, and intensity - is gen-

erally a task better suited for physical models. Statistical modeling strategies are

better suited for investigating general trends across multiple wildfires, such the rela-

tionship between ignition source in eventual fire behavior as in [9], and can be further

subdivided by which aspect of wildland fire behavior that they attempt to capture.

Fire occurrence models estimate the probability of ignition over a spatial do-
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main. Popular methods for this sort of modeling include the spatio-temporal point

process framework as in [85] and [66], and logistic approximations as in [96].

A more recent area of study is in modeling duration, or time until contain-

ment. Wildland fires generally go undetected in the ground fire phase, only attracting

attention some time after they emerge as surface fires, which results in observational

data on wildfire duration being almost universally left-censored. Other factors like

the time between reports and suppression efforts, and the surrounding environmental

conditions are also important determinants of burn time. All of these factors can be

accounted for using the tools of survival analysis [39], such as proportional hazards

regression [46] and accelerated failure time models [91]. Notable examples of work in

this area include [4] and [31].

Another modeling direction, and the focus of this work, is the on the size of

fires. This can be further subdivided into modeling size at the time of containment

using survival analysis methods [84] and modeling total burned area as a proxy for

fire size, as in [13] and [76]. We are specifically interested in the latter approach.

1.3 Pyrogeography

The behavior of a fire, no matter how we choose to model it, is ultimately con-

strained by environmental factors. Wildfire regimes do not exist in a vacuum. Fires

perform an important ecological role (DellaSalla and Hanson), with some plants and

animals being completely dependent on fires. As an example, the cedar wasp of Cal-

ifornia exclusively lays eggs in smoldering cedarwood [93]. This broad earth systems

perspective of wildfires has been termed pyrogeography [11]. Research in pyrogeog-
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raphy is often centered around the large-scale spatial distribution of wildfires and

their environmental drivers. This includes anthropogenic factors [14] [17], as well as

natural factors related to fuel and atmospheric conditions [44].

This modeling approach typically differs from the aforementioned methods in

its scale, generally looking at fires across large spatial regions and temporal spans, and

in its aim. The goal of this grand-scale modeling is not to understand the behavior of

any particular fire, but to understand the relationship between fire activity and the

environment within a given region.

1.4 Climate-Wildfire Interaction

The three environmental factors that are considered most important in con-

trolling a fire’s behavior are topography, fuel availability, and atmospheric conditions

[67]. The most significant atmospheric conditions in this regard include temperature,

humidity, precipitation, and wind.

Wind is one of the primary climate factors that drives the spread of wild-

land fires. In addition to physically pushing the fire along a course and transporting

burning material to unburned fuel, strong winds transfer heat energy from a fire to

potential fuel sources. This accelerates the evaporation of moisture within the fuel,

and supplies the oxygen required to maintain the combustion reaction. Wind can also

confound attempts to contain a fire, as workers may not be prepared for sudden shifts

in atmospheric conditions. Topography can exacerbate all of these effects, which can

lead to fires growing rapidly out of control. [45, 50].
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Unlike wind conditions, the effects of temperature and precipitation are more

dependent on long-term trends. Periods of prolonged drought create a massive stock-

pile of flammable material, which greatly increases the risk of fires getting out of hand.

1.5 Extreme Fires

Figure 1.2: Log distribution of burned area: Northern California fires, 1984-2019

One common factor across most threads of statistical fire modeling research

is the issue of extremes. The distributions of burned area heavy tailed and exhibits

power law behavior, as shown in figure 1.2 [25]. This often necessitates the application

of methods from extreme value theory [21] to accurately capture the tail behavior any

of these quantities. [26] [76]

This empirical power law behavior suggests that the growth of a fire is self-
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reinforcing. Research into the physical dynamics of extremely large fires [20] suggests

that this is indeed the case, and offers an explanation. When the heat generated by a

fire reaches a certain point it begins to generate convection currents in the surround-

ing atmosphere, which can in turn lead to extremely strong winds being generated by

the fire itself. Fires at this scale are sometimes referenced as crown-convective fires,

and spread rapidly across the canopy layer of a forest [18]. Fuel moisture is also less

of a concern for fires on these scales, since any unburnt fuel is rapidly dessicated by

the extreme heat and wind conditions generated by these megafires.

All of this indicates that extremely large fires have a different relationship

with their environment than fires that haven’t achieved such a disastrous scale. [20]

highlights the difficulties faced in modeling these crown fires from both a physical

and statistical perspective. Physical models often fail to account for these convection

currents, and these extremely localized effects are not factored into the large-scale

climate data used in statistical modeling.

1.6 California’s Fire Regime and the Effects of Cli-

mate Change

California is the most populous US state, and one of the world’s major eco-

nomic centers. California’s 2020 regional GDP was over 3 trillion dollars. If California

were a sovereign nation, this would amount to the world’s 5th largest economy. It

is also one of the most geographically diverse regions of the country, and the most

affected by wildfire activity.
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The 2020 California fire season saw 9,917 fires burn over four million acres

of land, making it the most destructive fire season for the state in over 200 years

[15].The 2021 season resulted in the destruction of over 2.5 million acres.

The scale of the 2020 and 2021 fire seasons is indicative of an increasing trend

in the severity of California’s fire seasons, a trend which has been related to anthro-

pogenic climate change [95]. This trend is expected to continue into the future as

these effects become more significant, both in California and in other fire-prone parts

of the world [99, 87]. The relationship between wildfires and climate drivers is an

area of active research, as are the mechanisms through which climate change could

influence this relationship [53]. One well-studied effect of climate change that might

impact the increasing trend in fire severity is a general decrease in relative humidity

levels over land [94]. California features several regions with high fuel availability and

high levels of fuel moisture, for which this kind of climate shift poses a particularly

severe risk [60].

1.7 Background: Extreme Value Theory in Brief

Traditional methods of statistical inference often focus on ”what usually hap-

pens” - building sophisticated estimates of means, variances, and other measures of

central tendency. In many problems that arise in the sciences, and particularly in

engineering, these methods are effectively useless. Skyscrapers aren’t built to survive

an average windy day, they need to stand up against the strongest winds that are

ever going to batter them.
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Let Y1, ..., Yn be iid random variables with mean µ, finite variance σ2, and

CDF FY (y). The central limit theorem tells us that

lim
n→∞

√
n(Ȳ − µ)

d→ N (0, σ2),

where Ȳ is the sample mean. This is a very powerful tool for performing

inference on the mean, but what if we’re interested in something along the liens of

Y(n) = max(Y1, ..., Yn)? Luckily there exists an analogous results for the asymptotic

distribution of sample maxima. First note that

P (Y(n) < x) = P (Y1 < x)·P (Y2 < x) · · ·P (Yn < x) = (FY (y))n

then the Fisher–Tippett–Gnedenko theorem states that

lim
n→∞

F n
Y (any + bn)

d→ G(y)

Where an and bn are normalizing constants, and G(y) is the generalized ex-

treme value (GEV) distribution

G(x | ξ, µ, σ) = exp

(
−
(

1 + ξ

(
x− µ
σ

))−1/ξ)
,

with location parameter µ, scale parameter σ, and shape parameter ξ [21].

To apply this result and estimate the distribution of extremes we start with a

random sample X1, ..., Xn, then partition that sample into k ’blocks’ B1, ..., Bk with

k < n. In many applied cases we’re looking at time series data, and blocks often

corresponding to months or years. We then consider the maximum value in each
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block, and use this information to fit a GEV model. This is often termed the block

maxima approach.

Another strategy for modeling extreme values is the peaks over threshold

method. Rather than considering P (X(n) < x), we fix a threshold µ and condi-

tion on the exceedence of that threshold: P (X < x|X > µ). Asymptotically, this

results in a distribution in the generalized pareto (GP) family, with the following

CDF:

G(x) =


1−

(
1 + ξ

(
x−µ
σ

))−1/ξ
ξ 6= 0

1− exp
(
−(x−µ)

σ

)
ξ = 0

Peaks over threshold methods offer a number of advantages over block max-

ima [8] , namely that a larger number of extreme events can be considered. The

main problem with peaks over threshold is choosing a good threshold. There’s a

bias-variance trade-off: Too high of a threshold and the sample size is too small to

conduct sound inference. Too low and we run into convergence issues.

The GPD and GEV are members of the location-scale family, and exhibit

some ”nice” stability properties. If X is a collection iid GEV random variables then

max(X) is a GEV random variable with the same shape parameter and shifted lo-

cation and scale. Similarly, conditioning a collection of iid GP random variables on

the exceedence of a threshold results in a GP random variable with the same shape

parameter.
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Chapter 2

The Diablo Winds of Northern

California

There are several wind patterns over California that have long been associated

with wildfires in the state. The most notable of these winds are generated by air from

the high pressure system over the great basin interacting with the topography of the

region, eventually manifesting as a hot, dry northeasterly wind. The winds generated

by this system are given different names depending on where they occur and include

the El Norte winds in Northwestern Mexico, Santa Anas in southern California, and

Diablo winds in northern California [1].

The extremely low humidity of Diablo wind (DW) events, coupled with their

tendency to blow downslope, create atmospheric conditions that accelerate the growth

of fires. In 1923, dry northeasterly winds were cited as the driving force behind a fire

that raged through the city of Berkeley, incinerating over 600 structures near the UC

Berkeley campus [2]. In 1991, dry northeasterly winds with gusts in excess of 65 mph

fanned a hillside grass fire into an out of control conflagration that spread into the

12



Oakland urban area. This so-called “tunnel fire” resulted in 25 deaths and over 1.5

billion dollars in damage to infrastructure.

Diablo winds are shaped and driven by the topography of the region. The

strong northeasterly winds pass over the Sierra Nevada range in eastern California

and down its western slopes, heating up and losing humidity before passing through

the central valley area where high inland pressure drives the air mass towards the sea.

The air is then forced over the rugged coastal range before sinking down to sea level

on the western slopes, where the compression and loss of moisture produces intense,

dry, downslope winds. This physical behavior is in contrast to the Santa Ana winds in

the southern region of the state which are primarily driven by gravity rather than the

action of sinking air masses, and usually reach their peak intensity passing through

canyons rather than downslope [19].

The Diablo winds have been a subject of much recent study. [56] and [27] con-

ducted case studies of specific fire events, and noted the role of these strong downs-

lope winds. [57] looked at the climatology of the Diablo winds and identified factors

that are associated with the frequency of these events. [80] analyzed the wind pattern

based on station data and concluded that the events tend to display a low gust factor.

[1] studied downslope winds in a more general context, and found an associa-

tion between these events and the southern Pacific oscillation on a global scale. [50]

used reanalysis data to look for trends in these wind events over a 40 year histor-

ical period and found no trend in frequency, but a downward trend in the relative

humidity associated with the Diablo winds. [10] used numerical simulation data to

investigate the synoptic trends associated with these events.

13



[49] used one single global climate model Community Atmospheric Model

(CAM) projections to look at potential end of century (2106-2115) Diablo and Santa

Ana wind activity under a number of potential warming conditions, with the goal

of evaluating future fire risk. Their results indicated an increase in the frequency of

Diablo and Santa Ana wind events under more moderate warming scenarios - a global

mean temperature increase of 1.5°C or 2°C over the next century - while the most

extreme scenario they considered (GMT +3°C) shows a decrease in the frequency of

these wind events. They postulate that this reversal of trend is caused by the non-

linear response of the underlying pressure systems to changes in temperature.

Wind speed, one of the primary climate factors associated with very large,

infrequent fires, are expected to slow down in general ([12, 70]), however climate

models have indicated an increasing risk of these massive, out of control blazes [92].

Our investigation of Diablo winds is partially motivated by a desire to reconcile these

seemingly paradoxical results. By examining the possible changes in these wind pat-

terns, we can glean some insight into the climate factors that drive these projections

of worsening fire seasons.

In this work we consider the output of multiple high resolution regional climate

models (RCMs, see Sec. 2.1) to study changes in the frequency of Diablo wind events

and in the associated wind speeds, event duration, and humidity, as well as changes

in the upper atmospheric pressure systems that generate these winds. The use of

multiple RCMs also allows us to account for the intermodel uncertainty of climate

change projection.

14



2.1 Dataset

2.1.1 Model simulations

The diablo winds were extracted for historical (1995–2004), and end of century

periods (2085–2094) under representative concentration pathway (RCP) 8.5, a path-

way that assumes very high levels of greenhouse gas emissions by 2100 with an effective

radiative forcing increase of 8.5 W/m2 due to large populations and little technology

improvement [72]. The input data for defining the diablo wind (see Ch. 2.2) were

obtained from Weather Research and Forecast model [WRF, 79]—at a spatial reso-

lution of 12 km [88], driven by three earth systems models (ESMs). They are Com-

munity Climate System Model version 4 [CCSM4, 35], Geophysical Fluid Dynamics

Laboratory Earth System Model with generalized ocean layer dynamics component

[GFDL-ESM2G, 28], and the Hadley Centre Global Environment model, version 2-

earth system [HadGEM2-ES, 40]. These three ESMs represent high (HadGEM2-ES),

median (CCSM4), and low sensitivity (GFDL-ESM2G), respectively, of global average

air temperature response to the doubling of CO2 [78]. See [104] for detail evaluation

of the three WRF simulations. The WRF simulations driven by the three ESMs are

named WRF CCSM, WRF GFDL, and WRF HadGEM, respectively, in this study.

2.1.2 Historical fire data

Our historical fire data is derived from satellite imagery, and contains infor-

mation on the date, location, and burned area associated with Northern California

wildland fires between the years 1984 and 2019 that burned a land area in excess of

1000 acres. This data set is derived from satellite remote sensing data from the Mon-

itoring Trends in Burn Severity Project (MTBS; [29]). MTBS includes fires larger

15



than 1,000 acres in the western CONUS;

2.1.3 Reanalysis climate data

For information on the climate conditions surrounding each fire we turned to

the ERA5-LAND reanalysis data set [38]. This gridded data set is laid out on a

0.1◦×0.1◦ grid, with variables reported at an hourly temporal resolution. The identi-

fication of Diablo wind events within the ERA5 data consisted of the same algorithm,

however it did require some slight adjustment to the criteria. In keeping with [80] we

adjusted our wind speed threshold down from 8 m/s to 5 m/s in order to account for

the lower average wind speeds and coarser spatial resolution of the ERA5 data.

2.2 Diablo Wind Identification

The first step in our analysis was finding a set of criteria to distinguish Diablo

winds from other atmospheric events, and constraining our search to a geographic

region surrounding Northern California, as the winds of interest are endemic to this

region. The data used for event identification purposes consisted of 2 meter relative

humidity and 10 meter zonal and meridional wind components on a grid spacing of

12 km with 3 hourly temporal resolution. Diablo winds are characterized by their

intensity, long duration, low moisture content, and northeasterly direction [10]. We

determined that a Diablo wind had occurred in a given grid cell at a certain time

step if all of the following conditions were met:

• Northeasterly direction: Meteorological wind direction between 0and90

• Intensity: Wind speeds exceeding 8m/s
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• Relative humidity below 25%

• Duration: These conditions must be present for a minimum of 2 consecutive

time steps (6 hours) within the same grid cell.

The choice of threshold was based on previous work by (cite PG&E). [49] and

[80] defined these wind events using a higher threshold for relative humidity and al-

lowed for more northerly winds, in addition to requiring a minimum of a 24 hour gap

between events within the same grid cell. This gap between events is excluded from

our criteria.

To assess the sensitivity of the identified Diablo winds to these thresholds,

sensitivity analysis to threshold selection was conducted by replicating our analysis

across a number of alternative thresholds for Diablo wind identification. For example,

relative humidity thresholds ranging from 10 to 35 percent, wind speeds ranging from

5 to 10 m/s, and the introduction of an inter-event time criteria in the vein of [49]

and [80].

To understand the synoptic processes driving the phenomenon and its changes

under the future scenario, we examined the 500m geopotential height over the North-

west hemisphere on days corresponding to DW activity. These events are associated

with a high pressure ridge that circulates over the Great Basin, and they travel along

the steep pressure gradient between this inverted trough and the lower pressure over

the eastern Pacific. With all other factors held constant, any change in this pressure

gradient should have a major impact on the frequency and behavior of DW events.
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2.2.1 Event Identification Algorithm

The algorithm used to identify Diablo wind events and compute counts and

summary statistics is as follows:

Algorithm 1

Inputs: 3 hourly relative humidity (rh) and UV wind vectors on a n×m grid
recorded at T time steps.

1. Store the input as vectors indexed according to their spatial location s and time
point t. The spatial locations correspond to grid cells.

2. Calculate wind speed and meteorological wind direction from u and v compo-
nents. Filter out all entries that don’t meet the wind speed, direction, and
humidity criteria.

3. Create a list with an entry for each remaining location, populate it with the
remaining entries plus their original time index. Loop over the list and identify
arithmetic progressions in the index set with common difference 1 and length
at least two. Each of these progressions corresponds to a DW event starting at
the initial time index, lasting a number of time steps equal to the length of the
progression.

4. Remove every entry with an index that does not belong to one of these progres-
sions. Average the RH and wind speed across the entries of every remaining
sequence, record its length as the event duration, and retain the time index of
the first step.

Outputs:

• The number of rows in each list entry corresponds to the event count in
that cell.

• Event-specific wind speed, relative humidity, and duration are all contained
in the entries matched with each cell.
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2.3 Results

2.3.1 Historical Association between Wildfires and Diablo

winds

This analysis aims to establish a historical association between fires and Diablo

winds, a relationship that underscores the importance of studying this atmospheric

phenomenon and motivates our work with climate projections.

As discussed in the 2.1 section, this analysis is carried out using historical

wildfire observations and ERA5 reanalysis climate data. The fire data does not in-

clude any information on burn duration or on the start/end of each event. Since a

DW event could influence a fire at any point during the fire’s life cycle, we designated

a fire as being associated with a DW event if such an event was indicated in the

reanalysis data within two weeks of the date associated with the fire with the same

0.1× 0.1 degree grid cell.

We found that, while Diablo winds are not directly associated with the largest

fires in Northern California, they are very clearly associated with the largest fires that

occur in the vicinity of the heavily populated San Francisco Bay region. If we relax

the duration criteria to 3 consecutive hours and allow our winds to vary between 340

and 110 degrees, then the pattern becomes even more apparent.
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Figure 2.1: Northern CA wildfires: 1984-2019

Figure 2.1 shows the location every Northern California wildfire between 1984

and 2019 that burned over one thousand acres of land. The points are scaled by fire

size, with larger points representing larger fires. Points that are colored red indicate

that the fire was associated with one or more Diablo wind events.

This spatial relationship can be explained by the direction of the winds relative

to the topography of the region. After passing over the coastal ranges. The western

slopes of the mountain range are steep and largely W/SW facing, which results in

the winds blowing downslope and parallel to the aspect of the terrain. This is by far

the most populous area within the study region and the most affected by any change
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in DW activity, so it will be of particular concern in analyzing our results.

2.3.2 Future change in Diablo winds

Now we turn our attention to the regional climate simulation and their future

projections. The first statistic we consider is the frequency of Diablo wind events

within the region, summarized in Fig. 2.2 below:

Figure 2.2: Difference in event frequency: EoC - Historical

HADGEM and GFDL both indicate a general pattern of increasing frequency,

particularly in the western central valley and north bay regions under HADGEM.

GFDL shows increases along the northern coastal and sierra nevada mountain ranges,

but a general trend of decreasing frequency almost everywhere else.

Conversely, the CCSM model shows a pronounced trend of decreasing event

frequency, but with a few notable areas that show either an increase or relatively little

change. This downward trend is is less pronounced in coastal areas, and along the

sierra nevada range, and we can also see a small region of increased frequency north
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of Santa Barbara.

Frequency is not the only important consideration regarding the future behav-

ior of these wind events. The relationship between these events and local fire regimes

is complex, and varies across space and time. Other factors that make Diablo winds

a major contributor to fire weather include their long duration, high sustained wind

speeds, and the low humidity of the air they carry. It is only natural that we consider

how these qualities might change over time.

Figure 2.3: Difference in average event duration (hours)

In Fig.2.3 we see the projected change in average event duration in each grid

cell. All three models show an increase in the average duration of events in the vicin-

ity of the highly populated San Francisco bay area, with the CCSM and HADGEM

models indicating a more extreme shift that extends over large sections of the coast

and adjacent mountain ranges. GFDL shows the least overall change in mean dura-

tion, and the spatial trend is somewhat reversed from what we see in the other two

models, with durations increasing in the east and decreasing towards the west.
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The duration of these winds is particularly notable with regards to their effect

on fire weather. In addition to their role as a driver of wildland fires, persistent heavy

winds limit the scope and efficacy of wildland fire containment strategies. Aerial

suppression strategies are particularly affected. The operation of aircraft in these

conditions is hazardous. The efficacy of aerial dispersal of flame retardant chemicals

is greatly reduced, and is considered ineffective in conditions where wind speeds ex-

ceed 9m/s. Backfiring - the practice of setting small fires along the edge of a fireline

in order to influence the direction of a larger fire - is also far riskier under these con-

ditions. [63].

2.3.3 Atmospheric conditions associated with Diablo wind

events

Figure 2.4: Difference in average event-associated 2m relative humidity (%)
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The CCSM model shows a downward trend in relative humidity associated

with Diablo winds, which is in line with the findings of [49] in their analysis of CAM

output. CCSM and GFDL show a fairly similar spatial distribution of differences, al-

though CCSM depicts a more extreme drying trend along the coast north of Big Sur.

Of the three models, GFDL indicates the lowest event-associated humidity across

both time periods, so the large areas of very little change still represent very dry

events in general.

The HADGEM model appears to be a notable outlier in 2.4, showing an in-

crease in the relative humidity of DW events along the pacific coast, particularly

near the bay area. It is important to note that differences in the relative humidity

associated with these events could only be computed for grid cells where DW events

occurred in both the historical and end of century periods. More detailed maps

showing each time period separately are available as supplementary materials. The

HADGEM projections for both periods are presented in 2.5 below.

24



Figure 2.5: Event-associated relative humidity (%) for HADGEM projections

The humidity associated with events in the north bay region was significantly

lower in the historical HADGEM projections compared to the other two models.

In addition, HADGEM showed almost no events in the heavily forested Mendocino

county north of the bay area.

The end of century projections for event-associated relative humidity in the

north bay area are still low compared to most of the study area, and is roughly in

line with the end of century projections from the GFDL and CCSM models (see

supplementary materials). In addition, we see a number of events affecting cells in

the northern coastal region that were not affected in the historical period, for which

the associated mean relative humidity generally falls below the 15% mark.
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2.3.3.1 Wind Speed

Figure 2.6: Difference in average event-associated 10m wind speed (m/s)

Fig. 2.6 shows the change in average wind speed associated with DW events.

The threshold wind speed of 8 m/s represents a fairly major anomaly compared to

usual atmospheric conditions, and most models show fairly little change between the

two periods.

Of the three projections, HADGEM shows the most pronounced increase in

mean wind speed in the vicinity of the bay area and capital region, while CCSM shows

relatively litle change in the region. CCSM shows a weakening trend over the sierra

Nevada range, while HADGEM displays a lot of variability over this area. GFDL

depicts fairly consistent wind speeds across both decade, with a slight upward trend

in the central valley region and very little change elsewhere.
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2.3.3.2 Geopotential height at 500hPa

Figure 2.7: Projected difference in event-associated 500hPa geopotential height (m)

All three models project an increase - both in general, and in association with

DW events as shown in figure 6. This is consistent with previous findings on the sub-

ject [16] and with the widely acknowledged upward trend in global mean temperature.

The GFDL model is the outlier here, indicating very little change in the pres-

sure gradient across the region of interest, however it does show a large and uniform

increase in the height of pressure systems.

HADGEM and CCSM project a dramatic difference in the distribution of pres-

sure systems on days that correspond to DW wind activity, showing lower pressure

over the continent and higher pressure over the coast. The biggest point of contention

between the two models is over the western end of the study area, where the CCSM

projection indicates an increase in pressure zone that extends well into the eastern

pacific.

This change in the pressure gradient that we observe in CCSM and HADGEM

but not GFDL offers us some insight into why these models differ in their DW pro-
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jections.

Figure 2.8: Projected difference in average 500hPa geopotential height (m)

Figure 2.8 shows the difference in geopotential height between the periods aver-

aged across the entire decade, giving us an idea of the projected change in the spatial

distribution of upper atmospheric pressure systems outside of DW events. CCSM

and HADGEM are extremely similar in this regard, showing a relative increase in

pressure over the continent compared to offshore levels.

The higher offshore pressure during DW events in the HadGem model indi-

cates a high pressure airmass moving offshore towards the S/SW, which is consistent

with the behavior of modern Diablo winds. The intensification of this pattern in

the HADGEM model may account for the increased frequency of winds in its end of

century projections.

GFDL shows the lowest level of change in the pressure gradient of the three

models models, however it does feature the most extreme upward shifts in overall pres-

sure. This large, uniform increase in pressure and relatively little apparent change in

existing pressure systems.
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The CCSM model predicts a sharp drop in DW event frequency across most

of the study region, coupled with a significant uptick in average event duration on

the west coast of the state. The upper atmospheric conditions associated with DW

events under this model show significant high pressure lingering over the great basin,

which lines up with the projection of less frequent and significantly longer lasting

wind events. This changes could indicate a stronger but slower moving pressure sys-

tem driving the DW events.

2.4 Summary and Discussion

In this study we examined the potential effect of anthropogenic climate change

on the incidence and characteristics of these wind events. There are several points

of consensus between the three models. We see an increase in DW-like events on the

eastern side of the state over the Sierra Nevada mountain range, an increase in mean

event duration near the coastal range and bay area, and relatively little change in

event-associated wind speed and moisture over the central valley. There are also a

number of noteworthy differences.

Previous work in fire science [83, 37] has indicated that certain fire regimes

in the Western US may experience a shift towards less frequent, more intense fires.

The CCSM model suggests a similar shift in the behavior of the Diablo winds. The

CCSM results agree with previous work by [50] under different global mean tempera-

ture conditions, which was conducted using the atmospheric component of the CCSM

model.
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The GFDL model shows the least overall change between the two periods in

terms of both DW events and the associated ridge. This model also depicted these

wind conditions affecting a smaller spatial region, and with lower frequencies across

both time periods. The central valley region sees a notable increase in the frequency

and severity of DW events under this projection. This is a fairly positive outlook, as

these wind events appear to be less influential over fire weather in this region.

Of the three models, HADGEM to indicate an increase in the frequency, dura-

tion, and intensity of DW events in the area surrounding San Francisco bay. It does

indicate an upward trend in the relative humidity of the winds, however that can

largely be explained by the exceptionally dry historical projections. This projection

also indicates a pronounced increase in frequency spanning most of the study region,

with the exception of the most southerly areas under consideration. This model also

shows the most pronounced locational shift in the distribution of DW events, with

the end of century projections indicating far fewer events in the eastern and southern

portions of the study area compared to the historical period.

The results of our analysis on historical fire data indicate that these wind are

most associated with fires that occur on the western slopes of the Coastal mountain

ranges, which is precisely what the fire science literature would suggest. With this in

mind, the HADGEM and CCSM projections present far worse scenarios in terms of

DW-associated fire weather.
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Chapter 3

Analysis of Historical California

Fires

We are interested in modeling the distribution of burned area associated

with fires over a large and geographically diverse spatial domain. Each observa-

tion of burned area yi is associated with some spatial point si and a set of covariates

xi = (x1,i, · · · , xp,i)T . The goal of this modeling exercise is to study the empirical

relationship between the response y and the covariates x, while accounting for spatial

dependence via the inclusion of a random effect term [5], with particular attention to

how this might differ towards the upper tail of the distribution.

Spatial modeling of large-scale wildfire behavior is complicated by the issue of

non-stationarity in both mean and covariance [43], [48]. Previous attempts to account

for this non-stationary behavior have included the application of weighted regression

models that avoid explicit modeling of the covariance [62], and the use of Gaussian

random field models with non-stationary covariance functions [102].
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3.1 Data

Figure 3.1: Area Burned by Northern California Wildfires

The data used in this analysis differs slightly from the historical data used in

chapter 2. The fire observations are taken from a publically available dataset provided

by the state of California through their Fire and Resource Assesment program. The

data ranges from 1984 to 2019, and the fields that we utilize in this analysis include

burned area, date of discovery, and a shapefile indicating the extent of the burned

area, as shown in figure [15].

Lower atmospheric covariates are derived from a finer scale ERA5 reanalysis
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data product, available at a 0.1× 0.1 degree spatial resolution, and hourly temporal

resolution, while upper atmospheric covariates are available at a 0.25 × 0.25 spatial

resolution, again with hourly temporal resolution (Copernicus). Topographic data

is derived from digital elevation models retrieved from Amazon web services open

terrain project (AWS).

One data quality issue of note in the fire data is a very large number of missing

values regarding date of containment. This makes it difficult to gauge the duration of a

fire or construct covariates that range across a fire’s lifespan. The gridded atmospheric

data is at a much coarser resolution than the polygonal fire observations, and the

covariates associated with any polygon that extends across multiple grid cells are

averaged across those cells.

3.2 Covariate Construction

A common issue that arises in dealing with atmospheric covariates is that of

multicollinearity [51]. Much of the previous literature on regression analysis of wildfire

behavior has employed dozens of covariates in the interest of more accurate predic-

tion [89], [102], [30], however our interest is more in understanding the relationship

between these variables and the size of fires, which makes this a highly relevant issue.

Over thirty covariates were considered for inclusion, but the majority of these were

eliminated due to strong linear relationships with one or more other factors.

Another important consideration is the process of summarising gridded spatio-

temporal data into covariate vectors. The fire data set contains information on the

shape and extent of each fire rather than point locations, which simplifies the process
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of aggregating across space. If a fire extends across more than one covariate grid

cell, we consider a weighted average based on the area of intersection with each cell

relative to the total area of the fire.

The more difficult problem is aggregating these variables across time. We have

the dates and times of discovery and containment for each fire event. This interval is

likely to be left-censored, particularly for fires that occur further from densely pop-

ulated areas, and there are some potential issues with data quality. Several entries

were manually corrected by referencing the names and identification numbers in offi-

cial records, but verifying the information for every event is not feasible.

Different factors are also likely to have a greater impact at different points

in the fire’s life cycle. Precipitation, for example, is most impactful in terms of a

long-run trend preceding the actual fire (find the citation). Wind, on the other hand,

is most meaningful during the surface and crown fire phases (that one 70s book). The

longer duration of large fires also has a smoothing effect on time-varying predictors,

since they have much more room to vary across the lifespan. A selection of temporal

averages were considered for each covariate to account for these effects, and final se-

lections were made based on fire science literature, and on their empirical relationship

with the response.

A final consideration in covariate selection is that the relationship between

covariates changes across space, time, and the quantiles of the response. This leads

to a sort of Simpson’s paradox, where correlations change at different scales of spatial

and temporal grouping. In an attempt to account for this effect across time, multi-

collinearity was assessed separately with the data separated into seasonal, monthly,
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annual, and five-year groups. The spatial effect is handled by the inclusion of spatial

covariates related to fuel models and vegetation coverage.

3.2.1 Surface Atmospheric Variables

Total precipitation, 10m wind speed, 2m temperature, 2m relative humidity,

10 hPa geopotential height, surface pressure, and surface convective potential were

considered as lower atmospheric covariates. These were derived from ERA5 reanaly-

sis data with precipitation, wind speed, temperature, and RH available at a 0.1× 0.1

degree spatial resolution, the pressure variables at a 0.25 × 0.25 degree resolution,

and both at an hourly temporal resolution. 10m wind speed, and precipitation were

selected for inclusion in the final model.

Precipitation was averaged over a 60-day period prior to the start of the fire.

The averages across this period were highly correlated with levels during fire’s lifespan.

The fire science literature suggests that temperature is most impactful as a long-run

trend, and during the initial phases of a fire’s life-cycle (that 70s book again). Wind

speed was averaged over the lifespan of the fire from discovery date to containment

date.

The other variables were excluded due to collinearity. Relative humidity was

heavily correlated with precipitation and temperature, particularly after adjusting for

seasonal and spatial effects. It also showed a more linear relationship with the upper

atmospheric covariates than long-run temperature or precipitation, and was removed.

The pressure-related variables were all removed based on linear relationships with to-

pographical covariates and upper atmospheric variables. Temperature was found to
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be negatively correlated long-term precipitation trends and with wind speed.

3.2.2 Ecological and Topographic

Soil moisture level, slope, high vegetation coverage, low vegetation coverage,

terrain aspect, NFDRS fuel load, and the angle of average wind direction relative to

aspect were all considered. The topographic covariates were derived from the USGS

national map 3d elevation program, and give some indication of the terrain underlying

the wildfire event. Mean slope gives a rough measure of steepness, while mean aspect

gives the direction of the slope. The incident of wind and aspect was computed based

on the difference in angle of meteorological wind direction and terrain aspect on a

0-1 scale, with 0 indicating upslope winds and 1 indicating downslope. Vegetation

coverage was derived from ERA-5 reanalysis, and fuel model classification was drawn

from USFS wildfire assessment system data.

Fuel classification, wind-aspect incidence, and high/low vegetation were ul-

timately selected as covariates. Slope was tightly correlated with wind speed and

vegetation coverage, while soil moisture was explained by long-term trends in tem-

perature and precipitation. Aspect is only important in its relation to wind direction,

particularly once spatial relationships are accounted for, so this was also excluded.

3.2.3 Upper Atmospheric

The upper atmospheric covariates included in the model are geopotential

height and potential vorticity measured at 500hPa, both averaged across the lifespan

of the fire at a daily temporal resolution and a 0.25× 0.25 degree spatial resolution.
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These effects are hypothesized to be particularly relevant to larger fires ([103]. Poten-

tial vorticity (PV) is effectively a measure of the air’s ability to move at a particular

pressure level, in this case 500 hPa, which gives us some idea of how heavily convec-

tion currents can churn over a large fire. Geopotential height gives us an indication of

both the pressure system directly overlying the fire, and of the vertical flame height

required to take advantage of the free-moving air in high-PV conditions [77].

3.3 Exploratory Analysis

The heavy-tailed nature of the burned area distribution is immediately ap-

parent - see 2.1, with the largest fires accounting for the vast majority of burned

area. The data set contains records of 280 fires that burned in excess of 5000 acres,

accounting for roughly 7% of the observations and over 84% of the total burned area.

A seasonal trend with regards to both frequency and size of fires is also present,

with the vast majority of fires starting in the summer months, or in late spring and

early fall. No fires burning in excess of 5000 acres began during winter months. It

is also clear that fires that start outside of California’s fire season - roughly April

through October - show some very different behavior, and account for less than 10%

of the data. In the interest of getting clear results, these have been excluded from the

analysis. Covariates and their relationships also change within the fire season. Po-

tential vorticity and Z500 appear more heavily correlated in fires that started outside

of the autumn months, with the extent of that correlation experiencing a reasonable

amount of inter-annual fluctuation.
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One area of interest is in how the covariates appear to differ when we separate

out the extreme fire observations from the rest.

3.4 Model Specification

We’re interested in evaluating a relationship that varies across space, so a

spatially varying regression model is an appropriate choice. The most interesting

quantities within the scope of this analysis are the regression coefficients, and partic-

ularly how they vary in the tail as opposed to the bulk of the distribution. In this

vein, we’ll consider two separate models - one model examining the upper end of the

burned area distribution, and one fit to the remaining observations.

For the bulk distribution, given a vector of observations {y1, ..., yn} associated

with locations {s1, ..., sn} and covariate vectors {x1, ...,xn},

yi|xi, si,θ ∼ Lognormal(µi, σ
2)

µi = xTi β +W (si) + ε

S ∼ GP (0,Σ),

where θ is a vector of hyperparameters, W is a spatial random effect modeled

as a zero mean Gaussian spatial random field with stationary Matérn covariance

function

C(d) = σ2 21−ν

Γ(ν)

(√
2νdρ−1

)ν
Kν

(√
2νdρ−1

)
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where d is the distance between two spatial points, ρ is a range parameter, σ is

the standard deviation, and ν is a smoothness parameter [24]. The SPDE formulation

of the INLA model leads to a slightly offbeat parameterization of the Matérn, where

ν = α− d/2 for some integer α, in this case we take α = 2 [47].

The extremes will be treated with a spatially varying generalized Pareto model

in the vein of [23], where the scale parameter is allowed to vary across space with a

GP prior. given a vector of observations z1, ..., zm exceeding a threshold u, selected

via examination of diagnostic plots [21] we can write this model as

zi|xi, si, ν ∼ GPD(µ, σ(si), ξ)

σ = xiβe +We(si) + εe(si)

Se ∼ GP (0,Σe)

log(ξ) ∼ Gamma(1, 12)

We’re interested in comparing the beta terms βe and β so the covariates have

the same structure between the two models. The spatial effects W and We and the

nugget terms are estimated separately, and we also have a separate vector of hyper-

priors ν. The GPD shape parameter is equipped with a loggamma prior in order to

constrain it within reasonable bounds.

Priors for range and standard deviation parameters of the Mater̀n covariance

function were set based on examination of semivariograms [64], which suggest a very

small range and standard deviation. Minimally informative penalized complexity pri-

ors [34] were selected such that the probability of the range parameter exceeding 1
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or the SD parameter exceeding 3.5 is 0.10. The same priors were employed for the

spatial effect term in both models for the sake of easy comparison.

3.5 Seperating Extreme observations

The first step in fitting a GPD model is determining the threshold above which

observations are considered extreme. We assume that this threshold is constant across

time and space, and can be approximated by examination of mean residual life (MRL)

and threshold stability plots [21].

Figure 3.2: Mean Residual Life Plot of observed burned area

The MRL plot above suggests a threshold of around 10,000 acres to ensure

stability of the shape parameter estimate, roughly the 97th percentile of the distribu-

tion. This leaves us with 180 observations in the extreme data set and 3697 fires in

the bulk model.
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3.6 Results

The models were fit via integrated nested Laplace approximation [74], a method

of approximate Bayesian inference for Gaussian random field models that offers sig-

nificant computational advantages over traditional probabilistic methods, albeit with

some disadvantages - A required Markov conditional independence assumption on the

underlying field, and restriction to marginal posterior inference.

The distributions of the resulting regression coefficients are summarised below.

In general, the results indicate that vegetation coverage, upper atmospheric variables,

and total precipitation in the months leading up to the fire have a more pronounced

effect on extremely large fires, while average slope and wind speed are more influential

over the rest of the distribution.

Estimate
(Bulk)

95% CI
(Bulk)

Estimate
(Tail)

95% CI
(Tail)

Wind Speed 0.024 -0.047, 0.096 -0.018 -0.258, 0.229
Precipitation 0.073 -0.002, 0.147 -0.268 -0.5, -0.028
Slope 0.266 0.184, 0.348 0.170 -0.093, 0.428
Incidence 0.003 -0.066, 0.072 0.033 -0.18, 0.239
High Vegetation 0.007 -0.069, 0.083 -0.197 -0.403, -0.018
Low Vegetation 0.066 -0.009, 0.142 0.223 0, 0.406
Z500 0.039 -0.032, 0.110 0.097 -0.104, 0.291
Potential Vorticity 0.058 -0.013, 0.128 0.157 -0.037, 0.347

Table 3.1: Standardized Regression Coefficients

The GPD shape parameter for the extreme observations was estimated at 0.04,

with a 95% credible interval of [0.009, 0.11]. This decay towards zero is in keeping

with the tail behavior observed in [76] for the distribution of burned area in Los An-

geles county between 1950 and 2000.
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Coefficient estimates for fuel model designation are omitted for the sake of

brevity, however fires in the bulk distribution were positively associated with pine

grass savannah, while larger fires were positively associated with sagebrush grass and

negatively associated with tundra. Fires on both ends of the spectrum showed a pos-

itive association with intermediate brush.

These results are largely in keeping with what the science suggests. The as-

sociation with extreme fires and vegetation coverage is particularly notable, and may

reflect a pattern of fires burning across areas of lower vegetation, gaining height and

intensity before spreading over dense forests with high canopies. Upper atmospheric

covariates, particularly vorticity, are also more strongly associated with the area con-

sumed by larger fires.

The relatively minor effect of wind-slope incidence is also noteworthy, as strong

downslope winds are widely accepted as a significant driver of fire activity. The fact

that this effect is not reflected in the results is likely indicative of the fact that wind

was averaged over the duration of each event, smoothing out the potential effects of

brief but intense downslope gusts.

There appears to be a general lack of strong associations with burned area

among the smaller fires in the model, which likely indicates a great deal of variety

in how these fires spread and behave. Larger fires, on the other hand, appear to

be consistently associated with extended periods of low precipitation preceding the

event itself along with upper atmospheric conditions that are conducive to convection.
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Chapter 4

Conclusions and Discussion

Looking at changes in the Diablo winds gives us an important glimpse at the

future of Northern California’s fire weather. Looking at the history of these fires from

a quantiative perspective helps us contextualize these observations, and also reveals

some of the inherent difficulties inherent in examining this natural processes through

a statistical lens.

The juxtaposition between the important role of Diablo winds in dictating the

region’s fire regime and the relatively insignificant contribution of wind conditions in

the spatial regression model highlights one of the major issues in pursuing this line

of study. As briefly discussed in section 1.3, every stage of a wildland fire, from igni-

tion to containment, is influenced by physical, ecological, and human factors. Some

factors - like the Diablo winds - have an obvious and immediate impact and a more

subtle, long-term impact. Centuries of atmospheric conditions that lend themselves

to fireweather have cultivated fire-reliant ecosystems, which have in turn been im-

pacted and altered by recent human settlement and development [58] [86].
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Similarly, the seasonality of wildfires across time is intertwined with the sea-

sonal trends in of their numerous atmospheric and ecological drivers [42]. This leads

to severe issue of multiseasonality that make temporal forecasting extremely difficult

[61].

The goal of the modeling effort in this paper was to conduct inference on the

factors that drive the extent Northern California’s fires in broad strokes. An explicit

effort was made to minimize the confounding effects of multicollinearity, and the la-

tent Gaussian model allowed us to develop a covariance-stationary approximation to

the spatial dependence structure. Some temporal effects were accounted for in covari-

ate construction, with different quantities being averaged across relevant time frames.

A natural question is why this choice was made over a more complex model

with a non-stationary covariance function and a temporal random effect as in [102].

This decision was made in order to minimize the potential error that would result

from the misspecification of non-stationary random effects. The asymptotic robust-

ness of Gaussian process regression with misspecified covariance has been well studied

both theoretically [82] [81] and empirically [97]. The finite sample case is not as well

studied. Simulation studies as in [7] and [101] often focus on the issue of misspeci-

fied parameters, rather than the function itself. There has also been some work in

the machine learning literature on finding bounds for the error induced by covari-

ance misspecification as in [32]. In the case of this study, the question is whether a

stationary random effect or a misspecified non-stationary random effect works as a

better approximation to the true non-stationary covariance structure. The Bayesian

framework and relatively small data set adds another layer of complication, creating

a scenario where the consistency of our estimates could depend heavily on our choice
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of priors. Overfitting is a major concern with non-stationary modeling as explored in

[33] and [41].

What ultimately makes the choice of a stationary covariance function more

appealing for this application is the sparseness of observations. It is very difficult to

get a sense of what local covariance should look like when dealing with events as rare

and complicated as wildland fires. There are 180 or so fires in this data set that exceed

the extremal threshold, and slightly over 2800 in the bulk model. These are rare and

spread out events. Making the assumption of covariance stationarity and including

some of the major influencers of local behavior in the fixed effect term to account for

mean non-stationarity allows us to recover a somewhat-reasonable approximation to

the underlying process.

The choice of a purely spatial model is another point worth addressing, and

again it boils down to the lack of a clear specification for a temporal effect. The sea-

sonality of wildfires across time is intertwined with the seasonal trends in atmospheric

and ecological drivers, many of which move on scales that are beyond the scope of

our data [42]. This leads to severe issue of multiseasonality, which is particularly

confounding with regards to the extreme observations [52]. Outside of seasonality

concerns, the anthropogenic warming trend present throughout the study period and

the complex relationship of global temperature and regional atmospheric effects is

another significant barrier to specifying a coherent temporal random effect.

Predictive methods such as deep learning have recently become popular in

wildfire modeling [71] [6], however it is worth noting that non-stationarity is as much

a matter of concern in these approaches as it is in statistical inference [100]. The
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problem of modeling wildfire behavior on any large spatial or temporal scale is ulti-

mately constrained by the sheer number of moving parts involved, and the difficulty

of attempting to account for every contributing factor.

Data-related issues of scale and availability are limitations to any purely data-

driven approach, while physical approaches are limited by the reliance on idealized

models that may not reflect reality. An interesting line of research in modern fire

science is data assimilation, incorporating physical and statistical methods into the

same model to draw on the strengths of both approaches [55].
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Vega-Nieva, Eric Calleros-Flores, José Javier Corral-Rivas, Pablito Marcelo
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Joint Modeling and Prediction of Massive Spatio-Temporal Wildfire Count and
Burnt Area Data with the INLA-SPDE Approach. arXiv:2202.06502 [stat],
February 2022. arXiv: 2202.06502.

[103] Tarisa K. Zimet and Jonathan E. Martin. A Model Based Analysis of the Role
of an Upper-Level Front and Stratospheric Intrusion in the Mack Lake Fire. In:
2d International Wildland Fire Ecology and Fire Management Congress: 5th
Symposium on Fire and Forest Meteorology; 2003 November 16-20; Orlando,
FL. Boston, MA: American Meteorological Society: 1.3., 2003.

[104] Zachary Zobel, Jiali Wang, Donald J Wuebbles, and V Rao Kotamarthi. Evalu-
ations of high-resolution dynamically downscaled ensembles over the contiguous
united states. Climate Dynamics, 50(3):863–884, 2018.

56


	A Contribution to the Statistical Analysis of Climate-Wildfire Interaction in Northern California
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background: Wildfires
	Statistical Modeling of Wildfire Behavior
	Pyrogeography
	Climate-Wildfire Interaction
	Extreme Fires
	California's Fire Regime and the Effects of Climate Change
	Background: Extreme Value Theory in Brief

	The Diablo Winds of Northern California
	Dataset
	Diablo Wind Identification
	Results
	Summary and Discussion

	Analysis of Historical California Fires
	Data
	Covariate Construction
	Exploratory Analysis
	Model Specification
	Seperating Extreme observations
	Results

	Conclusions and Discussion
	Bibliography

