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ABSTRACT 

This project developed an automated EEG analys is system for 

detecting epileptic waves, in particular, spikes and sharp waves 

(SSWs), in the electroencephalograph (EEG) of epileptic patients . 

The EEG data used in this project were obtained from an epileptic 

patient and scored by an electroencephalog rapher . They were one-

channel depth recordings of some 1 cm deep in the temporal lobe and 

had a total period of 17.5 minutes. 

The system 's desired features we re real-time operation, 

microcomputer applicability, ability to rej ect artifacts , and self­

adjustments to intra- and inter-ind ividual EEG variances. Also , it was 

expected to give some quantitative and objective way of describing and 

evaluating the epileptic waves . 

The system applied a pattern recog n ition scheme, where the 

pattern recognition p roced u res of preprocessing , segmentat ion , 

parameterization , and classification were established on the basis of the 

reviews of traditional and automated EEG anal y ses . 

In the preprocessing procedure, the digitized EEG data were 

filtered by a simple low-pass filter. In the s egmentation procedure , the 

preprocessed data were further filtered by another simple low-pass 

filter , and segmented into half - wave segmen t s at each turning point. 

In the parameterization procedure, two consecutive half-waves of the 

preprocessed data constituted a wave wh ich brought forth wave 

parameters, and then the parameters of 18 waves around each wave 
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(core-wave) were incorporated into an event. Two parameterization 

methods were tested: in Method A, the wave parameters were an 

amplitude, two slopes at the extremum of the wave and a duration 

between the current and the next extremum; in Method T, the wave 

parameter was a template-matching value where three measures of mean 

absolute error, mean square error, and correlation coefficient were 

tested. In the classification procedure, the data consisting of the 

events were classified by a classifier consisting of classification 

functions. The stepwise linear discriminant analysis program (BMDP7M) 

used a set of supervised training data, which was labeled according to 

the EEG scores of the electroencephalographer, to (1) select a subset of 

parameters in an event statistically, and (2) calculate the coefficients of 

Bayes linear classification functions. Two types of canonical 

classification functions with absolute measure and with square measure 

were also tested in an example. Three PRE (proportionate reduction in 

error) measures were used to evaluate the classification results. 

Experiments were performed using the Clemson University 

I BM370/3033 computer system to verify the f easibility of the proposed 

system and to test its performance. All programs were written in 

FORTRAN. 

The BMDP7M program reasonably selected parameters in and 

around the core-wave. An overall significance level of 5% provided a 

means of stopping the stepwise parameter selection at a proper step . 

Partial results of classification are as follows. A Bayes classifier 

in Method A, which included 14 parameters, classified 76 SSW out of 80 

correctly, and misclassified 40 background events out of 12,589 as SSW 
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and 1 artifact out of 3 as SSW . The Bayes classifiers with mean 

absolute error and with mean square erro r in Method T performed 

slightly inferior to those in Method A. As an example, a Bayes 

classifier in Method T with mean absolute error, which included 24 

parameters, correctly classified 73 SSW out of 80 and all 3 artifacts, 

and misclassified 50 background events as SSW. The Bayes classifiers 

with correlation coefficient in Method T were not successful. The 

canonical classifiers with 2 or 3 canonical variables were nearly as 

successful as the classifiers in Method A. As an example, a canonical 

classifier with absolute measure correctly cl assified 75 SSW out of 80 

and 1 artifacts out of 3, and misclassified 63 background events as 

SSW. Method A seemed to be more advantageous than Method T in 

performance and in computation except in rejecting artifacts. 

Results showed that classifiers derived from 72 sec. of training 

data which contained 9 SSW could maintain good performance using all 

the data. This indicates a good potentia l of the system's self-

adjustability to intra-individual EEG varian ce. Providing a training 

data set for each patient should account for inter-individual EEG 

variance. 

The system was consistent in morphologically detecting the 

waveform(s) labeled in the supervised train ing data for BMDP7M . It 

was found that the background events miscl assified as SSW were very 

similar in morphology to the SSW in the training data . The system 

seemed to contribute to quantitative and objective description and 

evaluation of SSW. As a prospect, standard ization of parameters was 

indicated as improving performance and estab lishing standard criteria of 

SSW. 
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The FORTRAN programs were converted to an assembly program 

for a microcomputer with Intel8086 and 8087, and it was found that the 

system can be real-time operating on this microcomputer with a help of 

a host computer to calculate coefficients of a classifier. 
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CHAPTER 1 

INTRODUCTION 

The electroencephalogram (EEG) is a record of brain electrical 

activity from electrodes placed usually on the scalp or occasionally 

under the scalp. Depending on whether the activity occurs with or 

without some external stimulus, the EEG is classified into one of the two 

types, the evoked EEG or the spontaneous EEG, respectively. This 

research is mainly concerned with the spontaneous EEG. 

Historically reviewed, the electrical activity of the brain was first 

observed in 1874, by Caton, an Englishman, who used rabbits and 

monkeys. However, it was not until 1924, half a century later, when a 

German psychiatrist, Hans Berger, for the first time, recorded the 

human electrical activity from electrodes on the scalp (Berger 1929). 

He discovered the correlation between the electrical activity of the 

cortex and psychic functions (Gibbs & Gibbs 1951). Although there 

was skepticism concerning the significance of the EEG, the EEG 

measurement has now become one of the most indispensable tools in 

clinical and research environments for making diagnosis or 

understanding the functions of the brain. 

The traditional EEG analysis is visual inspection of strip chart 

recording by electroencephalographers, who are well-trained in finding 

clinically significant information in EEG. It requires a lot of labor and 

off-line (non-real time) processing. In addition, the analysis criteria 

are generally based on the experience of electroencephalographers, and 

are very qualitative. 
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Rapid developments of analog and d igital data processors in 

recent years have made automated EEG analysis by computer systems 

within reach. As galvanometers contributed to the pioneering research, 

and elaborate electrodes and electronic amp lifiers did to the clinical 

applications, the data processors will have innovative effects on the 

research and clinical aspects of the EEG. The data processors are 

expected to achieve the automated EEG analyses in order to (1) reduce, 

substitute, or improve the work of elect roencephalographers, (2) 

accomplish on-line processing, (3) give quantitative or objective criteria 

to various types of EEG activities corresponding to their clinical 

significance. 

There are, however, some obstacles hindering the automation. 

The main difficulty for computers to imitate electroencephalographers 

arises from the lack of quantitative and logical descriptions of specific 

EEG activities because computers deal with numbers and logic. It may 

be easy to make some decision making system with a computer, but the 

decision should correspond to some clinically significant activities. 

Consideration of intra- and inter-individual variation, or rejection of 

various kinds of artifacts are other examples difficult to be dealt with 

by computer analysis, whereas these are easier tasks for 

electroencephalog raphers. 

Although there has not been a single complete method generally 

applicable to all occasions, some methods of limited success have been 

reported. Excellent reviews about a number of attempts for automated 

analysis are presented in the papers by Barlow (1979) and Gevins 

(1980). 
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One of the approaches to the automated EEG analysis has arisen 

from pattern recognition. A number of pattern recognition algorithms 

have been proposed to overcome the difficulties and to accomplish work 

equivalent to electroencephalographers'. 

The objective of this project is, along the course of pattern 

recognition, to find a suitable method for a system of detecting certain 

waveforms of EEG, in particular, spikes and sharp waves(SSW). SSW 1 

1s a major type of interictal epileptiform transients. These epileptiform 

transients are the most characteristic interictal EEG features of 

epileptogenic disorders (Frost 1979), and consist essentially of SSW 

(Gotman 1980). 

The features of the implemented system are desired to be 

(1) real-time operating, 

(2) microcomputer applicable, 

(3) able to reject artifacts, 

(4) free from adjusting to intra- and inter-individual variances, 

(5) contributing to quantitative description of epileptic waves. 

The pattern recognition procedure can be divided into the 

following series of procedures: 

(1) preprocessing, whereby the data is prepared for computer 
analysis; 

(2) segmentation, whereby the data is segmented; 

(3) parameterization, whereby the data is parameterized; 

(4) classification, whereby the data is classified so that the 
desired waveforms are detected. 

1. SSW may refer to a single wave, waves, a type of waves, or a 
group of waves. Which one of the objects the word SSW in . the text 
means will be evident from the context. SSWs may be used to imply the 
noun is plural. 
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Based on these sequential procedures, the following methods have 

been designed to achieve the objective of this project, realizing the 

desired features of the system. Turning points ( or peaks) are used 

for segmentation. Two methods are tested in parameterization: a set of 

amplitude, slopes, and duration 1s used in one method, and a set of 

template matching values in the other method. The classifier for the 

detection of epileptic transient waves is derived from a stepwise linear 

discriminant analysis (SLDA) program during a supervised training 

period, which allows the system to adjust to the patient's particular 

waveforms. The discrimination of artifacts is also tried. Although the 

algorithms have been programmed in FORTRAN and tested on the 

Clemson University I BM370/3033 computer, the real-time microcomputer 

application has been taken into account in the choice of algorithms. All 

the algorithms are free from manual setting of thresholds or coefficients 

of parameters . Providing a supervised training data for the 

discriminant analysis is available, the classifier can be free from 

adjusting to inter-individual variance. It is possible to avoid adjusting 

to intra-individual variance by standardizing the parameters used for 

classifying the epileptic waves and/or adding a self-learning ability to 

the classifier. However, the standardization of parameters and the 

development of the self-learning classifier were not investigated in this 

project. 

The main structure of this thesis follows. Chapter 2 provides for 

some background information of EEG, the trad itional EEG reporting, and 

the EEG of epileptics . Chapter 3 reviews the relative literature for 

automated EEG analysis, focusing on the procedures of pattern 
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recognition . Chapter 4 shows the implemented system's analysis 

procedures. Chapter 5 describes experimental design and results. 

Chapter 6 summarizes and · discusses the results and the implemented 

system's significance, and also demonstrates the prospects for 

improvements and applications of the system. Conclusion follows in 

Chapter 7. Appendices contain lists of programs, mathematical 

expressions of the discriminant analysis program, output samples, etc. 



CHAPTER 2 

EEG AND ITS TRADITIONAL REPORT ING 

This chapter briefly reviews the EEG as neurophysiological 

phenomena, the characteristics and significance of the EEG , the 

traditional EEG reporting, and the EEG of epi leptics . 

EEG Characteristics 

Answering "what is the orig in of the EEG? " , Thatcher and John 

(1977 , pp. 1-41) made the following summary : 

The primary contribution to EEG comes from summated 
synaptic potentials arising on the dendrites and soma of 
neurons . The other contributions come from after potentials 
associated with axon spikes and poss ible neural intrinsic 
oscillations . In addition, the glia cells contribute to DC 
steady potentials, and the extracellula r space 1 passes the 
current generated by the activation of synaptic ensembles. 
Also the extracellular medium shows (1) an electrical 
characteristic of a passive low-pass filter for transient 
waves and (2) a characteristic of non homogeneous medium 
for slow waves . As a consequence of the point (2), some 
nonlinear propagation of electrical signa ls will occur through 
the med ium . 

Adey (1973) pointed out the informat ion handling in cerebral 

neurons includes not only fiber conduction and synaptic activat ion, but 

also dendrodendric conduction, neuronal-neuroglial interactions across 

the intercellular spaces, and the sensing of weak stimuli such as weak 

electric (and perhaps magnetic) fields and minute amount of chemical 

substances (drugs, hormones and neurohumors ) . 

1 . It is occupied by branching mucopolysaccharides and 
glycosaccharides . 
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Gevins et al. (1975a) suggested that the electrical potent ials of 

EEG are generated by pyramidal cells in the cerebral ·cortex, which are 

triggered by rhythmic discharges from thalamic nuclei. They also 

mentioned that as the electrical potentials a re conducted through the 

cerebrospinal fluid, the skull, and the scalp, they are diffused and 

attenuated . Then, the scalp activity can be considered as the spatial 

average of the cortical activity over a limited area (see Pfurtscheller 

and Cooper 1975). 

As seen in Fig . 2 . 1, the cerebral co rtex region is a densely 

packed assembly of neural elements ( Kooi 1971, p. 40), and has six 

distinct layers . Each cortical neuron is conn ected to approximately 600 

other neurons, conservatively speaking, most of which are in close 

proximity of the cell, and the density of cort ical synapses is estimated 

to be between 7,000 and 13,000 synapses per neuron (Cragg 1967 , see 

Thatcher and John 1977, p .41). It 1s then indicated that the 

information processing in the brain is largely statistical in nature 

(Thatcher and John 1977, pp. 41-52) . 

At this point, it is obvious that interpreting the EEG is not an 

easy task . Because (1) there are a multiple of generating sources of 

the EEG probably interacting with each other, (2) the true phys iological 

information has a statistical nature itself , and (3) it has been 

nonlinearly diffused and attenuated through the transmission process . 

Furthermore , the subject ' s physical and mental conditions also 

affect the EEG. Gibbs and Gibbs (1951, p. 78) summarized these 

conditions as follows : 
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Figure 2.1 Structure of the Cerebral Cortex . Results obtained using 
different specific histological stains specific for cell bodies, 
dendritic and axonal processes , and myelin sheath are shown 
in (a) Golgi stain, (b) Nissl cellu lar stain, and (c) myelin 
sheath stain. The six layers of t he cortex area are also 
demonstrated: l=molecular layer, ll=external granular layer , 
11 !=external pyramidal layer, IV= internal granular layer , 
V=large or giant pyramidal layer (ganglionic layer) , 
Vl=fusiform layer. (Copied from Webster 1978, p . 194 . ) 
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(1) brain metabolism, 

(2) age, 

(3) the level of consciousness, 

(4) the clinical 
disorder, 

symptomatology of ep ilepsy ·and related bra in 

(5) the pharmacological action of stimulants, sedatives, and anti -
epileptic substances . 

Because of these and possibly some other variables, Gevins(1979) 

suggested that especially tight experimental designs are necessary . In 

the paper, he proposed the methodological cr iteria on neu rophysiologic 

basis, sample of population, experimental design , recording condit ions , 

data selection , and data standardization. 

In addition, there are instrument relat ed factors affecting the 

EEG recording . The recorded EEG differs depending on the type, 

sites , and arrangement of electrodes used. 

The types of electrodes commonly used are scalp, sphenoidal , 

nasopharyngeal, electrocorticographic, and intracerebral electrodes . 

Each of these is developed for a specific type of recording. The scalp 

recording is non-invasive and the most popu lar . The sphenoidal and 

nasopharyngeal electrode recordings are useful for investigating 

temporal lobe epilepsy. The electrocorticographic recording 

(electrocorticogram : ECoG) is directly from the surface of the cortex, 

and the intracerebral recording, also called depth recording, is from 

the depth of the cortex . The latter two reco r dings are principally for 

surgical treatments and need a very carefu l setting and a team of 

experienced staff. In the case of patients with intractable epilepsy 

being considered for surgical intervention , th ese recordings are of use 

(Wyler and Ward 1981) . 
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The scalp electrode placed a few centimeter apart from the others 

does not add useful EEG information, but the electrocortical or 

intracerebral electrode placed even a few millimeter apart from the 

others can show a significant difference. 

Either a monopolar (referential) or a bipolar arrangement of 

electrodes combination is used . The monopolar recording is more popular 

because it gives a more comprehensible and graphic view of voltage 

condition (Gibbs and Gibbs 1951, p. 48), although it is more 

susceptible to artifacts. The common reference obtained by connecting 

the ears is relatively more advantageous than other references ( Koci 

1971, p. 30). 

Traditional EEG Reporting 

In the traditional EEG reporting, the EEG reporter controls the 

above mentioned conditions as much as possible, and sorts the major 

features into the following sequence for the description of the EEG 

record (Cooper at al. 1969, p . 117): 

(1) the most persistent rhythm, 

(2) other rhythmic features, 

(3) discrete features of relatively long duration, 

(4) discrete features of relatively short duration, 

(5) the activity remaining, 

(6) artifacts. 

Each of the above features is described in terms of some or all of the 

following parameters: 
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( 1) amplitude, 

(2) frequency or period, 

(3) waveform, 

(4) location or spatial distribution, 

(5) incidence or temporal variability, 

(6) responsiveness to stimuli. 

Yeager (1972) summarized the traditional method of analysis and 

interpretation of human EEG records in a four-step procedure: 

(1) initial record scan, noting electrode montage (arrangement), 
time and amplification scales, and the age and condition of 
the subject; 

(2) the secondary record scan, closely examining wave patterns 
characteristic of the dominant background, and noting the 
presence of transients or paroxysmal activity; 

(3) tertiary scan, determining the causes of variation from area 
to area and over time; 

(4) categorical summary of all features of the tracing that may 
be relevant to interpretation. 

Interestingly and importantly electroencephalographers frequently can 

not conclude whether or not a spike-like waveform is abnormal if only 1 

or 2 min. of record is shown to them as the sole basis of decision 

(Sr.nith 1974). An attempt is then made to relate those observations to 

known conditions of the subject (see Gevins and Yeager 1975). 

It is convenient to classify the activity into the stationary and 

the transient activities. The stationary activity can be grouped by the 

following frequency bands, which are conventionally used and relating 

to some symptomatic phenomena: 
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(1) delta band 0.5 - 3 cycles / second, 

(2) theta band 4 - 7 cycles/second, 

(3) alpha band 8 - 13 cycles/second, 

(4) beta band 14 30 cycles/second. 

Since the definition of the frequency here is the number of complete 

cycles of a rhythm in one second, it should not be confused with the 

frequency used in physics or electrical engineering , which is based on 

a sinusoidal wave . In fact, the waves of the stationary activity are 

commonly deviated from a sinusoidal wave. And there is a possib ility 

that more than one activity, which have different frequency bands , are 

superimposed on the record . 

The transient activity includes spike, s harp, vertex sharp, and 

lambda waves, and these waves may form a complex such as a spike and 

wave complex, or a poly-spike and wave comp lex (Storm van Leeuwen et 

al. 1966). The transient waves can be supe r imposed on the stationary 

waves . A spike wave is defined as a wave distinguished from 

background activity and having a duration of 1/ 12 second or less, and 

likewise a sharp wave as a wave distinguished from background 

activity, with a duration of more than 1/ 12 second and less than 1/ 5 

second (Storm van Leeuwen at al . 1966). These definitions seem 

insufficient to practically apply without other supplemental information 

or experience, especially when automated analysis is to be accomplished, 

as mentioned by Barlow (1980) . 

The voltage picked up at the electrode, which is in the order of 

microvolts, are input to a preamplifier and then to a main amplifier . In 

the beginning years of the EEG research, gal v anometers were used , but 
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now, very reliable electronic amplifiers are commercially available. 

Usually a band-pass filter of 0. 5 Hz - 70 Hz is used to eliminate DC 

shifts and high frequency noises. The output from the main amplifier 

is an input to a strip chart recorder for visual inspection. It should 

be noted that the DC shift and the high frequency components 

eliminated in the filtering may have had some significance. In fact, DC 

shifts relate to the subject's condition and transient waves have 

frequency components higher than 70 Hz. The filtering is thus mostly 

contributing to the adequate input for the recorder, thereby avoiding 

noisy or saturated output. 

Although the filtering reduces DC sh ifts and high frequency 

noises, artifacts still remains on the EEG record usually. The 

physiological and instrumental artifacts (see Kooi 1971, Appendix 11) 

contained in the EEG record must be distinguished. 

The result of the EEG report can be significant in making 

diagnosis, prognosis, and treatment of various diseases or disorders 1 ; 

monitoring the level of sleep or depth of a nesthesia; or advancing 

research in neurophysiology, psychophysiology, or psychopharmacology 

(Gevins 1975). 

Abnormal EEG : Epilepsy 

To make the report of the EEG consist ent and objective, it is 

important to establish clear-cut criteria for normal and abnormal EEG. 

But the criteria has not been completely established in either case 

because of the lack of the carefully controlled subject's data, the intra-

1. epilepsy, cerebral tumors, and other abnormal conditions 
including cerebral trauma and thrombosis, developmental abnormalities, 
infectious diseases, and metabolic and endocrine disorders. 
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and inter-individual variations in the record, the lack of the systematic 

understanding of the diseases or disorders, etc .. 

Kooi (1971, p. 93) mentioned that the abnormal EEG is divided 

into two types depending on whether it is paroxysmal or not. Paroxysm 

is defined here as a series of waves, appearing and disappearing, and 

having a different amplitude, frequency, or form than the basic 

pattern. The epileptogenic type of abnormality 1s a part of the 

paroxysmal type of abnormality, and called a specific paroxysmal type. 

The epileptogenic type of abnormality is briefly described in the next 

paragraph since the detection of epileptic transients is the main 

objective of this project. 

According to Dictionary of Epilepsy ( Gastaut 1973), "epilepsy is 

a chronic brain disorder of various etiologies characterized by recurrent 

seizures due to excessive discharge of cerebral neurons, associated with 

a variety of clinical and laboratory manifestations." It afflicts about 1 

9o of the American population and about 79a suffer at least one convulsion 

in a lifetime ( O' Leary and Goldberg 1976). There are various types of 

epilepsies, some of which can not be distinguished by clinical 

symptomatic data, but can be distinguished by electroencephalographic 

data, and vice versa. Because of this, Gibbs and Gibbs (1952, p. 10) 

suggested that the clinical data and the electroencephalographic data 

must supplement each other and lead to the understanding of epilepsy. 

In the recording of epileptic EEG, sleep condition is generally 

better than wake condition mainly because of the less artifacts caused 

by the patients ' movements and physiological activities. Also, the 

temporal regions are more prone to epileptogenic activity. Gevins et al. 
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(1975b) included, in the test heuristics of their system, that surface 

negative polarity for monopolar montages or location of phase reversals 

for bipolar montages is more Ii kely associated with transient waves. 

Gotman (1980) retained, in his transient wave detection system, only 

spike or sharp waves which have negative peaks because these are most 

commonly encountered. 

In addition to a normal scalp EEG recording, other EEG 

recordings such as depth recordings or ECoG are considered to be 

taken depending on the patients condition. Furthermore it is desirable 

to record various motor and autonomic phenomena 1 in conjunction with 

the EEG. These recordings are also useful for checking various 

artifacts in the EEG recording. In the detection of spike or sharp 

waves, spiky nonepileptogenic normal activities must be properly 

distinguished as well as backgrounds and artifacts. 

Recently the magnetoencephalogram (MEG), the measurement of 

brain magnetic fields, on the scalp has been realized with an unshielded 

environment by using a superconducting quantum interference device 

(SQUID, S . H.E. Corporation, San Diego, Calif.) and a second 

derivative flux transporter (gradiometer) (Barbanera et al. 1981, and 

Williamson and Kaufman 1981) . The MEG has just begun to reveal its 

values, and will have a substantial role in clinical and laboratory 

research, complementing the information which is not available 

otherwise. This information and the others such as computer 

tomographies may be integrated to make diagnoses or to unravel the 

mechanisms of the brain system. 

1. electromyogram (EMG), electrooculogram (EOG), 
electrodermogram (EDG), pneumogram, plethysmogram, barogram, etc. 
(Gastaut and Broughton 1972, pp . 11-18). 
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Since this project is concerned with the interictal EEG, the 

significance of the interictal EEG is ment ioned in the following. 

Interictal epileptic activity in human EEG con s ists essentially of spikes 

and sharp waves (Gotman 1980), and the morphology of interictal 

activity in the EEG is used as a diagnostic tool . But its relationship to 

the possible focus of seizure activity is st ill not completely known 

(Gotman and Gloor 1976). Angeleri et al . (1981) mentioned the pattern 

of spike activation du ring slow sleep stages fairly correspond to 

computerized tomography findings of focal lesions and high frequency of 

seizures. Ayala et al. (1973) suggested some changes of feedback 

systems in the cortex is relating to a pos s ible mechanism for the 

generation of the interictal epileptic spike . Lieb et al. (1981) 

conducted a multivariate analysis to see to what characterist ics of 

interictal and ictal EEG correlates to the s urgical outcome of the 

patients who had anterior temporal lobectomy . They reported that the 

interictal and ictal EEG characteristics can independently predict 

surgical outcome at levels sign ificantly better than chance, and ictal 

and interictal EEG data contain non-redundant information for making 

such prediction . 

The relevant interictal EEG variables included: 

(1) various types of bilaterally synchronous surface/deep spikes , 

(2) diffuse background slow waves, 

(3) sharp waves, 

(4) the presence of multiple independent deep spike patterns . 

Therefore, the detection of interictal spike waves, sharp waves and 

slow waves seems important to constitute satisfiable diagnosis . 



CHAPTER 3 

REVIEW OF AUTOMATED EEG ANALYSIS 

Introduction 

As described in Chapter 2, the EEG contains significant 

information in clinical practice and research. The aim of EEG analysis 

is to extract this information. In this sense, the analysis is considered 

signal processing. Therefore, the attempts of automated EEG analysis 

are to establish signal processing systems to reduce, substitute or 

improve the work of electroencephalographers . 

This chapter reviews selected previous research concerning 

automated EEG analysis from the viewpoint of signal processing. Since 

surveying is not the objective of this chapter, the literature in the 

following paragraphs of this chapter are the papers selected as 

examples or credentials in the course of explanation . 

Basic Categories of Analysis Method 

The analysis methods are categorized by (1) whether the analysis 

is primarily in the time domain or the frequency domain, and (2) 

whether the analysis primarily concerns the stationary signals or the 

non-stationary signals (Barlow 1980) . Accordingly, the four basic 

categories are listed as follows: 

(1) time-domain, stationary signal analysis method, 

(2) time-domain, non-stationary signal analysis method, 

(3) frequency-domain, stationary signal analysis method, 

(4) frequency-domain, non-stationary signal analysis method. 
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In this paper, a signal 1s considered stationary when its properties 

(e.g . mean, variance or covariance) are invariant to a shift in time 

(see Zetterberg 1977). A signal is non-stationary when it is not 

stat ionary. Periodical waves such as alpha or beta waves are 

stationary, and transient waves such as spikes or sharp waves are non­

stationary, for example. 

Transformation into Frequency Domain 

The EEG is originally in the time domain and needs a 

transformation to be in the frequency domain. In certain cases, the 

signal characteristics are more clearly expressed when. the signal is 

transformed into the frequency domain from the time domain. Actually 

one can regard this transform as a change of a viewpoint because the 

inverse transform can reconstruct the origina l data in the time domain 

completely, provided that the sampling theorem is not violated in the 

operation. Some transform algorithms have been proposed for EEG 

analysis: a Fourier transform (based on sine and cosine functions) , a 

Walsh transform (based on Walsh functions) , a Haar transform (based 

on Haar functions). 

The drawbacks of these transforms are generally pointed out as 

follows: ( 1) the original data to be t r ansformed are assumed 

stationary, which is not always the case in EEG, and (2) a vast number 

of arithmetic operations is necessary . 

The first point is an indigenous fate of frequency analysis, but 

can be less affective by having short period segments so that dur ing 

the period a pseudo-stationarity is guaranteed . Overlapping the 

segments helps to detect the change of stationa ry parameters. 
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The second point was remarkably improved by the introduction of 

the fast Fourier transform (FFT) (Cooley and Tukey 1965), which 

reduced the number of operations significantly. As a matter of fact, 

the FFT made the Fourier transform applicable to practical situations. 

The concept of the FFT algorithm was applied to the Walsh and the 

Haar transforms, thereby introducing the fas t Walsh transform (FWT) 

and the fast Haar transform (FHT). The calculation time in FWT or FHT 

is much less than that in FFT because Walsh and Haar functions are 

much simpler than sine or cosine functions. The Walsh transform was 

criticized as being unsuitable for EEG ana lysis because it neither 

matches the Fourier transform, nor represents the physiological 

characteristics of EEG (Dumermuth 1977), but the recent paper by 

Larsen and Lai (1980) has demonstrated that the Walsh transform is not 

only much faster than the Fourier transform but also can have 

comparable results (in the power spectrum) to the results of the 

Fourier transform. 

If the purpose 1s only to estimate the power spectrum, there is 

another way that calculates the autocorrelation function and transforms 

it into the frequency domain . This method g ives more flexibility and 

accuracy in estimating the power spectra, but more calculations are 

required. 

When an autoregressive or an autoregressive moving-average model is 

used , the power spectra is directly derived from the coefficients of the 

model (Gersch 1970) . Unfortunately, it is not a simple calculation to 

evaluate the values of model coefficients . 
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Some of the frequency domain analysis methods have proved to be 

effective when dealing with stationary waves. But the drawbacks 

mentioned above, i.e., (1) the assumption of stationarity and (2) 

computational complexity, make the application awkward. This project 

seeks a real-time method to detect transient waves, which are non­

stationary. Therefore, time-domain, non-stationary analysis methods 

will be emphasized in the following descriptions. However, the 

frequency-domain, non-stationary analysis wil l be also mentioned if it 

has some advantage in interpreting EEG, and a possibility of real-time 

implementation. 

Multichannel Inputs 

There have been a number of systems proposed for multichannel 

EEG analysis (e.g., Walter and Shipton 1951, Shaw and Roth 1955, 

Remond 1969, Gersch and Goddard 1970, Lopes da Silva et al. 1977, 

Lehmann 1977, Gotman et al. 1978, Giese and Bourne 1979, Sidman and 

Smith 1980, Romani et al. 1982). The multichannel analysis is 

particularly necessary to determine a possible epileptic focus, which is 

one of the primary goals of the automated EEG analysis (Gevins 1975a) . 

A method to localize the neural generators of scalp recorded 

evoked components in three dimension was presented by Kavanagh et 

al. (1976, 1978). It assumed the head is a homogeneous conducting 

sphere, the suspected source of surface data is simulated by a single 

current dipole, and the site of a dipole is located by minimizing the 

square error between the theoretical and empirical evoked potentials at 

the scalp (see Sidman and Smith 1980). 
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Romani et al. (1982) applied the MEG method (see the section of 

Abnormal EEG: Epilepsy in Chapter 2) for a tonotopic mapping in three 

dimension, identifying the locations of the source of the evoked 

magnetic fields, assuming these fields are caused by current dipoles. 

Applying the same method for a mapping of interictal spikes, Barth et 

al. (1982) localized the intracortical sources producing epileptiform 

discharges. The major advantages of the MEG may be summarized as 

(1) the MEG is completely non-invasive since the probes even do not 

touch the subject, (2) it gives sharper spatial localization of the 

cortical activities than EEG. The disadvantages may be that the 

instrument is expensive and large. 

Although this project analyzes only a single channel EEG data, 

the single channel analysis system could be readily extended to a 

multichannel analysis system as needed. 

Conventionally the 16 channel recording with the electrode 

locations of the International 10-20 system is standard on the scalp 

EEG. The number of channels is increased when necessary. Especially 

in ECoG recording, more electrodes are often placed. Furthermore, 

Gevins (1980b) recently suggested that the increase in the number of 

electrodes is useful in the restoration of spatial information, and had a 

plan to implement a scalp array of 60 electrodes. In the field of ECG 

research, Boineau and his team (1980) have already made a successful 

research using an array of 64 electrodes attached onto the dog heart. 

Because of the restriction of processing time and storage capacity 

for a real-time microcomputer system, the required operation 1s 

expected to be as simple as possible. At the same time, however, the 
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development of data processing algorithms and devices should be 

updated because it makes more complie:ated operation feasible in a 

shorter time. For example, as one of the recent developments , the 

high-speed data acquisition subsystem proposed by Lake (1982) can 

operate at acquisition rate up to 500 , 000 samples/sec. 

Pattern Recognition Procedures 

Although the objective of analysis can be as abstract as ma ki ng 

distinction between the subject ' s psychic no r mality and abnormality , 

evaluating the effects of pharmacological or surgical treatments , etc. 1 , 

this review concentrates on describing the det ection methods of certain 

types of EEG waveforms . Thereby, the concept of pattern recognition 

is appropriately introduced to describe these methods. In fact, a major 

part of the traditional EEG reporting is a pattern recognition done by 

humans (see Cox et al . 1972). 

Generally the analysis procedure for pattern recognition can be 

divided into the following four parts: 

( 1) preprocessing, 

(2) segmentation 2 
, 

(3) parameterization, 

(4) classification. 

1. John et al . (1977) presented an approach called " neurometrics " 
dealing with these types of information. Ku likowski (1980) reviewed 
artificial intelligence methods applied to medical consultation. 

2. If segmentation is not particularly designed, each data point 
may be considered a segment. 
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The following sections discuss these procedures, the evaluation of 

system's performance, and the artifact rejection. The evaluation and 

the artifact rejection are discussed because it is necessary to know how 

to evaluate the system' s performance, and how to deal with the artifact 

rejection. 

Preprocessing 

Preprocessing converts an original EEG to an acceptable data for 

analysis, including amplification, analog filtering, analog to digital 

(A/ D) conversion and digital filtering if necessary . Because the EEG 

on the scalp ranges from ±1 µV to ±500 µV, preamplifiers are usually 

needed, which are then connected to main amplifiers. Thousands of 

times amplification are needed as a total, whi c h are easily achieved by 

commercial electronic amplifiers. 

Miscellaneous kinds of noises can also be present and must be 

dealt with. Near DC voltage shifts and high frequency noises can be 

diminished by a band-pass analog filter which normally has its 

frequency range of 0 . 5 to 70 Hz, assuming the or iginal EEG does not 

have significant frequency components out of the range. If the noise 

has frequency components within this range, t hose remain and will have 

to be managed in the following analysis procedures. Unfortunately, 

many of the artifacts, whether instrumental or physiological, remain a 

whole or a part after the filtering . The noise from the electric power 

source of 60 Hz can be efficiently eliminated by a 60 Hz analog notch 

filter, but with a risk of distorting the ori g inal EEG, especially the 

phase information. 
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In traditional EEG reporting, the output from the main amplifier is 

recorded on a strip chart recorder for a visual inspection, but in 

automated EEG analysis the main amplifier output is used as an input to 

a main analysis system. When digital processors are used for the main 

analysis, AID conversion is necessary . More than 9 bits of conversion 

are recommended to represent an EEG signal sufficiently (Harner and 

Ostergren 1976, MacGillivray 1977). It is important to note that the 

sampling rate must be at least twice as high as the high cut-off 

frequency so that no aliasing might occur. In practice, since the 

attenuation of the band-pass filter is not perfect, the rate of more than 

twice the cut-off frequency is recommended because the higher the 

sampling rate is, the less is the probability of aliasing (see Oppenheim 

and Schafer 1975, p. 28). Usually the sampling rate is around 200 

samples/second. 

Digital filters may be implemented in the system to reduce a 

round-off effect in digitization or to further reduce the noises. The 60 

Hz power noise may be eliminated more properly by a certain digital 

filter than by an analog notch filter . Among various types of digital 

filter implementaton, Lynn ' s fast digital fi lters (Lynn 1977) seem 

convenient for real-time applications. 

Segmentation 

In processing the data for pattern recognition , the data is 

segmented so that a set of parameters can be derived from each 

segment, transforming a serial signal into a point process (Burger 

1980). The procedure is also considered as a data reduction. 
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Segmentation is basically divided into two types: (1) fixed and (2) 

adaptive segmentations. 

In the fixed segmentation, the length of a segment is previously 

decided by researchers. The length is usually between a few seconds 

and a few tens of seconds (see lsaksson et al. 1981) in the detection of 

stationary activity, assuming the EEG is stationary during the period. 

Though it is simple to implement, there is an obvious defect in the 

assumption. The EEG is not always stationary . There will be a transient 

period from one stationarity to another stationarity, or there may be 

some transient EEG waves such as spikes or sharp waves included. In 

these cases, the characteristics of the segments derived from the same 

data can differ greatly depending on where the data is cut. For 

example, as shown in Fig. 3. 1, the segment SB (1) contains a combined 

part of the segments SA(l) and SA(2), which makes the characteristics 

averaged, or a segment SB(2) contains only half of a spike wave, which 

ruins the characteristics of the spike wave. However, when the change 

of stationary state is very slow, fixed segmentation has led to several 

successful results in such cases as the sleep stage analysis (e.g. 

Larsen and Walter 1970) . Once the stationarity is assured, frequency 

analysis methods are useful. 

In the adaptive segmentation, the length of a segment is not 

fixed, but adjusted as the segmentation algorithm orders. An 

advantage of adaptive segmentation is that it is possible to adjust the 

length of a segment to include a portion which has only one pattern or 

a uniform characteristic. In Fig.3.1, for example, each of the segments 

SC(l) to SC(4) only contain one pattern evaluated visually. It can be 



26 

Data 

(a) 
SA( 1) SA(2) SA(3) SA(4) 

(b) 
SB(l) SB(2) SB(3) SB(4) 

(c) 
SC(l) SC(2) SC(3) SC(4) 

Figure 3.1 Examples of Segmentation. (a) and (b) : fixed length 
segmentation. (c) : possible adaptive segmentation. 
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especially suitable for transient wave detection. The following 

paragraphs of this section consider the adaptive segmentation methods. 

Baseline crossing segmentation is one of the earliest adaptive seg­

mentations offered to the EEG automated analysis. It segments the data 

whenever the baseline is crossed by the data, its first derivative or its 

second derivative (Barlow 1980), the first two of which are called zero­

crossing algorithm (or period detection algorithm) and extrema algorithm 

(or peak detection algorithm), respectively. The baseline crossing of 

the second derivative has not been commonly used for segmentation. 

Burch (1959) stated in his review that the baseline cross establishes 

each period or the basic unit of information which in turn is used to 

gate additional information. 

Because of its simple implementation, this algorithm was very 

suitable for real-time systems. The zero-cross ing algorithm was applied 

to real-time systems by Legewie and Probst (1969), Carrie (1972b), 

Smith et al. (1975), Keane (1978), and Sa lb (1980), for example. 

There are, however, two major drawbacks in the zero-crossing 

algorithm: (1) when low and high frequency waves are superimposed, 

the algorithm tends to neglect the higher frequency components; (2) 

when contaminated by noises, insignificant segments appear . The first 

point is improved when the baseline crossing of the first or the second 

derivative is used because differential operation has a nature close to 

high-pass filtering . 

A number of researchers applied extrema algorithm (or peak 

detection algorithm), which is the baseline crossing of the first 

derivative, to their analysis systems as reviewed in the following 

paragraphs. 
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Gevins et al. (1975a) used a simple low-pass digital filter at 20 

Hz to eliminate the high frequency noises at the expense of distorting 

the original waveforms of the EEG. Fridman (1982) used a digital filter 

in the frequency domain to detect the peaks of a certain type of evoked 

potentials. 

Leader et al. (1967) attempted to remove insignificant segments 

caused by noises, whereby introducing a concept of relative and 

absolute extrema (maximum and minimum). Turning points are named 

relative extrema. By setting up two pre-set th res holds and three 

conditions, the absolute extrema are derived from a series of relative 

extrema so as to neglect noisy fluctuations of the data. 

Gotman and Gloor (1976) designed a similar way to eliminate the 

insignificant segments caused by noise. The data is segmented at the 

extrema first, and a series of segments are merged into a sequence 

through the algorithm which needs some logic operations and a previous 

set-up of two thresholds. A wave is defined by some combination of 

segments or sequences. Remond and Renault (1972) had proposed a 

similar idea. 

Horowitz (1977) suggested that the use of a piecewise polynomial 

approximation is more advantageous than others in peak detection, and 

proposed a new syntactic approach to segmentat ion by using a piecewise 

linear approximation. In its practical consideration, however, three 

tolerance constants concerning the duration, the slope and the 

amplitude of the data in a segment were to be set up previously. 

Burger (1980) in his comparative study of zero-crossing algorithm 

and extrema algorithm, demonstrated that the extrema algorithm is 
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better adapted to the analysis of transient phenomena whereas the zero­

crossing algorithm is better adapted to the analysis of background 

activities. The paper also showed the extrema algorithm can be faster 

than the zero-crossing algorithm in processing by a computer although 

the number of segments is usually larger in the extrema algorithm. 

The baseline of the both algorithms were a moving average of the data. 

In the extrema algorithm of the paper, the parameters needed to be 

previously fixed were (1) a threshold for eliminating waves of small 

amplitude, (2) the order of the moving average filter, and (3) the 

amplitude factor which relates to peak recognition. It was pointed out 

that the moving average filter used caused a phase shift between the 

signal and the baseline, and the use of a linear phase non-recursive 

filter proposed by Goldberg (1971) was recommended. 

Computationally, however, an equivalent Lynn ' s fast digital filter is more 

efficient at the expense of increase of necessary storage capacity (Lynn 

1977). Malik (1980) showed an application of the Lynn's filters to a 

microcomputer system. 

Abenstein and Tompkins (1982) presented a new data reduction 

algorithm for ECG arrhythmia analysis, in which the turning point 

algorithm (extrema algorithm) and the Amplitude-Zone-Time-Epoch­

Coding algorithm ( Cox et al. 1968) are incorporated. Reconstruction of 

data is also an important aspect of signal processing as discussed by 

Abenstein and Tompkins (1982). 

Dumpala (1982) presented a simple peak detection algorithm 

based on a three-point "sliding" window, which needed amplitude, slope 

and du ration th res holds. 
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Horowits (1981) attempted to incorporat e a zero-crossing and a 

peak detection algorithm to restore both the low and high frequency 

components of superimposed waves. Palem (1982) also combined both 

algorithms. But they did not use them for adaptive segmentation. 

In the system proposed by Frost (1979), an event begins when 

the second derivative exceeds a threshold which is calculated using a 

running average of the previous second derivatives . These algorithms 

mentioned in the above paragraphs are a ll oriented for real-time 

operation. 

The paper by De Vries (1981) shows an example of hardware 

realization where analog filters and Schmitt triggers are used for 

checking the timing of spike waves. 

It must be noted that the thresholds or constants manually set up 

in the algorithms bring some subjective decisions by researchers , 

thereby hampering the full automation and the versatility of the system . 

An adaptive segmentation proposed by Bodenstein and Praetorious 

(1977) is conceptually different from the algorithms mentioned so far. 

An autoregressive model, which has a structure of all pole recursive 

filters, is fitted to a fixed-length, pseudo-stat ionary portion of the EEG 

(i . e . Wiener filtering), and when the discrepancy between the model at 

the beginning of the segment and the current model becomes bigger 

than a threshold, an epoch is made and a new model is set up. The 

threshold can be derived using a x-square test . 

Duquesnoy (1976) also introduced a similar segmentation method 

using a modified Kalman filter. These algor ithms seem closer to the 

ideal algorithm which distinguishes the non - stationary EEG from the 
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stationary EEG because it is important both in theory and in practice to 

distinguish non-stationary portions of data from stationary ones. This 

type of algorithms seems promising. However, the drawback is that it 

needs a longer computation time, which will be overcome by a 

development of a more efficient algorithm and/or faster processing 

computer. 

Summarizing the adaptable segmentation algorithms mentioned 

above in the perspective of this project: 

(1) the use of extrema is better than that of zero-crossing for 
the segmentation of transient EEG; 

(2) the use of parametric models by Wiener or . Kalman filters 
seems promising, but needs more improvements in the 
algorithms and the processing speed of the computer; 

(3) the thresholds or constants manually set in the algorithms 
hamper the full automation and the versatility of the system . 

Parameterization 

A number of parameters have been utilized in the automated EEG 

analysis. These and other possible parameters are shown in Table 3 . 1. 

Definitions of specific parameters are different from one paper to 

another even if they are in a same type. The choice of parameter 

types depends on the objective of analysis and the preference of the 

analysts. One or more of the parameters may be chosen in an event. 

Importantly the calculation time and the number of parameters must be 

minimized for real-time operation whereas the detection system itself 

must maintain an acceptable performance. 
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Table 3. 1 Types of Time-domain Parameters in Automated EEG 
Analysis. 

Types of parameters Examples 

Morphological duration (period, interval) 
parameters amplitude 

slope (first derivative ) 
curvature (sharpness, second derivative) 

Statistical 
parameters 

moments (mean, variance , etc.) 
Hjorth's parameters (act ivity, mobility, and 

complexity) 
skewness, kurtosis, and other statistics from 

from chi-square-test, F-test, and Student's 
t-test, etc. 

Template matching 
parameters 

mean absolute error 
mean square error 
correlation coefficient 
Tauberian approximation 

Parameters of 
models 

Models: 
AR, ARMA, polynomial , etc. 

Parameters from 
filtered values 

Filters: 
fixed linear filters (low-,high- , and 

(band-pass filters; AR and ARMA filte r s ) 
adjustive linear filters (Wiener or Kalman 

filters, etc.) 
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Parameters Derived in Time Domain 

Morphological Parameters 

Saltzberg and Burch (1971) showed that the average frequency 

baseline crossings of the data, its first derivative and its second 

derivative per unit time were proven to correspond to the second, the 

fourth and the sixth spectral moment, respect ively . They showed the 

following formula stands generally: 

2 
00 

2n(N) ~ / w P(w)dw 
n D 

where N : average number of zero crossings per second of the n-th 
n 

derivative, w: angular frequency, and P(w): normalized power spectral 

density. 

These parameters seem suitable for a stationary EEG analysis as a 

simplified spectral analysis (Barlow 1980) . For the non-stationary EEG 

analysis, however, the du rations between the crossings are better 

parameters. · 

Usually the du ration of a segment or consecutive two segments is 

used as a parameter when data is segmented by one of the baseline 

crossings . However, this sole parameter seems not to retain enough 

information to distinguish non-stationary waves from stationary waves, 

because there are so many background waves which have the same 

du rations as the transient waves. It is suggestive that the definition of 

spike or sharp waves in traditional EEG reporting (Storm van Leeuwen 

et al. 1966) indicates not only the ranges of duration, but the 

distinguished features from background waves as well. Thus, other 

features than duration are sought. 
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Period-amplitude analysis added a peak-to-peak amplitude along 

with the du ration to retain the characteristics of waves more precisely, 

as shown in Fig.3.2(a) (Legewie and Probst 1969, Smith 1975 and 

Harner and Ostergren 1974). 

Carrie (1972a) introduced three amplitudes at a half, a fourth and 

an eighth wave durations. Each amplitude is divided by the moving 

average of similar measurements from a pre-set number of preceding 

consecutive waves. This idea to incorporate the property of the 

preceding waves is important rn distinguishing spikes and sharp waves 

from others. This operation is expected to reduce the intra-individual 

variability. Also, features transformed into dimensionless standard 

scores can reduce the inter-individual variability (Gevins 1980a). Frost 

(1979) used a similar approach, but excluded the period of transient 

waves and artifacts from calculating the moving average in order to 

stabilize the moving average. 

Saltzberg et al. (1967) introduced a curvature of the data as a 

parameter which is derived as a second derivative, and shows a 

sharpness of the signal. Carrie (1972b), and Gevins (1975a) also used 

a curvature as a parameter, which was divided by the moving average 

of the preceding curvatures. As the names of spikes and sharp waves 

indicate, sharpness seems to become a prominent parameter . 

As to the calculation of curvature, simple arithmetic operations 

are substituted for differentiations. Bi rkemeier et al. (1978) derived 

curvature using a coefficient of a quadratic approximation formula. It 

is noteworthy that they demonstrated the curvature of the filtered data 

as determined by an autoregressive filter is more distinctive than the 
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curvature of the data 1n the classification between the transient and the 

background waves. Gevins et al. (1975a) presented a complex 

formulation of curvature. Although there may be some merit of the 

formula, the complex operations, which would be time-consuming, 

distracts from the application to real-time operating systems. 

The peak angle of a wave proposed by Hill and Townsend (1973) and 

Smith (1973) also shows a sharpness of a wave. They calculated the 

peak angle, for example, by fitting a pair of straight lines to four data 

points on either side of the peak, and calculating the angle of the 

lines. 

Bickford (1974) used slopes and amplitudes of up and down 

strokes (half-waves) of a full-wave as parameters. Actually a 

curvature is a difference of two slopes before and after the measuring 

point of time. Gotman (1980), beside the above four parameters, used 

two durations of the up and down strokes, and attempted to measure 

the asymmetry between the two strokes. The property of asymmetry is 

one of the most characteristic aspect of spikes and sharp waves. 

More elaborate morphological features have been proposed to make 

the description of waves more precise. Gotman and Gloor (1976) 

presented features including a pseudo-duration as shown in Fig.3.2(b). 

Each amplitude and curvature are divided by the averages of Ktonas et 

al. (1981) added inflection points and a duration between the points as 

shown in Fig.3.2(c) ; In the system implemented by Frost (1979), the 

parameters are two durations, two amplitudes, a curvature and a 

surface area as shown in Fig.3.2(d). The study of Steinberg (1962) 

showed an extensive parameterization of this type in automated ECG 

analysis. 

CLEMSON UNIVERSITY LIBRARY-
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(a) 

Dl 

Parameters 
Amplitude: Al 
Duration: Dl 

( b) 

Cl 

r::J 

Parameters 
Amplitude : Al 
Duration : Dl 
Pseudo-duration PDl 
Curvature : Cl 

Figure 3. 2 Designs of Morphological Parameters. 
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(c) 

Da 

01 

02 

Parameters 
Amplitude: Al, A2 
Durat i on : Dl, 02, Da, Db 
Slope Sl, S2 
Curvature: C 

D1 02 

Parameters Sequential logics 
Amplitude : Al , A2 1. C > 2C' + K 
Duration : D1, D2 where C' = C0 C1+ (C - 0 )F, 
Curvature: 
Area 

C 
AREA F, 

2. 36 < 
K: 
D1 

constants. 
< 100 (msec. ) . 

3. min (Al,A2) > 10 (µV ) and 
max (Al,A2) > 20 (µV ) . 

4. AREA> 10 (µV•sec .) 
AREA> 20•02 (µ V•sec ) . 

Figure 3.2 (Cont 'd.) 
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The "iterative time-domain approach" by Matejcek and Schenk 

(1972; see also Schenk 1976) is an elaborate procedure and suitable for 

real-time operation, but lacks in physical and theoretical 

correspondence. The first step in this analysi s is the estimation of the 

slower underlying component, which is the average of the maxima and 

the minima of the vectorized envelope of the signal. The second step 

iterates the procedure using the result of the preceding step . After a 

certain number of steps, superimposed components of the signal are 

obtained as a result . Parameters of a duration and an ampl itude are 

derived primarily based on quarter-waves and half-waves. The idea to 

include the parameters of the waves around the referred wave as 

parameters of the referred wave is interesting, and is one of the h ints 

to derive a concept of "events " in this project as mentioned in the last 

section of this Chapter and explained in Chapte r 4. 

Statistical Parameters 

It seems reasonable to use statistical parameters because they 

characterize some aspects of data , although there are not many papers 

which applied them to automated EEG analysis . Luder et al. (1976) 

demonstrated the use of various statistics fo r the detection of EEG 

transients, their ultimate goal of the resea rch being to develop 

statistical measures for classifying specific types of EEG transients. 

Bronzino et al . (1980) also pointed out the importance of statistical 

parameters . Salb (1980) used a value of absolute integral in each wave . 

Advantages in us ing these types of parameters are that many of them 

are normalized, and confidence levels may be obtained if a certa in 

distribution of each parameter is supposed. Sa lb (1980) used a sum of 
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absolute value of amplitude in full-wave as a parameter. Guedes de 

Oliveira and Lopes da Silva (1980) proposed a statistic for x-square test 

in evaluating a correlation of spike events between channels. 

Hjorth (1970) proposed the following three parameters: 

2(1) activity 0 0 , 

(3) complexity (02/01)/(o1/oo), 

where o . is i-th moment. In the time domain, the activity. can be 
I 

conceived as the variance, the mobility as the relative average slope 

measure, and the complexity as the deviation from sine shapes. In the 

frequency domain, the activity, mobility and complexity have been 

proved to be equal to the zeroth, the second and the fourth spectral 

moments. In the paper by Hjorth (1973), the definition of complexity 

was changed as 

1 

C =(o 2/o 2 - o 2/o 2)2
n n•l n n n-1 

where C is called the n-th complexity. The autocorrelation function 
n 

was shown to be expressed by the moments as follows: 

-(,: 
6 /6!)(01/00) 2(02/01) 2 (03/02) 2• .. . 

Wyper et al. (1975), Denoth (1975), and Matthis et al. (1981) used the 

parameters and had unsuccessful results. However, Matejcek and Devos 

(1976) reported that they were sufficiently sensitive to objectify the 

time course of action of psychoactive drugs , to monitor changes in 

vigilance, and to quantify drug effects on the sleep-wakefullness cycle. 
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Bergland and Hjorth (1973), Depoortere et al. (1973) and Devos et al. 

(1975) also showed the applications of the parameters. 

Template Matching Parameters 

Given a template representing a pattern , data is compared to it 

via some algorithm which results in a measure of similarity or dis­

similarity to the template. Barlow and Dubins ky (1976) demonstrated a 

spike detection method by using a template, which was chosen visually 

as a typical spike event . A correlation coeff ic ient was the measure of 

similarity in the paper. A mean absolute e r ror and a mean square 

error, for example, are also potent to app lication, especially when 

computational efficiency is considered . 

A visual choice of a template seems to be an obstacle to automated 

EEG analysis . A mathematical procedure in constituting a template and 

its length will have to be established . 

In order to eliminate background waves from a template of a 

transient event, inverse frequency filtering wa s suggested by Saltzberg 

et al. (1971) and Zetterberg (1973). An attempt by Saltzberg et al. 

(1971) to make a template used a depth spike as a trigger of a scalp 

transient . It is interesting in the Saltzberg ' s paper that the 

background waves were more appropriately approximated by a 1/ f 

funct ion in the frequency domain than a constant function (i . e . a white 

noise) . It coincides with the description that t he higher the frequency 

gets, the lower the amplitude gets in background EEG (Gevins 1975a) . 

Widrow (1973) proposed the flexible template, " rubber masks ", 

capable of changing their shapes to fit natural data. Multi - templates 

can be used (Pfurtscheller and Fischer 1978). The method of waveform 
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extraction based on Tauberian approximation (De Figueiredo and Hu 

1982) may be considered as a more general template matching method. 

Parameters of Models 

When a parametric EEG model is introduced, the parameters of the 

model characterize the EEG waves. In time series data, autoregressive 

(AR), moving average (MA), and autoregressive moving average 

(ARMA) models are popularly used, where a certain type of stationary 

EEG waveforms is modeled as an output of a digital linear filter to a 

Gaussian white noise input. The coefficients of the filter are used as 

parameters. Several applications of the models to the EEG analysis 

have been presented (e.g., Fenwick et al. 1969, Zetterberg 1969, 

Barlow and Solokov 1975, and Bodenstein and Praetorious 1977) . Other 

than a choice of the type of model, the orders ~f the filter must be 

chosen. The optimal choice of the filter orders has been proposed by 

several researchers (see lsaksson et al . 1981, Kashyap 1982, and 

Cadzow 1982). An iterative nature of optimization to obtain values of 

the parameters has been a major computational disadvantage. Cadzow 

(1982) presented a new method which is non-iterative and 

computationally more economical. These models are attractive because 

they are (1) theoretically sound and simple, (2) usually efficient in 

data reduction, and (3) directly applicable to the spectral density 

estimate. 

However, if transient waves are to be modeled, the statistical 

nature of the models, such as the use of a white noise and the 

assumption of a stationary input, makes these models inadequate . 

Then, instead of modeling transient waves, the prediction error which 



42 

1s a deviation from the stationarity was taken as a measure of the non­

stationarity of the input, which indicates transient waves. The 

prediction error may be obtained by an inverse filtering (Lopes da Silva 

et al. 1977). 

We have seen these AR and ARMA models have some advantages 

and disadvantages as well in the transient EEG analysis. lsaksson et 

al. (1981) said analysis of epilepsy will require new and more refined 

models of an EEG. Whereas AR and ARMA models are linear models, 

there are non-linear models available, which usually require more 

complicated computations. 

Instead of modeling the morphological nature of EEG waves, there 

are attempts to formulate process models based on physiological 

knowledge of the brain function (see Moser et al. 1980, lsaksson et al. 

1981, p. 459). This type of modeling is interesting because good 

parameters should be physiologically or clinically interpretable as well 

as being derived by simple algorithms and being capable of 

distinguishing spikes and sharp waves, artifacts, background waves, 

etc. 

Parameters from Filtered Data 

Proper filtering may facilitate revealing a characteristic of the 

EEG waves. Analog filters are well-developed, inexpensive, and work 

in real-time. But there are some limitation in realization because of 

some physical properties of the parts. Digital filters are rapidly being 

developed, which have some advantages over analog ones. For example, 

linear phase filters are realized easily. In addition, non-linear filters 

such as Wiener or Kalman filters can be implemented rather easily in 
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digital systems. These . filters can be eithe r fixed or adaptive, the 

latter being preferred in the EEG analysis because of the ability to 

learn the property of the data and to adjust to the slow change of it. 

They have been used in radar detection, seismic rhythm detection 

(Chen 1982), ECG wave analysis (Eisenstein and Vaccaro 1982), or EEG 

wave analysis (Saltzberg et al. 1971, Lopes da Silva et al . 1977 , 

lsaksson and Wennberg 1976) . 

Widrow et al. (1975) presented several types of adaptive filters 

for noise cancelling and their applications . The coefficients of a model 

may be used as parameters of stationary waves , and the error between 

the filter output and the data as a parameter of non-stationary waves . 

The adaptive filters studied by Chen (1982) were developed to detect 

seismic rhythms , but seem readily applicable t o a real-time spike EEG 

analysis as well . 

In sleep analysis, Bar-On and And r eassen (1981) recently 

reported a fast 16 bit microprocessor (In t el 8086) system wh ich 

performs the analysis of 8 channel (including EOG and EMG envelope 

recording), where inverse filtering is used to detect non-stationary and 

stationary events. The system included clustering and/ or classifying of 

the events and still operated at 10 times real-t ime . 

Parameters Derived in Frequency Domain 

The data transformed into the frequency domain has a complex 

number at each frequency, which carries the amplitude and phase 

information. Commonly the EEG analysis in the frequency domain only 

considers the power spectrum which comprise of the square of the 

amp I itude , neglecting the phase information. Once the power spectrum 
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is obtained, the data is represented as a series of real numbers versus 

frequency in a two dimensional space. Thereby, the methods to derive 

the parameters in the time domain can be adopted directly to the data 

in the frequency domain. 

Morphological parameters of peaks, powers and bandwidths of a, 

13, o and a frequency bands are typical in the EEG analysis in the 

frequency domain. The use of cepstra suggested by Saltzberg (1976) 

was aimed at detecting spike waves. The cepst rum of a funct ion f(t) is 

defined as the inverse Fourier transform of the logarithm of the Fourier 

Transform of f(t). Others are not directly concerned with spikes and 

sharp wave detection (see Matthis 1981 and Dumermuth 1977 for the 

slope parameter; Kunkel et al. 1976 for other morphological parameters ; 

Zetterberg 1977 for higher spectra moments ) . However , frequency 

characterist ics may serve as a media for inverse filtering, or as an aid 

to eliminate artifacts. Furthermore , if segmentation is done properly so 

that only one pattern is included in one event , the parameters listed in 

the figure might become distinctive features in s pike detection . 

The longer computation time is aga in a disadvantage . The 

applications of FWT or FHT may be interesting . Bishop et al. (1970), 

for example, proposed the use of Haar transform to parameterize the 

data. The computation time was greatly reduced, but more extensive 

investigations are needed to evaluate the· method . 

The Concept of Events 

By the procedures discussed so far , a set of parameters is 

obtained in each segment. However, this set of parameters may not be 

sufficient to characterize the waveform (an epileptic waveform, fo r 



45 

example) when the segment does not contain the whole part of the 

waveform. In fact, as noticed by the way electroencephalographers 

mark the events of spikes and sharp waves shown in Fig. 4.1, for 

example, an event seems to consist of more than one wave. 

The syntactic approach by Remond (1969) and the way of 

parameterization offered by Schenk (1976) has led to the concept of an 

"event", which includes one or more segments, in this project as 

explained in Chapter 4 . Then, a set of parameters in each event will 

be forwarded to the procedure of the classificat ion. 

Classification 

After getting a set of parameters in each event, the analysis 

proceeds to the classification stage. Each event is classified into one of 

certain groups such as spikes and sharp waves, artifacts, and 

background waves. 

The description in th is section reviews t he classification methods 

in the previous papers of automated EEG analysis, proceeding from a 

simple classification to more sophisticated methods. Then, it is 

suggested that the analysis requires a more general approach rather 

than ad hoc approaches. The classification method of linear 

discriminant analysis, especially stepwise linear discriminant analysis is 

further explained because this method is used for classification in this 

project. 

Thresholds 

One of the simplest way of classification is the use of th res holds. 

Single threshold is used in the papers by Bickford (1959), Saltzberg 
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(1967), Carrie (1972b), Hill and Townsend (1973), and Barlow and 

Dubinsky (1976), for example. Although high percentage of correct 

spike detection is reported in some of these papers, mostly the data 

used are pre-selected, only a particular type of spike is detected, or 

the thresholds are adjusted manually to optimal values. 

The search for the supplemental information to detect transient 

events resulted in an increase in the number of parameters. And also 

the logical criteria for the use of classification process were developed. 

Kaiser (1976) set up a criterion of duration for an after-spike wave in 

addition to an amplitude th res hold. Smith ( 1974) implemented the 

logical criteria with using operational amplifiers and TTL logic circuits. 

Leader (1967) specified thirteen patterns of EEG by using thresholds 

and critical ranges of parameters, and their logical descriptions. An 

extensive example of this type of classification is seen in the paper of 

Steinberg (1962) in ECG application, which used 17 morpholog ical 

parameters and more than twenty steps of their logical description. 

Similarly, Frost (1979), in his real-time, microcomputer system, used 

five parameters and the sequential logical criteria for the parameters. 

This type of classification, which uses several parameters and their 

logical criteria to classify EEG events, was reported to be reasonably 

successful. But the problems are (1) the thresholds or critical range 

of parameters were manually set up, and (2) the choice of the logical 

criteria also relied on the experiences of researchers. 

Several attempts were concerned with overcoming the first point 

(see Gotman 1980, p. 551, and Ktonas et al. 1981), as well as 

establishing quantitative criteria for spike and sharp events. Means 
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and variances of the parameters, such as duration, amplitude, slope 

and curvature, were calculated as hoped to be norms for spikes and 

sharp waves. The results indicated the only one parameter is not good 

enough, but several of them are needed to correctly d istinguish the 

spike or sharp events (Ktonas et al. 1981, p . 242). From a crit ical 

viewpoint, (1) other statistics than means a nd variances could be 

presented , and (2) there is no way to check the aspect of inter­

relations between parameters out of means and variances . 

Linear Combination of Parameters 

As the analysis method gets more elaborat ed , it became necessary 

to consider the inter-relation between parameters as well as their 

individual values . 

Actually, the studies of morphological asymmetry of spikes or 

sharp waves (see Gotman 1980, p . 551) have s hown that differences of 

two parameters are also distinctive parameters , for example. Harner 

and Ostergren (1974 , 1976) displayed the half - wave events on a 

bivariate screen. Gotman and Gloor (1976), instead of specifying a 

threshold or a range of each parameter, ass igned a region to each 

group in a two dimensional space where a combi nat ion of two parameters 

is considered. Also , in the second stage of cla s sification, a combination 

of four parameters is used to finally detect spike events. In the 

classification schemes by Bi rkemeier et al . (1978) and Bodenstein and 

Praetorious (1977), the consideration of a combination of two parameters 

in a two-dimensional space is shown with success. Therefore it seems 

reasonable to extend the idea to considering a combination of parameters 

in a multi-dimensional space. 



48 

Discriminant Analysis 

Now the problem is how to assign a region of each group in the 

multi-dimensional space. It appears to be too much work to do it 

manually because of so many combinations of parameters and the 

difficulty to visualize the image of multi-dimensional space. The 

methods in discriminant analysis can solve the problem according to 

their criteria for discriminating or classifying the events. They offer 

classification rules automatically th rough mathematical procedures. In 

practice, the following points are also concerned with the procedure of 

classification: (1) what parameters should be selected for use in the 

classification? (parameter selection), (2) how well does the classifier 

perform? (performance of the classifier), and (3) how robust is the 

classifier to departure from the assumption that made? (robustness of 

the classifier) (see Lachenbruch 1975, p.1). The points (2) and (3) 

can be stated as how to evaluate the classif iers. (evaluation of the 

classifier). The following topics are discussed in this section: (1) 

selection of parameters, (2) classifiers, (3) packaged programs available 

to select parameters and/or to calculate classifiers, and (4) evaluation 

of a classifier. 

Selection of Parameters 

Not all the parameters may be distinctive in classifying the events 

into one of the specified groups. The inclusion of irrelevant parameters 

can cause a marked reduction in the effectiveness of the discriminant 

analysis techniques (Hawkins 1976) . Thus it is desirable to select only 

significantly relevant parameters for classification. The methods of 

selecting parameters include (1) selection criterion, (2) way of 
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selection, and (3) stopping criterion. The selection criterion gives a 

measure of how much the parameters contribute to the classification. 

The way of selection is how the method proceeds in finding a "best" 

subset of parameters in calculating a classifier . The stopping criterion 

is how to stop the selection procedure. 

Classifiers 

In general, there are a lot of types of classifiers. These may be 

categorized (see Remond and Renault 1972, Chen 1973, Sklansky 1973, 

and Fu 1977) by whether a classifier is 

(1) deterministic or statistical in derivation, 

(2) supervised or unsupervised in derivation, 

(3) parameteric or nonparametric, 

(4) linear or nonlinear, 

(5) single- or multi-layered, 

(6) syntactic or non-syntactic. 

It is beyond the scope of this paper to describe these methods 

generally. This section focusses on the type of the classifiers that are 

parametric, linear, single-layered, non-syntactic, and derived on the 

basis of a statistical criterion and a supervised dataset. The procedure 

for deriving these classifiers is called a linear discriminant analysis. 

These classifiers are simple, popular, and appears to be a natural 

extension of the attempts mentioned above because they offer linear 

classifiers which include linear combinations of parameters. 

Three approaches of linear discriminant analysis are described in 

Appendix B. They are Bayes, Fisher's, and canonical approaches. The 

classifier by Bayes approach assumes the multinormality and the equal 
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covariance of each group population in the data. Although this 

approach has an advantage to be able to include the cost coefficients, 

the coefficients are supposed to be equal in order to have a simple 

linear classifier. There is no assumption of distribution in deriving a 

classifier by Fisher ' s approach. But the classifier is optimal for two 

group problems if each group is normally distr ibuted, and has the same 

covariance and prior probability. Other than a trivial constant , the 

classifier of Fisher 's approach 1s the same as the classifier of Bayes 

approach for two groups from the multivariate normal distr ibution with 

the same covariance. The classifiers of Bayes and Fisher ' s approaches 

for more than two groups will be similar if the group means are nearly 

colinear. In canonical approach, the classifier will have better ability 

to discriminate the events than the Fisher' s classifier at the expense of 

more calculation needed. The robustness of the linear classif icat ion to 

the deviation from the optimal condition is di scussed by Lachenbruch 

(1975, pp. 41-50). 

Fukunaga (1972, pp . 118-119) suggested that even a nonlinear 

classifier can be interpreted as a linear classif ier in a functional space 

where the funct ions g . (x) 's are variables instead of x ' s in the original
J 

space. This method can be used if the structures of the functions 

g . (x) 's are 
J 

known beforehand . 

The study by Larsen and Walter (1970) is interesting in that they 

introduced a way to implement a quadratic d iscriminant classifier by 

using a linear discriminant method and also introduced a multi - stage 

linear discriminant classifier. 
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Although there have been few papers adopting the linear 

discriminant analyses to detect transient events, quite a number of 

papers have applied them in sleep stage scoring, drug effect detection, 

or psychological pattern classification, for example, all of which are 

dealing with stationary EEG events (see Gevins 1980a). 

Packaged Programs 

There are several programs established for selecting parameters 

and deriving a classification rule . Habbema and Hermans (1977) 

compared some characteristics of the five programs shown in Table 3.2. 

Among them, the programs in BMD (Dixon 1967, 1969 and 1974), BMDP 

(Dixon 1975) and SPSS (Nie 1975) are stepwise linear discriminant 

analysis (SLDA) programs. They are put in the center of the following 

discussion because one of the SLDA programs, called BMDP7M (Dixon 

1975), was primarily used for classification in this project. 

The SLDA programs have been popularly used for classification 

(Larsen and Walter 1970, Martin et al. 1972, Jenden et al. 1972, 

Bowling and Bourne 1978). They used the established programs such 

as BMD07M in BMD 1974) or the SLDA program in SPSS . Gevins 

(1980a) gave an excellent survey on the papers that applied SLDA to 

the EEG analysis. 

The SLDA programs select a set of parameters useful for 

classification, and calculate a classifier of Bayes approach . The 

programs in BMD and BMDP also have a feature to calculate canonical 

variables, which may be used for calculating a classifier of Fisher' s 

approach or canonical approach. The data set used for calculating the 

classifier are called a training data set, and the classifier is applied to 

the data sets, called testing data sets, for classification. 
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Table 3 . 2 Comparison of Some Characteristics of the Five Selection 
Programs BMD07M, DISCRIM ALLOC-1, SPSS and BMDP7M. 
(Copied from Habbema and Hermans 1977, p. 489 . ) 

BMD07M/SPSS/ DISCRIM ALLOC-1 
BMDP7M 

. I 
IDistributional ' Multinormal, Multinormal, Direct density 
~ assumptions I equal covariance equal covariance estimation by 

kernel functions ' 
I 

Selection Maximal value of Minimal value of Maximal correct 
Criterion F-statistic and U-statistic classification 

three related rate 
criteria(BMDP7M 
only F-criterion) i 

I 

· Way of Stepwise All subsets Stepwise 
selection 

: Way of . Resubstitution Resubstitution Leaving-one-out 
; posterior. (BMDP7M also 
1 probablity leaving-one-out)
I estimation 
I 
I 
! Stop criterion , Threshold value Reduction in Threshold on 

for F-statistic U-statistic increase of 
correct classi­
fication rate 

' Loss-function No No Yes 
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The SLDA programs are computationally more efficient than others 

in deriving a classifier and assigning a new event to a group by the 

classifier. But the SLDA programs may be criticized in the following 

points (Habbema and Hermans 1977; see Table 3.2) : 

(1) the distributional assumption of multi normal and equal co­
variance is too restrictive; 

(2) the variable selection criterion of F- statist ics does not y ield 
better classification percentages in the case of more than two 
groups, compared to the case of two groups; 

(3) the stepwise procedure does not take into account that a 
combination of some variables may better separate the 
groups; 

(4) the F-statistic do not give the ov erall significance level, 
resulting in the lack of valid stopping rules. 

The program DISCRIM (McCabe 1975) improved the defect of the point 

(3) by checking all the subsets, but increased the computation time. 

The U-statistic is equivalent to the F, statistic for variable selection . 

They are essentially for testing equal ity of t he group mean vectors 

under the assumption of multivariate normality with equal covariance 

matrices (Habbema and Hermans 1977) . The program ALLOC-1 

(Habbema et al. 1974) chose the selection criterion of classification 

percentages using Parzen estimate to estimate the probability density 

functions (Habbema , Hermans and Van den Broek 1974) . The 

performance is good, and does not assume any distributions of data . 

However , the computation time is long. The modified stepwise 

procedure proposed by Farer and Dunn (1979) , which discards half the 

number of variables from the analysis according to a t-test, seems to be 

an improvement. Recently Habbema and Gelpke (1981) offered a 

program called INDEP-SELECT, which 1s s imilar to ALLOC - 1 in 
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principle, but has a choice of more flexible criteria and takes less 

computation time. McKay and Campbell (1982a, b) suggested to use all 

subset selection using classification percentage criterion. Lachenb ruch 

(1975, pp. 73-78) also discussed some criteria of selecting parameters. 

Noteworthy is the second criteria in BMD07M ( Dixon 1974), which may 

be better in performance than F-statistic criterion in the case of more 

than two groups. But this option is omitted in BMDP7M (Dixon 1975). 

As to where to stop the stepwise procedure, the conservative 

simultaneous testing procedure proposed by Hawkins (1976) seems 

readily useful for the SLDA (see McKay and Campbell 1982a, p.12). 

Adjustments of Classifiers 

The classifier derived during the training data is applied to the 

other data (the testing data). As far as the data property of each 

group stays same, the performance in the testing data is expected to be 

as good as in the training data. But the properties may change 

gradually. Also the training data set may not have been quite 

appropriate. In that case, an adjustment of the classifier would be 

recommemd. One way to solve the problem is to make the system 

interactive with a supervisor, and another is t o make the system have 

an unsupervised learning ability so that the system itself adjust the 

classifier to the change of the properties. Usually an unsupervised 

learning system's performance is not as good as a supervised learning 

system in a limited data, but also the system's algorithm becomes more 

complicated and costly. Therefore, a combinat ion of the both seems to 

be reasonable, that is, the system derives a classifier during a training 

period, and have an ability to adjust the classifier to changes of data 
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property. Also it is desirable for the system to have an option to 

interact with a supervisor. 

Hill and Townsend (1973) implemented a simple unsupervised 

system for detecting spike waves . Saridis and Gootee (1982) applied a 

learning linear classifier (Fukunaga 1972, pp. 196-217) in the EMG 

pattern classification, which improved the performance of a linear 

classifier considerably. 

Artifact Rejection 

The artifacts are either physiological or instrumental, and have 

morphology and mode of appearance like real EEG components such as 

spikes and sharp waves (Getman and Gloor 1976). Whereas the 

electroencephalographers can recognize artifacts with their experience, 

the automated EEG analysis has to have some quantitative or logical 

criteria for artifact rejection. Some of the artifacts may be discarded 

while the analysis proceeds to detecting specific waveforms. Since it is 

not enough usually, many systems added some special procedure for 

artifact rejection. 

For the artifacts caused by gross body motion, EMG or 

instrumental source, Gevins (1975a) proposed a special artifact rejection 

scheme which compares intensity at specif ied frequencies with a 

threshold determined during an artifact-free calibration period. The 

th res hold can be corrected by an electroencephalog rapher. 

The system offered by Salb (1980) rejected the portion of data as 

artifacts when, in the 1 second running window, the amplitude totals in 

the wavebands of less than 30 msec. and more than 100 msec . exceed 

the artifact th res hold cal cu lated du ring a cal ibration period. Gotman 
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and Gloor (1976) presented an auxiliary processing design for reject ing 

three major artifacts; muscle activity, rapid eye blinks and onset sharp 

alpha activity. The data of 1/3 sec. before and after the time being 

analyzed are considered to be an artifact (1) if these periods include a 

large number of high amplitude, or a sharp decline of the 

autocorrelation function for muscle activity; (2 ) if they have a positive 

wave of longer than 150 msec . in homogen eous contralateral frontal 

channels for eye blinks; (3) if the correlation functions of (a) 1/ 3 sec. 

of data centered at the apex of a given wave over a lag of 60 msec . , 

and (b) 1/ 3 sec. of data centered at 100 msec . before and after the 

apex over a lag of 60 msec. have ·more than 60% for onset of alpha 

activity . These three methods were reported to have rejected muscle 

activity and onset of alpha artifacts perfectly, and eye blinks 

incompletely when asymmetry between right an d left recording occurs . 

The adaptive noise cancelling techniques (Widrow et al. 1975) may 

serve as a good artifact rejector . Johnson et al. (1979), after noting 

the limitation of linear filter in reducing musc le artifact because of the 

EEG and muscle artifacts have overlapped frequency property, proposed 

a Kalman type nonlinear filter that can eliminat e muscle artifacts on the 

EEG . 

If the other recordings such as EOG, EMG, ECG are available , 

they can contribute to the artifact rejection . 

Evaluation 

After classification, it is important t o know how good the 

performance is . Because there has not been a perfect machine to 

correctly classify the EEG events, the standard is usually set to the 



57 

classification of experienced electroencephalographers. In this case, 

the classification results are evaluated in comparison with the results of 

electroencephalographers using the same data. · There are some 

measures available to evaluate the success of classification . Hilderbrand 

et al. (1977), for example, proposed this type of measures. As 

mentioned in Introduction, however, the identification of EEG events by 

electroencephalographers tends to be qial itative and subjective. 

Therefore, when the results of the classification or identification of EEG 

events by electroencephlographers are used as the standard to evaluate 

the classification results by computers, it 1s important to know how 

credible and significant the standard classification being used is. The 

following paragraphs discuss the topic. 

In the classifications of sleep stage analysis, the discrepancy 

among electroencephalographers seems not significant. For example, 

Martin et al. (1972) reported that 89 percent of agreement between 3 

judges based on the sleep EEG and EOG data. The evaluation of 

evoked potentials does not have this problem because each event is 

labeled with a designated stimulus. However , in the classification of 

EEG transient events, the disagreements between electroen­

cephalographers seem substantially big. Gevins et al. (1975a) reported 

that when five electroencephalographers marked the spike and sharp 

waves of EEG, only 11 percent of all marked spikes and sharp waves 

were marked by all the electroencephalographers and only about 30 

percent were marked by at least three electroencephalog rap hers. 

Getman et al. (1978) explained that the low percentages of 

agreement were obtained in the Gevins' study because the marking of 
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every transient wave is not part of the traditional EEG interpretation. 

Considering that identifying individual spikes or sharp waves is not the 

purpose of the EEG interpretation, he proposed "structural reports", 

which show the level of the epileptic subject's interictal activity on each 

recording channel and the relation between channels. The reports 

primarily contribute to identifying a patient's epileptic foci. When the 

structural reports were used for interpretation, the agreement between 

electroencephalographers was improved to 72 percent using the paper 

records (84 percent using the computer displayed data). Between the 

computer and human analyses, Gotman and Gloor (1978) reported the 

correlation of about 6090 in the structural reports, suggesting that the 

evaluation is more reliable when a cumulative data for diagnosis is used 

than when individual spikes or sharp waves are used. 

To interprete a complex fluctuation of the rate of occurrence of 

epileptiform events with time, Saltzberg et al. (1981) found that the 

curvature of the cumulative distribution of these events with time 

indicates a diagnostically significant characteristic of the event profile. 

That is, the curvature may be considered a measure of seizure risk, 

which provides a basis for early prediction of the efficasy of 

medication 1 
• This fact reveals that the trend of the temporal cumulative 

distribution of the events is more essential than the times of occurrence 

of the individual events. 

These facts about the structural report (spatial distribution) and 

the cumulative distribution over time (temporal distribution) imply that 

the evaluation will be more significant diagnostically when these spatial 

1. As to the prediction of epileptic seizures, there are other 
approaches (see Viglione 1973 and Rogowski et al. 1981). 
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and temporal distributions of the epileptic events are considered rather 

than when the individual events are considered. In this sense, the 

detection of the individual epileptic events, which is the main purpose 

of this project, is not the last step, but one of the early steps toward 

the goal of making comprehensive diagnosis for epileptic patients. 



CHAPTER 4 

ANALYSIS PROCEDURES 

The analysis procedures to detect spikes and sharp waves(SSW) 

are explained in this chapter. 

The algorithms for the procedures were chosen so that the system 

adopting the algorithms may be: 

(1) real-time operating, 

(2) microcomputer applicable, 

(3) able to reject artifacts, 

(4) free from adjusting to intra- and inte r -individual variances, 

(5) contributing to quantitative description of SSWs. 

In search of suitable algorithms, the programs were written in 

FORTRAN on the Clemson University I BM370/ 3033 computer system , and 

tested using the EEG data stored on a d igital magnetic tape as 

described in the following section. 

The first section deals with the data sou rce and the process ing 

before the computer analysis. The second section explains the 

algorithms for the computer analysis procedu res. The third section 

illustrates the program flowcharts that comb ine the algorithms, and 

explain the programs used in the experiments. 

Data Source and Processing 
Before Computer Analys is 

The EEG data of an epileptic patient was obtained from the 

Neurology Laboratory in the V . A . Hospital, Augusta, Georgia. The 
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data was originally eight channel record ing from stereotaxically 

implanted depth electrodes (see Smith et al. 1983) as seen in Fig .4. 1. 

The arrangement of electrodes was monopolar with linked ear reference. 

The data recorded on the second channel from the top in Fig.4.1 was 

used for analysis. It was recorded from the temporal lobe at a depth of 

1 cm. 

Fig.4.2 illustrates the data processing from recording the EEG to 

storing the data in a digital magnetic tape. The voltage between the 

electrode and the reference was amplified and filtered by the EEG 

recording machine (Grass Model 8-160). The analog filters were the 60 

Hz notch filter and the band-pass filter with cutoff frequencies of 1 

and 70 Hz. The output from the machine was stored on analog FM 

tape. It was the inputs for both a strip chart recorder and an 

auxiliary amplifier. The auxiliary amplifier gave a proper voltage range 

for the 10 bit AID converter. 

The AID conversion was controlled by the PDP11 computer in the 

Neurology Laboratory. The sampling rate was 200 samples/second, and 

the calibration was 0.37 µV/digital unit. The output data from the 

amplifier was converted by the A/D converter to the digital data for 

about 72 seconds, which made up a file on the digital magnetic tape. 

The next file was made for the same period after about an interval of 

20 seconds because of the filing procedure of the computer. As a 

total, 15 files were stored on the digital magnetic tape, mak ing up 15 

data sets for experiments. The digital magnetic tape was copied to 

another digital magnetic tape installed at the Clemson University 

Computer Center. 
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Figure 4.1 An Example of the EEG Data Recorded on a Strip Chart 
Recorder. * : SSW marked by the electroencephalographer. 
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Figure 4.2 Data Processing before Computer Analysis. 
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The SSWs on the data were marked by an electroencepalographer 

(a neurologist) in the laboratory on the output of the strip chart 

recorder as seen in Fig.4.1. While marking these waves, the 

electroencephalographer was asked to look at only the channel used for 

computer analysis. The electroencephalographer marked 80 SSWs in 15 

data sets. The SSWs 1 in the first five and the seventh data sets are 

shown in Fig.4.3 (a)-(f) with an averaged SSW and the standard 

deviation in each data set. Some of SSWs were distinctly different in 

shape as seen these figures. Then, two subtypes of SSW were 

introduced: SSWA and SSWB. There was one SSWB event in each of 

the first three data sets as indicated in Fig.4.3 (a)-(c). These data 

sets were used as training data sets. These subtypes of SSW were 

labeled and used only in the training data sets when two SSW types 

were specified in experiments (see Design of Experiments in Chapter 

5). The electroencephalographer also marked 10 doubious SSWs, which 

he suspected as SSWs, but could not qualify his criteria for SSW. The 

portions of doubious SSWs are displayed in Fig.4.3(g). 

Each data set but the 15th data set consisted of 14,336 integer 

values, that is, equivalently 71.68 sec. of recording. The 15th data 

set contained 9,024 values. As a tota I, there were 209, 728 integer 

values in the 15 data sets, equivalently about 17.5 min. of recording, 

which excludes the elapsed time between data sets during filing. 

Using a computer graphic display, the author identified the sites 

corresponding to the sites of the SSWs and doubious SSWs marked on 

the strip chart. Then the wave including the peak of each SSW or 

1. They are filtered by a three point Hanning filter as will be 
explained in the later section. 
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25µ; I..._____ 
0 . 5 sec. 

(a) (b) (c) 

Figure 4.3 Examples of SSWs, Ooubious SSWs, Successive SSWs and 
Artifacts. (a)-(f): SSWs in the data sets 
DATA0l,02,03,04,05 and 07, respectively. (g):doubious 
SSWs, (h): successive SSWs, (i) artifacts. The second 
lowest and the lowest graphs in each of (a)-(i) are the 
averaged SSW and the standard dev iation, respectively. The 
graphs marked by an arrow and a letter B are of SSWB. The 
graphs marked by an arrow and a letter S include successive 
SSWs . 
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Figure 4.3 (Cont 'd.) 
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Figure 4 . 3 (Cont 'd.) 
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doubious SSW was named "SSW" or "doubious SSW", respectively. In 

some occasions, there was a sharp peak right after a SSW. These 

waves were named "successive SSW", the portions of which are shown 

in Fig .4.3(h). There were 15 successive SSWs labeled by the author in 

the 15 data sets. The artifacts were not marked by the 

electroencephalographer, but marked by the author. There were 3 

artifacts identified by the author, and named "artifact". They are 

shown in Fig.4.3(i). The rest of the events are named "background", 

the number of which totaled more than 12,500 in the 15 data sets. 

Algorithms for the Computer 
Analysis Procedures 

The block diagram of the computer analysis procedures is shown 

in Fig.4.4. A brief explanation follows. The EEG data stored in the 

digital magnetic tape is read sequentially by the computer first. The 

first data set is a training data set and the rest are testing data. In a 

training data set, SSWs and artifacts are marked by a supervisor. The 

data proceeds to the procedures of preprocessing, segmentation, and 

parameterization, and is now called parameterized data. If the current 

data is in a training data set, the parameterized data are used for 

discriminant analysis. The discriminant analysis gives a classifier for 

classification. If desired, some statistical properties of the training 

data set may be obtained in this analysis procedure. If the current 

data is in a testing data set, the parameterized data are classified by 

the classifier obtained by the discriminant analysis into one of the 

groups of SSWs, background waves, and/or artifacts. In the following 

paragraphs, the algorithms for each procedure are explained. 
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Figure 4. 4 Analysis Procedure. 
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Preprocessing 

A simple three point Hanning filter 

y(n)=(l/4)x(n-2)+(1/2)x(n-1)+(1/4)x(n) (4.1) 

was chosen to further reduce high frequency noise and the round-off 

effect of digitization. This filter is especially suitable for 

microcomputer application because the coeficients of the filter are only 

1/2 and 1/4, which need one and two bits right shifts respectively in 

microcomputing. The z-transform of the formula (4.1) is 

Y(z)=(l/4)z - 2 X(z)+(l/2)z -lX(z)+(l/4)X(z) (4.2) 

The filter's frequency characteristics are obtained by replacing 

exp(21Tjf/f ) for z in the formula (4.1) where f is a frequency (Hz),
s 

and f is the sampling frequency 200 Hz (see Fig 4.5). The data 
s 

obtained after this low-pass filtering is called the "basic data " and will 

be used as the basic data for analysis . 

Segmentation 

Segmentation is a procedure to give a basis for parameterization. 

Among various algorithms of segmentation, the discussion of 

segmentation in Chapter 3 and the consideration for real-time operation 

led to applying an extrema algorithm for the segmentation in this 

project. However, the use of values manually set up, such as tolerance 

constants or th res holds (see Segmentation in Chapter 3), were avoided 

as much as possible, so that the algorithm would be simpler than the 

previously proposed algorithms, and require as Iittle subjective 

decisions by researchers as possible. 
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Figu·re 4.5 Frequency Characteristics of the Filter in Preprocessing . 
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Figure 4. 6 Frequency Characteristics of the Filter in Segmentation . 
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First the basic data is filtered by a simple low-pass filter below 

to suppress small amplitude fluctuation of the data: 

y(n)=y(n-l)+x(n)-x(n-m) (4.3) 

which is one of the fast digital filters proposed by Lynn (1977). This 

filter has a cutoff frequency f Im, a linear phase characteristic, and a 
s 

delay of (m-1)/(2f ) seconds. The value m is chosen so that the filter 
s 

will at once suppress insignificant fluctuation of the data, and retain 

the extrema of SSWs and artifacts to a certain extent. The filter's 

initial conditions were set to zero. The order of the filter, m, is 

chosen to be an odd number preferably so t hat interpolation is not 

necessary to adjust the delay caused by filtering. However, the order 

m=4 was appropriate to meet the cutoff frequency 50Hz, considering the 

duration of a SSW is longer than 20 msec.. In this case, m is an even 

number and has a delay of 1. 5/f . The delay was rounded up to 2/fs s 

from the correct value of 1. 5/f . This does not cause any significant
s 

discrepancy in the following procedures, and does not affect the values 

of wave parameters at all. The frequency characteristics of the filter 

is shown in Fig.4.6, which was obtained by using the z-transform of 

the filter 

-1 -4Y(z)=z Y(z) +X(z)-z X(z) (4.4) 

and replacing z for exp(21rjf/f ) where f is a frequency (Hz), and f is s s 

the sampling frequency 200 Hz. 

Fig.4 . 7 shows how the basic data is segmented. The graph (a) 

of the figure is an example of the original data, and the graph (b) is 



74 

the basic data after preprocessing by a Hanning filter. The data after 

the low-pass filtering is shown in the graph (c). The time delay 

caused by the filter is adjusted. The extrema marker in the graph (d) 

has a non-zero value when the low-pass filtered data (c) has an 

extremum (a peak or a trough), and zero otherwise. The non-zero 

value is +1 when the low-pass filtered data (c) has a peak at the time, 

and -1 when the data has a trough at the time . 

A "segment" is defined as the portion of the basic data between 

one extremum and the next. Note the graph (c) is used for 

segmentation only and not for other purposes. There are two types of 

segments accordingly: one being a down-stroke and another an up-

"stroke. These segments are also called "half-waves." A wave It 

consists of two consecutive segments. One type of wave has two peaks 

at the edges of the wave and one trough inbetween ("trough wave"), 

and another type has two troughs at the edges and one peak inbetween 

( " pea k wave") . By the definition, a wave has one and only one 

significant ext rem um between the edges. Fig .4. 8(6) shows the waves 

corresponding to the data in Fig.4.8(a). In the graph(b) of Fig.4.8, 

W(I) represents the portion of the I-th wave in the data set, W(l-1) 
-

the portion of the (1-1)-th wave, etc. Adjacent waves are partially 

overlaped as seen in the graph (b). 

Pa ramete ri zation 

One or more parameters are derived from each wave. There are 

two methods tested in this project, although there are others as 

mentioned in Parameterization, Chapter 3. In one method, called 

Method A, some morphological parameters are derived. And in another, 
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Figure 4. 7 Segmentation Procedure. (a) Orig inal data, (b) Basic data, 
(c) Low-pass-filtered data, and (d) Extrema marker. 
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Figure 4.8 Parameterization Procedure. (a) Basic data and (b) 
Extrema marker and waves . 
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called Method T, a parameter is derived by template matching. After 

describing the two methods, an "event", which extends the category of 

waves, is defined. 

Method A 

In each wave, the time of the extremum of the wave, the 

amplitude at this time, and the slopes before and after this time are 

measured, using the basic data. In Fig.4.8, the I-th wave W(I) has 

the time T(I), the amplitude A(I), and the slopes S1(I) and S2(I). 

S1(I) and S2(I) are calculated as follows: 

Sl (l)=(A(l)-A (I))/N and
1 1 

S2(I)=(A (I)-A(l))/N
2 2 

where A (I) and A/ I) are the amplitudes at t he times of T( I )-TD*N
1 1 

and T( I) •TD*N , respectively . TD is the samp l ing period, and N and
2 1 

N are constant numbers. Likewise W(l+l) has T(l+l), A(l+l), S1(I+1)
2 

and S2(I•1). Then, the four parameters of the I-th wave W(I) are 

defined as follows: 

( 1) the du ration 1 DU ( I )=T( I +l )-T( I) 

(2) the amplitude 1 AM(l)=A(l+l)-A(I) 

(3) the slope before the extremum S1( I) 

(4) the slope after the extremum S2 (I) 

1. These parameters could be defined as DU(l)=T(l)-T(l-1) a"nd 
AM(I)= A(l)-A(l-1), so that a future wave W(l+l), supposing W(I) is 
the current wave, is not needed. 
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Method T 

In Method T, template matching is adopted in deriving 

parameters. The scheme of making a template in this project is 

introduced and the three measures of similarity or dissimilarity that are 

tested in this project are explained. 

Making a Template 

To avoid relying on researchers ' subjective decisions in making a 

template as much as possible, the following procedure was established, 

thereby the shape and the length of a template being decided. 

First the sharp peaks of the SSWs marked by the 

electroencephalographer in a training data set are aligned as shown in 

the graph (a) of Fig . 4 . 9. These aligned SSWs are averaged, and the 

averaged SSW shown in the graph (b) becomes the shape of a template. 

The graph (c) shows the standard deviation in averaging. The length 

of a template is decided by using a confidence level of a T-test, which 

gives a statistical value of how far the averaged value is deviated from 

a mean. The score of the T-test was obta ined by the subroutine 

TTEST in the packaged programs of SSP 1 
, using the option 1, where 

the hypothesis is that the mean of the populat ion is equal to a given 

mean. The confidence level was calculated by the function PRO BT in 

SAS 2 program package. 

1 . See System/360 Scientific Subroutine Package (360A-CM-03X) 
Version 111 Programmer 's Manual. IBM Corp. 

2. Statistical Analysis System. See SAS User ' s Guide: Basics 1982 
Edition. SAS Institute Inc. 
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Figure 4.9 Procedure of Making a Template . (a) SSWs in a training 
data set, (b) Averaged SSW, (c) Standard deviation and (d) 
Confidence level of T-test . 
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The procedure follows. The data was an ensemble of several SSW 

portions. Each portion was 9 second long, and had a peak of SSW at 

the center of it. The 3 second middle portion was used for the T-test, 

and the rest were used for getting the mean for the T-test. To 

calculate the mean, the averaged data, a center part of which is shown 

in the graph (b) of Fig.4.9, was averaged excluding the middle 3 

second portion. The graph (d) of Fig.4.9 shows the confidence level 

and the length of the template when a th res hold level 1090 was applied. 

It is important to exclude redundant portions as much as possible 

so that only a significant or distinctive portion is compared in template 

matching. Although the length of a template could be decided by visual 

inspection, it again comprises researchers' subjective decision. The 

procedure established in this project at least gives an objective way of 

selecting the length except for the necessity of choosing a threshold of 

the confidence level. 

Template Matching 

As shown in Fig.4.10, the value of template matching in the I-th 

wave W(I) is needed only when the peak of the I-th wave, A(I), is 

aligned with the peak of the template, AT. Then, the template 

matching value becomes a parameter in the wave. Furthermore, only 

peak waves are considered as possible SSW candidates. Because the 

SSWs marked were all peak waves in the obta ined data sets, and peak 

waves, which have electrically negative peaks, are said to be more 

characteristic of epileptic waves as mentioned in Chapter 2. Thus, in 

Fig.4.10, V(l-2), V(I) and V(1•2) are parameters of the waves W(l-2), 

W(I) and W(l+2) respectively, for example. The parameters V(l-1) and 

https://Fig.4.10
https://Fig.4.10
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Figure 4.10 Template Matching Calculation Scheme. 
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V( I +1) of the waves W( 1-1) and W( I+1), respectively, are not shown in 

the graph, but used for analysis . 

Three measures were tested in this project: (1) mean absolute 

error, (2) mean square error, and (3) correlation coefficient. Hence, 

the parameter of the I-th wave in Method T is calculated by one of the 

following formulas: 

1 N 
Va(I)= l: i a (i)-at (i) I

1 1N i=l 

1 N 
Vs(I)= l: {a (i) 2 -at (i) 2 }

1 1N i=l 

N 1 N N 
Vc(I)= {_l: a (i)at (i)

1 11=1 
l: a ( i) 

1N i=l 
l: at ( i)}

1i=l 

N 1 N N 1 N -½ 
• [ {_l: a ( i) 2 

- -{_l:1 a ( i) } 2 
} { _l:1 at ( i) 2 

- -{_ l: at ( i) } 2 } ]
1 11=1 N 1=1 1=1 N 1=1 

where Va, Vs and Ve are measures of mean absolute error, mean square 

error , and correlation coefficient , respectively. Fig.4 . 11 shows the 

notation used in the formulas above. NT1 is the point at the peak of 

the SSW template. 

Definition of an Event 

Considering that the morphological featu r es of a SSW may spread 

beyond one wave segment, it is reasonable to introduce a concept of an 

"event", which covers more than one wave. T his concept is hinted at 

by the concept of a "sequence" proposed by Remond (1969) and the 

method of parameterization presented by Sc henk (1976) (see The 

Concept of Events, Parameterization in Chapter 3). 
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A(I) 

I AT 

1 · · · NTl N 

i 

Figure 4.11 Template Matching. 
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An "event" consists of a set of parameters of one or more waves . 

For example, the I-th event E(I) in Fig.4.12 includes the waves W(l-4), 

W(l-3), W(l-2), W(l-1), W(I), W(l+l), W(I+2) and W(I+3). In general, 

the I-th event E(I) contains the parameters of the waves {W(J), 

J=N1,N1+1, ... ,l,I+1, ... ,N2; N1SISN2}. When an event includes 

M=N2-N1+1 waves, the number of parameters in an event is 4M in 

Method A, and M in Method T. It may not seem to be necessary in 

Method T because the templates al ready covers the main portion of SSW . 

However, by including more than one template matching values in an 

event as candidate parameters for classification , it leaves a possibi l ity 

to find more than one template matching parameters useful for 

classification . 

The following notation for those parameters in an event is 

suitable: Suppose E(I) includes the waves W (I), W (I), ... , and
1 2 

WM(I), whereby WM (I)=W(I) . The Ml-th wave WM (I) in an event is
1 1 

then called a " core wave" because it is the wave being investigated for 

the detection of SSW, and , if necessary , artifacts. 

N=l, ... ,M has parameters : AMN(I), SlN(I), S2N(I) and DUN(I) for 

Method A; VaN(I) , VsN(I) or VcN(I) for Method T . 

W(I-3 ) W(I-1 ) W(I+l ) W(I+3 ) 
(a ) Extrema marker....-J..'.~:._::,:_.1__~~---r----1_------,--L-~-----'-

W( I-4 ) W(I - 2) W(I) W(I+2) and waves 

(b) Event E( I) 

Figure 4.12 Example of an Event. 

https://Fig.4.12
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Classification 

The stepwise linear discriminant analys is program in Biomedical 

Computer Programs, called BMDP7M (Dixon 1975), was chosen to deal 

with both the selection of the parameters and the calculation of the 

classification functions. The input of the program is the parameterized 

data of a training data set. Each event in the data is labeled as one of 

the groups by a supervisor. 

In selecting the "best" set of parameters, the program uses a 

stepwise procedure, which selects one parameter at a step, and the 

univariate F- ratio as the criterion of selection. As al ready mentioned in 

Chapter 3, there are some criticisms of the selection procedure. One of 

the criticisms is the lack of the overall significance levels. The levels 

proposed by Hawkins (1976) were tried to incorporate the overall 

significance levels in this project. The other points criticized still 

remained. Computationally, though, the procedure is more economical 

than most others. Another advantage is the popularity of the BMDP 

program, which is available in a number of institutes. The univariate 

F-ratio and the estimation of the overall significance levels are 

described in Appendix A. The mathematical procedure of the program is 

found in Appendix C. 

Three types of linear classifiers are described in Appendix B. 

The BMDP7M program calculates the linear classifier by Bayes approach. 

The program also calculates the canonical variables, by which the 

classifier derived by canonical approach may be constructed. The 

mathematical procedures are described in Appendix C. It must be 

noted that the canonical variables in the program are derived using the 
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specified contrasts, and are standardized. The data usually do not 

conform to the assumption of multivariate normality and equal covariance 

in the Bayes classifier. The classifier by canonical approach does not 

assume the multivariate normality, but assumes equal covariance. Also, 

the prior probabilities are not needed in the calculation, which is an 

advantage. Fisher's approach may be considered as a special case of 

the canonical approach. The Bayes classifiers are tested in this project 

mainly because they are used by the BMDP7M program. The canonical 

classifiers are also tested using one example . It is interesting to 

compare the performances of both classifiers. 

Evaluation of Classification Results 

First the measures to estimate the success of classification are 

derived. Then, the reconstruction of origin a l data in Method A is 

described as a means of investigating the properties of individual 

events. 

Measures of Classification Success 

PRE (proportionate reduction in error) approach are used instead 

of using raw percentages of correct classif ication, which are poor 

measures . The following development of the measures is based on the 

description of the PRE measures by Hilderbrand et al. (1977 , 

pp.36-79). PRE measures make a comparison of error rates and permit 

operational interpretation. Because the detection of SSW events is the 

main purpose, the classification table is simp lified to such a 2 by 2 

table as follows . First, the labels of events a re simplified as SSW .orig 

and Non-SSW . where SSW . is for SSW events and Non-SSW . 1sorig orig orig 
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for the others . Likewise the specified groups on a classifier are 

simplified as SSW and Non-SSW • These simplified results in a c Ias c 1as 

2x2 classification table. The numbers of events in the table are divided 

by the total number of events . Hence , the classification table is 

converted to the table as shown in Table 4 . 1. In Table 4 . 1, P is the 
ss 

probability of classifying the original SSW (SSW . ) to the group SSW
orig 

(SSW ) , for example . P =P +p and P . =P +p and thec 1as n . clas sn nn s . or1g ss sn' 

like . The measures are Pl, P2 and P3, corresponding to the logics 

Non-SSW I => Non-SSW . , SSW I => SSW . , and SSWclas <=>c as orig c as orig 

SSW . , respectively. Herein a logic X => Y refers to the sentence oforig 

"X tends to be a sufficient condition for Y, " and a logic X <=> Y 1s 

equivalent to a logic X=> Y and Y => X. Then, the error cells 

corresponding to the measures Pl, P2 , and P3 are the cells of Psn, 

pns' and P plus Pns' respectively . The definitions of thesesn 

measures are given below : 

Pl = 1 P /(P . •P )sn s . or1g n . clas 

P2 = 1 P /(P . •P )ns n . or1g s.clas 

P3 = 1 + P )/(P . •P + p • p )(Psn ns s.or19 n.clas n . clas s . clas 

Table 4 . 1 Simplified Classification Table Configuration . 

SSW Non-SSW lclas c as 

I 
Ip p plssw . , orig ss sn I s .orig I 

---i: 
I Non-SSW

orig 

I~ 
p 

ns 
I 
I ' 

p 
nn 

p 
n . orig ' 

:
I I 

'i 
p . p 1.00 s . clas n.clas 
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Let us suppose a prediction that predicts the original events 

given the knowledge of classification result. By evaluating the 

prediction success, we can know how successful the classification is. 

Let a logic X => Y be one of the logics corresponding to Pl, P2 and 

P3. The value r, 0<r<l, of the measure with the logic X => Y indicates 

that 100*r% reduction in error is achieved by applying the logic given 

knowledge of the classification result over that expected when the 

prediction is applied to randomly selected events whose groups are not 

known by classification. The value of r is 1 if and only if the 

prediction is perfect, and is zero if and only if the classification result 

and the original assignment is statistically independent. The measure 

goes below zero if the prediction is worse than the prediction that gives 

the value zero. 

Once a SSW is missed, there will be no way to recover it, 

whereas even if background events are included in the detected SSWs, 

they can be eliminated by processing further . For this reason, it is 

more important in practical application for the detection system not to 

miss possible SSWs than not to miss possible backgrounds. Therefore, 

the measure Pl should be more considered than the measure P2 in 

practical application of the detection system. The measure P3 is a 

weighted average measure between the measures Pl and P2. When both 

the background and SSW misclassifications are considered, the measure 

P3 will be appropriate. 

Reconstruction of Original Data 

In Method A, the original data can be reconstructed . The data 

reconstruction may contribute to reducing the data to be stored stored 
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for later analysis and giving an insight for how the original data is 

parameterized. 

At the level of wave data where the data is converted to wave 

parameters, the orig inal data sequence can be reconstructed using the 

wave parameters, AM( . ), Sl( . ), S2(.) and DU (. ), on condition that the 

initial time and amplitude are known . From a set of wave parameters in 

a wave W(I) including the check value ICK1 , which is 1 or -1, the 

following three pairs of amplitude and time are derived : 

(A , T ), (A , T ), and (A , T ) where
1 1 2 2 3 3 

A =A(1+1)=A(l)+AM(I), T =T(1+1)=T(l)•DU(I),
1 1 

A =A(l)•S1(1)*(N-1)/2*1CK1, T =T(l)-TD*(N - 1)/2,
2 2 

A =A(l)-S2(1)*(N-1) / 2*1CK1, T =T(l)•TD*(N-1) / 2,
3 3 

where N is the number in the subroutine GETD to calculate the slopes, 

and TD is the sampling period. At the level of event data where the 

data is converted to event parameters, a portion of original data 

covering the waves in an event can be reconstructed from a set of 

parameters in one event . Since a set of parameters in one event 

consists of several sets of wave parameters , the event port ion is 

reconstructed in the same way as described above. An example of 

event reconstruction is shown in Fig.4 . 13. The event included 18 

waves and had the core-wave at the 10-th wave. Because the init ial 

amplitude is assumed to be zero, the DC component of the reconstructed 

data can not be known. But it is not a loss of information for analysis 

because the DC components are insignificant in dealing with transient 

waves such as SSW . 
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Figure 4.13 An Example of a Portion of Original Data and the 
Corresponding Reconstructed Data. 
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Programming 

This section demonstrates how the procedures mentioned above 

make up one whole analysis sequence. 

Flowcharts 

The diagrams in Fig.4.14 and Fig.4.15 show the basic program 

flowcharts for Method A and Method T, respectively. The subprograms 

and subroutines are shown in Fig.4.16. However, these program 

flowcharts are written only to aid understanding, and therefore include 

some redundant parts. Also, there will be modification in practical 

programming according to experimental design. The following 

paragraphs explain the program flowcharts for Method A, and for 

Method T. The notations of input parameters are as follows. 

N ,number in getting the slopes of basic data Y(.) by the 
subroutine GETD. 

NW number in getting the 
by the subroutine GET

slopes of 
D. 

the filtered data YL(.) 

L' order of the linear 
subroutine GETL2. 

filter. L=L'+l is used in the 

NT total number of points in a template. 

NTl number of the point where the peak of a template is put 
in a wave. 

TD sampling period in seconds. 

M number of waves included in one event. 

Ml number of the wave where the core-wave is put in an 
event. 

NC number of groups to be classified. 

NV number of variables selected. 

https://Fig.4.16
https://Fig.4.15
https://Fig.4.14
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1 

INITIALIZATION 
i - - _i=_=_=_=_=_=_=_=-=-=-=-=-=--=-=-=-=-=;-
1 CLEAR ALL REGISTERS 
: AND BUFFERS 
I 
I 
I 
I 
I 
I 

~ NO 
i.---<:r 

INPUT : 
N,NW,L,TD,M,Ml,NC 

NR=l+(L/2]+(NW/2) 
NS=NR-[N/2] 
NM=max(L,N ,NR) 
VMAX=lOOOOOO.O 
VMIN=-1000000 . 0 1

L-----------------~ 

83 YL ( NW) 

IB2!Y(NM) I· .. !Y(NR) ! .. . !Y(2) !Y(l)i 

® 

Figure 4. 14 Program Flowchart: Method A . 
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qJ~~ ~ ~ 
~~l!r@I~~ 

YES 

NO 

i..------~ LABEL : 
ITYPEl 

02 (3) 02 (4) 

B8 OT ( l ) OT (2) OT ( J ) B8IOT (l)I OT ( 2)I OT ( J)IOT (4 )IOT(5 ) 

OT(S) 

B9IOT2(l ) IOT3 ( l)IOT4 ( l ) IOT5 (1) 
OT2(2 ) OT3 (2 ) OT4 ( 2)IOT5 ( 2) 

AM=OT2(2 ) ·0T2(1 ) 
Sl=OT3(2 ) 
S2=0T4 (2) 
DU=OT5 (2 ) ·0T5( 1) 

6 

Figure 4.14 (Cont 'd.) 
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810 OTl( 1) OT2( 1) 
IOTl ( 2) I OT2 ( 2) 
I 
IOTl(Ml) IOT2(Ml ) 

8lllPAl(l)IPA2(l)IPA3(l)IPA4(1) 
IPA1(2)IPA2(2)IPA3(l ) IPA4(2) 
I 
jPAl(M) IPA2 (M)I PA3(M ) PA4(M ) 

86 01 1 

YES 

OUTPUT :OUTPUT: 
OT2(Ml ) , ITYPE2 OT2 (Ml ),ITYPE1, 

811 as 
A DATA FOR BMDP7M 

RETURN RETURN 

8MDP7MI 

1812 I IV (NV ) I .. . I IV ( Z) I IV(l ) l 813jC ( 1, 1)1 ... IC( l,'.·W)I C( l, NV+l ) 
1c c z, 1) 1... ice z.~'V) 1cc 2 , w +1 ) 
I 
IC (NC, 1) 1- .. IC(NC ,W ) IC(NC, W+l ) 

Figure 4 . 14 (Cont 'd.) 
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INITIALIZATION 
-, NO 

CLEAR ALL REGISTERS •1 
--.---<~r 

AND BUFFERS 
I 
I 
I 

INPUT: 
,L,TD,NT,NTl,~,Ml,N 

NT2=NT-NT1+1 
NL1=~'T2-(L/2)-(NW/2) 
NL2=NL1+L-1 
VMAX=lOOOOOO.O 
VMIN=-1000000.0 1

L--------------------~ 
INPUT : 

T(N), X(N) 

; 

: 

: 

, 

Bl X N-2) 

83 YL(NW) 

-NTz,·,rn 

IB2IY(1','T) 1- . . IY(NT2) 1 · . . IY(2) IYO)I 

~ 
B2 Y(NT) ... Y(NLl 

Figure 4.15 Program Flowchart: Method T. 
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B4 01(1 

Y(NT2 

BS 02(1) 

B7I0T1( l)I0T2( 1) 
I0Tl ( 2) I 0T2 ( 2) 
I 
I0T1(Ml)I0T2(!11) 

Figure 4.15 (Cont'd.) 

NO 

B8IPA1(1) 
IPA1(2) 
I .. . 
IPAl (M) 

5 

ICKll02(2 ) 02(3 

0T(3 

YES 
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01(3 

iBS 1~02(2) !02(3)1 

RETURN 

YES 

OUTPUT: 
OT2(Ml),ITYPE2 

OUTPUT: 
OT2 (Ml) , !TYPE1, 
88 as 
A DATA FOR BMDP7M 

TURN RETURN 

,-------------BMDP7M 

B12 IVC,IV) . . . IV(2) IV(l) Bl3IC( 1,1)1- - -IC( l,NV)IC( l,NV+l) 
IC( 2,1)1 - --IC( 2,NV) IC( 2,NV+l) 
I 
IC(NC, 1) 1-. - IC(NC,NV) IC(NC,NV+l) 

Figure 4.15 (Cont'd.) 
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Y1 
SHIFT 

Y(l)='ll 
Y(2)=Y(l) 

Y(K)=Y(K-1) 

Y(K) I,. - I Y(2) IYCl) 

GETLl 

GETL2 

!X(l )j .. . j X(K)I 
SHIFTK 

Y(l,I)=Y( 2,I), I=l,K 
Y(2,I)=Y ( 3,I), I=l,K 

... 
Y(L,I ) =X(I ) , I=l ,K 

' Y(l, 1) I - .. IY(l ,K) 
Y(2, l) I - . , I Y( 2 , K) 

Y(L, 1 ) I .. . IY(L,K) 

!X(l) I · . . !X(N) I 
BACK 

Y(l)=X(l) 
Y(2)=X(2) 

Y(N)=X(N) 

jY(N) I .. . I Y(l) I 

jY(K)l . . . 1Y(2) I Y(l) I 
GETD 

Kl=[ (K+l) / 2] 
K2=Kl-l 

l=Y(K2)-Y(Kl) 
Dl=(Y(Kl)-Y(K))/K2 
D2=(Y(l)-Y(Kl)/K2 

s ~~ [@ 
GETP'p===~~~~;;;;;;;;;;;;;;;;;;;;;;;;;,=====-=,

IICKl=O I 

Figure 4.16 Program Flowchart : Subprograms and Subroutines. 
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IY(N) 1- .. !YO)! JTE(N) 1- .• !TEO)!
TEMPL 

N 
Vl=(l/N) t abs{Y(I)·TE(I)} 

I=l 

C(l,l)I ... IC(l,K+l)@] [!] IIV(l)! . .. !IV(K)! IYO) I . .. IY(N)I 
C(2,l)I . . . IC(2,K+l) l 
C(G, 1) j •• • IC(G,K+l) 

CLASSIFIER i • 
K 

S(I)={ t C(I,J)*Y(IV(J))}+C(I,J+l), I=l,G 
J=l 

Find ITYPE2 where 
S(ITYPE2)=max{S(I), I=l,G}

•IITYPE21 

Figure 4.16 (Cont'd.) 
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After Initialization, the program gets ready to accept sequential 

data. Suppose a data point X(N) from an A/D converter is input to 

the program at time T(N). The following describes the process to deal 

with the data X(N) and T(N). When a RETURN is encountered, the 

program is ready to accept another pair of data. X(n) is stored in a 

link buffer 81 by the subroutine SHIFT. The stored data in 81 is low­

pass-filtered by a three point Hanning filter using the subroutine 

GETLl. The filtered value Yl is stored in a link buffer 82. The data 

in 82 is further low-pass-filtered using the subroutine GETL2, and 

stored in a link buffer 83. Using the outputs from the subroutine 

GETD, the subroutine GETP outputs ICKl for checking the extrema of 

the data: ICKl=l if an extremum is detected in a convex wave, 

ICKl=-1 if in a concave wave, and ICK=0 otherwise. Because the time 

delay to get the value ICKl, which is the largest time delay, is NR 

times the sampling period TD, the data Y(NR) at time TPl is 

corresponding to the timing of ICKl. The slopes Sl and S2 are 

calculated using the subroutine GETD, and stored in a link buffer 84 

and 85. Sl (NS) and S2(NS) are corresponding to the timing of ICKl. 

If the current data is in a training data set, the data of 

IC Kl, TPl, and Y(NR) are used for a supervisor to label each wave 

with one of the groups. The next stage of the program is to check the 

maximum and minimum values of the amplitude Y(NR) · in one wave. If 

the current value of Y(NR) is larger than the stored maximum 01 (2) or 

smaller than the stored minimum 02(2), the stored values in buffers B6 

and 87 are replaced by the new values as shown. 
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If ICK1 is not zero, it means it is a checkpoint for a wave. If 

ICK1 is -1, the last wave is a peak wave, and the values in B6 are 

stored in a buffer B8 with the value ICK1. If ICK1=1, the last wave is 

a · trough wave, and the values in B7 are stored in a buffer B8 with the 

value ICK1. Using the values stored in B8, the parameters of a wave 

are calculated. To do so, a multi-link buffer B9 is installed using the 

subroutine SHIFTM. The amplitude AM, slopes Sl and S2, and duration 

DU in the wave are calculated as shown. 

To complete the parameterization, a set of parameters of an event 

1s organized by using SHI FTM. One event contains M waves and the 

Ml-th wave in an event is the wave being examined, which is called a 

"core-wave". The multi-link buffer B10 contains the set of parameters 

in the event. After parameterization is finished, the values 01 (2) and 

02(2) are replaced by VMI N and VMAX, respectively, to get ready for 

the next wave. In this project, as mentioned before, only peak 

(convex) waves are considered to be of interest for SSW detection. 

Therefore, events that have concave core-waves are discarded. 

The program now proceeds to the classification stage. If the data 

is in a training data set, the values in an event shown in the flowchart 

become data for the BMDP7M program. Supposing that all the events 

have been labeled by a supervisor, the BMDP7M program outputs the 

classification functions (stored in B13), NV, and an array IV( . ) (stored 

in 812). These values are necessary as an input for the classifier 

later. 

If the data is not in a training data set, the data is input to the 

classifier. By this time, the classifier is supposed to have the values of 
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the number of groups, NC, the number of parameters used, NV, the 

identification numbers of parameters used, IV(.) in B12, and the 

coefficients of classification functions C(.,.). 

In Method T, there are some differences in the program 

flowchart. In Initialization, the number of points in a template NT and 

its peak point NTl are included whereas N is not needed. The time 

delay corresponding to the checkpoint of ICKl is decided to be NT2 

times the sampling period TD. Some values relating to time delay is 

accordingly changed, the lengths of buffers are different, and also the 

use of location of buffers is different. Instead of calculating the slopes 

in Method A, the template matching value VTl is calculated. 

Most of the subroutines include only simple operations. The 

subroutine SH IFT and SH IFTM can be time consuming when the number 

of data to be shifted is large. However, if a pointer or a pointer-like 

variable is implemented to update the current element of a buffer, the 

time of executing the subroutine would not depend on the number of 

data to be shifted, but only depend on the manupilation to locate the 

element. Then, these routines are not necessarily time consuming. 

The subroutine GETD is just a simple way of calculating the first 

derivatives before and after the center of the data. The subroutine 

GETP incorporates a sort of double check system to detect an 

extremum. That is, the data is once checked by YDl, and then checked 

again by D1 and D2. The purpose of this routine is to detect all the 

candidates for extrema and to discard insignificant extrema. The 

TEMPL subroutine in Fig.4.16 inputs arrays of data and a template, and 

calculates a template matching value using one of the three algorithms 

https://Fig.4.16
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mentioned earlier. In the flowchart, the mean absolute measure 

algorithm is shown as an example. 

Programs for Experiments 

Appendix D shows the lists of the programs for the experiments 

in Chapter 5. The selection of parameters and the calculation of 

classification functions are done by the BMDP7M program. The other 

programs are wr itten with FORTRAN . These programs basically follow 

the program flowcharts, but they differ in the following points: 

( 1) The event identification parameters IF I LE for the data set 
file number, and IEVENT for the event number in the file 
are used as well as the time parameter TP1. 

(2) The type parameter ITYPE1 in testing data sets, which 
shows the decision of a supervisor about what group each 
event belongs to, will not be provided in practical 
application, but was provided to evaluate the results later in 
this project. 

(3) The program flowchart in either Method was divided into 
three programs as shown in Append ix D. The intermediate 
lists of the data served as secondary and tertiary data, and 
were convenient when changing some condit ions of 
experiments . 

(4) The program for making up summary tables of classification 
performance was added . 

The instructions for running the programs are provided in Appendix E. 

Appendix F shows examples of the program outputs . 



CHAPTER 5 

EXPERIMENTS AND RESULTS 

The main purpose of the experiments was to verify the feasibility 

of the proposed analysis procedures in SSW detection and to evaluate 

their performance under various experimental conditions. 

Design of Experiments 

Table 5.1 shows the design of experiments. The main 

conditions of concern in designing the experiments were as follows: 

(1) to retract or not the adjacent events to SSWs in training 
data sets, 

(2) the number of training data sets to be used, 

(3) the number of specified groups (e.g. background , SSW, 
artifact), 

(4) the number of parameters used in classification. 

The adjacent events to a SSW event mentioned above were the 

background events that were within the range of 15 events before and 

after the SSW event. By retracting these adjacent events from the 

training data sets for the BMDP7M program, the background events that 

contain SSW waves in the waves constituting the events were eliminated 

from the discriminant analysis in the program. In addition, the effects 

of prior probability and the performance of the canonical classification 

functions were examined in supplemental experiments. 

The conditions common to all experiments were as follows: 

(1) the sampling period, TD=5 msec; 

(2) the number in getting the slopes of the basic data, N=5; 

(3) the number in getting the slopes of the filtered data, NW=5; 
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Table 5. 1 Design of Experiments. (a) Method A and (b) Method T. 

(a) 

Name of experiment Al2 Al3 Al4 Al2R Al3R Al4R A22R A23R A24R A32R A33R A34R 

T Backgrounds Gl Gl Gl Gl Gl Gl Gl Gl Gl Gl Gl Gl 

IY SSWA G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 G2 
1P SSWB G2 G2 G3 G2 G2 G3 G2 G2 G3 G2 G2 G3 
I ,e Successive SSW Gl Gl Gl NU NU NU NU NU NU NU NU NU 
:s Doubious SSW Gl Gl Gl NU NU NU NU NU NU NU NU NU 
j 
I Adjacents to SSW Gl Gl Gl NU NU NU NU NU NU NU NU NU 

I Artifacts 
I 

Gl G3 G4 Gl G3 G4 Gl G3 G4 Gl G3 G4 

!Prior Gl .99 .98 .97 .99 .98 .97 .99 .98 .97 .99 .98 .97 
!probability G2 .01 .01 .01 .01 .01 .01 .01 .01 . 01 .01 .01 .01 
i 
I G3 .01 .01 .01 .01 .0 1 .01 .01 .01 
i G4 .01 .01 . 01 .01 
i 

NU: not used in BMDP7M. Gl, G2, G3 and G4: specified groups . 

(b) 

iName of experiment T•l2 T•l2R T•l3R T•22R T•23R T•32R T•33R 

Template(s) used TEl TEl TElA TE2 TE2A TE3 TE3A 
1 

TElB TE2B TE3B 

1T Backgrounds Gl Gl Gl Gl Gl Gl Gl 
ly SSWA G2 G2 G2 G2 G2 G2 G2 
p SSWB G2 G2 G3 G2 G3 G2 G3 
:e Successive SSW Gl NU NU NU NU NU NU 
:5 Doubious SSW Gl NU NU NU NU NU NU 
' , Adjacents 
· IArtifacts 
I I 

to SSW Gl 
Gl 

NU 
Gl 

NU 
Gl 

NU 
Gl 

NU 
Gl 

NU 
Gl 

NU 
Gl 

Prior Gl . 99 .99 . 98 . 99 . 98 . 99 . 98 
probability G2 .01 .01 .01 . 01 .01 .01 .01 

G3 . 01 .01 .01 

T• : TA, TS and TC in Method T. 
NU: not used in BMDP7M. Gl, G2, G3 and G4: specified groups . 
TEl, TE2 and TE3: templates based on SSW in Data0l, Data01&02, and 
Data01&02&03, respectively. 
TE1A,TE2A and TE3A: templates based on SSWA in Data0l, Data01&02, and 
Data01&02&03, respectively. 
TE1B,TE2B and TE3B: templates based on SSWB in Data0l, Data01&02, and 
Data01&02&03, respectively. 
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(4) the order of the low-pass filter, L'=L-1=4 (L appearing in 
the subroutine GETL2); 

(5) the number of waves included in one event, M=19; 

(6) the number of the wave where the core-wave is placed in an 
event, M1=10; 

(7) the options in BMDP7M: METHOD=l, TOL=0.005, 
BLANK=ZERO, F-to-enter =4.000, F-to-remove =3.996 . 

There is a nomenclature for the names of the experiments. For 

example, the experiment A23R means that it was done with Method A, 

two training data sets, three specified groups , and the retraction of 

the adjacent events to the SSW events. In general, the first one or 

two alphabetical character(s) refer(s) to the method . That 1s, A is for 

Method A, and TA, TS or TC are for Method T, indicating that the 

measure used is of absolute mean error, square mean error or 

correlation coefficient, respectively. The names of Method TA, Method 

TS and Method TC may be used when the measure of template matching 

needs to be specified. The first numerical character refers to the 

number of training data sets used, and the next numerical character is 

for the number of specified groups. The successive SSW, the doubious 

SSW and the adjacent events to SSW were not used in executing the 

BMDP7M program when the experiments had a letter R, for retraction, 

added at the end of the name . Furthermore, A23R. S03 refers to the 

classifier obtained by the experiment A23R at the step 3. Generally, 

one period, the letter S, and a step number are added to the 

experiment to express the classifier obtained at that step. 

The templates were derived as explained in Chapter 4. They 

were -named as described at the bottom of Table 5. 1(b). That is, TE 

stands for template, the following number is for the number of data 
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sets used in averaging, and either A or B were added if either SSWA 

or SSWB were separately averaged, respectively . 

The names of parameters have the following nomenclature: the 

first two alphanumeric characters show the type of the parameter, and 

the following number is for the wave number of an event. The types of 

parameters are AM, Sl, S2 and DU in Method A, and VM, VA and VB 

in Method T. The parameter types AM, S l , S2 and DU are of 

amplitude, slopes and duration in Method A, as described in Chapter 4. 

The parameter types VM, VA and VB are derived from all averaged SSW 

templates (TEl, TE2 or TE3), averaged SSWA templates (TEl A, TE2A 

or TE3A), and averaged SSWB templates (T El B, TE2B or TE3B), 

respectively. For example, S211 means this parameter is of type S2 in 

the 11th wave of an event. 

For convenience, the groups are called as follows . In the 

experiments of two groups, Gl and G2 are called BCK and SSW, 

respectively . In the experiments of three groups in Method A, Gl, G2 

and G3 are called BCK, SSW and ART , respectively. In the 

experiments of three groups in Method T, Gl, G2 and G3 are called 

BCK, SSWA and SSWB, respectively. In the experiments of four 

groups, Gl, G2, G3 and G4 are called BCK, SSWA, SSWB and ART, 

respectively . In the experiments with three groups in Method T, two 

templates were used : one for SSWA and another for SSWB . 

The templates used in the experiments in Method T are shown in 

Fig 5.1. The effects of changing the number of parameters in 

classification functions will be demonstrated using examples of the 

experimental results. 



108 

25\l~L 

0.25sec. 

TEl TE2 TE3 

TElA TE2A TE3A 

TElB TE28 TE38 

Figure 5 . 1 Templates Used in Experiments . 
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. The supplemental experiments were designed as variations of the 

experiment A 14R so that they could be compared with each other. The 

classifier A 14R . S14 in the experiment A 14R pe rformed well as will be 

shown in the result section, and was chosen as an example for 

comparison. First the prior probabilities were changed from the 

probabilities in the experiment A 14R to equal probabilities for all groups 

(i.e. 0.25 for each group). The classifier obta ined at the step 14 was 

named A14R.PRI , where PRI indicated the chang e of prior probabilities. 

Second the coefficients of canonical variables at the step 14 of the 

experiment A 14R were used for class ification by the canonical classifiers 

described in Appendix B. The classifier A 14R . CA 1 was obtained by 

substituting the coefficients of the first ca nonical variable in the 

canon ical classification functions ( B .4), wh ich have an absolute 

measure. The classifier A14R. CA2 and A 14R . CA3 were obtained 

likewise by making use of the first two and t he first three canonical 

variables , respectively. When the canon ical classification funct ions 

(B.3), which have a square measure, were used, the classifiers were 

named A14R.CS1 , A14R.CS2 and A14R . CS3, likewise. 

Results of Experiments 

Each experiment can be divided into two major stages: a train ing 

stage and a testing stage. In the training stage, the results were 

obtained in the training period. The data were processed through the 

preprocessing, segmentation, parameterization . T hen, the parameterized 

data, which were labeled by a supervisor, were used as the input for 

the BMDP7M program to select parameters and to calculate classification 

functions. In the testing stage, the parameterized data were input to 
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the _classification functions, which classify each event in the data. The 

results are obtained in the testing period. Unlike in a real situation of 

application, the events in all the data sets were labeled as belonging to 

the groups assigned by a supervisor for the purpose of evaluating the 

performance of classification. The assignment of an event to a group 

by the supervisor was based on the marks provided by the 

electroencephalographer. The types of events used at the testing stage 

were background, SSW, doubious SSW and artifacts, each of which were 

named BCK, SSW, DBS and ART, respectively. The successive SSWs 

were included in BCK . 

First the results of the experiments des igned in Table 5.1 in the 

training stage are shown. Second the results of the experiments at the 

testing stage, using chosen classifiers obtained in the training stage, 

are demonstrated as well as the results of the supplemental 

experiments. 

Training Stage 

This section deals with the results obtained in the training 

period. The topics are (1) F-values in selecting parameters, (2) 

significance levels of the F-values, (3) selected parameters, and (4) 

classification of events in training data sets. 

F-values 

The BMDP7M program calculated the F-value of each parameter at 

the step 0. If the highest value is greater than the F-to-enter 

threshold fixed previously, the parameter that had the F-value is 

selected to be entered into classification functions. The program 
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calcu_lated the F-to-enter and F-to-remove values at each step using the 

parameters remaining and then those already entered, respectively. If 

the lowest value of F-to-remove is less than the F-to-remove threshold, 

the parameter is removed from the classification functions. If the 

highest value of F-to-enter is greater than the F-to-enter threshold, 

the parameter is entered. The program stops its stepwise selection 

process when there is no parameters to be removed or entered. The F­

to-enter th res hold 4. 000 and the F-to-remove th res hold 3. 996 were the 

default values of the program, and used in the experiments. 

It was desirable to set up significance levels for entering and 

removing a parameter, and to stop the process of stepwise selection 

when none of the parameters pass the threshold F-values corresponding 

to the significance levels. However, the significance levels derived 

directly from the partial F-values such as F-to-enter and F-to-remove 

values proved to be inappropriate when the overall significance levels 

were considered as discussed 1n Classification, Chapter 4. In this 

project, the criteria proposed by Hawkins(1976), which are concerned 

with the overall significance levels, are applied. To use F-values for 

stopping the selection process of the program with previously specified 

significance levels for removing and entering a parameter, the F-value 

thresholds have to vary depending on the degree of freedom. Since 

the BMDP7M program did not allow the treatment of the F-value 

thresholds as variables, the program was run with a low F-to-enter 

threshold, 4.0 in this case, so that the applicat ion of significance levels 

was possible later. The significance level for forward selection of 

parameters _was only used for stopping the selection process. There 
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were some parameters removed, but the significance level for backward 

selection was not considered. 

Table 5.2 shows the F-values in the experiments along with the 

total number of events of the experiments and the degree of freedom at 

the step O where no parameter is entered yet. The F-value with an 

asterisk(*) are the lowest F-to-remove value at the step and lower than 

the threshold. The other F-values are the highest F-to-enter values at 

the steps. The corresponding parameters are removed or entered 

accordingly. 

Significance Levels 

The overall significance level corresponding to the F-value in 

Table 5.2 except for the F-to-remove value were calculated at each step 

of the experiments. The degree of freedom at the step N 1s 

(NG-1, NO-N) where NG is the number of specif ied groups and NO is the 

value at the step O as given in Table 5.2. At the step 0, no parameter 

is entered yet. The F-value and the degree of freedom were the input 

for the function PROBF in SAS . The output of the function PROBF 

was multiplied by p-q to get the overall significance level at the step, 

where p is the total number of parameters, and q is the number of 

entered parameters. 

Table 5.3 shows the values calculated by the above procedure. 

When the F-value is a F-to-remove value, the space was left blank. If 

the calculated significance level is larger than 1.0000, it was set to 

1.0000. These significance levels will be compared with the specified 

significance level of 0.05 (5%) in deciding how many parameters to be 

chosen on the basis of the F-statistics as described in Classification, 



Table 5 . 2 Total Number of 
BMDP7M Program. 
The values with an 

Events and F-values in Each Experiment Obtained by the 
The F-values are F- to - enter values without an asterisk(*). 
asterisk are F-to-remove values. 

( a I 

Experiment 

Tota I events 

A12 

869 

A13 

869 

Alli 

869 

A12R 

751, 

A13R 

754 

A14R 

754 

A22R 

1533 

A23R 

1533 

A24R 

1533 

A32R 

2315 

A33R 

2315 

A34R 

2315 

D.f.(Step 0) (1, 867) ( 2, 866) I 3, 865 I I 1. 752 l ( 2, 751) ( 3, 750) (1,1531) (2,1530) (3,1529) (1,2313) (2,2312) ( 3,2311) 

Step 0 
1 

332. 2068 
94 . 9393 

286.6284 2053.6960 
107.2782 123.1371 

503.0417 
79.8122 

280.6001 
96.41110 

2281.2437 
1511. 064 7 

718.5803 
2211. 875'> 

569.0i81 
112.3664 

1866.057ij
189. 21194 

1196.2317 
358. 6106 

727.4553 2744.89~~ 
216.2695 256.8110 

2 27.211111 72.81192 90. 11859 25.4073 132 .11352 911.8171 57.1281 91.42'>6 151.93116 112.2137 80.9411 205.7081 
3 27.7894 26.0959 102.3978 22.8705 39 . 991,9 128. 1999 41. 5437 33.0185 137. 8786 40.5284 74.11926 202.11101 
11 27 . 2593 17 . 9897 33. 2937 30 . 8181 22 . 9769 60. 1030 18.11727 29.1389 71.86611 115. 3905 53.2419 139 . 21193 
5 19.2857 17 . 89115 29 . 0563 26 . 2126 21. 7085 22 . 36111 18. 1317 35.3088 40 . 0IIO?. 32.81167 51.4313 34.31114 
6 21.2808 23.7276 22.0773 18. 31166 9.9502 11.08311 19. 7399 35. 1737 31,. 9052 20.8924 30.61111 311 . 51112 
1 15.8192 9. 0731 10. 11,97 8 . 6019 8.3668 9.0783 12.3684 8.3828 13. 2057 14.1209 20. 3764 17.11199 
8 7.8873 13.91196 17.5169 8 . 1816 7.8528 7 .9261 11.4613 6.7219 8.0626 11.6572 8.4760 18.11278 
9 11.8555 8 .1111111 5 . 8200 7.9021 15.2639 7. 11137 9.7700 5.9356 7.6190 28.6985 7. 1819 11.5212 

10 8.61129 6.1989 5. 11713 7 . 1930 7. 1279 7.3646 21. 3505 5.5910 6.0253 10.5094 7.3951 5.7223 
11 8.11973 4.11533 11.0999 5 . 6103 7 ,01194 6.7859 8.01181 4.96115 5 . 3733 9.85911 5.8053 5.52116 
12 0.2155* 3.810 4.7253 11.6323 7.01173 6.6062 7.4300 5 . 7205 4.3228 8.6328 5.115811 5.6017 
13 6.116116 3 . 860 3.360 5. 1107 10. 7251, 5 . 5663 4.2881 3.931 8.3220 11.4782 5.29011 
111 6.8387 4.8346 4 . 1497 8.9726 11. 4230 8.0815 4.5990 4.6652 
15 7.6215 3.384 4.1407 4 . 13119 5.8558 '>.9763 11. 1063 8.5607 
16 7.0968 3.933 4.3157 1.3328* 5.8533 10.7216 4.2913 
17 5. 7259 7.3998 7 .52211 4.9398 11.85311 11.22•15 
18 4 . 5830 3 . 8623* 5 . 31116 4.5831 5.1171 2.0331 
19 
20 

3 . 962 3.862 4. 1722 
3.462 

4 . 3864 
4.7562 

4 . 0259 
3.996 

4 . 374"/
3.560 

21 4.6492 
22 4. 7302 
23 2.3181* 
211 7.5181 
25 6.0844 
26 3.702 

__. 
w 



Table 5 . 2 (Cont'd.) 

( b) 

Experiment TA12 TA13 TA12R TA13R TA22R TA23R TA32R TA33R 

Tota I events 869 869 754 7511 1534 1535 2316 2314 

D.F.(Step 0) ( 1, 867) (2, 8661 ( 1, 752 I ( 2, 7511 I 1, 1532 I (2, 1532) (1,2314) (2,2311) 

Step 0 
1 

75. 3152 
37 .2151 

106.9703 
236.8616 

174.2312 
126.5170 

192.6546 
379.63118 

259.0857 
117 .113211 

207. 15112 
342.5320 

367.5471 
365.2883 

357.6621 
561.7683 

2 129.4189 71.0625 84 . 0540 97 . 1776 81. 7050 170.6888 217. 8502 432.9473 
3 87.8159 34.21151 118.11827 116.9201 62.3250 57.3928 185. 71116 98. 7383 
It 21.0660 39.6294 73.11356 40.9096 63.8304 36. 5338 90.9151 44.8034 
5 12.8070 20 . 21113 43 . 11703 32 . 70116 72.2087 27.0843 66. 3010 46. 1760 
6 15 . 7104 21.01128 31.00711 27.2298 153.3399 32.5668 411 .8866 39.7603 
7 5.0866 13.11923 0. 3728* 26.8622 18.7073 28.7111 46 . 2709 38.9169 
8 4.9693 12.5802 15.21183 33. 21198 16.5600 24.2158 28.1054 34.6402 
9 4 . 1821 15.9067 11.11779 27 .1382 11.2295 22. 8332 6.6980 14.5344 

10 2. 779 13.1513 6.9875 211. 9303 4.3037 19.25011 4.2561 llt.5116 
11 24.9987 3.385 19.98711 3.755 17. 8126 3.305 20.0295 
12 12.7659 26 . 5580 11.9120 15.3727 
13 18.0122 15 . 3396 8 . 4100 13. 51126 
11, 1.8791* 7 . 29611 2 . 3033* 12. 0033 
15 9 . 6028 6 . 2262 8.6563 11.6609 
16 7. 41193 5.8207 8. 9778 11 .ll731 
17 5.7809 4.9322 7 . 111163 8.9150 
18 4.0187 6 . 1282 10.21176 7. 7926 
19 3.231 5. 211111 9.2967 9.5269 
20 5 . 08119 8.8985 3.879 
21 3 . 631l 6.6583 
22 5.9863 
23 10.4883 
24 It. 5167 
25 0.5371* 
26 4 . 11569 
27 6. 1205 
28 3.633 

_. 
_. 
.i:. 



Table 5.2 (Cont'd.) 

(c) 

Experiment TS12 TS13 TS12R TS13R TS22R TS23R TS32R TS33R 

Tota I events 869 869 7511 754 1534 1535 2316 2314 

D.F.(Step 0) ( 1, 867) (2, 866) ( 1, 7521 ( 2, 751 I (1,1532) (2. 1532) (1,2314) (2,2311 I 

Step 0 
1 

74 . 2316 
1115.7913 

112.1874 
135.119911 

276.5737 
199.7837 

753.5984 
321.211211 

482.6201 
106. 3738 

1191. 5710 
182.9321 

689.07110 
341.20011 

754.0552 
214.3188 

2 230. 11652 89.01118 118.8083 160.1512 166.9775 95.9628 1111.3392 186.0036 
3 39.0350 119. 6228 155 . 9000 111.119116 139.9987 75.8831 361.0032 117.11837 
lj 20.2932 31 . 11597 29.9599 70.7892 39.0752 611. 0891 109.29211 197.6682 
5 9.2639 19.9235 26.9727 65 . 1627 28.6825 56.68119 57.8761 88. 1681 
6 9.9683 21.26111 6 . 9878 113.0751 111. 9067 1111. 2013 311. 591111 51.2295 
7 
8 

11, 7979 
6.21115 

2. 3305* 
18.60011 

5.6789 
0.07711* 

36.7492 
33.9888 

111.9755 
9.11631 

57.1699 
113.0366 

17. 72611 
16.8303 

110.6395 
60.60911 

9 2.1129 18.7692 II . 1599 29.51152 7. 7227 23 . 11998 10.9317 58.5765 
10 125.0564 6.11206 117.3061 6.9178 23.5388 II. 1111 19.5927 
11 33.3593 3.019 22.9105 3.996 18.8555 3. 729 15.8663 
12 32 . 2558 19.111!09 16.2252 111. 21125 
13 19.1535 33.1527 15.21168 11.2152 
111 18.9007 31 . 68118 13.5257 9.8500 
15 25.0923 13. 7116 l 10. 9589 11.25111 
16 19.6803 8.8986 8,11563 12.7928 
17 17. 9728 27.1731 12.5331 8. 1362 
18 0.0966* 11. 7320 2.6382* 8.25110 
19 22.2538 7 . 1073 10. 7162 0.6724* 
20 20.5651 7. 21113 8.8668 7.11667 
21 7 . 7162 5 . 8702 111. 673 7 0.5598* 
22 
23 

11 . 7282 
3 . 1605* 

3. l1997* 
11, 8987 

8,6611 
5,11100 

6.2115 
2. 1255* 

211 5.5628 11 .11n2 21.3581 12.3935 
25 11, 11597 7. 18110 1.5387* 11, 8897 
26 3 . 997 7.0636 8. 51111 11.6680 
27 11.0011 8.9123 19. 88211 
28 0.5657 6. 1265 3.81159* 
29 2.688 11.5609 9.3155 
30 3.986 11.6777 
31 11.9672 
32 7.3305 
33 25.3731 
311 11,5501 
35 5. 7178 
36 2.7118* 

~ 

~ 

(J1 



Table 5.2 (Cont'd.) 

(c cont'd) 

Experiment TS12 TSll TS12R TS13R TS22R TS23R TS32R TS33R 

37 
38 
39 
110 
111 
112 
113 
1111 

4.4228 
19.9751 
3.3976* 
4.9129 
6.07811 
0.21159• 
5.6442 
2.954 

(d I 

Experiment TC12 TCl 3 TC12R TCf3R TC22R TC23R TC32R TC33R 

Total events 869 869 7511 754 15311 1535 2316 2314 

O.f.(Step 0) ( 1, 867 I (2~6) I 1, 752 ) ( 2, 751) ( 1. 1532 I (2, 1532) (1,2314) (2,2311) 

Step 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
11, 
15 
16 
17 
18 

119.67511 
17 . 0363 
13.6088 

11. 9677 
4.0303 
2. 539 

25.4830 
10. 86117 
9.0860 

13 . 56116 
1. 80119* 
5.69 16 
5.11959 
11. 22 18 
., . 1063 
11 . 2562 
8.111119 
3. 337 

48.5161 
17."619 
14 . 6835 
4 . 5608 
3 . 771 

211 . 8020 
10.9806 
8 . 5102 

14 . 26118 
1.6065* 
6.7697 
5 . 73 26 
9.8848 
3 . 218 

8T:781~3.7527 
14.7450 12.2931 
18.0678 10. 1963 
5.9671 6.5581 
3 . 815 14 . 41168 

1. 23113* 
13.8858 
8 . 2220 
3 .11229• 

22 . 0995 
4 . 1251 
7 . 0165 
4 . 11765 
5.3138 
5. 1158 
0 . 0210* 
4 . 8835 
3 . 951 

171. 7223 
60.9299 
15.91119 
8.2610 
5 . 1153 
5.7 385 
1. 510 

87.2210 
33. 5482 
14 . 7723 
12.6210 
14.4163 
14 . 6289 
19.6730 
10.11095 

3 . 11453* 
14 . 0977 

1. 4919* 
8.9758 
7.1885 
5.90411 
9 . 4052 
5 . 4792 
7. 11111 
5 . 3934 
2 . 897 

_. 
_. 
en 



Table 5.3 Overall Significance Levels Derived from F-values in Table 5 . 2. The steps for 
removal of a parameter were left blank. 

( 8) 

Experiment A12 All A111 A12R A13R A14R A22R A23R A211R A32R A33R All1R 

Step 0 
1 

0 . 0 
0.0 

o~o 
0.0 

0.0 
0 . 0 

0 . 0 
0 . 0 

0.0 
0.0 

0.0 
0.0 

o.o 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
o.o 

0.0 
0.0 

2 0 . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o o.o 
3 0.0 0.0 0.0 0 . 0001 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 
11 0 . 0 0 . 0 o.o 0 . 0 0.0 0.0 0.0012 0.0 0.0 0.0 o.o 0 . 0 
5 0.0006 0.0 0.0 0 . 0 0.0 0 . 0 0.0015 0.0 0.0 0.0 0.0 0.0 
6 0.0003 0 . 0 0.0 0.00111 0.0036 0.0 0.0006 0.0 o.o 0.0003 0.0 o.o 
7 0.00119 0 . 0062 0 . 0 0.2250 0.0166 0 . 0004 0.0292 0.0156 0.0 0.0114 o.o 0.0 
6 0.3256 0.0001 0.0 o. 27611 0.0270 0.0021 0.0466 0.07911 0.0016 0.01116 0.0136 o.o 
9 1.0000 0.01117 0 .()367 0 . 3193 0.0 0.00113 0.1139 0. 17011 0.0029 0.0 0.01,90 0.0 

10 0.2090 0. 1317 0 . 0620 0 . 11639 0 . 0532 0.0(1115 0.0003 0.2361 0.0276 0.07117 0.0390 0.0417 
11 0 . 2226 0.7266 0.11066 1 .0000 0.0566 0.0099 0 . 2615 0.11328 0.0679 o. 10411 0.1664 0.05112 
12 1. 0000 o. 1669 1. 0000 0.0556 0.0125 0. 3693 0.2009 0.2691 0.2001 0.2569 o. 011111 
13 0 . 6620 0.51i69 1.0000 0 . 3666 0 . 0 1.0000 0.6200 0.4869 0.2332 0.6757 0.0126 
111 
15 

0. 511116 
0. 31176 

0.4756 
1.0000 

0 . 36311 
0 . 3616 

o. 1615 
1.0000 

0.0007 
0.1669 

0.2617 
0.8307 

0.5690 
0.9456 

0.1/20 
0.0007 

16 0 . 11563 0.1,723 1.0000 0.8750 0.0013 0.2797 
17 0.9651 0 . 3629 0.0320 1.0000 0.4335 o. 30111 
16 1.0000 0.2732 1.0000 0.3273 1.0000 
19 1 . 0000 1.0000 0.6576 1.0000 0.9526 0.24116 
20 1.0000 1.0000 0.9629 0. 71114 
21 1.0000 
22 1.0000 
23 
24 o. 3078 
25 0.6716 
26 1.0000 

..... ..... 
-.J 



Table 5 .3 (Cont'd.) 

(b) 

Experiment TA12 TA13 TA12R TA13R TA22R TA23R TA32R TA33R 

Step 0 0 . 0 
1 0.0 
2 0.0 
3 0.0 
4 0.0001 
5 0.0051 
6 0.0010 
7 0.2923 
8 0.2866 
9 0.4116 

10 0.8629 
11 
12 
13 
111 
15 
16 
17 
18 
19 
20 
21 
22 
23 
211 
25 
26 
27 
28 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0001 
0 . 0001 
0.0 
0.0001 
0 . 0 
0.0001 
0.0 

0 . 0019 
0.01119 
0.0738 
0.11030 
0.81101 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0 . 0 

0.0013 
0.0089 
0.0922 
0.6619 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0175 
0.01179 
0.0683 
0. 1565 
0 . 01159 
0. 1072 
0. 11511 
0.4571 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0 . 0 
0.0002 
0.01105 
o. 3990 
0. 31138 
0.4227 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0002 
0.0058 

0.0046 
0.003?. 
0.0139 
0 . 0008 
0.0020 
0.0029 
0 . 0251 
0.01163 
0.0005 
0. 1772 

0. 1880 
0 . 0338 
o. 37311 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
o.o 
0.0 
0.0 
0.0971 
o. 3530 
0.5536 

0.0 
0.0 
o.o 
0.0 
o.o 
0.0 
0.0 
0.0 
o.o 
0.0 
o.o 
0.0 
o.o 
0.0 
0.0002 
0.0002 
0.0002 
0.0029 
0.0085 
0.0011, 
o. 3745 

_. 
_. 
0) 



Table 5.3 (Cont'd.) 

(c) 

Experiment TS12 TSl 3 TS12R TS13R TS22R TS23R TS32R TS33R 

Step 0 
1 

0 . 0 
0.0 

0 . 0 
0 . 0 

0.0 
0.0 

0 . 0 
0 . 0 

0.0 
0 . 0 

0 . 0 
0.0 

o.o 
0.0 

o.o 
0.0 

2 0.0 0 . 0 0.0 o.o 0.0 0.0 0.0 0.0 
3 0.0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0.0 
4 0.0001 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0 
5 0.0337 0 . 0 0.0 0 . 0 0.0 0 . 0 0.0 0.0 
6 0.02111 0 . 0 0 . 1089 o.o 0.0015 0.0 0 . 0 0.0 
7 o. 31151 0.2090 o.o 0.0011, 0 . 0 0.0003 0.0 
8 0. 1393 0 . 0 0.0 0 . 0235 0 . 0 0.0005 o.o 
9 1.0000 0.0 0.5009 0.0 0.0552 0 . 0 0.0096 0.0 

10 0 . 0 0. 1263 0.0 0.0776 0 . 0 o. 38115 0.0 
11 0.0 0.8271 0 . 0 0 . 3663 0 . 0 0.4288 0.0 
12 0 . 0 0.0 0.0 o.o 
13 0 . 0 0 . 0 0 . 0 0.0004 
111 0 . 0 0.0 0.0 0.0013 
15 0.0 0.0 0 . 00011 0.0003 
16 0.0 0.0033 0 . 00119 0.0001 
17 0 . 0 0 . 0 0 . 0001 0.0063 
18 0.0002 0.0054 
19 0 . 0 0.0167 0 . 0005 
20 0.0 0.0142 0.0030 0 . 0117 
21 0 . 0100 0.0503 0 . 0 
22 o. 1815 0.0033 0 . 0408 
23 0 . 1310 0.0730 
21, 0 . 0796 0. 1915 0.0 0.0001 
25 0 . 22 119 0.0122 o. 14411 
26 0 . 3369 0 . 01 28 0.0034 0. 1706 
27 0.21,17 0.0021 0.0 
28 1 . 0000 0 . 0 313 
29 0.8930 0.1378 0 . 0016 
30 0.2252 0.0001 
31 0.0001 
32 0.00911 
33 0.0 
31, 0. 1279 
35 0.0367 
36 
37 0. 1331 
38 o.o 
39 

~ 

~ 

<D 



Table 5.3 (Cont'd.) 

( c cont'd) 

Experiment TS12 TS13 TS12R TS13R TS22R TS23R TS32R TS33R 

110 
41 
1,2 
43 
1,11 

(d) 

0.0743 
0.0210 

0.0323 
0.4186 

Experiment TC12 TCl 3 TC12R TC13R TC22R TC23R TC32R TC33R 

Step 0 
1 

0 . 0 
0 . 0007 

0.0 
0 . 0008 

0.0 
0,01106 

0.0 
0.0007 

0.0 
0.0023 

0.0 
0.0002 

0.0 
0.0 

0 . 0 
0.0 

2 0.00111 0 . 001,5 0.0023 0.0080 0 . 0004 0.0014 0 . 0012 0.0 
3 0 . 4173 0.0001 0.5286 0.0 0 . 2350 0. 0511 0.0652 0.0001 
1, 0.6750 0.7879 0.7647 0.0 0.3571 0.0 
5 1.0000 o. 1226 0.0112, 0.2335 0.0 
6 0. 111115 0.1150 0.0 1.0000 0.0 
7 o. 1191,2 0.0019 0.0093 0.0010 
8 0.0278 1.0000 
9 0 . 111188 0.0 0.0 

10 0.0072 0.5230 
11 1. 0000 0.0287 0.00111 
12 0. 31,57 0.0232 
13
1 ,, 

0. 11,511 
0.1709 

0.0803 
0.0024 

15 0. 111, 1 
16 0.2153 0.0216 
17 0.5247 0.1151 
18 1.0000 

..... 
N 
0 
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Cha~ter 5. The specified significance level could be larger to include 

more number of parameters or smaller to include less number of 

parameters. The value of 5% was chosen just as a moderate value. 

Selected Parameters 

Table 5.4 shows the parameters selected to be entered or removed 

at the steps of the experiments according to the F-values. The 

removed parameters are marked with an asterisk(*). The parameter 

types VM, VA and VB are of template matching as described in Design 

of Experiments, Chapter 5. One of the three template matching 

measures in Method TA, TS, or TC was used to calculate the value of 

VM, or VA and VB. A parameter was selected at the step it appears in 

Table 5.4, and entered into the classification functions at the next step 

if the F-value qualifies the threshold test. 

Classification 

The BMDP7M program applies the classification functions at each 

step to classify the events in the training data sets, and outputs the 

classification table. The classification tables at all the steps in the 

experiments are listed in Table G-1 in Appendix G together with the 

three PRE measures explained in Classification, Chapter 4. 

To demonstrate and compare the performances of the experiments 

in the training data sets, the classifier at the step that first exceeded 

the 5% significance level in Table 5.4 was chosen in each experiment as 

a representative of the experiment. The classifier representing the 

experiment may not have the best classification result among all the 

classifiers of the experiment necessarily. However, choosing the 



Table 5.4 Parameters Selected at the Steps in the Experiments by the BMDP7M Program . 
The parameters without an asterisk(*) are selected at the step to be entered. 
The parameters with an asterisk are selected at the step to be removed. 

(a I 

Experiment A12 All A14 Al2R Al 3R All1R A22R A23R A211R A32R A33R A311R 

Step 0 
I 

AMIO 
S2 10 

S210 
S 111 

S210 
SI 10 

AHl O 
OUIO 

AMI O 
Si:' 10 

S210 
SI 10 

S210 
AMIO 

S210 
AMIO 

SllO 
SIi i 

AMIO 
OU10 

S210 
AM10 

S210 
Sl 10 

2 S28 AMIO S 111 S 111 Sii 1 AMIO OUIO Sii 1 S210 SIIO S 111 AHIO 
3 
4 
5 
6 
1 
8 
9 

10 
II 
12 

OU10 
S 111 
AH9 
DU9 
OU11 
AM8 
AM11 
AHl2 
S2 11 
DUI I* 

S29 
SIIO 
S?. 8 
01110 
AM9 
0119 
OU11 
AM5 
DU5 
AH12 

AMIO 
OUIO 
S29 
S28 
AM9 
0119 
AM5 
DU 11 
AMl4 
AHl2 

AM9 
0119 
AMII 
AHi 
S2 11 
AHl4 
S2 10 
DUI 
Sll5 
DU12 

OUIO 
S29 
SIIO 
AMII 
AMI 
AH9 
OU9 
AHl2 
DUl2 
S?. 12 

Sii 1 
OUIO 
S29 
AM12 
AMII 
OUl2 
Sl 13 
S?. 12 
AHi 
AH9 

AHl4 
S110 
S111 
Sll4 
AM2 
AM11 
AM9 
OU9 
Sll2 
S2l2 

OUIO 
SIIO 
S29 
s111, 
AHl4 
AM2 
AH11 
AHl3 
S112 
S212 

AH10 
OUIO 
S29 
S114 
AH12 
AHl4 
OU12 
AH2 
AMII 
AMl8 

Sl14 
Sll 1 
AHl 1 
S210 
S211 
AH9 
OU9 
DU12 
DUil 
AM15 

OU10 
SIIO 
S29 
Sl14 
AH11 
AM13 
DIJ12 
S?.11 
AH2 
S213 

Sil 1 
OU10 
S29 
S114 
AHl2 
AH11 
OUl2 
AMl8 
SIi 3 
AM8 

13,,, AHl3 
AMI 

AHl1 AM9 DUI 
S211 

OU9 
AMl7 

S115 
OU14 

AH9 
OU9 

AM9 AM8 
AM2 

AMl8 
AM15 

AMl4 
AM9 

15 
16 

S22 
DUl 

AM15 S211 
OUl 

DU2 
Sl17 

AM12 
AMl4* 

Sl6 
St4 

AM9 
OIJ9 

OU9 
S211 

17 
18 
19 
20 

Sl6 
S29 
S114 

AHl6 
DU2 * 
DU2 

OU12 
AM15 
AM8 
S115 

S28 
Sll2 
S27 
S113 

AM12 
AM8 
DU14 
S14 

AMl3 
AMl4* 
AM15 
AH2 

21 
22 

DUl4 
AMl3 

23 
24 
25 
26 

OUl3* 
S2 13 
Sll5 
AM12 

_. 
N 
N 



Table 5.4 (Cont'd.) 

( b) 

Experiment TA12 TAll TA12R TA13R TA22R TA2lR TAl2R TAllR 

Svep O 
1 

VH6 
VH10 

V010 
VA11 

VH6 
VHI 1 

VOIO 
VAi 1 

VH6 
VHll 

V010 
VA11 

VH13 
VH6 

V010 
VAl 1 

2 VHI 1 VAIO VH10 VAIO VHI VA10 VH10 VA10 
l,, VH6 

VH9 
VA9 
VB6 

VH6 
VH15 

VA2 
VDII 

VH16 
VH6 

VB9 
VA9 

VHI 1 
VHl9 

V89 
VA9 

5 VH16 VA12 VHI VDll VHIO VB6 VHI V08 
6 VH12 V02 VH5 VA5 VHl 1 VA8 V►ll6 V814 
7 VHI VA6 VH6 * VA6 VHII VA2 VH8 V811 
6 VH7 VOl 1 VH9 VD11 VH16 vu,, VHII VA6 
9 VHlll V812 VH16 V816 VM9 VAil VH15 VA13 

10 VH5 VA15 VHII VA12 VH17 VOi 1 VH9 V812 
11 VOil VH16 Vll6 VH7 VA12 VH18 VA12 
12 VOii V09 VD16 VA5 
13 VA2 VA15 VOil V87 
14 vn2 • Vlll2 VAil* VAl5 
15 VD16 VAi V87 VA6 
16 V09 V05 V86 VA14 
17 VA14 VA17 VA15 VAi 
16 VA5 VA13 vu 11, VA19 
19 V814 VAIi VA14 V019 
20 VA9 VB16 VOi 
21 V81 VAi 
22 VA17 
23 V015 
24 VAil 
25 Vllll* 
26 VA5 
27 V05 
26 V819 

_. 
N w 



Table 5.4 (Cont'd.) 

(c) 

Experiment TS12 TS13 TS12R TS13R TS22R TS23R TS32R TS33R 

Step 0 VH8 
1 VH10 
2 VHl 1 
3 VH12 
4 VH9 
5 VH16 
6 VHl4 
1 VH2 
8 VH13 
9 VH17 

10 
11 
12 
13 
111 
15 
16 
17 
18 
19 
20 
21 
22 
23 
211 
25 
26 
27 
28 
29 
30 
31 
32 
33 
311 
35 
36 
37 
38 
39 
110 

VA8 
V810 
V811 
VOl2 
V02 
VA12 
V88 
VA8 * 
V89 
VOil 
VAIii 
vo1r1 
V815 
VAil 
VAl6 
vor, 
VAil 
VA 2 
V02 * 
VA8 
VAIO 
VA6 
VA9 
VB9 * 
VA5 
V86 
V81 

VH6 
VH11 
VHIO 
VH9 
VH16 
VH8 
VH12 
VH5 
VH6 * 
VMI 
VH2 
VH15 

VA8 
VAIi 
V811 
VA2 
V810 
VU6 
VA12 
VBI 
VAi 
VIII 
VA15 
V816 
VA9 
VU8 
VAIO 
VA6 
VAl4 
VAil 
VBl2 
V819 
V817 
V815 
VAl5* 
VD9 
vur1 
VAl 
VIIJ 
VDl8 
V8 19* 
VA15 

VH6 
VH11 
VH10 
VH8 
VHl 
VHl5 
VH18 
VH7 
VH9 
VHI l 
VH12 
VH17 

VA8 
VA2 
VD8 
V011 
VOIO 
V87 
VA7 
V89 
VA12 
VA10 
v01r1 
VA15 
VAIi 
V812 
V82 
VAl6 
VOi 
VAi 
Vll2 * 
VA3 
V818 
VA17 
V02 
VA14 
V815 
VA15* 
VUl9 
VAil 
VA19 
VOil 
VA9 

VH6 
VH13 
VH10 
VHl 1 
VH9 
VHl 
VHl5 
VH4 
VH8 
VH7 
VH12 
VHl9 

VA6 
VB6 
VA8 
V011 
V010 
VA14 
VA2 
VA9 
VA10 
V88 
VB7 
V02 
V05 
V89 
VA15 
V814 
VA 11 
VOi 
VAi 
VD2 * 
VA7 
VA8 * 
VU4 
V86 * 
V83 
VA5 
V016 
VA17 
VA5 * 
VBl8 
V819 
VA19 
VA12 
VB12 
VAl6 
V815 
VAl5* 
V813 
VAil 
VA14* 
VA15 

N 
~ 



Table 5.4 (Cont'd.) 

(c cont'd) 

Experiment TS12 TS13 TS12R TS13R TS22R TS23R TS32R TS33R 

Step41 VB17 
112 VA17* 
43 VA16 
411 VA5 

(d) 

Experiment JC12 TC13 TC1 2R TC13R TC22R TC23R TC32R TC33R 

Step 0 
1 

VHIO 
VHl 1 

VA10 
VA11 

VHIO 
VH11 

VA10 
VA11 

VHio 
VH11 

VA10 
VAi 1 

VHIO 
VHl 1 

VA10 
VA11 

2 VH8 V012 VH8 VB12 VH8 VB8 VH12 VB12 
3 VH13 VA12 VH13 VA12 VH19 VB12 VH8 VA12 
11 VH1 VAil* VH7 VAil* VH7 VA12 VH7 VAlll 
5 VH16 VBII VAIii VAi 1* VH6 VB14 
6 VA lit V014 VAIii VH5 VA16 
7 VA6 VA15 V014 VOil 
6 VAil VBll V06 * VAi i* 
9 VBll1 VR15 VB10 

10 VA15 V06 VAIO* 
11 VA9 VA9 VA9 
12 VB11 VAil 
13
1 ,, 

VAil 
VBIO 

VA16 
VB16 

15 VA10* V86 
16 VB13 VB7 
17 V07 VA10 
16 VA19 

_.. 
N 
U1 
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rep\esentatives according to a significance level gives a statistical 

background on the property of chosen classifiers, and prevents to a 

certain extent a haphazard choice of the classifier caused by incomp lete 

or peculiar training data sets. The classification results of these 

classifiers are shown in Table 5. 5. 

Table 5. 6 presents the step numbers of the chosen classifiers . 

The following points may be noticed as to these step numbers. 

(1) A tendency of increase in the step number when the number 
of specified groups are increased. This tendency is slight in 
Method A, and strong in Method T. 

(2) The increase of the number of training data sets seems not 
to affect the step numbers. 

(3) Method TC had notably less step numbers than others. 

(4) The retraction of the adjacent eve nts did not affect the 
number of the step chosen for the 5% significance level. 

The number of the step is the same as th e number of parameters 

included in the classification functions if there is no removal of 

parameters before that step . In Method A, there was no removal of 

parameters before the steps in Table 5.5, then the step number of the 

classifier of Method A in Table 5. 5 is exactly same as the number of 

parameters in the classification functions obtained at the step. In 

Method T, there were some removals before the step chosen in Table 

5 . 5 . 

Table 5. 7 shows the frequency of appearance of each parameter in 

the chosen classifiers in Table 5. 5. The parameters in Method A is 

heavily concentrated on the core-wave parameters (AM10, S110, S210 

and DU10) . The frequencies of the parameters in the ninth, tenth and 

eleventh waves total over 75% of the total of the frequencies in all t he 



Table 5. 5 Classification in Training Data Sets by the Classifiers Chosen at the 5% 
Significance Level. 

(a) 

Classifier 
PRE BCK -> SSW-> 

Pl P2 P3 BCK SSW BCK SSW 

A12 . S 8 1.000 0.899 0.947 859 1 0 9 
A12R .S 7 1.000 0.899 0.947 7lj4 1 0 9 
A22R .S 9 0.811 0,865 0.837 1515 2 3 13 
A32R .S10 0 . 916 0.8115 0.879 2287 1, 2 22 

TA12 .S 7 0.888 0.798 0 . 8110 858 2 1 8 
TS12 ,S 7 0,888 0.798 0.840 858 2 1 8 
TC12 .S 3 0.550 0.449 0.494 8511 6 4 5 
TA12R.S10 0. 776 1.000 0 . 874 71,5 0 2 7 
TS12R.S 6 0.888 1.000 0.941 745 0 1 8 
TC12R.S 3 o. 51,9 0.448 0 . 493 739 6 4 5 
TA22R.S 9 0.810 0.762 0.786 15111 4 3 13 
TS22R.S 9 o. 1118 0. 798 0 . 772 1515 3 4 12 
TC22R.S 3 0.429 0. 311 0.361 1503 15 9 7 
TA32R . S 9 0 . 8711 0.806 0.838 2287 5 3 21 
TS32R.S10 0.832 0.832 0.832 2288 4 4 20 
TC32R.S 3 0.575 0. 311 0.404 2262 30 10 14 

(b) 

GLASS IF I ER 
PRE BCK -> SSW-> ART-> 

Pl P2 P3 BCK SSW ART BCK SSW ART BCK SSW ART 

A13 . S10 
A13R . SlO 
A23R ,S 8 
A33R .S11 

0.888 
1. 000 
0.874 
0 . 790 

1.000 
1.000 
0.933 
0.824 

0,91,1 
1.000 
0.902 
0.807 

859 
71,1, 

1515 
2286 

0 
0 
1 
4 

0 
0 
0 
0 

1 
0 
1 
4 

8 
9 

14 
19 

0 
0 
1 
1 

0 
0 
0 
0 

0 
0 
0 
0 

1 
1 
1 
1 

..... 
N 
-i 



Table 5 . 5 (Cont'd.) 

(c) 

PRE BCK -> SSWA -> SSWB -> 
CLASSIFIER 

Pl P2 Pl BCK SSWA SSWB BCK SSWA SSWB BCK SSWA SSWB 

TAll .Sl7 0.888 o . 798 0.8110 858 2 0 1 7 0 0 0 1 
TSll .S22 0.887 0.721j 0.798 857 3 0 1 7 0 0 0 1 
1C13 .S 5 0 . 662 0.1156 o. 5110 853 6 1 3 5 0 0 0 1 
TA13R.S16 0 . 888 0.888 0.888 11111 1 0 1 7 0 0 0 1 
1S13R.S21 0.888 1.000 0. 9111 7115 0 0 1 7 0 0 0 1 
TClJR.S 6 0.111, o.119ti 0.603 738 5 2 2 5 1 0 0 1 
TA23R. s211 0.810 o. 719 0.762 1511, 5 0 3 11 0 0 0 2 
TS23R.S23 0.873 0.73ti 0 .798 15111 5 0 2 12 0 0 0 2 
TC23R . S 3 0.619 O. Ii 11 o.119ti 1505 13 1 6 7 1 0 0 2 
1A33R. S20 0 . 916 0.756 0 . 828 2283 7 0 2 19 0 0 0 3 
TS33R.S25 0.8711 0. 775 0.822 22811 6 0 3 18 0 0 0 3 
TC33R . S13 0.788 0.1126 0.553 2265 20 5 5 1Ii 2 0 0 3 

(d) 

CLASSIFIER 
Pl 

PRE 

P2 Pl OCK 

BCK -> 

SSWA SSWB ART BCK 

SSWA -> 

SSWA SSWB ART BCK 

sswo -> 

SSWA SSWB ART BCK 

ARl -> 

SSWA sswo ART 

Al ~iO 
All1R .Sllj 
A21jR . S11 
A311R . S 11 

1.000 
1 . 000 
1 . 000 
0.958 

o. 1111 
1.000 
0.759 
0.791 

0.855 
1. 000 
0.863 
0.866 

8 56 
11111 

1511 
22811 

3 
0 
5 
6 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
1 

8 
8 

Iii 
20 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

1 
1 
2 
3 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

1 
1 
1 
1 

__. 

CX) 
1-.l 
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Table 5.6 Step Numbers of Classifiers Chosen at the 5% Significance 
Level. * : rounded integer. 

~1ethod Groups 
Step number 

min . max. average~•: 

2 8 10 9 
A 3 8 11 10 

4 10 14 12 

2 7 10 9 
TA 3 16 24 19 

2 6 10 8 
TS 3 21 25 23 

2 3 3 3 
TC 3 3 13 7 
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Table 5. 7 Frequency of Entered Parameters in the Classifiers Chosen 
at the 5% Significance Level. 

No. AM S1 S2 DU VM VA VB 

1 3 5 6 2 
2 2 7 1 
3 1 1 
4 3 2 5 
5 1 1 2 1 
6 6 4 2 
7 3 2 4 
8 3 11 7 9 
9 7 8 7 6 6 7 

10 12 10 11 12 12 11 9 
11 7 12 2 3 12 8 9 
12 3 1 3 3 10 9 
13 1 1 4 3 4 
14 3 6 1 7 7 
15 3 7 2 
16 5 3 4 
17 2 1 
18 1 3 2 
19 - - - - 1 1 2 

Total number 40 29 25 25 79 89 81 

Number of 
ex-periments 12 12 12 

Average 
number 3.3 2.4 2.1 2.1 6.6 6.8 7 .4 

Average 
number in an 
experiment 

9.9 6.6 14.2 
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waves. The parameters in Method T is more scattered away from the 

· core-wave parameters than those in Method A. The frequencies of the 

parameters in the ninth, tenth and eleventh wa ves total less than 40% in 

Method T. The top 5 · parameters in popularity according to Table 5 . 7 

are AMlO , Slll, DUlO, S210 and SllO in Method A. The first 3 

parameters were entered in all the chosen classifiers, and selected 

within the first 6 steps. The top 5 parameters were selected, if 

selected, within the first 6 steps except for th e experiment A 12R where 

S210 was selected at the step 9. The top 5 pa rameters in popularity in 

Method T with 2 groups was VMlO, VMl 1, VM8 , VM9 and VM6 . The top 

6 in Method T with 3 groups were VAlO, VA12 , VB8 , VBlO, VBll and 

VB12. The parameters VMlO, VM11 and VM8 were selected within the 

first 6 steps except for TA32R and TS32R wh e re VM8 was selected at 

the steps 7 and 8 , respectively . The parameters VA 10, VA 12 and VB8 

were selected from the steps ranging up to 18 if selected. 

In the following, the classification res ults in Method A and 

Method T are described in detail. 

Method A 

From the classification results in Method A shown in Table G-1, 

the following may be pointed out . 

At least du ring the first few steps, the performance of each 

experiment improved except for the experimen t s A13, A 14 and A13R, 

which attained perfect classification in terms of the measures Pl or P2 

at the very first step. It must be noted that the experiments with 4 

groups consistently excelled the others in the value of the measure Pl 

because the measure Pl refers to the correct c lassification of SSW and 
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1s more important in practical application than the measure P2 as 

explained in Classification, Chapter 4. 

As the number of step increases, the performance of each 

experiment reaches, at a certain step, its best in terms of one of the 

performance measures concerned. Take, for example, the measure P3 

to evaluate the performance. The classifiers at these best steps of 

experiments performed very well, that 1s, the largest number of 

misclassification events was 2, 4 and 6 when the number of training 

data sets was 1, 2 and 3, respectively. Especially, the classifications of 

the best classifiers 1n the experiments A 13 , A 13R and A 14R were 

perfect. 

As the step proceeded further, the performance usually did not 

change very much, but slightly deteriorated in some experiments. The 

results of the experiment A23R is a good example to show that the 

performance improves, comes to the peak, and slightly deteriorates as 

the number of the parameters in the classifier increases (see Fig.5.2). 

The classifiers derived from retracted data gave the same or 

better performance when compared with the corresponding classifiers 

without the retraction. It should be noted, though, that the retracted 

events are not included in the classification. 

Concerning the chosen classifiers in Table 5.5, the number of 

misclassified events increased when the number of training data sets 

increased. However, the values of the PRE measures did not go down 

consistently when the number of training data sets increased except in 

the experiments with 3 groups. No distinct difference was seen in 

terms of the measure P3 when the number of specified groups changed. 
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The comparison was made among the classifiers with a sign R in Table 

5. 5. For example, when only one training data set was used, the 

classifier with two groups had the lowest value of the measure P3, but 

had the highest P3 value among the three classifiers being compared 

with. The PRE values in Method A shown in Table 5. 5 are illustrated 

by histograms in Fig.5.3. 

The above observation of the classification results have assured a 

good potential of success of the classifiers at least in the training data 

sets. But the effects of the data retraction, changes of training data 

sets and specified groups have not been clearly observed or conclusive. 

These effects may become more distinctive when the classifiers are 

tested with all the data sets at the testing stage. 

Method T 

First the classifiers of Method TC performed much inferior to the 

others . The classifiers of Method TA and TS were slightly inferior but 

comparable to those of Method A. Between Method TA and TS, there 

was not much consistent difference in performance. Because of the 

simpler calculation, the classifier of Method TA is preferred if the 

performance is about the same as that of Method TS. The classifiers of 

Method TA shown in Table 5.5 will be tested using all the data sets at 

the testing stage. 

From the classifications in Method T shown in Table 5.5(a) and 

(c), the following may be pointed out: 
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· (1) Better classifications were obtained when the retracted 
training data sets are used. 

(2) The effect of changing the number of training data sets 
seemed not to be consistent or meaningful. 

(3) When the number of specified groups changed from 2 to 3, 
the Pl values of the classifiers with 3 groups were always 
superior to those of the classifiers with 2 groups; the P2 
values of the classifiers with 3 groups were always inferior 
to those of the classifiers with 2 groups; the P3 values of 
the classifiers with 3 groups were superior to those with 2 
groups except for the experiment TS22R. 

The histograms in Fig.5.4 show the values of the PRE measures 

obtained by the classification in Method T shown in Table 5.5. 

Testing Stage 

In the testing stage, the classifiers are applied to all the data 

sets. The results are expected to be more unbiased than those in the 

training stage, and to reveal the capability of the classifiers in the 

situation closer to the clinical practice. 

Classification 

Based on the results in the training stage, the follow ing 

classifiers were chosen for testing in all the da t a sets: 

(a) the classifiers chosen at the 5% specified significance level in 
Method A, 

(b) the classifiers chosen at the 5% specified significance level in 
Method TA. 

(c) the classifiers in the experiment A 14R at the step 1 through 
16, 

(d) the classifier in the supplemental experiments. 

1. The total number of background events in all the data sets 
slightly differed because a few events at the beginning of one or more 
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Table 5.8 1 shows the results of classification by these classifiers. In 

calculating Pl, P2 and P3 of PRE, the DBS events were omitted. 

Because these events were originally indefinite, and the group these 

DBS events belong to ought not to affect the evaluation of performance 

if a group for DBS 1s not specified. 

It was noticed that the classifiers, especially derived from 

retracted data sets, sometimes detected the event of SSW or ART at the 

adjacent events to the originally marked event. Let this kind of 

misclassification call "nearmiss detection" of SSW. Practically, even if 

the nearmiss detection is treated as correct detection, it will not make 

the value of this analysis system less. To evaluate the performance of 

the classifiers with a tolerance for the nearmiss detection, a scheme to 

correct the classification results in Table 5.8 was introduced as 

explained in the following. 

It is assumed that there is no consecutive SSW or ART events. 

Suppose the event I is on the test of correction, and the event J is one 

of the adjacent events to the event I. Table 5. 9 is the test table for 

correction. If any pair of classifications of the event I and the event J 

in the same row of the table matches, the event I is not counted as a 

misclassified event, but as a correctly classified event. 

Table 5.10 shows the classifications in all the data sets, corrected 

using the scheme . Four adjacent events were tested to look for 

correction, that is, J=l-4, 1-2, 1•2, 1•4 in Table 5.9. When SSWA and 

SSWB appeared, they were simply treated as SSW in Table 5.8. 

data sets were not included 1n some of the experiments. 



Table 5 . 8 Original Classification in All the Data Sets by the Classifiers Chosen at the 5% 
Sign ificance Level. 

(al 

CLASSIFIER 
PRE BCI< -> SSW-> ART-> DBS-> 

Pl P2 Pl BCI< SSW ART 
(SSWA,SSWB) 

BCK SSW ART 
(SSWA,SSWB) 

BCI< SSW ART 
(SSWA , SSWB) 

BCK SSW ART 
(SSWA,SSWB) 

A12 . S08 0 . 710 0.556 0.62 11 125115 113 23 57 1 2 6 4 
Al2R . S07 0.671 0.338 0 . 111,9 121187 102 26 54 1 2 3 1 
A22R . S09 0.811 0.1185 0 . 607 12527 65 15 65 0 3 5 5 
A32R.S10 0.82 3 0 . 1182 0.608 1252 2 67 14 66 0 3 4 6 
All .SlO 0.610 0.560 o. 5811 125119 37 3 28 119 3 1 1 1 6 4 (I 

A13R . S10 0.6311 o. 398 0 . 1189 12511 75 3 26 51 3 1 1 1 4 6 0 
A23R.S08 0 . 798 0.526 0 . 6311 12533 55 4 12 611 4 0 2 1 6 4 0 
A33R . Sl 1 o. 7117 0.1162 0.571 12517 68 4 15 60 5 0 1 2 4 6 0 
Alli . SIO 0.810 0.1182 0.60 11 1252 0 67 (66, 11 2 5 65 (58, 7) 10 0 2 ( 1, 1) 1 2 8 ( 8, 0) 0 
All1R . Sll1 0 . 785 0. 383 0 . 5111 121188 99 (98, 1) 2 1 63 (56, 7) 10 0 1 ( 1 , 0) 2 2 8 ( 8, 0) 0 
A211R.Sl l 0.861 0.1154 0 . 594 12509 80 ( 79, 1) 3 1 69 ( 57, 12) 4 0 2 ( 1, 1) 1 5 5 ( 5, 0) 0 
A311R. Sl 1 0.8118 0 . 427 0.568 12499 88 ( 87, 1) 2 8 68 (56, 12) 4 0 2 I 1, 1 l 1 2 8 ( 8, 0) 0 

(bl 

PRE BCI< - > SSW-> ART-> DBS-> 
CLASSIFIER 

Pl P2 Pl BCI< SSW ART BCI< SSW ART BCI< SSW ART BCI< SSW ART 
(SSWA,S SWB) ( SSWA, SSWB) (SSWA,SSWB) (SSWA,SSWR) 

Al l1R . SOl 0 . 77 2 0 . 3911 0 . 5 2 1 1249-11 - - 93(92 , 1) 2 8 62 ( 57, 5) 10 0 1 ( 1 , 0) 2 5 5 ( 5, 0) 0 
AlllR . S0 2 0 . 78 5 0 . 11 28 0. 5511 125011 8 2 ( 81, I) 3 11 63 ( 58, 5 ) 13 0 1 ( 1 , 0) 2 4 6 ( 6, O ) 0 
A ll1R . S0 3 0 , 78 5 0 . 1105 0.535 121196 90 ( 89,1) 3 5 63 (58,5) 12 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
AlllR . SOIi o. 798 0.1112 0 . 5113 121197 89 ( 88, I) 3 6 64 ( 57, 7) 10 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
All1R.S05 0.785 0.1!08 0.537 121198 89 ( 88, I) 2 1 63 (56, 7) 10 0 1 ( 1, 0) 2 1 9 · ( 9, O) 0 
AlllR. S06 0 . 785 0 . 11111 o. 5112 12502 87 ( 86, I) 3 1 63 ( 56, 7) 10 0 1 ( 1, 0) 2 1 9 ( 9, 0) 0 
All1R. S07 

All1H . S09i'"'"·'"' AIIIR. SIO 

0.785 
0.785 
0 . 785 
0.785 

0 . 1108 
0 . 395 
o. 392 
0 . 390 

0 . 537 
0 . 5 2 5 
0 .52 3 
0 . 5 2 1 

121197 
121195 
121191 
121,93 

89 I 
911 ( 
95 ( 
96 ( 

88, 1 l 
93, 1) 
911, I) 
95, I) 

3 
3 
3 
3 

1 
1 
1 
1 

63 
63 
63 
63 

(56, 7) 
(56, 7) 
(56, 7) 
(56,7) 

10 
10 
10 
10 

0 
0 
0 
0 

1 
1 
1 
1 

( 
( 
( 
( 

1, 
1, 
1, 
1, 

0) 
0) 
0) 
0) 

2 
2 
2 
2 

1 
2 
2 
2 

9 
8 
8 
8 

( 
( 
( 
( 

9, 
8, 
8, 
8, 

0) 
0) 
O) 
0) 

0 
0 
0 
0 

AIIIII . SI I 0.797 0. 377 0 . 512 121183 103 (102,1) 3 7 64 ( 56,8) 9 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
All1H. Sl2 0.785 o. 376 0 . 5 08 121187 102 (101,1) 3 8 63 ( 55, 8) 9 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
AlllR. S 13 0 . 772 0.370 0 . 500 121183 103 (102,1) 3 8 62 (55,7) 10 0 1 ( 1, 0) 2 2 8 ( 8, O) 0 
All1R.Slll o. 785 0 .383 o. 5111 121188 99 ( 98, I) 2 1 63 ( 56 , 7) 10 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
AlllR . S 15 0 . 785 0.383 0 . 5111 121188 99 ( 98, 1) 2 1 63 (56,7) 10 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
AlllR . S16 0 . 785 0 . 383 0.514 121191 99 ( 98, 1) 2 1 63 (56, 7) 10 0 1 ( 1, ol 2 2 8 ( 8, 0) 0 

_. 
.,:.._. 
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(C) 

CLASS If 1£R 
PR£ BCK -> SSW-> ART-> OBS-> 

Pl P2 Pl BCK SSW ART 
(SSWA,SSWB) 

BCK SSW ART 
(SSWA,SSWB) 

BCK SSW ART 
(SSWA,SSWB) 

BCK SSW ART 
(SSWA,SSWB) 

TA12 . S07 
TA12R. S10 
TA22R.S09 
TA32R . S09 
TA13 .S17 
TA13R.S16 
TA23R. S211 
TA33R.S20 

0 . 6117 
0. 71111 
0.834 
0 . 885 
0.659 
0 . 795 
0 . 898 
0.936 

0.433 
0. 188 
0.249 
0.299 
0.462 
0.220 
0. 363 
0.236 

0 . 519 
o. 301 
0 . 3811 
0,4117 
0.5113 
o. 344 
0.517 
0. 376 

12525 
121112 
12395 
121118 
12531 
12371 
121196 
123114 

67 
250 
197 
163 

61 ( 60, 1) 
221 (220, 1) 
1211 (118,6) 
237 (236, 1) 

28 
20 
13 

9 
27 
16 

8 
5 

52 
60 
67 
71 
53 (47, 6) 
611 (56, 8) 
72 (61,11) 
75(61,14) 

3 
3 
3 
3 
3 
3 
3 
3 

0 
0 
0 
0 
0 ( o. 01 
.o I o, 01 
0 ( 0, O) 
0 ( o. 0) 

5 
6 
4 
3 
5 
2 
3 
1 

5 
4 
6 
7 
5 ( 5, 0) 
8 ( 8, 0) 
7 ( 7, 0) 
9 ( 9, 0) 

(d) 

PR£ BCK -> SSW-> ART-> OBS-> 
CLASSIFIER 

Pl P2 Pl BCK SSW ART BCK SSW ART BCK SSW ART BCK SSW ARr 
( SSWA, SSWU) (SSWA,SSWB) ( SSWA, SSWB) (SSWA,SSWB) 

·,\Tij1f:-ji1f I o. 7970:-iiillcl:'4811 121173 117 (116,1) 2 6 611 I 57. 7 I 10 0 1 1 1. o1 2 1 9 ( 9, 0) 0 
AIIIR . CAI 0.796 0.2110 0. 369 12393 196 ( 195, 1) 3 5 64 (58, 6) 11 0 1 I 1, oI 2 4 6 ( 6, O) 0 
All1R.CA2 0.6811 0.353 0.1166 121,90 99 I 98, 1 I 3 16 55 (117. 8) 9 0 0 ( 0, 0) 3 3 7 ( 7, 0) 0 
A111R.CA3 
Alllfl.CSI 
Al4R.CS2 
A111R.CS3 

0. 772 
0.796 
0. 785 
0.797 

o. 336 
ll. 2110 
o. 371 
0 . 348 

0,1169 
0. 369 
0. 5011 
0 . 484 

121112 
12393 
121185 
121173 

118 ( 111. 1 I 
196 (195,1) 
1011 ( 103, I) 
117 (116,1) 

2 
3 
3 
2 

13 
5 
6 
6 

62 
64 
63 
64 

(51, 11) 
I 58, 6 I 
(57, 6) 
I 57. 7 I 

5 
11 
11 
10 

0 
0 
0 
0 

2 
1 
1 
1 

(
I 
( 
( 

1, 
1, 
1, 
1, 

1 I 
o I 
o I 
oI 

1 
2 
2 
2 

1 
4 
3 
1 

9 
6 
7 
9 

( 
( 
( 
( 

9, 
6, 
7, 
9, 

O) 
0) 
0) 
0) 

0 
0 
0 
0 

_. 
~ 
N 
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Table 5 . 9 Testing Table for Correction of Classification. 

S Event JEvent! 

BCK->SSW SSW->BCK, SSW->SSW, SSW->ART 
Classi­ BCK->ART ART->BCK, ART->SSW, ART->ART 
fication SSW->BCK BCK->SSW 

SSW->ART BCK->SSW 
ART->BCK BCK->ART 
ART->SSW BCK->ART 

Method A 

In Fig . 5 . 5, the shaded bars show the PRE values by the original 

classification shown in Table 5.8(a), and the white bars added on the 

top of the shaded bars show the gained PRE values by the corrected 

classification shown in Table 5 . lO(a). In the o~iginal classification, 

among the classifiers in Table 5 .8(a), the highest P3 value was attained 

,by the classifier A23R . S08, which classified 64 SSWs out of 80 correctly 

and 57 events were misclassified as SSW. The classifier A24R. Sl 1 had 

the highest Pl value classified 69 SSW correctly, and misclassified 82 

events as SSW. In the corrected classification, among the classifiers in 

Table 5. lO(a), the highest P3 value were attained by the classifier 

A23R. S08, again, which classified 69 SSW correctly, and misclassified 22 

events as SSW. The classifier A34R. S 11 had the second highest P3 

value-, classified 75 SSW correctly, and misclassified 33 events as SSW. 

The highest Pl value was obtained by the classifier A 14R . S14, which 

classified 76 SSW correctly, and misclassified 41 events as SSW. By the 

way, in Table 5. lO(b), the classifier A14R.S16 had the higher Pl value 

than A14R. S 14, classifying 77 SSW correctly, even though 46 events 

were misclassified as SSW. 



Table 5 . 10 Corrected Classification in All the Data Sets by the Classifiers Chosen at the 
5°0 Significance Level . 

(a) 

PRE BCK -> SSW-> ART-> DBS- -> 
CLASS If ICR 

Pl P2 Pl BCK SSW ART BCK SSW ART BCK SSW ART BCK SSW ART 
( SSWA, SSWB) · (SSWA,SSWB) (SSWA,SSWB) (SSWA,SSWB) 

Al2 .S08 0. 786 0.661 0 . 718 12558--30 17 63 1 2 6 1, 
Al2H.S07 0.937 0.6114 o. 7611 12550 39 5 75 1 2 3 1 
A22R . S09 0 . 836 0.751 0 . 792 12573 19 13 67 0 3 5 5 
A32R.S10 0.874 0 . 671 0 . 759 12558 31 10 70 0 3 4 6 
All . SIO 0.673 0.633 0.652 12556 30 3 23 511 3 1 1 1 6 4 0 
A131CS10 0 . 8119 0.645 0 . 733 12550 36 3 10 68 2 I 1 1 4 6 0 
A23R.S08 0.862 0.757 0.806 12568 20 4 11 69 0 0 2 1 6 4 0 
A33R . Sil 0.8711 0 . 678 0.763 12553 32 4 8 70 2 0 1 2 4 6 0 
A14 .SlO 0.861 0 . 558 0.677 12535 52 (52, 0) 2 2 69 ( 62, 7) 9 0 2 ( 1, 1 ) 1 2 8 ( 8, 0) 0 
AIIIR. Slll 
A211R. Sl 1 

0.950 
0 . 937 

0 , 6117 
0 . 650 

0.770 
0 . 767 

125118 
12551 

110 (40, 
38 (38, 

O) 
0) 

1 
3 

2 
4 

76 
75 

(69, 7) 
(63,12) 

2 
1 

0 
0 

1 
2 

(
I 

1, 
1, 

0) 
1 I 

2 
1 

2 
5 

8 
5 

( 
( 

8, 
5, 

0) 
0) 

0 
0 

A34R.S11 0.937 0.693 0 . 796 12557 31 (31, O) 1 3 75 (63,12) 2 0 2 ( 1, 1 ) 1 2 8 I 8, 01 0 

(b) 

PRE BCK -> SSW-> ART-> DBS-> 
CLASSIFIER 

Pl P2 Pl BCK SSW ART BCK SSW ART BCK SSW AIIT BCK SSW ART 
(SSWA,SSWB) (SSWA,SSWB) (SSWA,SSWB) (SSWA,SSWD) 

°At1iR. SOl 
A ll1R. S0 2 

0.8118 
0 . 8118 

0.1179 
0. 528 

0 ~6 12 - 12515 
0 . 6 51 12527 

72 
59 

(72, 
I 59 , 

0) 
0 1 

2 
3 

6 
3 

68 
68 

(63, 
I 6 3 , 

5) 
5 I 

6 
9 

0 
0 

1 
1 

I 
I 

1, 
1, 

oi 
oI 

2 
2 

5 
4 

5 
6 

( 
( 

5, 
6 , 

0) 
0 ) 

0 
0 

Alllfi. SO] 0.937 0 . 570 0.709 12531 55 (55 , 0) 3 2 75 (70, 5) 3 0 1 I 1, oI 2 2 8 ( 8, 0) 0 
All&H. SOIi 0.9211 0.562 0 . 699 12530 56 ( 56, 0) 3 3 74 (67, 7) 3 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
All1R.S05 0.924 0.580 0.713 12535 52 (52, 0) 2 3 74 (67, 71 3 0 1 ( 1, oI 2 1 9 ( 9, 0) (J 

A111H. S06 0.912 0.577 0 . 706 12537 52 ( 52, 0) 3 4 73 I 66, 7 I 3 0 1 ( 1, 0) 2 1 9 ( 9, 0) 0 
A14R.S0 7 
All1R . S08 
AlllR. SU9 
All1R . S10 

0.912 
0 . 9211 
0.92 11 
0 , 9211 

0. 577 
0.575 
0 . 575 
o. 571 

0 . 706 
o. 709 
o. 709 
0 . 706 

125311 
12536 
12533 
12535 

52 
53 
53 
511 

( 52, 
(53 , 
(53, 
(511, 

O) 
0) 
0) 
0) 

3 
3 
3 
3 

4 
3 
3 
3 

73 
111 
111 
111 

(66, 
(67, 
(67, 
(67, 

7) 
7 I 
7) 
7 I 

3 
3 
3 
3 

0 
0 
0 
0 

1 
1 
1 
1 

I 
( 
( 
( 

1, 
1, 
1, 
1, 

oI 
0) 
oI 
0) 

2 
2 
2 
2 

1 
2 
2 
2 

9 
8 
8 
8 

( 9, 
( 8, 
( 8, 
I 8, 

0) 
0) 
0) 
01 

0 
0 
0 
0 

AlllR . SI 1 0. 937 0 . 579 0 . 715 12533 53 (53 , 0) 3 3 75 (67, 8) 2 0 1 ( 1, 0) 2 2 8 ( 8, 0) 0 
All1H. S12 
All1H . Sil 
All1H.Sll1 
A14R.S15 

0.937 
I 0.937i0.950 

0 . 9 50 

0 . 579 
0 . 593 
0.6117 
0.621 

0.715 
o. 726 

0.7700.751 

12536 
12536I 125118 
125112 

53 
50 
40 
115 

(53, 
(50, 
(110 , 
145, 

0) 
0) 
O) 
0) 

3 
3 
1 
2 

3 
3 
2 
2 

75 
75 
76 
76 

(67. 
(68, 
(69, 
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(c) 

CLASSIFIER 
Pl 
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The classifiers without the retraction of data in training data sets 

performed better than the classifiers with the retraction in the original 

classification. However, when the classification was corrected as 

explained above, the classifiers without the retraction (A 12. SOB, 

A 13. S10 and A 14. S10) did not improve in performance as much as the 

classifiers with the retraction (A12R.S07, A13R.S10 and A14R.Sl4). 

As for the effects of changing the number of training data sets, 

the performance was improved considerably in t erms of the measure P3 

in the classifiers with 2 groups and 3 groups when the number of the 

training data sets was increased from 1 to 2. However, in general, 

there was no conclusive or significant observation concerning the 

change of the number of training data sets. 

As for the effects of changing the number of specified groups, 

the classifiers that have the same number of training data sets were 

compared with each other. In the original classification, (1) the 

classifiers with 4 groups always had the highest Pl values and the 

lowest P2 values, and the classifiers with 3 groups always had the 

lowest Pl and the highest P2, (2) the classifications with 4 groups 

appear inferior to others in performance in terms of the measure P3 

mainly because more events were misclassified as SSW even though more 

SSW events were correctly classified. In the corrected classification, 

(1) the classifiers with 4 groups had not only the highest Pl values, 

but also the highest P2 and P3 values except for the case of 2 training 

data sets (A24R. S11), (2) the classifiers A23R. S08 and A22R. S09 

misclassified less number of events as SSW than the others, but 

consistent difference between the classifiers with 2 and 3 groups was 

not observed. 
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An example of the effect of changing the number of parameters in 

a classifier is demonstrated in Fig. 5. 6, which is based on the PRE 

values in Table 5. 8(c) and 5. 10(c). The experiment A 14R was taken as 

the example. In the original classification, the performance was almost 

the same th rough the classifiers. In the corrected classification, the 

performance was improved in terms of all the three measures during the 

first 3 steps, stayed at almost the same level up to the step 12, and 

some more improvements were seen after the step 12. As shown in 

Table G-1, Appendix G, the classifiers in the experiment A 14R 

performed very well in the training data sets , misclassifying only one 

event from the first step until the step 12, and classified perfectly 

after the step 12. Comparing the results of classification of A 14R at 

the testing stage with the results in the training stage, the following 

two points may be mentioned: (1) although the classification in the 

training data sets was same during the first three steps in the training 

stage, there were improvements of performance during the first three 

steps at the testing stage; (2) the improvement at the step 13 in the 

training stage seemed to coincide with the improvement at the same step 

in the testing stage. Concerning the point (2), it is not known 

whether the coincidence occurred by chance, by a possible uniformity 

of data sets, or something else. 

Method T 

The histograms in Fig . 5.7 shows the results of the PRE values of 

Method T in Table 5 .8(b) and 5 . 10(b) with the same configuration of 

the graphs as those in Fig.5.6. 
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In the original classification, the best and the second best 

performances were given by the classifiers TA13.S17 and TA12.S07, 

respectively, in terms of the measure P3. In terms of the measure Pl, 

the best and the second best performance was offered by TA33R. S20 

and TA23R. S24, respectively. The class ifiers T A33R. S20 and 

TA23R.S24 were very good in detecting SSW (i.e. 75 and 72 SSW 

detection, respectively), but not good in class_ifying the non-SSW 

events correctly (i.e. 124 and 237 events misclassified as SSW, 

respectively). 

In the corrected classification, the best and the second best 

performances were given by TA23R.S24 and TA13.Sl7, respectively, in 

terms of the measure P3, and by TA33R.S20 and TA23R.S24, 

respectively, in terms of the measure Pl. The classifier TA23R. S24 in 

the corrected classification classified 73 SSW correctly, and misclassified 

50 events as SSW. The result was comparable to the results in Method 

A, but the others were mostly inferior in performance to those in 

Method A. The correction of classification improved the P2 values, but 

did not improve the Pl values very much. 

There seems to be an advantage in Method T, however, that the 

classifiers in Method T always classified artifacts as backgrounds, 

whereas some artifacts were classified as SSW in Method A. 

The classifiers with the retracted training data sets always 

performed better in terms of the measure Pl, and worse in terms of the 

measure P2 and P3 than those without the retraction. 

As the number of specified groups increases from 2 to 3, the Pl 

values always increased, but the P2 values and consequently the P3 
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values were not consistent in increase . However, there was a tendency 

that the P2 and P3 _values are increasing as the number of training data 

sets or the number of specified groups increase unless the number of 

the training data sets is 3. 

Classification in Supplemental Experiments 

The results of classification in supplemental experiments are 

shown in Table 5. 8(d) and 5. lO(d). Fig. 5. 8 shows the results of the 

PRE measure in the form of histograms. When the assignment of prior 

probabilities in the experiment A 14R was changed to 0.25 for all the 

groups, the BMDP7M program selected the same parameters at each step 

as in the original experiment A 14R only with difference of the 

coefficients of classification functions. Hence, the classifier A14R. PRI 

have the same parameters as the classifier A14R. S14 with different 

coefficients of classification functions. The P3 values of A14R. PRI in 

both the original and corrected classifications were slightly inferior to 

those of A14R. S14, but the Pl values were better in both of the 

classifications . The result indicates that an assignment change of prior 

probabilities seems to have only a minor effect in the classification. 

The results of classification by the canonical classifiers indicate 

the following. The P3 values increased as the number of canonical 

variables increased. The performance of the canonical classifiers with 

the absolute measure was slightly inferior to those with the square 

measure. In both of the classifications, the performances were not as 

good as those of A14R. S14, but still comparable. Considering that the 

method of parameter selection which may be more suitable for canonical 

classifiers (see McKay and Campbell 1982a,b) was not applied, the 

achievements of these canonical classifiers are remarkable. 
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Figure 5.8 Histograms of the PRE Values by the Classifiers in Supplemental Experiments 
at the Testing Stage Shown in Table 5.8 and 5.10. (in one graph, Pl: left, _. 
P2: middle, P3: right.) ~ 
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Anal_vsis of Classified Events 

Using some examples in Method A, this section lists and displays 

the events misclassified or correctly classified, and analyze them. 

Event Identification and Posterior Probabilities 

Table H-1 in Appendix H shows the list of classified events 

except correctly classified background events, obtained by the classifier 

A 14R . S14 . The list contains, for one event, data set number and event 

number for event identification, originally assigned event type , 

predicted (or classified) event type, a check value for correction of 

classification, time at the peak of core-wave, and posterior 

probabilities. If CORRECTN is 1, the event has been classified as a 

correctly classified event in the corrected cl a ssification as explained 

before. The value of TIME is the elapsed time in second starting from 

the beginning of each file (or data set). Th e number of EVENT was 

counted including events with trough (electrica lly positive) core-waves 

as well as events with peak core-waves, thereby the neighbouring event 

to EVENT 385 being numbered as EVENT 383 and EVENT 387 in the list 

that contains only events with peak core - waves. The posterior 

probabilities were calculated according to th e formula for posterior 

probabilities in Appendix C . 

Morphology of Classified Events 

Fig.5 . 9(a) shows the averaged waveform of each group in the 

first three data sets : from left to right, the names of groups are BCK , 

SSWA, SSWB and ART. The numbers of samples of each group in 

averaging were 25, 21, 3 and 1 for BCK, SSWA, SSWB and ART, 
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respectively . Each can be cons idered a "typical waveform " of a group. 

In fact, the waveforms of SSWA and SSWB were used as templates in 

the experiments TA33R, TS33R and TC33R . 

As mentioned in Chapter 4, the original data can be reconstruct ed 

by using the parameterized data in Method A. When each event 

parameter is averaged over the events of a group in the data sets, a 

set of the averaged parameters can be used to reconstruct an 

"averaged" waveform of the group, or a " reconstructed typical 

waveform" of the group. Fig . 5 .9(b) shows these waveforms in the four 

specified groups. The sampled events in averaging were same as those 

in the case of Fig . 5.9(a) except that all the 2,290 background events in 

the data sets were used in averaging for BCK 1 
• The peak of the core­

wave (the 10-th peak) was aligned vertically with the peak of the 

corresponding typical waveform . The following may be pointed out 

concerning the figures in Fig . 5.9 . The reconstructed waveforms 

covered the characterstic parts of the typical waveforms . An event was 

restored very well as seen in the case of ART in Fig.5 . 9(b). However , 

when averaged, a reconstructed typical waveform was different in shape 

from the corresponding typical waveform except for the part of the 

core-wave in general. The reconstructed typica l waveform of BCK is a 

good example in showing the difference . The difference between the 

waveforms of SSW is interesting . The typical waveforms show four 

distinct types of waveforms, and so do th e reconstructed typical 

waveforms in a d ifferent way . 

1. The data were obtained in the output of the BMDP7M program 
for the experiment A34R. 
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Fig. 5. 10 displays the portion data of misclassified events 

concerning the SSW detection in the experiments A12R, A 13R and A14R. 

The graphs in the first and second rows from the top show the results 

from A 12R; the graphs in the third and fourth rows for A13R; the 

graphs in the fifth and sixth for A14R. The graphs in the first, the 

second, the third and the fourth columns in Fig.5.10 show the 

misclassified events of SSW->BCK, BCK->SSW, ART->SSW (ART->SSWA 

in A14R) and SSW->ART, respectively. An averaged waveform was 

added right below each superimposed display of misclassified events. 

Fig.5.11 displays the same events in the same order, but the graphs 

were reconstructed from the event data in Method A. Some wildly large 

waves seen in the second column of Fig. 5 . 10 were the successive waves 

defined in Design of Experiments, Chapter 4 . They were labeled as 

BCK, but could have been labeled as SSW. The corresponding 

waveforms are also found in Fig.5.11. 

It is interesting that the averaged waveforms in the second 

column of Fig. 5 . 11 seem to show the same morphological characteristics 

as the typical waveform of SSW in Fig. 5. 9(a). The difference seems to 

be only the magnitude of the wave after the core-wave. Fig. 5. 12(a) 

shows the superimposed graph of the typical waveform of SSWA in 

Fig.5.9(a) and the averaged waveform of BCK- >SSWA misclassification in 

Fig.5.10. Fig.5 . 12(b) shows the superimposed graph of the 

reconstructed typical waveform in Fig. 5. 9 (b) and the averaged 

waveform of BCK->SSWA misclassification in Fig . 5. 11. 

The graphs of A 12R and A 13R in the first column have a common 

feature of waveforms, that is, a small bump right after the core-wave. 

https://Fig.5.11
https://Fig.5.11
https://Fig.5.10
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Figure 5.12 Comparison of a Typical Waveform of SSWA and an 
Averaged Waveform of BCK- >SSWA Misclassification. Thick 
lines : Typical waveforms. Thin lines: Averaged waveforms 
of BCK- >SSWA misclassification . (a) Basic data. (b) 
Reconstructed data. 
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It was more distinctively noticed in Fig. 5. 11. Obviously the classifiers 

were susceptible to the bump after the sharp peak, and misclassi f ied 

these bumped SSWs as BCK. This was improved in the classifier of 

A14R, where it missed only two SSWs of untypical shapes. 

It was not clearly seen why one or two artifacts were misclassified 

as SSW. Even though the morphological features of the artifacts seemed 

quite different for SSW, some of them were classified as SSW. On the 

other hand, two SSW events were misclassified as ART despite the 

similar morphological features to SSW. It must be noted that only one 

artifact sample was available in the training data sets. So, the poor 

performance of artifact classification may be improved if more artifact 

samples are used in the training data sets. 

However, how to explain why some events were misclassified may 

be a problem when a set of classification functions is used to classify 

events. That is a question of how to visualize the behavior of a 

classifier. For example, canonical variables can be used for it, thereby 

showing the corresponding point to an event in the coordinate of 

canonical variables. As shown in Table 5. lO(d), two canonical variables 

can serve the purpose, resulting in a plane coordinate. Fig.5.13 shows 

an example of it using the output of the BMDP7M program. The origin 

is the mean of all events, and the scale is standardized as described in 

Appendix C. If the point of an event is closer to the mean point of a 

group, the event is closer to the typical event of the group. 

As a caution in Fig. 5. 11, the method of reconstruction caused 

some noticable jerky portions, especially in the first column of Fig.5. 11. 

This occurred because of the method of averag ing. These jerks of the 

https://Fig.5.13
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graphs can be smoothed out easily. Also, the whole reconstructed 

waveform can be more natural if, for example, one of spline 

interpolation techniques is appropriately applied. 



CHAPTER 6 

SUMMARY, DISCUSSION AND PROSPECT 

This chapter summarizes and discusses the results of the 

experiments, and the concept and design of the proposed system. The 

prospective improvements and applications of the proposed system are 

also suggested. 

Experimental Results 

Based on the experimental results in Chapter 5, this section 

organizes them and sees to their significance. 

Parameter Selection 

The overall significance level proposed by Hawkins(1976) was 

applied to choose the step of the BMDP7M program where an appropriate 

classifier to represent the experiment is obtained. As Hawkins stated, 

the overall significance level is conservative in selecting parameters . 

With the modest value of 596 for the overall significance level, the 

average number of selected parameters was about 10 in Method A. In 

Method T, the average number was about 7 and 14 with 2 and 3 

groups, respectively. 

The overall significance level of 5% to choose a representing 

classifier from each experiment seems to be moderate to get a "matured" 

classifier of an experiment, but a smaller value of the significance level 

seems not to damage the performance too much . Therefore, if having a 

less number of parameters in a classifier is more crucial than having 
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slightly better performance, a smaller value of the significance level 

could be used. 

These parameters are statistically significant in terms of F-values, 

and derived from more than one wave in an event. The parameters in 

the core-wave were selected most popularly and mostly in the early 

steps. The second most popular parameters derived from the two waves 

adjacent to the core-wave. The results have proved that they 

contribute very much to improve the classification performance. This 

tendency is very reasonable because the core-wave is visually most 

characteristic of SSW and is aligned to constitute a set of event 

parameters. 

Very recently, Oliveira et al. (1983) ranked the parameters to 

detect SSW using Mahalanobis distance between epileptiform and non­

epileptiform waves. Some of the parameters in his paper correspond to 

those of Method A in this paper as shown in Fig. 6. 1, although they are 

standardized by standard deviations. The parameters of Method A are 

ranked based on Fig. 5. 6, and the ran ks are compared with the ran ks of 

the parameters presented by Oliveira ·et al. (1983) in Table 6.1. The 

top 5 parameters by Oliveira et al. corresponded to the top 5 

parameters of Method A. 

The other parameters of Method A are selected from the waves 

more remote to the core-wave. They contributed to the improvement, 

but to the less extent than those parameters mentioned above. Then, 

it may be suggested, as far as the proposed analysis system is 

concerned, that the most distinguishable and coherent characteristic of 

SSW is in the core-wave area, but the surrounding waves also can have 
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Figure 6.1 Schematic EEG Wave and its Parameters by Oliveira et al. 
(1983) in Comparison with Those in This Project. (a) 
Parameters of Method A around a core-wave in this project. 
(b) Parameters presented in the paper by Oliveira et 
al.(1983). Pl and P2 are inflection points. 
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Table 6.1 Ranks of Parameters in Comparison with Those by Oliveira et 
al. ( 1983). a, a 1 , and a 2 : standard deviations of the data, 
the first derivative, and the second derivative, respectively . 

In the paper by In this paper IOliveira et al . Relation between 
I 

parameters I 

i 
Parameter Rank Parameter Rank I 

I 

S210 2 
ICM I ( = ICI / a 2 ) 1 c::s210-s110 

I S110 3 I 

II 

i 
I 

I 
S210 2 

IIM2 I (= IS2 I j.a 1) ' 
2 S2<min(S210,Slll) 
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a role in characterizing SSW even if the contribution is minor. 

However, there may be another characteristic part of SSW that has not 

been unraveled by the parameters of the system. 

It was observed that Method T leads to selecting parameters from 

broader range of waves in an event than in Method A. It probably 

reflects the fact that a template usually covers a larger portion of the 

data than a wave. 

It was typically observed as a trend that as the step proceeds in 

an experiment at the training stage, the classification performance 

obtained by the classifier at the step improved considerably for a few 

steps by the inclusion of the parameters from the core-wave area, then 

keeps on improving slowly by including other parameters until the step 

begins to enter a pararneter that is not significant enough to contribute 

to the improvement, by which the perfotmance may deteriorate. In an 

example at the testing stage, the classifiers in the experiment A14R 

followed the trend in the corrected classification except that the 

performance did not deteriorate, but improved even at the last few 

steps. In the original classification at the testing stage, the 

classification performance of A14R did not change very much th rough 

the steps. In this example, it can be considered the performance in 

the original classification at the testing stage was already very close to 

the best even at the first step. The same tendency was observed in the 

classifiers at the training stage. It is not clear why the parameters at 

the second, the third and the following steps in the experiments Al4R 

did not contribute to the improvement very much, but rather 

interesting is that the corrected classification improved almost 
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constantly. It means that the parameters entered at the later steps are 

contributing toward distinguishing the events even if it was not 

apparent in the classification at the training stage and in the original 

classification at the testing stage. This and the reverse case can 

happen when the distribution of events in the training data sets is not 

same as that at the testing data. Therefore, if there is no wildly 

deviated events which distort the proper statistical values, the use of a 

statistical value to choose the best step to stop the selecting procedure 

is more recommended than the use of classification results. As 

described in Chapter 3, the F-statistics applied in this project has been 

criticized as inappropriate, but proved to be useful to a certain extent 

as the resu Its showed. 

Retraction of Adjacent Events to SSW in 

Training Data Sets 

The original classification results obta ined by the classifiers 

chosen at the 5% significance level showed that the retraction of the 

adjacent events to SSW events in the training data sets just 

deteriorated the results. However, when the classification results are 

converted to the corrected classification, the retraction improved the 

values of the measures Pl, P2 and P3 in Method A except for the P2 

value of A12R.S07 and the values of the measure Pl in Method T. 

Therefore, if the nearmiss detection of SSW is not tolerated, the 

retraction is not recommended. If the nearmiss detection is tolerated, 

the retraction is recommended in Method A. In Method T, by tolerating 

the nearmiss, the SSW detection is improved , but more background 

events may be detected as SSW. 
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The following seems to explain the above results. By the 

retraction, the background events did not include the waves of SSW 

and artifacts in the events. It lessened the variety of background 

events, thereby making more background events classified as SSW, 

which resulted in the lower values of the measure P2. But, it turned 

out that many of those misclassified events of BCK-> SSW, etc . are 

very close to SSW events, especially in Method A. In addition, the 

category of SSW was broadened by less variety of background events, 

thereby resulting in accepting more variety of SSW events. 

Number of Training Data Sets 

The results did not imply a consistent tendency of classification 

performance when the number of training data sets was changed . It is 

naturally anticipated that the longer the training period, the better the 

classification ability of a classifier. It is probably true statistically, 

but does not apply to individual cases because each of the training data 

sets is always somewhat peculiar in its statistical properties. What may 

be conclusive in the results concerning the number of training data sets 

is that the classifiers with a training data set of about 72 seconds 

including 9 SSWs performed fairly well for the testing data of 17. 5 

minutes, and the performance was not greatly different when the period 

of the training data set was made twice or triple including 16 and 24 

SSWs, respectively. How long the training period should be is still not 

solved, but the the above results are encourag ing because they showed 

only the training data of 72 seconds with 9 SSWs, which will be 

reasonably acceptable in clinical situations, cou ld achieve a satisfactory 

classification. 
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Number of Specified Groups 

There were some points notable in the results at the testing stage 

as to the effect of changing the number of specified groups. The Pl 

values of the experiments with 4 groups in Method A and with 3 groups 

in Method TA were always better than others in each Method both in 

the original classification and in the corrected classification. However, 

the P2 and P3 values of these experiments were mostly inferior to those 

in the other experiments in the original classification. In the corrected 

classification, the performances of the classif iers with 4 groups in 

Method A surpassed those with 2 or 3 groups in Method A in all the 

measures. In Method TA, it did not happen when the number of groups 

was increased from 2 to 3. 

Observing these results, dividing a group SSW into two groups 

SSWA and SSWB brought (1) a success in t erms of improving the 

detection of SSW events, and (2) a prob lem of detecting more 

background events as SSW . A tolerance for the nearmiss SSW detection 

shown in the correction classification helps solve the problem in Method 

A. The problem was not solved likewise in Method TA. 

When only two groups were specified in Method A, the results 

were not necessarily worse than the others. Then, if a simpler system 

1s desired, the classifiers with two groups seems to carry the 

classification task quite satisfactorily. They also have some advantages 

in classification theories because a classification problem with dichotomy 

sometimes has special advantageous properties, and has been 

extensively investigated. 
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Prior and Posterior Probab ilities 

The results obtained by the classifier A14R. PRI suggested that 

the assignment of prior probabilities for the specified groups, which is 

necessary to calculate the Bayes linear classif ication functions, is not 

crucially influential to the classification results. In fact, it is difficult 

to estimate the true prior probabilities because it may vary depending 

on the subject and his/her conditions. Although this is only one 

example, the preliminary implication serves to ease one of the 

disadvantages in using the Bayes classification functions. It also 

supports the fact that the results of the experiments will not be 

changed very drastically by changing the prior probabilities that were 

approximated and assigned by the author. 

Since the assignment of the prior probab ilities themselves are not 

based on a firm principle as mentioned above, the posterior 

probabilities, although an example was demonstrated in Chapter 5, could 

not be recognized as accurately conveying a reliable information. 

Canonical Classifiers 

The results demonstrated that under the condition of one train ing 

data set and four specified groups, the ability of the canonical 

classifiers was very close to that of the Bayes classifiers when more 

than one canonical variables are used. The second canonical variable 

contributed to the improvement of performance very much whereas the 

third did a little. It indicates that the first two canonical variables may 

suffice for the classification purpose. It is interesting that the canonical 

classifiers with the absolute measure, which needs much less calculat ion 

time by computers, performed almost as well as those with the square 

measure. 
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Evaluation of Classification Results 

The PRE measures applied for evaluating the classification results 

were considered to be better than the raw probabilities that can be 

misleading. The PRE measures were general in concept, simple in the 

calculation, and versatile in the applications as far as appropriately 

applied. The three measures Pl, P2 and P3 reflected different aspects 

of the classification results, and offered proper interpretations for the 

results. 

When misclassified events were displayed , it was found that the 

background events misclassified as SSW have close morphological 

features to SSW events and almost indist inguishable from SSW 

morphologically when averaged as shown in Fig.5.12. One possible 

explanation for it is that the electroencephalographer missed to check 

them as SSW. Another possible explanation is that he used broader 

range of data than the portion of data included for an event in order to 

decide whether an event is SSW or not. 

As far as classifying an event morphologically based on a portion 

of the data for an event, the system worked quite well. But, if 

background activities around an event to be classified are somehow 

incorporated in parameters of an event, the results may be improved. 

The System's Concept and Design 

The objective of implementing an automated EEG analysis system 

to detect SSWs was circumstantiated by (1) the significance of the EEG, 

especially the epileptic EEG in the clinical practice and research 

environment, as revealed in Chapter 2, and (2) the on-going 

development of modern computers which may reduce, replace, or even 

https://Fig.5.12
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impr:ove the work of electroencephalographers by utilizing sophisticated 

data processing schemes as demonstrated in Chapter 3. 

The system to be implemented adopted a pattern recognition 

scheme. Then, a conceptual structure of the pattern recognition 

system was established as a sequence of procedures: preprocessing, 

segmentation, parameterization, and classification. This type of 

complete conceptual structure for pattern recognition was not explicitly 

or consciously perceived in most of the reviewed papers on SSW 

detection in Chapter 3. However, the detection procedures of the 

systems in the previous papers could be decomposed and reorganized so 

that each of the procedures in the previous papers may belong to one 

of the procedures described above. Thus, in Chapter 3, each of the 

procedure could be independently reviewed . 

The scheme for each procedure of the system in this paper was 

based on the consideration and improvement of the previous systems in 

the review. Ad hoc approach and manual set-up of the numbers such 

as th res holds and tolerance ranges were avoided as much as possible . 

As a result, once a supervised training data is provided in the 

proposed system, the manual input parameters required before the 

system runs are not specific to or derived from the particular data . 

The order of the low-pass digital filter is set assuming the minimum 

duration of SSW is 20 msec. However, this assumption is not particular 

to a data set, but generally acceptable . Simple and effective algorithms 

were preferred so that the system has a chance of real-time operation 

by a microcomputer. 
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Structure of Analysis Procedures 

In general, the whole procedure of a pattern recognition is 

divided into feature extraction and classification . In this paper, it was 

divided into the four procedures which are distinct and essential in a 

waveform pattern recognition system, as explained in Chapter 4 . It is 

important to carefully examine which algorithm suits best for each 

procedure to achieve the system objective. Discriminant analysis was 

applied to select useful parameters and to calculate a classifier at the 

training stage. When the types and their number of waveforms are not 

known, a procedure of clustering may be added at the training stage 

before the discriminant analysis so as to help decide the types and the 

number of the types systematically and automatically. Clustering 

algorithms have been developed and available commercially: BMDPlM 

and BMDPKM in BMDP programs (Dixon 1975) , for example. 

Preprocessing 

The preprocessing in this project included a preamplifier, a band­

pass filter of the cutoff frequencies of 1 and 70 Hz, a main amplifier, a 

10 bit A/D converter, and a simple three-point, linear-phased, low-pass 

digital filter . The band-pass filter has been used routinely in clinical 

situations and were necessary to attenuate the voltages of high 

frequency noises and artifacts . The AID converter of 10 bits proved 

to be capable of representing the EEG data in a digitized form 

satisfactorily as seen in Fig . 4. 7. The digital filter was used to further 

reduce the noises, in particular, the round-off error caused by 

digitization. It seems not to distort the main waveforms of the EEG, 

but to reduce unnecessary jitters . It also contributed to making the 
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data look closer to the strip chart recorder output, the pen of which 

has a frequency response lower than 70 Hz. The filter was very simple 

in operation, and the result was satisfactory. 

Segmentation 

Instead of a fixed length segmentation, a zero-crossing 

segmentation, or others, a turning-point (extrema) segmentation was 

used because of the advantages described in Chapter 3. A linear-

phase, low-pass digital filter was used to prevent from segmenting the 

data at unnecessary extrema. The segmentation procedure included two 

subroutines: one for the digital filter and another for detecting 

turning-points (extrema). The latter subroutine, although simple, had 

a double-check to detect an extremum so that it does not miss a tuning­

point but discard it if not significant. The filter was very simple and 

proved to be useful. But some redundant extrema on the data still 

remained as seen in Fig.4. 7 for example. One way for the improvement 

is to use a better filter: for example, another low-pass filter proposed 

by Lynn (1977), 

y(n)= 2y(n-1)-y(n-2)•x(n)-2x(n-m)•x(n-2m) 

has smaller side lobe gains in expense of a slight increase of calculation 

and memory requirement. Another way for the improvement may be to 

introduce tolerances or thresholds in duration and/or amplitude of a 

segment. For example, the data is not segmented at a turning-point 

unless a certain time (i . e. a duration threshold) has been passed after 

the last turning-point and/or unless a certain difference of the 

amplitude between the current and the last amplitude (i.e. an amplitude 
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threshold) is made. These schemes were not incorporated in the 

proposed system because incorporating these thresholds makes the 

system less simple and necessary to include additional input parameters 

which must be given their values by a researcher. However, if 

necessary, these th res holds can be very easily incorporated in the 

system by slightly modifying the subroutine for detecting turning­

points. 

Parameterization 

The concept of "wave" is not new, but it must be noted that the 

"peak wave" and "trough wave" were clearly defined and overlaped in 

this paper. In deriving parameters in a wave, the use of the basic data 

(preprocessed data) instead of the low-pass filtered data used for 

segmentation was another point to be noted. Because the low-pass 

filtered data is likely to have lost some of the vital information in the 

EEG, especially the sharpness of SSW. 

The concept of ''event" in this paper is rather unique, although 

hinted elsewhere (Gotman and Gloor 1976, Schenk 1976, and Remond 

1969), in the sense that it integrated parameters for several waves 

systematically, and that an event was used as a unit (or case) to be 

classified. 

Among a lot of possible parameters as shown in Table 3. 1, a set 

of morphological parameters in Method A and three types of template 

matching parameters were tested. They were simple in operations and 

the meaning of the parameter values could be easily interpreted. In 

Method A, only four parameters in a wave were used, but other 

morphological parameters could be included: a curvature, or slopes at 
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inflection points in a core-wave, for example. The subroutine for 

deriving the slopes was one of the simplest, but could be refined, if 

necessary, by using a polynomial approximation for example. Method T 

can be viewed as an extended form of classical template matching, which 

in a way resembles the Tauberian approximation method. 

Advantages of standardization of parameters is discussed in 

Standardization of Parameters and SSW Criteria , Chapter 6. The ability 

of reconstruction in Method A can be a big advantage as will be 

discussed later in Data Reduction Aspects of the System, Chapter 6. 

Parameter Selection 

Even though the results proved the usefulness of the automatic 

parameter selection and the classification applied in this project, there 

are a lot of room for improvements as discussed in Chapter 3. In 

selecting parameters, although automatic selection of parameters was an 

advanced idea to the others, (1) the hypotheses of multi normal 

distribution and equal covariance of each group were probably violated 

in the data, (2) the F-value for giving priorities to parameters could be 

misleading if the number of groups was more than two (Habbema and 

Hermans 1977), and (3) the one-parameter-at-a-time stepwise promotion 

of parameters into classification functions may not promote a set of 

parameters which are significant when combined but not so if not 

combined. 

As described in Chapter 3, there are other programs available for 

automatic selection of · parameters. Among them, the program INDEP­

SELECT offered by Habbema and Gelpke (1981) seemed to have some 

attractive features. The parameter selection by canonical analysis as 
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described by McKay and Campbell (1982a,b) was _also interesting. In 

fact, the problem of parameter selection itself can constitute an 

academic field and is still to be investigated further. 

Classifiers 

This project tested mainly the Bayes classifiers that used Bayes 

linear classification functions . The canonical classifiers that used 

canonical variables were also tested. The Fisher's linear classification 

function can be considered as a special case of canonical classifiers . 

These classifiers were simple in calculation, and theoretically clear-cut. 

Table 6 . 2 shows the numbers of multiplications, additions, and 

absolute operations in calculating a set of classification scores for a 

classifier: a Bayes classifier, a canonical classifier with absolute 

measure, or a canonical classifier with square measure . I, J, and K 

are numbers of groups, entered parameters, and used canonical 

variables. K~min(l-1,J) can be supposed (see Dixon 1975) . 

Table 6.2 Numbers of Multiplications, Additions, and Absolute 
Operations to Calculate Classifiers 

Classifiers 

I~ Bayes Canonical with Canonical with 
absolute measure square measure I 

I 
J,':K (I+J),'<KMultiplication I r,':J I 

I 

!I r,':J (J-1 );':K+r,•: (K-1)(J-l)i<K+P(K-1)Addition 
I.. 

Ii:KAbsolute 
operation 

I I 
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After executing these operations, only f inding a group which has 

either the largest score (in Bayes classifiers) or the smallest score (in 

canonical classifiers) complete classifying an event. Appendix 

demonstrates the comparison of three types of classifiers concerning the 

number of operations required to calculate a classifier. It showed, 

within a range of the number of canonical variables from 1 to 3, 

canonical classifiers with absolute measure need less number of 

operations in most of the combinations of I and J than Bayes classifiers 

do except for some cases of the combinations. Canonical classifiers with 

square measure also has less number of operations than Bayes 

classifiers do with more exceptional cases than canonical classifier with 

absolute measure. 

The hypotheses for these classifiers seemed tight: normal 

distributions and equal covariances for Bayes classification; equal 

covariances for canonical classifiers. These hypotheses have been 

probably violated in the data of this project. The robustness of the 

classifiers to the deviations of data property from their ideal situations 

is to be examined theoretically. Nevertheless, the results have shown 

good abilities of the classifiers. The hypothesis of equal covariances 

can be dropped by deriving the Bayes classifier with the covariance of 

each group if the hypothesis can not be cons idered acceptable. When 

two covariances are used, the classification functions become quadratic. 

Quadratic classification functions may be better in performance, but are 

more complicated in calculation than linear classification functions. As 

mentioned in Chapter 3, a number of other types of classifiers has been 

proposed. The discussion of those other classifiers is beyond the scope 

of this chapter. 
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The advantages of canonical classifiers over Bayes classifiers may 

be summarized as follows: 

(1) Prior probabilities are not necessary for calculation. 

(2) Number of operations tends to be less in canonical 
classifiers, especially those with absolute measure, than 
Bayes classifiers. 

in 

(3) If no 
event 

more than three 
can be mapped on 

canonical variables are used, 
a canonical variate coordinate. 

each 

(4) The hypothesis of normal distributions is not necessary. 

Canonical classifiers performed a little inferior t o Bayes classifiers in an 

example of th is project, but the performance may be improved if a 

procedure for selecting parameters is changed as suggested by McKay 

and Campbell (1982a,b). 

Feasibility of the Real-time Operation 
by a Microcomputer 

The programs of Method A for the testing stage, written in 

FORTRAN (see Appendix D), were rewritten in PL/M-86 (Version 2. 1) 1 

with some modifications of programming. After compiling the PL/M-86 

program by the ISIS-11 2 
, the object codes in the assembly language 

were obtained. The main modification was the subroutine for the link 

buffers. The following two PL/ M-86 procedures facilitate a pointer of 

an array: 

1. The reference for the programming was PL/M-86 Programming 
Manual for 8080/8085-Based Development Systems (Intel Corp., 1980). 

2. Intel Systems Implementation Supervisor in the operating 
system for the Intellec and Intel lee Series II microcomputer development 
systems. Intel Corp., Santa Clara, California. 1980. 
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SH U:PROCEDURE(J,N) INTEGER; 
- DECLARE (J,N) INTERGER; 

IF J>=N THEN J=J-N; 
RETURN J; 

END SH_U; 

SH D: PROCEDURE(J, N) INTEGER; 
- DECLARE (J,N) INTERGER; 

IF J<N THEN J=J+N; 
RETURN J ; 

END SH_D; 

The pointer moves up and down within the limit of an array by the 

procedures SH_ U and SH D, respectively. By keeping track of the 

current pointer of an array and moving up or down the pointer to 

address a desired element of an array , an iterative routine of shifting 

operations appearing in the FORTRAN subroutine SH I FT in Appendix D 

is avoided. By this pointer usage, the number of operations needed to 

shift in or out a data has become constant regardless of the length of 

an array. By assigning the lengths of some a rrays multiples of two, 

some multiplications for addressing in the ass embly program could be 

replaced by b it-shift operations . The c lassification scores of 

classification functions was calculated by floating-point operations 

provided by a co-processor INTEL8087 . The lists in the manuals for 

INTEL8086 provided by INTEL Corp . showed the number of clocks 

needed for executing each assembly operation. By summating the 

number of clocks for the operations in the program, the required 

computation time was estimated. In the following, C is the integer 

number of clocks needed to execute the prog r am, NC is the integer 

number of groups, and NV is the integer number of parameters in the 

classifier. As a result, the summated number of clocks was 

C= 7015+901*NC+892*NC*NV. 
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Suppose C < 5 msec./0.2 µsec . = 25000 because a 5 MHz clock is to be 

used. Then, 

7015+901*NC+892*NC*NV < 25000. 

Therefore, 

NV< (17985 - 901*NC)/892*NC. 

If NC=2, then NV<9.07, that is, NV~9. 

If NC=3, then NV<5 . 71, that is , NV~5. 

If NC=4, then NV<4 . 03, that is, NV~4. 

Thus, the system of Method A for the testing stage can be implemented 

with a classifier which can include 9, 5 or 4 parameters at most when 

the number of groups is 2, 3 or 4, respectively . The results in 

Chapter 5 show that the system can perform saticfactorily with these 

numbers of entered parameters and specified groups . The operation 

speed of processors is getting faster and fa ster these days. Array 

processors can achieve millions of operations in a second. For example, 

the array processor AP500 (Analogic Corp . ) has a peak MF LOPS (i . e . 

theoretical maximum millions of floating-point operations per second) of 

9, which is decades faster than the INTEL 8087 . There are also better 

processors available currently (see Cohler 1983). This trend will 

surely spread into the microcomputers. Considering the above fact , the 

maximum numbers of entered parameters and specified group will be 

getting larger. Also , multichannel processing by a processor will get 

easier to be realized with less number of processors . 
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Data Reduction Aspects of the System 

The process of the EEG analysis can be viewed as a data 

reduction process. The raw EEG contains the significant and 

insignificant information. The analysis process 1s to discard the 

insignificant information, and to make the significant information 

explicit . The 15 EEG data sets in this project had 209,728 data points 

when digitized. The data were segmented into 25,384 waves, for 

example. Since each wave contains 4 parameters in Method A, the 

number of data points became 101,536, which was about 2 times 

reduction of data points. If only peak waves (electrically negative) are 

of interest, the reduction rate is 4. If a better low-pass filter for 

segmentation is used as discussed in Segmentation, Experimental Resu Its 

in this chapter, the reduction rate would be larger. As seen by the 

results of reconstruction in Fig.4.13 and Fig 5.11, these data points 

were sufficient to keep the major information of the EEG in a different 

way than the original EEG data. The data were further converted into 

event parameters, and classified. By the classifier A14R. Sl4, 125 

events out of 12 , 692 events were classified as SSW, thereby reducing 

the number of events 102 times . Supposing that each event contains 

18x4 parameters in Method A, the 125 events contain 9,000 data points, 

which can regenerate the detected portions. When comparing the 

number of 9,000 to the number of the original EEG data, the reduction 

rate of data points became about 23. 

https://Fig.4.13
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Comparison of SSW and the System in 
This Project with Others 

Table 6.3 compares some of the averaged parameter values of the 

events in the three training data sets (see Appendix J for all the 

averaged parameter values) with an example of the corresponding 

averaged parameter values in the paper by Ktonas et al. (1981) . 

Fig.6.2 illustrates the parameters defined by Kt onas et al.. The values 

from the paper by Ktonas et al. are not exact ly comparable with those 

from this project because the recording, the f ilters, the definitions of 

the parameters, the algorithms to derive the parameters, etc. are 

different . For instance, in their system, three bandpass filters with the 

passbands of 1-70 Hz, 0.25-175 Hz, and 1 . 5-85 Hz were used; dig ital 

differentiators were used and had some bandpass effects; the sampl ing 

rate was 1 kHz; the recording was from the scalp; the slopes were t he 

maximum first derivative in the up - stroke hal f -wave and the minimum 

first derivative in the down-stroke half-wave. Nevertheless, it seems 

to be of some interest to compare these values in Table 6.3 to acquire a 

perspective to the data used in this project. 

First, compare SSWA with Sharp waves in Table 6.3. The 

durations of SSWA and Sharp waves appear to be similar. The 

amplitudes of SSWA and Sharp waves are very different. (The sign of 

AMlO is ignored . ) But, if Amplitude A and Amplitude B are multiplied 

by a factor of 0 . 14, they become close to AM9 and Am10 in the values. 

Also, 

AMlO/ AM9== (Amplitude 8)/(Amplitude A)== 1 . 5 
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Figure 6. 2 Hypothetical EEG Wave and Related Electrograph ic 
Parameters . (Partly copied from Ktonas et al . 1981). 
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Table 6.3 ' Comparison of Averaged Parameter Values around a Core-wave with Those 
presented by Ktonas et a I. ( 1981) . The values are means with standard 
deviations in parentheses. 

This project l<tonas et a I. ( 1981 )** 

Recording Depth record Ing Recording Routine scalp recording 
·---- ------·- ------

Referential 
---- ·• - ·-- ·- - - -- - - ··- - - ----· .. ------- ----- -- --------· -

Referential Referential , 
lie 8 Ipolar 

Type of waves BCI< SSWA SSWB ART Type of waves Sharp waves Spikes 

Sample number 2290 21 3 1 Sa11ple nu11ber 73 121 

OlO*(msec) 79.6 121. 0 43.3 75.0 Duration 1 (11sec) 116. 3( 25.6) 79.5( 27.7) 

DU9 (msec) 38.6(23.1) 42.4( 18.4) 28. 3( 14.4) IIO.0( 0 . 0) Duration A (11sec) 46.7( 16.3) 311.5( 22.0) 

DUlO(msec) 41.0(23.11) 78.6(26.8) 15 . 0( 0.0) 35.0( 0.0) Duration B (11sec) 69.6( 17. 5) 115.0( 17. 1 I 

AP9 (µVI 6.7( 5.2) 26. 7( 11. 11) 60 . 4(20 . 3) 33.3( 0 . 0) Amplitude A (µVI 198. 3( 117. 6 ) 1IIO. 3( 102 . 5 ) 

APlO(µV) -6 . 7( 5.0) -110.5( 10.9) -61.6( 16.0) -35.2( 0 . 0) Amp 11 tude B (µV) 268 . 11 I 152. 4 I 239.9(138.5) 

SllO(µV/msec) 0. 16(0. 11) 0.65(0.39) 5. 11911. 6•1 I 3.27( 0 . 0) Slope 1 (µV/11sec) 8.9( 5.3) 8.2( li.9) 

S210(µV/msec) -o. 15(0.10) -0.98(0.30) -5 . 79(1.85) -3.115( 0.0) Slope 2 (µV/msec) 6.8( 3. 5) 10.0( Ii.II) 

ClO*(µV/msec I -0. 16 -0.92 -5.64 -3.36 Sharpness (µV/11sec ) 0.9( 0.6) 1. 2( 0.7) 
-
* D10=0U9+0U10, C10=(S210-S110)/((N-1)/2) where N=5. 
** examples taken from Table II In the paper. 

..... 
CX>_, 
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where those are of SSWA and Sharp waves. The values of the slopes 

are vastly different between SSWA and Sharp waves . But this can be 

explained by the difference in the definition and the calculation of the 

slopes between the two systems. Interestingly , the sharpness of SSWA 

turned out to be almost identical to that of Sharp waves in value . 

Therefore, despite the differences in definition, algorithms, etc. as 

mentioned above, the SSWA waves are morphologically similar to the 

Sharp waves except for proportional reduct ion of the amplitudes . 

Although the · depth recording is expected to be less noisy than the 

scalp recording, the coeffic ients of variations (=(standard 

deviation) / (mean)) were not very different . Secondly, when SSWB is 

compared with Spikes in Table 6 .3, morphological similarity was not 

found. Interesting is that SSWB waves are much sharper at the peaks 

than Spikes. It might have been caused •by the depth recording. It is 

noteworthy that morphological difference between SSWA and SSWB is 

much consp icuous than that between Sharp waves and Spikes . 

Frost (1979) presented the results obtained from three patients 

with focal motor ep ilepsy. In the epileptic EEG recording, although 

whether it was referential or bipolar is not clear, the averaged 

amplitude Af , the Averaged duration Df, and the averaged sharpness 

Cf were listed on the table of the paper. Eac h recording lasted 1- to 

10-min . , had about 100 sharp transient waves detected by his system . 

A bandpass filter of 0.5-42 Hz was used in preprocessing , and the 

sampling rate was 250 Hz with 8 bit A/ D convert er . 

There seems to be relations as follows: 

Af=AM9+AM10 and Cf/ 2=Cl0. 
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Especially, Cf/2 was derived in the same way Cl0 was derived. The 

results presented by Frost showed Af=96±35. 9µV and Cf/2= 

l .35±0.4µV/msec 2 (for an awake patient), and Af=l 67±50. 0µV, 

115.8±44.8µV and Cf/2=2.4±0.6µV/msec 2 
, 2.0±0.6µV/msec 2 (for two 

patients of slow wave sleep). Since his system discarded the waves in 

which the duration is over lO0msec., the detected waves is more 

adequate to be compared with SSWB or Spikes in Table 6.3. Then, the 

following relations a re observed: 

AM9+AM10 < Af < (Amplitude A) + (Amplitude B) 

C10 > Cf/2 > Sharpness. 

Based on the above observations and comparisons, the following 

points may be speculated. 

(1) The SSWA waves possess the morphological property similar 
to that of "sharp waves" in a scalp recording. 

(2) The SSWB waves are much sharper at their peaks than 
"spikes" in a scalp recording presumably because of the 
depth recording. 

(3) The coefficients of variations of SSWA and SSWB are not 
much less than those of spikes and sharp waves in a scalp 
recording . Therefore, · the proposed system may be able to 
attain the same level of success in SSW detection even if the 
data are obtained from a scalp recording. However, the 
SSWB waves were much more conspicuous than regular spikes 
in a scalp recording, and the background waves in the data 
in this project might have been rather benign. 

Table 6.4 compares the materials and methods of this project with 

those presented in the paper by Oliveira et al. (1983). There are 

advantages and disadvantages on the both sides as indicated in the 

table. 

It will be necessary for this proposed system to be tested using 

the data from more than one patient, and to standardiz~ the parameters 



Table 6 . 4 Comparison of Materials and Methods in This Project with Those in the Paper by 
Oliveira et al. (1983). 

-- - This project O I Ive I ra et a I . (1983)- - ·--. - -- -

Recording depth, referential scalp, b I po I a r 

A/0 conversion 10 b I ts 8 bl ts 

Number of patients 1 10 

Length of data 17.5 min . A 50x10 sec. 

Length of training data 72, 144, or 216 sec . A 50x5 sec. 

Preprocessing digital lowpass fl lter screening by a curvature threshold 

Segmentat Ion lowpass f I I ter. a analog differentiators. 
digital extrema detection. a hybr i d zero-crossing detection of data 

and derivatives. 

Parameter Iza t Ion 11 parameters per wave In Method A. 8 parameters.
1 parameter pe r wave in Hethod T. 
multi-wave eventA. 
no standa rdi zat ion . standardization by standard deviations. 

Parameter selection discriminant analysis by BDP7H . A 4 parameters were selected on the basis 
significance level was applied A of ranking by Hahalanobls distance and 
to select the numbe r . empirical experience. 

Class I ficat Ion linear classificaton functions A 4 Independent thresholds set by
(Bayes or canonical) using classiflcaLion results In 

training data (I . e . minimizing D=SN+SP) and 
empirical experience . 

Eva luat Ion 1 HGer. 8 EEGers. 
PRE measures. A SN(sensltivity) and SP(specificity). 

Artifact rejection specifying goup ART a additional routines specially
designed for an EHG complex and an 
eye movement . 

Real-time proce ssing feasible I 4 channel on-line processing 
I 

Microcomputer appl !cation fea s ible a hybrid microcomputer system with HC6800 

A: advantageous . a: advantageous possibly. 

A 

A 

a 

A 

a 

I A 
I 

A 

(0 
0 
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in some method to seek an adjust - free system from intra- and inter­

individual variances. The data screening by a curvature threshold is 

helpful to reduce the number of events to be classified . Eight 

morphological (or descriptive) parameters in t heir system will not be 

necessary, but a parameter for curvature, wh ich can be included as 

(S210-S110)/2 in the proposed system, will help improve t he 

performance. It may sound better and more desirable to evaluate t he 

results on the basis of the EEG scores of more than one 

electroencephalographer. However, it should be emphas ized that a 

detection system should seek either (1) to mimic an electro­

encephalographer 's scoring, or (2) to establish a standard criteria for 

SSW, which has not been done quantitatively and systematically . It is 

impossible to fulfill both the points (1) and (2) at once because of a 

great discrepancy in detecting individual SSWs among electro­

encephalographers as described in Chapter 3 . The benefit of employing 

several electroencephalographers should be to possibly find some 

genuine principles consistent and objective among the 

electroencephalographers ' scoring, so that the st andard criteria for SSW 

may be established on the basis of these principles . Once the standard 

criteria are established this way, the goal of a detection system is to 

implement a system which classifies events according to the standard 

criteria. If the standard criteria has not been established, the goal of 

a detection system wou Id be to be able to imitate the SSW detection of 

an electroencephalographer as far as he/ she is, in some fashion, 

consistent in detecting SSW. It is conceivab le that the system will 

contribute to checking the consistency of electroencephalographer s ' 

scoring and eventually establishing the standard criteria for SSW. 
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It is encouraging that the proposed system could perform well for 

the testing data of 17. 5 min. long where the training data is only 1/15, 

2/15 or 3/15 as long as the testing data. The digital filters used in 

the proposed system was very simple, fast and linear phase. Analog 

filters are fast, but usually not linear phase. The multi-wave 

parameterization was a successful idea. In parameter selection and 

classification, the proposed system had obvious advantages in 

automating the procedures and avoiding subjective decisions. The PRE 

measures applied in this project, i.e. Pl, P2 and P3, seem to have more 

theoretical background and broader applicability than the corresponding 

measures presented by Oliveira et al. (1983). It is a possible 

advantage for the proposed system to be able to classify any type of 

artifacts by labeling the samples in the training data as artifact types. 

The proposed system has been shown to be realizable as a real-time 

system and applicable to a microcomputer system with a help from a 

host computer system during a training period. 

Prospective Improvements and Applications 
of the Proposed System 

This section discusses prospects of deriving classifiers 

sequentially, multichannel analysis, standardization of parameters and 

SSW criteria. Then, a model system for cl inical application of the 

proposed system is demonstrated as well as possibilities of the 

applications to other analyses. 

Sequential Derivation of Classifiers 

If the algorithm for deriving a classifier can accept a sequential 

input of data, there are some advantages. In the training stage, it 
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saves memory space because only current data is necessary for the 

calculation. In the testing stage, it can constitute an unsupervised 

learning system which corrects the classifier in accordance with a 

gradual change of data property by utilizing the classification results 

obtained by the classifier itself, or some statistical property of the 

results. If not used as an unsupervised learning system, it enables a 

supervisor to alter the characteristic of the classifier gradually and 

easily by adding the classifier another data for recalculating the 

classifier. This ability of a classifier, as well as the standardization of 

parameters may contribute to making the system free from adjusting to 

intra- and inter-individual variances. Some researchers already applied 

a learning classifier and obtained good result as described in 

Adjustments of Classifiers, Chapter 3. Perceptron (Rosenblatt 1962) is 

a classic example, and LSM algorithm (Kohonen 1979) and ALSM 

algorithm (Oja and Kuusela 1983) are recent examples among many 

algorithms of this kind. LSM and ALSM algorithms reportedly had 

successful results in speech recognition. 

Multichannel Analysis System 

As explained in Chapter 3, the EEG recording is a multichannel 

recording, and interchannel relationship must be considered in EEG 

analysis. One possible and straightforward way of making the proposed 

system multichannel processing may be the following. From a view­

point of pattern recognition, ma~ing the recording multichannel means 

adding another dimension to the pattern to be dealt with. In a single 

channel analysis, the pattern is spread time-wise. In a multichannel 

analysis, the pattern is spread both time-wise and channel-wise. When 
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it can be made sure that a single channel analysis detects all the 

candidates for SSW, the classification of the multichannel analysis is 

necessary only if a candidate SSW is detected by a single channel 

analysis. The methods for segmentation and parameterization will be 

necessary to be modified, and will cause an increased number of event 

parameters. It must be noted that the increased number of event 

parameters does not necessarily cause the increase of processing time to 

make parameterized data if pointers for arrays are utilized in the 

program as explained in Feasibility of the Real-time Operation by a 

Microcomputer, Chapter 6. 

Standardization of Parameters 
and SSW Criteria 

A parameter may be standardized by the standard deviation 

(Oliveira et al. 1983) or the moving average (Frost 1979), for example. 

The standardization of parameters helps (1) incorporate background 

activities around SSW into parameters as discussed in Evaluation of 

Classification Results, Chapter 6, and (2) make the system adjust-free 

from intra- or inter - individual variances. 

The parameters in the system could be easily standardized by 

increasing the lengths of buffers for example, so that standard 

deviations may be calculated. However, it will increase the calculating 

time. If a recursive moving average digital filter is used, it may save 

the buffer space and the calculation time . It seems necessary either to 

exclude the SSW and artifact portions from calculating the standard 

deviations or to have a long period of the data for calculating the 

standard deviations. The system by Frost (1979) implemented the 
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exclusion of the spike portion from calculating the value of moving 

average. 

In the section of Classifiers, Chapter 6, the hypotheses were 

viewed as obstacles , but if the parameterized data conforming to the 

hypotheses is considered the ideal, the data can be regarded as 

" standard data" . The standard data may be represented by the 

covariance and the group means. It is hard ly possible to create the 

ideal data from the real EEG data, but it is possible to do it artificia lly. 

That is, the tra ining data sets may be ed ited, or some idealized 

waveforms may be created and included, for example . It leads to a 

possible solution to how to describe the criteria of transient wavefo r ms 

such as SSW or artifacts in a systematic, quantitative, and objective 

way. The standard SSW criteria may be represented by the form of a 

training data set, a parameterized data set, or a set of statist ical 

parameters of the hypotheses such as means and covariances. 

A Model System for EEG Analysis 

Fig. 6 . 3 presents a possible system configuration for EEG analysis. 

It could be a general EEG analysis system, but the following paragraphs 

of the section focuss on the system applied to SSW detection by Method 

A. 

In the training stage, the host computer inputs the training data 

through the Data Storage Device 1 either off-line or on-line . The 

training data contain the wave parameters. The Data Storage Device 1 

can be a cassette tape drive, a diskette drive, etc. The input 

parameterized data are reconstructed and displayed on the Display 

Device along with the ticks of extrema marke r . If the reconstructed 
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data display is not satisfactory, the basic data may be displayed 

instead. A supervisor labels each wave. In reality, only · SSW waves 

and, if necessary, artifact waves have to be labeled because the rest 

are all considered as background waves. If possible, doubious SSW and 

successive SSW are recommended to be labeled. There will be various 

ways to input the labels into the host computer. For example, by 

numbering the wave sequentially and displaying the wave number on the 

site of extrema marker corresponding to the wave, the supervisor on 

the terminal type the wave number in with its label. Events are 

organized based on the wave parameter data that are already labeled. 

The event (parameterized) data adopt the labels of the wave 

corresponding to the core-wave. The event data are then analyzed by a 

discriminant analysis program such as the BMDP7M program. If there is 

not enough storage capacity in the Host Computer System, the Storage 

Device 2 can be temporarily used. The Data Storage Device 2 can be a 

digital magnetic tape drive, a disk drive, etc. The program selects a 

subset of event parameters, and provides a classifier. If more than one 

type of waveforms are specified and the number of types is not known, 

a cluster analysis may be included before labeling. The microcomputer 

system stores a program for SSW detection , and then the input 

parameters necessary to initialize the program including the input 

parameters for the classifier are transferred from the Host Computer 

System to the Microcomputer System either on-line or off-line. 

Now the system is ready for the testing stage. The 

Microcomputer System inputs digitized EEG data and processes the data 

by the program that includes the procedures of preprocessing, 
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segmentation, parameterization, and classification. The result is 

displayed by the Display Device, and stored by the Data Storage Device 

1. Several output forms may be conceivable. For example, the result 

output may consist of the parameters and time of each event classified 

as SSW. The wave parameters with the time, wave number and the 

label obtained by a classifier may be stored by the Data Storage Device 

2 and the reconstructed data may be displayed with a mark for the 

label of the wave after classification. If canonical variable coefficients 

are calculated, each data point of the events can be displayed on a 

canonical bivariate plane or in a canonical trivariate space using two or 

three canonical variables, respectively. The data stored in Data 

Storage Device 2 may be used for a further analysis such as making 

diagnosis. The portion of the system in Fig.6.3 referred as Minimum 

System for Testing Stage can function independently once the program 

is initialized with the input parameters. It will provide patients with a 

compact equipment for epileptic EEG monitoring. 

Possible Applications to Other Analyses 

The proposed system may be applied to other data analyses than 

the EEG analysis of SSW with proper modif ications: seismic signal 

analysis for modern seismic exploration systems, submarine detection 

(see Cohler 1983); ECG analysis, especially abnormal ECG classification 

(e.g. arrhythmia); EP (evoked potential) analysis; speech recognition . 

Concerning the digital signal processing of EP, Aunon (1983) stated 

that ensemble averaging remains one of the most used and, at the same 

time, abused tools in EP research. -Then, he presented a system for 

classifying single event-related potentials using linear and quadratic 
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classification techniques. Feldman (1983) suggested in his recent 

review an advantage of the arrhythmia detection system that interacts 

with a supervisor. The system proposed in this paper can be appl ied 

to these kinds of systems with some modifications. A difficulty may 

occur in these applications if (1) a core-wave can not be adequately 

defined or (2) the order of the waves in an event portion is not 

regular among events in the same group, for instance. To adjust to 

the situations, the algorithms for segmentation and parameterization may 

be modified appropriately. 



CHAPTER 7 

CONCLUSION 

An automated EEG pattern recognition system for epileptic waves 

was developed in this project. 

It was recognized at the beginning of this project that the 

automation by computers was demanded in clinical and research 

environments and yet incomplete in spite of many attempts. The problem 

appeared to be attributed to not only a lack of proper algorithms for 

computers but also the nature of EEG, its traditional recording, and its 

evaluation schemes. Chapter 2 served to reveal the nature and 

significance of EEG and SSW, and the methods of traditional EEG 

recording. Chapter 3 reviewed the previous researches relating to 

automated EEG analysis. The review was done from a view point of 

pattern recognition because the SSW detection was conceived as a 

pattern recognition. These two chapters benefited in giving broad 

perspective on this research and developing the analysis procedures of 

this project. 

The analysis p roced u res of preprocessing, segmentat ion, 

parameterization, and classification were established as essential 

procedures for SSW detection. In the preprocessing, the digitized EEG 

data was filtered by a simple, linear-phased, low-pass, digital filter . In 

the segmentation, the preprocessed (basic) data was further filtered by 

another simple, linear-phased, low-pass, digital filter, and segmented 

into half-wave segments at each turning point. Because these filters 
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were linear-phased, the delays caused by them could be cancelled by 

merely shifting the data points. In the parameterization, the data were 

processed in the following way. (1) Two consecutive half-waves of the 

basic data constituted a wave. A wave was either a peak wave or a 

trough wave depending on the polarity of the extremum of the wave . 

(2) In Method A, each wave brought forth four parameters, i.e., an 

amplitude and two slopes at the extremum of the wave, and a duration 

between the current and the next extremum. In Method T, each wave 

brought forth one parameter per template: one or two templates were 

used, and the three measures tested for template matching were mean 

absolute error, mean square error, and correlation coefficient. (3) 

Furthermore, an event was defined as consisting of a set of parameters 

for several (18 in the experiments) waves. In the classification, after 

labeling the events in training data sets using the EEG scores of an 

electroencephalographer, the BMOP7M program (Dixon 1975) (1) selected 

a subset of parameters in an event statistically, (2) calculated the 

coefficients of linear classification functions, and (3) applied the 

classification functions to classifying the events in testing data sets. 

The labeling of the events may be helped by making use of a clustering 

analysis. In selecting the subset of parameters, an overall significance 

label was used . Either Bayes or canonical classification functions were 

used. Three PRE measures were introduced for evaluating classification 

results, and reasonably reflected the different aspects of the 

classification resu Its. 

The experiments were designed to ver ify the feasibility of the 

proposed analysis procedures in SSW detection and to evaluate their 
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performance under various experimental conditions in the classification 

procedure. Also, the corrected classification was introduced, in which 

a tolerance for the nearmiss SSW detection was allowed. The 

experiments were done using Method A and Method T (including Method 

TA, TS, and TC). The experimental conditions changed were the 

numbers of parameters entered into a classifier, training data sets, and 

specified groups; the use of retraction of the adjacent events to SSW; 

the assignment of prior probabilities for Bayes classifiers; and the type 

of classifiers. 

The results showed the following as for the changes of 

experimental conditions. 

(1) The stepwise parameter 
although criticized, was 

selection 
useful, and 

by 
the 

using F-statistics, 
use of the overall 

significance level was shown to be reasonable. 

(2) The training data set of 72 second long with 9 SSW samples 
provided good classifiers, and the training data set of longer 
period with more SSW samples did not attest providing better 
classifiers. 

(3) Assigning twc;, types of SSW events was successful when the 
nearmiss SSW detection was tolerated in Method A. 

(4) The retraction of the adjacent events to SSW in the training 
data sets improved the performance of classification when 
Method A was used and the nearmiss SSW detection was 
tolerated. In the other cases of the experiments, it did not 
seem to be much helpful. 

(5) It was indicated that the assignment of prior probabilities for 
the Bayes classifiers was not crucially influential to the 
classification results. 

(6) The canonical classifiers with either absolute measure or 
square measure performed nearly as good as the Bayes 
classifiers when more than one canonical variable were used. 

Method A was more advantageous in calculation than Method T. 

Also, from the viewpoint of data reduction in the system, the 
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reconstruction capability in Method A was mentioned as a significant 

advantage. The classifier A14R. S14 is a good example·. At the training 

stage, it classified all the events correctly in the training data set of 

72 sec. long with 9 SSW and 1 artifact samples. At the testing stage, 

the data was 17. 5 min. long with 80 SSW and 3 artifact samples. It 

classified the data, detecting 76 SSWs correctly and misclassifying 40 

background events as SSW, giving the Pl, P2, and P3 measures the 

values of 9590, 6590, and 7790, respectively. Interestingly, it was found, 

using some results in Method A, that when the misclassified background 

events were averaged, the morphology was very similar to that of SSW. 

In Method T, Method TC was unexpectedly poor in performance. 

Method TA was simpler in calculation than Method TS, and yet provided 

nearly the same classification success as Method TS. Method T can be 

considered as advanced template matching because of using multi-values 

to classify an event. The classifier TA23R . S24, as a good example, 

detected 73 SSW and misclassified 50 background events in the testing 

data, giving the Pl, P2, and P3 measures the values of 91 90, 59%, and 

-o,7')9, respectively. It was notable that, despite the poor samples of 

artifacts, Method T was very good in rejecting artifacts whereas Method 

A failed to be so. 

After the programs of the analysis procedures of Method A in the 

testing stage were modified and converted to a program in an assembly 

language, the execution time of the program was estimated. It showed 

that the program, stored in a microcomputer system, can run in real­

time with a sufficient number of parameters included in a classifier for 

classification. 



204 

The system developed in this project was shown to be 

advantageous in many points to most of the previous systems, but will 

be improved by integrating the points suggested in Chapter 6. 

Suggested were filter improvement in segmentation, introduction of 

other types of parameters and standardization of them, use of a better 

program for parameter selection, investigation of canonical classifiers 

which seems to be advantageous in many aspect s. Some other ideas to 

improve the detection system such as sequentia l derivation of classifiers 

and standard SSW criteria were discussed . 

By comparing the data property in this project with others , it 

was speculated that even though the data from depth recording were 

used in this project, the system may be applied to the data for scalp 

recording without los ing the quality of performance very much. A 

model system was presented as an example of the clinical application . 

The applications to other analyses were also mentioned. 

The objective of this project was, as stated ir-1 Chapter 1, to 

develop an automated detection system of epileptic waves in EEG that is 

real-time operating, microcomputer-applicable, able to reject artifacts , 

self-adjusting to intra- and inter-individual variances, and contributing 

to systematic, quantitative and objective descr ipt ion of epileptic waves . 

The system proved the feasibility of real-time processing and 

microcomputer-applicability. It seems to cont r ibute to a systematic , 

quantitative and objective description of SSW. As a prospect, standard 

criteria of SSW was discussed and standardization of parameters may be 

contributing to it. As for the ability to reject artifacts, Method T 

showed a good potential, but Method A did not. However, further 
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investigation is necessary for the artifact rejection in Method A because 

the number of artifact samples in the data were very poor. Concerning 

the ability for the system to be free from adjusting to intra-individual 

variance, the experiments showed that the classifiers obtained with the 

training data that was one fifteenth of the testing data in length could 

maintain the performance well in the testing data. However, further 

investigations are recommended to draw a conclusion, using longer data. 

As for the inter-individual variance, the results could not be conclusive 

because the data were not taken from more than one subject. If a 

training period is allowed for each subject, however, the problem for 

inter-individual variance dissolves practically. Besides, standardization 

of parameters and/or a self ,. learning ability of the system were 

suggested as prospects for better performance and self-adjustability of 

intra- and inter-individual variances . 

Although this system was developed for SSW detection, it can be 

used for other types of transient wave analyses with some modification 

as mentioned in Chapter 6. 
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Appendix A 

Stepwise Selection of Parameters 

The following paragraphs explains the univariate F-ratio criterion 

for stepwise selection of parameters in multivar iate problems. 

The Wilk's Lamda Criterion 

It is defined as follows (see Kshirsagar 1972, pp. 290-292): 

IAI 
A(n,p,s)= 

where 

s 
B= I z z ', 

m=l m m 

z ~ N (z 1010 form= 1, 2, ... , s . 
m p m 

Note: W (DI n I I) indicates that D has the p-variate Wishart distribution p 

with n d.f . (degrees of freedom) and the covariance matrix I. 

N (x Iµ IO indicates that x has p-variate nonsingular normal distribution p 

with the mean vector µ and the (positive definite symmetric) covariance 

matrix I. z is 
m 

named a contrast vector . This statistic is used to test 

any hypothesis which is equivalent to 

for m=l, 2, ... ,s 

where E(zm) indicates the mean of the var iable zm . 

Comparing to the criterion 1B1/IAI, IAI/IA•BI is more suitable on 

account of its tractability, and its relation to the likelihood ratio 

criterion. 
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One-way MAN0VA 

Let x .. k for i=1,2, ... ,g; j=1,2, . . . ,n . ; k=1,2, ... ,p be the value of
IJ I 

the k-th parameter of the j-th event in the group i. Suppose each 

group has a p-variate nonsingular normal d istribution with the same 

covariance matrix l:, but different group mean vectors µ . for 
I 

i=1,2, ... ,g. The sample group mean vectors for the group i is 

1 n. 
u.= {x . k for k=l,2, ... ,p; x. k= l: I 

x .. k}
I I. I. n. j=1 IJ 

I 

The corrected sum of squares and sum of products of the sample of the 

group a is 

n n 
S = {s. . for i,j= 1,2, ... ,p; s .. = l: al: a(o(r,k)- 1/n )x. x.k } 

a IJa IJa r=l k=l a 1ra J a 

{1 for r=k . 
where o ( r, k) =i 

:, 0 for r # k _: 

Note: S / ( n -1) is an unbiased estimate of the covariance L 
a a 

It is shown (see Kshirsagar 1972, pp . 60-61) that 

1 

u .- N (u. l µ-ln.- 2 !)I p I I I 

S.-W (S.ln--11O
I p I I 

and u. and S. are independently distributed. 
I I 

Define the pooled sample covariance as 

A= s •s • ... •s1 2 9 

then A~ W (Aln-glt)p 

g 
where n-g= l: (n .- 1) (see Kshirsagar 1972, pp. 73-77). 

i=l I 
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Suppose a contrast vector 

v,= h11µ1+ h12µ2+ ... + h1gµg 

where h + h +.. . + h = 0
11 12 19 

The estimate of the contrast vector is 

Define 

z1= rri,u1+ g 12rr,;u2+... +g ~ug 11 19 9 

hl. g -½
1where g 1.=-(}: h

1
. 2 /n.) for j=l,2, ... ,g. 

I rr,:- j=l J J 
I 

g g ½ 
Then, ! 9 2 = 1 and ! g .(n./N) = 01. 

1i=l I i=l I I 

where N= n + n +... •n .
1 2 9 

It can be shown (see Kshirsagar 1972, p.369) that 

g g g -1 
z z '= (! h .u.)(! h .u .)'(I h . 2 / n .) 

1 1 ._ 1I I . _ 1I I . _ 1I I 
1-1 1-1 1-1 

In general, when s contrasts exist, 

z z '= (Uh )(h 'N-lh ) -l(Uh )' 
mm m m m m 

=Uh (h 'N-l h f 1h ' U' for m=l ,2, ... ,sm m m m 

where h = [h 
1

, h 
2

, ... , h ]' g by 1, and 
m m m mg 

U={u 1 u 1... 1u } p by g.1 2 9 

Therefore 

s 
B= }: z z '= UH(H'N-l H) -l H'U' 

m=lm m 

g by s . 
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When the test is whether the s contrast vectors (s$ g-1) z1, z2, ... , Zs 

are significant for the hypothesis H : E(z )=O for m=l ,2, ... ,s,0 m 

has the Wilk's A(n-(g-l)•s),p,s) distribution. 

" Pivot" operation is defined as follows: When 

where A is a q by q matrix. A "pivot" operation on parameters11 

1,2, ... ,q in A transforms A to11 

A. 1 = 

The lower right submatrix 1s the matrix for partial variances and 

covariances. 

Define 

(A. 1) 

when A {a } . 11 = 
11 

Now replace A _1 for A.22 

Let A ={a _1} where a _1 is the first diagon~I element in A _1 .11 22 22 22 

Pivot A with a parameter in A 11 , and name the matrix A . 1, 2 instead of 

A. 1. 
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Apply the formula (A.1), and name the matrix A _ instead of
1

,
22 2 

A22.1 · 

Then I A22. 1 I= IA. 1, 2 I =a22. 1 I A22. 1, 2 I . 

Hence 1Ai=a11 a22 _ _1, 2 1.1 IA22 

Likewise A. 1, 2 , 3 and A22 _ are obtained.1, 2 , 3 

Therefore A=a 11 a22 _ _ _1, 2 , 3 1 is shown.1a33 1, 2 1A22 

By repeating the similar procedure, it is shown that 

A-a a a a Thus, the Wilk's Lamda statistic - 11 22 . 1 33 . 1 , 2 · · · pp . 1 , 2 , . . . , p - 1 · 

may be expanded as a product of partial variances (see Hawkins 1976): 

IAI/IVi= alla22.la33.1,2'"app.1,2, ... ,p-l = ~ u. 
i=l I 

V 11 V 22. 1V 33. 1 , 2 ... V pp. 1 , 2 , ... , p-1 

where V= A•B and U.= a .. 1 ? . 1/v .. 1 ? • 
I II. ,-, ... ,1- II. ,- ,· ·•,I- 1 

Suppose that A. , V. and B. a re the submatrices consisting of the first j
J J J 

rows and columns of A, V and B. Then 

IA-1/IV -i =(!A. 1 1/JV. 1) U.
J J J- J - 1 J 

Therefore, (1) U. is the statistic for additional information in the j-th
J 

parameter, and (2) the optimal subset of any given size j is that for 

which the ratio I A. J /IV. J is maximized. The test ratio for entering the 
J J 

j-th parameter is U., and that for removing the j-th parameter entered 
J 

1s 1/U.. It is shown (Ellenberg 1973: see Hawkins 1976) that 
J 

1- U. N-g-i•l
IF.(s,N-g-i•l)= ---•----

I u. s 
I 

v .. 1 2 . 1 - a .. 1 2 . 1 N-g-i•l
II. , , ... ,1- 11. , , . . . ,1- • ____= 

a .. 1 ? · 1 s 
II. ,-, , .. ,1-

has a F distribution with s and N-q•l-i degrees of freedom. 
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F. is an univariate F-ratio for the i-th parameter. Suppose that the 
I 

first q parameters, which are placed in the first q rows and columns of 

the matrix, have been already selected. Use the univariate F-ratio for 

testing whether the k-th parameter is significant as follows: 

(1) select the k-th parameter if the following F-ratio is significant; 

1-r N-g-q 
Flk(s, N-g-q)= 1 •---

r1 s 

where r = s k k. 1 , 2, ... , k-1 , k+ 1 , ... , q 
1 

vkk.1,2, ... , k-1, k•l, .. . ,q 

(2) remove the k-th parameter if the following F-ratio is significant. 

1-r N-g-q•l
2---•----

s 

s 
where rz-- k k · 1' 2 ' · · · ' q 

vkk.1,2, ... ,q 

In the stepwise algorithm, the parameter selected is the most significant 

of those available and the parameter removed is the least significant of 

those available. This procedure necessitates the consideration of the 

simultaneous nature of the testing situation when the significance levels 

are to be checked. Hawkins (1976) suggested to use the following 

significance levels when a and a are predetermined levels for enteringe r 

and removing a parameter respectively: (1) enter the most significant 

parameter only if it is significant at the level of a / (p-q) when there 
e 

are q parameters already entered, (2) remove a parameter entered if it 

is not significant at the level of a /(p-q•1).
r 
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Appendix B 

Classification Functions 

Three approaches of linear discriminant analysis are discussed in 

the following paragraphs. The descriptions are mainly based on the 

books of Lachenbruch (1975) and Mardia et al. (1979). The problem is 

to allocate an observation x from an unknown origin to one of the 

.groups, which may be formulated as below: 

Consider g groups rr 1, . . . , I!g, g~2. 

A classifier is the rule to allocate x to I!. if x E R., j=l, . .. ,g
J J 

where x={x.: x. 's are parameters of an event}
I I 

R. n1 R.= ,;, if i # j
I I J 

! : pU RtR (see Mardia et al. 1979, p. 300). 

Bayes Approach 

The criterion of goodness of classification in Bayes approach is to 

minimize the possibilities of misclassification of I! . into I! . . Assume the 
I J 

costs of misclassification of an event for I! . into I!. are equal, the 
I J 

distributions of groups are multivariate normal, and the covariances of 

groups are same and estimated by the sample covariance. 

The classifier allocates x to I! . if 
I 

, )'S-1In p. + ( x-2u. u. = max{ln p . + (x- ½u.)'S-l u. } 
I I I j JJ J 

where p.: prior probability of group I!., u.: average of x in group I!.,
J J J J 

and S: sample covariance. 
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It can be written as 

a. 'x+ b.= max{a .' x+ b.} (B .1)
I I j J J 

where a.= u.' S - l and b . = In p. - ½u.' S- l u . 
J J J J J J 

Define the functions 

g.(x)= ~.' x+ tx . for i=l ,2, .. . ,g.
I I I 

They are called the Bayes linear classification functions. Therefore , 

the classification rule is assign x to a group i if 

g . (x)= max g . (x) . 
I J 

Fisher 's Approach 

Fisher suggested to find the linear function a'x which maximize the 

ratio of the between-groups sample covariance Sb to the within-groups 

sample covariance S . The covariances are assumed to be same . The 
w 

ratio is given by a'Sba/ a 'Swa . The vector a in Fisher ' s linear 

- l
discriminant function g(x)=a ' x is the eigenvector of Sw Sb corres-

ponding to the largest eigenvalue. An event x is allocated to the 

group whose mean score a ·u . is closest to a'x, that is, the classifier 
I 

allocates x to II . if 
I 

la ' (x-u.) i= min la ' (x-u.) I ( B . 2)
I • J 

J 

or 

lg(x)-g(u .)i= minlg(x)-g(u . )I.
I • J 

J 
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Canonical Approach 

Generally the number of non-zero eigenvalues of Sw Sb is no more than 

k=min(g-1,q) where q is the number of parameters used in 

classification. The corresponding eigenvectors a re a
1
, 1=1, .. . , k. Instead 

of using the eigenvector corresponding to the largest eigenvalue as in 

Fisher ' s approach, the other eigenvectors are also used for 

classification in Canonical approach . 

The classifier allocates x to IT . if 
I 

k k 
! {a ' (x-u.)} 2 = min 

11=1 I 
! {a '(x-u .)} 2 

11=1 J 
(8 .3) 

or 

k k 
! ia ' (x-u .)i= min! ia '(x-u .)I. (8.4)

1 11=1 I 1=1 J 

This approach is a generalization of Fisher ' s approach. If the latter 

formula is used for classification, the classi f ier includes only linear 

multiplications and absolute value operations. Define the functions 

k 
g.(x)= ! i a ' (x-ui)I .

1
I 1=1 

Then , the equation (8.4) is written as 

g . (x)= min g. (x).
I J 
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App~ndix C 

BMDP7M 

The stepwise linear discriminant analysis program in Biomedical 

Computer Programs, called BMDP7M (Dixon 1975) was chosen to deal 

with both the selection of the parameters and the derivation of the 

classifier. The input of the program is the parameterized data of a 

training data set. Each event in the data is labeled as one of the 

groups by a supervisor. The primary objecti ve is to get the output of 

classification functions, which serves as a classifier. The program 

output also includes some statistical values, canonical variables, etc. 

The following explains the procedure of the program. The 

description is attributed to the reference manual of BMDP7M (Dixon 

1975). The following notations will be used: 

p = number of parameters available, 

q = number of parameters entered at a given step, 

t = total number of groups, 

g = number of groups used to d efine the classification 
functions, 

n = total number of events in the g groups , 

n. = number of events in group i, 
I 

= value of the k-th parameter 1n the j-th event of group i, 

s = number of contrasts, 

= coefficient for the group i in the k-th contrast, 

= prior probability for group 1. 

Assume for simplicity · the first g of the t grou ps are used to define the 

classification functions. 
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( 1) Read the data xijk i=l, .. . ,t; j=l, ... ,ni; k=l, ... ,p 

(2) Compute 

the group means 
n. 

1
u.k= ! x .. k/n.

I ._ l IJ IJ-
i=l, .. . ,t; k=l, . . . ,p 

the sample covariance 

k=l, ... ,p; 1=1, .. . ,p 

and the matrix M=W•U'H' (HN - l H') - l HU 

where W={w i,j=l, ... ,p}, U={u .. i=l, . . . ,g, j=l, ... , p},
rs IJ 

N={the diagonal matrix [n 1, ... ,ng]}, and 

1 i ~ k 
H={hki : hkt - i i = k•l } . { 

0 otherwise 

(3) Assuming for simplicity that the first q parameters, which are 

selected, a re al ready pivoted on the corresponding diagonal 

elements, write 

where w11 and M11 are q by q, and let 

'
r 
w,, 

-1 

A= , 
-1 

I W21 w,,
L 

B= 
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Actually the diagonal elements of B are only needed, and are 

computed from the matrix 

which is defined at step zero to be 

.
L 

u· 0 J 

and is updated at each step by pivoting or reverse pivoting the 

diagonal elements of A. The diagonal elements of B are computed 

using the fact that 

B=Q'Q•A 

where Q=(H(N- 1- C)H'f½H 'T'. 

(4) Compute F value for each parameter . 

If the r-th parameter is entered, 

a -b n-g-q•l
rr rr

F = --- -•-----
r b s rr 

with s and (n-g-q•l) degrees of freedom. 

If the r-th parameter is not entered, 

b -a n-g-q
rr rr

F = ·----r 
a s 
rr 

with s and (n-g-q) degrees of freedom. 

(5) A parameter is removed or added according to the following rules: 
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Rule 1. If one or more entered parameters are available and have F 

values less than the F-to-remove threshold, which is set 

previously in the program, the one with the smallest F value is 

removed. 

Rule 2. If one or more non-entered parameters are available and have 

F values above the F-to-enter threshold , which is set previously 

in the program, the one with the highest F value is entered. 

(6) If one of the above rules is applied, t he program repeats the 

procedures (2)-(5) except for computing the values previously 

obtained. If none is applied, the program proceeds to the next 

procedure. 

(7) When the stepping is complete, compute the group classification 

function coefficients 

(q by 1 vector) i=l , ... ,g 

and the corresponding constants 

-1b .=ln p . -(1/2)(n-g)U. 'W U. i=l, . .. , g
I I I 11 I 

where p . is the prior probability for group i. 
I 

(8) The classification functions are expressed as follows: 

s.. =a. 'x. •b. i=l, .. . ,g
IJ I J I 

where s .. 
IJ 

is called the classification score of the j-th event for the 

group i, and x. 
J 

represents the q-by-1 vector for the set of 

parameters in the i-th event. 

The j-th event is classified into the group if 

s .. =max(sk .).
IJ k J 
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The posterior probability that the j-th event belongs to the group i 

is 

exp(s .. ) 
IJp . . = 

IJ g 
}: 

k=l 
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Appendix D 

Programs for Experiments 

The data sets of the programs for experiments are listed here as 

well as the data sets necessary to run the programs. These are 

examples, and changed according to the experimental conditions. There 

are other programs for making up classification tables for all the data 

sets, calculating T-values for template making, displaying the individual 

event portions, etc., but they are not listed here. 

DATA SET NAME= $LOAD 

PROC 1 DSN 
CE .AlB2C3 
1 IIHOMMAL JOB (0905-6-000-AA-OO, :02,2), 'BOX 4 H0~~1A' 
2 IISl EXEC FTG1CL,PDS='H0~1MA.CAL' ,NAf1E=&DSN,PLOTIER=SER281I 
3 I I C.SYSIN DD* 
4 /* 
5 II 
MERGE SUB 3 
MERGE &DSN 3 
SUB HI 
END NO 

DATA SET NAME= HG 

C 
C PROGRAM MG 
C 

C IBIS PROGRAM DISPLAYS THE BASIC DATA, EXTRE~!A :1ARKER. ALSO, IF ~'EEDED, 
C THE LOWPASS-FILTERED DATA, THE SECOND DERIVATIVE OF THE BASIC DATA, 
C THE PEAK AMPLITUDE AND THE DURATION OF EACH WAVE CAN BE DISPLAYED . 
C THE CORRESPONDING DATA LISTS CAN BE OBTAINED BY UNMASKING THE WRITE 
C STATE!-!ENTS FOR FT03F001. 
C NOTE : SUBROUTINE SETR(N,V,A) IS IN THE PORT LIBRARY. 
C IIO EXAMPLE 
C INPUT DATA 01 IN FT07F001 
C OUTPUT: GRAPHIC DISPLAY ON SERVOGOR281 PLOTrER TI!ROUGH IBM3277 
C TERMINAL 

C 



222 

C DH1ENSIONS 
C•':m':LJU1ENSION II (NG) 

DH1ENSION II(2000) 
C-:':-:'rn-DIMENSION Y(3)),YL(MX(L,N)),H(3),YLL(MX(NW,N)),YD(MX(NS1,3)) 

DntENSION Y(3), YL(lOO) ,H(3), YLL(20), YD(20) 
DIMENSION D1M(20),D2M(20),001(5),002(5) 

C-:'rl:*DIMENSION XG(NG+2),YG1(*),YG2(*),YG3(*),YG4(*),YG5(*),YG6(*) 
DIMENSION XG(2002),YG1(2002),YG2(2002),YG3(2002),YG4(2002) 
DH1ENSION YGS (2002), YG6 (2002) 

C-:':-:'rn-DH1ENSION YS (NG) 
DH1ENSION YS(2000) 
DI~1ENSION NDY(5),DY1(90),DY2(90),DY3(90),DY4(90),DY5(90),DY6(90) 
DIMENSION DY7(90) 

C READ INPUT PARAf1ETERS 
READ(7,9999) IFILE,NID16,NG,NE,N,NW,L,~'H,TD 

9999 FORMAT(8I6,F6.3) 
DATA SX,SY,SY1,SY2,SY3,IPT/5.,5 . ,1. ,1. ,1.5,0/ 
TID16=TD*FLOAT(NID16 )'"'16. 0 

C DATA FOR INITIALIZATION 
C-:'rn*DATA Y/3*0. /, YL/MX(L,N)''"100*0. /, YLL/MA.X(NW ,N)*O. /, YD/NS*O. / 

DATA Y/3*0.0/ ,YL/100*0.0/ ,YLL/20•':0.0/ ,YD/ 20'''0.0/ 
DATA DlM,D2M/20*0. ,20*0./ 
DATA H/0.25,0.50,0.25/ 
DATA KSl/1/ 

C CALCULATION OF DELAY NUMBERS 
Ll=L/2 
NR=l+Ll+NW/2 
NS=N/2 
NSl=NR-NS 
NDY(l)=-1 
NDY(2)=-1-Ll 
NDY(3 )=-NR 
NDY(4 )=-l-NS 
NDY(S)=O 

C NH IS THE COVER RANGE TO STORE ITOP. 
NMIN=O 
DO 5 Il=l ,5 
IF(NMIN.GT .NDY(Il)) NMIN=NDY ( Il) 

5 CONTINUE 
DO 10 Il=l,5 

10 NDY (Il)=NDY(Il)-NMIN+NH 
C INITIAL VALUES FOR DELAY STORAGE 

DATA DY1,DY2,DY3,DY4,DY5,DY6,DY7 / 90*0.0,90*0.0,90*0.0,90*0.0, 
&90*0.0,90*0.0,90*0.0/ 

INDYS=NDY(S) 
DO 15 Il=l, INDYS 
I2=INDY5-Il+l 

15 DY6(Il )=TID16-FLOAT(I2)*TD 
C SKIPPING DATA 

CALL IDOL16 (~ID16 ) 
C NOTE FOR PROGRA.~ A.\1D DATA USED 
C TED=TD"'FLOAT (NE )+TID16 
C WRITE(3,9998 ) TID16,TED,IFILE,N,~,L 
C9998 FORMAT(lH ,lX, 'PROG: D03' / 2X, 'DATA: ',F6.3, '-' ,F6.3,' SEC IN FILE', 

https://IF(NMIN.GT
https://H/0.25,0.50,0.25
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C .&,I3/2X, 'PARA: ', 'N=' ,I2,', NW=' ,I2,', L=' ,I2) 
C HEAD LINE OF OUTPUT · 
C WRITE(3,9997) 
C9997 FORMAT('FILE ','EVENT','IC ','TYPE',' TTOP',' A', 
C &' Dl',' D2') 
C INITIAL VALUES 

DATA 001(2),002(2)/-1000000.,1000000./ 
ITP=l 
YL2=0.0 

C BEGINNING OF SEQUENTIAL ANALYSIS 
DO 50 Il=l.NE,NG 

C READING OF DATA FOR ONE GRAPH SECTION 
DO 20 I2=1,NG,16 
I3=I2+15 
READ(7,9996) (II(I4),I4=I2,I3) 

9996 FORMAT(lX,16I4) 
20 CONTINUE 

C RESET OF ARRAYS 
CALL SETR(NG,O. ,YG3) 
CALL SETR(NG,O.,YG5) 
CALL SETR(NG,O. ,YG6) 

C LOOP FOR ONE GRAPH SECTION 
DO 40 I2=1,NG 
I3=Il+I2-2 

XG(I2)=TD*FLOAT(I3)+TID16 
C INPUT SEQUENCE 

Yl=-II ( I2) 
CALL SHIFT(Y,Yl,3) 

C FILTERING 
CALL GETL(Y,H,3,YLl) 

YGl(I2)=YL1 
CALL SHIFT(YL,YLl,NR) 
YL2=YL2+YL(l)-YL(L) 
YLL1=YL2 / FLOAT(L-1) 

YG2(I2)=YLL1 
CALL SHIFT(YLL,YLLl,NW) 

C SEGMENTATION BY TURNING POINT 
CALL GETD(YLL,NW,YDl,Dl,D2) 
TPl=XG(I2)-FLOAT(NR)•':TD 
CALL GETP(YDl,Dl,D2,KSl,ICKl) 

IF(ICKl.EQ.O) GO TO 25 
YG3 (I2 )=ICKl 

25 CONTINUE 
C SECOND DERIVATIVE 

CALL GETD(YL,~,YDl,Dl,D2) 
YD2=D2-Dl 

YG4(I2 )=YD2 
CALL SHIFT (DlM,Dl,~Sl) 
CALL SHIFT (D2M,D2,~Sl) 

C CHECK OF MAXIMUM A.."{D MINntL~ OF A.'1PLITUDE IN ONE EVE~1T 
C ~!AX 

IF (001 (2). GE.YL (NR)) GO TO 28 
001 (l )=TPl 
001 (2)=YL (NR) 
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001(3)=D1M(NS1) 
001(4)=D2M(NS1) 
ITOP=I2-NR 

C MIN 
28 IF(002(2).LE.YL(NR)) GO TO 30 

002 (l)=TPl 
002(2)=YL(NR) 
002 (3 )=DlM(NSl) 
002(4)=D2M(NS1) 
ITON=I2-NR 

30 CONTINUE 
C CHECKING POINT OF AN EVENT 
C IF(ICKl.EQ.O) GO TO 40 
C IF(ICKl.EQ.-1) WRITE(3,9995) IFILE,ITP,ICKl,(OOl(IDl),IDl=l,4) 
C IF(ICKl.EQ.1) WRITE(3,9995) IFILE,ITP,ICK1,(002(ID1),ID1=1,4) 
C9995 FORMAT(3IS,5X,4F10.3) 
C ~1ANIPULATION FOR THE DISPLAY OF MAX AND mN AflPLITUDE AND SECOND DERIV 

IF(ICKl.EQ.-1) CALL Gfil!AN(OOl,ITOP,I:,NG , NDY,DYS,DY7,YG5,YG6) 
IF(ICKl.EQ.1) CALL GfilLt\N(002,ITON,I:,NG,NDY,DY5,DY7,YG5,YG6) 

C CANCELLATION OF MAXIMUM AND MINHH.Jr-1 AflPLITUDE OF AN EVENT 
IF(ICKl.EQ.-1) 001(2)=-1000000.0 
IF(ICKl.EQ.1) 002(2)=1000000.0 
ITP=ITP+l 

40 CONTINUE 
C SHIFTING FOR GRAPHS 

CALL SHIFTl(YGl,YS,NG,DYl,NDY(l)) 
CALL SHIFT1(YG2,YS,NG,DY2,NDY(2)) 
CALL SHIFT1(YG3,YS,NG,DY3,NDY(3)) 
CALL SHIFT1(YG4,YS,NG,DY4,~1DY(4)) 
CALL SHIFT1(YG5,YS,NG,DY5,~Y(5)) 
CALL SHIFT1(YG6,YS,NG,DY7,~'DY(S)) 
CALL SHIFT1(XG,YS,NG,DY6,NDY(5)) 

C GRAPHIC DISPLAY 
XI=XG(l) 
XSP=FLOAT(IFIX(TD•':FLOAT(NG) /SX0''100. +(1. /3. )•':3.)) / 100. 
CALL GRAPHl(XG,YGl,NG,O. ,SYl,XI,-200. ,XSP,300. ,SX,SY,00,00,00,IPT) 

C CALL GRAPH1(XG,YG2,NG,O. ,SY2,XI,YGl(NG+l),XSP,YGl(NG+2),SX,SY,OO, 
C &00,0,IPT) 

CALL GRAPH1(XG,YG3,NG,O. ,SY3,XI, 0. ,XSP, 0., sx,.s,01,00,1,IPT) 
C CALL GRAPH1(XG,YG4,NG,O. ,1.2,XI, 0. ,XSP, 0., SX,SY,01,01,0,IPT) 
C CALL GRAPHl(XG,YGS,NG,O.,SYl,XI,YGl(NG+l ) ,XSP,YGl(NG+2),SX,SY,OO, 
C &01,0,IPT) 
C CALL GRAPH1(XG,YG6,NG,O.,SY1,XI,YG4(NG+l ) ,XSP,YG4(NG+2),SX,SY,OO, 
C &01,1,IPT) 
C LISTING UP OF DELAY AND VALUES OF GRAPHS 
C WRITE(J,9994) (~'DY(IDl),IDl=l,5) 
C9994 FOR.t-fAT(lH, 'NDY ',515) 
C ¼'RITE(3,9993) 
C9993 FOfillAT(/lH ,9X, 'XG' ,BX, 'YGl' ,8X, 'YG2' ,8X , 'YGJ' ,8X, 'YG4' ,8X, 'YG5', 
C &BX, 'YG6') 
C wRITE(3,9992) (XG(J),YG1 (J),YG2(J),YG3(J ) ,YG4(J),YG5 (J) ,YG6 (J),J= G) 
C &l,NG) 
C9992 FORMAT(lH ,7 ( 1X,Fl0.3 ) ) 

50 CONTINUE 



225 

STOP 
END 

SUBROUTINE IDOL16(N) 
C N: Nill1BER OF DATA CARDS TO BE SKIPPED 

DIMENSION IN(16) 
IF(N.LE.O) RETURN 
DO 10 Il=l,N . 
READ(7,9999) (IN(I2),I2=1,16) 

9999 FORttAT(lX,16I4) 
10 CONTINUE 

RETURN 
E!'m 

SUBROUTINE GRAPHl(X,Y,N,XO,YO,XI,YI,XSP,YSP,XSZ,YSZ,NSC,NAX,NEN, 
&IPT) 

DntENSION X(l), Y(l) 
CALL PLOTS 
CALL PLOT(XO,Y0,-3) 
IF(NSC.EQ.10.0R.NSC.EQ.ll) GO TO 10 
X(N+l)=XI 
X(N+2)=XSP 
GO TO 20 

10 CALL SCALE(X,XSZ,N,l) 
20 CONTINUE 

IF(NSC.EQ.Ol.OR.NSC.EQ.11) GO TO 30 
Y(N+l )=YI 
Y(N+2)=YSP 
GO TO 40 

30 CALL SCALE(Y,YSZ,N,l) 
40 CONTINUE 

IF (NAX . GE. 10) CALL AXIS ( 0. , 0. , 'TIME' , -4, XSZ, 0. , X (N+ 1) , X (N+2)) 
IF(NAX.EQ.Ol.OR.NAX.EQ.11) 

&CALL AXIS(O.,O., 'y' ,l,YSZ,90.0,Y(N+l),Y(N+2)) 
CALL LINE(X,Y,N,l,IPT,2) 
XEN=XSZ+l. 0 
IF(NEN.GE.l) CALL PLOT(XEN,-1.0,999) 
RETURN 
END 

SUBROUTINE Gfil1AN(OO,IT,I2,NG,~DY,DY5,DY7,YG5,YG6) 
DIMENSION OO(l),NDY(l),DY5(1),DY7(1),YG5(1),YG6(1) 
IF(IT.LT.l) IT=IT+NG 
IF(IT.GT.I2) GO TO 10 
YGS (IT)=OO (2) 
YG6(IT)=00(4)-00(3) 
GO TO 20 

10 NDYS=NDY(S)-(NG-IT) 
IF(NDYS.GT.NDY(S)) WRITE(3,8899) 

8899 FOfil1AT(lH , 'WAfu"HNG! WARNING! IN SUB. G~!A..'l.' ,2X/) 
DY5(NDY5)=00(2) 
DY7(NDY5)=00(4)-00(3) 

20 CONTINUE 
RETURN 

https://IF(IT.GT.I2
https://IF(NAX.EQ.Ol.OR.NAX.EQ.11
https://IF(NSC.EQ.Ol.OR.NSC.EQ.11
https://IF(NSC.EQ.10.0R.NSC.EQ.ll
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END 

SUBROUTINE SHIFTl(Y,YS,N,D,NS) 
C""'f••f,-,\Ji,-;.:.,.;,.:.":!,.\ NS: NUMBER OF SHIFT 
C*-lrirlrlrl: D(NS) MUST BE INITIALIZED BEFORE THE FIRST CALL. 

DIMENSION Y(N) ,YS(N) ,D(NS) 
Nl=N-NS 
DO 10 Il=l ,NS 
YS (Il)=D(Il) 
I2=Il+Nl 

10 D(Il )=Y(I2) 
DO 20 Il=l ,Nl 
I2=Il+NS 

20 YS(t2)=Y(Il) 
DO 30 Il=l ,N 

30 Y(Il)=YS(Il) 
RETURN 
END 

DATA SET NAME= $MIA 

PROC 1 N 
CE .XlY2Z3 

1 / / HOM.11Af!1A JOB (0905-6-000-AA-00, :04,4), 'BOX 4 HOM.~A', 
2 // REGION=1024K 
3 / / PLEASE EXEC FTG lG, PDS=' Hm!MA. CAL' ,NAME=mA 
4 // G.FTOlFOOl DD DSN=HOMMA.DATA&N, 
5 // DCB= (LRECL=80,RECFM=FB,BLKSIZE=4080) , 
6 // DISP= (OLD,KEEP,KEEP),SPACE= (CYL,(l,l ) ,RLSE), 
7 II UNIT=OISK 
8 //G.FT03F001 DD DSN=HO~fr!A.LSTA&N, 
9 / / DCB= (LRECL=80,RECFM=FB,BLKSIZE=4080) , 

10 // DISP= (NEW,CATLG,DELETE ) ,SPACE= (CYL, (1 ,2),RLSE), 
11 // UNIT=DISK 
12 / / 
SUB H INFORM 
END NO 

DATA SET NAME = MlA 

C 
C PROGRAM MlA 
C 

C THIS PROGRAM INPUTS DATA FRO~! A/ D CONVERTER k 'iD OUTPCTS A SET OF 
C PARAf1ETERS IN EACH WAVE BY ~lETHOD A. 
C I / 0 EXAf!PLE 
C INPUT : DATAOl IN FTOlFOOl 
C OUTPUT: LST.AOl IN FT03F001 

C 
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C DHJENSIONS 
C-!ri.+.OH!ENSION II(l6),Y(3),H(3),YL(MAX(L,N,NR)),YLL(MAX(NW,N)) 
C*+.-:':O H1ENS ION DU1 (NS) , D2M (NS) , 001 (5) , 002 (5) 

DIMENSION II(l6),Y(3),H(3),YL(20),YLL(20) 
DIHENSION D1M(20) ,02!1(20) ,001(5) ,002(5) 

C INPUT PARAftETERS 
READ(l,9990) IFILE,NE,N,NW,L,TD 

9990 FORMAT(I6,12X,4I6,6X,F6.3) 
C INITIAL VALUES 

DATA Y/3*0. 0/, YL/20*0. 0/. YLL/20,':0. 0/ 
DATA DlM,D2M/::0*0.0,20'"0.0/ 
DATA H/0.25,0.50,0.25/ 
DATA KSl/1/ 

C+.-:':*DATA 001 (2), 002 (2) /VI-1IN, VI-1AX/ 
DATA 001(2),002(2)/-1000000. ,1000000./ 
YL2=0.0 
ITP=l 

C CALCULATION OF DELAY NUMBERS 
Ll=L/2 
NR=l+Ll+NW/2 
NS=NR-N/2 

C BEGINNING OF SEQUENTIAL ANALYSIS 
DO 30 Il=l ,NE, 16 

C INPUT DATA 
READ(l,9980) (II(Jl),Jl=l,16) 

9980 FOfil1AT(lX, 16I4) 
DO 30 I2=1,16 
I3=Il+ I2-2 
Yl=-II(I2) 
CALL SHIFT(Y,Yl,3) 

C FILTERING 
CALL GETL(Y,H,3,YLl) 
CALL SHIFT(YL,YLl,NR) 
YL2=YL2+YL(l ) -YL(L) 
YLL1=YL2/FLOAT(L-1) 
CALL SHIFT(YLL,YLLl,NW) 

C CHECKING OF TURNING POINTS 
CALL GETD(YLL,:-.lW,YDl,Dl,D2) 
TP l=FLOAT ( I3-NR) •':TD 
CALL GETP(YDl,Dl,D2,KSl,ICKl) 

C CALCULATION OF SLOPES 
CALL GETD(YL,N,YD1,Dl,D2) 
CALL SHIFT(DlM,Dl,NS) 
CALL SHIFT(D2M,D2,NS) 

C CHECKING OF M..i\XI~1UM A.~D '.1INnlu11 OF AMPLITUDE IN ONE WAVE 
C ~!AX 

IF (001(2).GE.YL(NR)) GO TO 10 
001 (l)=TPl 
001 (2)=YL(;-ffi) 
001 (3 )=DH1(NS) 
001(4 )=D2M(NS) 
ITOP=I3-NR 

C ~IN 
10 IF(002(2).LE.YL(NR)) GO TO 20 

https://H/0.25,0.50,0.25
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. 002(1)=TP1 
002(2)=YL(NR) 
002 (3 )=DlM(NS) 
002 ( 4) =D2~1 (NS) 
ITON=I3-NR 

20 CONTINUE 
C OUTPUT OF PARAf!ETERS OF A WAVE 

IF(ICKl.EQ.0) GO TO 30 
IF(ICKl.EQ.-1) WRITE(3,9970) IFILE,ITP,ICKl,(OOl(IDl),IDl=l,4) 
IF(ICKl.EQ.l) WRITE(3,9970) IFILE,ITP,ICKl,(OOZ(IDl),IDl=l,4) 

9970 FOR!-1AT(3I5,5X,4F10.3) 
C CANCELLATION OF ~!AXH!UM OR MINH!UM AMPLITUDE OF A WAVE 

IF(ICKl.EQ.-1) 001(2)=-1000000.0 
IF(ICKl.EQ.1) 002(2)=1000000.0 
ITP=ITP+l 

30 CONTINUE 
STOP 
END 

DATA SET NAME= $MlT 

PROC 3 N K TEMPL 
CE .X1Y2Z3 

1 I/ HOM..MAMlT JOB (0905-6-000-AA-00,:06,4),'BOX 4 HOM!-!A', 
2 II REGION=1024K 
3 I I PLEASE EXEC FTG lG, PDS=' HOM.MA. CAL' ,NAf!E=M 1 T 
4 IIG.FTOlFOOl DD DSN=HOMMA.DATA&N, 
5 II DCB=(LRECL=80,RECFM=FB,BLKSIZE=4080), 
6 II DISP=(OLD,KEEP,KEEP),SPACE=(CYL, (1,1),RLSE), 
7 II UNIT=DISK 
8 I I G. FTO 7FOO l DD DSN=H0~1MA. LST&K&N, 
9 II DCB= (LRECL=133,RECF~=FB,BLKSIZE=4123), 

10 II DISP= (NEW,CATLG,DELETE ) ,SPACE= (CYL, (1, 2), RLSE), 
11 II UNIT=DISK 
12 I IG. FT08FOO 1 DD DSN=HOM~!A. &TE~IPL, 
13 II DCB= (LRECL=80,RECPl=FB,BLKSIZE=4080), 
14 II DISP=(OLD,KEEP,KEEP),SPACE= (TRK, (5,5 ), RLSE), 
15 II lJNIT=DISK 
16 II 
SUB H INFORM 
END NO 

DATA SET NAME= MlT 

C 
C PROGRAM ~flT 
C 

C THIS PROGRAft INPCTS AID CONVERTED DATA AND OUTPUTS THREE TYPES OF 
C PARAf!ETERS OF EACH WAVE USING THREE ~EASl.,"RES RESPECTIVELY BY ~!ETHOD T. 
C IIO EXAMPLE 



•

229 

C _IF ISEL=l, 
C INPUT DATAOl IN FTOlFOOl 
C OUTPUT: LST.TOl IN FT07F001 
C INPUT : TE~1PL1 IN FT08FOO 1 
C IF ISEL=2, 
C INPUT DATAOl IN FTOlFOOl 
C OUTPUT: LST.TOl IN FT07F001 
G INPUT : TE~IPLSl IN FT08F001 
C,r. ·'- ,:.. ·'- :. : .. •t. ::. :.. :.. ,,•.. :, .A. :.. :. :. :.. :.. :.. .,_ ..-.. :.. :.. :. :. :.. :.. :.. :, .r.. :. ~*-;':-!:'-!:-!:--!:-::-!:~.. ..... . .......... ~ :.. ..r.. : .. :.. ..-. ..r.. .•: .:.. : .. : .. ,:.. : .. .. • : .. ..•.. ..': ,., 

C 
C DIMENSIONS 
C""'m':DIMENS ION II (16) , Y(3) , H(3) , YL(NT) , YLL (NW) , 001 () , 002 () 
G~*DI~!ENSION TEMP! (NT), TEMP2 (NT) 

DIMENSION II (16), Y( 3) ,H(3), YL(300), YLL (20), 001(5), 002 (5) 
DH!ENSION TEMP1(300),TEMP2(300) 

G INPUT PARAf!ETERS 
READ(l,9990) IFILE,NE,N,~'W,L,TD 

9990 FOfil1AT(I6, 12X, 416, 6X,F6. 3) 
C INITIAL VALUES 

DATA Y/3*0. /, YL/300•':0. /, YLL/ 20,:0. / ,H/0. 25, 0. 5, 0. 25/ 
G~*DATA 001(2),002(2)/VMIN,VMAX/ 

DATA 001(2),002 (2)/-1000000. ,1000000./ 
DATA KSl/1/ 
YL2=0.0 
ITP=l 

G TEMPLATE ARRAY 
READ(8,9980) ISEL,TI,NTl 

9980 FOfil!AT(I5/2I5) 
CALL SUBMlT(TE~!Pl ,TI) 
IF(ISEL.GT.1) GALL SUBM1T (TE~IP2,TI) 
NT2=NT-NT1+1 
NLl=t'-."1'2- L/ 2-N'W / 2 
NL2=NL1+L- l 

G BEGINNING OF SEQUENTIAL ANALYSIS 
DO 60 Il=l ,NE, 16 

G INPUT SEQUENCE 
READ(l,9970 ) ( ll (Jl),Jl=l,16) 

9970 FORMAT(lX,1614) 
DO 60 I2=1,16 
13=1 l+I2-2 
Yl=-II(I2) 
GALL SHlFT(Y,Yl,3) 

G FILTERING 
CALL GETL(Y,H,3,YLl) 
GALL SHIFT(YL,YLl,NT) 
YL2=YL2+YL(NL1)-YL(NL2) 
YLLl=YL2 / FLOAT(L-1) 
GALL SHIFT (YLL,YLLl,~) 

G TEMPLATE :1ATCHING 
1F (001 (2).GE.YL (NT2).0R.002 (2) .LE.YL (~'T2 ) ) GO TO 10 
CALL r.1ABS(YL,TEMP1.~'T ,CAB1 ) 
GALL TI!SQE (YL, TEMP 1, TI, CSQ 1) 
CALL TMCOR(YL,TEMPl,~'T,CORl ) 
IF(lSEL.LE.l ) GO TO 10 
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CALL TI1ABS (YL, TEMP2, NT, CAB2) 
CALL TI1SQE (YL, TEMP2, NT, CSQ2) 
CALL TI1COR(YL, TE!-1P2 ,NT, COR2) 

10 CONTINUE 
C CHECKING OF MA."<.:Hfill1 Ai.'ID MINIMUM OF AMPLITUDE IN ONE WAVE 
C ~1AX 

IF(001(2).GE.YL(~'T2)) GO TO 20 
001 (l)=TPl 
001(2)=YL(NT2) 
001(3)=CAB1 
001(4.)=CSQl 
001 (5 )=CORl*lOO. 
IF(ISEL.LE.l) GO TO 20 
001 ( 6 )=CAB2 
001(7)=CSQ2 
001(8)=COR2*100. 
ITOP=I3-NR 

C mN 
20 IF(002(2).LE.YL(~T2)) GO TO 30 

002(1)=TP1 
002(2)=YL(NT2) 
002(3)=CAB1 
002(4- )=CSQl 
002(S)=COR1*100. 
IF(ISEL.LE.l ) GO TO 30 
002(6)=CAB2 
002(7)=CSQ2 
002 (8 )=COR2"':iOO. 
ITON=I3-NR 

30 CONTINUE 
C CHECKING OF TURNING POINTS 

TPl=FLOAT ( I3-NT2 )'°'TD 
CALL GETD(YLL,:-M ,YDl,Dl,D2 ) 
CALL GETP (YDl,D1,D2,KSl,ICKl ) 

C CHECKING POI~'T OF A WAVE 
IF(ICKl.EQ.0) GO TO 60 
IF ( ISEL.GT.l) GO TO 40 
IF(ICKl.EQ. -1) 

&WRITE(7,9960) IFILE,ITP,ICKl,001(1 ) , (00l (Jl ) ,Jl=J,5) 
IF (ICKl. EQ. 1) 

&WRITE(7,9960) IFILE,ITP,ICK1,002(1 ) , (002 (Jl ) ,J1=3,5) 
9960 FOfil1AT (3I5,5X,4Fl3.3) 

GO TO 50 
40 CONTINUE 

IF(ICKl.EQ. -1) 
&WRITE(7,9950) IFILE,ITP , ICKl,001(1 ) , (00l (Jl),Jl=3,8 ) 

IF(ICKl.EQ.1) 
&WRITE(7,9950) IFILE,ITP, ICK1,002(1 ) , (002 (Jl ) ,Jl=3,8) 

9950 FORMAT (3I5,5X,7Fl3.3) 
5 0 CO~'TINUE 

C CAi.'-iCELLATION OF ~1AXIMUM OR ~1DII~1UM Af!PLITliDE OF A wAVE 
IF(ICKl.EQ.-1 ) 001(2 )=-1000000.0 
IF ( ICKl.EQ.l ) 002 (2)=1000000.0 

60 CONTINUE 

https://IF(ICKl.EQ
https://IF(ICKl.EQ
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STOP 
END 

SUBROUTINE SUB~11T(TEHP ,NT) 
DIMENSION TEMP (1) 
READ(B,9990) (TEMP(IDl),IDl=l,NT) 

9990 FORNAT(8F10.3) 
CALL BACK(TEMP_,NT) 
RETURN 
END 

DATA SET NAME= $M2A 

PROC 2 LIST LISTM 
CE .X1Y2Z3 

1 //Hm1MAf12A JOB (0905-6-000-AA-00,:06,4), 'BOX 4 HOMMA', 
2 // REGION=1024K 
3 / /PLEASE EXEC FTGlG ,PDS= 'HOMMA. CAL' ,NAffE=~12 
4 //G.FTOlFOOl DD DSN=HOMMA.&LIST, 
5 // DCB=(LRECL=80,RECFM=FB,BLKSIZE=4080), 
6 // DISP=(OLD,KEEP,KEEP),SPACE=(CYL,(1,1),RLSE), 
7 II UNIT=DISK 
8 //G.FT07F001 DD DSN=HOMMA.&LISTI1, 
9 // DCB=(LRECL=80,RECFM=FB,BLKSIZE=4080), 

10 // DISP=(NEW ,CATLG,DELETE) ,SPACE=(CYL, (1,2) ,RLSE), 
11 // UNIT=DISK 
12 // 
SUB HI 
END NO 

DATA SET NAME= $M2T 

PROC 2 LIST LISTM 
CE .X1Y2Z3 

1 //HOMMAf12T JOB (0905-6-000-AA-00,:08,4),'BOX 4 HOMMA', 
2 // REGION=1024K 
3 / /PLEASE EXEC FTGlG, PDS=' HOMMA. CAL' ,NAf1E=M2 
4 //G.FTOlFOOl DD DSN=HOMMA.&LIST, 
5 // DCB=(LRECL=133,RECFM=FB,BLKSIZE=4123), 
6 // DISP=(OLD,KEEP,KEEP),SPACE=(CYL,(l,1),RLSE), 
7 // UNIT=DISK 
8 //G.FT07F001 DD DSN=HOMMA.&LISTM, 
9 // DCB=(LRECL=80,RECFM=FB,BLKSIZE=4080), 

10 // DISP=(NEW,CATLG,DELETE),SPACE=(CYL,(1,2),RLSE), 
11 // UNIT=DISK 
12 // 
SUB HI 
END NO 

DATA SET NAME= M2 
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C 
C PROGRAM M2 
C 

C THIS PROGRAM CREATES A SET OF PARAf!ETERS IN EACH EVENT FROM M SETS OF 
C PARAflTERS IN WAVES WITH A CORE WAVE AT THE Ml-TH WAVE OF EACH EVENT. 
C I/0 EXAflPLE 
C IF ISEL=O, 
C INPUT : LST.AOl IN FTOlFOOl 
C OUTPUT: LST.AOlM IN FT07F001 
C IF ISEL=l, 
C INPUT : LST.TOl IN FTOlFOOl 
C OUTPUT: LST .TOlM IN FT07F001 
C IF ISEL=2, 
C INPUT : LST.TWOl IN FTOlFOOl 
C OUTPUT: LST.TWOH! IN FT07F001 

C 
C DIMENSION 
c,':":':*DU!ENSION II(4) ,YI(4) ,ID(4,M) ,PD(4,M) 

DI~!ENSION II(4),YI(4),ID(4,20),PD(4,20) 
C'"*'''DH1ENSION AM(M) ,Dl(M) ,D2 (M) ,DU (M) ,TM*(M) 

DIMENSION Af1 (20 ) ,Dl(20 ) ,D2(20 ) ,DU(20), 
&TMl (20), TM2 (20), TM3 (20), TM4(20), TI-15 (20), TM6 (20) 

C INITIAL VALUES 
DATA ID/80*0/,PD/80*0./ 
READ(l,9990) NEVENT,M,Ml,ISEL 

9990 FORMAT(4I5) 
C BEGIN FROM A WAVE OF ICK=l 

READ(l,9980) ICK 
9980 FORM.AT(lOX,IS) 

NEVENT=NEVENT-1 
IF ( ICK.EQ.-1) GO TO 10 
RE.AD(l,9980) ICK 
NEVENT=NEVENT-1 

10 CONTINUE 
C STORE FIRST N-2 LINES OF DATA INTO BUFFERING ARRAYS 

DO 20 11=3 ,M 
IF (ISEL.EQ . O) RE.AD(l,9970) ( ID (Jl,Il),Jl=l,4),(PD(Jl,Il),Jl=l,4) 
IF(ISEL.EQ.1) RE.AD(l,9971) ( ID(Jl,Il),Jl=l,4),(PD(Jl,Il),Jl=l,3) 
IF ( ISEL.EQ.2) RE.AD(l,9972) ( ID(Jl,Il),Jl=l,4),(PD(Jl,Il),Jl=l,6) 

9970 FORMAT(4IS,4Fl0.3) 
9971 FORMAT(4IS,3Fl3.3) 
99 72 FORMAT(4I5,6Fl3.3) 

20 CONTINUE 
IF(ISEL.EQ.O) M2=M-l 
IF(ISEL.NE.O) M2=M 

C BEGIN MAIN PART 
DO 40 Il=l,NEVENT,2 

C SHIFT DATA INTO BUFFERS 
DO 30 I2=1,2 
IF (ISEL.EQ . O) READ(l,9970,END=SO) (II (Jl ) ,Jl=l,4 ) , (YI (Jl ) ,Jl=l , 4) 
IF(ISEL.EQ.l) RE.AD(l,9971,END=SO) (II (Jl ), Jl=l,4 ) , (YI (Jl ) ,Jl=l,3) 

https://IF(ISEL.EQ
https://IF(ISEL.EQ
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IF(ISEL.EQ.2) READ(l,9972,END=SO) (II(Jl ), Jl=l,4),(YI(Jl),Jl=l,6) 
CALL SHFTIM ( ID , II , 4 , M) 
IF(ISEL.EQ.O) CALL SHFTRM(PD,YI,4,M) 
IF(ISEL.EQ.1) CALL SHFTRM(PD,YI,3,M) 
IF(ISEL.EQ.2) CALL SHFTRM(PD,YI,6,M) 

30 CONTINUE 
C CALCULATE AND OUTPUT PARAMETERS OF AN EVENT 

IFILE=ID ( 1, Ml) 
IEVENT=ID (2, Ml) 
ICHECK=ID (3 ,Ml) 
!TYPE l=ID ( 4, Ml) 
TTOP=PD (1, Ml) 
WRITE(7,9960) IFILE,IEVENT,ITYPEl,TTOP 

9960 FORMAT(3I5,F10.3) 
IF(ISEL.EQ.O) CALL SUBM2A(M2,PD) 
IF(ISEL.NE.O) CALL SUBM2T(M2,ISEL,PD) 

40 CONTINUE 
50 CONTINUE 

STOP 
END 

SUBROUTINE SUBM2A(M2,PD) 
DIMENSION PD(4,20) 
DO 10 Il=l ,~2 
AM=PD(2,Il+l)-PD(2,Il) 
Dl=PD(3, Il) 
D2=PD(4,Il) 
DU=PD(l,Il+l)-PD(l,Il) 

10 WRITE(? ,9990) Af1,Dl,D2,DU 
9990 FORMAT(4Fl0.3) 

RETURN 
END 

SUBROUTINE SUBM2T(M2,ISEL,PD) 
DIMENSION PD (4, 20) 
DO 10 Il=l ,M2 
IF(ISEL.EQ.l) WRITE(7,9990) (PD(Jl,Il),J1=2,4) 

9990 FORMAT(3F13.3) 
IF(ISEL.EQ.2) WRITE(7,9980) (PD(Jl,Il),J1=2,7) 

9980 FORMAT(6Fl3 . 3) 
10 CONTINUE 

RETURN 
END 

DATA SET NAME= $M3 

PROC 4 FILEl FILE3 FILE7 FILE8 
CE .XlY2Z3 

1 / / HOMMAM3 JOB (0905-6-000-AA-00,:08,4 ) ,'BOX 4 H0~1!'1A', 
2 // REGION=l024K,:1SGCLASS=D 
3 // PLEASE EXEC FTGlG,PDS='HOMMA.CAL' ,~AME=X3 
4 / / G.FTOlFOOl DD DSN='Hmi!'tA.&FILEl', 
5 // DCB=(LRECL=80,RECFM=FB,BLKSIZE=4080), 
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6 // DISP=(OLD,KEEP,KEEP),SPACE=(CYL,(1,1 ) ,RLSE), 
7 // UNIT=DISK 
8 //G.FT03F001 DD DSN=HOMMA.&FILE3, 
9 // DCB=(LRECL=133,RECFM=FBA,BLKSIZE=4123), 

10 / / DISP=(MOD ,KEEP ,KEEP), SPACE=(CYL, (1, 1) ,RLSE), 
11 // UNIT=DISK 
12 //G.FT07F001 DD DSN=HOMMA.&FILE7, 
13 // DCB=(LRECL=l33,RECFM=FBA,BLKSIZE=4123), 
14 // DISP=(OLD,KEEP,KEEP),SPACE=(TRK,(10,10),RLSE), 
15 // UNIT=DISK 
16 / / G.FT08F001 DD DSN=HOMMA.&FILE8, 
17 // DCB=(LRECL=80 ,RECF~t=FB ,BLKSIZE=4080), 
18 // DISP=(OLD,KEEP,1'EEP),SPACE=(TRK,(2,5),RLSE), 
19 // UNIT=DISK 
20 // 
SUB 
END NO 

DATA SET NAME= M3 

C 
C PROGRAM M3 
C 

C PREDICTION BY CLASSIFICATION FUNCTION. 
C 
C THIS PROGRAft CLASSIFIES A PARAMETRIZED DATA INTO NC GROUPS USING NVT 
C PARAftETERS OUT OF NT PARAMETERS IN PARAMETERIZED DATA SET, AND GIVES 
CAN ORIGINAL AND A CORRECTED SUMMARY TABLE OF CLASSIFICATION. 
C I/0 EXAMPLE 
C INPUT LST.AOlM IN FTOlFOOl 
C OUTPUT : OUT.Al3RS05.DAT01 IN FT03F001 
C INPUT : CLF.Al3RS05 IN FT07F001 
C INPUT : PAR.M3.Al3R IN FT08f001 
C******************..':*-l-:**._':-.':-:':-..':-;':****..t.:*..':*·f:-,,':-;,':*"'l:***..·:*-:':*et:-;':-;':-;,':*-::..1:..':**-.':*****-1:-1:***-!ri: 
C 

DntENSION IV(SO) ,C(4,50) ,IX(4) ,X(lOO) ,IP(4) ,S(4) ,IM(4,4) 
DIMENSION IZ(7, 101), TIMEX(lOO) ,LR(4) ,LC(4) 
DATA IM/ 16°"0/, I4/0/ ,X/5°"0. / 
DATA IZ(2,101),IZ(5,101),IZ(7,101) / 10,10,10/ 
DATA MCA/2H A/ ,MCTA/2HTA/ ,MCTS/2HTS/ ,~1CTC / 2HTC/ 

C MAIN 
READ(7,9990) NC,NV 

9990 FORMAT(2I5) 
NVl=NV+l 
DO 1 I2=1,NV 
READ(7,9980) IV(I2),(C(Il,I2),Il=l,NC) 

1 CONTir--.1UE 
9980 FORMAT(I4,9X,4Fl3.5) 

READ(?,9970) (C(Il,NVl),Il=l,NC) 
9970 FORMAT(13X,4Fl3.5) 

READ ( 8 , 9 9 6 0 ) MC 1 , MC 2 , MC 3 , NVT , NCA , (LR (I ) , I= 1 , 4) , ( LC (I ) , I= 1 , 4) 
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9960 FOfil1AT(A2, 2A4/2I5 / 4A4/ 4A4) 
NVT=NVT+5 
DO 30 I3=1,NCA 
IF (MCl. EQ. MCA) READ( 1, 9950 ,END=lOOO) (IX(I 1), Il=l, 4), TIME 
IF(MCl. NE .MCA) READ(l, 9951, END=lOOO) (IX(I 1), Il=l, 4), TIME 

9950 FOfil1AT(I3,2I5,I3,Fl0.3) 
9951 FOfil1AT(I3,2I5,I3,F13.3) 

IF(IX(l).EQ.12.AND.IX(2).EQ.1619) IX(3)=0 
IF(IX(3).EQ.2) IX(3)=0 
IF(IX(3).EQ.100) IX(3)=2 
IF(IX(3). GE .100) WRITE (3, 8890) IX(l), IX(2 ) , IX(3) 

8890 FORMAT('ERROR IN LABELING' ,3I5) 
IX(3)=IX(3)+1 
IF(MCl.EQ.MCA) READ(l,9940) (X(Il),I1=6,NVT) 
IF(MCl.EQ.MCTA.AND.NC.EQ.2) READ(l,9941) (X(Il) ,I1=6,NVT) 
IF(MCl.EQ .MCTA.AND .NC. EQ . 3) READ(l, 9942) (X(Il), I1=6 ,NVT) 
IF(MCl.EQ.MCTS.AND.NC.EQ.2) READ(l,9943) (X(Il) ,I1=6,NVT) 
IF(MCl.EQ.MCTS.AND.NC.EQ.3) READ(l,9944) (X(Il) ,Il=6,NVT) 
IF(MCl.EQ.MCTC.AND.NC.EQ.2) READ(l,9945) (X(Il),I1=6,NVT) 
IF (MCl. EQ. MCTC. AND. NC. EQ. 3) READ(l, 9946) (X(Il), I1=6 ,NVT) 

9940 FORMAT(4F10.3) 
9941 FORMAT(F13.3) 
9942 FOfil1AT(2F13.3) 
9943 FOfil1AT(13X,F13.3) 
9944 FORMAT(26X,2F13.3) 
9945 FORMAT(26X,F13.3) 
9946 FOR~1AT(52X,2F13 . 3) 

DO 20 Il=l ,NC 
Sl=O. 
DO 10 I2=1,NV 

10 Sl=Sl+C(Il,I2)*X(IV(I2)) 
20 S(Il)=Sl+C(Il,NVl) 

CALL SRTPDR(S,l,IP,1,NC) 
CALL TABLE1(IX(3),IP(l),NC,IM,JCK) 
IF(JCK.EQ.O) GO TO 30 
I4=I4+1 
DO 25 Jl=l ,4 

25 IZ(Jl,I4)=IX(Jl) 
IZ (5, I4 )=IP (1) 
TIMEX(I4 )=TIME 

30 CONTINUE 
1000 CONTINUE 

CALL TABLE2(NC,MC1,MCA,I4,IZ) 
C 

WRITE(3,9930) MC1,MC2,MC3,IX(l),(LR(I),I=l,4) 
9930 FORMAT(lHl, 'TABLE OF CLASSIFICATION BY' ,A2,2A4,' ORIGINAL'/ 

&lH,' IN FILE' ,I3/1H ,10X,4(6X,A4)) 
DO 40 Il=l ,4 
WRITE(3,9920) LC(Il),(IM(Il,I2),I2=1,NC) 

40 CONTINUE 
9920 FORMAT(lH ,6X,A4,4Il0) 

WRITE(3,9910) 
9910 FORMAT(//) 

C 

https://IF(MCl.EQ
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IF(I4.EQ.O) GO TO 55 
DO 50 Il=l, I4 
IF(IZ(6,Il).EQ.O) GO TO 50 
IZ1=IZ(3,Il) 
IZ2=IZ(5,Il) 
IM(IZ1,IZ2)=IM(IZ1,IZ2)-1 
IM(IZl,IZl)=IM(IZl,IZl)+l 

50 CONTINUE 
C 

55 WRITE(3,9900 ) MC1,MC2,MC3,IX(l), (LR(I),I=l,4) 
9900 FOfilIAT(lHO, 'TABLE OF CLASSIFICATION BY ',A2,2A4,' CORRECTED' / 

&lH,' IN FILE' ,I3/1H ,10X,4(6X,A4)) 
DO 60 Il=l,4 
WRITE(3,9920) LC(Il),(IM(Il,I2),I2=1,NC) 

60 CONTINUE 
WRITE(3,9910) 

C 
WRITE(3,9890) MC1 , MC2 , MC3 

9890 FORMAT(lHO, 'LIST OF EVENTS EXCEPT FOR CORRECTLY CLASSIFIED BACKGRO 
&UND BY ',A2,2A4/1H ,6X, 'FILE' ,sx, 'EVENT' , 6X, 'TYPE' ,4X, 'PREDIC' ,2X, 
&'CORRECTN' , 6X, 'TIME ' ) 

IF(I4.EQ.O) GO TO 80 
DO 70 Il=l, I4 

70 WRITE(3,9880) IZ(l,Il),IZ(2,Il),LC(IZ(3, I l)),LR(IZ(5,Il)), 
&IZ(6,Il) ,TH!EX(Il) 

9880 FOR~IAT(lH ,2I10,2(6X,A4),I10,Fl0.3) 
80 WRITE(3,9910) 

STOP 
END 

C*mt:~*********-tri:***-tri:**--.':*****-:.t.:**********-fri:****-;':*·#*--.i:**-:ri:***~*-frl:-iri:-Jri:-tri: 
SUBROUTINE TABLE 1 ( IX3, IP 1, NC, IM, JCK) 
DIMENSION IM(4,4) 
JCK=O 
DO 10 I2=1,NC 
DO 10 Il=l ,4 
IF(IX3.NE.Il.OR.IP1.NE . I2) GO TO 10 
IM(Il,I2)=IM(Il,I2)+1 
IF(Il.NE.1.0R.I2.NE.1) JCK=l 

10 CONTINUE 
RETURN 
END 

SUBROUTINE TABLE2(NC,MC1,MCA,IO,IZ) 
DH!ENSION IZ(7, 101) 
DO 10 I=l, IO 
IZ(6,I)=O 
IZ(7,I)=IZ(S,I) 
IF(MCl.NE.MCA.AND.NC.EQ.3.AND.IZ(S,I).EQ . 3) IZ(7,I)=2 
IF(NC.NE.4) GO TO 10 
IF(IZ(5,I j .EQ.3) IZ(7,I)=2 
IF(IZ(5,I).EQ.4) IZ(7,I)=3 

10 CONTINUE 

DO 20 K=l,2 
C 

https://IF(MCl.NE.MCA.AND.NC.EQ.3.AND.IZ(S,I).EQ
https://IF(IX3.NE.Il.OR.IP1.NE
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!2=0 
DO 20 I=l,IO 
IKl=I+K 
IK2=I-K 
IF(IKl.LE.IO) CALL CORRCT(I,IKl,IZ) 
IF(IK2.GE.l) CALL CORRCT(I,IK2,IZ) 

20 CONTINUE 
RETURN 
END 

C-;h':***-;'rl:~-1rlrl:**iri:*-:rl:7ri:*-1ri:***~*-trl:-;':***-lri:*mh':-;':********-;':** ..·......... ,..***-;':*-trl:** 
SUBROUTINE CORRCT(I,IK,IZ) 
DntENSION IZ (7,101) 
ID=IABS(IZ(2,IK)-IZ(2,I)) 
IF(ID.GT.4) RETURN 
IF(IZ(3,I).EQ.l.AND.IZ(7,I).EQ.2.AND.IZ(3,IK).EQ.2) IZ(6,I)=l 
IF(IZ(3,I).EQ.l.AND.IZ(7,I).EQ.3.AND.IZ(3,IK).EQ.3) IZ(6,I)=l 
IF(IZ(3,I) .NE. 2 .OR. IZ(7 ,I ) .NE. 1) GO TO 10 
IF(IZ(3,IK).EQ. 1 .AND.IZ(7,IK).EQ. 2) IZ (6,I)=l 

10 IF(IZ(3,I) .NE. 2 .OR. IZ(7 ,I) .NE. 3) GO TO 20 
IF(IZ(3,IK).EQ. 1 .AND.IZ(7,IK).EQ. 2) IZ (6,I)=l 

20 IF(IZ(3,I) .NE. 3 .OR. IZ(7 ,I) .NE. 1) GO TO 30 
IF(IZ(3,IK).EQ. 1 .AND.IZ(7,IK).EQ. 3) IZ (6,I)=l 

30 IF(IZ(3,I) .NE. 3 .OR. IZ(7,I) .NE. 2) GO TO 40 
IF(IZ(3,IK) . EQ . 1 .AND.IZ(7,IK).EQ. 3) IZ (6,I)=l 

40 CONTINUE 
RETURN 
END 

DATA SET NAME= PAR.M3.Al3R 

Al3R. SOS 
72 1000 

BCK SSW ART 
BCK SSW ART DBS 

DATA SET NAME= PAR.M3.TA13R 

TA13R.SOS 
38 1000 

BCK SSWASSWB 
BCK SSW ART DBS 

DATA SET NAME= CLF.Al3RS05 

3 5 
40 S29 0.40681 0.45161 -4.69353 
42 AMlO 0.08027 -0.91834 -0. 75741 
44 S210 0.12176 -1. 95277 -10.61063 
45 DUlO 120. 49611 -178.94417 -138.35342 
47 S111 -0.80868 3. 13877 11. 99979 
00 -3.01535 -61. 77582 -282. 77930 

https://AND.IZ(7,IK).EQ
https://IF(IZ(3,IK).EQ
https://AND.IZ(7,IK).EQ
https://IF(IZ(3,IK).EQ
https://AND.IZ(7,IK).EQ
https://IF(IZ(3,IK).EQ
https://AND.IZ(7,IK).EQ
https://IF(IZ(3,IK).EQ
https://IF(IKl.LE.IO
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DATA SET NAME= SUB 

C*~"frlrl:*****-frlrn****'H:***~**~-;,':*~**,'-:,":*-t:-::***-1rlri:,':-tn':*****-lri:*-tri:-lri:*-fririri:-trlrlrlrl: 
C 
C SUBROUTINES 
C 
C-;':*-1ri:******-:':,':m':**m':-:':-;':*****'':*******'':*-:.':*-=':*************--':****-:riri:,':*,m***,':*-trlri: 
C 

SUBROUTINE BACK(Y,N) 
DIMENSION Y(N) 
Nl=N/2 
DO 10 Il=l ,Nl 
I2=N-Il+l 
Tl=Y(Il) 
Y(Il)=Y(I2) 
Y(I2)=Tl 

10 CONTINUE 
RETURN 
END 

SUBROUTINE GETD(Y,N,YD1,Dl,D2) 
DIMENSION Y(N) 
NF=(N-1)/2 
Nl=NF+l 
N2=Nl-1 
Fl=FLOAT(NF) 
YD1=Y(N2)-Y(Nl) 
Dl=(Y(Nl)-Y(N))/Fl 
D2=(Y(l)-Y(Nl) ) /Fl 
RETURN 
END 

C******-tri:*-:':********-;':*******":':***":.':*-tri:-.':**********'':*-f:-k****~**~*****-;,':-rri:**-tri: 
SUBROUTINE GETL(Y,H,N,YLl) 
DIMENSION Y(N) ,H(N) 
YLl=O.O 
DO 10 Il=l ,N 
I2=N-Il+l 
YLl=YLl+H(Il)*Y(I2) 

10 CONTINUE 
RETURN 
END 

C*-trn*~~-tm+ri:-tri:-tri:**********-tri:-tri:*+ri:*-tri:***********-triri:*Trn***-:ri:****-trlri:***-tri: 
SUBROUTINE GETP(YD1,Dl,D2,KS,ICK1) 
ICKl=O 
GO TO (10,20), KS 

10 IF(YDl.LE.0.0) GO TO 30 
IF(Dl.GT.O.O.OR.D2.LE.O.O) GO TO 30 
ICKl=-1 
KS=2 
GO TO 30 

20 IF (YDl.GE.0.0) GO TO 30 
IF(Dl.LT.O.O.OR.D2.GE.O.O) GO TO 30 
ICKl=l 
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KS=l 
30 CONTINUE 

RETURN 
END 

c-.1:*****-1riri:*-frl:-;':**-tri:-trirlrl:-lrl:***-.'rl:****~********-.1:*m1:-.1:*********'':*-tri:***~*-trl:*-trl: 
SUBROUTINE SHFTIM(Y,YI,M,N) 
INTEGER Y(M,N),YI(M),Tl,T2 
DO 20 Il=l ,M 
Tl=Y(Il ,N) 
DO 10 I2=2,N 
I3=N-I2+1 
T2=Y(Il, I3) 
Y(Il,I3)=Tl 
Tl=T2 

10 CONTINUE 
Y(Il ,N)=YI (Il) 

20 CONTINUE 
RETURN 
END 

C******-.':*-:ri:*-.':*******-k-f:*****-.':**-tri:******-;1:-.1:*******~-.':****-:ri:-tri:**+riri:*-trl:*-frlrlrl: 
SUBROUTINE SHFTID1(Y, YI ,M,N) 
REAL Y(M,N),YI(M) 
DO 20 Il=l ,M 
Tl=Y(Il,N) 
DO 10 I2=2,N 
I3=N-I2+1 
T2=Y(Il, I3) 
Y(Il,I3)=Tl 
Tl=T2 

10 CONTINUE 
Y(I l ,N)=YI (Il) 

20 CONTINUE 
RETURN 
END 

C*iri:*****-.m*-.':***-.m***********-.1:*-;':************-.':*******+ri:";':*****-;':***-:-ri:*""i':**-tri: 
SUBROUTINE SHIFT(Y,Yl,N) 
DIMENSION Y(N) 
Tl=Y(l) 
DO 10 !=2 ,N 
T2=Y(I) 
Y(I)=Tl 
Tl=T2 

10 CONTINUE 
Y(l)=Yl 
RETURN 
END 

SUBROUTINE TMABS(Y,T,NL,Vl) 
DIMENSION Y(NL), T(NL) 
Vl=O. 
DO 10 Il=l ,NL 

10 Vl=Vl+ABS(Y(Il)-T(Il)) 
Vl=Vl/FLOAT(NL) 
RETURN 
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END 

SUBROUTINE TMCOR(Y,T,NL,R4) 
DIMENSION Y(NL),T(NL) 
Cl=l. IFLOAT(NL) 
SY=O. 
ST=O. 
Rl=O. 
R2=0. 
R3=0. 
DO 10 Il=l ,NL 
SY=SY+Y(Il) 
ST=ST+T(Il) 
Rl=Rl+Y(Il)*T(Il) 
R2=R2+Y(I1)**2 
R3=R3+T(I1)**2 

10 COt-t'TINUE 
RT= (R2-Cl ,',SY**2 )* (R3-C 1•"'Si-"'*2) 
IF(RT. GT. 0. lE-7) R4=(Rl-SY•"'ST'"'Cl) /SQRT(RT) 
IF(RT.LE.O.lE-7) R4=-2. 
IF(RT.LT.O.) R4=-3. 
RETURN 
END 

SUBROUTINE TMSQE(Y,T,NL,Vl) 
DIMENSION Y(NL),T(NL) 
Vl=O. 
DO 10 Il=l ,NL 

10 Vl=Vl+(Y (I 1) -T ( I1) )'''*2 
Vl=Vl/FLOAT(NL) 
RETURN 
END 

DATA SET NAME= 87M.A13R 

I/HOMMAB7M JOB (0905-6-000-AA-00,:16,6), 'BOX #4 HOMMA' ,REGION=1024K 
II EXEC BMDP,PROG=BMDP7M,REGION=128K 
I/-;': ****************-::**-:':*********-;':***-tri:*****-::*****...':*****-;':**Tri:*******-tri:* 
II* 
//* PROGRAM BAMP7M for A13R 
I I'"' 
I I* -:1:+rl:**-trl:~*-1-ri:*~**-tri:*** ., .. ., .. ., .. ., ........****~-fm*-trlrl:*-trl:***-1:*********-fri:-trn** 
/ I'"' THIS IS AN EXAMPLE OF THE BMAP7M PROGRAM. THE INPUT IS THE DATA SET 
//* LST.AOlRM, WHICH IS DERIVED FROM THE ORIGINAL DATA SET DATAOl, 
//* PARAMETERIZED, AND LABELED. 
I I";': *********-;"-:*************-;':··l:***1ri:********************-:':***-;':*********-:rl:* 
//G.SYSIN DD* 
/PROB 

TITLE='EEG tVENT CLASSIFICATION: A13R'. 
IINP 

VAR=77. 
FORM=' (A3,1X,A4,FS.O,F3.0,Fl0.3,18(/4Fl0.3 ) )'. 
UNIT=7. 
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/VAR 
NAf1E=FILE ,EVENT, TYPE, IC, TIOP, 

AM1,Sll ,S21,DU1,AM2,Sl2,S22,DU2 ,AM3,Sl3,S23,DU3, 
Af14, Sl4, S24 ,DU4 ,Af15, SlS, S25 ,DUS ~AM6, Sl6, S26 ,DU6, 
AM7, Sl7 ,S27 ,DU7 ,Af18, Sl8, S28 ,DUB ,AM9, Sl9, S29 ,DU9, 
Af110, SllO, S210 ,DUlO ,Af!ll, Slll, S211,DU11 ,Af112, Sll2, S212 ,DU12, 
AM13, Sll3, S213 ,DU13 ,Af114, Sll4, S214 ,DU14 ,Af115, S115, S215 ,DU15, 
AM16,Sl16,S216,DU16,AM17,Sll7,S217,DU17,AM18,Sll8,S218,DU18. 

USE= AMl, Sll, S21,DUl ,AM2, S12, S22 ,DU2 ,Al-13, S13 , S23 ,DU3, 
Af14, S14 , S24 ,DU4 ,Af!S, S15, S25 ,DUS ,Af16, S16 , S26 ,DU6, 
AM7, S17, S27 ,DU7 ,Aff8, S18, S28 ,DUS , Af19. Sl9, S29 , DU9, 
AM10,S110,S210,DU10,AM11 , Slll,S211,DU11 ,AM12,Sll2,S212,DU12, 
AM13,S113,S213,DU13,AM14,Sll4,S214,DU14 ,Af115,Sll5,S215,DU15, 
Af116,Sll6,S216,DU16,Af117 ,Sll7 ,S217 ,DU1 7 ,Af118,Sll8,S218,DU18. 

LABEL=FILE,EVENT. 
BLANK=ZERO. 
GROUPING=TYPE. 

/ CATEGORY 
CUTPOINT(3)=0 . l,l.5. 
NAME(3)=BCK,SSW,ART. 
PRIOR=0.98,0 . 01,0.01. 

/ TRAN 
IF(TYPE EQ 2 .) THEN USE=O. 
IF(TYPE EQ 3. ) THEN USE=O. 
IF(TYPE EQ 4.) THEN USE=O. 

/ DISC 
METHOD=l. 
STEP=l44. 
TOL=0.005. 

/ PRINT 
CLASS=l TO 144 . 
NO POINT. 
NO POST. 

/ PLOT 
CONTR. 

/COMMENT='DATA: LST.AOlRM.'. 
/END 
I* 
/ / G.FT07F001 DD DSN=HOMMA.LST.AOlRM, 
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=4080), 
// DISP=(OLD,KEEP,KEEP),SPACE=(CYL,(1,2),RLSE), 
/ / UNIT=DISK 
II 
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Appendix E 

Instructions for Running Programs 

The following illustrates the instructions when running the 

programs for the experiments A 13R and TA13R, and the classifiers 

A13R.S05 and TA13R.S05, using the first data set DATA0l. The 

comments appear with a regular type, and the commands for the 

computer terminal TSO in clemson university appear with a bold type. 

The character + is for the carriage return (or enter) key. 

Instructions: 

(1) Create a temporary load library. 

ALLOCLIB NAME(CAL) INC(CYL) PRM(2) SEC(4) DIR(2) + 

(2) Load the programs. 

X $LOAD MG + 
X $LOAD MlA + 
X $LOAD MlT + 
X $LOAD M2 + 
X $LOAD M3 + 

(3) Execute the program MG using the I BM3277 terminal and the 

TEKTRONIX618 graphic display. 

ALLOCATE FI ( FT0l F00l) DA(*) + 
ALLOCATE Fl(FT03F001) DA(*) + 
ALLOCATE Fl(FT07F001) DA('HOMMA.DATA0l') + 
CALL 'HOMMA. CAL(MG)' + 

SSWs and other waves of interest are marked by a supervisor, 

using the graphic display, and the corresponding waves are 

labeled as follows. The label 0 for background events, 1 for SSW, 

2 for successive SSW, 3 for doubious SSW, and 4 for adjacent 

events to SSW. When SSW is divided into SSWA and SSWB, the 
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event identifiers IFl LE and I EVENT were used to specify SSWB 

events in the BMDP7M program. The event that has IFl LE=12 and 

IEVENT=1619 was first considered as an artifact event, but later 

considered as a background event . The label of this event is 

changed so in the program M3. 

(4) Execute the program M1A to get wave parameters in Method A. 

X $MlA 01 + 

(5) Execute the program MlT to get wave parameters in Method T. 

X $MlT 01 TlW TElW + 

(6) Execute the program M2 to get event parameters, after merging a 

line for NEVENT, M, Ml, ISEL on the top of LST.AOl and 

LST. T1W01. 

CEDIT LST .A0l SIZE(*) + 
1 2000 19 10 0 + 
REPLACE + 
END + 

Merge for LST. TlWOl likewise . 

CEDIT LST. TlW0l SIZE(*) + 
1 2000 19 10 2 + 
REPLACE + 
END + 

Then, 

X $M2A LST.A0l LST.A0lM + 
X $M2T LST.TlW0l LST.TlW0lM +. 

(7) Execute the program M3 to get the original and corrected 

classification tables (the latter table is explained in Chapter 5). 

X $M3 LST.A0lM OUT.A13RS05.DAT01 CLF.A13RS05 PAR.M3.A13R + 
X $M3 LST.T1W01M OUT.TA13RS05.DAT01 CLF.TA13RS05 
PAR.M3.TA13R + 
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Appendix F 

Output Examples of Programs 

Output examples of the programs listed in Appendix D are shown 

in the following. 

(1) A partial list of the original data with parameters for the program 
MlA or MlT on the top line. 

1 40 1200 14336 5 5 5 50 0.005 
17 15 25 17 25 29 33 38 34 35 36 33 32 31 30 27 
25 19 15 17 13 9 6 10 9 6 8 6 5 9 11 15 
20 21 17 19 17 17 10 14 15 18 20 17 11 14 17 17 
17 15 17 19 19 18 20 16 19 23 20 'l ')..__ 22 25 28 24 
22 21 22 13 16 24 18 27 24 24 14 12 15 19 19 25 

(2) An output example of the program MG. 

11 I 'I l I p• M~llll l l I fl f I I I !fI I" r,~ n I I I r,n,11111' 'ff 

1~.11 

(3) A partial list of the data of wave parameters LST.A0l with 
parameters for the program nz on the top line. 

2000 19 10 0 
1 1 -1 -0.025 0.0 0.0 0.0 
1 2 1 0.035 -35.750 -3.375 0.375 
1 3 -1 0.135 -6.250 0.500 -1. 125 
1 4 1 0.165 -19.750 -2.250 0.875 

TINE 

1 5 -1 0.190 -12.750 2.375 -1.375 
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(4) A partial list of the data of event parameters LST .AOlM. 

1 11 0 0.335 
29.500 -3.375 0.375 0.100 

-13.500 0 . 500 -1.125 0.030 
7.000 -2.250 0.875 0.025 

-6.000 2.375 -1.375 0.020 
5.500 -1. 625 2.750 0.010 

-5.500 2 . 750 -1. 500 0.040 
1.000 -0 . 875 0 . 125 0.015 

-8.500 0.500 -1. 750 0.035 
10 . 250 -1. 750 2.000 0 . 025 
-8.750 2.750 -2.250 0 . 025 
11. 500 -1.500 4.375 0.015 

-13.000 4 . 125 -2.375 0.040 
22.000 -2 . 375 0 . 625 0.055 

-12.500 3.125 -3.125 0.035 
11.500 -0.500 1. 750 0 . 020 

-11. 750 4 . 000 -0 . 500 0 . 050 
12.000 -1. 750 1. 750 0.030 
-2.750 2.375 -1.375 0.010 
1 13 0 0.375 
7.000 - 2. 250 0.875 0 . 025 

-6 . 000 2 . 375 -1.375 0 . 020 
5.500 -1. 625 2 . 750 0.010 

(5) An example of the outputs from the program M3. 

TABLE OF CLASSIFICATION BY A13R . S05 ORIGINAL 
IN FILE 1 

BCK SPK ART 
BCK 857 2 0 
SPK 1 8 0 
ART 0 0 1 
DBS 0 0 0 

TABLE OF CLASSIFICATION BY A13R.S05 CORRECTED 
IN FILE 1 

BCK SPK ART 
BCK 859 0 0 
SPK 1 8 0 
ART 0 0 1 
DBS 0 0 0 



246 

LIST OF EVENTS EXCEPT FOR CORRECTLY CLASSIFIED BACKGROUND BY Al3R . S05 
FILE EVENT TYPE PREDIC CORRECTN TI~!E 

1 309 SPK SPK O 11.510 
1 311 BCK SPK 1 11 . 540 
1 325 SPK SPK O 12.550 
1 351 SPK SPK O 13.685 
1 581 SPK SPK O 22.970 
1 1163 SPK SPK O 47.110 
1 1181 SPK SPK O 48 . 130 
1 1185 BCK SPK 1 48.325 
1 1191 SPK SPK O 48.795 
1 1569 SPK SPK O 63 . 595 
1 1613 ART ART O 65 . 415 
1 1659 SPK BCK O 67.255 
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Classifications at Training Stage 

Table G-1 Classifications at Training Stage . 

SSW-> 
Classifier 

Pl P2 PJ 

BCK ->PRE 

BCK SSW BCK SSW 

2 7 
A12 . S 2 
A12 .s 1 855 50. 775 0.579 0~63 

2 7 
A12 . S 3 

o . 775 o. 775 o. 775 858 2 
0. 776 0.8711 0.822 2 1 

A12 . s 11 
859 1 

2 7 
A12 . s 5 

0. 776 0.8711 0 . 822 859 1 
2 7 

A12 . S 6 
0. 776 0. 8711 0 . 822 859 1 

2 1 
A12 . s 7 

o. 776 0.874 0 . 822 859 1 
2 7 

,A12 . S 8 
o. 776 0.8711 0 . 822 859 1 

0 9 
'A12 . S 9 

859 11.000 0 . 899 0.9117 
0 9 

!A12 .S10 
1.000 0.899 0.9117 859 1 

1 80.888 0.888 0 . 888 859 1
' 0 9 
,A12 . S12 
:A12 . S11 1.000 0 . 899 0.9117 859 1 

1 8 
!A12 . S13 

859 10.888 0.888 0.888 
1 8 

·A12 .s111 
0.888 0.888 0.888 859 1 

1 8 
,A12 . S15 

0 . 888 0.888 0.888 859 1 
1 8 

:A12 . S16 
0.868 0,688 0 . 868 659 1 

1 8 
:A12 .S17 

0.868 0.888 0 . 888 659 1 
1 8 

:A12 . S18 
0.888 0.888 0.868 859 1 

1 8 
;A12 . S19 

0.888 0.888 0 . 888 859 1 
1 8 

! 
·A12R .S 1 

0.888 0.868 0 . 888 859 1 

71111 1 1 8 
:A12R .S 2 

0.888 0.888 0 . 866 
11111 1 2 7 

A12R .S 3 
0. 775 0.673 0 . 622 

11111 1 1 8 
A12R .S 4 

0 . 688 0.888 0 . 888 
71111 1 1 8 

A12R .S 5 
0 . 888 0.688 0.888 

71,11 11.000 0.899 0 . 9117 0 9 
A12R .S 6 71111 1 0 9 
A12R.S7 ' 

1.000 0.899 0 . 9117 
11,4 11.000 0.899 0 . 9117 0 9 

A12R ,S 8 71111 11.000 0,699 0.9117 0 9 
A121t .S9 7114 1 0 9 
A12R ,S10 

1.000 0.899 0.947 
71111 1 0 9 

A121t .S11 
1 . 000 0.899 0.9117 

7114 1 1 8 
A12R ,S12 

0.888 0 . 888 0.888 
1 8 

A12R .S13 
744 10.888 0.888 0.888 

1 8744 10.888 0.888 0.888 

I--> 
.i::,......, 



Table G-1 (Cont'd.) 

OCK -> SSW-> 
Classifier 

rt P2 Pl 

PRE 

OCK SSW BCK SSW 

A22R .S 1 o.Ii91 0.798 0 . 612 1515 2 8 8 
A22H .S 2 0.811 0.811 0. 811 1514 3 3 13 
A22H .S 3 0 . 8711 0 . 822 0 . 8'17 15111 3 2 14 
A22H . S II 0.874 o. 775 0.822 1513 4 2 14 
A22R . S 5 0. 811 0 . 811 0 . 811 15111 3 3 13 
A22R . S 6 0.874 o. 775 0.822 1513 1, 2 14 
A22R .S 7 15111 30.874 0.822 0.8117 2 14 
A22R , S 8 0.874 0.874 0 . 874 1515 2 2 14 
A22R . S 9 0.811 0.865 0.837 1515 2 3 13 
A22R . SIO 0 . 874 0.874 0 . 8711 2 111 
A22R . SI 1 

1515 2 
0.937 0.881 0.908 1515 2 1 15 

A22R .S12 0.937 0.881 0.908 1515 2 I 15 
A22R .S13 0.937 0.832 0.881 · 1514 3 1 15 
A22R . Sl4 15111 30.937 0.832 0.881 1 15 
A22R . S15 0.937 0.881 0.908 1515 2 I 15 
A22R .Sl6 0.937 0.881 0.908 1515 2 1 15 
A22R .Sl7 0.937 0.881 0.9118 I 15 
A22H .S18 

1515 2 
0.937 0 . 881 0.908 1 15 

A22R .S19 
1515 2 

0 . 937 0.881 0 . 908 1515 2 1 15 

0.8711 0 . 838 0 . 856 2287 4 3 21 
A32R .S 2 
A32R .S 1 

0.832 0 . 832 0 . 832 2287 11 4 20 
A32R .S 3 2287 1, 4 20 
A32R . S 11 

0.832 0.832 0.832 
2267 11 3 21 

A32H .S 5 
0.874 0.838 0 . 656 
0.916 0.813 0.861 2286 5 2 22 

A32H .S 6 2287 4 3 210.674 0.638 0.856 ,, ,,2287 20 
A32H .S 8 
A32R .S 7 0.632 0.832 0.832 

2288 3 2 220.916 0.679 0.897 ,, 2 22 
A32R .SIO 
A32R .S 9 0 . 916 0.8115 0 . 879 2287 

2287 1, 2 220.916 0.8115 0.879 ,,2287 2 22 
Al2H .Sl2 
A32R . SI 1 0.916 0.6115 0 . 879 

2288 3 2 22 
A32R .Sl3 

0 . 916 0.679 0 . 897 
2289 2 2 22 

A32H . S14 
0.916 0 . 916 0 . 916 

2288 3 2 22 
A32R .Sl5 

0.916 0.879 0 . 897 
2288 3 2 22 

A32H .S16 
0.916 0.879 0 . 897 

2288 3 2 22 
A32R . Sl7 

0 . 916 0.879 0 . 897 
2 22 

A32R .Sl8 
2288 30.916 0 . 879 0.897 

2 22 
A32R .S19 

0,916 0.879 0 . 697 2268 3 
2288 3 2 22 

A32R .S20 
0.916 0 . 879 0.697 

2288 3 2 22 
A32R .S21 

0.916 0.879 0.697 
2288 3 2 22 

A32R .S22 
0 . 916 0.879 0.897 

2289 2 2 22 
A32R .S23 

0.9)6 0.916 0.916 
2289 2 2 22 

A32R . S211 
0.916 0.916 0.916 
0.916 0.879 0.897 2288 3 2 22 

A32R ,S25 0.916 0.916 0.916 2269 2 2 22 
A32R .S26 2 22 

t..J 
0.916 0.916 0.916 2269 2 

~ 
CX) 



Table G-1 (Cont'd.) 

BCK -::-;--PRE SSW-> ART-> 
CLASSIFIER 

Pl P2 Pl BCK SSW ARf BCK SSW ART BCK SSW ART 

A13 . S 1 0 ~220 1.000 o. 361 859 0 0 6 2 1 0 0 1 
All . S 2 0.11112 1.000 0.613 859 0 0 4 4 1 0 0 1 
A13 . S 3 0.664 0 . 856 0. 7118 858 1 0 2 6 1 0 0 1 
A13 . s 4 o. 776 0 . 874 0.82 2 858 1 0 2 7 0 0 0 1 
A13 . s 5 0.888 0.888 0.888 858 l 0 l 8 0 0 0 1 
Al3 . S 6 0.888 1.000 0.9111 1 8 0859 0 0 0 0 1 
Al3 . s 7 0 . 868 1 . 000 0.9111 859 0 0 l 8 0 0 0 1 
A13 . S 8 0.888 1 . 000 0 . 911 I 859 0 0 l 8 0 0 0 1 
Al3 • s 9 0.888 1 . 000 0 . 91,1 6 59 0 0 l 8 0 0 0 1 
All • SlO 0.888 1 . 000 0 . 9111 859 0 0 1 8 0 0 0 1 
A13 . Sll 1.000 1.000 1.000 0 9 0 0 0 1859 0 0 
A13 . Sl2 1.000 1.000 1.000 859 0 0 0 9 0 0 0 1 

71,2 0 2Al3R . S l 0.441 1 . 000 0.613 0 4 5 0 0 1 
11111 0 0A13R .S2 0.664 1.000 0.798 2 6 1 0 0 1 
11111 0 0o. 776 1.000 0 . 8711 1 7 1 0 0 1A13R . S 3 
71,1, 0 0A13R .S 11 1 7 1 0 0 1o . 776 1 . 000 0 . 874 
11111 0 00.888 1.000 0 . 91,1 1 8 0 0 0 1A13R • S 5 
11111 0 0A13R . s·6 0 . 888 1 . 000 0. 9111 1 8 0 0 0 1 
11111 0 0A13R . S 7 0 . 888 1.000 0.911 I 1 8 0 0 0 1 

A13R .S 8 0.888 1.000 0 . 9111 11111 0 0 1 8 0 0 0 1I 
1 8 00 . 888 1.000 0 , 9111 71111 0 0 0 0 1A13R . S 9 

A13R .SIO 1.000 1.000 1 . 000 I 11111 0 0 0 9 0 0 0 1 
1.000 1.000 1. 000 7114 0 0 0 9 0 0 0 1A13R . S11 

0 0 1A13R . S12 1.000 1.000 1 . 000 ! 11111 0 0 0 9 0 
A13R .S13 1.000 1.000 1.000 ! 11111 0 0 0 9 0 0 0 1 

0 0 11 . 000 1.000 1.000 I 744 0 0 0 9 0A13R • S14 I
1.000 1 . 000 1. 000 I 71,4 0 0 0 9 0 0 0 1A13R . S15 

I 0 0 10. 372 0.8% 0.519 1515 l 0 8 6 2A23R . S 1 
3 11 2 0 0 1A23R . S 2 0 . 685 0.8115 0. 756 I 1514 2 0 

1514 2 0 3 12 1 0 0 1A23R . S 3 0. 7118 0.856 0 . 798 
1513 3 0 4 11 l 0 0 1A23R . S II 0.685 0.783 0.731 
1511, 2 0 2 13 1 0 0 10 . 811 0.865 0 . 837A23R . S 5 
15111 2 0 2 13 1 0 0 1A23R . S 6 0.811 0 . 865 0.837 
15111 2 0 1 14 1 0 0 10.8711 0.874 0.874A23R . S 7 

1 111 1 0 0 10 . 8711 0.933 0.902 1515 1 0A23R .S 8 
0 0 10.8711 0.933 0.902 1515 l 0 1 Ill 1A23R .S 9 

1 111 1 0 0 10.8711 0.933 0 . 902 1515 1 0A23R .S10 
1 111 1 0 0 1A23R . S 11 0 . 814 0.933 0.902 1515 1 0 
2 13 1 0 0 1A23R .S12 0. 811 0.928 0.865 1515 l 0 

1511, 2 0A23R .S13 0 . 811 0.865 0.837 0 0 l2 13 1 
2 13 1 0 0 1A23R . Stll 0 . 811 0 . 865 0.837 15111 2 0 
1 11, 1 0 0 11514 2 0A23R .S15 0 . 874 0 . 874 0.874 
1 14 1 0 0 1A23R .Sl6 0.874 0 . 874 0.874 1514 2 0I 

~ 
(0 

t....l 



Table G-1 (Cont'd.) 

PRE BCK -> SSW-> ART-> 
CLASS If I ER 

Pl P2 P3 OCK SSW ART BCK SSW ARl BCK SSW ART 

A23~Sf7 0 . 674 0.674 0.6111 1514 2 0 1 111 I 0 0 1 
A2311 . Sl6 0.674 0.6711 0.6711 15111 2 0 . 1 14 1 0 0 1 
A23R .Sl9 0.674 0.674 0.6711 I 111 11514 2 0 0 0 1 
A23R .S20 15111 2 0 1 111 10.674 0.674 0.674 0 0 1 

A33R .S 1 0.330 0. 796 0 . 467 2266 2 0 13 6 3 0 0 1 
A33R .S 2 0.706 0.8116 0. 771 2287 3 0 4 17 3 0 0 1 
A33R .S 3 11.706 0.608 0.753 2266 4 0 5 17 2 0 0 1 
A33R .S 4 0. 706 0.770 0. 737 2265 5 0 5 17 2 0 0 1 
A33R .S 5 o. 790 0.824 0.807 2286 4 0 3 19 2 0 0 1 
A33R .S 6 0.632 0.832 0.832 2286 0 3 20 1 0 0 1 
A33R .S 7 0.674 0.606 0.838 2285 '•5 ll 2 21 1 0 0 1 
A33R .S 8 2287 3 00.674 0 . 674 0.8711 2 21 1 0 0 1 
A33R .S 9 0. 8711 0.674 o. 6711 2287 3 0 2 21 1 0 0 1 
A33R .SIO 0.632 0.668 0.850 2287 3 0 3 20 1 0 0 1

1 ,,0.790 0.624 0 . 807 2286 4 0 19 1 0 0 1r33R . SilA33R . S12 0 . 832 0 . 868 0 . 850 2287 3 0 3 20 1 0 0 1 
3 .A33R .S13 0.790 0.862 o. 8211 2287 0 4 19 1 0 0 1 

A33R .Sl4 0 . 832 0.668 0 . 850 2287 3 0 3 20 1 0 0 1 
0.632 0.868 0 . 850 2287 3 0 3 20 1IA33H .S15 0 0 1 
0 . 6711 0 . 8711 0.874 2261 3 0:A33H .S16 2 21 I 0 0 1,,A33H . S17 0.8"74 0.838 0.856 2266 0 2 21 1 0 0 1 

1,A33R .S18 0.6711 0.838 0.856 2286 4 0 2 21 1 0 0 1 
0.674 0.838 0.856 2286 4 0 2 21 1:A33R .S19 0 0 1 

,A33R .S20 2266 2 00.674 0.912 0.693 2 21 1 0 0 1 
i 

PRE BCK -> SSWA -> SSWB -> ART-> 
CLASSIFIER 

Pl P2 P3 BCK SSWA SSWB ART BCK SSWA SSWB ART BCK SSWA SSWB ART BCK SSWA SSWB ARl. 

A14 . s 1 1.000 0.616 0.699 857 2 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
Alll . S 2 1 . 000 0.689 0 . 616 855 4 0 0 0 6 0 0 0 0 1 ll 0 0 0 1 
A14 .s 3 1.000 0.669 0 . 816 855 4 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
Alli . s 4 1.000 0.639 0.780 854 5 0 0 0 8 0 0 0 0 1 0 0 0 0 I 
A14 . s 5 1 . 000 0.639 0."780 8511 5 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
A14 .s 6 1.000 0.639 o. 780 854 5 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
Alli . s 7 0.888 o. 798 0.81!0 857 2 0 0 1 7 0 0 0 0 1 0 0 0 0 1 
Alli . S 8 1.000 0.816 0.899 857 2 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
A14 . s 9 1.000 0. 1111 0.855 856 3 0 0 0 8 0 0 0 0 1 0 0 0 () 1 
A14 . SlO 1.000 0.747 0.855 856 3 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
A14 . Sil 1.000 0.747 0.855 856 3 0 0 0 8 0 0 0 0 1 0 0 0 0 1 N 

U1 
0 



T a ble G·· 1 (Cont'd . ) 

PRE BCK -> SSWA -> SSWB -> . ---ARI -> . -
CLASSIFIER 

Pl P2 Pl BCK SSWA SSWB ARI BCK SSWA SSWB ART BCK SSWA SSWB ARI 'ecK SSWA sswu ARl -

-Alli .S12 1.000 0.747 0.85 5 856 3 0 0 0 8 0 0 0 0 1 0 0 0 (I f 
Alli . S13 1 . 000 0.747 0 . 855 856 3 0 0 0 8 0 0 0 0 1 0 0 0 0 I 

Alllfl . S 1 1 . 000 0 . 899 0.9117 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 (I 1 
All1R .S 2 1.000 0.899 0 . 9117 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 () 1 
All1R . S 3 1 . 000 0.899 0 . 9111 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 0 I 
AlllR .S lj 1.000 0.899 0 . 9117 71,3 I 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
All1R . S 5 1 . 000 0.899 0 . 9117 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
AlllR .S 6 1.000 0.899 0 . 9117 7113 1 0 0 0 8 0 0 0 0 1 (l 0 0 0 1 
All1R . S 7 1 . 000 0 . 899 0. 9111 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
AlllR .S 8 1.000 0.899 0.9117 711] I 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
All1R .S 9 1 . 000 0.899 0 . 9111 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
AlliR . SlO 1 . 000 0 . 899 0 . 9117 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 () 1 
AlllR . Sl 1 1 . 000 0.899 0.9117 7113 1 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
AlllR .S12 1 . 000 0.899 0.9117 7113 1 0 0 0 8 0 0 0 0 1 () 0 0 () 1 
All1R .Sll 1.000 1 . 000 1 . 000 11iI, 0 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
AlllR . Slll 1.000 1 . 000 1 . 000 11111 0 0 0 0 8 0 0 0 0 1 0 0 0 0 I 
AlltR . S15 1.000 1.000 1 . 000 7411 0 0 0 0 8 0 0 0 0 1 0 0 0 0 1 
AlllR . S16 1.000 1.000 1 . 000 71111 0 0 0 0 8 0 0 0 0 1 0 0 0 0 1 

A211R 
A211R 
A211R 

. S 

. S 

. S 

1 
2 
3 

0.6811 
0 . 747 
0 . 937 

0 . 664 
0 . 663 
0.787 

0 . 6811 
0 . 703 
0 . 656 

1511 
1510 
1512 

5 
6 
lj 

0 
0 
0 

0 
0 
0 

11 
lj 
1 

10 
10 
13 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
2 
2 

1 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
I 
1 

A211R . S Ii 1 . 000 o. 721, 0 . 8110 1510 6 0 0 0 Iii 0 0 0 0 2 0 0 0 0 1 
A211R . S 5 1 . 000 0.692 0 . 818 1509 7 0 0 0 lli 0 0 0 0 2 0 0 0 0 1 
A211R . S 6 
A211R · , S 7 
A211R . S 8 
A2ilfl , S 9 
A211R . S10 

0.937 
0 . 937 
0.937 
1 . 000 
1 , 000 

0.678 
0.711 
o. 747 
0 . 759 
0.798 

0 . 787 
0 . 809 
0.831 
0 . 863 
0 . 888 

I 
I 

1509 
1510 
1511 
1511 
1512 

7 
6 
5 
5 
lj 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

1 
1 
1 
0 
0 

13 
13 
13 
1Ii 
111 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

2 
2 
2 
2 
2 

0 
II 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
(I 

0 

1 
. 1 

1 
I 
1 

A211R • S 11 1.000 o. 759 0.863 I 1511 5 0 0 0 lli 0 0 0 0 2 0 0 0 0 1 
iA211R .S12 1.000 0 . 759 0 . 863 1511 5 0 0 0 1 lj 0 0 0 0 2 0 0 0 0 1 
IA2liR . S13 1.000 0 . 759 0 . 863 1511 5 0 0 0 1Ii 0 0 0 0 2 0 0 0 0 1 

AJIIR . S 1 0.831 o. 711 0 . 767 228 2 8 0 0 3 18 0 0 0 0 2 I 0 0 0 1 
A311R . S 2 0 . 873 0.674 0 . 761 2260 10 0 0 2 19 0 0 0 0 2 1 0 0 0 I 
A311R . S 3 0.915 0 . 6811 0 . 783 2280 10 0 0 1 20 0 0 0 0 2 1 0 0 0 I 
A311R . S lj 0 . 9~8 0. 6911 0 . 8115 I 2260 10 0 0 1 20 0 0 0 0 3 0 0 0 0 1 
A311R 
A311R 
AJIIR 
AJIIR 
A311R 
A311R 

. S 5 

. S 6 

. S 7 

. S 8 

. S 9 

. S10 

0 . 9 58 
0.958 
0 . 958 
0.958 
0 . 958 
0.958 

0 . 694 
0.6911 
0.716 
0 . 716 
0.791 
0.791 

0 . 805 
0 . 805 
0.819 
0 . 819 
0.866 
0 . 866 

2280 
2260 
2281 
2281 
2281j 
22811 

10 
10 

9 
9 
6 
6 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 

20 
20 
20 
20 
20 
20 

0 
0 
0 
0 
0 
0 

0 0 
0 I 0 
o I 0 
0 ' 0 

gI 0 
0 

0 
0 
0 
0 
0 
0 

3 
3 
3 
3 
3 
3 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1 
1 
I 
I 
1 
1 

A311R . SI 1 0 . 958 0 . 791 0.866 2284 6 0 0 1 20 0 0 0 3 0 0 0 0 I 
AJIIR 
AlliR 
A31iR 

• S12 
• Sll 
.Sllj , 

0 . 958 
0.958 
0 . 958 

o. 7611 
0.820 
0.820 

0.850 
0.883 
0.883 

2283 
2285 
2285 

7 
5 
5 

0 
0 
0 

0 
0 
0 

1 
1 
1 

20 
20 
20 

0 
0 
0 gI 

0 
0 
0 

0 
0 
0 

3 
3 
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

,._, 
Ul_. 



Table G - 1 (Cont'd.) 

PRE 0CI< -> SSWA -> sswo -> ARI -> 
CLASSIFIER -Pl P2 Pl 0CI< SSWA sswo ART BCI< SSWA SSWB ART BCI< SSWA SSWB ARI BCK SSWA SSWB ARl 

A]IIR . Sl5 0.956 0.791 0.666 22811 6 0 0 1 20 0 0 0 0 l u 0 0 0 I 
A]l1R . S16 0.958 0.764 0.650 2283 7 0 0 I 20 0 0 0 0 l 0 0 0 0 1 
A]IIR . S17 0.956 0.764 0.850 2283 7 0 0 1 20 0 0 0 0 l 0 0 0 0 I 
A34R . S 18 0 . 956 0.791 0 . 866 2284 6 0 0 1 20 0 0 0 0 l 0 0 0 . 0 1 
Al4R .S19 0 . 956 0.791 0.666 22611 6 0 0 1 20 0 0 0 0 l 0 0 0 0 I 
Al4R .S20 0.956 0.764 0.650 2263 1 0 0 1 20 0 0 0 0 l 0 0 0 0 1 

Classifier 
PRE BCI< -> SSW-> 

Pl P2 Pl BCI< SSW BCI< SSW 

TA12 . S 1 0 . ]211 0.242 0.277 851 9 6 l 
TA12 . S 2 0.662 0.1195 0.566 854 6 l 6 
TA12 . S 3 o. 773 0.1106 0 . 532 850 10 2 7 
TA12 .S 4 0.667 0.663 0.759 656 4 1 6 
TA12 .S 5 0 . 775 0.697 0. 7311 857 3 2 7 
TA12 .S 6 0.667 0.724 0.798 657 3 1 6 
TA12 .S 7 0.888 0.798 0.81!0 856 2 1 6 
TA12 .S 6 0.868 0 . 798 0.8110 856 2 1 8 
TA12 .S 9 1.000 0.816 0.899 658 2 0 9 
TA12 .Sl0 1.000 0.816 0.699 858 2 0 9 

TS12 .S 1 0.212 0. 173 0. 191 851 9 7 2 
TS12 .S 2 0.551 0.621 0.5611 657 3 4 5 
TS12 .S 3 0.775 0 . 579 0.663 655 5 2 7 
lS12 .S 4 1.000 0.616 0.899 656 2 0 9 
TS12 .S 5 0.686 o. 796 0.6110 658 2 1 8 
TS12 .S6 0 . 666 0 . 796 0 . 6110 656 2 1 6 
TS12 .S 7 0.666 0.796 0.6110 656 2 1 6 
TS12 .S 6 0.666 0. 796 0.6110 656 2 1 6 
TS12 . S 9 0.666 0.798 0.640 658 2 1 8 

TC12 .S 1 0.0 1.000 0.0 860 0 9 01 
TC12 .S 2 0.5119 0 . 1111 0.11m 853 1 4 
TC12 .S 3 0.550 0.449 0.494 8511 6 4 !ITC12 . S 4 0.661 0.423 0.516 852 6 3 
TC12 . s 5 0.661 0.1123 0 . 516 852 8 3 

TA12R . S 1 0.553 1 . 000 0.712 7115 0 4 5 
TA12R.S 2 0 . 775 0.673 0.822 744 1 2 1 
TA12R . S l 1.000 0.816 0 . 899 743 2 0 9 1-,.J 

U1 
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TableG-1 (Cont'd.) 

PRE ·~ucK -> - -rssw -> --
Classifier 

Pl P2 P3 

TAl2R.S 4 0 . 888 1.000 
TAl2R.S 5 0.888 1.000 
1A12R . S 6 o. 776 1.000 
TAl2R.S 7 0. 776 1.000 
TAl2R.S 8 o. 116 1.000 
TA12R.S 9 0. 776 1.000 
TAl2R . SI0 0. 116 1.000 
TAl2R. Sll 0. 776 1.000 

TS12R.S 1 0. JJI 1.000 
TS121l.S 2 0. 776 1 . 000 
TS12R . S 3 1 . 000 0.816 
TS12R.S 11 0.888 1.000 
TS12R.S 5 0.888 1.000 
TS12R.S 6 0.888 1.000 

TSl21l.S 7 0 . 888 1.000 
TSl21l . S 8 0 . 888 1.000 
1s12n.s 9 0.888 1.000 
TS12R.SI0 0.888 1.000 
TS12R. Sll 0.888 1 . 000 

TCl2R . S 1 0 . 0 1.000 
TC121l.S 2 0.5118 0 . 1110 
TC12R.S 3 0.5119 0.4118 
TC12R.S 4 0.660 0.422 

TA22R . S 1 0.1194 0,1165 
TA22R . S 2 0 . 1195 0.495 
TA22R.S 3 0 . 1195 0.528 
TA22R. S 11 o . 7117 0 . 628 
TA22R . S 5 0. 7117 0 . 628 
TA22R.S 6 0 . 810 0 . 615 
TA221l.S 7 0 . 810 0.719 
TA22R . S 8 0.810 0.762 
TA22R.S 9 0 . 810 0 . 762 
TA22R. S 10 0.810 0 . 762 
TA22R.S11 0.810 0 . 762 

TS22R . S 1 0 . 558 0.558 
TS22R.S 2 0 . 558 0.558 
TS22R.S 3 0.810 0 . 681 
TS22R . S 4 0. 1111 0.703 · 
TS22R . S 5 0. 1111 0.703 
TS22R.S 6 0. 7117 0. 703 
TS22R . S 7 0. 1111 0. 703 
TS22R . S 8 0. 7118 0.798 
TS22R . S 9 0.748 0.798 

0.9iil 
0.9111 
0.8711 
0 . 8111 
0.8111 
0. 6111 
0.814 
0.874 

0.1197 
0.8111 
0.899 
0. 9111 
0.9111 
0.9111 

0 . 9111 
0 . 9111 
0,911 I 
0.9111 
0. 9111 

0.0 
0 . 1169 
0.493 
0.515 

0.1179 
0.1195 
0. 511 
0.682 
0.682 
0.699 
0 . 762 
0 . 786 
0.786 
0. 786 
o . 786 

0.558 
0.558 
0. 1110 
0 . 1211 
0.1211 
0 . 1211 
o. 7211 
0. 772 
0. 772 

I BCK SSW I BCK SSW 

7ij5 
7115 
7115 
7115 
7115 
7115 
1115 
745 

111s 
7115 
7113 
1115 
7115 
7115 

7115 
7115 
7115 
7115 
745 

745 
738 
739 
737 

1509 

I 1510 
1511 

I 1511 
I 1511 

1510I 
I 1513 

15111 
1514 
1514 
1514 

I 

1511 

I 1511 
1512 
1513 
1513 
1513 

I 
1513 
1515 
1515 

: 

0 · I 
0 I 
0 2 
0 2 
0 2 
0 2 
0 2 
0 2 

0 6 
0 2 
2 0 
0 1 
0 1 

10 

I 
0 
0 

1 
0 1 
0 I 

I0 I 
I 

0 I 9 
7 4 
6 4I
8 3I 

89 
8 

I 
8 
87 
111 
47 

8 3 
35 
34 

4 3 
4 3 

34 

1 1 
7 7 
6 3 

45 
115 
45 
45 

3 4 
3 4 

8 
8 
7 
7 
7 
7 
7 
1 

3 
1 
9 
8 
8 
8 

8 
8 
8 
8 
8 

0 
5 
5 
6 

8 
8 
8 

12 
12 
13 • 
13 
13 
13 
13 
13 

9 
9 

13 
12 
12 
12 
12 
12 
12 

hJ 
(.JI 
w 



Table G-1 (Cont'd.) 

llCK - > SSW-> 
_Class I fier 

Pl P2 Pl 

PRE 

RCK SSW BCK SSW 

1, 12 
TS22R . S11 
TS22R.S10 1515 30.748 0.798 0 . 772 

4 121515 30.748 0. 798 0 . 772 

16 0 
TC22R . S 2 
TC22R.S 1 0 . 0 1.000 0.0 1518 0 

0 . 1,95 0.1195 0.1195 1510 8 8 8 
TC22R.S 3 1503 150.429 0 . 311 0 . 361 9 7 
TC22R.S 4 1505 130.430 0.343 0 . 382 9 7 

11 13 
TA32R . S 2 
TA3 2R.S 1 0.536 0.1116 0 .504 2278 14 

0 . 789 0. 701 0. 7112 22811 8 5 19 
TA3211.S 3 4 20 
TA32R. S 11 

0.831 0. 738 0 . 782 2285 7I 6 18 
TA32R.S 5 

0 . 1111 o. 717 0 . 732 2285 7 
2 22 

TA32R . S 6 
0.916 0. 707 o. 798 I 2283 9 

2 22 
TA32R.S 7 

0.916 0.707 0 . 798 2283 9 

I 
I 

3 21 
TA32R . S 8 

0.873 0. 721 o. 790 2284 8 
3 21 

TA32R . S 9 
0.874 0. 775 0 . 822 2286 6 

3 21 
TA32R.S10 

0 . 874 0.806 0 . 838 2287 5 
3 21 

TA32R. Sl 1 
0 . 874 0.806 0 . 636 2267 5 
0.674 0.806 0.636 2267 5 3 21 

0.537 0 . 615 0 . 5711 22811 6 11 13 
TS32R . S 2 
TS32R . S 1 

0 . 622 o. 747 0.679 226 7 5 9 15 
TS32R . S 3 0 . 790 0 . 662 0. 6211 2289 3 5 19 
TS32R. S 11 o. 790 0 . 824 0 . 607 2288 4 5 19 
TS32R.S 5 0 . 7116 0.616 0 . 780 2288 4 6 16 
TS32R.S 6 0 . 769 0.769 0. 789 2287 5 5 19 
TS32R.S 7 0.790 0.824 0 . 807 2288 1, 5 19,,0 . 832 0.832 0 . 832 2288 4 20 
lS32R.S 9 
TS32R.S 8 

0 . 832 0.832 0 . 832 2288 4 11 20 
TS32R.S10 0.832 0 . 832 0.832 2288 11 4 20 
TS32R . S11 0.632 0 . 632 2266 4 11 20I 0 . 632 

TC32R.S 1 o. 373 1. 000 0 . 5113 2292 0 15 9 
TC32R . S 2 2271 21 10 111 
TC32H.S 3 

o. 577 0. 394 0.1168 
2262 30 I 10 14 

TC32H.S 4 
0.575 0.311 0.4011 
0.491 0.278 0 . 355 2262 10 I 12 12 

TC32R.S 5 0.533 0.288 o. 374 2261 31 • 11 13 
TC32R . S 6 0.491 0.272 o. 350 2261 11 12 12II 

1-.J 
(J1 
~ 



Table G-1 (Cont'd.) 

! SSWA ->ec: K -> sswe -> 
cLAss Ir I rn I PRE 

I Pl P2 P3 BCK SSWA SSWBBCK SSWA SSWB BCK SSWA SSWB 
I 

0 0 I 
TAil .S 2 0.661 0.394 0 . 1193 

4 4 0856 11 0TA13 .s I I 0.551 0 . 551 0.55 1 
0 0 1 

TA13 .S 3 0.887 0.528 0 . 662 
851 9 0 3 5 0 

1 7 0 0 0 1 
TA13 . S 4 I 0. 775 0.579 0 . 663 

853 1 0 
2 6 0 0 0 1 

TA13 . S 5 I 0. 774 0.534 0.632 
855 5 0 
8511 6 0 2 6 0 0 0 1I 0 . 115TA13 . S 6 0.633 0 . 697 2 6 0 0 0 1 

TA13 .S 7 0 . 775 0.579 0 . 663 
856 4 0 

0 0 1 
TA13 . S 8 

2 6 0855 5 0 
1 1 0 0 0 1 

TA13 • S 9 
0.888 0 . 798 0 . 8110 858 2 0 

2 6 0 0 0 1 
TA13 . S10 

0. 776 0.874 0 . 8 22 8 59 1 0 
I 7 0 0 0 1 

TAil .S11 
0.888 0 . 798 0 . 8110 858 2 0 

1 7 00.887 o . 7211 0.798 857 3 0 0 0 1 
TA13 . S12 1 7 0 0 0 1 
TA13 .S13 

0.881 0.1211 0. 798 8 5 7 3 0 
1 7 0 0 0 1 

1A13 . S111 
0.881 0. 7211 0. 798 8 5 7 3 0 

1 7 0 0 0 1 
TA13 .S15 

0.881 0. 724 0 . 798 851 3 0 
1 7 0 0 0 10.888 0.798 0,8110 858 2 0 

. 11 7 0 0 0 
IA13 . S17 
TAil . S16 0.888 0.798 0.8•10 858 2 0 

1 7 0 0 0 1 
TA13 . S18 

0.888 0. 798 0 . 8110 858 2 0 
0 0 1 

TA13 . S19 
1. 000 0.816 0 . 899 858 2 0 0 8 0 

1 1 0 0 0 10.888 0.798 0 . 8•10 858 2 0 

1 1 0 0 0 1 
1S13 .S 2 
TS13 .S 1 0 . 212 0.173 o . 191 851 6 3 

0 0 1 
TS13 . S 3 

0.662 0.541 0 . 595 8 55 5 0 3 5 0 
0 0 1 

11s13 .s 4 
0.661 0 . 423 0.516 852 8 0 3 5 0 

8511 6 0 0 0 1 
1S13 .S 5 

1.000 0.596 o. 1111 0 8 0 
1.000 0.596 0. 1111 0 8 0 0 0 1 

1S13 .S 6 
854 6 0 
8511 6 0 0 8 0 0 0 1 

TS13 .S 7 
1.000 0.596 o. 1111 

0 8 0 0 0 1 
1S13 . S 8 

1 . 000 0.639 0. 780 855 5 0 
1.000 0.639 0 . 180 0 8 0 0 0 1 

TS13 . S 9 
855 5 0 

1 7 0 0 0 1 
TS13 . S10 

0 . 887 0.611 0. 1211 855 5 0 
0.887 0.611 0 . 72 11 I 7 0 0 0 1 

11S13 .S11 
855 5 0 

0.887 0.611 0. 1211 0 0 1 
:rs13 .s12 

855 5 0 1 7 0 
0.887 0 . 611 0 . 7211 I 7 0 0 0 1 

1TS13 . S13 
855 5 0 

0.887 0.611 o. 724 I 7 0 0 0 1
1rs13 • s111 

855 5 0 
0 0 1 

·TSl3 .S15 
856 4 0 1 1 00.887 0.663 0 . 759 

0 0 1 
TS13 . S16 

0.887 0.663 0 . 759 856 4 0 1 1 0 
1 1 0 0 0 1 

1'S13 .S17 
0.887 0.663 0. 759 856 4 0 

I 7 0 0 0 1 
TS13 . S18 

0.887 0.663 0. 759 856 4 0 
1 7 0 0 0 1 

TS13 . S19 
0 . 887 0.724 0. 798 857 3 0 

1 7 0 0 0 1 
TS13 . S20 

0 . 887 0. 724 0. 798 857 3 0 
1 7 0 0 0 1 

1S13 .S21 
0.887 0.724 0 . 798 857 3 0 

0 0 1 
1S13 . S22 

0 . 887 0. 7211 0. 798 857 3 0 1 7 0 
0.881 0.724 o . 798 1 7 0 0 0 1 

TS13 .S23 
857 3 0 

0 0 1 
1S13 . S24 

0 . 887 0 . 7211 0 . 798 857 3 0 1 7 0 
0.881 0.724 0 . 798 1 7 0 0 0 1 

TS13 . S25 
851 3 0 

0 0 1 
1S13 . S26 

0 . 887 0. 724 0. 798 1 7 0857 3 0 
1 7 0 0 0 10.887 0.663 0. 759 856 4 0 

t-..> 
U1 
U1 



·

- -----

Table G-1 (Cont'd.) 

. •- ·--- ------~ PRE BGK -> SSWA -> sswo -> 
CLASSIFIER ---- ----·-- ·- BCK SSWA SSWBPl P2 P3 BC:K SSW/\ SSWB BCK SSW~ SSWB 

7ij5 0 cio. 88aT:-oooo:- §ii 1TS13R.S15 1 1 0 0 0 1 
TS13R . S16 7115 0 00 . 888 1 . 000 0.9111 1 1 0 0 0 1 
TS13R.S17 7115 0 00.888 1.000 0 . 9111 1 1 0 0 0 1 
TS13R . S18 0.888 1.000 0 . 9111 7115 0 0 1 1 0 0 0 1 
TS13R. S19 0.888 1.000 0.9111 7115 0 0 1 1 0 0 0 1 
TS13R.S20 7115 0 00 . 888 1.000 0.9111 1 7 0 0 0 1 
TS13R.S21 7115 0 00 . 888 1.000 0 . 9111 1 7 0 0 0 1 
TS13R . S2 2 7115 0 00 . 888 1 . 000 0 . 9111 1 7 0 0 0 1 
TS13R.S23 0.888 1.000 0.9111 7115 0 0 1 7 0 0 0 1 
TS13R.S2lt 0,888 1,000 0.9111 7115 0 0 1 7 0 0 0 1 
TS13R.S25 7115 0 00.888 1.000 0.9111 1 7 0 0 0 1 
TS13R,S26 7115 0 00.888 1.000 0.9111 1 7 0 0 0 1 
TS13R.S27 0.888 1 . 000 0 , 9111 7115 0 0 1 7 0 0 0 1 
TS13R. S28 0.888 1.000 0.9111 7115 0 0 1 7 0 0 0 1 
TS13R.S29 0.888 1.000 0.9111 1 7 07115 0 0 0 0 1 

7115 0 0 1 0 0 
IC13R . S 2 
TC13R . S 1 0.0 1.000 0 . 0 8 0 0 

7311 9 20 . 321 0 . 205 0 . 250 5 3 0 1 0 0 
TC13R.S 3 2 6 00. 772 0.361 0.1192 733 10 2 0 0 1 
TC13R.S II 0 0 1 
TC13R.S 5 

0.660 0.393 0.1192 736 1 2 3 5 0 
0.661 0.11911 0.566 739 5 1 3 5 0 0 0 1 

TC13R . S 6 0. 7711 0.11911 0.603 2 5 1738 5 2 0 0 1 
TC13R.S 7 0 0 1 
TC13R.S 8 

0 . 773 0.1131 0.553 2 5 1736 8 1 
0. 7711 0.11911 0.603 738 6 1 2 5 1 0 0 1 

TA23R.S 1 1512 6 10.6811 0 . 607 0.6113 0 0 2 
TA23R.S 2 

5 9 0 
o . 7116 0 , 5111 0.627 lt 10 0 0 0 2 

1A23R.S 3 
1509 9 1 

o. 7116 0. 5111 0.627 II 10 0 0 0 2 
TA23R.S II 

1509 10 0 
0.810 0.561 0.663 1509 10 0 3 11 0 0 0 2 

TA23R . S 5 0.810 0.6116 0.719 1512 1 0 3 11 0 0 0 2 
TA23R.S 6 0.810 0 . 6116 0.719 1512 7 0 3 11 0 0 0 2 
TA23R.S 7 0.810 0,6116 0.719 1512 7 0 3 11 0 0 0 2 
TA23R.S 8 0.810 0.6116 0.719 1512 1 0 3 11 0 0 0 2 
TA23R.S 9 0.810 0 . 6116 0 . 719 1512 1 0 3 11 0 0 0 2 
TA23R . S10 0.810 0 . 6116 0 . 719 1512 1 0 3 11 0 0 0 2 
1A23R . S11 0 . 1111 0 . 628 0.682 1512 7 0 II 10 0 0 0 2 
TA23R . S12 0 . 810 0 . 6116 0 . 719 3 11 01512 1 0 0 0 2 
TA23R , S13 0.810 0.681 0. 7110 1513 6 0 3 11 0 0 0 2 
TA23R.S14 0 . 810 0.681 0 , 7110 1513 6 0 0 0 2 
TA23R . S15 

3 11 0 
0.810 0.681 0. 1110 3 11 01513 6 0 0 0 2 

1A23R . S16 0,810 0 . 681 0. 7110 1513 6 0 3 11 0 0 0 2 
TA23R.S17 0.810 0.762 0.786 1515 4 0 3 11 0 0 0 2 
TA23R.S18 0.810 0. 762 0 . 786 I 1515 4 0 0 0 2 
TA23R.S19 

3 11 0 
0.810 0 . 719 0 . 762 1514 5 0 3 11 0 0 0 2 

TA23R.S20 0.810 0. 719 0. 762 15 llt 5 0 3 11 0 0 0 2 
1A231L S21 0.810 0.681 0. 1110 1513 6 0 3 11 0 0 0 2 
TA23R . S22 0.810 0.681 0.740 1513 6 0 3 11 0 0 0 2 
TA23R,S23 0.810 0.719 0. 7'12 1514 5 0 3 11 0 0 0 2 Iv 

(JI 
0) 



Table G-1 (Cont'd.) 

~ -
PR£ BCK -> SSWA -> SSWB -> 

CLASS If I ER 
Pl r2 P3 BCK SSWA sswo BCK SSWA SSWB BCK SSWA sswo 

TC13 . S 1 o . o 1. 6000~·0- 861i ___o 0 8 0 () 1 0 0 
TC13 .S 2 o. 322 0.206 0.251 8119 9 2 5 3 0 1 0 0 
TC13 .S 3 0. 773 o. 31J3 O. IJ 75 8117 12 1 2 6 0 0 0 1 
TC13 . S IJ 0.660 0. 368 0. 1173 850 8 2 3 5 0 0 0 1 
TC13 .S 5 0.662 0.1156 0. 5110 853 6 1 3 5 0 0 0 1 
1C13 .S 6 0.660 0. 368 0.1173 850 9 1 3 5 0 0 0 1 
1C13 .S 7 0. 773 0.111)6 0.532 850 10 () 2 5 1 0 0 1 
TC1 3 . S 8 0 . 111, O. IJ32 0 . 5511 851 9 0 2 5 1 0 0 1 
1C13 .S 9 0. 771, 0.1195 0.6011 853 6 1 2 5 1 0 0 1 
1C13 
TC13 

. SIO 

. Sl 1 
0 . 773 
o. 773 

0 . 362 
0.31J3 

0.1,93 
0.1175 

8118 
8117 

9 
9 

3 
1, 

2 
2 

5 
5 

1 
1 

0 
0 

0 
0 

1 
1 

TA13R. S 
TA13H.S 

1 
2 

0 . 550 
0. 771t 

O.IJ911 
0.632 

(l.5 20 
0.696 

1110 
711 I 

5 
1, 

0 
0 

1, 
2 

1, 
6 

0 
0 

() 

0 
0 
0 

1 
1 

TA13H.S 3 0.887 0.663 0 . 759 71J 1 11 0 1 7 0 0 0 1 
TA13H.S IJ 0 . 887 0.663 0.759 1111 11 0 1 7 0 0 0 1 
TA13H.S 
TA13H.S 

5 
6 

0.887 
0 . 887 

0.663 
0.663 

0. 759 
o. 759 

711 I 
711 I 

lj 
1, 

0 
0 

1 
1 

7 
7 

0 
0 

0 
0 

0 
0 

1 
1 

TAl3H.S 7 0 . 887 0.798 0.8110 7113 2 0 1 7 0 0 0 1 
TA13H.S 8 0. 775 0.873 0 . 822 11111 1 () 2 6 0 0 0 1 
TA13R.S 9 0. 775 0.873 0.82 2 11111 1 0 2 6 0 0 0 1 
1A13H.S10 0.888 0.888 0.888 ·11111 1 0 1 7 0 0 0 1 
lA13H. Sl 1 0.888 0.888 0.888 11111 1 0 1 7 0 0 0 1 
TA1311.Sl2 0.888 0.888 0 . 888 11111 1 0 1 7 0 0 0 1 
IA13H.Sl3 0.888 0.888 0.888 11111 1 0 1 7 0 0 0 1 
1A13H.SIIJ 0.888 0.888 0.888 11,1, 1 0 1 7 0 0 0 1 
1A13R.Sl5 0.888 0.888 ll.888 11111 1 0 1 1 0 0 0 1 
TA13R . Sl6 0.888 0.888 0.888 11111 1 0 1 7 0 0 0 1 
TA13H.S17 0.868 0.888 0.888 11111 1 0 1 1 0 0 0 1 
TA13R.S18 0 . 888 0.888 0.888 7111J 1 0 1 1 0 0 0 1 
TA13R.S19 0.888 0.888 0.888 11111 1 0 1 7 0 0 0 1 
TA13R.S20 0 . 888 0.888 0.888 11111 1 0 1 7 0 0 0 1 
TA13R.S21 0.888 0 . 888 0.888 7111J 1 0 1 7 0 0 0 1 

1 SI 311. S 1 0.663 0 . 71,1 0. 703 7113 2 0 3 5 0 0 0 1 
rS13R.S 2 0. 776 1.000 0.8711 7115 0 0 2 6 0 0 0 1 
TS13R.S 3 0 . 888 1.000 0.9111 7115 0 0 1 7 0 0 0 1 
1S13H . S It 0.888 1.000 0 . 9111 7115 0 0 1 7 0 0 0 1 
TS13R . S 5 0 . 888 1.000 0.9111 7115 0 0 1 7 0 0 0 1 
rst3R.s 6 0.888 1.000 0.9111 7115 0 0 1 7 0 0 0 1 
TS13R . S 7 0.888 1.000 0. 9111 7115 0 0 1 7 0 0 0 1 
1S13R.S 8 0.888 1.000 0.9111 7115 0 0 1 7 0 0 0 1 
rs13n.s 9 0.888 1. 000 0.9111 7115 0 0 1 7 0 0 0 1 
TS13R.SIO 0.888 1.000 0 . 9111 7115 0 0 1 7 0 0 0 1 
TS1311 . S11 0.888 1.000 0.9111 7115 0 0 1 7 0 0 0 1 
TS13R . S12 0.888 1.000 0.9111 71,5 0 0 1 7 0 0 0 1 
TS13R.S13 0 . 888 1.000 0.9111 71J5 0 0 1 1 0 0 0 1 
TS13R . S11t 0.888 1.000 0.91J1 71t5 0 0 1 7 0 0 0 1 1-J 

U1 
-..J 



Table G-1 (Cont'd . ) 

CLASS If IER 
Pl 

PRE 

P2 P3 BCK 

BCK -> 

SSWA SSWB 

SSWA -> 

BCK SSWA SSWB 

SSWB -> 

BCK SSWA sswe 
TA23R.S24 
TA23R.S25 
TA23R.S26 
TA23R . S27 
TA23R.S28 

0 . 810 
0.810 
0 . 810 
0 . 810 
0.810 

0 . 719 
0 . 719 
0.719 
0. 719 
0.719 

0 . 762 
0. 762 
o . 762 
o . 762 
0. 762 

151 fj -
15111 
15111 
1514 
15111 

5 
5 
5 
5 
5 

0 -
0 
0 
0 
0 

~ 3 
3 
3 
3 
3 

11 
11 
11 
11 
11 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

2 
2 
2 
2 
2 

TS23R.S 1 
TS23R.S 2 
TS23R.S 3 
TS23R.S 4 
TS23R.S 5 
TS23R . S 6 
TS23R.S 7 
TS23R . S 8 
TS23R.S 9 
TS23R. S10 
TS23R.S11 
TS2JR.S12 
TS23R . S13 
TS23R.S14 
TS23R . S15 
TS23R.S16 
TS23R.S17 
1S23R.S18 
TS23R.S19 
TS23R . S20 
TS23R.S21 
TS23R.S22 
TS2 3R . S2 3 
TS23R. s211 
TS23R.S25 
TS23R . S26 
TS23R.S27 
TS23R. S28 
tS23R.S29 
TS23R . S30 

0 . 1112 
0.620 
0.810 
0. 1111 
o . 1111 
o. 1111 
0. 1111 
o . 1II1 
0 . 1111 
0 . 810 
0 . 873 
0.873 
0 . 810 
0. 1111 
0. 1111 
o . 1111 
o . 1111 
0 . 8111 
0 . 874 

I 0 . 810 
. 0 . 873 

0 . 873 
0 . 873 
0 . 873 
0 . 873 
0.873 
0.873 
0.873 
0.873 
0.873 

0 . 1132 
0 . 1111 
0.681 
0.663 
0. 1111 
0.703 
0.703 
o. 703 
0 . 703 
0 . 719 
0 . 7311 
0 . 7311 
o . 719 
0 . 1111 
0. 1111 
0. 1111 
0 . 1111 
0 . 775 
0 . 775 
0. 762 
0.697 
0.697 
o . 7311 
o. 734 
0 . 734 
0. 7311 
0.697 
0.697 
0. 734 
0.697 

0.1112 
0 . 535 
0.740 
o . 703 
0.747 
0. 1211 
o. 7211 
0. 7211 
0 . 724 
0 . 762 
0 . 798 
0 . 798 
0 . 762 
o . 1111 
0 . 1111 
0.747 
0 . 1111 
0.822 
0 . 822 
0 . 786 
0 . 775 
0 . 775 
0 . 798 
o. 798 
0.798 
0 . 798 
o. 775 
o . 775 
0 . 798 
o. 775 

1510 
1508 
1513 
1513 
1515 
15111 
1514 
15111 
15111 
15111 
15111 
15111 
15111 
1515 
1515 
1515 
1515 
1515 
1515 
1515 
1513 
1513 
1514 
15111 
1514 
15111 
1513 
1513 
1514 
1513 

9 
11 
6 
6 
4 
5 
5 
5 
5 
5 
5 
5 
5 
4 
11 
4 
11 
11 
4 
11 
6 
6 
5 
5 
5 
5 
6 
6 
5 
6 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

9 
6 
3 
4 
11 
11 
4 
11 
4 
3 
2 
2 
3 
4 
11 
4 
4 
2 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

4 
8 

11 
10 
10 
10 
10 
10 
10 
11 
12 
12 
11 
10 
10 
10 
10 
12 
12 
11 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

TC23R . S 1 
TC23R.S 2 
TC23R . S 3 
TC23R . S If 
TC23R.S 5 
TC23R.S 6 
TC23R . S 7 
TC23R.S 8 
TC23R.S 9 
TC23R . S10 
TC23R . S11 

0.0 
o . 367 
0 . 619 
0.681 
0 . 682 
0.620 
0.683 
0.682 
o. 7115 
0 . 809 
0.809 

1. 000 
0.293 
0.411 
0. 360 
0 . 1111 
0.449 
0.519 
0 . 401 
0 . 394 
0.442 
0.442 

o . o 
0. 326 
0 . 1194 
0 . 1111 
0 . 518 
0.521 
0.590 
0 . 505 
0 . 515 
0.572 
0.572 

15 19 
1505 
1505 
1500 
1504 
1507 
1509 
1503 
1501 
1503 
1503 

0 
12 
13 
18 
14 
12 
10 
13 
111 
13 
13 

0 
2 
1 
1 
1 
0 
0 
3 
If 
3 
3 

111 
9 
6 
5 
5 
6 
5 
5 
4 
3 
3 

0 
5 
7 
8 
8 
7 
7 
7 
7 
8 
8 

0 
0 
1 
1 
1 
1 
2 
2 
3 
3 
3 

2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 N 

(Jl 
CX> 



Table G-1 (Cont'd . ) 

--PRE BCK -> SSWA -> SSWB -> 
CLASSIFIER 

Pl P2 Pl BCK SSWA SSWB BCK SSWA SSWB BCK SSWA SSWB 

TC23R.S12 0.809 0.11112 0.572 1503 13 3 3 8 3 0 0 2 
TC23R.S13 0. 7115 0.381 0.5011 1500 16 3 4 8 2 0 0 2 
TC23R.S14 0.681 o. 373 0.1182 1501 15 3 5 8 1 0 0 2 
TC23R.S15 
TC23R . S16 
TC23R. S17 

0 . 681 
0.681 
0. 7116 

0. 360 
o. 373 
0.439 

0.471 
0.482 
0.552 

1500 
1501 
15011 

16 
15 
13 

3 
3 
2 

5 
5 
4 

8 
8 
8 

1 
1 
2 

0 
0 
0 

0 
0 
0 

2 
2 
2 

TA33R.S 1 0. 1111 0 . 717 0 . 732 2283 7 0 6 13 2 0 0 3 
1A33R. S 2 
TA33R.S 3 
1A33R.S 4 
TA33R.S 5 

0.831 
0.831 
0.873 
0.8711 

0 . 711 
0 . 686 
0. 721 
o. 775 

0. 767 
0.752 
0. 790 
0.822 

2262 
2281 
2282 
22811 

7 
9 
8 
6 

1 
0 
0 
0 

4 
11 
3 
3 

15 
17 
18 
18 

2 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

3 
3 
3 
3 

TA33R . S 6 0.8711 0.175 0.822 22811 6 0 3 18 0 0 0 3 
1A33R. S 7 
TA33R. S 8 
TA33R. S 9 

0.874 
0 . 874 
0,874 

o. 775 
0 . 775 
o. 775 

0.822 
0.822 
0.822 

22811 
22811 
22811 

6 
6 
6 

0 
0 
0 

3 
3 
3 

18 
18 
18 

0 
0 
0 

0 
0 
0 

0 
0 
0 

3 
3 
3 

TA33R. S10 0.916 0 . 783 0 . 81111 22811 6 0 2 19 0 0 0 3 
TA33R. S11 0.916 0.783 0 . 8114 22811 6 0 2 19 0 0 0 3 
TA33R. Sl2 
lA33R.Sl3 

0.916 
0 . 916 

0.756 
0.783 

0 . 828 
0.8114 

2283 
22811 

7 
6 

0 
0 

2 
2 

19 
19 

0 
0 

0 
0 

0 
0 

3 
3 

TA33R.Slll 0.916 0 . 756 0.828 2283 7 0 2 19 0 0 0 3 
TA33R. Sl5 0.916 0.756 0.828 2283 6 1 2 19 0 0 0 3 
TA33R. S16 0.916 0.756 0 . 828 2283 6 1 2 19 0 0 0 3 
TA33R. S17 
lAllR. Sl8 

0.916 
0.916 

0 . 756 
0.756 

0.828 
0 . 828 

2283 
2283 

6 
6 

1 
1 

2 
2 

19 
19 

0 
0 

0 
0 

0 
0 

3 
3 

TA33R. S19 0.916 0.756 0 . 828 2283 6 1 2 19 0 0 0 3 
TA33R. S20 0.916 o. 756 0 . 828 2283 7 0 2 19 0 0 0 3 

TS33R. S 
TS33R . S 
TS33R. S 
TS33R. S 

I 
2 
3 
11 

o. 705 
0.705 
o. 705 
0.831 

0.626 
0.650 
0.650 
0.686 

0 . 663 
0.677 
0 . 677 
0.752 

2280 
2281 
2281 
2281 

10 
9 
9 
9 

0 
0 
0 
0 

7 
7 
7 
4 

13 
13 
13 
16 

I 
1 
1 
1 

0 
0 
0 
0 

1 
1 
0 
0 

2 
2 
3 
3 

TS33R . S 5 0.832 0 . 798 0 . 814 2285 5 0 4 16 1 0 0 3 
1S33R . S 
TS33R. S 

6 
7 

0.874 
0.8711 

0.806 
0.806 

0 . 838 
0.838 

2285 
2285 

5 
5 

0 
0 

3 
3 

17 
18 

1 
0 

0 
0 

0 
0 

3 
3 

TS33R.S 8 
TS33R.S 9 
1S33R. SlO 
TS33R . S11 . 
1S33R. S12 
TS331l. S 13 
TS33R. S14 
TS331l.S15 
1S33R. S16 

0 . 874 
0.8711 
0 . 8711 
0.874 
0.873 
0.8711 
0.916 
0.916 
0.916 

0.806 
0.806 
0 . 806 
0.775 
o. 7117 
o. 775 
0. 783 
0. 783 
0 . 783 

0.838 
0.838 
0 . 838 
0.822 
0.806 
0.822 
0.81111 
0 . 81111 
0 . 81111 

2285 
2285 
2285 
22811 
2283 
22811 
22811 
22811 
22811 

5 
5 
5 
6 
7 
6 
6 
6 
6 

0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
3 
3 
3 
3 
3 
2 
2 
2 

18 
18 
18 
18 
18 
18 
19 
19 
19 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

3
3 
3 
3 
3 
3 
3 
3 
3 

' 

TS33R . S17 
1S33R.Sl8 

0.916 
0.916 

0. 783 
o. 783 

0.81111 
0,8114 

2284 
22811 

6 
6 

0 
0 

2 
2 

19 
19 

0 
0 

0 
0 

0 
0 

3 
3 

TS33R.Sl9 0.874 0. 775 0.822 2284 6 0 3 18 0 0 0 3 
TS33R.S20 0.874 0. 775 0.822 2284 6 0 3 18 0 0 0 3 

1-J 
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Table G-1 (Cont'd.) 

BCK -> SSWA ->PRE SSWB -> 
CLASSIFIER 

BCK SSWA SSWB BCK SSWA SSWB BCK SSWA SSWBPl P2 Pl 

j--1622iiit 6 0 0 0 0 31S33R . S21 0.674 0. 775 0.622 
22611 6 0 3 16 0 0 0 3TS33R.S22 0.674 0. 775 0 . 622 
22611 6 0 3 16 0 0 0 31S33R.S23 0.674 0. 715 0.622 
22611 6 00.6711 0. 775 0.622TS33R. S24 3 16 0 0 0 3 
22011 6 0 3 16 0TS33R.S25 0 0 30.674 0. 775 0.822 
22611 6 01S33R . S26 0 . 874 0. 775 0.822 3 16 0 0 0 3 
22611 6 0 3 18 0 0 0 3TS33R. S27 0.8711 o. 775 0.622 
22611 6 00.8711 0. 715 0.822 3 18 0 0 0 3TS33R. S28 
22611 6 0 0 0 31S33R.S29 0.674 0. 775 0 . 622 3 18 0 

1S33R.S30 2263 7 0 3 16 0 0 0 30.673 0.747 0.606 
22611 6 0 3 18 01S33R. S31 0 . 674 0. 775 0.622 0 0 3 

0.6711 0. 775 0.622 22811 6 0 3 18 0 0 0 3TS33R.S32 
0. 8711 0. 775 0 . 622 2284 6 0 0 0 31S33R. S33 3 16 0 

22611 6 0 3 18 0TS33R. S311 0.8711 o . 775 0.822 0 0 3 
22611 6 0 3 16 0l S33R. S35 0 0 30.874 0 . 715 0 . 822 
22811 6 0 3 16 00.6711 0. 775 0.822TS33R . S36 0 0 3 
2284 6 0 0 0 3fS33R.S37 0.674 0. 775 0 . 822 3 18 0 
22811 6 0TS33R . S38 3 18 0 0 0 30 . 674 o. 775 0.822 

o . 8711 0 . 115 0 . 622 22811 6 0 3 16 0TS33R.S39 0 0 3 
22611 6 0TS33R . s110 3 18 0 0 0 30.874 o. 775 0.622 
2266 4 0TS33R.S11l 0.8711 0 . 838 0.856 3 16 0 0 0 3 

TS33R. s112 2286 4 0 3 16 0 0 0 30.874 0.838 0.856 
2286 4 0 3 16 0 0 0 31S33R.S43 0.874 0 . 838 0.656 

3 18 02286 4 0 0 0 31S33R. S44 0.874 0 . 836 0.656 

l 0 2TC33R.S 1 0. 372 0.899 0 . 527 2289 () 1 14 0 7 
TC33R. S 2 0 . 7'15 0.413 0.531 2265 22 3 6 111 1 0 0 3 

2261 28 1 6 13 2 0 0 3TC33R. S 3 0.745 0. 377 0 . 500 
2262 26 2 5 14 2 0 0 3lC33R . S 4 0.787 0.398 0.529 
2265 23 2 5 14 21C33R . S 5 o. 788 0 . 1126 0. 553 0 0 3 
2257 26 7TC33R.S 6 0. 767 0.359 0.493 5 13 3 0 0 3 
22611 22 40.766 0.1116 0.5115 0 0 3TC33R . S 7 5 13 3 
22611 21 5 0 0 31C33R . S 6 0.830 0.1129 0. 566 4 14 3 

11 14 30.830 0.1111 o. 5119 2262 23 5 0 0 3TC33R.S 9 
2262 24 4 0 0 3TC331l. S10 0 . 672 0.423 0. 569 3 14 4 
2260 26 4TC33R . S11 0.830 0. 394 0 . 5311 4 13 4 0 0 3 

0. 7115 0.361 0 . 466 6 13 2 0 0 3TC33R.S12 2259 26 5 
2265 20 5 5 14 2TC33H. S13 0 . 786 0.426 0.553 0 0 3 

0. 7116 0.111111 0 . 557 2266 18 4 0 0 3TC33R . S14 6 13 2 
2266 18 6 4 13 4 0 0 3TC33R. S15 0.830 0.449 0.563 
2269 18 3TC33R.Sl6 0 0 30 . 703 0 . 442 0. 5113 7 13 1 
2266 21 3 0 0 3TC33R . Sl7 0.768 0.436 0.561 5 13 3 
2268 19 30.746 0 . 444 0.557 6 13 2 0 0 3TC33R.S18 

1-.l 
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Appendix H 

Example List of Events with Classificaiton 
and Posterior Probabilities 

Table H- 1 List of Classified Events Except Correctly Classified Backgrounds by A 14R . S14, 
with Event Identifiers (FILE, EVENT, TIME), Classification (TYPE: Original 
label, PERDI CTD : Classified label, CORRECTN : Correction indicator), and 
Posterior probabilities P(.). 

FILE EVENT TYPE PREOICTO CORRECTN TIME P(BCK) P(SSWA) P(SSWB) P(ART) 

1 307 BCK SSWA 1 11 . 1110 o.o 1.000 0.0 o.o 
1 309 SSW SSWB 0 11.510 0.0 0 . 0 1. 000 0.0 
1 311 BCK SSWA 1 11. 5110 0.0 1 . 000 0 . 0 0.0 
1 
1 

325 
351 

SSW 
SSW 

SSW/\ 
SSWA 

0 
0 

12.550 
13 . 685 

0.0 
0 . 0 

1.000 
1.000 

0.0 
0.0 

0.0 
0.0 

1 581 SSW SSWA 0 22. 970 0.0 1. 000 o.o 0.0 
1 1163 SSW SSWA 0 111. 110 0 . 0 1 . 000 0 . 0 0.0 
1 1181 SSW SSWA 0 118. 130 0.0 1.000 0.0 o.o 
1 1183 BCK SSWA 1 48 . 295 o.o 1. 000 0.0 0.0 
1 1185 BCK SSWA 1 118. 325 0 . 111111 0 . 556 0.0 0.0 
1 1191 SSW SSWA 0 118. 795 0.0 1. 000 0 . 0 0.0 
1 1193 BCK SSWA 1 48.865 0.056 0.9114 0.0 o.o 
1 1565 BCK SSWA 1 63.4110 0 . 002 0.998 0.0 0.0 
1 1569 SSW SSWA 0 63.595 o.o 1.000 o.o 0 . 0 
1 1613 ART ARr 0 65 . 41 5 o.o 0.0 0 . 0 1.000 
1 1659 SSW SSWA 0 67.255 0 . 0 1.000 0.0 0.0 
2 53 BCK SSWA 0 2.210 0 . 006 o. 9911 o.o 0.0 
2 89 SSW SSWA 0 3.855 0 . 0 1 . 000 0 .0 0.0 
2 101 SSW SSWA 0 4 . 595 0 . 0 1. 000 0.0 0 . 0 
2 255 SSW SSWA 0 10.695 0.0 1.000 0.0 o.o 
2 271 SSW SSWA 0 11.700 0.0 1.000 0.0 0.0 
2 727 SSW BCK 1 30.465 1.000 0.0 0.0 0 . 0 
2 729 BCK SSWA 1 30.495 0 . 0 1.000 0.0 0.0 
2 
2 

731 
913 

BCK 
OCK 

SSW/\ 
SSWA 

1 
0 

30.705 
38.060 

0 . 0 
0 . 0 

0.952 
1 . 000 

0.0 
0.0 

0.0118 
0 . 0 

2 12111 BCK SSWA 0 51. 005 0 . 0 1. 000 0 . 0 0.0 
2 1269 BCK SSWA 0 52 . 570 0 . 0 1.000 0 . 0 o.o 
2 1365 BCK SSWA 0 56.620 o.o 1.000 o.o 0.0 
2 
2 

11!01 
1403 

BCK 
SSW 

SSW/\ 
AR r 

1 
1 

58 . 035 
58. 150 

0 . 0 
0 . 0 

1. 000 
0 . 0 

0.0 
0.0 

0 . 0 
1.000 

2 1405 BCK SSWA 1 58. 185 o.o 1.000 0.0 0 . 0 
2 1419 SSW SSWA 0 58.850 0.0 1. 000 0.0 0.0 
3 
3 

95 
91 

BCK 
SSW 

SSW/\ 
SSWB 

1 
0 

3 .1115 
3 . 480 

0 . 0 
0.0 

1.000 
0.0 

0 . 0 
1. 000 

0 . 0 
o.o 

3 99 BCK SSWA 1 3 . 510 0.0 1 . 000 0 . 0 0.0 

N 
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Table H-1 (Cont'd.) 

FILE tvtHt TYPE PREDICTD CORR[CTN TIME P(BCKJ P(SSWAJ P(SSWBJ P(ARTJ 

3 105 BCK SSI-IA 0 3.915 0.033 0.967 0.0 0.0 
3 225 SSW SSWA 0 9.005 0.0 1.000 o.o 0.0 
3 471 SSW BCK 0 18.805 1.000 0.0 0.0 0.0 
3 745 SSW SSWA 0 29.185 0.0 1.000 0.0 0.0 
3 757 SSW SSWA 0 29.770 0.0 1.000 0.0 o.o 
3 769 BCK SSWA 0 30.450 0.209 0.791 0 . 0 0.0 
3 675 SSW SSWA 0 34.525 0.0 1.000 0.0 o.o 
3 1069 BCK SSWA 0 42.4110 0.0 1.000 0 . 0 0.0 
3 11129 0CK SSWA 0 56.600 0 . 0 1.000 0.0 0.0 
3 1515 BCK SSWA 0 60 . 370 0.0 1,000 0 . 0 0.0 
3 1569 SSW SSWA 0 62.640 0.0 1.000 o.o 0.0 
3 1571 BCK SSWA 1 62.680 0.0 1.000 0.0 0.0 
3 1597 0CK SSWA 1 63.955 0.036 0.962 0.0 0.0 
3 1599 SSW SSWA 0 63.995 0 . 0 1.000 0.0 0.0 
3 1601 BCK SSWA 1 64.055 0 . 0 1,000 0 . 0 0.0 
11 31,5 BCK SSWA 0 13. 155 0.0 1. 000 0.0 o.o 
4 613 BCK SSWA 1 23 . 515 o.o 1.000 0.0 0.0 
4 615 SSW ARr 1 23,655 0 . 0 0.0 0.0 1.000 
11 613 SSW SSWA 0 26. 330 0.0 1.000 0.0 0.0 
4 733 SSW SSWB 0 29.135 0 . 0 0.0 1.000 0.0 
11 735 BCK SSWA 1 29. 165 0.0 1. 000 0.0 0.0 
4 1621 SSW SSWA 0 64.415 0.0 1.000 0.0 0.0 
5 
5 

3117 
955 

BCK 
SSW 

SSWA 
BCK 

0 
1 

13.010 
36.8115 

o. 3113 
1 . 000 

0.657 
o.o 

0.0 
0.0 

0.0 
0 . 0 

5 
5 

957 
11123 

0CK 
SSW 

SSWA 
ARI 

1 
1 

36.860 
56.545 

0.0 
0 . 0 

1.000 
0.0 

0.0 
0.0 

0.0 
1.000 

5 11125 BCK SSWA 1 56.570 0 . 0 1.000 0.0 0.0 
· 5 11161 SSW SSWA 0 58.210 0.0 1 . 000 0 . 0 0.0 

5 1595 0CK SSWA 0 63.655 0.0 1.000 0.0 o.o 
6 257 BCK SSWA 0 9. 5110 0.0 1 . 000 0.0 0.0 
6 3119 BCK SSWA 0 13. 365 0.0 1.000 0.0 0.0 
6 577 SSW SSWA 0 22.955 0,0 1.000 0.0 0.0 
6 595 BCK SSWA 0 23.960 0.0 1.000 0.0 0.0 
6 671 SSW SSWA 0 311. 760 0.0 1.000 0.0 0.0 
6 673 BCK SSWA 1 35 . 065 0.0 1.000 0.0 0.0 
6 11,29 BCK SSWA 0 56. 7115 0.001 0.999 0.0 0.0 
6 111111 SSW SSWA 0 57.585 0.0 1.000 0.0 0.0 
6 1569 0CK SSWA 0 62.2110 0 . 0 1.000 0.0 0.0 
1 119 SSW SSWA 0 1. 1160 0.0 1.000 0.0 0.0 
1 527 SSW ART 1 21 . 140 o.o 0.0 0.0 1.000 
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Table H-1 (Cont'd.) 

FIL£ £VlNT lYP£ PR£01Cf0 CORR[CTN TIH£ P(BCK) P(SSWA) P(SSWB) P(ART) 

7 529 BCK SSWA 1 21. 170 0 . 0 1.000 o.o 0 . 0 
7 613 SSW ARI 1 211. 355 0.0 0.0 0.0 1.000 
1 615 BCK SSWA 1 211 . 380 0 . 0 1 . 000 0.0 0.0 
7 7111 SSW SSWA 0 29.665 0 . 0 1.000 0 . 0 0.0 
7 7113 BCK SSWA 1 29.930 0 . 0 1.000 0.0 0.0 
7 785 DOS BCK 0 31. 995 0 . 789 0 . 211 0.0 0.0 
7 801 BCK SSWA 0 32 . 700 0 . 0 1 . 000 o.o 0.0 
7 1101 SSW SSWA 0 1111.205 0 . 0 1 . 000 0 . 0 0.0 
7 1531 BCK SSWA I 60.925 0.0 1 . 000 0 . 0 0.0 
7 1533 SSW SSWB 0 61. 030 0.0 0 . 0 1 . 000 0.0 
7 1535 BCK SSWA I 61,070 0.0 1.000 0.0 0.0 
7 1651 BCK SSWA 1 65.450 0.0 1 . 000 0.0 0.0 
7 1653 SSW ART I 65.535 0 . 0 0 . 0 0.0 1.000 
7 1655 BCK SSWA 1 65.570 0 . 0 1.000 0.0 0.0 
7 1739 BCK SSWA 0 68.880 0.007 0 . 993 0.0 0 . 0 
8 113 DOS SSWA 0 1,.095 0 . 0 1.000 0.0 o.o 
8 115 DOS SSWA 0 4. 195 0.0 1.000 0 . 0 0 . 0 
8 185 BCK SSWA 0 7 . 330 0 . 0 1 . 000 0 . 0 0.0 
8 939 DBS SSWA 0 36.490 0 . 0 1 . 000 0 . 0 0.0 
8 1099 SSW SSWA 0 1,1. 105 0.0 1 . 000 0.0 0.0 
8 11117 SSW SSWA 0 115.610 0.0 1.000 0 . 0 0 . 0 
8 1599 BCK SSWA 0 63.090 0 . 0 1.000 0 . 0 0 . 0 
8 1607 SSW BCK 1 63 . 610 1 . 000 0 . 0 0 . 0 0.0 
8 1609 BCK SSWA 1 63 . 6110 0.0 1.000 0 . 0 0.0 
9 13 BCK SSWA 0 0.615 0.439 0.561 0.0 o.o 
9 319 BCK SSWA 0 13 . 660 0.0 1 . 000 0 . 0 0.0 
9 421 SSW BC K 1 17 . 760 1.000 0.0 0 . 0 0 . 0 
9 1123 BCK SSWA 1 17 . 835 0 . 028 0 . 972 0 . 0 0 . 0 
9 935 BCK SSWA 0 39.430 0.0 1 . 000 0 . 0 0 . 0 
9 955 BCK SSWA 0 110 . 550 0 . 0 1 . 000 o.o 0.0 
9 1091 OBS SSWA 0 4 5. 920 0 . 0 1.000 0.0 0 . 0 

10 11119 SSW BCK 0 17.865 0 . 989 0 . 011 0.0 0 . 0 
10 5119 SSW SSWA 0 21. 395 0.0 1.000 0.0 0.0 
10 551 BCK SSWA 1 21 . 425 0.0 1.000 o.o 0.0 
10 553 UCK SSWB I 21 . 600 0.0 0.0 1.000 0.0 
10 555 BCK SSWA 0 21 ; 635 0.0 1.000 0.0 o.o 
10 557 OCK AIIT 0 21 . 895 0.0 0.0 0.0 1.000 
10 707 DOS SSWA 0 28.505 0.0 1 . 000 0 . 0 o.o 
10 963 AIIT SSWA 0 37 . 870 0.0 1.000 0.0 0.0 
10 1033 OCK SSWA 0 110 . 150 0.001 0 . 999 o.o 0.0 

t.J 

~ 



Table H-1 (Cont'd.) 

f IL£ EVENT TYPE PR£DICTO CORRECTN TIM£ P(BCKI P(SSWAI P(SSWB) P(ARTI 

10 1307 ons SSWA 0 50.1130 0. 108 0.892 0 . 0 0.0 
10 1755 BCK SSWA 0 68.1160 0.0 1.000 0.0 0.0 
10 1763 SSW SSWA 0 68.950 0.0 1.000 0.0 0.0 
11 131 DOS SSWA 0 11.920 0.0 1. 000 o.o 0.0 
11 205 SSW SSWA 0 7.955 0.0 1.000 0.0 0.0 
11 207 BCK SSWA 1 7.985 0.1196 0 . 5011 0.0 0.0 
11 2119 SSW SSWA 0 9.9"70 0.0 1.000 0.0 0.0 
11 251 BCK SSWA 1 10.200 0.073 0.927 0.0 o.o 
11 253 BCK ARI 0 10 . 21,5 o.o 0.0 0.0 1.000 
11 393 SSW SSWA 0 16.205 0.0 1.000 0.0 o.o 
11 971 BCK SSWA 1 1, 1. 525 0.002 0.998 0.0 0.0 
11 973 SSW SSWA 0 II 1.6115 0.0 1.000 0.0 0.0 
11 1051 SSW SSWA 0 1111.935 0 . 0 1.000 0.0 0.0 
11 11,37 SSW SSWA 0 61. 980 0.0 1.000 0.0 0.0 
11 1517 SSW SSWA 0 65.1120 0.0 1. 000 0 . 0 0.0 
12 55 BCK SSWA I 2 . 5115 0.0 1.000 0.0 0 . 0 
12 57 SSW SSWB 0 2 . 600 0.0 0.0 1.000 0.0 
12 59 BCK SSWA 1 2.625 0.0 1.000 0.0 0.0 
12 373 BCK SSWA 0 15. 190 0.0 1.000 0.0 0.0 
12 393 BCK SSWA 0 16.075 0.0119 0.951 0.0 0.0 
12 531 BCK SSWA 1 21 . 880 0.0 1. 000 0.0 0.0 
12 533 SSW SSWB 0 21. 990 0.0 0.0 1.000 0.0 
12 535 BCK SSWA 1 22.020 0.0 1.000 0.0 0.0 
12 679 BCK SSWA 0 28 . 095 0.0 1.000 0.0 0.0 
12 1071 SSW ARI 0 114 . 530 0.0 0.0 0.0 1.000 
12 1109 BCK SSWA 0 46.345 0.0 1.000 0.0 0.0 
12 1277 SSW SSWA 0 53.265 0.0 1. 000 0.0 0.0 
12 1281 BCK SSWA 1 53.585 0.0 1. 000 0.0 0.0 
12 
12 

1317 
1319 

BCK 
SSW 

SSW/\ 
ART 

1 
1 

55.050 
55. 175 

0.0011 
0.0 

0 . 996 
0.0 

o.o 
0.0 

0.0 
1.000 

12 1321 BCK SSWA 1 55.200 0 . 0 1 . 000 0 . 0 0.0 
12 1327 BCK SSWA 0 5~. 6 70 0.0 1.000 0.0 0.0 
12 1335 SSW SSWA 0 56 . 1115 0.0 1.000 0.0 0.0 
12 1385 SSW SSWA 0 58 . 315 0.0 1.000 0.0 0.0 
12 
12 
13 

11125 
15117 
205 

UCK 
DUS 
SSW 

SSW/\
SSW/\ 
SSWA 

0 
0 
0 

60.055 
63. 590 
8.550 

0 . 0 
0.0 
0.0 

1.000 
1 . 000 
1.000 

0.0 
0 . 0 
o.o 

0.0 
0.0 
0.0 

13 
13 

207 
2111 

BCK 
SSW 

SSW/\ 
SSWA 

I 
0 

8.805 
10.075 

0.0 
o.o 

1.000 
1.000 

0.0 
0.0 

0.0 
0.0 

13 2113 BCK SSWA 1 10.175 0.0 1.000 0.0 0.0 

I.J 
a> 
~ 



Table H-1 (Cont'd.) 

FILE EVENT TYPE PREOIClD CORRECTN TIME P(BCK) P(SSWA) P(SSWB) P(ARtl 

13 437 BCK SSWA 0 17.900 0.001 0 . 999 0.0 0.0 
13 447 SSW SSWA 0 18 . 280 0.0 1.000 0.0 0.0 
13 635 BCK SSWA 0 26. 155 o.o 1.000 0.0 0.0 
13 995 SSW SSWA 0 41. 385 0.0 1 . 000 0.0 0.0 
13 1111 ART ART 0 46 . 300 0.0 0.0 0.0 1.000 
13 1199 SSW SSWA 0 50.020 0 . 0 1 . 000 0.0 0.0 
13 1277 BCK SSWA 1 53 . 370 0.0 1.000 0 . 0 0.0 
13 1279 SSW SSWB 0 53.475 0 . 0 0.0 1 . 000 0.0 
13 1281 BCK SSWA 1 53 . 505 0 . 0 1.000 0.0 0.0 
13 1325 SSW SSWA 0 55 . 1170 0.0 1 . 000 0 . 0 o.o 
13 1327 BCK SSWA 1 55 . 6110 0.0 1 . 000 o.o 0 . 0 
13 1329 BCK SSWA 1 55. 700 0.0 1.000 0 . 0 0.0 
111 373 BCK SSWA 0 111.815 0.0 1.000 0.0 0.0 
14 475 SSW SSWA 0 19.210 0 . 0 1.000 0.0 0.0 
14 1111 BCK SSWA 1 19.265 0.0 1.000 0.0 0.0 
14 479 BCK SSWA 1 19.505 0.0 1.000 0.0 0.0 
111 555 BCK SSWA 0 22 . 875 0.0 1 , 000 o.o 0.0 
111 927 BCK SSWA 1 38 . 725 0.0 1.000 0.0 0.0 
14 929 SSW ART 1 38 . 820 0.0 0.0 0.0 1.000 
14 931 BCK SSWA 1 38 . 850 0 . 0 1.000 0 . 0 0.0 
14 11115 SSW SSWA 0 117 .625 0 . 0 1.000 0 . 0 0.0 
14 1163 BCK SSWA 0 118.665 0 . 0 1.000 0 . 0 0.0 
14 1199 SSW SSWA 0 50 . 585 0.0 1.000 0 . 0 o.o 
14 1351 OBS BCK 0 56.1175 1 . 000 0.0 0.0 0.0 
14 11,03 SSW SSWA 0 58 . 795 0 . 0 1 . 000 0 . 0 0.0 
111 11125 BCK SSWA 0 60.035 0 . 0 1.000 0 . 0 0 . 0 
14 1491 SSW AR r 0 62 . 585 0 . 0 0.0 0.0 1.000 
111 1511 BCK SSWA 0 63. 5115 0 . 0 1 . 000 0.0 o.o 
14 1569 SSW SSWA 0 66 . 040 0 . 0 1.000 0.0 0.0 
15 33 BCK SSWA 0 1.1165 0 . 0 1.000 o.o 0.0 
15 111 SSW SSWA 0 1 . 965 0 . 0 1.000 0.0 0.0 
15 113 BCK SSWA 1 2.015 0 . 0 1 . 000 o.o 0.0 
15 103 SSW BCK 1 11 . 795 1.000 0.0 0.0 0.0 
15 105 BCK SSWA 1 11,875 0 . 009 0.991 0.0 0.0 
15 571 BCK SSWA 0 23 . 260 0 . 0 1.000 0.0 0.0 
15 585 8CK SSWA 0 211. 005 0 . 0 1.000 0.0 0.0 
15 633 SSW SSWA 0 ]II. 330 0 . 0 1.000 0.0 0.0 
15 635 BCK SSWA 1 311,450 0 . 335 0.665 0.0 0.0 
15 691 SSW SSWA 0 36.620 o.o 1.000 o.o 0.0 

I..J 
en 
(Jl 
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Appendix I 

Comparison of Calculation Efficiency Between 
Three Types of Classifiers 

In the following, the Bayes classifiers, the canonical classifiers 

with absolute measure, and the canonical classifiers with square measure 

are compared with each other in regard with calculation efficiency . The 

following discussion 1s based on the operation numbers presented in 

Table 6.2 . 

When the number of multiplications are compared, a canonical 

classifier with absolute measure always has the smallest. When the 

number s of multiplications between a Bayes classifier and a canonical 

classifier with square measure are compared, the number for the 

canonical classifiers is less if 

J-K~ 
K2 

--
1-K 

(I. 1) 

stands where K~ min(l-1,J). 

When K=l, (6.1) stands except for ( I ,J)=(2,2) . 

When K=2, (6.1) stands except for ( I ,J)=(3 , 3), (4,3), (5,3), (6 ,3), 

(3,4), (4,4), (3,5), (3,6), and (L,2) where L=3 , 4,5, .. . 

When K=3, (6.1) stands except for ( 1,J)=(4,4), (5,4), (6,4), (7,4), 

(8,4), (9,4), (10,4), (11,4), (12,4), (4,5), (5,5), (6,5), (4,6), (5,6), 

(6, 6) , (4, 7), (5, 7), (4, 8) , (4, 9), (4, 10), (4, 11 ), ( 4 , 12) , and ( L, 3) where 

L=4, 5, 6, ... • 

If multiplications and additions are treated equally, and absolute 

operations, which can be done by changing a sign bit in a 

microcomputer, are ignored, the total number of operations for a Bayes 
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classifier is 2*J*I, and for a canonical classif ier with absolute measure 

is (2J-l)*K+l*(K-1). Let the total number of operations for a Bayes 

classifier, a canonical classifier with absolute measure, and a canonical 

classifier with square measure be named B, CA, and CS. Under a 

restriction of K~min(l-1,J), the following stands. 

When K=l, B~CA and B~CS stands always. 

When K=2, B~CA stands always, and B~CS stands except for ( I ,J)= 

(3,2), (4,2), (5,2), (6,2), and (3,3). 

When K=3, B~CA stands except for (1,J) =(L, 1) and (4,2) where 

L=4,5,6, ... ; Likewise, when K=3, B~CS stands except for 

(1,J)=(Ll ,2), (L2,3), (4,4), (5,4), (6,4), (7 , 4 ) ,(4,5),(5,5),(4,6),(4,7), 

and (4, 8) where L 1 =4, 5, 6, . . . and L2=4, 5, 6, ... , 15. 



Appendix J 

Averaged Parameter Values in Method A 

Table J-1 Averaged Parameter Values in Method A in the First Three Data Sets , Obtained 
from the Output of BMDP7M in the Experiment A34R. The values are means 
with their standard deviations in parentheses. The units are [ µV] for 
amplitudes, [µV/msec . ] for slopes, and [sec . ] for durations . 

SSWBSSWA ARTBCK 

21 12290 3Samp I e Number 

8 . 75226 ( 1 I .6111j 10) 6.32083 ( 5.68881) 1. 11000 ( 0 . 0 ) 
DI I 

6 . 673 5 7 ( 5.23326)APl 
-o . 16870 ( 0.121311 -0.06783 ( O. OIJ 171 I -0.18500 ( 0 . 0 I 

D21 
-0 . 16890 ( 0 . 10168) 

0 . 09558 ( 0.03738) o. 10175 ( 0.0 ) 
DUl 

o . 162111 ( 0 . 11 2 37) o . 16298 ( o . 1271151 
0.03667 ( 0 . 02021) 0 . 01500 ( 0.0 ) 

AP2 
0 . 03881 ( 0 , 023115) 0 . 03890 ( 0.027281 

-3.91J667 ( IJ . 78533) -3. 111500 ( 0.0 ) 
D12 

-11.07798 ( 10 . 68063 I-6.70790 ( 5.058811) 
o . 18500 ( o. 13967 I 0 . 061175 ( o.o I 

D22 
o . 19821 ( 0.1659510 . 165611 ( 0 . 1251161 

-o . 17267 ( o . 16812) -0 . 0 2 775 ( 0 . 0 ) 
DU2 

-0 . 20879 ( 0. 21967)-o . 111919 ( 0 . 12 578) 
0.02500 ( 0,01323) 0.03500 ( 0.0 ) 

AP3 
O.OIJ9 52 ( 0.031182)O. OIJ101 ( 0 . 023501 

IJ . 68667 ( 5.0731J7 I 12. 21000 ( 0 . 0 I 
D13 

6.67639 ( 5 . 211117) 8 . 57607 ( 6 . IJ1086) 
-o. 111000 ( 0 . 0 ) 

D23 
-0.06167 ( 0 . 010681-0 . 22817 ( o. 18051 I-o . 16909 ( 0.10166) 

0 . 17575 ( 0.0 I 0.311225 ( 0.0 ) 
DU3 

0 . 20879 ( o. 1058910 . 16295 ( o. 112611 I 
0 . 02500 ( 0.02598) 0.05000 I o . o ) 

AP4 
0 . 03571 ( 0.0198910 . 038112 ( 0.022951 

-3 . 17583 ( 2.06076) -1.75750( 0 . 0 ) 
D111 

-9.20595 ( 6 . 92030)-6 . 700 3 1 ( 5.027116) 
0 . IIJ183 ( 0.058751 0.21,975 ( o . o I 

0211 
0.21715 ( 0 . 09656)0 . 165111 ( 0. 12519) 

-o. 12025 ( 0.061J751 -0.02 775 ( o.o ) 
DUii 

-0.21715 ( 0 . 15170)-0 . 111896 ( 0.12585) 
0 . 03167 ( 0 . 033291 0. 011000 ( 0 . 0 ) 

AP5 
0 . 011857 ( 0 .02 703)0 . 01,090 1 0 . 02338) 

1. 66500 ( 0.0 ) 
D15 

5. 79667 ( 2.89915)6.68100 ( 5 . 23195) 7.361J76 ( 7 . 70000) 
-0 . llJIIOIJ ( 0 . 095981 - 0.15725 ( 0.061175) -o . 111000 I 0.0 I 

D25 
-0 . 16950 ( o . 10195) 

o . 13258 ( O.OIJ656) 0.16650 ( 0.0 I 
DU5 

o . 13655 ( 0.00116 I0 . 16289 ( 0. 11 266) 
0 . 011000 ( 0.030111) 0 . 01000 ( 0.0 ) 

AP6 
o . 0•1690 1 0.037•11 I0 . 030115 I 0 . 022931 

-6 . 59833 ( 3.88537) -3.70000 ( 0.0 ) 
D16 

-8 . 88881 ( 6.85503)-6.68379 ( 5.032831 
0.21275 ( 0.10005) o . 16650 ( o.o ) 

0 26 
0 . 15196 ( 0. 20101,)0. 16528 ( 0.12523) 

-o . 111800 ( 0. 121Jl15) -0.11100 ( 0.0 ) 
DU6 

-0.17179 ( o . 15260)-o. 111897 ( 0 . 12593) 
0,03500 ( 0.0 ) 

AP7 
0.02833 ( 0. 00577)0.01,092 ( 0.0211121 0.011548 I 0.02 355) 

o . 71,000 ( 0.0 ) 
D17 

2.62083 ( 1.66585)7 . 86690 I 6 . 61148)6 . 69789 I 5.256281 
-o. 16650 I 0.0 I 

D2 7 
-0 . 191J25 ( o . 11,1,1,9)-0.20835 ( 0. 12661)-0. 1692 7 ( 0.101361 

0 . 011100 ( 0 . 0 I 
DU7 

0.22905 ( 0 . 1111169) 0.15725 ( 0.08222)o. 16276 ( 0.11 2 39) 
0.01000 ( 0.0 I0.03167 ( 0 , 01317) 0 . 02167 ( 0 . 00577)0.03852 ( 0 . 0 2 307) 

-10. 911583 ( 6.59567) -0.116?.50 ( 0.0 I 
D18 

- 9.32928 ( 6. 15964)- 6 . 67300 ( 5 . 01091)AP8 
0 . 011100 ( O.OIJ895) 0.011100 I 0.0 ) 

D28 
0.22861 ( o . 19383)o. 1611 79 ( o . 121111) 

-o. 15108 ( 0.07757) -0.011625 I 0 . 0 ) 
OU8 

-0 . 21760 ( 0.171113)- o. 111877 ( 0 . 125117) 
0 . 01000 ( 0 . 0 ) 

AP9 
0.011138 ( 0.02601) 0 . 06500 ( 0.01803)O.OIJ095 ( 0 . 0 2 31111) 

80 . IJ 1333 ( 20 . 137115) 33. 29999 ( o.o ) 
Ill 9 

26.66202 ( 11. 3791io I6 . 67830 I 5.21525) 
- o. 111000 ( 0 . 018501- 0 . 2202 11 ( o . 130151 -o. 0•1625 1 o . o )-0 . 168 71 ( 0 . 100•18) N

o.01850 I 0.0 )O. IJ7219 ( 0 . 29606) 1. 98875 I 1 . 692091 (J)D29 o . 16229 ( 0.111651 
0.01,000 ( o . o )0.02833 ( 0 . 011J43 O.OIJ238 ( 0.0181J1) CX>0.03860 ( 0 . 02308)DU9 

https://0.116?.50


------
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-SSWAOCI< sswo ART 

-IIO. 119738 ( 10 . 86170) -61 . 82083 ( 16.04077) -35~ ij2119 ( o.o )-6.65386 ( 4.958118)APlO 
0.85012 ( o . 381116) 5 . 49142 ( 1. 63692)0.16296 ( o . 10599) 3.27450 ( 0.0 )0110 

-0.97698 ( o . 301196) -5. 787111 ( 1.85151)-0 . 14717 ( 0 . 10453)D210 -3.45025 ( 0 . 0 I 
0.07857 ( 0.02684) 0.01500 ( 0.0 )OUIO 0.04097 ( 0.023112) 0 . 03500 ( 0 . 0 I

32.19111!0 ( 16.79881J) 10.91500 ( 4 . 18198)6 . 68327 ( 5.236112) 2.31250 ( 0.0 IAPl 1 
-o. 311269 ( 0 . 111535) -3.17583 ( 0. 636116)-o. 16865 ( o. 100611) -0 . 02775 ( o.o ID111 

0 . 16176 ( 0 . 111261 0 . 25063 ( 0. 274491 o . 111800 ( 0.0 ID2 11 0.76467 ( 0 . 239851 
0.03867 ( 0 , 02318) 0 . 12286 ( 0 . 065571 0 . 01667 ( 0 . 002891 0 . 02000 ( 0.0 IDUl 1 

-12.27166 ( 11. 56661) -66.59999 ( 16 . 00330) -6.69500 ( 0.0 IAP12 -6 . 65519 ( 5.00730) 
0 . 601133 ( 0. 36725)0.161110 ( 0 . 121138) 0 . 27794 ( 0.378811D112 0.08325 ( 0.0 ) 

-0 . 23081 ( o.21541l I-o. 111867 ( 0 . 125112) -0 . 111115 I 0. 15806 I - 0.23125 ( 0.0 ID212 
O.OIJ381 ( 0.0292610.04091 ( 0.023111) 0.06500 ( 0 . 01000) 0 , 05000 ( o.o )DU12 

17 . 57500 ( 26 . 254471 65 . 52083 ( 6 . 63318)6 . 64452 ( 5 . 21896) 12 . 39500 ( 0.0 IAP13 
-0.20086 ( 0.16258) -o. 12025 ( 0.033351-0.16844 ( o. 10067) -o. 13875 ( 0.0 ID113 
o. 171187 ( 0 . 09595)0 . 16179 ( 0. 1111161 o.20658 I 0.15039) 0. 15725 ( 0.0 ID213 
0.06571 ( 0.05553) 0. 18833 ( 0.02309) 0 , 05500 ( 0.0 )0 . 03851 ( 0.02 3101DU13 

-6 . 611699 ( 5 . 00167) -16.831199 ( 23 . 59531) -3. 73083 ( 0.78671) -8.011750 ( 0.0 IAPll1 
o . 16372 ( o. 121l32I o . 37969 ( 0 . 89572) o . 12950 ( 0.09110) 0.36075 ( 0.0 I0114 

- o. 14836 ( 0.12539) -o . 21706 ( 0 , 3111791 -0 . 15725 ( 0.05627) -o . 12950 ( o . o I02111 
0.0110811 I 0.023301 0.06024 ( 0 . 03910) 0.02500 ( 0.01000) 0.05000 ( 0.0 IDUIII 
6.65915 ( 5 , 2111511 I 7, 119250 ( 0.0 .)10 . 32916 ( 7 . 23395 ) 7. 12250 ( 5.25625)APl5 

- (J.08325 ( 0 . 0 I-o . 168111 ( o . 10066) -o . 16254 ( 0 . 09767) -0 . 20967 ( 0 . 032119) 0115 
o. 16210 ( 0. 12436) 0 . 13256 ( 0.02328) o. 18500 ( 0.0 )o . 16168 ( 0.111351D215 

0.011500 ( o.o I0. 05381 ( 0 . 03788) 0 . 04633 ( 0.02687)0.03855 ( 0.02 316)DU15 
-6 . 6602 11 ( 5.006701 -11 . 63296 ( 7 . 75113) -7 . 15333 ( 1 , 76560) -3 .97750 ( 0 . 0 IAP16 

0 . 16367 ( o . 1241111 I 0. 16650 ( o . 08011)0.21011 ( o . 12213 I 0 . 061175 ( o.o )D116 
-0.2162 7 ( 0.13935) -0.23125 ( 0 . 1601J8) -0 . 11100 ( 0.0 )-0.14863 ( o . 125111 ID2 16 

0.03833 ( 0 . 02363) 0 . 04500 ( 0.0 I0.04088 ( 0.02341) 0 . 05357 ( 0 , 02613)DU16 
6.90226 ( 7 . 01552) 10.45250 ( 5.50899) 2.31250 ( 0.0 I6 . 665115 ( 5 . 25235)AP17 

-0.1 2950 ( o . o I-o . 15769 ( 0 . 08650) -0.25283 I 0.22927)-0 . 16629 I o . 10105)D11 7 
o. 163112 ( 0 . 07702 ) 0 .061175 ( o . o )0 . 15813 ( 0 . 08828)o . 16174 ( 0. 11161102 17 

0.02000 ( 0.0 )0 . 03667 ( 0.02021)0 . 03856 ( 0.02 313) o.03619 I 0 . 025591DUI 7 
-30 . 18582 ( 4.26036) -1. 38750 ( 0.0 )-7.72154 I 6.506601AP16 -6.65079 I 5 . 03671) 

o. 163116 ( o . 1211119) 0. 16650 ( 0.0 I0. 18676 ( o. 1110911 I 0 . 31758 ( o . 13654)0116 
-o . 13875 ( o . o I-0. 16210 ( 0.08030) -0.28367 ( o. 151104 I-0.111813 I 0.12540)0218 

0.08833 ( 0.03819) 0.01000 ( 0.0 I0 . 04786 ( 0.03888)94.76944 ( 4533 . 13672)DU18 

'" en 
c.o 
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