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Abstract

High Performance Computing (HPC) applications are always expanding in

data size and computational complexity. It is becoming necessary to consider fault tol-

erance and system recovery to reduce computation and resource cost in HPC systems.

The computation of modern large scale HPC applications are facing bottleneck due

to computation complexities, increased runtime and large data storage requirements.

These issues can not be ignored in current supercomputing era. Data compression

is one of the effective ways to address data storage issue. Among data compression,

the lossy compression is much more feasible and efficient than the traditional lossless

compression due to low I/O bandwidth of large applications. The goal of this work is

to observe and find the optimal lossy compression configuration which has the min-

imal user controlled error with maximum compression ratio. For this purpose two

large scale application have been experimented with various parameters of well known

compression method called SZ. The first application is a quantum chemistry based

HPC application NWChem. The second application is the vascular blood flow simula-

tion data generated by parallel lattice Boltzmann code for fluid flow simulations with

complex geometries called HemeLB. SZ compressor is integrated in the applications’

code for testing the correctness and scalability and give a comparative picture of the

performance change. Lastly the statistical methods are tested to pre-determine the

data distortion for different error bounds.
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Chapter 1

Introduction

Large-scale high-performance computing (HPC) applications are facing a per-

formance challenge of low I/O bandwidth and coupled with large volumes of data

that needs to be stored for scientific analysis and visualization. Future HPC sys-

tems are expected to experience failures more frequently than current systems [61].

Checkpoint-restart is a well known technique of saving computational progress at a

fixed interval to later recover the application state in case of unplanned failures [9].

In order to recover from the more frequent failures, applications will need to rely in-

creasingly on checkpoint-restart [19]. Increased reliance on checkpoint-restart places

additional strain on the system and increasing the computational cost for running ap-

plications especially for simulations with a high-level of computation between check-

points.

To reduce the volume of data stored and increase the effective memory band-

width, researchers and practitioners have begun integrating lossless and lossy data

compression into HPC applications [7, 35]. Lossless compression preserves the accu-

racy of the data but it fails to perform significantly in certain cases. For example, it

faces more challenge of floating point data compression as the least significant bits of
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the mantissa tend to be very poorly correlated [22]. The compression ratio achieved

is really poor for lossless compression.

Recent work shows that lossy compression is able to reduce data volumes by

order-of-magnitudes more than lossless compression [15]. Lossy compression achieves

large reductions in data volume by allowing a user controllable level of inaccuracy

into the data when compressing.

Although lossy compression is an attractive solution to this problem, establish-

ing performance models and methodologies on how best to integrate lossy compression

into HPC applications remains an area of active study [7, 62, 34]. Data compression

has shown only modest progress for scientific data as floating point numbers make

efficient use of the available bits ultimately causing much lower compression rates [30].

There are various HPC applications such as Blast2 [11], Sedov [60], BlastBS

[66], Eddy [65], Vortex [20], BrioWu [5], GALLEX [52], MacLaurin [8] etc. They have

been used by researchers to test the effectiveness of lossy compression by varying

different parameters of the application and the compressors.

This motivated this research to study the lossy compression and its contribu-

tion to improve high-performance computing (HPC) applications such as NWChem

and HemeLB.

For NWChem application, we explore checkpointing of NWChem [64], an open-

source HPC computational chemistry code with extensive capabilities for large scale

simulations. Unlike prior work, that focuses on checkpointing at the iteration bound-

ary, we checkpoint at the sub-iteration level. NWChem iteratively converges to a

solution and therefore makes a good candidate to determine the impact of restarting

from a lossy compressed checkpoint. Data compression is done by a state-of-the-art

HPC lossy compressor with user controlled error bound type and error bound.

Another HPC application we looked into is the HemeLB which is a large par-

2



allel lattice-Boltzmann simulation framework that creates segmented angiographic

data from patients which is helpful in medical data analysis [26]. Its code is a par-

allelised lattice-Boltzmann application which is optimised for sparse geometries such

as vascular networks which can generate complex and voluminous data structures.

For example, HemeLB can create a load-balanced domain decomposition at runtime

which allows it to run simulations at varying core counts for same simulation domain

data. The File I/O operations are paralleled using MPI-IO by a group of reading

processes and they can be adjusted in size by using a compile-time parameter. These

characteristics makes it optimal for studying the effects lossy data compression in the

application simulation. The lossy compression has the possibility to speed up the

simulation process and reduce the data size to a large magnitude. The data will be

analyzed to predict certain flow features based on the structure of the arteries. This

has the potential to reduce the need for costly simulations in the long run.

There is the question of finding the optimal lossy error bound that allows

reasonable data deviation after lossy compression. This balance is unique for each

large-scale application due to the nature of the application as well as data point

variations. Usually it is determined by multiple experimental run which ultimately

costs time and storage space. In this part of the research, we have tried to make this

task easier to predetermine the lossy error bounds with respect to user allow data

deviation. The statistical metrics such as mean, median, variance etc can be used to

run the experiments where the data distortion can be set beforehand. This work can

reduce the burden of extra experimental run and while keeping the lossy error bound

within user’s limit.

This thesis makes the following contributions:

• Contribution from NWChem application
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– implements checkpoint restart at the sub-iteration level of the NWChem

application;

– evaluates results from experimental runs to find a balance between user

induced error and lossy compression performance; and

– quantifies the performance of sub-iteration level lossy compressed check-

point restart for NWChem.

• Contribution from HemeLB blood flow simulation application

– apply in situ lossy compressor SZ inside blood flow simulation analysis

script;

– Look at compression ratio and data distortion in separate variable levels;

– discuss the cause of the varying results for different variables.

• Contribution from statistical methods

– establish relation between lossy error and data distortion from lossy com-

pression for different statistical methods;

– discuss the different outcomes for different satistical methods;

– describe its applicability in scientific research community.

The rest of the paper is as follows: Chapter 2 discusses the background of this

thesis. Chapter 3 shows how we instrument NWChem with lossy data compression

and the performance results. Chapter 4 describes the effects of lossy compression on

Hemelb data. Chapter 5 shows how the lossy error bounds can be determined for user

allowed data distortion. Finally, chapter 6 states our conclusions from the research

conducted in the thesis.

4



Chapter 2

Background

2.1 High-Performance Computing (HPC)

High-performance computation (HPC) is implemented in a number of science

and engineering disciplines such as climate, physics, cosmology, environmental mod-

eling, device and semiconductor simulation, seismology, finance, social science etc

[18]. The supercomputers are playing an important role in HPC systems and appli-

cations. Supercomputers contain fastest high-performance system to perform large

scale, complex computations. Multiple numbers of processing units, large size of

RAM memories, faster connecting between multiple nodes, larger I/O throughput,

remote access to clusters, larger energy consumption etc. are the features that make

them effective and valuable than other computing devices. Its advantage is not only

performing large scale and complex calculations but also solving the problems faster

which can be done on servers or clusters of PCs [13]. Supercomputers perform cut-

ting edge high-performance computing which are crucial in scientific and technological

advancement. The significance of supercomputing in present and future scientific ap-

plications has made researchers invested in making it more efficient. The primary
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performance bottleneck for many scientific computing codes is the speed and storage

of large scale complex computation.

2.2 Compression for HPC Data

Scientific high-performance data sizes are growing with advancement of tech-

nology. Increasing complexity of scientific simulations as well as larger computing

processors and storage spaces are greatly contributing in the expansion [43]. This is

bringing progress along with some strains on computing units and data storage avail-

ability. Storing such data uncompressed results in large files that are slow to read

from and write to disk, often causing I/O bottlenecks in simulation, data processing,

and visualization that stall the application. With disk performance lagging increas-

ingly behind the frequent doubling in CPU speed, this problem is expected to become

even more urgent over the coming years [43]. Data compression is a technique which

is being used to tackle this problem. In this method datasets are compressed and

uncompressed to reduce the data storage that is needed to be transferred between

memory locations or file systems. This ultimately boosts the I/O performance at

the cost of excess computation cycles and additional compression algorithms. Data

compression techniques are classified into two categories such as lossless and lossy.

Lossless compression reduces data size without loss in data fidelity. The lossless com-

pression reaches its own limitations due to the binding of preserving data accuracy

[44]. However, for numerical HPC data, the compression ratios vary between 1-4×.

For example, a common lossless compressor like GZIP can perform only modest re-

duction of floating-point data. Other known lossless compressions are LZ77 [67],

Huffman encoding [31], FPC [6] and Fpzip [43].

6



2.3 Lossy Compression

Lossy compression achieves higher compression ratios compared to lossless

compression by allowing inaccuracies into the data when compressing [59]. The de-

compressed data usually cannot be recovered or reconstructed exactly as the original

data. Much higher rate of compression than lossless methods is achieved at the cost

of the defect in data. Some applications can tolerate the data error without compro-

mising their computation goals. For example in many image or video transmission

the increased speed of transfer is desirable over accuracy. On the other hand, some

scientific applications are sensitive over accuracy as their computation depends on the

precision of the data. The optimal balance of data accuracy and I/O bottleneck be-

comes a crucial issue for some scientists. For example, climate scientists have resisted

to apply lossy compression algorithms on their files [3]. The data storage is such as

crucial issue that lossy compression has become vital whereas the data accuracy has

to be studied for the whole process. It is useful to consider the complexity of the

compression algorithm, the storage required for the compression process, the speed

improvement of the compression for the processing units, the compression ratio as

well as the accuracy of the decompressed data. Modern HPC lossy compressors such

as SZ [15] and ZFP [42] allow the user to bound the type and magnitude of error

introduced into the data. The error bounding metrics can either apply to each value

point-wise or be a property over the full data set. Key to successful use of lossy

compression algorithms is setting the compressor’s error bound [7, 50]. Determining

the error bound and error bounding type for various applications remains an open

question.

7



2.3.1 Lossy compression - SZ

SZ is a lossy compressor developed at the Argonne National Laboratory. It is

an error-bounded in-situ data compressor which significantly reduces the data sizes

within user defined bounds[15]. It is used to compress different types of data such

as single-precision, double-precision as well as different sizes of arrays up to five

dimensions. It supports three programming languages: Fortran, C and Java.

Figure 2.1: SZ compression algorithm

In Figure 2.1 the SZ data compression steps are shown. The first step is

data prediction which is done using Lorenzo prediction by default [41]. In 2D data,

it is performed by comparing one data point with three neighboring data points

where it makes the process easier and faster to compute than using all the data

points. Examples of well-known space-filling curves [15] are Peano curve [53], Moore

curve [49], Hilbert curve [28] and Lebesque curve (or Z-order curve) [40].The SZ

lossy compressor adopts a data prediction method which is a selection of either a

1-layer Lorenzo predictor [33] or linear regression method to predict each data point

by its neighboring values in the multidimensional space [63]. The Lorenzo predictor

estimates the scalar value of a sample on the corner of an n-dimensional cube from

the scalar values of the others 2n − 1 corners. It estimates the value of a scalar field

at one corner of a cube based on the values at the other corners. In Figure 2.2 the

data prediction based on neighborhood points is depicted.

The next step is adaptive quantization. Quantization is the process of mapping

8



Figure 2.2: SZ curve fitting model

input values to a smaller output value using method such as truncation. In this SZ

step linear scaling is adding error bound with quantization. Thus the number of

values mapped together is reduced in size within the user defined error bound. It is

done where each floating point data value is converted to an integer number in terms

of the formula,

quantization = (predicted value− true value)/2ε

where ε refers to the userspecified error bound (i.e., linear-scaling quantization) [63].

The following step is the unpredictable data analysis. In here the data which

could not be compressed in the previous step is getting compressed. It is done using

a multi-step process to reduce the number of mantissa bits required to represent

9



each floating point data [15]. At first all the unpredictable data are mapped to a

smaller range by letting all the values minus the median value of the range. Then the

value is truncated by disregarding the insignificant mantissa part based on the pre

determined error bounds. Finally the leading-zero based floating-point compression

method is performed to further reduce the storage size. It is done using the XOR

operation for the consecutive normalized values and compress each by using a leading

zero count followed by the remaining significant bits.

The final SZ compression step is lossless pass of zstd. A Huffman encoding

algorithm customized for integer code numbers is then applied to the quantization

codes generated by Step two. A dictionary encoder such as Gzip [14] or Zstd [12] is

used to significantly reduce the Huffman-encoded bytes generated from Step three.

SZ contains various types of compression error bounds such as absolute error

bound (ABS), relative error bound (REF), point-wise relative error bound (PW REL),

peak signal-to-noise ratio(PSNR), absErrorBound and relBoundRatio (ABS AND REL)

etc. Absolute error ε means the decompressed data must be between [x - ε] and [x +

ε].

Where, x = original data

Relative error bound takes into account the range size (maximum value -

minimum value). For example, if the relative error bound ratio is set to ε and the

difference between the maximum and minimum value in the data set is δ. So, the

global value range size is δ and the error bound will actually be δ*ε in the relative

error bound mode.

Point-wise relative error bound controls the compression errors based on a

relative error ratio in comparison with each data point’s value. If the point-wise

relative error bound is ε then the real compression error bound for each data point

will be equal to ε*(individual data value).

10



2.4 NWChem

NorthWest Chemistry (NWChem) [64] is an open-source computational chem-

istry software package that provides a comprehensive range of methods used to address

molecular simulation problems. NWChem project had the goal to create molecular

modeling software that provides 10 to 100 times the effective capability than ones

available on conventional supercomputers [37]. This makes NWChem algorithm par-

allel scalable both in the size of the computational resource as well as in the molecular

system model. The algorithms must distribute data across the total system memory

and not limiting the the functional problem size by the effective memory of any sin-

gle computational node. NWChem represents tradeoff between computational cost

and accuracy. It is an improvement from the petascale’s relatively small molecular

systems which can saturate the computational throughput and memory bandwidth.

Utilizing a common computational framework, diverse theoretical descriptions can be

used to provide the best solution for a given scientific problem. This paper provides

an overview of NWChem focusing primarily on the core theoretical modules provided

by the code and their parallel performance.

2.5 HemeLB data

Cerebrovascular diseases such as brain aneurysms can greatly impact a per-

son’s health and wellbeing. Studies show that 13 % of strokes are caused by subarach-

noid hemorrhage[54], bleeding in the brain due to the ruptured blood vessels. Medical

professionals are increasingly relying on non-surgical or pre-surgical detection as it re-

duces complications and side effects for patients. For asymptomatic brain aneurysms,

the detection of unruptured blood vessels is complicated and surgical treatments can
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lead to issues such as neurological deficits and mortality. Recent scientific advances

have made it possible to simulate a patients’ blood flow in order to predict quan-

titative rupture risk. Thus, helping with the aneurysm detection. HemeLB[46] is

a lattice-Boltzman code that is able to simulate an arterial blood flow simulation.

HemeLB works with complex domain geometries that are mapped to the unique arte-

rial structure of patients. Using high-performance parallel processing and leveraging

the time dependent nature of the body’s cardiac cycle researchers are able to quantify

the risks of rupture. To determine the likelihood of rupture, 100s of GB of data must

be logged and analyzed. The analyzed simulation data is preprocessed before being

fed into a machine learning model to predict the likelihood of rupture.

2.6 Statistical Method

Statistics plays an important in data analysis by helping us to make decisions

based on the information or data available. The statistical methods can be used

to collect, organize, analyze, and interpret numerical information from populations

or samples [4]. For data classification, specially quantitative data analysis summary

statistics is a way to look at it. Summary statistics summarizes and provides infor-

mation about user’s sample data [25]. It organizes and provides detailed information

about the values in your data set. For example, it can the mean of the data and the

skewedness of the data. Summary statistics fall into three main categories such as the

measure of location, measure of spread as well as the graphs or charts. The measure

for the data can be determined by mean, median, variance, range, quartiles, skewed

etc.

12



Chapter 3

NWChem

3.0.1 NWChem

In this chapter, we focus on a many-body method called coupled-cluster singles

and doubles (CCSD)[56]. CCSD is a widely used iterative method that serves as a

precursor to the ”gold standard” method of computational chemistry, CCSD(T)[57].

Specifically, this work targets a variation of the CCSD algorithm that was imple-

mented with the Tensor Contraction Engine (TCE)[2, 29]. The TCE is an automatic

code generation module that takes equations expressed in a high-level domain spe-

cific language as input, and produces corresponding high-performance parallel FOR-

TRAN code. The TCE has been successfully used to implement dozens of many-body

methods, and today approximately 2/3 of the lines of code in NWChem are machine-

generated.

The majority of the runtime for the CCSD method is attributed to the iter-

atively solving of a set of tensors called T̂1 and T̂2 cluster amplitudes that encode

singly and doubly excited terms within a many-body coupled-cluster wavefunction.

[We limit the scope of this work to T̂2 amplitudes, as they’re more computationally

13



demanding to compute and consume more storage than the T̂1 cluster amplitudes.]

The cluster amplitudes are generally converged within 10-30 CCSD iterations.

The CCSD method formally scales as O(n6) with respect to the molecular sys-

tem size, so iteration times can quickly become intractable for even moderately sized

systems. Users typically scale their problem size to target iteration times on the order

of minutes to hours. To guard against system and software faults, NWChem provides

infrastructure for checkpointing CCSD computations by storing cluster amplitudes

upon the completion of a given CCSD iteration. But especially for an exascale class

system, losing minutes or hours of computation time due to a fault will waste an ex-

cessive amount of computer resources. In this work, we attempt to mitigate against

this loss by checkpointing at the sub-iteration level. The TCE implementation of the

T̂2 amplitude equation is composed of an operation tree with approximately 20 inter-

mediate terms, with each term representing a tensor contraction between a set of 2

and 4-dimensional tensors[29]. We have implemented a framework for checkpointing

application state at the boundaries of the intermediate term computations. Secondly,

we have investigated the potential of lossy compression of the intermediate terms

to reduce checkpointing overhead. While a previous work investigated compression

for fully-computed T̂2 cluster amplitudes within NWChem CCSD[30], only lossless

compressors were used. Motivated by recent progress in reduced and mixed-precision

iterative refinement within CCSD and other many-body methods[55], we extend the

previous work to assess the impact of lossy compression on the accuracy of converged

T̂2 amplitudes, and to investigate how restarting from a lossy checkpoint state affects

the number of iterations required for convergence.

cat
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3.1 Sub-iteration Checkpointing of NWChem

NWChem is a long running HPC application which requires multiple itera-

tions to converge to a solution. Previous work on checkpointing NWChem focus

on the coupled-cluster singles and doubles (CCSD) computation and checkpoints at

a per-iteration granularity [30]. However the per-iteration time can be significant;

sometimes consuming hours or even days. The high per-iteration cost makes iter-

ation level checkpoint-restart expensive and inefficient because the the potentially

large overhead when restarting.

To address this large overhead when restarting, this work elects to checkpoint

at a finer granularity. We target checkpointing at a sub-iteration level. The iteration

computes the T̂2 tensor. This tensor’s construction in broken into the calculation of

24 intermediate sub-tensors. We modify the code of NWChem to checkpoint each

sub-tensor individually. Thus, we are able to recover at a sub-tensor granularity.

When checkpointing each sub-tense we employ the SZ lossy compressor to reduce the

size of each sub-tensor. This configuration allows us to select individual error bounds

and error bounding types for each sub-tensor.

3.2 Related Work

Previous works on integrating lossy checkpointing into HPC applications have

shown reductions in the I/O fraction of HPC application [7], required compression

levels to improve performance [34], and have modeled checkpointing when extra it-

erations are required to restore convergence [62]. The integration of lossy compres-

sion in HPC workflows and applications requires specific selection of error bounds

to get minimum errors in simulation results. Trial and error is an effective way to
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establish the correct lossy compression parameters for checkpoint-restart or in-line

computation [51, 38, 58]. Incorporating domain knowledge allows for establishing

methodologies and heuristics for using lossy compressed data for analytics [3, 21, 50].

Different error bounding metrics have an impact on floating-point truncation error [17]

as well as the distribution of compression error [45]. Other researchers have worked

to find methodologies for selecting error tolerances for lossy checkpoint-restart on

HPC simulations [7, 62]. This work reduces NWChem’s checkpointing size by using

differenced checkpoint and cutoff techniques to increase the effectiveness of Lempel-

Liv (gzip)[30]. This has dramatically increased the compression ratios than standard

compression techniques.

3.3 Experimental Results

All of our experiments are run on the Bebop Cluster operated by the Labora-

tory Computing Resource Center (LCRC) at Argonne National Laboratory. Bebop

nodes consist of Intel Xeon E5-2695V4 CPUs with 128GB DDR4 RAM. We test with

the 6.8.1 release of NWChem and the 2.1.5 version of the SZ lossy compressor. We

evaluate lossy checkpointing of the sub-iterations of NWChem using a simulation of

water molecules that converges in 17 iterations. We simulate a restart from a lossy

compressed checkpoint at iteration 10.

During each run of NWChem we record the compression time, decompression

time, compression ratio, energy deviation from a lossless simulation, and number of

iterations to converge. Any runs whose energy deviation differs from the lossless ref-

erence simulation greater than 1e−5 is considered an unusable result due to violating

conservation of energy [27]. We explore compressing sub-tensors individually and all

together.
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3.3.1 Lossy Checkpointing Individual Sub-Tensors

We first explore the impact of each sub-tensor to the computation. The size

of each of the sub-tensors ranges from 100 to 10,000 elements. For our experiments,

we use two types of error bounding with SZ which are absolute (ABS) and relative

(REL) with various error bounds ranging from 1e−1 to 1e−10.
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Figure 3.1: Average compression ratio of compressing sub-tensors of T2 individually.

Figure 3.1 shows the average compression ratio for compressing the sub-tensors.

In the figure, we see significantly higher compression ratios for absolute error bounds

than for relative error bounds for equivalent error bounds. Compression ratios for

relative error bounding remain near 1-2× across all the error bounds. As we demand

more accurate data from the compressor the compression ratio tends toward 1 indi-
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cating that the data does not compress. From Figure 3.1, we see that absolute error

bounds of 1e−5 reduces the data set size efficiently all other configurations yield little

if any compression.

Figure 3.2 shows the average compression bandwidth for different error bounds

for both absolute and relative error bounding types for the sub-tensors. In this fig-

ure, we see the compression bandwidth for all configurations that use absolute error

bounding yield higher compression bandwidth compared to the equivalent configu-

ration using relative error bounding. Moreover, as the error bound increases, the

compression bandwidth increases for both error bounding types. As the error bounds

enforce more accurate data, the compression bandwidth approaches zero indicating

that compression yields unacceptable performance.

Figure 3.3 plots the average decompression bandwidth for both error bounds.

As with Figure 3.2, we average across sub-tensors with a corresponding error bound

and error bounding type. From Figure 3.3, we see similar behaviour to compression

bandwidth. The major difference is that the decompression bandwidth is lower than

the compression bandwidth for similar high error bounds. As the error bound better

preserves the data, the decompression bandwidth approaches zero which can lead to

increased overhead for NWChem simulations with large quantifies of data.

Figure 3.4 shows the average deviation in energy between a run of NWChem

that does not restart from a lossy compressed checkpoint and one that does. From the

figure, we see that the deviation in energy is very minor (approximately 1e−9 for all

configurations and is well below the level of acceptability of 1e−5). Therefore, each

simulation proceeds valid data for the computational scientist — i.e., conversation

of energy between the simulations. Thus, we are able to lossy compress checkpoints

each sub-tensor of T̂2 and successfully restart.

Even if the simulation does not deviate from the expected energy value, the
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Figure 3.2: Average compression bandwidth of compressing sub-tensors of T2 indi-
vidually.

number of iterations required to achieve the computational result may increase. In-

vestigating the number of extra iterations reveals that at most one extra iteration

is required for all experiments that restart from a single sub-tensor. On average

we require 0.66 extra iterations. Thus, we are able to restart NWChem from lossy

checkpoints with little impact to the total number of iterations.

3.3.2 Lossy Checkpointing Multiple Sub-Tensors

We now focus on the impact of compressing multiple sub-tensors at the same

time. To highlight the worst case scenario, we restart from a checkpoint in which all

the sub-tensors are lossy compressed. We do not show plots for compress bandwidth,
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Figure 3.3: Average decompression bandwidth of compressing sub-tensors of T2 in-
dividually.

decompression bandwidth, and compression ratio as they are equivalent to those

shown in Section 3.3.1. This is due to how we checkpoint each sub-tensor individually.

In Figure 3.5 we plot the energy deviation for various absolute and relative

error bounds ranging from 1e−1 to 1e−10. Comparing to Figure 3.4, we see that the

deviation is slightly higher indicating that there is more deviations in the simulation.

This increase is due to be restarting from a lossy checkpoint all the sub-tensors lossy

compressed. Even though the magnitude of the deviation is larger, the magnitude is

well within our simulation accuracy bound of 1e−5. This shows that sub-iteration

checkpointing is feasible to enable restarting when failure strikes and not impact the

accuracy of an NWChem simulation.
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Figure 3.4: Average energy deviation of compressing sub-tensors of T2 individually.

3.4 Conclusion

Checkpointing scientific application becomes more important as the failure

rate on large scale systems increase. The NWChem application’s per iteration time

can be hours or days. In this thesis, we explored lossy checkpointing of sub-iterations

of NWChem. We explored the applicability of lossy checkpointing at this granularity

by evaluating the compression bandwidth, decompression bandwidth and compression

ratio for number of sub-tensors. Our results show that absolute error yields better

performance than relative error for error bounds on the range 1e−1 to 1e−5. For

all the experiments, the number of extra iterations increased by at most 1 compared

to lossless run. The energy deviations were remarkably lower making the sub-tensor
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Figure 3.5: Energy Deviation for compressing all sub-tensors simultaneously.
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level lossy checkpointing acceptable in NWChem application.
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Chapter 4

Vascular Blood Flow Simulation

The vascular blood flow simulation data determines the likelihood of rupture.

The HemeLB code is generated using the lattice Boltzmann model which creates con-

siderable amount of data in 4D space-time [46]. For example, 100s of GB of data

needs to be generated and analyzed for simulation. HemeLB leverages finite element

method to constitute vascular blood vessel geometries. The features that we looked

into are inter alia, wall shear stress (WSS), oscillatory shear index (OSI), vorticity,

flow impingement regions etc. All of these features are indicators of rupture risks

[47]. The early detection of rupture is complicated due to variability of aneurysm ge-

ometries and the complex flow patterns and the limited understanding of the relevant

mechanisms.

4.1 Data Structure

The HemeLB simulation data have been collected from Professor Schiller’s

Research Group’s storage at Palmetto supercomputer cluster. A typical simulation

output generates the flow field as a 3D vector field which is written in every 100 time
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steps. The vector field is written in the form (id, x, y, z, vx, vy, vz) where id is a voxel,

x, y, and z are the coordinates of the voxel, and vx, vy, vz are the components of

the velocity vector [1]. Some data variables are 1D such as pressure and some are 3D

such as velocity. Simultaneously, the wall shear stresses for each flow configuration

are written to a separate file in the form (id, x, y, z, wss). This generates geometries

in the range of 100 to 200 million voxels such that an estimated 500 GB of data is

generated per aneurysm geometry per cardiac cycle. The variables that we looked

into are velocity, pressure, helicity, vorticity, gamma and QCriterion.

Figure 4.1: Visualization of velocity streamline of blood flow through an aneurysm
affected artery (without a stent-mesh flow diverter) [1]

An visual representation of velocity of blood flow simulation is presented in

figure 4.1.

4.2 Lossy Compression (SZ) application on data

variables

The files generated for the variables are large sized data and need much longer

to generate from simulation. They are generated using software analysis. Inside the

simulation script each variable is computed separately and they ultimately combined
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to generate output values for each variable. This gives us the idea to compress the

variables separately inside the simulation script.

SZ is the lossy compressor that has been used to perform the data compres-

sion. There are various advantages of using this compressor among which are multiple

error bounding modes (ABS, REL, PSNR etc), high compression ratio (10x - 100x),

supporting various I/O data formats and most importantly multiple application pro-

gramming interfaces (API) such as C interface and FORTRAN interface. We have

written a C wrapper of SZ to compress and then decompress the data in-situ. The

analysis script is modified to call the SZ lossy compressor inside the script for each

separate variables, then compress/decompress the data array where it simulates read-

ing in lossy compressed data file. The goal is to see the impact of compression on

each variable as we ran the simulation over the decompressed data.

4.3 Related Work

There are various HPC simulation datasets which use compression specially

lossy compression to efficiently run their applications. For example, European climate

model ECHAM uses bit-oriented file format standard that uses GRIB2, APEX and

MAFISC [3]. There are other similar applications such as CESM climate simulation

[32] , XGC1 [10], CODAR [39], GAMESS [24] etc. Since such simulation datasets are

critical, several factors are needed to be considered to find the optimal compression

algorithm for specific applications. Some variables might be larger in size whereas

some variables might be smaller which effects their significance in the whole com-

putation. This work [3] emphasize the importance of customizing lossy compression

based on variable-by-variable operation to get the best output data which is closest

to the original data. The gain of storage and I/O time savings is much intriguing to

26



invest in lossy compression application in large scale HPC datasets.

4.4 Experimental Results

Lossy compression causes error in data in application which can ultimately

hinder the data analysis. From the data generation from this HemeLB code, the

output gives summary of the analysis. The experiment is at first run without using

compression with the original data. Then the experiment is repeated for varying error

bounds ranging from 1e-2 to 1e-11 with an absolute error bound. The data distortion

is calculated using the difference between the absolute and lossy compressed results

for the variables. The compression ratio is also generated for each compression run for

all the differing variables. From the SZ lossy compressed run, we have looked into the

compression ratio to evaluate the compression performance and the data distortion

to evaluate the error from the compression. The results are shown in the following

sections.

4.4.1 Compression Ratio

In Figure 4.2 the compression ratio for all the seven variables are presented.

The x-axis represents the error bound and the y-axis is the average compression ratio

for all the variables. Some observations from the plot are:

All the variables show similar trends for compression ratio across varying error

bounds. It shows that the compression ratio is much lower (≈1-3) for lowest error

bound 1e-10 and much higher ( 50-1000) for highest error bounds from 1e-4. It clearly

indicates that compression is much lower for tighter error bounds. The velocity and

pressure shows almost same trends i.e., their compression is identical. All the other

fours variables follow similar trends where the QCriterion has highest compression
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Figure 4.2: Compression Ratio

ratio and the velocity magnitude has the lowest. For error bounds higher 1e-4 than

the velocity and pressure has higher compression ratio whereas for error bounds lower

than 1e-8 they shows lowest compression. For all the trends it gets constant across

1e-4 to 1e-2. It is reasonable to comprehend that from 1e-4 to higher error bounds,

the maximum compression is achieved.

4.4.2 Data Distortion

Data distortion represents the difference between the original experimental run

and all the other error bounds ranging from 1e-10 up to 1e-2. The x-axis presents

the error bounds and the y-axis presents the data deviation for each variables. In the
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output files, each variable is represented by minimum, maximum and mean of their

representative variables. All these trends are presented from figure 4.3 to 4.9. The

plots are shown to observe which variable have data distortion that stays within the

user fixed SZ error bounds.

4.4.2.1 Gamma
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Figure 4.3: Gamma

From Figure 4.3 the six trends for the GammamaxMean, GammaminMean,

GammamaxMin, GammaminMin, GammamaxMax and GammaminMax sub vari-

ables are observed. It can be noticed that both the GammamaxMean and Gam-

maminMean values attain the highest data deviation. The deviation for them stay

constant across all the error bounds. GammamaxMean shows the highest data devi-
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ation. The min trends show the lowest data deviation. Six of these values comprise

the gamma variable. It is seen that for error bounds higher than 1e-4 the Gamma-

maxMin and GammaminMin gets the data distortion within the error bound. The

GammamaxMean and GammaminMean do not get desired results i.e., they get the

data distortion much higher than the error bounds.

4.4.2.2 Helicity

10 10 10 8 10 6 10 4 10 2

Error Bound

10 4

10 3

10 2

D
at

a 
D

ev
ia

tio
n 

of
 H

el
ic

ity

HelicitymaxMean
HelicityminMean
HelicitymaxMin
HelicityminMin
HelicitymaxMax
HelicityminMax

Figure 4.4: Helicity

From Figure 4.4 the six trends for the HelicitymaxMean, HelicityminMean,

HelicitymaxMin, HelicityminMin, HelicitymaxMax and HelicityminMax sub variables

are observed. It can be noticed that all the trends have the data deviation within

the error bound for only the 1e-2 error bound. Only the HelicitymaxMean and He-
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licityminMean has the data deviation less that error bound from error bounds higher

than 1e-4.

4.4.2.3 OVI
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Figure 4.5: OVI

From Figure 4.5 the three trends for the OVIMean, OVIMin and OVIMax sub

variables are observed. It can be noticed that all three of these trends have higher

data deviation than the error bounds. For OVIMAX the data deviation exceeds much

higher than the error bound. Here the lossy compression is inefficient as the error in

the data is in much higher magnitude than the compressor error bound.
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Figure 4.6: Pressure

4.4.2.4 Pressure

From Figure 4.6 the six trends for the PressuremaxMean, PressureminMean,

PressuremaxMin, PressureminMin, PressuremaxMax and PressureminMax sub vari-

ables are observed. The plot shows all the trends have the data deviation within the

error bound for only the 1e-2 error bound. PressuremaxMin and PressureminMax

shows acceptable data deviation from error bound 1e-4 and higher.

4.4.2.5 QCriterion

From Figure 4.7 the two trends for the QCriterionmaxMean, QCriterionmin-

Mean sub variables are observed. It can be noticed that both the trends QCriterion-
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Figure 4.7: QCriterion

maxMean and QCriterionminMean shows much higher data distortions than the SZ

error bounds. It can be clearly stated that these sub variables are not compatible for

lossy compression.

4.4.2.6 Velocity Magnitude

From Figure 4.8 the six trends for the VelocityMagnitudemaxMean, Veloc-

ityMagnitudeminMean, VelocityMagnitudemaxMin, VelocityMagnitudeminMin, Ve-

locityMagnitudemaxMax and VelocityMagnitudeminMax sub variables are observed.

All trends show data distortions lower than the error bounds for 1e-4 and higher er-

ror bounds. VelocityMagnitudemaxMax shows data distortion within desired limits

for 1e-6 and higher error bounds. VelocityMagnitudemaxMin and VelocityMagni-
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Figure 4.8: Velocity Magnitude

tudeminMin also show data distortion within desired limits for 1e-8 and higher error

bounds.

4.4.2.7 Vorticity Magnitude

From Figure 4.9 the six trends for the VorticityMagnitudemaxMean, Vorticity-

MagnitudeminMean, VorticityMagnitudemaxMin, VorticityMagnitudeminMin, Vor-

ticityMagnitudemaxMax and VorticityMagnitudeminMax sub variables are observed.

VorticityMagnitudemaxMin and VorticityMagnitudeminMin shows data distortion

within limits for the error bounds 1e-4 and higher. VorticityMagnitudeminMean

and VorticityMagnitudeminMax shows acceptable data dostortion for error bounds

1e-2 and higher.
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Figure 4.9: Vorticity Magnitude

4.5 Conclusion

The compression ratio plot shows that the compression is suitable for a certain

error bound range. The compression increases from error bound range between 1e-6 to

1e-4. Also the compression ratios get constant after 1e-2 and higher error bound. For

most observable, deviations seem to steeply increase in the error bound range 10e-6

to 10e-4, which is also the range where the compression ratio increases more steeply.

The min and max values seem to be more affected than the mean values which is

reasonable. The vast and random data deviation for different lossy compressed error

bounds clearly indicates that the seven variables’ construction from the sub variables

are complex. It is difficult to directly decide the proper error bounds for the user
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allowed data deviation. It also proves that not all the variables are suitable for lossy

compression. For example, QCriterion performs much worse for lossy compression so

it might not be cost effective to lossy compress it. The prediction for suitable error

bounds is harder to predict. There is advantage of choosing which variable should be

compressed as they all are compressed separately inside the simulation scripts.
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Chapter 5

Statistical Methods

5.1 Types of statistical methods

It is observed from Chapter 3 and specially from Chapter 4 that lossy compres-

sion improves the experiments better by reducing I/O bottleneck, runtime and data

storage space. This comes up with the issue of finding the optimal lossy compressed

error bound that don’t overrun the benefits by making it is difficult considering the

large scale of HPC applications and complexity of the computations. In Chapter 4

the data distortion plots show that various variables shows large data distortion for

smaller lossy error bounds. It actually harms the overall simulation as there is in

order of magnitude data distortion for slightest lossy error bound difference. The

experimental cost could have been lower if the data distortions for different error

bounds could be predicted before the experimental run.

Statistics deal with collection, presentation, analysis and usage of data to

make decisions and solve problems [48]. Many aspects of science and engineering

requires working with large scaled data. Statistics plays an important rule in working

with new designs, improving existing systems which can ultimately improve scientific
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works and industrial productions. Statistical methods can be used to research how

data distortion is estimated from lossy error bounds. These methods are combined of

mathematical formulas, models and techniques to analyze different types of datasets.

They helps researchers and users to assess based on the outputs.

It this chapter, we have experimented with various statistical methods to see

if the data distortion for their computation can be predicted for lossy compression

induced error bounds. These methods are presents in the following sections.

5.1.1 Mean

The arithmetic mean in statistics indicate the amount which is the sum of

all values divided by the total number of values. It commonly measures the central

tendency[23]. It is often used to find the middle point in a dataset organized in

increasing pattern. Mean is also identified by average. The formula of mean is,

x = (
n∑

i=1

xi)/n

where, xi = value of ith element in the dataset

n = Number of total elements

Most high-performance computing are performed on supercomputers where

the large-scale data analysis causes storage data overhead and slower I/O. Lossy com-

pression is implemented in high-performance computing applications with complex

geometries. It gives the advantage of faster high-performance computing while using

less resources such as processing and memory storage. In recent works, lossy compres-

sion has shown promising results by compressing the data with acceptable distortions

ultimately making the computation faster and economically sustainable. One of the

characteristics of current state-of-the-art lossy compressors is performing compression
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within fixed error bounds[16]. The error bounds are user controlled because different

applications have different properties where users have different tolerance for error in

their data. The error bound in the compressors works as a boundary where the worst

possible error bound is the user defined error bound. In this section lossy compression

and its impact on data accuracy has been experimented using the following formula.

The goal is to see the change in the mean value where same error is induced for every

element in the dataset.

For this research we have set all the error bounds across all the data points

as same user defined error bound. It is set this way because this is the highest

error bound possible in any given dataset. Generally the errors stay below and upto

the given error bound. It ensures that these lossy compressed results are the worst

possible outcome, thus the users get an idea what error they can expect from their

data.

The lossy compressed formula of mean is,

xε = (
n∑

i=1

(xi + ε))/n

where, ε = the error bound of lossy compression

This equation can be rearranged as,

xε = (
n∑

i=1

xi)/n+ nε/n

or,

xε = x+ ε

Now, Data distortion is the difference between the lossy compressed mean and

original mean. If we know the maximum data distortion that is allowed by the user
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then we can determine the highest error bound upto which the data distortion can

be within limit.

We look into the deviation by calculating the difference between the lossy

mean and the original mean to assess the effect of lossy compression.

We can write this equation,

τ = xε − x

Where, τ = Data distortion

or,

τ = ε+ x− x

or,

τ = ε

Which means that for average or mean calculation, the error bound is exactly

the same as the data distortion.

In Figure 5.1 the data distortion and their corresponding lossy error bounds are

plotted. The x axis shows the error bounds and the y axis shows the data distortion.

There are two trends for two experiments run on the same dataset. The blue trends

shows the results for first experiment. In that part, the users select the data distortion

and based on that the error bounds are determined. In the next experiment the data

distortion is computed based on the previously found error bounds. That is the red

dotted points on the graph. It is observed that both of trends show exactly the same

results. It complies with out findings that for mean computation, the data distortion

is exactly the same as the lossy compressed error.

The target is to determine the suitable lossy compression error bound which
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Figure 5.1: Average

limits the data distortion within the user defined range. The lossy compressed mean

shows the data distortion after the experimental run. There is chance of additional

computation to pin point the error bound for a particular dataset. This calculation

will save time and storage space by determining the error bound before the experiment

which will reduce chance of multiple experimental run.

5.1.2 Root Mean Square (RMS)

The next statistical method that we looked into is root mean square (RMS). It

can be said as the square root of the arithmetic mean of the squares of all the values
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[36]. It is also addressed as quadratic mean. The formula of RMS is,

R.M.S. =

√√√√(
n∑

i=1

x2i )/n

Where, xi = value of ith element in the dataset

n = Number of total elements

We construct the formula for error introduced in the input dataset. The errors

are considered such that they can be induced from lossy compression. The lossy

compressed formula of R.M.S. is,

R.M.S.ε =

√√√√(
n∑

i=1

(xi + ε)2)/n

where, ε = the error bound of lossy compression

This equation can be rearranged as,

R.M.S.ε =

√√√√(
n∑

i=1

x2i )/n+ 2ε((
n∑

i=1

xi)/n) + ε2

or,

R.M.S.ε =

√√√√(
n∑

i=1

x2i )/n+ 2εx+ ε2

Where, x = Mean of the input dataset

Now, Data distortion is the difference between the lossy compressed R.M.S. and

original R.M.S.
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We can write this equation,

τ = R.M.S.ε −R.M.S.

Where, τ = Data distortion

Again,

τ =

√√√√(
n∑

i=1

x2i )/n+ 2εx+ ε2 −

√√√√(
n∑

i=1

x2i )/n

The simplified version of the above equation can be written as,

ε2 + 2εx = τ 2 + 2τR.M.S.

This is a quadratic equation. Solving it for ε gives the value of the error bound,

ε =
−(2x)±

√
(2x)2 + 4(τ 2 + 2τR.M.S.)

2

Since we are looking at only positive error bounds, we only consider the fol-

lowing equation for error bound determination,

ε =
−(2x) +

√
(2x)2 + 4(τ 2 + 2τR.M.S.)

2

The data distortion and their corresponding lossy error bounds are plotted

like previous one for mean.

In Figure 5.2 the x axis shows the error bounds and the y axis shows the data

distortion for root mean square. There are two trends for two experiments run on the

same dataset. The blue trends shows the results for first experiment. In that part, the
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Figure 5.2: Root Mean Square

users select the data distortion and based on that the error bounds are determined.

In the next experiment the data distortion is computed based on the previously found

error bounds. That is the red dotted points on the graph. It is observed that both of

trends show exactly the same results for lossy error bounds higher than 1e-8. For error

bounds between 1e-10 and 1e-8 the data distortion is lower than what was allowed.

Which means that the distortion prediction works and it keeps the distortion lower

than what expected. It is in accordance with our findings for RMS computation.
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5.1.3 Variance

Variance is the measure of variability from the average value of the dataset

[23]. It is calculated by using the following formula:

V ariance = (
n∑

i=1

|xi − x|2)/n

Where, xi = value of ith element in the dataset

x = average value in the dataset

n = Number of total elements

From the section of mean, the error bound is user defined and fixed across all

the data points. The lossy compressed equation for variance is,

V arianceε = (
n∑

i=1

|(xi)ε − xε|2)/n

where, ε = the error bound of lossy compression

(xi)ε = xi + ε

xε = x + ε

The equation is rearranged as,

V arianceε = (
n∑

i=1

|(xi + ε)− (x+ ε)|2)/n

or,

V arianceε = (
n∑

i=1

|xi − x|2)/n

45



It can be showed that,

V ariance = V arianceε

This clearly indicates that any amount of fixed valued error induction in the

dataset will not change the variance value. That is because if we shift all the values in

the dataset array by the same value (i.e. error bound) then the spread in the dataset

is the same. Thus the variance is not changed. If the values added to each index is

different the variance will change.

Since we are experimenting with the lossy compression where all the induced

error values remains same across specific experiment then for our evaluation the error

bounds have no effect on the variance data distortion.

5.1.4 Standard Deviation

The standard deviation is the average amount of variability in a given data

set. It determines the distance of each value from the mean of the dataset [23].

Higher standard deviation means the data points are distributed far from the

mean. Similarly a low standard deviation means that more data points are aggregated

closer to the mean value.

σ =

√√√√(
n∑

i=1

|xi − x|2)/n

where, xi = value of ith element in the dataset

x = average value in the dataset

n = Number of total elements
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From the section of mean, the error bound is user defined and fixed across all

the data points. The lossy compressed equation for standard deviation is,

σε =

√√√√(
n∑

i=1

|(xi)ε − xε|2)/n

where, ε = the error bound of lossy compression

(xi)ε = xi + ε

xε = x + ε

The equation is rearranged as,

σε =

√√√√(
n∑

i=1

|(xi + ε)− (x+ ε)|2)/n

or,

σε =

√√√√(
n∑

i=1

|xi − x|2)/n

It can be showed that,

σ = σε

5.1.5 Median

The median is the middle number in a data set. The data points are organized

in ascending order and then the middle number is the median. The formula for finding

median is following,

Median = ((n+ 1)/2)th Term
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when is n is odd

Median = ((n/2)th Term+ ((n/2) + 1)th Term)/2

when n is even

where, n = number of elements in the dataset

From the section of mean, the error bound is user defined and fixed across all

the data points. The lossy compressed equation is,

Median = ((n+ 1)/2)th Term+ ε

when is n is odd

Median = (((n/2)th Term+ ε) + (((n/2) + 1)th Term) + ε)/2

when n is even

where, ε = the error bound of lossy compression

It can be seen that for median the lossy compression the error bound is directly

related to the data distortion since all the data values are getting induced the same

error.

5.1.6 Interquartile Range

The interquartile range is a statistical method which indicates the region con-

taining the bulk of the points in a dataset. The interquartile range formula is follow-

ing:
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IQR = Q3 −Q1

where, IQR = Interquartile Range

Q3 = Third quartile

Q1 = First quartile

Q1 and Q3 can be determined from the following formulas,

Q1 = ((n+ 1)/4)th Term

Q3 = (3(n+ 1)/4th) Term

For the lossy compression the error bound is user defined and fixed across all

the data points. The lossy compressed equation is the same as the lossless equation

as the error bounds cancel out for Q1 and Q3,

5.2 Conclusion

The work in this chapter presents that some statistical methods predict the

data distortion for lossy error bounds. It depends on the structure of the statistical

mathematical formula. For example, the data distortion and error bound relations

are shown for the mean and root mean square. This is useful for scientists and re-

searchers lossy compressing mean and root mean square computations. The variance

and standard deviation doesn’t show any effect for any errors. That is because they
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look at the distribution of the data and exactly same error for each data value keeps

the distribution same. The median and quarantile depends on the specific position of

a data value in the ascendingly organized dataset. The data distortion will be exactly

the same as the lossy error. This work concludes that there is merit in investigating

different statistical methods to find the lossy errors that will keep the data distortion

within bounds.
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Chapter 6

Conclusions and Discussion

6.1 Contribution

The goal of this research is to investigate the lossy compression performance

of HPC application simulations. The part of this work is to study methods to pre-

dict the data distortion from lossy compression beforehand. Statistical methods have

been used to create model and investigate the pre detection of data distortion. It was

showed that lossy compression can improve the HPC applications but at the same

time there are some challenges that threatened the gain from the lossy compression.

Chapter 3 showed promising compression gain for lossy compression on sub-iteration

level of NWChem. The compression bandwidth, decompression bandwidth and com-

pression ratio for number of sub-tensors were examined to look at the results. The

absolute error bounds performed significantly better for error bounds range from 1e-1

to 1e-5. This gave good results considering the significantly lower increase of extra

iteration only upto 1 and lower energy deviation in sub-tensor level checkpoint restart.

The HemeLB blood flow simulation data gave variety of results for lossy com-

pression. The compression ratio and the data distortion were studied. It was observed
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that the compression ratio is better in the error bound range of 10e-6 to 10e-4. The

lossy compression for different variables do not give predicted results always. The

construction for different variables are complex in nature which makes the lossy com-

pression analysis difficult. Another advantage of separate variable compression is that

the user can choose the suitable variables for improved results.

The last portion of the work looks into the statistical methods for lossy error

bound prediction based on user defined data distortion. Some variables can be used

to predict the error bound while for other variables the relation between error bound

and data distortion was not established. It can seen that the relation depends on the

mathematical formula of the methods. This work can be explored in future studies

that would be beneficial for scientists and researchers working with large scale HPC

applications.
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