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Abstract

The cybersecurity of power systems is jeopardized by the threat of spoofing and man-in-the-

middle style attacks due to a lack of physical layer device authentication techniques for operational

technology (OT) communication networks. OT networks cannot support the active probing cyberse-

curity methods that are popular in information technology (IT) networks. Furthermore, both active

and passive scanning techniques are susceptible to medium access control (MAC) address spoofing

when operating at Layer 2 of the Open Systems Interconnection (OSI) model. This thesis aims to

analyze the role of deep learning in passively authenticating Ethernet devices by their communica-

tion signals. This method operates at the physical layer or Layer 1 of the OSI model. The security

model collects signal data from Ethernet device transmissions, applies deep learning to gather dis-

tinguishing features from signal data, and uses these features to make an authentication decision on

the Ethernet devices. The proposed approach is passive, automatic, and spoof-resistant. The role

of deep learning is critical to the security model. This thesis will look at analyzing and improving

deep learning at each step of the security model including data processing, model training, model

efficiency, transfer learning on new devices, and device authentication.
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Chapter 1

Introduction

The cybersecurity of power systems is jeopardized by the threat of spoofing and man-in-

the-middle style attacks due to a lack of physical layer device authentication techniques for OT

communication networks. While cybersecurity defense strategies stay ahead of new attack vectors

in IT networks, devices on OT networks contain legacy devices that cannot integrate modern defense

strategies. This leaves many OT networks vulnerable.

1.1 Operational Technology Vulnerabilities

Network security strategies usually involve a username/password or digital certificate to

authenticate users. Passwords are commonly used by security systems, but they must be complex,

regularly maintained, and stored on a deployed device. There have been many noteworthy cases of

default passwords allowing intruders into their system [41], [46]. Digital certificates are an effective

security strategy on IT networks. However, OT networks contain legacy or low power industrial

control system (ICS) devices that are not suited for digital certificates. These devices are often

incapable of receiving software updates and do not have the complexity necessary for encryption.

The result is a vulnerable OT network.
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1.2 Deep Learning in Cybersecurity

Deep learning has become a popular tool in cybersecurity in recent years [40]. Long Short

Term Memory (LSTM) networks [21], popular for analyzing data over time, have been utilized for

intrusion detection [23], classifying malicious apps [44], and phishing detection [8]. Deep convo-

lutional neural networks (DCNNs), popular for analyzing data in images, have shown success in

intrusion detection in internet of things (IoT) networks [43], malware detection [48], and phishing

detection [47]. DCNNs deployed for intrusion detection will be the focus of this work.

1.3 MAC Addresses and Spoofing

MAC address is a discrete identifying address assigned to a computer or device. MAC

addresses are used in Ethernet, WiFi, and Bluetooth. The data link layer or Layer 2 of the OSI

model make use of MAC addresses through the network interface controller (NIC). MAC address

spoofing is the process of masking a MAC address as an operator’s chosen address which effectively

masks the computer’s identity from the network infrastructure. This is often done for malicious

purposes. Other identifiers such as a device’s operating system, software version, or packet delay

can be spoofed as well. Spoofing is a major threat to intrusion detection in cybersecurity.

1.4 Statement of Work

This thesis proposes the use of deep learning for intrusion detection in OT networks lever-

aging physical layer communication data for spoof-resistance.

The rest of this thesis is organized as follows. Chapter 2 will give Background on methods

presented. Chapter 3 will discuss the deep learning security model. Chapter 4 will discuss deploying

the deep learning security model at the edge. Chapter 5 will discuss the authentication approaches

for intrusion devices. Chapter 6 will discuss results from experiments in Chapters 3, 4, and 5.

Finally, Chapter 7 will look at conclusions and future work.
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Chapter 2

Background

This chapter provides background on current OT security methods and the application of

deep learning to cyberphysical systems. Because the proposed approach uses deep learning at the

physical layer for OT device security, it is important to establish a level of understanding in both of

these areas.

2.1 Operational Technology Security Methods

The vulnerabilities of OT networks and the ICS devices that use them has been a growing

concern in recent years. High-profile attacks have driven research into ICS security [13], [2], and

garnered national interest [4]. This has led to product development for network access control (NAC)

solutions to address device inventory, authentication, and other tasks.

NAC solutions gain information about devices on the network using two approaches: active

or passive probing. Active scanning involves sending a request for information to each device on

a network and awaiting a response with the desired information. While this approach is effective,

it often causes malfunctions in ICS devices [13]. In order to avoid malfunctions many ICS device

manufacturers have developed their own protocols to manage active probing [13]. However, this

puts an additional burden on network administrators who now must adhere to the specifications of

numerous ICS devices. On the other hand, passive probing monitors network traffic without sending

out any request packets. The primary advantage of this method is that it causes no disruptions to

the ICS devices. This makes it a viable option for OT network security. A disadvantage of passive

3



probing is that this method is dependent upon the packet traffic and information available. If

there is low packet traffic or limited information on received packets, passive scanning might not

work. Nonetheless, in order to maintain the proper operation of ICS devices passive probing is a

practical approach. Active probing can be enacted on a device by device basis, but it is often still

recommended that a degree of passive network monitoring is used for OT networks [3].

The solution to robust security is not as simple as using a hybrid approach. While research

has been conducted into using a hybrid of passive and active probing [14], both are still susceptible

to spoofing attacks at the data link layer [10]. Recently authors of [43] propose a passive finger-

printing method that operates on Ethernet protocol. The author of [42], has shown passive device

management using Modbus protocol. However, for both protocols they do not address the spoofing

concerns of the high-level Layer 2 features they gather from transmission data. The proposal in this

thesis is to passively probe the physical layer to avoid such spoofing. In the following section, deep

learning for passive Ethernet physical layer security will be examined.

2.2 Deep Learning for the Physical Layer

Deep learning is an extension of the machine learning subset of the larger field of artificial

intelligence (AI). Machine learning seeks to create decision based algorithms that can learn from data.

Deep learning extends this to neural networks which can define the decision criteria itself without

input from a user. First made popular in the computer vision space [15], DCNNs have shown to be

more effective than traditional neural networks on tasks like classifying digits [24]. As research has

developed, DCNNs have also shown success in face recognition [18], speech recognition [6], and even

monitoring sensors of self driving cars [9]. The key component of DCNN is the convolutional layer.

Figure 2.1 shows the dot product operation of a convolutional filter. The convolutional layer applies

a filter (blue) to the input image (gray) and produces a dot product output (red). This filter then

strides across the entire image producing a new image on the output. The number of convolutional

layers, the number of filters, and the number of pixels to stride are all user-defined parameters. When

training a convolutional neural network, updating the filter weights pushes the network to choose

the best filters for a set of inputs. Moreover, these convolutional layers can operate in 1-dimension.

Figure 2.2 shows how this method can be reduced to a 1-dimensional operation. This allows efficient

application of these networks to 1-dimensional data as will be explored in this work. As a whole,

4



Figure 2.1: Applying a 2D Convolutional Filter

Figure 2.2: Applying a 1D Convolutional Filter

these networks are robust and are integral to the work presented in this thesis.

DCNNs can be leveraged in many different ways in deep learning architectures. There are

instances of binary classification, such as classifying between a cat and dog. There are also instances

of categorical classification, such as classifying between 10 different animals. Binary classification

can be extended to binary detection, such as detecting whether or not it will rain a given day.

Anomaly and novelty detection are a subset of binary detection and are key to identifying out of

distribution (OOD) data [33]. As a result, novelty detection is key to the OOD detection experiments

in later chapters. In context of novelty detection OOD data is data that is outside the data of the

classes that a device trained on. Another application of DCNNs is convolutional autoencoders,

which can be used to compress and reconstruct an image [27]. This use case will be explored in later

chapters. Finally, DCNNs can be deployed with generative adversarial networks (GAN) which seek

5



to reproduce new data from a given distribution. GANs are often used as a data generation tactic

when there is limited data available. This too will be investigated in later chapters.

The DCNN can be focused to address physical layer security. There are instances of deep

learning navigating the physical layer for radar detection [7], cell phone detection [36], and even

heartbeat detection using radio reflections [16]. The goal of this work is to investigate the capacity

of deep learning when applied to physical layer security of Ethernet OT devices. As a result,

these trained models will focus on the discrete hardware components that cause perturbations on

a transmitted signal. Authors in [34] and [35], look at how perturbations are caused by the digital

to analog converter (DAC), power amplifier, and radio frequency (RF) oscillator of a transmitting

device. These imprints also exist in the physical layer transmissions of wired Ethernet devices. The

DCNN in this paper will exploit such imprints on Ethernet transmissions to distinguish between

transmitting devices.

6



Chapter 3

System Pipeline

The pipeline for applying deep learning to physical layer Ethernet security is described in

this chapter. The three sections that will be discussed are data collection, the deep learning model,

and authentication.

3.1 Data Collection

Data collection is necessary for any application of deep learning. For the purposes of this

work, physical layer samples must be collected from each of the devices on a network. This process

is done by digitally sampling voltages from the transmit (TX) pins of each device of interest. The

Siglent SDS2352X-E Super Phosphor Oscilloscope was used for digital data sampling, which has

a 350MHz bandwidth and a sampling rate of 1M samples/second. As shown in Figure 3.1, the

Control/Storage Device pings a Device Under Test to generate a response packet. The Signal-

Split printed circuit board (PCB) provides inline access to the Device Under Test TX+/- pins.

This differential data is digitally sampled, truncated, and forwarded by the Oscilloscope to the

Control/Storage Device. This process is repeated 10,000 times for each device. A sample is 5.7 µs

long and results in approximately 11,400 samples.

Clemson University Energy Innovation Center (EIC) is where the majority of the data was

collected that is used in this thesis. The Clemson EIC provided a simulation and testing bed that

was integral for collecting data in an OT network setting from relevant device manufacturers (i.e.

Schweitzer Engineering Laboratories, Woodward, and Allen Bradley). These collections made up

7



Figure 3.1: The components of data acquisition

the Clemson EIC dataset. Other data was collected using off the shelf network switches (i.e. Cisco,

LinkSys, and D-Link). These collections made up the AVS526 dataset. The two Ethernet protocols

that were employed were 10BaseT and 100BaseTX. Figure 3.2 and 3.3 show a comparison of these

two protocols, 10BaseT and 100BaseTX respectively, sampled from an Allen Bradley programmable

logic controller (PLC). Verifying results on gigabit Ethernet and other protocols is left to future

work.

3.2 Deep Learning Model

The DCNN is the part of the pipeline responsible for fingerprinting each device. Deep

learning models were first made popular in the computer vision space [19] and then extended to

the RF signal space [30]. This thesis analyzes transmissions in the time domain, however there

are on going research debates over whether the time or frequency domain is more suited for deep

learning techniques [49], [29]. One major difference between image data and time domain signal

data is that image data is 2-dimensional while time domain signal data is 1-dimensional. Two model

architectures for the DCNN were considered for the experiments in this thesis, the ResNet [30] and

the MCNet [20]. The MCNet proved to be more efficient while achieving competitive accuracy

with the ResNet. Table I compares the attributes and performance of each model. Presentation of

accuracy comparison will be given in the Testing Results chapter.
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Figure 3.2: Voltage (mV) per sample plot of Allen Bradley PLC in 10BaseT (N=4096)

Figure 3.3: Voltage (mV) per sample plot of Allen Bradley PLC in 100BaseTX (N=4096)

ResNet MCNet

Latency (1 sample) 900ms 290ms
Throughput (256 samples) 150 samples per sec 750 samples per sec

Model File Size (.h5) 211MB 1.96MB
Model Training Parameters 2M 150k

Table 3.1: MCNet and ResNet comparison tested on Nvidia Jetson Xavier
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Figure 3.4: Components of DCNN for Classification

3.2.1 Training for Classification

Training the DCNN for classification involves using N sample signal examples taken from

D devices. N is the sample size in range [256, 4096] (by powers of 2) of the example extracted at a

random index from the initial 11,400 sample collection. The chosen value of N samples is mentioned

in all results provided. Figure 3.4 shows a high level overview of the classification DCNN. The data,

a 10BaseT protocol device sample, passes through the convolutional layers, which perform many

layers of feature extraction. These features are then passed through the dense layer with a filter the

same size as the number of classes or devices. A SoftMax activation is applied to the output of this

dense layer and a classification is made. For Figure 3.4 this classification would have a probability

of 0.67.

The convolutional layers involve a complex combination of max pooling and skip connections.

For both DCNNs a categorical crossentropy loss function and Adam optimizer [22] were used, and

each architecture was implemented using the TensorFlow python library [5].

There are two reasons why a classification model is useful. One, it provides evidence that a

group of physical layer devices can be distinguished by a DCNN. Two, it acts as a feature extractor

and compresses representations of devices into lower dimensional space that can be used as a finger-

print. The fingerprint is the output of the final fully connected (dense) layer as shown in Figure 3.4.

A unique fingerprint is generated for each device by passing signal examples through the DCNN and

removing the SoftMax activation. In the following experiments this fingerprint is the D dimensional

output from the dense layer of the DCNN.
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Figure 3.5: Components of DCNN for Detection

3.2.2 Training for ID/OOD Detection

Training the DCNN for in-distribution (ID) and OOD detection involves inputting the signal

data the same way as with classification. However, the data is now separated by ID devices (positive

or 1) and OOD devices (negative or 0). In a network security scenario, the data from approved or

registered devices would be labeled positives. Then either mock intruder devices would be put on

the network or some artificial data would be used for the negatives. The DCNN can then be trained

in a similar manner as classification, but now with a 1 filter dense layer, binary crossentropy loss,

and Sigmoid activation. This new set up is depicted with only one output node in Figure 3.5. From

the value of the dense layer output the Sigmoid activation suggests it is more likely an ID device

(positive or 1) with value 0.92. The benefits and details in using this model will be discussed in the

next section.

3.3 Authentication

The robust authentication of a device is one of the open ended challenges presented in this

thesis. There are two primary ways that this problem is approached in this thesis. One, a DCNN

creates a fingerprint from the device samples and then machine learning methods are used on this

fingerprint to authenticate the device. Two, a DCNN directly evaluates the device sample to then

authenticate the device.
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3.3.1 Fingerprint Authentication Method

The fingerprint generation method was the first approach that was made to authenticate

the devices. Both of the authentication setups are an application of novelty detection. Novelty

detection is when a model attempts to identify novel pieces of data given access to preexisting data

[17]. In the fingerprint authentication setup, novel data are the fingerprints from an intrusion device

and preexisting data would be the registered fingerprints.

The machine learning model that is best suited for novelty detection is the one-class support

vector machine (OC-SVM) [17]. The OC-SVM can be implemented using the scikit-learn python

library [31].

The OC-SVM proved to have trouble properly authenticating the fingerprints for both regis-

tered and intrusion devices. This issue will be discussed in the Authentication Challenge subsection.

3.3.2 Direct Authentication Method

The direct authentication method does not require a fingerprint. Instead, the authentication

prediction is made directly from the DCNN as shown in Figure 3.5. The benefit of using this model

is simplifying the model training process. The creation of fingerprints and training of a OC-SVM

is now unnecessary. Another advantage of using this approach is it allows the model to be used

alongside a GAN more easily.

3.3.3 Authentication Challenge

The issue with improperly authenticating persists with both authentication methods. The

problem is likely related to the fact that the there is limited exposure to the true distribution of

intrusion (or OOD) devices during training in either method. In theory, there are a known number

of registered devices and a much larger unknown number of intrusion devices. Furthermore, there

is limited knowledge of the ways in which these unknown intrusion devices might differ from the

registered devices. The challenge is creating a robust model in these circumstances. A GAN or other

data generation or augmentation method appear to be the best option to do this.
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Chapter 4

Security at the Edge

While deep learning is an effective tool posed to redefine security and the internet of things

(IoT), it is limited by the computational complexity it requires [11]. This has led to a movement in

recent years towards TinyML enabling this complex software to run on low power efficient devices

[37]. For the purposes of this paper, efficient neural network deployment is key to fit the power,

speed, heat, and size requirements of a rack mounted security device. This chapter aims to explain

different approaches to maximizing efficiency of the security model, while maintaining the ability to

update the model to new devices or other variables.

4.1 Model Parameters and Input Size

The number of model parameters is usually what is referred to when reporting the size of a

neural network model. The model parameters have a direct impact on the performance of a neural

network model [12]. For instance, you can see the performance and memory difference of ResNet

and MCNet in Table 4.1, which made a big impact on the decision to use MCNet in this thesis. Not

only do model parameters effect inference speed, they also effect memory requirements and training

time.

The relationship between input size and model parameters is an important item. The input

size is measured in samples (N ). Table 4.1 specifies the relationship using MCNet as the DCNN. Its

clear that the parameters have an exponential relationship with the samples. A minimum input size

is important because the parameters can get large quickly. Model accuracy related to input size is
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Input Size Parameters

256 samples 120k
512 samples 123k
1024 samples 129k
2048 samples 142k
4096 samples 166k
8192 samples 215k

Table 4.1: ID/OOD Detection DCNN: Model Parameters vs. Input Size

Before TensorRT After TensorRT

Latency (1 sample) 5500ms 1700ms
Throughput (256 samples) 45 samples per sec 140 samples per sec

Model File Size (SavedModel) 2.8MB 3.3MB
Model Accuracy (256 samples) 98% 99%

Table 4.2: Comparison of Before and After TensorRT Tested on Nvidia Jetson Xavier

another important topic that will be discussed in results.

4.2 Deployment with TensorRT Conversion

Deploying a neural network with low size, weight, and power (SWaP) is a challenge for

most applications. Neural networks require graphics processing units (GPUs) for optimal speed

and processing. GPUs are hardware that has not existed in low SWaP prior to the advent of deep

learning. There are many devices on the market that meet this need of efficient computation, but this

paper will focus on the Nvidia Jetson Xavier. The Xavier is a 32GB random-access memory (RAM)

device with 512-core Volta GPU and 8-core ARM 64-bit CPU. The advantages of this device are the

size (105mm x 105mm x 65mm), the PCIe connections, and the Gigabit ethernet. Most importantly,

all Nvidia specific software is supported by the large developer community.

The Xavier is compatible with the TensorRT software, which is a software geared towards

making neural networks more efficient. TensorRT claims to optimize a neural network for deployment

in a myriad of ways: weight precision calibration (FP32 ⇔ FP16 ⇔ INT8), layer and tensor fusion,

kernel auto-tuning, and dynamic tensor memory. For more information on how this is done visit

TensorRT documentation [1].

Applying TensorRT to the MCNet DCNN was successful at speeding up inference time of

the model when deployed on a Xavier. The results of this optimization can be seen in Table 4.2.
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Figure 4.1: An example diagram of an autoencoder

4.3 AI for Matched Filter Generation

Because of the computational expense of DCNNs, there is a motivation to eliminate such

neural networks from the deployment pipeline. Matched filter detection is a long standing detection

approach that can serve as a replacement. Matched filter detection is a process of correlating a signal

of interest with a time delayed version of itself or a template. A device specific signal template would

allow the ability to distinguish between different devices on the network. The task becomes creating

an effective template for this detection using AI.

Matched filter generation with deep learning was an idea that was inspired by Google’s Deep

Dream [28]. Deep learning generative models have been documented using a neural network trained

on images to generate new images. This generative approach could possibly be extended to training

on device signals to generate signal templates for a matched filter.

There are two approaches that are made in this work to create a matched filter signal

template. In this section, these two approaches will be presented.
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Figure 4.2: Input into autoencoder. 100BaseTX Jetson Nano transmission. (N = 4096)

4.3.1 Autodecoder Template Generation

The matched filter generation method with deep learning involves a generative model similar

to an autoencoder. Autoencoders are traditionally used to compress or encode a signal into low

dimensional subspace and then decompress or decode the signal back into the original space. An

example of an autoencoder can be seen in Figure 4.1.

A convolutional autoencoder was extended to device signal compression to verify its feasi-

bility. The device signal was a 100BaseTX signal of sample size N = 4096. The encoder network

consisted of two 32 filter convolutional layers each with tanh activation and max pooling with pool

size 2. Each max pool layer reduced the initial signal by a factor of 2. The last layer of the encoder

was a 1 filter convolutional layer with tanh activation. The compressed layer output was then a

vector of size 1024. The decoder portion was the same as the encoder, but it replaced instances

of maxpooling with upsampling layers. The autoencoder is trained with mean squared error loss

and root mean square propagation (RMSprop) optimization [38]. The results of this autoencoder

were verified by the signals in Figure 4.2 and 4.3. Note that both signals are normalized to positive

unit variance. Furthermore, the reconstructed signal appears to contain no high frequency noise or

perturbations. This is a reason for autoencoders to be used for denoising or smoothing purposes in

images [25].

The use of an autoencoder for signal compression and reconstruction has been verified. To

extend this to signal template reconstruction, the idea is to create a reconstruction of an image
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Figure 4.3: Output of autoencoder. Reconstructed 100BaseTX Jetson Nano transmission. (N =
4096)

Figure 4.4: An example diagram of an autodecoder
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Figure 4.5: Genetic binary chromosome and its operations

that optimizes the DCNN classifier. In short, the goal is to create an autodecoder that takes a

compressed signal, expands it out, and compresses back to be classified again. An example of an

autodecoder can be seen in Figure 4.4. An autoencoder tries to reproduce image space x̂ to be x,

while the depicted autodecoder tries to reproduce compressed space ŷ to be y.

As mentioned, the idea is to create a reconstruction of an image that optimizes the DCNN

classifier. This will require an untrained decoder at the front and a frozen, trained DCNN as the

encoder at the back of the network. The only trainable parameters will be part of the decoder. The

loss and optimization are the same as what is used in the autoencoder.

The results of this model were not desirable. Reconstructing a signal that optimizes a DCNN

classifier is possible and was successful. However, the reconstruction did not result in a template

that could be effectively used as a part of a matched filter bank. In an effort to find another way

forward, an evolutionary algorithm was explored.

4.3.2 Evolutionary Algorithm Template Generation

This section explores the use of an evolutionary algorithm. An evolutionary algorithm is

an algorithm inspired by Charles Darwin’s theory of evolution. The specific evolutionary algorithm

chosen was a genetic algorithm. A genetic algorithm takes an input vector, usually binary, and

performs crossover and mutations. This is similar to how genetic crossovers and mutations take

place in a chromosome in the natural world. Figure 4.5 depicts a chromosome along with the

crossover and mutation operations. Crossover involves exchanging gene (or bit) values between two

mating chromosomes. Mutation involves sporadically flipping a gene (or bit) to the opposite value

after the mating process. The entire life cycle of a genetic algorithm is shown in Figure 4.6.
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Figure 4.6: The proposed genetic algorithm

4.3.2.1 The Initial Population

The algorithm is a mutli-step process beginning with population initialization. For the

purposes of this thesis, the population was initialized as a ”perfect” square wave preamble as shown

in Figure 4.7. The goal is then to perform enough operations to get the preamble to resemble

a signal template for a 10BaseT device, which would look similar to the Dlink switch 10BaseT

preamble sample in Figure 4.8. Notice both plots are normalized to unit variance over a 5.7 second

window.

4.3.2.2 The Genetic Operations

Genetic algorithms are traditionally used on binary sequences, but in this case the algorithm

is reworked to operate on the floating point preamble. The crossover and mutation operations must

be adapted to floating point operations. A series of floating-point values behaves differently than

a series of bits when introduced to genetic operations. This means that the crossover process

cannot flip between either a one or zero and the mutation process cannot involve flipping a bit.

Furthermore, a signal template should not have significant discontinuities in the floating-point array
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Figure 4.7: Perfect preamble for initial population (5.7s)

Figure 4.8: DLink preamble sample for comparison (5.7s)
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which must be considered in population initialization and genetic operations. Investigating research

into genetic algorithms for artificial reverberations [26], information on applying genetic algorithms

within these parameters was gathered. The primary takeaway was adjusting the uniform crossover

equation. Given individual parent templates x1 and x2 and a random uniform (0, 1] weight w the

new crossover equation is: x = x1 ∗ (w) + x2 ∗ (1 − w). Repeating the crossover equation twice

with new w values would result in two new child templates to carry on for the next population.

This proved to be a way to prevent the discontinuities caused by uniform crossover. Mutation

consisted of mutating the entire N sample example with a set mutation probability. The mutation

occurred by adding random gaussian noise using the mean and standard deviation of 1000 real

10BaseT preambles. Other methods of mutation were tried involving changing the amplitude of

random samples limited by a variable alpha. To help with discontinuities, the perfect square wave

was adjusted at initialization such that it had values at -0.5, 0, and 0.5 at each transition. Finally, a

variable alpha was used to limit discontinuities of genetic operations that had too large of a change

between two consecutive samples. Alpha controlled the amount of difference at a discontinuity.

4.3.2.3 The Fitness Function

The fitness function follows a similar process to the autodecoder. The fitness function is the

DCNN. A template that is fit is one that maximizes the DCNN output probability that a template

classifies as a desired device. As an example, if the DLink switch is device 0, the objective is to

maximize the DCNN classifier Softmax output for device 0. A threshold set for the Softmax output

for device 0 is the fitness score.

The problem with the autodecoder persisted with the evolutionary algorithm. In this case,

the DCNN acting as the fitness function was optimized. However, this signal was noisy and did not

work as a matched filter template. As a result, solving this matched filter problem is left to future

work.

4.4 Filter and Decimation Testing

Following the input size tests, additional bandwidth tests were done focusing on efficiency

from a data perspective. The motivation for bandwidth testing is to establish the minimum sampling

rate that collection equipment can have while still maintaining accurate predictions with the DCNN
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Figure 4.9: Prosoft preamble transmission at cutoff frequency 350Hz (N=4096)

Figure 4.10: Prosoft preamble transmission at a decimation of 2 (N=4096)
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Figure 4.11: Prosoft preamble transmission at cutoff frequency 10Hz (N=4096)

classifier. A smaller minimum sampling rate can mean smaller and cheaper sampling equipment

for the system pipeline. In addition, separate filtering tests are done to help understand what the

DCNN learned about our signals.

The first experiment with bandwidth was to perform decimation and filtering on the input

data. The decimation and filtering experiments decimated the signal example and applied an anti-

aliasing filter using python’s SciPy library [45]. The anti-aliasing filter used was an order 8 Chebyshev

type 1 filter. As an example, a signal example with 4096 samples decimated by 2 would then be

2048 samples. Figures 4.9 and 4.10 show an example of a Prosoft device preamble with 10BaseT

protocol size 4096 samples and then decimated to 2048 samples. They appear similar. Note neither

signal is normalized and is presented in milliVolts.

Another advantage of bandwidth testing on input signal data is that it brings insight to the

frequencies that the distinguishing features take place. While deep learning is often a black box,

knowing the significant frequency information of a device signal is useful in understanding what

allows the DCNN classifier to learn. The filtering process employed was simple. Incoming data was

filtered with an order 2 low pass Butterworth filter again using SciPy. In the results section, it is

clear at what frequencies the DCNN makes its decisions by monitoring the training curves. Here we
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can see the difference in the appearance of a Prosoft device preamble at 350MHz cutoff frequency

and 10MHz bandwidth in Figures 4.9 and 4.11 respectively. The results will show that there is a

significant difference in training accuracy for these two signals.

4.5 Transfer Learning

Transfer learning is an important topic for edge deployment. In this section, efficiency from

a training perspective will be considered. When operating at the edge, training a new DCNN model

from scratch is an inefficient way of adding a device to the registered pool. Adding a device in this

way requires many hours of model training time. Transfer learning offers a solution to this problem.

Transfer learning is traditionally deployed when adapting a model to a new data domain.

For instance training a dog breed classifier on photos of dogs on a sunny day, would likely not

perform well on photos of dogs in the evening with worse lighting. In such a case, transfer learning

on breeds of dogs in this new lighting would allow accurate classification without training from

scratch. Transfer learning on a DCNN works by freezing all but the final fully connected layers of

the model. Then retraining on the new dataset only updating the final layer weights. The result is

a model that can adapt to the new training domain in a few epochs.

The experiment conducted with transfer learning sets up a scenario where a proposed new

device is transfer learned updating the DCNN model. This use of transfer learning is different than

what is traditionally used. Nevertheless, the pre-trained convolutional layers allow this model to

adapt effectively. In the results, the success of the transfer learning experiments will be demon-

strated.
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Chapter 5

OOD Detection for Authentication

This chapter discusses the role of OOD detection for authentication of OT devices. The

experiments discussed in this chapter examine the role that ID and OOD data plays on the success

of an OOD detector.

5.1 OOD Devices and The Authentication Problem

OOD devices present a considerable challenge when authenticating devices on a OT network.

In context of this thesis, OOD devices represent the pool of unknown intruder devices. The challenge

is that the DCNN used for authentication contains no direct knowledge about this pool of devices.

The only knowledge about whether a transmitting device is an intruder is given by the registered

(label 1) and known intruder devices (label 0). As a result the authentication is highly dependent

on the pool of devices chosen for registered and known intruder datasets.

The pool of registered devices should not be eliminated in an authentication scenario. How-

ever, the pool of known intruders can be manipulated such that it makes the DCNN the most capable

of accurate OOD detection. The experiment introduced in the results examines whether adding a

larger pool of known intruders increases the likelihood of detecting an unknown intruder.
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Figure 5.1: Architecture of Generative Autoencoder

5.2 Data Generation for OOD Detection

This section explores data generation for OOD detection. Two deep learning architectures,

the autoencoder and the GAN, will be considered in an effort to generate accurate data. Its important

to note that not all data is good to generate. For the purposes of this work, data must be generated to

resemble the registered devices. Assuming the generation is not perfect, this would allow a classifier

to train on data representing the boundary conditions of a registered device.

5.3 The Generative Autoencoder

Autoencoders are used to compress data in a latent dimension and then reconstruct it to

the original shape. In doing so the decoder portion of an autoencoder creates an understanding

of images in compressed latent space. The goal of the generative autoencoder experiments is to

leverage this understanding by taking random points in the latent space to generate new data.

The architecture of this generative autoencoder is shown in Figure 5.1. There are three steps
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to training with the generative autoencoder. The first step is to train the autoencoder with mean

squared error loss and RMSprop optimization. When a low loss is reached, the second step is to

generate data. The generation process involves generating a random vector representing the latent

space and constructing this vector into a signal using the decoder. In the third step, the classifier,

or the DCNN, then trains on the reconstructed data as registered device data and the generated

data as intruder data.

The results of this experiment are not presented in the following section. Although the

autoencoder was capable of generating data that looked somewhat similar, it failed to improve the

OOD detection of the DCNN on intruder data.

5.4 The One Class Generative Adversarial Network

This section looks at the One Class Generative Adversarial Network (OCGAN) for OOD

detection data generation [32]. The researchers behind the OCGAN try to address the novelty

detection problem by generating data that closely resembles the data from the one known class.

The one known class in the experiment presented is the pool of registered devices. Figure 5.2 lays

out the architecture of the OCGAN.

The architecture is complex, but it is simpler if thought of in three parts: the generator, the

discriminator, and the classifier. The generator is made up of the encoder and decoder, while the

discriminator is made up of the latent discriminator and the visual discriminator. Adversarial

training takes place between the generator and the discriminator. Adversarial training is best

described as a tug of war between neural networks. The generator attempts to make the most

convincing fake data possible, while the discriminator seeks to distinguish this fake data from real

data. From Figure 5.2 it is apparent the visual discriminator seeks to distinguish real from fake

by looking at the generated signals. The latent discriminator seeks to distinguish real from fake by

looking at the latent space. The classifier is independent of the adversarial training.

As the OCGAN trains, there will inevitably be a winner of this tug of war. In the exper-

iments conducted it was often the discriminator. This is likely because the generator struggled to

properly mimic the one class registered data. However, experiments were still conducted to evaluate

whether the OCGAN can generate data that improves the classifiers OOD detection performance.
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Figure 5.2: Architecture of One Class Generative Adversarial Network

28



Chapter 6

Results

In this chapter results will be presented and discussed in the order of each experiment

that was discussed in the preceding chapters. Results are only given from experiments that were

successful or provide useful information.

6.1 Classification Results

The classification results are available for ResNet and MCNet models. The two protocols

evaluated are 10BaseT and 100BaseTX. These setups were evaluated with the two datasets provided

below.

6.1.1 Clemson EIC Dataset

The Clemson EIC dataset consists of data from 15 devices collected on the testing and simu-

lation bed in the Clemson EIC. There were several devices that made up this dataset, each providing

a monitoring function for the simulated power system. A DCNN that can effectively classify these

devices is able to gather distinguishing information that can be later used for authentication.

The resulting confusion matrix of applying the ResNet and MCNet DCNNs for classification

of 10BaseT preamble transmissions are shown in Figures 6.1 and 6.2. To save space, Table 6.1

provides the device names. The results from the ResNet are not as high as the training data

suggested. It was projected to be on par with the MCNet. This is possibly due to overfitting on

the training data. Overfitting is when a model learns its training data too well, and as a result can
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generalize to unseen data [39]. The confusion matrix for MCNet tells another story. It appears this

model learned the training data well and is now highly effective at distinguishing the devices in the

dataset. However, the confusion matrix shows the MCNet still struggled to distinguish certain pairs

of devices. One such pair is devices 7 and 13. Device 7 misclassified examples from device 13 up to

59 times. Table 6.1 reveals that these two devices are the same Woodward 3000XT device model.

This means that although the DCNNs are capable of distinguishing two devices of the same device

model, they are still not perfectly distinct.

Device Number Device Name
Device 0 Allen Bradley
Device 1 Prosoft
Device 2 SEL651R A
Device 3 SEL735
Device 4 SEL751
Device 5 Woodward EZG 3500XT A
Device 6 Woodward EZG 3500XT B
Device 7 Woodward LCD 3000XT A
Device 8 SEL451
Device 9 SEL651R B
Device 10 SEL2440
Device 11 Woodward EZG 3400XT A
Device 12 Woodward EZG 3400XT B
Device 13 Woodward LCD 3000XT B
Device 14 SMA EDMMUS10

Table 6.1: Names of Devices in Clemson EIC Dataset

6.1.2 AVS526 Dataset

The AVS526 dataset is a larger dataset with 27 devices collected in a custom local net-

work scenario. This collection setup aimed to test the robustness of a DCNN for Ethernet device

classification.

The resulting confusion matrix of applying the ResNet and MCNet DCNNs for classification

of 100BaseTX transmissions are shown in Figures 6.3 and 6.4. As done previously, Table 6.2 provides

the device and port names. For this dataset the ResNet and MCNet both have high accuracy. This

means that trained appropriately, these DCNN models are robust to several devices even when some

are the same device models or different ports on the same device. The scale with which these DCNN

models classify, suggests that they can collect distinguishable information even on larger networks.
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Figure 6.1: ResNet confusion matrix evaluated on 10BaseT Clemson EIC devices (N=4096)
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Figure 6.2: MCNet confusion matrix evaluated on 10BaseT Clemson EIC devices (N=4096)
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The preponderance of errors occurred between devices 20 and 25 for both DCNN models. In this

case, rather than the same device models causing the errors, the errors came from two ports on the

same DLink device.

Device Number Device Name
Device 0 Xavier 1A
Device 1 Cisco Port2
Device 2 Cisco Port7
Device 3 Siglent 1A
Device 4 Siglent 1B
Device 5 Cisco Port3
Device 6 Cisco Port8
Device 7 Pluggable USB A
Device 8 Cisco Port4
Device 9 Cisco Port9
Device 10 Pluggable USB B
Device 11 Cisco Port10
Device 12 Cisco Port5
Device 13 RPI CCard A
Device 14 RPI CCard B
Device 15 Linksys Port1
Device 16 Xavier 2
Device 17 Linksys INet
Device 18 Siglent 2
Device 19 DLink Port1
Device 20 DLink Port2
Device 21 Cisco Port6
Device 22 DLink Port3
Device 23 DLink Port4
Device 24 DLink Port5
Device 25 Cisco Port1
Device 26 Xavier 1B

Table 6.2: Names of Devices in AVS526 Dataset

6.2 Input Size Testing Results

The input size tests were conducted in order to determine the smallest input size necessary

to maintain a high accuracy for the DCNN classifiers. The MCNet was the only model used in these

experiments. As with the classification results, the two scenarios analyzed were the Clemson EIC

dataset with 10BaseT protocol and the AVS526 dataset with 100BaseTX.
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Figure 6.3: ResNet confusion matrix evaluated on 100BaseTX AVS526 devices (N=4096)
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Figure 6.4: MCNet confusion matrix evaluated on 10BaseT AVS526 devices (N=4096)
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Figure 6.5: MCNet loss and accuracy curves for each N from 10BaseT Clemson EIC dataset
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Figure 6.6: MCNet loss and accuracy curves for each N from 100BaseTX AVS526 dataset
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6.2.1 Clemson EIC Dataset

The MCNet Clemson EIC dataset training accuracy and loss curves are shown in Figure 6.5.

From the loss curves its clear that the more samples the better performance. Diminishing accuracy

returns take place with increasing input samples. Values of N that are 1024 and greater achieve

at least 90% accuracy. The results suggest that choosing an input size N that is at least 2048 will

achieve high accuracy with sufficient training.

6.2.2 AVS526 Dataset

The AVS526 dataset results tell a similar story in Figure 6.6. The curves for this dataset

are more compact. Values of N that are 512 and greater achieve at least 90%. This is less samples

than is required for the 10BaseT data. Also in this case, the results suggest choosing an input size

N that is at least 1024 will achieve high accuracy with sufficient training. Furthermore, the results

show input size may be more sensitive for 10BaseT than for 100BaseTX. This would have to be

investigated further.

6.3 Filter and Decimation Testing Results

The results in this section cover anti-aliasing decimation and low pass filter testing. The

purpose of anti-aliasing filter decimation is to determine the necessary sampling rate for the data

collection. The purpose of the low pass filter is to help understand what the DCNN model is learning

by filtering out frequency information.

6.3.1 Anti-Aliasing Decimation Test

For this test an anti-aliasing decimation filter was applied to the input data of the MCNet.

Figure 6.7 depicts the accuracy and loss over training epochs. For the decimation, an order 8

Chebyshev type 1 filter was used. The decimation rates for a 4096 sample input were chosen to be 2,

4, and 8. Referencing back to Figure 4.10, its apparent that for smaller decimation rates the input

signal looks similar. Furthermore, a signal sampled at 4096 samples and decimated by 2, and a signal

just sampled at 2048 contain different information. Figure 6.7 shows that it takes a decimation of at

least 8 to make a significant impact on the training. This information is consequential for sampling

38



Figure 6.7: MCNet loss and accuracy curves for each decimation rate (N = 4096) from 100BaseTX
AVS526 dataset
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Figure 6.8: MCNet loss and accuracy curves for each cutoff frequency (N = 512) from 10BaseT
Clemson EIC dataset
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Figure 6.9: MCNet loss and accuracy curves for each cutoff frequency (N = 4096) from 10BaseT
Clemson EIC dataset
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device decisions. The results suggest the DCNN model can work well with a lower sampling rate

than is used with the oscilloscope.

6.3.2 Low Pass Filter Test

The low pass filter test was applied to the input data of the MCNet. The filter used was

an order 2 Butterworth low pass filter. The cutoff frequencies chosen were 350, 200, 100, 75, 50,

40, 30, 20, and 10MHz. Figures 6.8 and 6.9 examine the accuracy and loss over training epochs for

the MCNet with 512 samples and 4096 samples respectively. Both sample sizes were chosen because

they show the difference performance when filtering.

It is apparent from the curves that the lower the cutoff frequency the lower the training

accuracy. For Figure 6.8, it is evident that there is a drop off in accuracy for frequencies of 20

and 10MHz. For Figure 6.9, this drop off is only distinct at 10MHz. These curves indicate that

there is important frequency information between 10-30MHz. This is evidence that a transmission

component that perturbs the signal at these frequencies allows the DCNN to distinguish devices to

some degree.

There are two additional takeaways from the results presented. The first is that there is still

crucial frequency information below 10MHz for both sample sizes. Looking back to Figures 4.9 and

4.11, its obvious there is a large difference in a signal filtered at 350MHz and one at 10MHz with the

latter looking more like a sine wave. Yet, this sine wave carries useful information for the DCNN.

This information may operate at a much lower frequency than what was examined. The second

takeaway is that the smaller the input sample size the less adaptable to frequency information.

The 512 sample input MCNet is hindered further by the 20MHz cutoff than the 4096 sample input

MCNet. This hints that there may be a relationship between the lower MHz frequency information

and a larger input sample size. Lower frequency periodic information would likely require more

samples to understand. For both takeaways, more evidence is necessary to make a conclusion. This

is left for future work.

6.3.3 Transfer Learning Results

The transfer learning experiment setup was simple. The test used the 27 device AVS526

dataset. The input data was divided into three sets of devices. The first set is one device representing
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Before Transfer Learning After Transfer Learning

Registered Decision 69.24% 99.98%
Intruder Decision 30.76% 99.97%

Table 6.3: Prediction Accuracy of MCNet on New Device Before and After Transfer Learning (Avg.
5 runs)

the registered devices. One device is used for simplicity. The second set is one device representing

the device to add to the network. The third set is a group of 5 devices representing the known

intruder devices. Each group of devices will be chosen at random from the dataset. The results

are averaged over 5 runs with new random sets each time. The DCNN model used was a MCNet

trained for direct authentication as is described in Section 3.3.2. This model was trained initially

on the first and third sets of data. Transfer learning for a new class involves freezing all but the last

dense layer for the DCNN. Then retraining the last layer of the model with the second set added to

the first. This then makes a new registered device. If instead, the goal was to add the new device

to a list of intruders the second set would be added to the third.

For the purposes of this experiment, its important to note that a new device will be con-

sidered registered or intruding by the DCNN before ever knowing said device. This can be thought

of as the prior decision before transfer learning. The first column of Table 6.3 explains how the

new device was decided for the 5 runs. The new device is predicted to be registered 69.24% of the

time before training, and the other times it was considered an intruder. So the data indicates a

bias towards being registered. The second column indicates how the device performed once being

transfer learned for 1 epoch. Whether the new data was added to the registered pool or the known

intruder pool it performed well.

The primary advantage of transfer learning is the significant reduction in adding a new

device to a DCNN model. Transfer learning for 1 epoch takes about 40 seconds, while training a

model from scratch takes at least 1.5 hours.

6.4 OOD Detection Testing

The OOD detection experiment was motivated by the question of whether increasing the

known intruder devices would increase the likelihood of detecting the unknown, or OOD, intruder

devices. The test used the 27 device AVS526 dataset. The input data was separated into three sets
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OOD Detection Accuracy

5 Known Intruders 62.40%
10 Known Intruders 50.14%
15 Known Intruders 48.26%

Table 6.4: OOD Detection Accuracy with Varying Number of Known Intruders (Avg. 15 runs)

of devices. The first set is one device representing the registered devices. The second set is a group

of three different sizes, 5, 10 and 15 devices, representing the known intruder devices. The third set

is a holdout group of 5 devices representing the unknown intruder devices. Each group of devices

was chosen at random from the dataset. The results were averaged over 15 runs with new random

sets each time. The direct authentication MCNet model was used as is described in Section 3.3.2.

This model was trained on the first and second device sets. In each run, the DCNN was trained

three times for each of the three sizes, 5, 10 and 15, of the known intruder devices.

The results of the prediction on the holdout set with the three known intruder sizes is

shown in Table 6.4. The results did not meet expectations. It turns out the the more known

intruder devices, the less accurate OOD detection. This is relationship is counter-intuitive. It would

seem, the more devices in a category the more the decision space shrinks. Further testing would

have to be done to support this conclusion.

6.5 OOD Data Generation Testing

The OOD data generation experiment utilized the OCGAN. The architecture of the OCGAN

allows for the training of the GAN and the classifier in parallel. The implementation of the OCGAN

followed its paper closely, but the informative negative mining was left out. Informative negative

mining offered a way of improving the model by training the latent space and it was determined this

was not necessary. Training the OCGAN took place in four steps: pre-training the autoencoder,

training the discriminators, training the generator, and training the classifier.

The results of the experiment are presented in Table 6.5. The table reveals that training

the DCNN with OCGAN generated data actually reduces the OOD detection performance. The

results were not ideal, but they follow a similar trend to OOD detection testing. The trend suggests

that generating more OOD data can cause reduced OOD detection accuracy. Because the OCGAN

research is verified it is more likely that the performance degradation is related to the way the
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OOD Detection Accuracy

Before OCGAN 60.8%
After OCGAN 45.1%

Table 6.5: OOD Detection Accuracy with OCGAN Data Generation over 20000 epochs (Avg. 3
runs)

OCGAN was implemented. One such reason is the lack of a effective means of navigating the latent

space. Generating data for novelty detection is only useful if it closely resembles known data. Its

possible that the generator was not able to generate data of high fidelity. As a result the useless data

served to confuse the DCNN rather than improve it. Regardless of the reason behind unsuccessful

OOD detection, finding a means of generating and evaluating data for this purpose is left for future

work.
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Chapter 7

Conclusions and Discussion

Physical layer OT Ethernet device authentication using deep learning can redefine security

for power systems. While legacy and low power ICS devices fail to operate in tandem with IT

network active scanning technologies, its key to look to passive approaches. Additionally, spoofing

attacks can be prevented by authenticating devices at the physical layer. It is shown that discrete

physical components within a OT network device impose distinguishable perturbations on Ethernet

transmissions. Neural networks, such as the DCNN, are able to leverage these distinguishable

perturbations for device authentication. A system pipeline for the deep learning solution involves

Ethernet device transmission data collection, training a DCNN on this data, and authenticating

with the DCNN. It is shown that although distinguishing between known devices on a network is

successful, the challenge of robust detection of unknown devices is a substantial task.

Future work should explore a reliable means of making an authentication decision on devices

that the DCNN has not yet seen. Data generation for novelty detection with GANs is a promising

approach. Another possible approach is metric learning using the DCNN fingerprint. Research into

the specific hardware components that cause distinguishing perturbations may help with this data

generation process. If successful, a natural extension would be to find applications of physical layer

authentication in the wireless space.
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