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Abstract

Electroencephalography (EEG) is a non-invasive technique used in both clinical and research settings

to record neuronal signaling in the brain. The location of an EEG signal as well as the frequen-

cies at which its neuronal constituents fire correlate with behavioral tasks, including discrete states

of motor activity. Due to the number of channels and fine temporal resolution of EEG, a dense,

high-dimensional dataset is collected. Transcranial direct current stimulation (tDCS) is a treatment

that has been suggested to improve motor functions of Parkinson’s disease and chronic stroke pa-

tients when stimulation occurs during a motor task. tDCS is commonly administered without taking

biofeedback such as brain state into account. Additionally, the administration of tDCS by a techni-

cian during motor tasks is a tiresome process. Machine learning and deep learning algorithms are

often used to perform classification tasks on high-dimensional data, and have been successfully used

to classify movement states based on EEG features. In this thesis, a program capable of perform-

ing live classification of motor state using machine learning and EEG as biofeedback is proposed.

This program would allow for the development of a device that optimally administers tDCS dosage

during motor tasks. This is achieved by surveying the literature for motor classification techniques

based on EEG signals, recreating the methods in the surveyed literature, measuring their accuracy,

and creating an application to perform online capturing and analysis of EEG recordings using the

classifier with the highest accuracy to demonstrate the feasibility of real-time classification. The

highest accuracy of motor classification is achieved by training a random forest on binned spectral

decomposition from a normalized signal. While live classification was successfully performed, accu-

racy was limited by external changes to the recording environment, skewing the input to the trained

model.
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Chapter 1

Introduction

Approximately 4% of the U.S. population is affected by movement and neurodegenerative disorders

such as chronic stroke and Parkinson’s disease. It is projected that by 2030 there will be 1.2 million

people living with Parkinson’s disease in the United States [37]. Additionally, there are approxi-

mately 4 million people in the United States that are affected by chronic stroke [11]. These conditions

considerably affect patients’ ability to move. Transcranial direct current stimulation (tDCS) is a

treatment that has been suggested to improve symptoms of Parkinson’s disease and chronic stroke

patients when stimulation occurs during a movement task [35]. Consistently determining when ad-

ministration should occur is a manual and tiresome process. Additionally, biofeedback is often not

accounted for when determining when tDCS administration should occur. Therefore, a program

capable of discerning movement state from biofeedback is desired. Accurately discerning states of

movement from states of rest using biofeedback would lead to the development of a device that

administers tDCS at optimal periods of time.

One potential form of biofeedback is electroencephalography (EEG). EEG is a non-invasive technique

used for recording neuronal signals in real time from the brain. EEG is commonly used to diagnose

and monitor epilepsy due to the fact that seizure activity has different frequency characteristics

than non-seizure activity. Due to its portability, behavioral activities such as various movement

states may be performed by a subject while recording EEG signals, which can then be analyzed
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to determine the sources and frequencies driving EEG changes during various behaviors. EEG is

often used in research to develop brain machine interfaces that perform tasks such as 2D and 3D

cursor control [52] [38]. Its historical use in brain machine interfaces makes it a promising avenue

to perform motor classification on. However, EEG data acquisition is comprised of several channels

at fine temporal resolution, which leads to a dense, high-dimensional dataset, making it difficult to

perform analysis on.

While EEG provides a method of receiving biofeedback, there still must be a method of classifying

movement state based on EEG observations. Determining the movement state of an individual

can be simplified to a binary classification problem: states of movement compared to states of

rest. Machine learning is a vast field of study comprised of algorithms that perform regression

and classification tasks well. Additionally these algorithms are computationally effective against

high-dimensional datasets, and often have well supported implementations in several programming

languages. While there are several methods of performing classification, these factors make machine

learning a well-suited starting point for problem.

In order to develop a program capable of discerning movement state using biofeedback, a survey of

established literature is conducted to identify different methods of motor classification using EEG

signals. Then, the classification algorithms explored in the literature are applied to a prerecorded

dataset of EEG recordings of subjects (healthy control, Parkinson’s disease, and chronic stroke)

performing a virtual reality-guided movement task comprised of periods of both movement and rest.

The resulting classification algorithm accuracies are compared to those found in the literature. Then,

the most accurate classification method is used to perform live classification on a healthy subject

wearing an EEG recording apparatus.
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Chapter 2

Background

2.1 Electroencephalography

Electroencephalography (EEG) uses an array of electrodes placed on a subject’s scalp to record

signals of voltage potential changes from within the brain. The continuous signals are filtered,

amplified, and in modern systems converted to digital signals for further processing and storage.

Hans Berger, a psychiatrist, first published this technique in 1929 [5]. Berger used EEG to identify

two regular wave patterns: one large and one small. These wave patterns would later be termed

alpha and beta waves, respectively [6]. The peak-to-peak distance in these waves represents a

potential change of 150-200µV . These deflections in potential, initially termed “waves,” represent

the averaged, coordinated activity of neurons firing synchronously in bursts. These waves are also

commonly called “oscillations.” Berger classified alpha and beta waves to have respective frequency

ranges of 11-15 Hz and 20-32 Hz. Subsequently, in 1936, delta (0 to 3.5 Hz) and theta (4 to 7.5 Hz)

waves were discovered by Walter [50]. In 1938, the gamma wave was first described by Jaspers and

Andrews with a frequency of 50 Hz found over the sensorimotor cortex [29]. Over the next several

decades, the 10 Hz alpha wave was observed to be the most dominant frequency in the conscious

human brain. It was also established that the other waves are based on harmonics (a multiple of

some base frequency) of the alpha wave [32]. A table depicting center frequencies and frequency

ranges of each band is shown in Table 2.1.

3



Frequency Band Center (Hz) Range (Hz)
Delta 2.5 1-3
Theta 5 4-7
Alpha 10 8-12
Beta 20 13-30

Gamma 40 31-50

Table 2.1: Table depicting the ranges of EEG brain wave frequencies [47]. Each brain wave center
frequency is a harmonic of the alpha wave (10 Hz) [32].

Since the initial description of each frequency band, the bands have been studied in association with

various behaviors or functions within brain signaling. For example, delta oscillations occur most

prominently during slow wave sleep [23]. They are also detected when a subject is attempting to

detect a target or go-stimulus in a set of distractors or no-go stimuli, or during other rapid, decision-

making processes. They are also associated with motivation and reward mechanisms. Theta oscilla-

tions appear when a subject performs memory tasks, and are most dominant in the hippocampus.

They have also been associated with emotional arousal and fear conditioning [8]. Alpha oscillations

are generally associated with attentional processes, sensory stimulation, and knowledge-system ac-

cess [23]. Beta oscillations are generally associated with activation in the sensorimotor cortex, and

they are hypothesized to help maintain steady states [14]. Gamma oscillations are synchronized

during broad cortical activation, attentive processing of information, active maintenance of memory

contents, and conscious perception [23]. Gamma oscillations can exhibit high frequencies (up to 200

Hz) and are often split into multiple frequency bands (e.g., low, mid, high, or a combined broadband

gamma) due to the large frequency band width [46].

Each electrode in an EEG montage is termed a “channel,” and each channel represents the aver-

aged signal of 105 - 106 neurons [34]. In the frequency domain, each frequency band represents a

synchronization of clustered neurons. An increase or decrease of neuronal synchronization in a fre-

quency band in response to an event or stimulus is known as either an event-related synchronization

(ERS) or event-related desynchronization (ERD), respectively [41]. ERS and ERD are determined

by observing an amplitude enhancement or attenuation in a specified frequency range.

Alpha and beta are unique frequency bands due to their ERS and ERD response [23]. For alpha

oscillations, ERD can be found in regions of the brain relevant to a task while ERS can be found in

parts of the brain that are not relevant to that task. This behavior of attenuating active regions of
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the brain while enhancing inactive regions of the brain with the respective frequency band is called

the antagonistic ERS/ERD response [41]. This behavior can be seen in the beta band, particularly

in the motor cortex region. For example, when a subject moves their left arm, the beta band

power of the region of the sensorimotor cortex responsible for the left arm movement will decrease

temporarily, while the region responsible for right arm movement will increase temporarily. Both

region’s beta band power will then return to normal when the arm movement is finished. This

antagonistic ERS/ERD response is believed to inhibit irrelevant regions of the brain to a task to

decrease the internal signal-to-noise ratio of neuronal activity.

In addition to frequency bands, the signal’s source electrode must be taken into consideration. The

most common method of electrode placement is detailed in the 10-20 International EEG Electrode

Placement System shown in Figure 2.1 1 [28]. The naming convention of each electrode is generally

based on its respective lobe (the letter label), the laterality of the electrode (the parity of the

numerical label), and the distance (the magnitude of the numerical label) of the electrode from

the antero-posterior line which connects the nose to the back of the head. Starting on the antero-

posterior line, the electrodes are identified with a “Z” instead of a number, indicating zero. The

further an electrode is to the left of this line, the higher its assigned odd number (i.e., 1, 3, 5, 7).

Similarly, the further an electrode is to the right of this line, the higher its assigned even number

(i.e., 2, 4, 6, 8). The lobes of the brain used in the 10-20 Placement System are frontal (F), occipital

(O), temporal (T), and parietal (P). While the letter preceding the number generally corresponds

to the lobe, there are three exceptions: electrodes with “C” preceding the number correspond to the

central area of the EEG map, electrodes with “Fp“ preceding the number correspond to pre-frontal,

and electrodes with “A” preceding the number correspond to the ear. For example, electrodes “A1”

and “A2” correspond to the left and right ear, respectively.

Between the frontal lobe and the parietal lobe lies the sensorimotor cortex, which is responsible for

movement and tactile perception. A color-coded display of the motor cortex is shown in Figure

2.2. Figure 2.3 shows a functional map of the sensorimotor cortex. By pairing information from

these two figures and the 10-20 International EEG Electrode Placement System, it is possible to

determine which electrodes may be useful for determining different states of motor activity. The

1https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
2https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
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Figure 2.1: The 10-20 International EEG Electrode Placement System 2.
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activity recorded by the C3 and C4 electrodes correspond to upper limb movements due to their

placement over the sensorimotor cortex. C3 relates to the right upper limb and C4 relates to the

left upper limb.

EEG is not the only form of neuronal activity recording. Electrocorticography (ECoG) and magne-

toencephalography (MEG) are two other widely used methods [21]. EEG is useful for this application

due to its relatively low cost and and portability (at the cost of signal clarity and spatial resolution).

ECoG and MEG have a higher signal-to-noise ratio than EEG, however, ECoG utilizes electrodes

placed directly on the surface of the brain, which requires an invasive surgical procedure, and MEG

machinery is cumbersome. In addition, MEG measures magnetic fields resulting from neuronal

current where ECoG and EEG measure voltage potential. The sample rates for all three of these

methods are commonly between 125 and 1,024 Hz per channel. Figure 2.4 demonstrates the temporal

and spatial resolutions of different neuronal recording techniques.

Two common types of movement analyzed using EEG are imagined movement and actual move-

ment. Imagined movement, also referred to as motor imagery, is the act of mentally performing a

movement task without activating any of the relevant muscles (e.g., thinking about walking instead

of walking). The counterpart, actual movement, is when the movement is both mentally and phys-

ically performed. It has been shown in the literature that motor imagery elicits a similar neuronal

response to that of actual movement [40]. If class of movement intent can be inferred from EEG

signals and motor imagery, it would be possible to create brain machine interfaces for those that

are physically handicapped. It is for this reason that motor imagery is popular for developing brain

machine interfaces and is often explored in the literature.

2.2 Processing the Data

One common method of storing and accessing recorded EEG data is through the European Data

Format (EDF) [30]. This format is comprised of metadata describing the dataset and a set of chan-

nels with corresponding data streams. Each channel corresponds to an EEG electrode’s detected

potential. In addition to these EEG electrode channels, there are channels reserved for electrocar-

diography (ECG), oxygen saturation, and general auxiliary inputs. This datatype is accessed using

the MNE Python library [18].
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Figure 2.2: The motor cortex of the brain, with highlighted regions for the primary motor cortex,
premotor cortex, and supplemental motor area [33].
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Figure 2.3: A functional labelling of the primary motor cortex [33].
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Figure 2.4: A chart contrasting different techniques of recording neuronal activity [21].

The Butterworth filter is a type of signal processing filter used to implement low-pass, high-pass,

band-stop, and band-pass frequency filters. The order of the filter defines the sharpness of the

attenuation slope at the cutoff frequency. The band-pass and band-stop implementations of this

filter are created with an order of two for feature extraction and live analysis. Figure 2.5 shows the

attenuation of a low-pass Butterworth filter at varying orders 3. They are often used in tandem with

EEG analysis to remove various types of noise, such as noise from the power system or voltage drift

from the recording apparatus by using a notch filter and band-pass filter respectively.

The Fast Fourier Transform (FFT) is an algorithm designed to perform the Discrete Fourier Trans-

form (DFT, shown in Equation 2.1) quickly [51]. DFTs allow for the approximation of amplitude

in the frequency domain from a time series. The size of the FFT relative to the sample rate of

the data defines the spectral resolution of the output. An FFT continuously taken over a sliding

window of data with respect to time is referred to as a Short Time Fourier Transform (STFT).

Since there is strong evidence that the frequency of brain activity correlates to events, STFTs are

useful for interpreting EEG signals. Additionally, the result of the STFT may be binned to ensure

3https://commons.wikimedia.org/wiki/File:Butterworth_Filter_Orders.svg
5https://commons.wikimedia.org/wiki/File:Butterworth_Filter_Orders.svg
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Figure 2.5: Attenuation of a low-pass Butterworth filter at the cutoff frequency at varying orders 5.
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information is not lost as different subjects may exhibit different frequencies for the same actions

[38].

Xk =

N−1∑
n=0

xn · e−
i2π
N kn (2.1)

Power spectral density (PSD) is a metric which seeks to determine the power of a signal in the

frequency domain over some average of time. Welch’s method (derived by Peter Welch) applies the

FFT algorithm to several contiguous subsets of the original signal [51]. These FFT results are then

averaged together to generate an array of numbers representing the power of each frequency over

the original signal. This algorithm is commonly used in analyzing EEG signals for spectral power

[9].

STFTs and PSD may be used to create a two-dimensional plot, or spectrogram, that transforms the

frequency analysis of a signal into a grid, traditionally shown as an image, where one axis corresponds

to frequency and the other axis corresponds to time. Each element in the grid corresponds to the

amplitude of its respective frequency at the time of the signal.

Entropy is a calculation that quantifies the amount of disorder or uncertainty in a system. Differential

entropy is a subset of entropy that is used to measure the complexity of continuous, Gaussian, random

variables. Differential entropy has also been commonly used for EEG signal analysis [12]. It has

been shown that while EEG signals are not explicitly Gaussian, when the EEG signal is divided

into several epochs, the individual epochs can be compared to a Gaussian distribution [10]. The

equation to calculate differential entropy is shown in Equation 2.2, but with Gaussian distributed

random variables, Equation 2.3 can be used.

h(X) = −
∫
X

f(x)log(f(x))dx (2.2)

h(X) =
1

2
log(2πeσ2) (2.3)
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2.3 Traditional Classification Methods

There are several machine learning algorithms that can be used to perform classification by training

a model capable of discerning patterns more effectively than human analysis. This thesis explores the

following classification methods based on a survey of related literature: logistic regression [53], linear

discriminant analysis [53] [45] [31] [17], decision trees [31], näıve Bayes [31], K-nearest neighbors [31],

support vector machines [39] [53] [4] [31] [17], random forests [4], voting classifiers [31], and AdaBoost

[17]. Several of these classification methods utilize hyperparameters which fine-tune the performance

of a classifier. A grid search K-fold validation is performed to survey parameter values and determine

the most accurate model for the given dataset.

Logistic regression is performed by applying a logistic function to a trained linear combination of

weights and features. This creates an output mapping from 0 to 1 that describes the probability

of something being true or false dependent on the input and the weights. An example of this

function is shown in Equations 2.4 and 2.5, where p represents probability, w represents a set of

weights, and x represents input for i features. Logistic regression has one hyperparameter called C

which corresponds to regularization. Regularization is the penalization of large-value weights in the

model in order to prevent overfitting [19]. Yong and Menon utilized logistic regression to classify

rest, simple arm movement, goal oriented arm movement, and hand clenching using motor imagery

[53].

p =
1

1 + e−k
(2.4)

k = w0 + w1x1 + w2x2 + ...+ wixi (2.5)

Linear discriminant analysis (LDA) uses linear algebra to change the data’s basis to reduce the

data’s dimensionality [3]. When input data change their basis through LDA, the resulting data

often clusters by class, allowing for classification. LDA has one hyperparameter associated with

it: the solving function. Three solving functions are tested: singular value decomposition, least

squares, and eigen solvers. Yong and Menon utilized LDA to classify rest, simple arm movement,
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goal oriented arm movement, and hand clenching using motor imagery [53]. Rodrigo et. al. utilized

LDA to classify rest, preparation, and movement in actual movement tasks [45]. Khrishna et. al.

used LDA as part of their voting classifier to classify motor imagery states of left arm, right arm,

left leg, and right leg movement [31]. Gao et. al. utilized LDA with AdaBoost to classify motor

imagery for left hand, right hand, and rest [17].

Decision trees use a starting point and several conditional branching points comprised of a feature

and a threshold to perform classification [19]. Depending on whether the conditional is true, the

algorithm will traverse a designated path. At the bottom of each branch’s path is a class which rep-

resents the tree’s classification of the input data. One difficulty of this model is choosing the correct

feature and threshold at each branching point to optimize the information gain. This optimization

is often implemented through either the Gini Impurity (Equation 2.6) or the entropy (Equation

2.7) where pi,k is defined as the fraction of samples of class k at node i. These two algorithms

attempt to quantify the impurity of a set of samples. If all the classes of one set of samples are the

same, the score will be 0. Gini Impurity is often quicker to calculate than entropy since entropy

requires a logarithmic calculation. For the sake of this thesis, the Gini Impurity is used to avoid

this logarithmic calculation. The cost function that is optimized using the Gini Impurity or entropy

is defined in Equation 2.8. In this equation, m is defined as the number of samples represented

and G represents either the Gini Impurity or entropy, depending on what is chosen. This model is

prone to overfitting since a tree could potentially have as many conditional branches as necessary

to perfectly classify the training dataset, demonstrating the need for hyperparameters. The hyper-

parameters considered for decision trees are min weight fraction leaf, min samples split, and

max depth. min weight fraction leaf is defined as the minimum sum of weighted samples out

of the total training set weight at a node for it to be a leaf. A leaf is defined as a node with no

children. min samples split is defined as the minimum number of samples required at a leaf to

transform the leaf into a node with branching paths. max depth is defined as the maximum depth

(the distance from the root node to the furthest leaf) of the decision tree. Khrishna et. al. use

decision trees as part of their voting classifier to classify motor imagery states of left arm, right arm,

left leg, and right leg movement [31].
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Gi = 1−
n∑
k=1

p2i,k (2.6)

Ge = −
∑
k

pi,klog(pi,k) (2.7)

J(k, tk) =
mleft

m
Gleft +

mright

m
Gright (2.8)

Näıve Bayes (NB) classification is an expansion of Bayes’ theorem, shown in Equation 2.9, and the

näıve assumption that all input features are independent of each other. While this assumption (in

most cases) is not true and will hinder the model’s accuracy, it simplifies the calculation. Bayes’

theorem is used to answer the question “What is the probability of class A given that B is true?”

Since B represents the input data, P (B|A) is substituted with
∏
i P (bi|A) and P (B) is substituted

with
∏
i P (bi). When each feature is Gaussian in nature, P (bi|A) is defined by Equation 2.10. The

training set is used to define these probabilities. A classification result is achieved by testing the

probability of each class (P (aj |B)) and returning the class with the highest probability. Näıve Bayes

classification utilizes one hyperparameter called variance smoothing (stylized var smoothing) which

is a coefficient multiplied by the variance of the features used to smooth the Gaussian distribution

curve. The Gaussian distribution curve is used to apply probabilities to continuous valued features

(as opposed to categorized or discretized features). Khrishna et. al. use näıve Bayes classification

as part of their voting classifier to classify motor imagery states of left arm, right arm, left leg, and

right leg movement [31].

P (A|B) =
P (B|A)P (A)

P (B)
(2.9)

P (bi|A) =
1√

2πσ2
y

exp(− (xi − µy)2

2σ2
y

) (2.10)
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K-Nearest Neighbors (KNN) spatially plots the samples of the training set, then classifies the given

input by determining the most frequency class of the closest K neighbors to that input [1]. The

distance between samples is often defined using Euclidean distance, shown in Equation 2.11. The

hyperparameter associated with KNN is the number of neighbors (stylized n neighbors). Khrishna

et. al. use KNN as part of their voting classifier to classify motor imagery states of left arm, right

arm, left leg, and right leg movement [31].

d(A,B) =

√√√√ n∑
i=1

(Ai −Bi)2 (2.11)

Support vector machines (SVMs) perform classification by optimizing a hyperplane (a plane in an

arbitrary number of dimensions) that separates the classes of the training set [26]. The optimization

maximizes the distance of the samples to the hyperplane. The radial basis function (RBF) kernel

(Equation 2.12) increases the SVM’s efficiency by creating a new set of features based on similarity.

A kernel is defined as a function that is passed into an algorithm to perform an abstract task

(e.g., distance functions). Due to the prominence of RBF’s use in the literature, it is used as the

kernel function for SVM in this thesis. The two hyperparameters trained for SVM are C for the

regularization, and γ for the RBF kernel. Mebarkia and Reffad utilized SVMs with RBF to classify

imagined left hand movement against imagined right hand movement [39]. Yong and Menon utilized

SVMs to classify rest, simple arm movement, goal oriented arm movement, and hand clenching using

motor imagery [53]. Bentlemsan et. al. utilized SVMs to classify motor imagery in left foot, right

foot, both feet, and tongue movement [4]. Khrishna et. al. utilized SVMs as part of their voting

classifier to classify motor imagery states of left arm, right arm, left leg, and right leg movement

[31]. Gao et. al. utilized SVMs with AdaBoost to classify motor imagery for left hand, right hand,

and rest [17].

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0 (2.12)
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2.4 Ensemble Methods

Ensemble learning is a method of training several models and using them in tandem to achieve

higher accuracy. Voting classifiers, random forests, and AdaBoost are the three ensemble methods

that are explored.

A voting classifier combines predictions from several different trained classifiers until a consensus is

reached [19]. Hard voting classification and soft voting classification are two methods of combining

each model’s prediction. Hard voting counts the total number of predictions in each class and

chooses the class with the highest number of votes. Soft voting assigns each model a weight and

determines a probability for each class based on a linear combination of each model’s probability

and weight. The class with the highest probability is chosen. Khrishna et. al. utilized a voting

classifier comprised of KNN, SVM, LDA, näıve Bayes, and decision trees to classify motor imagery

states of left arm, right arm, left leg, and right leg movement [31].

Random forests use an ensemble of different decision trees in parallel [24]. Hard voting is used to

determine the classification results from a random forest. If all decision trees in a random forest

are similar, the result of the random forest classification is similar to using one of the decision

trees. The hyperparameters considered for random forests are min samples leaf, max features,

and max depth. min samples leaf is defined as the minimum number of samples required to create

a leaf node. max features is defined as the maximum number of considered features when looking

for the most optimal branch conditional. max features is either a specified integer, the square

root of the number of features, or the logarithm-base-2 of the number of features. Bentlemsan et.

al. utilized random forests to classify motor imagery in left foot, right foot, both feet, and tongue

movement [4].

Boosting combines weak models (models that classify only slightly better than chance) to create a

classifier with high accuracy. AdaBoost is a popular boosting algorithm [15]. The algorithm starts

with a single trained classifier. The weights of misclassified samples are increased, and a second

classifier is then trained on the newly weighted training set. This process is iterated for a user-

specified number of classifiers (stylized n estimators). When predicting new values, the result is a

soft vote of all classifiers weighted by overall training set accuracy. In this thesis, the type of classifier
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is varied over SVM with RBF, näıve Bayes, and decision trees. Gao et. al. utilized AdaBoost in

conjunction with SVM and LDA to classify motor imagery for left hand, right hand, and rest [17].

While Gao et. al. were able to use LDA as the classifier base of AdaBoost, the library used for

training AdaBoost does not support LDA with AdaBoost because LDA is unable to take in a sample

weight parameter.

2.5 Deep Learning Classification Methods

Convolutional Neural Networks (CNNs) use convolutional layers and pooling layers to find patterns

in data [19]. The convolutional layers train kernels to perform the convolution operation on the input

function. The pooling layers select the dominant features identified by a preceding convolutional

layer, and excludes the non-dominant features, reducing the dimensionality of the data as it passes

through the model. At the end, fully connected or “dense” layers are used to identify non-linear

patterns in the training process. This model is loosely based on the structure of the visual cortex. The

early convolutional layers in a model react to smaller learned patterns while the later convolutional

layers react to larger learned patterns. These multiple layers are necessary for the model to learn a

hierarchy of features from the input data. To give an example, imagine a CNN trained to identify

humans in photos. Early convolutional layers may have learned features to identify an eye or a nose,

and a middle convolutional layer might see that two eyes and a nose were identified and infers a

face from that combination, and a final convolutional layer may see that there is a face, two arms,

and two legs and predict that it is a human. CNNs are largely used for image classification. Lun et.

al. utilized CNNs on raw EEG data to perform motor imagery classification between clenching left

hand, clenching right hand, clenching both hands, and clenching both feet [36]. Tayeb et. al. utilized

CNNs to create three CNN models to classify left and right hand motor imagery from spectrograms

[48].

Recurrent Neural Networks (RNNs) are deep learning models that perform predictions on time series

data [19]. In a recurrent layer, each neuron is connected to the input to the layer, and the neuron

preceding it, thus giving the model a sense of internal memory. Inside the layer there are two sets of

weights that are trained: one for the input to the layer, and one for the preceding neuron. Since the

length of memory is defined by the number of neurons in a layer, the amount that can be remembered
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by an RNN is limited. Long short-term memory (LSTM) mitigate this issue by training gates that

learn when to store, use, and forget features for an extended amount of time. These networks are

often used for natural language processing and audio processing (a type of signal analysis). Since

RNNs are useful in time series data and signal analysis, it is expected that RNNs can be useful

for analyzing EEG data. Tayeb et. al. utilized an LSTM network and a Recurrent Convolutional

Neural Network to classify left and right hand motor imagery [48].
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Chapter 3

Related Work

Yong and Menon utilized logistic regression, linear discriminant analysis (LDA), and support vector

machines (SVMs) with the radial basis function (RBF) kernel to classify four states of motor imagery:

rest, simple arm movement (e.g., repeated arm flexions), goal oriented arm movement (e.g., reaching

towards a glass of water), and grasping [53]. There were 21 EEG electrodes considered for analysis

in tandem. The EEG signals were downsampled from 1,000 Hz to 250 Hz and band-passed for

6-35 Hz. The signal was epoched from 1-3 seconds. The researchers used common spatial patterns

(CSP), filter-bank common spatial patterns (FBCSP), and logarithmic band power (LBP) for feature

extraction. When using FBCSP, the signal was used to generate three new signals, band-passed by

7-15 Hz, 15-25 Hz, and 25-30 Hz, respectively. Binary classification between rest and motor imagery

had a range of 75-81% accuracy, where binary classification between the motor imagery states had

a range of 61-67% accuracy. The accuracies reported are with the highest performing classifier per

subject. The researchers found that LBP for features and SVM for classification yielded the highest

accuracy.

Dr. Rowland’s lab at the Medical University of South Carolina has demonstrated LDA’s effectiveness

in classifying Parkinson’s disease patients from healthy controls, determining Parkinson’s disease

severity (mild vs. severe), and predicting motor improvement with deep brain stimulation with

accuracies of 84%, 93%, and 99% respectively using magnetoelectroencephalography (MEG) [20].
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These results are shown in Figure 3.1.

Rodrigo et. al. utilized LDA to classify rest, preparation, and movement in individuals performing

actual movement [45]. The researchers used 28 electrodes to record EEG data at 256 Hz that was

downsampled to 60 Hz. To perform feature extraction, a Laplacian spatial filter and electrode re-

referenced filter was applied to the original set of signals to get three sets of signals. An r2 test was

applied on the FFT values for the C3 signal from all the filtered sets of data between the following

sets: rest and preparation, rest and movement, and preparation and movement. The type of filter

on the C3 electrode with the highest r2 value was used and electrodes with an r2 value within some

threshold were added to the feature set along with C3. Additionally, the frequency band considered

was selected via r2 test. Performing binary classification between the three classes had an accuracy

range of 64-68%, whereas performing multi-class classification yielded an accuracy of 55%.

Mebarkia and Reffad used SVMs with the RBF kernel to classify imagined left hand movement

against imagined right hand movement using C3 and C4 EEG electrodes [39]. These signals were

band-passed from 0.5-30 Hz and then analyzed to extract 16 features in total using power spectral

density (PSD), kurtosis, cumulative sum of signals, and continuous wavelet transforms. The set of

features extracted and the length of EEG signal with respect to time were varied. These parameters

were selected by using a genetic algorithm. Using one SVM and an ensemble of three SVMs were

explored. Utilizing one SVM achieved an accuracy of 90%, compared to utilizing three SVMs which

achieved an accuracy of 94%. Consensus was reached in the ensemble of SVMs by using a hard

voting method.

Bentlemsan et. al. utilized random forests and SVMs to classify motor imagery for left foot, right

foot, both feet, and tongue movement [4]. C3, C4, and Cz EEG electrodes were recorded at 250

Hz, and then band-passed through 9 different filters to cover 4-40 Hz. Features were extracted from

these signals using FBCSP for 18 total features. The random forest yielded 80% accuracy on average

whereas the SVM yielded 66%.

Khrishna et. al. utilized a voting classifier to classify between left arm, right arm, left leg, and

right leg motor imagery [31]. The EEG signals were acquired using 24 electrodes at 128 Hz, and

then band-passed for 8-30 Hz. The researchers used cross-correlation to extract features to receive
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Figure 3.1: Visualizing the use of LDA with MEG data [20].
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one resultant cross-correlation array for each channel. Five classifiers were trained on each channel’s

data: k-nearest neighbors (KNN), SVM, LDA, naı”ve Bayes, and a decision tree. The researchers

were able to achieve an average accuracy of 86%.

Gao et. al. utilized AdaBoost with SVM and LDA to classify motor imagery for left hand, right

hand, and rest [17]. The C3 and C4 electrodes were recorded at 1,000 Hz and then band-passed

for 8-30 Hz. Feature extraction was performed by calculating the Kolmogorov complexity. The

researchers determined that using AdaBoost with a base of SVM and LDA achieved a classification

accuracy of 74% and 72%, respectively.

Lun et. al. used a Convolutional Neural Network (CNN) to perform a motor imagery classification

task [36]. The motor imagery classes were as follows: clenching left hand, clenching right hand,

clenching both hands, and clenching both feet. The CNN consisted of five convolutional layers, four

pooling layers, and one fully connected layer. Four seconds of raw, unprocessed EEG signal sampled

at 160 Hz for two electrodes were used as input data. The pair of electrodes chosen was based off

of cross-validation across nine different symmetrical electrode pairings. The C3 and C4 electrode

pair was observed to yield the highest classification accuracy. Using a 90/10 training-to-test ratio,

researchers were able to classify the four states of imagined movement at 98% accuracy.

Tayeb et. al. sought to classify left and right hand motor imagery while comparing results between

CNNs, Long-Short Term Memory (LSTM) networks, and Recurrent Convolutional Neural Networks

(RCNNs) [48]. Researchers chose to observe C3, C4, and Cz electrodes and epoched the signals by

four seconds with a 125-millisecond stride. The signals were passed through a notch filter at 50 Hz,

a high-pass filter at 0.5 Hz, and a band-pass filter for 2-60 Hz. This signal was passed directly to the

LSTM network as input and used to derive a spectrogram for the CNNs and RCNN. In total, one

LSTM, one RCNN, and three CNNs were created. The CNN architectures were observed to have

accuracies of 84%, 67%, and 92%, the LSTM architecture was observed to have an accuracy of 66%,

and the RCNN architecture was observed to have an accuracy of 78%.
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Chapter 4

Methods

All analysis was conducted in Python 3.9 [44] using the NumPy [22], SciPy [49], and Scikit-Learn

[43] libraries. Visualizations were performed using Matplotlib [27] and Graphviz [13].

4.1 The Prerecorded Dataset

The prerecorded dataset used for analysis was collected by Dr. Nathan Rowland’s research lab at the

Medical University of South Carolina over the course of 2019 to 2021. The dataset is comprised of

EEG data for different subjects. Each subject is either a healthy control subject, Parkinson’s disease

patient, or chronic stroke patient. The dataset was collected to determine the effect of transcranial

direct current stimulation (tDCS) when administered to the sensorimotor cortex. As such, some

patients have tDCS administered to them throughout the data collection process. While the subjects’

EEG data are recorded, they are to perform a motor task in a virtual reality environment using an

Oculus Rift headset and handheld controllers. The subjects are instructed to only use one arm, and

to use the arm most affected by their Parkinson’s disease or stroke, if applicable. Each task in the

trial starts out with their arm in a common holding position near their body. At some period, a

vibration is felt on the controller, and then at a subsequent period, a sphere will virtually appear

in front of them at a random location. The subject is instructed to reach out and touch the sphere

upon appearance with their designated arm, hold the position, and return to the home position. The
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Subject Number Condition tDCS Administration # Trials Completed
Subject 28 healthy control sham 6 trials
Subject 29 healthy control stim 6 trials
Subject 40 Parkinson’s disease sham 6 trials
Subject 41 Parkinson’s disease sham 6 trials
Subject 42 chronic stroke stim 5 trials
Subject 43 chronic stroke stim 4 trials

Table 4.1: List of subjects’ data used with their condition, tDCS administration type, and number
of trials completed.

Figure 4.1: The workflow used for analysis on the prerecorded dataset.

period in which the subject stays in the home position is referred to as a “hold epoch.” The period

in between the controller vibration and the target sphere appearing is referred to as a “prep epoch.”

Lastly, the period from which the sphere appears to the subject’s successful target reach is referred

to as the “reach epoch.” Each trial is comprised of 12 of these reaches. Each subject performs

up to six of these of trials separated by trials of self-paced left arm and right arm flexions. If a

subject experiences severe fatigue, not all trials will be completed. Only the hold and reach epochs

are considered for analysis as part of this thesis. Table 4.1 shows each subject, their condition, and

the number of recorded trials. In the tDCS column, “stim” refers to tDCS administration, whereas

“sham” refers to the absence of tDCS administration.

The workflow of the analysis is shown in Figure 4.1. Reading from left to right, the first dotted

box indicates the selection of normalization method, the second dotted box indicates the selection

of feature extraction, and the third dotted box indicates the selection of the trained model.
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4.2 Preprocessing

Due to the low signal-to-noise ratio of EEG signals, several preprocessing techniques are often

utilized when analyzing them. Some common preprocessing techniques include high-pass filtering

starting at 1 or 2 Hz to remove voltage drift of the recording apparatus, notch filtering at 50 or

60 Hz to remove electrical power system noise, or performing independent component analysis and

principal component analysis to remove muscle and eye movement artifacts. In this thesis, a specific

design decision is made to perform minimal preprocessing to lessen the burden of processing on

the hardware running the code, which allows for smaller form computing devices to run this same

workflow to achieve live classification. The absence of these preprocessing techniques will likely

lower the overall accuracy demonstrated by the trained models. Despite attempting to minimize the

amount of preprocessing, there is one preprocessing technique utilized: normalization. Three types

of normalization techniques are explored: the lack of normalization, normalization per event epoch,

and normalization of the entire signal. Normalization is performed via the Z-Score method shown

in Equation 4.1. An example of a normalized signal epoch is shown in Figure 4.2.

xnorm =
x− x̄
σ

(4.1)

4.3 Feature Extraction

Due to the nature of EEG signals, it is possible to extract a bevy of features for further processing.

Feature extraction is necessary in order to quantify patterns of activity in the signal. Based on a

survey of the literature, there are three feature extraction techniques explored, two of which based

on power spectral density (PSD), and one based on differential entropy.

PSD is employed in two different ways: binned by 1 Hz and binned by wave band. The SciPy

implementation of Welch’s method is used. By using the sample rate value as the number of segments

for the FFT calculation, the result of Welch’s method has a spectral resolution of 1 Hz. The subset

of this result representing the 0-50 Hz frequency range is stored for each epoch. Therefore, for each

electrode considered, 51 features are outputted. Figure 4.3 shows a Welch’s method output of the

EEG signal shown in 4.2. To extract the binned PSD features, all the respective PSD values for each
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Figure 4.2: An 8 second epoch of an EEG signal on the C3 electrode with Z-score normalization.
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Figure 4.3: An example of the output from Welch’s method. The large, 60 Hz spike demonstrates
the importance of implementing a 60-Hz notch filter to reduce environment noise.

frequency band are summed according to Table 2.1 to output five total features for each electrode,

one for each frequency band.

To perform differential entropy, the raw EEG signal is fed into five different 2nd-order Butterworth

band-pass filters, each corresponding to a frequency band defined in Table 2.1. The output of each

of these filters is fed into the differential entropy function to generate five features for each EEG

electrode, one for each frequency band. A visualization of this workflow for differential entropy

feature extraction is presented in Figure 4.4. Both the Butterworth filter and differential entropy

function are implemented by SciPy.
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Figure 4.4: A visualization of differential entropy implementation workflow.
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Figure 4.5: A visualization of k-fold validation on logistic regression optimizing C.

4.4 Machine Learning

Now that normalization and feature extraction has been discussed, machine learning is employed

to perform the classification task of distinguishing states of movement from states of rest using the

extracted features. As part of training each explored machine learning algorithm, 70% of the EEG

epochs are used for training and 30% of the EEG epochs are used for validation such that no epoch

is in both the training and validation set. This allows the created models to be tested for efficacy

on unseen data. The following paragraphs discuss the hyperparameter searching process for each

classifier used.

For logistic regression, a univariate grid search was performed on the parameter C for values 2x for

15 ≤ x < 35. A visualization of this process is shown in Figure 4.5.

Comparisons are conducted for accuracies achieved by singular value decomposition (SVD), least
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Figure 4.6: A visualization of k-fold validation on näıve Bayes classification optimizing
var smoothing

.

squares (LSQR), and eigen solvers for LDA. Although all models demonstrated similar accuracies,

SVD is chosen since it does not compute the covariance matrix, and therefore takes less time to

run.

For näıve Bayes classification, a Gaussian implementation was used due to the Gaussian nature of

epoched EEG data [10]. A parameter representing the variance (termed var smoothing) is varied

by 10x for −15 ≤ x < 0. A visual representation of search results is shown in Figure 4.6.

For KNN, the number of neighbors that the classifier considered is varied for 3 ≤ n neighbors < 10.

A visual representation of search results is shown in Figure 4.7.

For decision trees, the parameter min weight fraction leaf is empirically determined to be 0. A
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Figure 4.7: A visualization of k-fold validation on KNN optimizing n neighbors.
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Figure 4.8: A visualization of k-fold validation on decision trees optimizing min samples split and
max depth.

grid search is performed to optimize the parameters min samples split and max depth. min samples split

is varied for 2 ≤ x < 11 and max depth is varied for 2 ≤ x < 30. A visualization of this result is

shown in Figure 4.8. An example of a trained decision tree is shown in Figure 4.9.

For random forests, min samples leaf is empirically determined to be 1, max features to be sqrt,

and max depth to be 30. A grid search is performed for min samples split and n estimators.

min samples split is varied for 2 ≤ x < 5 and n estimators is varied over the set 5n for 5 ≤ n < 21.

A visualization of this result is shown in Figure 4.10. The average feature importances of the trained

random forests for each subject are shown in Table 4.2. Feature importance is calculated by taking

each feature’s average depth of use and weighing the average out of one relative to the other features’

depths. The earlier a feature is used in a tree, the more important it is considered.
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Figure 4.9: A decision tree created from training Subject 0028.

C3 C4
Subject # Delta Theta Alpha Beta Gamma Delta Theta Alpha Beta Gamma

28 0.111 0.110 0.065 0.039 0.029 0.234 0.168 0.136 0.039 0.069
29 0.103 0.051 0.043 0.030 0.032 0.242 0.272 0.120 0.039 0.066
40 0.021 0.057 0.099 0.259 0.113 0.003 0.027 0.080 0.217 0.124
41 0.130 0.146 0.084 0.068 0.044 0.120 0.083 0.066 0.187 0.071
42 0.161 0.118 0.113 0.068 0.076 0.097 0.093 0.136 0.060 0.080
43 0.121 0.183 0.082 0.048 0.086 0.138 0.088 0.093 0.084 0.077

Table 4.2: The average feature importance out of one for each feature over each subject.
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Figure 4.10: A visualization of k-fold validation on random forests optimizing min samples split

and n estimators.
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Figure 4.11: A visualization of k-fold validation on SVM optimizing C and γ.

For SVM, the radial basis function kernel is used with a grid search performed on C and γ, where

C is varied by 2C for 0 ≤ C < 21 and γ is varied by 2γ for −12 ≤ γ < 25. A visualization of this

result is shown in Figure 4.11.

For AdaBoost, n estimators is varied by 25x for 8 ≤ x ≤ 16, and using SVM, näıve Bayes, and

decision trees are contrasted as the base estimator. A visual representation of this search result is

shown in Figure 4.12.

For voting classifiers, an ensemble of pre-trained models for SVM, logistic regression, LDA, decision

trees, random forests, näıve Bayes, and KNN is created. One hard voting classifier and four soft

voting classifiers are utilized. Soft voting classifiers used the following weight methods: uniform

weights, weights determined by the individual models’ training set accuracy (termed Training Set

Weights), weights predetermined based upon predicted performance (termed Discrete Weights), and
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Figure 4.12: A visualization of k-fold validation on AdaBoost optimizing n estimators and con-
trasting the base estimator.
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Model Discrete Global
Support Vector Machine 3 0.727

Logistic Regression 1 0.598
Linear Discriminant Analysis 2 0.711

Decision Trees 1 0.729
Random Forests 3 0.791

Näıve Bayes 2 0.675
K-Nearest Neighbors 2 0.722

Table 4.3: The weights used for Discrete and Global Accuracy voting classifiers.

weights predetermined based upon empirical global accuracy of all models within the ensemble

(termed Global Accuracy Weights). The Discrete and Global Accuracy weights are shown in Table

4.3.

4.5 Live Analysis

To perform live analysis of EEG data, an OpenBCI EEG headset (Cyton+Daisy 16 Channel data

acquisition with Ultracortex Mark IV headset, pictured in Figure 4.13) [42] is procured, and a

program is created to display and analyze the live data using Python, Matplotlib, and OpenBCI’s

API called Brainflow [7].

The OpenBCI headset workflow is comprised of three components: the USB dongle, the on-headset

transmitter, and the on-headset data acquisition chip. The USB dongle and on-headset transmitter

communicate via Bluetooth connection. The data acquisition chip samples the full set of 16 EEG

channels at 125 Hz, or eight EEG channels at 250 Hz.

The program is a multi-processed application: one process to update raw, normalized, and filtered

data buffers, one process for each EEG channel to perform FFTs on the respective electrode signal,

one process to perform classification using a saved model as well as the data stored in the raw buffer,

and one process to update a visualization with the newly procured data. The program presents a

plot illustrating the filtered C3 and C4 electrode signals, two spectrograms (one for each electrode),

and a bar chart showing the probability of the current state of movement. A picture of the program

showing live data is pictured in Figure 4.14.

The data acquisition process actively prompts the OpenBCI headset for any newly acquired data.
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Figure 4.13: A picture of the assembled Cyton+Daisy Board with Ultracortex Mark IV headset
from OpenBCI.
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Figure 4.14: A picture of the GUI created in Python to assist in live data analysis.

For a packet of data to be sent to the USB dongle, the circular buffer on the data acquisition chip

must contain at least 60 samples. When operating at 125 Hz, packet acquisition and transmission is

limited to 0.48 seconds, which in turn limits the update rate of the live data plot. The data buffers

are set to hold 16 seconds of data (4,000 samples for 2 channels). The raw data are passed through

a 2nd-order Butterworth band-stop filter centered at 60 Hz with a 4 Hz width to reduce influences

from the United States power system, then are passed through a 2nd-order Butterworth band-pass

filter with a 22.5 Hz center and 17.5 Hz width. This band-pass filter covers 5-50 Hz. This result

is stored in the filtered data buffer. This filtered data buffer is what is displayed on the program.

While the data buffers contain 16 seconds of data, only four seconds of data are displayed at a single

interval. This difference is due to the fact that normalization over the entire signal instead of an

epoch of movement achieved higher accuracy on average. While this is not normalization of the

entire signal, it acts as an approximation of one.

The spectrogram calculation processes are the same for the C3 and C4 electrodes. The last second

of samples on the electrode is acquired, and an FFT is calculated using FFTW 3.0 [16] using either

125 or 250 samples (depending on whether the OpenBCI headset is operating under 8 channel mode

or 16 channel mode). The result of this is sent to another buffer storing the last 20 FFT results in

a grid in order to generate the spectrogram.
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Live classification is performed by first loading a binary file that contains a model that has been

pre-trained on the subject wearing the OpenBCI headset using a preliminary training data collection

script. The script prompts the user to perform a series of left arm flexions, right arm flexions, and

rests over several iterations using the OpenBCI headset to collect annotated data. This annotated

data is then processed for normalization, feature-extracted using binned PSD output, then fed to

a random forest classifier. While the program is running, normalization occurs over the raw data

buffer, and the last four seconds are used to extract binned PSD features, which are then fed into

the pre-trained model. The calculated probabilities for each class are saved to a buffer that the

animation process reads and displays via a bar chart.
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Chapter 5

Results

For all the following tables, SVM corresponds to support vector machines, LR corresponds to logistic

regression, LDA corresponds to linear discriminant analysis, DT corresponds to decision trees, RF

corresponds to random forests, NB corresponds to naı”ve Bayes, KNN corresponds to k-nearest

neighbors. Table 5.1 shows the average accuracy percentages of the different normalization methods

across all classifiers. Please note that all accuracies depicted are the classification accuracies on

the validation set and no samples in the validation set are used to train any of the models. On

average, performing normalization over the entire signal outperforms the lack of normalization and

normalization per event epoch. A table of standard deviations is shown in Table 5.2. Due to the

higher accuracy performance of normalization over the entire signal, this normalization method is

selected.

Table 5.3 depicts the accuracy percentages of different feature extraction methods against the clas-

sifier methods with normalization over the entire signal. PSD binned (PSDBIN) by the frequency

Norm SVM LR LDA DT RF NB KNN Average
None 45.910 45.455 84.089 45.455 45.455 83.181 75.682 60.747
Epoch 43.408 40.872 84.773 44.772 45.680 82.044 77.274 59.832

All 87.954 54.091 88.410 87.045 89.091 84.773 84.547 82.273

Table 5.1: The average accuracy percentages of varying normalization methods and classifiers in 10
trials on Subject 0029.
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Norm SVM LR LDA DT RF NB KNN Average
None 7.859 6.062 5.868 6.062 6.062 4.177 5.254 5.906
Epoch 5.298 13.828 3.039 5.031 5.911 4.210 5.463 6.111

All 4.675 19.605 5.815 5.362 3.354 3.869 5.947 6.947

Table 5.2: The standard deviations of varying normalization methods and classifiers in 10 trials on
Subject 0029.

Feature SVM LR LDA DT RF NB KNN Average
PSD 85.455 44.771 75.911 80.455 87.272 83.181 82.501 77.078

PSDBIN 87.954 54.091 88.410 87.045 89.091 84.773 84.547 82.273
DE 69.590 66.363 66.364 62.728 68.636 66.817 67.499 66.857

Table 5.3: The average accuracy percentages of varying feature extraction methods and classifiers
in 10 trials on Subject 0029.

band (delta, theta, alpha, beta, and gamma) outperforms PSD binned by 1 Hz and differential

entropy. A table of standard deviations for each average is shown in Table 5.4. Binning the PSD

output by frequency band is selected as the primary feature extraction method due to its high

performance.

Table 5.5 depicts the average accuracy percentages with normalization over the entire signal and

binning PSD by frequency band for feature extraction using traditional classification methods. De-

cision trees, SVM, and KNN achieve the highest accuracy, followed by LDA. Logistic regression

demonstrates the lowest accuracy. The standard deviations for these averages are shown in Table

5.6. SVM, Näıve Bayes, and KNN demonstrate the lowest standard deviation of all these methods,

illustrating their high consistency.

Table 5.7 depicts the average accuracy percentages for the ensemble classification methods. Ran-

dom forests demonstrate the highest classification accuracy, followed by all the voting classifiers,

with AdaBoost classifying at the lowest accuracy, though not as poorly as logistic regression. The

standard deviations for these averages are shown in Table 5.8. Each ensemble classifier demonstrates

similar standard deviations, with the voting classifiers exhibiting the lowest standard deviations, and

Feature SVM LR LDA DT RF NB KNN Average
PSD 3.892 4.552 6.620 5.689 3.069 2.874 5.362 4.580

PSDBIN 4.675 19.605 5.815 5.362 3.354 3.869 5.947 6.947
DE 11.907 4.391 5.226 7.816 7.091 3.740 4.916 6.441

Table 5.4: The standard deviations of varying feature extraction methods and classifiers in 10 trials
on Subject 0029.
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Subject SVM LR LDA DT NB KNN
0028 86.364 83.636 80.910 80.453 83.863 87.047
0029 87.954 54.091 88.410 87.045 84.773 84.547
0040 77.501 43.635 78.410 69.770 65.000 71.817
0041 71.590 71.363 75.000 73.862 69.772 69.999
0042 52.223 55.001 50.278 60.557 51.112 58.052
0043 60.344 51.033 53.792 65.863 50.690 61.724

Average 72.663 59.793 71.133 72.925 67.535 72.198

Table 5.5: The average accuracy percentages of varying subjects and traditional classifiers in 10
trials.

Subject SVM LR LDA DT NB KNN
0028 4.908 3.520 3.891 4.443 3.293 3.562
0029 4.675 19.605 5.815 5.362 3.869 5.947
0040 4.963 4.121 6.449 7.111 8.173 3.894
0041 6.269 7.437 8.902 5.593 6.608 8.559
0042 8.959 6.778 11.672 6.903 4.935 7.235
0043 6.349 9.022 6.338 10.338 8.454 6.594

Average 6.021 8.414 7.178 6.625 5.889 5.965

Table 5.6: The standard deviations of varying subjects and traditional classifiers in 10 trials.

AdaBoost exhibiting the highest standard deviation.

Table 5.9 shows a ranking of all classifiers sorted by their average accuracy.

A table of training time for all the classification methods is shown in 5.10. Random forests demon-

strate the highest accuracy as well as a relatively low standard deviation, but take the longest time

to train. The act of performing classification was instantaneous.

Training a random forest classifier using the preliminary training data collection script with the

OpenBCI headset achieves an 85% accuracy. While this accuracy is promising, external factors

Subject RF
Vote

Trained
Vote

Discrete
Vote

Global
Vote

Uniform
Vote
Hard

AdaBoost

0028 85.909 85.455 85.000 85.455 85.456 84.545 83.182
0029 89.091 88.638 89.546 88.865 88.865 88.864 82.047
0040 75.908 80.683 80.000 80.456 80.001 81.137 63.864
0041 81.138 82.046 83.183 82.274 82.501 82.955 78.408
0042 67.779 60.001 60.833 60.834 60.277 56.655 68.055
0043 74.483 60.690 63.796 61.725 62.415 62.757 65.943

Average 79.051 76.252 77.060 76.601 76.586 76.152 73.583

Table 5.7: The average accuracy percentages of varying subjects and ensemble classifiers in 10 trials.
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Subject RF
Vote

Trained
Vote

Discrete
Vote

Global
Vote

Uniform
Vote
Hard

AdaBoost

0028 2.407 2.668 2.874 2.668 3.069 2.088 4.571
0029 5.295 4.008 3.585 3.625 3.625 4.072 6.814
0040 4.545 3.901 3.354 4.178 4.121 4.552 7.533
0041 5.670 4.726 6.445 4.768 4.916 5.277 4.578
0042 3.940 7.314 9.923 10.430 10.231 7.188 6.834
0043 13.084 8.160 6.348 8.038 8.361 9.451 7.662

Average 5.823 5.130 5.422 5.618 5.720 5.438 6.332

Table 5.8: Standard deviations of varying subjects and ensemble classifiers in 10 trials.

Rank Classifier Accuracy
1 Random Forest 79.051
2 Voting - Discrete Weights 77.060
3 Voting - Global Accuracy Weights 76.602
4 Voting - Uniform Weights 76.586
5 Voting - Training Set Weights 76.252
6 Voting - Hard 76.152
7 AdaBoost 73.583
8 Decision Trees 72.925
9 Support Vector Machines 72.663
10 K-Nearest Neighbors 72.198
11 Linear Discriminant Analysis 71.133
12 Näıve Bayes 67.535
13 Logistic Regression 59.793

Table 5.9: A ranking of all tested methods with their averages over all the subjects’ data.

Classifier Seconds
Support Vector Machines 4.5025

Logistic Regression 0.254
Linear Discriminant Analysis 0.0011

Decision Trees 1.0251
Random Forests 12.9011

Näıve Bayes 0.0008
K-Nearest Neighbors 0.0573

AdaBoost 9.289

Table 5.10: The average training time of 100 samples in 10 trials. Timings were performed on an
11th Gen Intel(R) Core(TM) i7-1165G7 processor at 2.80GHz with 16 GB RAM in serial processing.
The voting classifier is not listed as it uses pre-trained models.

45



between the training and live GUI use lead to inconsistent live performance. At rest, the model

rapidly oscillates between predicting movement and rest. At movement, the model still oscillates

between the two predicted states, but has higher confidence in movement on average.
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Chapter 6

Conclusions and Discussion

6.1 Conclusions

Extracting data via PSD binned by frequency bands with a fully normalized signal achieves the

highest classification performance. Additionally, the random forest classifier demonstrates the high-

est accuracy with 79.1% over all the subjects’ data used, where logistic regression demonstrates the

lowest accuracy at 59.8%. The random forest classifier also demonstrates one of the lowest stan-

dard deviations at 5.961, which is comparable to näıve Bayes, the classifier with the lowest score

(5.889). Random forests performed well because the several decision trees used will focus on varying

features, allowing all of the features to be fully considered. As many trees are developed, certain

features will naturally be considered more important than others, which effectively weights the fea-

tures. Logistic regression performed poorly due to the high dimensionality of the input data and

undersampling.

Comparing to the results in the literature, logistic regression performed poor in comparison to the

other classifiers (59.8% accuracy), which was expected due to the results from the implementation by

Yong and Menon [53]. The researchers do not attribute a specific accuracy to logistic regression, but

state that in only 9.5% of the time, logistic regression outperforms linear discriminant analysis (LDA)

and support vector machines (SVMs). The performance of LDA (at 71.1% accuracy) was within
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reason from the accuracies reported by Yong and Menon (75-81% accuracy) [53] and Rodrigo et.

al. (64-68% accuracy). SVM performed within reason (at 72.7% accuracy) compared the accuracies

depicted by Yong and Menon (75-81% accuracy) [53] and Bentlemsan et. al. (66% accuracy), but

not as well as the implementation done by Mebarkia and Reffad, in which a single SVM and an

ensemble of three SVMs achieved 90% and 94% accuracy, respectively [39]. It is believed that this

large improvement in Mebarkia and Reffad’s classifier is due to the fact that the researchers sought

to classify left hand motor imagery from right hand motor imagery compared to the movement and

rest classification performed in this thesis. It is hypothesized that left hand motor imagery and

right hand motor imagery have a far larger difference in neuronal behavior than either left hand

motor imagery from rest or right hand motor imagery from rest. The random forest trained in this

thesis achieved a 79.1% accuracy, which is comparable to the implementation by Bentlemsan et.

al. which achieved an accuracy of 80% [4]. The voting classifiers trained in this thesis achieved an

accuracy range of 76.2-77.1% which is not as strong as the voting classifier created by Khrishna et.

al. (86% accuracy) [31]. Similar to the dataset used by Mebarkia and Reffad [39], the dataset used

by Khrishna et. al. classifies motor imagery in right arm, left arm, right foot, and left foot without

any consideration of rest, which may explain the stronger performance. The AdaBoost classifier

trained as part of this thesis achieved an accuracy of 73.6% using decision trees as the classifier base,

which is very comparable to the AdaBoost classifiers trained by Gao et. al. which for an SVM base

and LDA base achieved an accuracy of 74% and 72% respectively [17].

It is demonstrated that live classification can be achieved although with varying results. Even though

the training script achieves high training set accuracy, live classification tends to favor movement

rather than rest. When movement occurs, there is an increase in probability of the movement state,

but movement is already the predicted class. It is hypothesized that between training the model

and executing the live GUI, there are external factors that change, skewing the results (e.g., the

electrode orientation on the head and the electrode contact quality).

6.2 Future Work

A more robust analysis of using Convolutional Neural Networks (CNNs) and Long-Short Term

Memory (LSTM) models would be useful since they were implemented with poor results during this
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project. The model described by Lun et. al. was recreated and trained on the Physionet database,

the same as in the paper [36]. In order to overfit the model on a subset of 10 subjects in that dataset,

two convolutional and pooling layers had to be removed, otherwise the training accuracy was always

limited to at random. It is believed that there are hyperparameters that were not discussed in the

paper that would lead to higher training and validation performance.

Due to the ability to perform live classification on EEG data, albeit unrefined, the developed program

and feature extraction workflow could be used to contribute to a transcranial direct current stimula-

tion (tDCS) device that factors in current movement state of a Parkinson’s disease or chronic stroke

patient to administer proper tDCS dosage. Since the proposed device would need to be portable,

using a small form factor computing device such as a Raspberry Pi would be preferred. All of the

classifiers were able to perform classification instantaneously on the testing computer and all of

the code is written in Python (a cross-platform language), therefore it is possible to perform these

algorithms on a Raspberry Pi. The main difficulty would be to perform training quickly, as random

forests and AdaBoost took 12.9 and 9.3 seconds to train on the testing computer, respectively. If

deep learning were to be used, it may be difficult to perform this workflow on the Raspberry Pi

due to the absence of a general-purpose graphics processing unit (GPGPU). GPGPUs allow for

high throughput linear algebra computation which is necessary for training and using deep learning

algorithms in a timely manner. While the Raspberry Pi lacks this technology at the time of writing,

there are several mobile devices that have this architecture, such as the NVIDIA Jetson and new

smartphones. Using an NVIDIA Jetson or Raspberry Pi as a wearable device for the proposed device

is bulky, but due to the fact that the OpenBCI headset uses Bluetooth transmission, an app on a

smartphone may suffice for an external processing unit.

Since several physical factors may be an issue for the live classification of movement state, simplifi-

cation of the headset may be useful to reduce environment variability. For instance, the OpenBCI

headset has support for 16 channels, however only two were considered for this research. Simplifying

the number of electrodes would allow for a less cumbersome headset apparatus that makes better

contact with the scalp and may better fit the skull.
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