
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

12-2021 

Intelligent Resource Prediction for HPC and Scientific Workflows Intelligent Resource Prediction for HPC and Scientific Workflows 

Benjamin Shealy 
btsheal@clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

 Part of the Bioinformatics Commons, Data Science Commons, and the Numerical Analysis and 

Scientific Computing Commons 

Recommended Citation Recommended Citation 
Shealy, Benjamin, "Intelligent Resource Prediction for HPC and Scientific Workflows" (2021). All 
Dissertations. 2956. 
https://tigerprints.clemson.edu/all_dissertations/2956 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2956?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Intelligent Resource Prediction for HPC and
Scientific Workflows

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

Benjamin Thomas Sherman Shealy

December 2021

Accepted by:

Dr. Melissa Smith, Committee Chair

Dr. Jon Calhoun

Dr. Frank Feltus

Dr. Adam Hoover



Abstract

Scientific workflows and high-performance computing (HPC) platforms are critically im-

portant to modern scientific research. In order to perform scientific experiments at scale, domain

scientists must have knowledge and expertise in software and hardware systems that are highly com-

plex and rapidly evolving. While computational expertise will be essential for domain scientists going

forward, any tools or practices that reduce this burden for domain scientists will greatly increase the

rate of scientific discoveries. One challenge that exists for domain scientists today is knowing the

resource usage patterns of an application for the purpose of resource provisioning. A tool that ac-

curately estimates these resource requirements would benefit HPC users in many ways, by reducing

job failures and queue times on traditional HPC platforms and reducing costs on cloud computing

platforms. To that end, we present Tesseract, a semi-automated tool that predicts resource usage for

any application on any computing platform, from historical data, with minimal input from the user.

We employ Tesseract to predict runtime, memory usage, and disk usage for a diverse set of scientific

workflows, and in particular we show how these resource estimates can prevent under-provisioning.

Finally, we leverage this core prediction capability to develop solutions for the related challenges of

anomaly detection, cross-platform runtime prediction, and cost prediction.
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Chapter 1

Introduction

Artificial intelligence (AI) is a technological dream of humanity with a long history in both

science and fiction. And yet, AI has manifested itself somewhat differently than expected. Whereas

the common image of AI is a robot with human-level intelligence, modern AI exists primarily as

software tools for humans. Whereas the greatest fear of AI is that it might outsmart, enslave, and

destroy humans, the actual danger of modern AI is that humans might use it to outsmart, enslave,

and destroy each other. Here are some prominent examples of modern AI systems:

• A vehicle equipped with AI can monitor the driver and alert them if they fall asleep, or watch

out for potential collisions, or perform a parallel park [46]

• A medical imaging tool equipped with AI can help a radiologist identify tumors by extracting

the images that are most likely to contain tumors [64]

• Recommendation systems based on AI models can curate content from a virtually endless

collection of websites, images, videos, music, and products based on user preferences [15]

To summarize, AI technology in its current form is human-centered and data-driven. It is enabled

by the fact that humans generate data with every action they take, and it is designed to aid humans

in their everyday lives. It is with this paradigm that we consider the potential for AI in scientific

research – how can AI be used to aid scientists and engineers in their work?

In the past two decades, scientific research (as well as many other domains) has been trans-

formed by the emergence of three phenomena – machine learning, big data, and high-performance
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computing (HPC). Recent advances in machine learning were enabled by (1) the increased avail-

ability of computational resources, which reside primarily in HPC and cloud platforms, and (2) the

massive amount of training data that is generated by devices, ranging from smartphones to DNA

sequencers, that become cheaper and more commonplace each year. As a result, the HPC platform

has itself become a scientific instrument that complements traditional lab equipment, as scientists

create increasingly complex workflows to extract insights from large datasets. These computational

experiments require a great deal of computational expertise, especially as experiments become large,

and domain scientists are struggling to close the gaps they have in this kind of knowledge. Thus

the usability of data-intensive scientific workflows is a major bottleneck to scientific progress today,

and while computational expertise will continue to become a necessary skill for domain scientists,

anything that simplifies the process of science experiments at scale will ultimately increase the rate

of scientific discovery.

One of the greatest challenges with data-intensive computing is knowing the amount of re-

sources that are required, such as CPU-hours, GPU-hours, memory, storage, and I/O bandwidth.

Understanding the resource usage patterns of an application is critical when using large-scale com-

puting platforms. Users must request the resources that they need for an experiment, and there

are pitfalls to both under-provisioning and over-provisioning. On shared HPC platforms such as

university clusters, over-provisioning may increase the time that the job is waiting in the queue, and

under-provisioning may cause the job to fail. On cloud platforms such as Amazon Web Services

(AWS) and Google Cloud Platform (GCP), there are no queue times or walltime limits because

resources are highly available, but there are significant financial risks related to incorrectly provi-

sioning and budgeting for cloud resources. Thus the lack of knowledge about resource usage patterns

is a hindrance on HPC platforms and a major setback on cloud platforms. These challenges are mul-

tiplied for scientific workflows with multiple steps, where each step may have very different resource

requirements. Workflow managers such as Nextflow [14] greatly reduce the burden of executing

scientific workflows, but they do not assist users in resource provisioning. An accurate resource

prediction tool would confer significant benefits to users simply by addressing the aforementioned

problems. Many studies have found that accurate runtime estimates do lead to shorter queue times

for users [9, 36, 20, 19, 61]. Having an estimate of runtime would allow the user to better plan

future experiments and to tell when a job has been running for too long and should be cancelled.

Furthermore, resource estimates could be combined with the cost information of a cloud platform

2



to estimate the end-to-end cost of running an experiment in the cloud, which would be extremely

valuable when applying for a grant.

Resource prediction has received moderate research attention with promising results, but

few studies have translated into usable tools for real users. We believe this gap between research

and application is largely due to the complexity and heterogeneity of modern computing platforms,

as well as the understandable lack of computational expertise among domain scientists. It is very

difficult to develop applications that work and perform consistently across many different platforms,

and harder still to develop tools to understand the behavior of such applications. The biggest

institutions and the biggest software projects can bring on the technical expertise that is required

to do this kind of work, but the majority of scientists must rely on themselves and their peers to

perform their computational experiments successfully. To that end, we present Tesseract, a tool that

provides intelligent resource prediction for any application, on any computing platform, and can be

used by experts and non-experts alike. In this dissertation, we demonstrate the use of Tesseract

with a number of real scientific workflows on three different computing platforms, and we focus

specifically on how Tesseract helps to prevent under-provisioning.

The remainder of this dissertation is organized as follows. Chapter 2 provides background

information on machine learning and scientific workflows, as well as a review of current research

on resource prediction. Chapter 3 introduces Tesseract, the resource prediction tool, and describes

the research and experiments that were done to validate Tesseract. Chapter 4 provides results and

related discussion for the experiments described in Chapter 3. Finally, Chapter 5 concludes and

describes future directions that are beyond the scope of this work.

3



Chapter 2

Background and Related Work

In this chapter, we will discuss several topics which provide background for this work. We

will discuss machine learning concepts, including the structure and role of datasets, machine learning

models, training, and evaluation. We will also discuss scientific workflows, including the general

definition of a workflow, workflow management systems, and the emergence of scientific workflows

in particular. Finally, we will review the existing literature on resource prediction methods for

scientific workflows and HPC applications, including analytical modeling, empirical modeling, and

other related efforts.

2.1 Machine Learning

Machine learning is a subset of artificial intelligence (AI) which has experience significant

success and growth in the past two decades. While artificial intelligence pertains generally to the

ability of machines to perform tasks that are considered “intelligent,” machine learning specifies

a framework in which a computer algorithm uses data to learn how to perform a task (see also

“statistical learning theory”). More formally, a machine learns from some data D to perform some

task T if its performance at T , as measured by some performance metric P , improves with D [40].

This definition encapsulates each of the key elements of a machine learning system. That is, to create

a machine learning system in practice, we define the task T we would like to perform, we develop

a model (the machine), we train the model using a dataset D to perform the task T , and then we

evaluate our model using a performance metric P . Figure 2.1 provides a visual description of this

4



Figure 2.1: High-level diagram of a machine learning system, based on Arthur Samuel’s original
description and taken from the fastai book [29].

process. In this section, we will discuss each of these elements and how they play an important role

in a machine learning system.

AI applications have a tendency to be excluded from the definition of AI over time as

they become well established; for example, optical character recognition and any predictive system

based on linear models. In contrast, applications such as autonomous driving, natural language

understanding, and reinforcement learning agents for video games, are all considered to require AI

capabilities. These applications fall under the broader long-term goal of artificial general intelligence

(AGI), in which a machine is able to learn any task that a human can. While AGI represents the

common view of AI as a distant technological dream, there are already many applications today

which use AI, such as the applications used above. Even though optical character recognition and

linear regression are generally not considered to be AI, and indeed they existed long before the

modern prevalence of machine learning, they are based on the same principles as the most advanced

AI systems of today. In fact, linear regression and logistic regression can be understood as two of

the simplest illustrations of a machine learning system, as we will soon see.

2.1.1 Models

The model is the representation of the “machine” in machine learning. In mathematical

terms, any machine learning model can be defined as follows:

y = f(x; θ)

In other words, a machine learning model is a function f which maps some input x to an output y.

The values x and y are determined by the dataset and the desired task. The distinguishing aspect
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of a machine learning model is that it also takes as input a set of parameters θ, which allows the

model to be adjusted to suit the desired task. Examples of commonly-used machine learning models

include decision trees, k-means clustering, k-nearest neighbors, linear regression, neural networks,

principal component analysis, and support vector machines.

2.1.2 Datasets

Data is the foundation of any machine learning task; a machine learning model cannot learn

without data. Datasets contain the inputs and outputs that are used to train and evaluate machine

learning models. Datasets are typically classified as either structured or unstructured. Structured

data is essentially tabular data, which can be organized into a spreadsheet or relational database,

while unstructured data is everything else.

An example of a structured dataset is the Iris dataset, which contains 150 samples from three

different species of Iris flowers, where each sample consists of four measurements of an individual

flower. This dataset can be represented as a table with 150 rows and 5 columns, and it is often

used as an example of a classification task – predict the species of an Iris flower from the four

measurements.

An example of an unstructured dataset is the ImageNet database, which contains more than

14 million images across more than 200,000 categories. This database is one of the most popular

benchmarks for computer vision research, but it is not very usable in its raw form. Instead, it is

typical to extract a subset of images for a small set of categories and resize them to a uniform size

so that they can be easily fed into a machine learning model.

These examples highlight the fact that it is generally much easier to train a machine learn-

ing algorithm with structured data. Unstructured data, in some cases, can be processed using more

advanced machine learning techniques, however the more common approach is to transform the un-

structured data into a structured format via feature extraction. Thus the choice of feature extraction

techniques tend to be critically important in designing a machine learning system.

2.1.3 Training

Training is the process of tuning the parameter set θ of a model to learn a mapping f : x → y

which best fits the dataset. The majority of machine learning models are trained using a loss

6



function, a function that quantifies the amount of error (or loss) in the model’s predictions, and an

optimizer, an algorithm that iteratively updates the parameter set θ in order to minimize the loss

function. In essence, the loss function defines what the goal is, and the optimizer defines how to

achieve the goal. From this perspective it is clear that the desired task or objective should translate

directly to the loss function, since the loss function directly determines what the model will learn

to do. Some examples of loss functions include mean squared error, mean absolute error, and cross-

entropy. Some examples of optimizers include stochastic gradient descent (SGD), Adagrad, and

Adam.

When the dataset has labels, the training process is supervised, which means that the loss

function can compare the model’s predictions to the labels (or the ground truth) in order to quantify

the error. When the dataset does not have labels, the training process is unsupervised, which means

that the loss function has no ground truth with which to evaluate the model’s predictions and

must instead use other metrics. Supervised learning problems are generally divided into regression

problems and classification problems. Regression problems involve predicting a continuous variable,

while classification problems involve predicting a discrete variable. Some examples of a supervised

learning problem include predicting the price of a house (regression) or deciding whether or not

an email is spam (classification). An example of an unsupervised learning problem is identifying

clusters in a dataset of size measurements in order to determine the most optimal sizes for a T-shirt

or other article of clothing.

Given a labeled dataset, it is possible to use supervised or unsupervised training. For

example, a logistic regression model could be trained to classify the labeled data, or a k-means

clustering model could be used to cluster the data, while using the labels after the fact to validate

the clustering results. The choice depends on the relative usefulness of the labels; while labels

provide a tangible performance metric, they can also introduce bias if they are unreliable, in which

case it may be better to simply allow the data to “speak for itself.” Additionally, any regression

problem can be transformed into a classification problem, and vice versa, simply by modifying the

output variable and the training objective accordingly. For example, the aforementioned regression

problem for housing prices could be transformed into a classification problem by defining a set of

price ranges and classifying which price range or “bin” a house falls into.

Prior to training, the dataset is split into two subsets, the training set and test set. The

test set is withheld during training as it will be used to evaluate the trained model. The training

7



process itself is an iterative process of using the model to make predictions on the training data,

using the loss function to compute the error, and then using the optimizer to update the model in

order to minimize the error.

The training process described here does not hold for all machine learning algorithms. In

reality, training manifests in slightly different ways for different algorithms. For some algorithms,

such as principal component analysis, the model parameters can be computed directly rather than

iteratively. Similarly, for k-nearest neighbors there is really no training process because the model

simply uses the training data to make predictions. Our description of training is most accurate

for neural networks, however we believe that this description forms a good baseline from which to

understand other machine learning models.

2.1.4 Evaluation

Evaluation is the process of measuring how well a trained model performs on unseen data.

During this phase, the test set which was withheld during training is fed into the model, the model’s

predictions are compared to the ground truth, and an evaluation metric is used to give the model

a score. Some common metrics include accuracy (for classification models) and relative error (for

regression models). Additionally, any loss function can also be used as an evaluation metric.

The purpose of the evaluation phase is to determine whether the trained model has learned

a general pattern from the training data. For example, if a model was trained on a subset of points

on a curve, we can evaluate whether the model learned the entire curve by giving it inputs that it

has not seen before and observing whether the output matches the ground truth. The ability of a

model to learn a general pattern from relatively few examples is called generalization, and it is a

primary goal of any machine learning system. Therefore it is of critical importance that the test set

is not used in any way to train the model, so that it can be used as unseen data during evaluation.

2.1.5 An Example: Logistic Regression

One of the simplest illustrations of a machine learning algorithm is logistic regression (see

Figure 2.2). The logistic regression model predicts an output y from an input x by taking a weighted

sum of the inputs:

y = σ(wTx+ b), σ(x) =
1

1 + e−x
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Figure 2.2: Depiction of a logistic regression model, which is also equivalent to a single artificial
neuron, taken from Stanford’s CS231n course [21].

(a) Random Forest [32] (b) Neural Network [21]

Figure 2.3: Diagrams of two widely-used machine learning models, random forest and neural network.
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Figure 2.4: Plot of the 20 most popular workflow managers in terms of Github Stars (collected
January 2020).

In this model, the parameter set θ consists of the weights w and biases b. Since this model is differen-

tiable, it can be trained by gradient descent or any other gradient-based optimization algorithms. In

fact, the globally optimum parameter set for logistic regression can be computed directly for a given

dataset, but the same is not true for most other machine learning algorithm. Despite the name,

logistic regression is actually a classification model. In fact, logistic regression may be understood

as the classification analog to linear regression:

y = wTx+ b

Logistic regression is also equivalent to a single artificial neuron with sigmoid activation. Similarly,

linear regression is equivalent to an artificial neuron with linear activation.

2.2 Scientific Workflows

A workflow is a set of tasks arranged as a directed acyclic graph (also called the task graph),

in which an edge represents a dependency of one task by another. A workflow management system

(WMS) is an application that executes and monitors workflows. In other words, a WMS maps a

task graph to an execution environment, which could be a desktop or an HPC cluster or a cloud

platform, for example.

The history of workflow management systems is complex because workflows can be found

in many fields, including:
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• Business processes (purchase orders, safety operations, etc)

• Build automation (Make)

• Package management (apt, yum, etc)

• Continuous integration, deployment, and delivery (CI/CD/CD)

• Modeling computer hardware (Petri nets)

• Data science, machine learning (Dask, TensorFlow)

• Computational sciences (bioinformatics, materials science, neuroscience, physics, etc)

Many different workflow management systems have emerged within each domain, to suit that do-

main. As a result, there are countless workflow managers to choose from, and each provides a

different set of features and capabilities (Figure 2.4). For example, many basic command-line tools

such as apt and make can be considered workflow managers, because they execute tasks with de-

pendencies: in the case of apt, installing software packages; in the case of make, compiling and

linking code into applications and libraries. It is possible to implement other types of computational

workflows in a Makefile, and in fact there are many workflow managers inspired by make, including

drake, Snakemake, and Biomake.

In this work we will focus on the domain of scientific workflows, and in particular we will fo-

cus on the Nextflow workflow manager [14]. Nextflow provides broad support for many key elements

of scientific workflows; it is language-agnostic, portable across many execution environments, and

highly scalable, and it supports many other useful features such as caching, containerization, and

pipeline sharing for reproducibility. All of the scientific workflows used in this work are implemented

as Nextflow pipelines. More importantly, Nextflow automatically collects an execution trace of each

task that is executed in a workflow run, which makes it much easier to integrate resource prediction

with workflow execution.

Within the realm of bioinformatics, two of the most commonly-used workflow managers

are Pegasus [13] and Galaxy [23]. Pegasus enables large experiments to be run at scale on grid

computing platforms such as the Open Science Grid. The Galaxy Project is a platform for running

bioinformatics workflows and publishing results. These two workflow managers lie on opposite ends

of a trade-off between control and usability. Pegasus is highly scalable and provides a fine-grained
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level of control, but it is very complicated to write Pegasus workflows, especially for domain scientists.

Galaxy is designed for domain scientists as it provides a graphical interface and turnkey workflows

for the most common types of analyses, but it lacks scalability and control. We have found that

Nextflow eliminates this trade-off by providing an easy way to write workflows while also providing

a full suite of features that can be gradually incorporated into a workflow to meet more advanced

computational needs.

2.3 Resource Prediction Methods

We define resource prediction as the task of estimating the usage of some resource by an

application before it is run. The resources which we are primarily interested in are runtime, memory

usage, and disk usage. A closely related task is performance prediction or performance modeling,

which refers to measuring either how much or how well an application uses a resource. Resource

prediction and performance prediction have been subjects of research interest for many years and for

many different reasons. The studies described in this section each approached resource prediction

with slightly different goals and constraints, and as such they each contribute different kernels of

knowledge and insight to this work.

2.3.1 Analytical Modeling

Arguably the most basic approach to performance prediction is to consider the algorithmic

complexity. For example, multiplying an m×n matrix by an n×p matrix requires mnp+m(n−1)p

floating-point operations and mn + np +mp memory elements, assuming a naive implementation.

We could use these formulas, in combination with knowledge of the underlying hardware capabilities,

to develop models of runtime and memory performance for any application and architecture. This

approach is known as analytical modeling and it broadly characterizes most of the early approaches

to performance prediction, especially in the domain of high-performance computing. Many studies

[17, 22, 34, 8, 33] developed models of particular applications and architectures in an attempt

to capture all of the intricacies of these systems. Analytical modeling can yield very accurate

predictions, but a new model must be developed for every new application or architecture, each of

which requires expert knowledge. As a result, analytical modeling is not suitable for non-expert users

such as domain scientists who want to predict the resource usage of their applications. Additionally,
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many of these efforts relied on simulations to validate a given performance model, which can make

these models computationally expensive to develop.

2.3.2 The Convolution Approach

A more portable prediction framework was developed by Snavely et al. [59, 58] and Carring-

ton et al. [7, 6]. Their approach, which they refer to as the “convolution” approach, is to convolve

an application signature (determined by profiling tools) with a machine signature (determined by

micro-benchmarks) to predict runtime. In particular, these authors focused on starting with a sim-

ple model and only adding complexity as necessary. This framework was a significant improvement,

as it removed the dependence on analytical models and still achieved an acceptably low relative

error (defined by the authors as 20% or less). However, the convolutional approach still requires

expert knowledge in the use of profiling tools and machine benchmarks, and it depends on detailed

application traces which are expensive to acquire. Additionally, the convolution approach makes

some assumptions about the factors that determine application performance based on the particular

HPC applications that were used in the aforementioned studies; as such, this framework may not

transfer well or may require significant adjustments as computing platforms become more complex.

For example, the convolution approach does not incorporate any information about accelerators

such as GPUs and FPGAs because such accelerators were not prevalent in HPC platforms when this

approach was developed. To become usable for modeling GPU applications, the application signa-

tures and machine signatures used in the convolution approach would need to be augmented with

appropriate GPU profiling tools and GPU benchmarks. In this sense, the convolution approach is

still somewhat dependent on and limited by the particular applications and architectures for which

it was designed. So while this approach significantly reduces the amount of expert knowledge re-

quired compared to previous work, it still requires too much expertise to be reasonably accessible

to non-expert users.

2.3.3 Machine Learning Approaches

Many studies have explored the use of machine learning models to predict resource usage.

Ipek et al. [31], one of the earliest studies of its kind, trained a multilayer perceptron (MLP) to

predict the runtime of SMG2000 with 5-7% test error. In particular, the authors found that allocating
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an extra core to handle OS-related tasks and modifying the training process to minimize relative error

instead of absolute error mitigated the effect of noise and greatly reduced the test error. Li et al. [36]

modified an existing scheduling algorithm to use runtime estimates generated by a neural network

for a number of real and synthetic R applications. The authors observed similarly low error (2-6%)

as well as a significant improvement in the throughput of the scheduler (20-40%). Matsunaga et al.

[39] trained a number of machine learning algorithms to predict the runtime, memory usage, and

disk usage of two bioinformatics applications, BLAST and RAxML. They evaluate several classical

algorithms as well as a custom algorithm called PQR2, a type of regression tree that can use any

regression model at each leaf node. In addition to application-specific input features, the authors use

simple benchmarks to measure CPU speed, memory speed, and disk I/O speed. They visualize the

impact of these platform characteristics on the overall trend in runtime for their selected applications.

Rodrigues et al. [52] used similar methods to develop an online memory usage prediction tool on

an IBM POWER8 cluster. Interestingly, these authors included several textual features, such as

user ID, working directory, and the executed command, as categorical inputs, however they did not

specify how much these features contributed to prediction accuracy. Additionally, these authors

used a database of jobs executed on their cluster over a period of time, rather than focusing on a few

specific applications. Pallipuram et al. [47] proposed a regression-based framework for predicting the

runtime of distributed-GPU synchronous iterative algorithms (SIAs). The authors combined FLOP

and byte counts for each application with performance metrics obtained from micro-benchmarks

to predict runtime, similar to the convolution approach. The regression-based framework consisted

of several linear regression models designed specifically to model SIAs by treating the computation

and communication phases separately. The authors claim that their approach simplifies performance

prediction by removing any dependence on details of the GPU microarchitecture. This framework

was developed to predict the performance of an application on different architectures and thereby

recommend the best architecture to focus on. While we are tackling a slightly different problem

and using different techniques, our methodology inherits the name Tesseract from the work done by

these authors, and in that way is a successor of it.

While all of the examples mentioned so far have focused on individual applications, many

studies have also attempted to predict resource usage of entire workflows. Nadeem et al. [44]

proposed a local learning framework that predicts total workflow runtime based on the past runtime

of similar workflows. The authors defined a custom distance measure for this purpose which considers
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attributes such as workflow structure and the execution environment. More recent work by Nadeem

et al. [43] included similar experiments at a larger scale with an ensemble of three machine learning

models. Pietri et al. [50] developed an algorithm to estimate the makespan (total runtime) of

a workflow based on the structure of the task graph and the runtime of individual tasks. Their

work assumes that task runtime can already be predicted accurately. They were able to estimate

makespan with under 20% error on three scientific workflows that were executed on AWS. Da Silva et

al. [12] profiled several Pegasus workflows with the Kickstart profiling tool, explored the relationship

between input parameters and the profiling results, and developed a model that uses density-based

clustering and regression trees to identify correlations between input parameters in order to predict

runtime, memory usage, and disk usage. Additionally, the authors integrated their prediction model

into an online prediction tool which continuously estimates the resource usage of tasks in a workflow,

updating its predictions with the real usage patterns of tasks as they finish. They provide a clear

methodology towards automatic resource prediction; we aim to improve upon their work by using a

simpler prediction model, using confidence intervals to address under-provisioning, and incorporating

environment-related input features in order to predict runtime across different platforms.

Many other examples of empirical approaches to resource prediction exist in the literature.

Miu et al. [41] trained a number of different machine learning models to predict the training time

of the C4.5 decision tree builder. Monge et al. [42] predicted the runtime of several gene expression

analysis workflows with an ensemble of M5P regression trees, trained using a combination of data-

related and environment-related input features. Fan et al. [16] predicted job runtimes on an HPC

platform with an additional objective of minimizing underestimation. Pham et al. [49] and Hilman

et al. [28] separately predicted task runtimes for several cloud-based scientific workflows using a

machine learning model that is continuously trained on input features and profiling data. Wyatt et

al. [70] predicted runtime and I/O usage by converting job scripts into image-like “character maps”

and feeding them into a convolutional neural network (CNN). A more in-depth review of resource

prediction efforts is given by Amiri et al. [3].

Empirical approaches to resource prediction are powerful because they do not require any

knowledge about the internal details of the application or workflow. In many cases, only those

features that are readily available and easy to obtain, such as input parameters and input data

characteristics, are used. Runtime predictions can be improved further by including performance

metrics based on simple benchmarks (as shown by Matsunaga et al.). The main drawback of empir-
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ical models is that training data is expensive to acquire. Machine learning models typically need at

least O(100) samples, which means that the application-under-test must be run many times in order

to train a sufficiently accurate model. The high cost of acquiring training data can be mitigated by

using historical job information, as in the study by Rodrigues et al., since those jobs would have

been run anyway. Thus, machine learning is a promising approach to resource prediction that is

generic and requires minimal computational expertise.

2.3.4 Related Problems

There are several research problems related to the core task of predicting resource usage,

such as anomaly detection, cross-platform runtime prediction, and cost prediction. Here we describe

some of the previous work in these topics as they relate to this dissertation.

Uncertainty Quantification. In many supervised learning problems it is very helpful

to have some measure of a model’s uncertainty. In the context of a regression problem such as

resource prediction, an uncertainty measure would be a confidence interval around the predicted

value. Uncertainty quantification is a large and diverse field because of its relevance to many

problems in science and engineering, so here we will only describe a few relevant techniques. A

gradient boosting model can be trained with a quantile loss, which allows it to estimate a particular

quantile of the target distribution. A confidence interval can then be obtained by training two

models on the desired upper and lower bounds (e.g. 5-th and 95-th percentiles). For random forests,

the jackknife and infinitesimal jackknife [66] can be used to obtain a bias-adjusted variance estimate

based on the predictions of the individual decision trees in the random forest. Gal et al. [18]

demonstrated that a neural network with dropout [60] also approximates a deep Gaussian process

and thereby provides an estimate of model uncertainty. A confidence interval can be obtained by

performing inference multiple times on the same input, with dropout enabled during inference, and

taking the mean and variance of the predictions. Lastly, there also exist generic approaches such as

the framework proposed by Lei et al. [35], which uses conformal inference to construct prediction

intervals (i.e. without a point prediction) from an arbitrary regression model.

Anomaly Detection. Anomaly detection is the problem of identifying unusual, or anoma-

lous, outcomes. In the context of scientific workflows, anomalies can occur in the input (e.g. bad

input configuration or input data), the execution (e.g. unusually short or long runtime, unusually

low or high memory usage), or the output (unusually small or large, or otherwise invalid, output
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data). An anomaly detection system would be able to identify these anomalies when they occur

and alert a user for further review. Mandal et al. [37] developed an end-to-end anomaly detection

framework for scientific workflows, which integrated performance modeling, workflow and infras-

tructure monitoring, and a suite of different anomaly detection techniques tailored to each aspect

of the performance data. Tuncer et al. [65] developed a similar system, which used basic machine

learning models to detect and classify different types of anomalies based on system-level performance

metrics. A related but interesting use case in industry is LandingLens [2], a machine learning opera-

tions (MLOps) platform developed by Landing AI for visual inspection problems in manufacturing.

Whereas much of AI research has focused on fine-tuning models on fixed datasets (i.e. benchmarks),

LandingLens is built around improving a dataset while using a fixed model architecture. This ap-

proach, known as “data-centric AI”, is one way to distinguish between an incorrect model prediction

and a data anomaly.

Cross-Platform Runtime Prediction. One challenge that persists with every approach

to runtime prediction is predicting runtime across different platforms. Earlier studies such as Snavely

et al. [59] sought to address this problem in order to predict the runtime of applications on platforms

that had not been built yet. Yang et al. [71] developed an approach in which they combined full

executions on a reference platform with partial executions on a target platform, and used the relative

performance between the two platforms to infer runtime on the target platform. Their approach

was designed specifically for bulk-synchronous parallel (BSP) applications, and does not generalize

easily to other types of applications. Matsunaga et al. [39] incorporated performance metrics

as input features to a runtime prediction model, in order to predict runtime on a heterogeneous

computing platform that contains nodes with different hardware resources. This approach works for

any application and is easily extended to predict runtime across different platforms. Marathe et al.

[38] developed an approach based on transfer learning to predict runtime of large application runs.

They collected performance data for many small runs and a few large runs, trained two separate

neural networks on these two “domains”, and used the feature vectors from each network to train a

third network that can perform inference over both domains.

Cost Prediction. In academic research there are primarily two ways to perform large

computational experiments. Researchers typically have free access to an institutional cluster that is

shared among many researchers. When a computational experiment is too large for this cluster, or

when the cluster is highly congested by many users, researchers can instead run their experiments
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in the cloud. Cloud computing platforms such as Amazon Web Services (AWS) and Google Cloud

Platform (GCP) provide virtually limitless capacity, but they are not free to use and the user inter-

face is much more complex. These factors in combination mean that experiments in the cloud can

become very expensive if they are not set up properly. Understanding the resource requirements of

an experiment is critical to performing experiments successfully in the cloud. In the ideal scenario,

researchers would use their institutional cluster to run and debug small and medium-sized experi-

ments, and then use a cloud platform to run very large experiments. Resource estimates could be

used to predict the cost of an experiment, which could in turn be used to justify grant proposals

for experiments that are likely to drive significant science discoveries. Wolski et al. [69] developed

a time-series analysis tool to predict an appropriate bid price for spot instances on AWS. This tool

allowed the authors to obtain the reliability of reserved instances at a greatly reduced cost. Rosa et

al. [53] predicted runtime and cost of two gene analysis workflows in the cloud using linear regres-

sion and a metaheuristic technique called GRASP. They evaluated a variety of scenarios by either

minimizing cost, maximizing performance, or minimizing runtime. Few studies aside from these two

have explored cost prediction of scientific workflows in the cloud.

2.4 Summary

Machine learning techniques have been applied to many fields within engineering and science

for their ability to learn from and make predictions on data. At the same time, HPC platforms

have become critical instruments for scientific research and discovery, on par with traditional lab

instruments. However, these computing platforms are only as effective as the scientists who use them.

Given that domain scientists are not computational experts, there is a great need for intelligent tools

to minimize the amount of software engineering and decision-making that must be done by scientists

in order to run their computational experiments. In particular, knowing the resource usage of an

application is extremely helpful both for minimizing queue times and job failures on HPC platforms

and estimating the cost of experiments on cloud platforms. Resource prediction has been explored

from many perspectives over the last few decades, and many approaches have been proposed. Our

work aims to synthesize the best aspects of these prior studies into a methodology for resource

prediction that is reliably accurate, generic across application and computing platform, and easy to

use for domain scientists.
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Chapter 3

Research Design and Experiments

In this chapter we describe our research design and the experiments that we performed.

First, we describe the scientific workflows that were used to develop and evaluate our resource

prediction tool. Second, we introduce the resource prediction tool, which we call Tesseract. We

describe the design of Tesseract, the relevant constraints, and how it would be used by a domain

scientist. Lastly, we describe the experiments that were performed to demonstrate and validate the

various capabilities of Tesseract, including resource prediction, anomaly detection, cross-platform

runtime prediction, and cost prediction.

3.1 Workflow Suite

In this section we describe the scientific workflows that were used in this dissertation. We

selected five scientific workflows that are used frequently by fellow researchers at our institution.

These workflows played an important role in the development of Tesseract, including which input

features to include, how to construct the trace datasets, and which models and preprocessing steps to

use. Using these workflows for development and evaluation will ensure that Tesseract is easy to use

for domain scientists, such as our peers, who do not have deep expertise in performance engineering.

Our hope is that our peers will be able to benefit immediately from this work in their own research.
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3.1.1 GEMmaker

GEMmaker is a bioinformatics pipeline for constructing gene expression matrices (GEMs)

from Illumina RNA-seq data. Although many such RNA-seq pipelines already exist, GEMmaker

stands out in its ability to scale [27]. GEMmaker can process up to thousands of RNA-seq samples in

parallel, and it maintains a minimal storage footprint by automatically removing intermediate data.

In its largest recorded experiment, GEMmaker processed 14,441 Arabidopsis datasets, consisting of

nearly 27,000 individual runs, in a single run on Clemson University’s Palmetto cluster, which took

40 days and consumed 358,732 CPU-hours. Results from GEMmaker are typically used in differential

gene expression (DGE), such as DESeq2 or TSPG, and gene co-expression network (GCN) analyses,

such as KINC.

3.1.2 Gene Oracle

Gene Oracle is a pipeline for identifying biologically significant biomarkers, or “candidate

genes,” from a high-dimensional gene expression matrix (GEM) [63]. Gene Oracle uses machine

learning models to evaluate the “classification potential” of user-defined gene sets, and for those sets
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which perform the best it uses machine learning to select the most salient genes within each set.

Gene Oracle can use any standard classifier provided by scikit-learn to evaluate gene sets, and it is

highly parallel since each gene set can be processed independently.

3.1.3 HemeLB

HemeLB is a high-performance Lattice Boltzmann code for sparse complex geometries,

typically used to study vascular flow. HemeLB is a distributed CPU application, and it has been

shown to scale up to nearly 50,000 cores [25, 24]. More recently, HemeLB was extended to also

use GPUs, and it was shown to be scalable up to at least 32 GPUs [56]. HemeLB is a traditional

bulk synchronous parallel application, which we have wrapped in a single-step Nextflow pipeline

for the purpose of this study, in order to demonstrate the use of Tesseract with traditional HPC

applications.

3.1.4 KINC

Knowledge Independent Network Construction (KINC) is a bioinformatics pipeline for con-

structing gene co-expression networks (GCNs) [55, 5]. KINC employs a master/worker distributed

approach to divide the work among many processes. Additionally, each worker can independently

perform work using the CPU or a GPU if one is available. The master assigns work dynamically

such that each worker receives work blocks as fast as it can process them. In this case, the only

communication is that of inputs and results between the master and each worker, and all of the disk

I/O occurs on the master. Alternatively, KINC can use a chunk-and-merge approach in which many

independent tasks are submitted with a static work distribution, each task produces a “chunk file”

of the intermediate results, and a final merge process reads all of the chunk files and produces the

final output files. This approach does not require MPI and may be advantageous on democratized

computing platforms because it consists of many small tasks instead of one large task; however it

may suffer from workload imbalance since it does not use a dynamic work distribution scheme.

KINC was one of the primary motivating examples for Tesseract, as shown by Figure 3.5.
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The runtime of KINC can vary greatly depending on the size of the input data, the number of

processes, and the hardware type (CPU or GPU). A single KINC run can range anywhere from a

few minutes to a few days. There is no single walltime allocation that would be appropriate for all

of these cases; any single value would either be insufficient in the largest cases or unnecessarily large

for the smallest cases. Therefore, a model is needed to determine the required walltime from the

relevant inputs.

3.1.5 TSPG

Transcriptome State Perturbation Generator (TSPG) is a deep learning pipeline for identi-

fying genes with transitions between biological conditions [62]. TSPG uses a generative-adversarial

network (GAN) to generate realistic gene expression perturbations between a source and target con-

dition, such as normal kidney tissue to cancerous kidney tissue. The genes most strongly perturbed

in the transition are used in downstream analyses, such as identifying therapeutic targets for a can-

cer condition. TSPG consists of several steps, including training a target model, training the GAN,

and generating and visualizing the final perturbations. While a single TSPG model is trained with

a fixed set of genes and a fixed target class, multiple TSPG models can be trained in parallel to

cover different combinations of gene sets and target classes.
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3.2 Computing Environments

In this section we describe the computing environments that were used in our experiments.

3.2.1 Palmetto Cluster

The Palmetto cluster at Clemson University is a condominium cluster with over 20 hardware

phases, ranging from older CPU-only nodes to newer nodes equipped with GPU nodes and a high-

speed interconnect. The GPU nodes include NVIDIA K40, P100, and V100 GPUs. When running a

Nextflow pipeline on Palmetto, each task is submitted as a job script to Palmetto’s PBS scheduler.

3.2.2 Nautilus

Nautilus is a Kubernetes cluster that is maintained as part of the Pacific Research Platform

(PRP) [57]. The physical nodes in Nautilus are distributed across the United States, as well as a few

nodes internationally, with the majority of nodes located in California. Nautilus contains a variety

of hardware resources, including many nodes equipped with desktop-grade GPUs. In contrast to

conventional university clusters and cloud platforms, Nautilus is an example of a “democratized” or

“potluck” computing platform, because each user can contribute nodes to the cluster from anywhere

around the world. When running a Nextflow pipeline on Nautilus, each task is submitted as a pod

to the Kubernetes scheduler.

3.2.3 Google Cloud Platform

Google Cloud Platform (GCP) is a public cloud based on the same infrastructure that is

used to run Google end-user products, such as Google Search, Gmail, Google Drive, and YouTube.

Like other public clouds, GCP includes services for compute, storage, networking, big data, and

machine learning. In particular, Google Compute Engine provides virtual machines (VMs) with a

variety of CPU types and GPU types, including NVIDIA P100 and V100 GPUs. Nextflow pipelines

can be run on GCP either through Google Kubernetes Engine or directly through the Cloud Life

Sciences API. We use the latter approach in this dissertation as it requires fewer steps to configure

the environment.
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3.3 Tesseract: Intelligent Resource Prediction

3.3.1 Motivation

Scientific workflows, such as the ones described above, are often created by domain scientists

who need to perform complex multi-step analyses on large datasets. However, domain scientists

generally do not have the expertise required to optimize performance or diagnose failures quickly.

While they can usually fix problems with enough persistence, such engineering tasks are a significant

distraction from their research. One of the greatest challenges with using scientific workflows is

knowing the resource requirements of each task in the workflow. Understanding the resource usage

patterns of a workflow is critical when using large-scale computing platforms. Users must request

the resources that they need for an experiment, and there are pitfalls to both under-provisioning

and over-provisioning. On shared HPC platforms such as university clusters, over-provisioning may

increase the time that the job must wait in the queue, and under-provisioning may cause the job

to fail and have to be restarted. On cloud platforms, there are no queue times or walltime limits

because resources are highly available1, but there are significant financial risks related to incorrectly

provisioning other resources such as GPUs, memory, and storage. Thus the lack of knowledge about

resource requirements is a hindrance on HPC clusters and a major setback on cloud platforms. To

this end, we have developed Tesseract, a semi-automated tool for intelligent resource prediction.

3.3.2 Design Considerations

Tesseract draws inspiration from a number of previous studies, including Ipek et al. [31],

Matsunaga et al. [39], and Da Silva et al. [12]. The overall approach of Tesseract is to collect

the resource usage data from past runs of a workflow and then train a machine learning model

to predict the resource usage of future runs. This approach is open-ended enough that it may

be able to capture the many sources of variation that contribute to application performance on a

heterogeneous computing platform. In the same way that workflows like KINC are used to model

biological systems, Tesseract views scientific workflows as “computational systems”, composed of the

numerous hardware and software layers that facilitate their use. While the individual components

are carefully designed, the system as a whole is complex and emergent, and should be modeled as

1Preemptible VMs, which are preferred for their significantly lower cost, have a maximum runtime of 24 hours on
GCP, so there is effectively a walltime limit in this case
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such. Here we describe the Tesseract in more detail by answering a number of pertinent design

questions.

Which resources do we need to predict? While Tesseract can target any resource

metric that is collected by Nextflow, we are particularly interested in runtime, memory usage,

and disk usage, as these resources are the most pertinent to the problem of resource provisioning.

Runtime refers to the duration of a task. Memory usage refers to the maximum amount of memory

used at one time throughout the duration of a task. Disk usage refers to the total amount of output

data written to disk storage by a task. In the Nextflow execution trace, these resources correspond

to realtime, peak rss, and write bytes. Tesseract predicts the resource usage of individual tasks

rather than entire workflow runs, as resource provisioning typically occurs at the level of tasks.

The number of CPUs is treated as an input rather than an output because it is almost

always provided as an input. Applications are generally designed to work with however many CPUs

they are given, whereas memory and disk usage are usually determined by the problem size and other

input parameters. In other words, if fewer CPUs are provided, then the application will do the same

work but will take longer; if an application requires more memory or disk space than is available,

generally the application has no other option than to terminate. We can derive metrics such as CPU-

hours from runtime as long as we have the number of CPUs as an input. The same reasoning can

be applied to GPUs, FPGAs, and any other such accelerators, which is pertinent to this work since

we consider several GPU-enabled applications. Similarly, we do not consider CPU/GPU utilization

in this study because utilization is not a resource that can be allocated (although some platforms

do support fractional CPU allocations). However, utilization metrics would be useful for comparing

the performance of different implementations of an application, and in fact Tesseract can be easily

applied to this task.

What features can we use as inputs? Previous studies have addressed this question in

many different ways. To help guide our exploration, we have devised a set of categories inspired by

Guo [26]. We say that a workflow task has three possible sources of inputs:

• Code: Compile-time and run-time application parameters

• Data: Input data characteristics; file size, dimensions, sparsity

• Environment: Attributes of the underlying hardware and operating system; kernel settings,

environment variables, benchmark metrics
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Figure 3.7: Breakdown of input features from code, data, and environment

These three categories form a basis for understanding how to select the right input features

for a prediction model. For example, one could include specific command-line parameters (code),

input data size (data), and performance metrics for the underlying hardware (environment). The user

may include as many features as needed from each category to meet the needs of each application.

Because every application is unique, Tesseract requires the user to manually define the input features

for each workflow process. As a result, the input features should be easy to obtain. Using more

fine-grained information such as profiling traces would require additional tools and instrumentation,

all of which are unfamiliar to non-expert users. Input parameters and input data characteristics

can be obtained from the task script with few modifications, and previous studies have shown that

simple input features can achieve sufficiently accurate predictions.

How accurate does the prediction model need to be? Some studies define 20%

relative error or less as acceptable [6]. Relative error can be assessed using mean absolute percentage

error (MAPE):

MAPE (%) = 100×
n∑

i=1

∣∣∣∣ytrue,i − ypred,i
ytrue,i

∣∣∣∣
While we find this threshold reasonable, this metric does not adequately describe the effectiveness of

a resource prediction model because the costs of underestimation and overestimation are different.

An under-provisioned task will fail and have to be re-run, whereas an over-provisioned task may

have some negative effects (i.e. longer queue time, wasted resources) depending on the situation, but

will still complete. A good resource prediction model should avoid under-provisioning entirely, even

at the expense of some over-provisioning, so long as it is not extreme 2. We address this issue by

2Under-provisioning is not so much an issue for applications that use checkpointing, however many applications,
including our entire test suite, do not use checkpointing.
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using regression models that provide a confidence interval around each point prediction, and using

the upper bound as the resource request. We evaluate these intervals using the coverage probability

(CP), which is the percentage of intervals that contain the true target value. Given a sufficiently

large number of predictions, a 95% confidence interval should provide a coverage probability of at

least 95%. This metric essentially measures a model’s ability to avoid both under-provisioning and

extreme over-provisioning. For aesthetic consistency with prediction error, we use coverage error,

which we define as CE (%) = 100−CP. Achieving at least 95% coverage is equivalent to achieving

5% coverage error or less.

How many training samples are needed? The amount of training data is a serious con-

sideration because training data is expensive to acquire, which is a primary drawback of data-driven

resource prediction. Tesseract should be able to achieve acceptably low error with as few training

samples as possible, in order to minimize the cost of acquiring training data. More importantly,

however, Tesseract should be able to learn from the runs that users have already performed as part

of their normal work. That way, not only will the prediction model reflect the most recent usage

patterns, but it will not require any more runs than would have been performed anyway.

The design principles of Tesseract are summarized as follows:

• Predict runtime, memory usage, and disk usage of individual workflow tasks;

• Use input features that are easy to acquire, such as input parameters, input data characteris-

tics, and basic performance metrics;

• Achieve less than 20% relative error on point predictions;

• Achieve less than 5% coverage error on 95% confidence intervals;

• Use trace data from historical runs as training data.

3.3.3 Implementation and Usage

Here we describe how Tesseract is implemented, and how a domain scientist would use

Tesseract with their scientific workflow. The entire usage cycle can be summarized as follows (also

illustrated in Figure 3.8):

1. User defines input features for each process in a Nextflow pipeline
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Figure 3.8: Workflow diagram of Tesseract
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1 echo "#TRACE dataset=${dataset}"
2 echo "#TRACE hardware_type=${params.similarity_hardware_type}"
3 echo "#TRACE chunks=${params.similarity_chunks}"
4 echo "#TRACE threads=${params.similarity_threads}"
5

6 kinc settings set cuda ${params.similarity_hardware_type == "cpu" ? "none" : "0"}

7 kinc settings set opencl none

8 kinc settings set threads ${params.similarity_threads}
9 kinc settings set logging off

10

11 kinc chunkrun ${index} ${params.similarity_chunks} similarity \

12 --input ${emx_file} \

13 --clusmethod ${params.similarity_clusmethod} \

14 --corrmethod ${params.similarity_corrmethod}

Listing 3.1: Process script for KINC / similarity chunk with trace directives

2. User runs the pipeline many times as part of their normal work

3. Tesseract combines input features from execution logs with the execution traces to produce a

trace dataset for each workflow process

4. User selects the desired input features and prediction targets for each workflow process

5. Tesseract trains a model for each prediction target

6. Prediction models are used to set resource requests in future workflow runs

Tesseract can predict resource usage for any application or workflow that is implemented

as a Nextflow pipeline. Tesseract depends on Nextflow to collect the input features and resource

metrics that comprise the training data. Any standalone application can be easily wrapped into a

single-step Nextflow pipeline, and any workflow can be refactored into a Nextflow pipeline, although

difficulty may vary. Tesseract itself is a collection of Python scripts that use a number of standard

libraries for machine learning, including Numpy, Pandas, scikit-learn [48], Tensorflow [1], and Keras

[10], as well as matplotlib [30] and seaborn [68] for visualizations.

Given a Nextflow pipeline, the user must first define the input features for each workflow

process using “trace directives”. A trace directive is a print statement that prints the #TRACE prefix

followed by a key-value pair, which denotes the name and value of an input feature. The key will

become a column in the trace dataset, and the value will be saved for each task. Trace directives are

evaluated and printed to the execution log during task execution. An example of a process script

with trace directives is shown in Listing 3.1. Since the user may not yet know which inputs will be
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most important for prediction, it is better to be inclusive rather than exclusive at this stage. Input

features can always be discarded later on, but if an input feature is not included as a trace directive,

it will be difficult or impossible to recover it later on without rerunning the workflow. In general,

trace directives consist of input parameters and simple input data characteristics such as file size,

number of lines, or number of rows and columns. Only those input features that vary between runs

are useful for prediction.

Once a pipeline has been annotated with input features, it must be run many times in order

to generate enough training data. These runs should ideally be a part of the user’s normal work, or

they can be generated for the specific purpose of acquiring training data. In either case, the runs

should be representative of real experiments and should span a range of input conditions. Nextflow

will produce an execution trace for each task which contains the desired resource metrics. After

enough experiments have been run, Tesseract aggregates the input features and resource metrics

from all runs and produces a trace dataset for each workflow process.

Tesseract creates a prediction model for each resource metric, for each process in the work-

flow. We refer to a particular workflow / process / resource metric as a “prediction target”. A

workflow with multiple processes and multiple resource metrics will produce many prediction tar-

gets. However, we have found that a simple heuristic can be used instead of a regression model in

many cases. For example, many processes take only a few minutes to execute, or use only a few

megabytes of memory, or produce only a few kilobytes of output data (i.e. log files). For these

targets, the maximum target value rounded up is sufficient for the purpose of resource provisioning.

Therefore, Tesseract only trains a model for prediction targets with standard deviation greater than

0.1 hr (in the case of runtime) or 0.1 GB (in the case of memory and disk usage); otherwise, it uses

the maximum target value rounded up. Tesseract can use any prediction model that implements

the scikit-learn Estimator API, but also provides models that can be used out-of-the-box. These

models are described in the next section.

In the final step, the user employs Tesseract to provide resource estimates for future runs.

Currently, this step is done by querying Tesseract and manually updating the corresponding resource

settings in the Nextflow pipeline. In the future, we would like to integrate Tesseract with Nextflow

such that resource estimates are automatically queried and applied when a task is launched.
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3.4 Experiments

3.4.1 Resource Prediction

We defined input features for each process, for each workflow in our test suite. We generated

trace datasets for each workflow by running the workflow many times with a range of parameters

and input data, based on the typical usage of these workflows by our peers. More information about

the trace datasets is provided in Appendix A. We used Tesseract to predict runtime, memory usage,

and disk usage for each workflow in our test suite. This setup produced over 120 prediction targets,

16 of which were selected by Tesseract for model training based on the criteria described in the

previous section. The selected targets span all five workflows and all three resource types. For each

selected prediction target, we trained a neural network and a random forest. The neural network

was configured with hidden layer sizes (128, 128, 128), ReLU activation, MAE loss, and the Adam

optimizer. Additionally, the neural network used L2 regularization and dropout in order to facilitate

the use of confidence intervals. The neural network was implemented in TensorFlow. We used the

random forest regressor in scikit-learn with 100 decision trees and MAE criterion. Preliminary

experiments revealed that these two models consistently outperformed other regression models and

neural network architectures. We evaluated each model by performing 5-fold cross validation. Since

each fold is used once as the test set, we combined the predictions of each fold in order to compare

predicted and actual values for the entire dataset. We evaluated these predictions using MAPE, as

described in the previous section.

We extended the models described above to provide a 95% confidence interval around each

point prediction. For the neural network, we enabled dropout during inference and took the mean and

variance of multiple repeated predictions, as demonstrated by Gal et al. [18]. For the random forest,

we used the jackknife [66] to obtain a bias-adjusted variance estimate based on the predictions of the

individual decision trees in the random forest. The forestci package [51] integrates this approach

seamlessly with the random forest regressor in scikit-learn. For both models, the 95% confidence

interval is equivalent to the point prediction (mean) +/- two standard deviations. We evaluated the

confidence intervals using coverage error as described in the previous section.

We also investigated the effect of training set size on prediction error and coverage error,

in order to determine the minimum number of training samples needed to achieve acceptable levels

in these metrics. For each prediction target, we trained and evaluated a neural network for each
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train/test split ranging from 10/90 to 90/10. We performed three independent trials for each split.

3.4.2 Anomaly Detection

Several approaches to anomaly detection were described by Mandal et al. [37]. We decided

to use auto-regression, as it integrates seamlessly with our existing methodology. In auto-regression,

a prediction model is trained on “normal” (non-anomalous) data, and then if the model makes

an incorrect prediction during inference, the corresponding input sample is marked as an anomaly.

For example, suppose a model is trained to predict the runtime of a workflow process, and during

inference the model predicts that a particular task will run for 12 hours, but the task ultimately

runs for 18 hours. The model would then identify the task as an anomaly and an external system

could alert the user to review the task details for potential errors. The model could go one step

further by flagging the task while it’s running, if its runtime exceeds the predicted runtime by some

amount. Similar strategies can be implemented for memory and disk usage.

The challenge with auto-regression is determining the appropriate decision threshold. In

many cases there are inherent sources of noise (e.g. network and disk congestion) that lead to noise

in the training data and irreducible error in a trained model. Continuing the previous example,

a task that runs 6 hours longer than predicted is anomalous only if the normal variation in the

runtime of that process is significantly less than 6 hours. In other words, we need a way to separate

aleatoric (irreducible) uncertainty from epistemic (reducible) uncertainty. This problem is addressed

by equipping the prediction models with confidence intervals, as described in the previous sub-

section. When a task is completed, the actual resource usage is compared to the predicted resource

usage, and an anomaly score is assigned to the task based on the difference. Any task with an

anomaly score greater than 0.997 (corresponding to three standard deviations or more) is marked as

an anomaly. We use this approach to identify anomalies in the core resource prediction experiments,

and we evaluate the results qualitatively.

3.4.3 Cross-Platform Runtime Prediction

Given a dataset of many workflow runs from a source platform and a few small runs from

a target platform, we would like to predict the runtime of large runs on the target platform. This

capability is crucial for estimating the cost of large-scale cloud experiments a priori, which we
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Name Description Benchmark

cpu flops CPU FLOP rate Matrix multiplication (double precision)
cpu mem bw CPU memory bandwidth STREAM Triad (double precision)
disk read Disk read bandwidth Read 1 GB file from disk
disk write Disk write bandwidth Write 1 GB file to disk
gpu flops GPU FLOP rate Matrix multiplication (double precision)
gpu mem bw GPU memory bandwidth STREAM Triad (double precision)

Table 3.1: Performance metrics collected by Minibench

describe in the next sub-section.

In order to train a model to predict runtime across different “platforms”, whether they are

completely different systems or different nodes within a heterogeneous system, the training data

must include some set of features that can distinguish the two platforms. One approach is to define

a categorical variable with a category for each platform (for example, the “hardware type” input

feature defined in the HemeLB workflow). This approach can be effective but it is inflexible to the

addition of new platforms. A more robust approach is to define a set of performance metrics that

can provide a “fingerprint” of each platform. Basic performance metrics such as FLOP rate, memory

bandwidth, and disk bandwidth have proven to be a good starting point [39]. To this end, we have

developed Minibench, a lightweight benchmarking tool that can be run in any Linux environment.

Minibench collects a standard set of performance metrics, described in Table 3.1, but it can be

extended to collect other metrics that might be relevant to specific use cases.

The procedure for using Minibench with Tesseract is as follows:

1. Define the set of “node types” for a given platform (e.g. each phase in Palmetto).

2. Run Minibench, which produces a table of performance metrics for each node type.

3. Define an input feature in each workflow process that records the node type (e.g. the phase

on which a task is executed).

4. Augment the trace data with Minibench metrics via join operation.

Minibench is itself a Nextflow pipeline, which means that it can capture system-level variation that

might not be captured in a more controlled benchmarking environment. Some examples of system-

level variation include (1) a networked file system whose performance is affected by overall system

usage, and (2) a “node type” in Minibench that consists of nodes with the same GPU model but
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different CPU models (see Nautilus benchmark in Appendix C). In these situations, it is necessary

to run Minibench several times for each node type and encode the distribution of each metric rather

than a single result. For the purpose of this dissertation, we take the mean of three independent

trials for each metric. As an aside, one could instead provide several percentiles (e.g. the 5-th, 50-

th, and 95-th percentile) for each metric, in cases where the mean is insufficient. More information

about Minibench, including results for each platform that was used in this dissertation, is provided

in Appendix C.

For this experiment and the following cost prediction experiment, we focused on a single

prediction target, the runtime of the KINC / similarity chunk process, as the resource usage of KINC

was one of the primary motivating examples of this dissertation. Additionally, we focused on the

neural network regressor as described in the core resource prediction experiments. We performed

many small and large KINC runs on the Palmetto cluster, as well as a smaller number of small and

large runs on the the Nautilus cluster. Notably, the KINC runs on Palmetto consisted of runs on

both P100 and V100 GPUs. The trace data was augmented with performance metrics collected by

Minibench on each platform. More information about the trace datasets is provided in Appendix

A. We then performed two evaluations. In the first evaluation, we treated the P100 and V100 runs

on Palmetto as two different platforms: we trained a neural network regressor on the P100 runs and

some V100 runs, and evaluated the model on the large V100 runs. In the second evaluation, we

trained a neural network regressor on the Palmetto runs and some Nautilus runs, and evaluated the

model on the large Nautilus runs.

This experiment evaluates the ability of Tesseract to predict runtime on one platform with

training data from a different platform and performance metrics from both platforms. As such, the

prediction model is given the appropriate performance metrics as input features during evaluation.

3.4.4 Cost Prediction

Cost estimates are critical to performing large science experiments on cloud platforms in

a cost-effective way, as described in the previous chapter. Many platforms provide an interface for

estimating the cost of long-running deployments, but these interfaces are not amenable to estimating

the cost of many heterogeneous tasks. Fortunately, the cost of a workflow can be easily derived from

the resource usage of the workflow tasks and the prices of individual cloud resources, which cloud

platforms also provide.
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In this experiment, we predicted the cost of several large KINC runs on GCP, using training

data from Palmetto. We repeated the Palmetto/Nautilus runtime prediction experiment, re-using

the trace data from Palmetto and replicating the Nautilus runs on GCP. We trained and evaluated

a neural network regressor, in the same manner as before, to predict both runtime and cost of the

large runs on GCP. We developed a cost model based on the GCP pricing documentation [11], which

computes the hourly cost of a task based on the resource requirements (CPUs, memory, disk, GPUs).

The predicted cost of a task, then, is the product of the hourly cost and predicted runtime of the

task. More information about this cost model is provided in Appendix D. Finally, as a side note,

we estimate the cost of the Palmetto runs as if they were run on GCP, and we discuss the trade-offs

that can be ascertained from the resulting resource usage and cost estimates.

3.5 Summary

In this chapter, we described Tesseract and the experiments that were performed to validate

it. Our experiments were performed in two phases. In the first phase, we developed resource

prediction models for a suite of scientific workflows with diverse resource requirements. In the

second phase, we developed additional capabilities that leverage resource predictions to perform

more advanced tasks. In all of these efforts we used a methodology that is easy to replicate for

domain scientists, as we intend for the results of our work to benefit domain scientists first and

foremost. In the next chapter, we present and discuss our results.
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Chapter 4

Preliminary Results

In this chapter, we describe the results for each of the experiments laid out in the previous

chapter, demonstrating Tesseract’s capabilities in resource prediction, anomaly detection, cross-

platform runtime prediction, and cost prediction. We discuss both the limitations and implications

of our findings, and we discuss how Tesseract addresses the needs of domain scientists who use

data-intensive computing.

4.1 Resource Prediction

Figure 4.1 shows a random selection of prediction targets that were not selected for model

training. Nearly all of the “excluded” targets had resource usage below 1 hr or 1 GB.

The results of the resource prediction experiments are summarized in Figure 4.2, which

shows the prediction error and coverage error achieved by each model for each prediction target. An

effective model should achieve less than 20% MAPE, or, failing that, achieve less than 5% coverage

error. While many of the models did not achieve low prediction error, every model except for three

achieved sufficiently low coverage error, and for every prediction target there is at least one model

with low coverage error. In other words, even when prediction error is high, such as in cases where

the training data is sparse or noisy, the prediction model can still protect against under-provisioning

by providing sufficiently large confidence intervals. These results demonstrate that Tesseract can

predict resource usage across a diverse set of workflows, using only basic input features, for the

purpose of provisioning resources for tasks.
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Figure 4.1: Resource usage plots for several prediction targets that were not selected for model
training. The mean +/- two standard deviations are denoted by the dashed and dotted red lines.
The recommended resource request, defined as the maximum target value rounded up to the next
hour or GB, is given in the title of each plot.
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Figure 4.2: Summary of resource prediction results for the selected prediction targets. The left-hand
panel shows mean absolute percentage error (MAPE), with 20% MAPE denoted by the dashed red
line. The right-hand panel shows coverage error of the prediction intervals, with 5% coverage error
(95% coverage probability) denoted by the dashed red line.
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Figure 4.3: Expected vs predicted target values for three prediction targets, one example for each
of runtime, memory usage, and disk usage. In each case, the black dashed line denotes equality, and
each point and vertical bar is a point prediction with corresponding 95% confidence interval. Runs
that were marked anomalies are colored red.
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Figure 4.4: Summary of training set size results for the selected prediction targets. The left-hand
panel shows the minimum required samples to achieve 20% MAPE or less, and the right-hand panel
shows the minimum required samples to achieve 5% coverage error or less. In both cases, the red
crosses denote the total number of samples for the prediction target.
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Figure 4.3 provides more detailed results for three prediction targets, one for each of runtime,

memory usage, and disk usage. These scatter plots are merely a visual sample in lieu of displaying

detailed results for all 16 prediction targets. In general, these plots are useful because they provide

context for the error metrics at the level of individual predictions. The full results for each prediction

target are provided in Appendix B.

The neural network and random forest are evenly matched overall, with each model providing

better performance over the other in different cases. In many cases, one model achieves better

coverage than the other by having larger confidence intervals, at the cost of greater overestimation.

In the future, it would be useful to train these models in such a way that strikes a balance between

coverage and interval size. In practice, the user can use one or the other across the board, or have

Tesseract select the best model in each case.

The discrepancy between prediction error and coverage can be explored by considering the

prediction targets for GEMmaker. All of these targets exhibited high prediction error but low

coverage error, and they offer insights into the potential sources of prediction error. One example

is the download runs process, which downloads files from a remote database. There is inherent

uncertainty in the runtime of this process due to variation in network throughput. Another example

is the fastq dump process, which decompresses a compressed file. The disk usage of this process can

not be fully determined from the compressed file size because some files can be compressed more

than others. In both cases, there is a lower bound on the prediction error due to inherent uncertainty,

and while additional features such as networking metrics or compression ratios might reduce this

uncertainty, confidence intervals provide a way to manage it in the absence of complete information.

In other words, confidence intervals give users the flexibility to collect as many input features as

they need to achieve sufficiently small confidence intervals. A model with fewer input features will

generally have larger confidence intervals and require more conservative resource requests, but the

user can collect more input features at their own pace, and in the meantime the confidence intervals

will still be more useful than blind estimates.

The model errors in these experiments tended to be underestimates at the high end and

evenly distributed at the low end. As a result, using the point predictions alone would lead to

poor outcomes because the cost of underestimation (task failure) is much greater than the cost of

overestimation. The first issue can be explained by the imbalance between low-usage and high-usage

runs in nearly every dataset; a model trained with relatively few high-usage runs will perform poorly
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Figure 4.5: Effect of training set size on prediction error and coverage error for KINC / similarity mpi
runtime.

on unseen high-usage runs, even though the cost of underestimating these runs is much greater.

Methods for addressing data imbalance include transforming the target variable and resampling the

training data, however we were not able to reduce underestimation with these methods. The second

issue can be explained by the fact that the models were trained with a symmetric loss function. An

obvious alternative is to use an asymmetric loss function that penalizes underestimation more than

overestimation, thereby biasing the model to overestimate. Again, this approach did not reduce

underestimation in our case, and in fact it only increased overall prediction error. Instead, we found

that confidence intervals were able to reduce underestimation in both cases, simply by using the

upper bound as the resource request. In other words, confidence intervals reduce underestimation

in lieu of other methods such as resampling and asymmetric loss functions, which would require

more fine-tuning. There are a few cases in which high-usage runs are still underestimated, such as

GEMmaker / download runs disk usage, and in these cases the only solution may be to acquire more

medium- and high-usage runs for the training data.
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The results of the training set size experiments are summarized in Figure 4.4, which shows

the minimum number of training samples required to achieve 20% prediction error and 5% coverage

error for each prediction target. Additionally, detailed results for KINC / similarity mpi are shown in

Figure 4.5, and the same results for all prediction targets are provided in Appendix B. These results

allow us to determine how many runs of a workflow are necessary to produce a reliable prediction

model. The same prediction targets that did not achieve low prediction error with an 80/20 split

in the core experiments, namely all of the GEMmaker targets, also cannot achieve low prediction

error in these experiments, hence their “minimum required samples” is equal to the total sample

size. On the other hand, every prediction target can achieve 95% coverage with only a fraction of

the respective dataset, and a small fraction in many cases.

The minimum required training samples for a given process will depend on factors such as

the complexity of the resource usage and the number of relevant input features. The trace datasets

in this dissertation were generated by varying many different inputs, and in that sense are intended

to provide an exhaustive view of the resource usage of each workflow. In reality, not all inputs will

need to be varied. For example, while the runtime of KINC / similarity mpi depends on input data

size, number of parallel processes, and hardware type, a typical user might run KINC on a variety

of datasets but with an otherwise constant configuration (e.g. four chunks with V100 GPUs). This

scenario has two key implications: (1) fewer training samples will be required because fewer inputs

are being varied, (2) the training data will likely be imbalanced because it is not being generated

in a controlled manner. Mitigating imbalance in small datasets has proven difficult, but there are

many strategies, such as using a weighted loss function and other re-sampling strategies, that have

not yet been tried, and warrant investigation in future work.

4.2 Anomaly Detection

The anomaly detection experiments were performed in tandem with the core resource pre-

diction experiments. Predicted anomalies are highlighted in the marginal scatter plots in Appendix

B. We focus on the results for KINC / similarity mpi runtime (Figure 12), as it contains the clearest

example of anomalies in the training data. The scatter plots show that there are a few high-runtime

tasks that were predicted to have very low runtime, but the marginal plot of runtime versus hard-

ware type shows that these runs took significantly longer than similar runs, that is, they are clearly
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anomalies. Figure 12 shows that both models were able to correctly identify these runs as anomalies,

using the anomaly score and threshold defined in the previous chapter.

Similar examples can be found for the other prediction targets, however not all marked

anomalies appear to be true anomalies. For example, several high-usage runs for GEMmaker /

download runs disk usage (Figure 2) are marked anomalies by the random forest, when in reality

these runs were probably just high-usage runs that were under-represented in the training data.

Examples such as these highlight some of the limitations of the anomaly score. In some cases, it

is difficult to distinguish between data anomalies and model errors without broader context about

the application. Some kinds of anomalies cannot be caught; for example, if a task has unusually

high runtime and the predicted runtime is also used as the requested walltime, then the task will

fail before the model can assess whether it is an anomaly. On the other hand, there are no walltime

limits in a cloud environment, so the anomaly score is very useful in this situation for alerting the

user to potential cost overruns.

Ultimately, the anomaly detection mechanism is only intended to identify potential anoma-

lies for the user to review. Regardless of whether a task is marked an anomaly or fails outright,

the user must always assess the context of the anomaly (inputs, execution logs, which resource was

anomalous, etc) and decide whether the task or the model is at fault. In an online training scenario,

the resource usage data may then be kept for training or discarded based on the user’s decision.

This cycle of anomaly detection and re-training both acts as a guided debugging tool and allows the

model to improve over time. The appropriate anomaly threshold will depend on the user’s tolerance

for false positives and false negatives; even so, the 0.997 threshold is a sensible default, and the

anomaly score itself is an improvement because it is based on the variance of the model prediction.

4.3 Cross-Platform Runtime Prediction

The results of the Palmetto P100/V100 experiment are given in Figure 4.6, following the

same visual semantics as the core resource prediction experiments. In this experiment, the P100

and V100 runs are ordered by dataset size, and each model is trained on a certain proportion of

P100 and V100 runs. For example, a (0.75, 0.25) model is trained on the first 75% of P100 runs

and the first 25% of V100 runs, and then evaluated on the remaining V100 runs. Varying these two

parameters yields nine models ranging from (0.25, 0.25) to (1.00, 0.75), allowing us to observe the
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Figure 4.6: Expected vs predicted runtime for each model in the Palmetto P100/V100 experiment.
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Figure 4.7: Expected vs predicted runtime for each model in the Palmetto/Nautilus experiment.

effect of including larger runs in the training data. The models trained with only the first 25% of

P100 runs do not generalize well to larger runs, even with more V100 runs. However, several models

with 50% or more of the P100 runs achieve high coverage, including models that did not use the

largest 25% of P100 runs, which shows a limited ability to generalize from smaller runs to larger

runs.

The results of the Palmetto/Nautilus experiment are given in Figure 4.7, following the

same visual semantics as the core resource prediction experiments. In this experiment, the Nautilus

runs consisted only of a few small runs and several large runs, so only the proportion of Palmetto

runs was varied. Only the model that was trained on 100% of the Palmetto runs was able to

reliably predict the runtime of the large Nautilus runs. Unsurprisingly, it is much more difficult

to extrapolate runtime from Palmetto to Nautilus than to extrapolate between different phases

of Palmetto. Prediction accuracy can be improved with more training data, as the figure shows,

and potentially with additional Minibench performance metrics that provide a better representation

of the source and target platforms. Investigating additional performance metrics is an important

subject for future research.

As an aside, it is worth exploring why certain models in each experiment tended to either

overestimate or underestimate the runtime. In the first experiment, the models tended to overes-

timate when the training data consisted of more P100 runs. Since the V100 runs are significantly

shorter than the P100 runs, the training set in this situation consists of much higher runtimes than

the test set, which causes the model to be biased towards overestimation. Similarly, the models in

the second experiment were trained on P100 and V100 runs, but evaluated on Nautilus runs that

used lower-performing GPUs such as a GTX 1080 or TITAN Xp. As a result, these models tended

to underestimate the runtime. These observations suggest that, in cases where the source and tar-
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Figure 4.8: Expected vs predicted target values for each model in the Palmetto/Google experiment.

get platforms are very different, the model will be biased towards the source platform because the

training data will include more examples from the source platform. Addressing this data imbalance

is challenging when there are only a few training samples from the target platform, however as

mentioned before, there are many strategies for mitigating data imbalance in the training data.

4.4 Cost Prediction

The results of the Palmetto/Google experiment are shown in Figure 4.8, following the same

visual semantics as the core resource prediction experiments. This experiment was identical to the

Palmetto/Nautilus experiment; the runs that were performed on Nautilus were also performed on

GCP. In this case, the model is able to achieve better coverage with less training data. It is not

surprising that the GCP runs are easier to predict than the Nautilus runs, because GCP is both more

homogeneous than Nautilus and more similar to Palmetto. These results suggest that Palmetto is an

ideal proxy for predicting resource usage and cost of workflows on GCP, due to hardware similarities

such as P100 and V100 GPUs.

We used the runtime data from the Palmetto runs to estimate the cost of running the
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Figure 4.9: Total runtime and estimated GCP cost of several Palmetto KINC runs. Error bars
denote standard error across different values of the “chunks” parameter.

same experiments on GCP. The total runtime and cost of these runs are shown in Figure 4.9,

respectively. The CPU runs were only collected for the smallest datasets and were not used in any

other experiments. These plots clarify the comparative cost of different node types; in particular,

they show that V100 GPUs are are both faster and more cost efficient than CPUs and P100 GPUs,

even for small datasets. Additionally, the small error bars indicate that the “chunks” parameter,

which determines the number of parallel tasks, has very little effect on cost. Using more chunks

decreases runtime if the tasks are actually executed in parallel, but the cost is the same because the

KINC / similarity chunk process is embarrassingly parallel. This approach can be used to determine

the most cost-effective way to run workflows in the cloud without running anything in the cloud

beforehand. The source and target node types should be similar when performing a comparative

analysis; this example depends on the fact that both Palmetto and GCP have P100 and V100 GPUs.

Furthermore, if an accurate cost estimate is also desired, then the full cost prediction analysis should

be used so that the runtimes are extrapolated to the target platform. Based on the Palmetto/Google

experiment, this example is likely a slight overestimate of the true cost.
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4.5 Summary

In this chapter, we have demonstrated several prediction capabilities with Tesseract. Fun-

damentally, Tesseract is a data collection and data analysis tool, and our experiments only highlight

a set of prediction problems that are most relevant to scientific workflows and resource provisioning.

We developed a generic approach to resource prediction, based on standard machine learning models

and confidence intervals, that was effective for a diverse collection of scientific workflows. We inves-

tigated the impact of training set size and developed a basic anomaly detection mechanism, and we

discussed their relevance to online training and prediction. Finally, we developed an approach for

the more challenging problem of predicting the resource usage – and ultimately the cost – of running

a workflow on a target platform with training data from a source platform. We also discussed chal-

lenges, such as data imbalance, that require further investigation. In all of these experiments, we

have demonstrated capabilities that are effective across applications and platforms and that address

key challenges with resource provisioning from the perspective of a domain scientist. In the final

chapter, we summarize the work as a whole, and we discuss potential research directions for the

future.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Many prominent applications of AI focus on maximizing capability and capacity, that is,

employing bigger models, more data, more computational resources, and more technical expertise

to achieve as little error as possible. A complementary but similarly difficult class of problems,

is to employ small models with minimal training data to achieve acceptably low error, using a

methodology that requires minimal technical expertise. These constraints are shared by many

small problems that scientists and other non-expert users face when using data-intensive computing

systems. This dissertation focused on one such problem – predicting resource usage of scientific

workflows. We laid out the history of resource prediction and motivated the need for tools that are

generic and easy to use. We proposed Tesseract, a semi-automated tool for predicting resource usage

of any application on any platform. We described the design, implementation, and usage of Tesseract,

including workflow annotation, performance data collection, and model training. We demonstrated

the core resource prediction capability of Tesseract on a diverse set of scientific workflow. Finally,

we leveraged this core capability to demonstrate the use of Tesseract for anomaly detection, cross-

platform runtime prediction, and cost prediction. The source code for Tesseract is available at

https://github.com/bentsherman/tesseract under the MIT license.
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5.2 Future Work

There are a number of research directions and software engineering efforts that may be de-

rived from this work. The most straightforward efforts include investigating different applications,

such as those from other science and engineering fields, and investigating other resource metrics,

particularly networking metrics. Other efforts have been mentioned throughout this dissertation,

such as exploring performance metrics in more detail and addressing imbalance in trace datasets.

Tesseract may be applicable to the problem of predicting and characterizing different types of fail-

ures (e.g. incorrect task configuration, corrupt input data, network reliability, hardware failures).

Similarly, predicting the queue time of submitted tasks is useful for estimating the makespan (total

runtime) of a workflow run on some computing platforms. The feasibility of any such capability is

a function of acquiring the appropriate inputs and outputs, and there is a rich literature of studies

aimed at solving each of these problems. Finally, an important goal for making Tesseract highly

usable is the implementation of online training and prediction. Tesseract should ideally operate as

part of a service that automatically collects resource usage data from workflow runs, trains and re-

trains models, and provides resource estimates to workflow runs in real time. In this scenario, given

an annotated pipeline, the only step that requires user input is labeling mispredictions as anomalies

or model errors. We have developed a web service called Nextflow-API [54] which includes some of

these capabilities, and there are other emerging services around Nextflow, such as Nextflow Tower,

that are working towards similar goals. We are hopeful that these kinds of tools and services will

reduce the friction of data-intensive computing and enable scientists to make further advances across

many science domains.
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Appendix A: Trace Datasets

This appendix describes the trace datasets that were generated for this dissertation. Table

2 lists the input features for each workflow process associated with the selected prediction targets,

as well as the number of samples in each trace dataset. Unless specified otherwise, all workflow runs

were performed on the Palmetto cluster.

GEMmaker. GEMmaker downloads sequence read archive (SRA) data from the NCBI

SRA repository [45] and produces a gene expression matrix (GEM). To generate trace data for

GEMmaker, we processed 1,000 Arabidopsis datasets that were selected randomly NCBI SRA. These

runs vary in size, complexity, and origin, as they were produced by many different labs. From these

runs, 768 samples were processed successfully, while the remaining runs failed at different stages in

the pipeline. Nearly all of these failures were caused by missing or invalid sample metadata from

NCBI.

Gene Oracle. Gene Oracle takes as input a GEM and a list of gene sets. To generate

trace data for Gene Oracle, we used the kidney GEM from the unified GTEx-TCGA data [67]. We

generated six gene set lists with {32, 64, 128, 256, 512, 1024} gene sets, respectively. Each gene set

contained anywhere from 5 to 20 genes, all drawn from the unified GEM itself. We then ran Gene

Oracle with the kidney GEM and each gene set list, as well as with {1, 2, 4, 8, 16} parallel processes,

for a total of 30 workflow runs.

HemeLB. To generate trace data for HemeLB, we used six unstructured cerebral aneurysm

(CA) geometries from the AneuriskWeb repository [4], as well as a simple cylinder geometry. These

geometries vary in site count and sparsity. Each geometry was processed by HemeLB multiple times

under a variety of input conditions, as well as three independent trials for each unique run, for a

total of 324 runs, of which 320 were successful.

KINC. Several trace datasets were generated for KINC throughout the duration of this
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Name Genes Samples

bile-duct 18,764 40
bladder 19,427 390
breast 19,738 1,181
cervix 19,316 272
colon 19,096 665
esophagus 19,629 853
head-neck 19,132 502
kidney 19,216 929
liver 18,764 458
lung 19,648 1,415
prostate 19,046 580
rectum 19,096 97
salivary 19,132 55
stomach 19,969 605
thyroid 19,239 812
uterus 19,316 293
yeast 7,050 188

Table 1: Datasets used to generate KINC runs

study. For the core resource prediction experiments, we used a yeast GEM to generate a range

of subset GEMs. For the MPI execution mode (KINC / similarity mpi), 10 subset GEMs were

generated. Each GEM was processed multiple times under a variety of input conditions, as well as

three independent trials for each unique run, for a total of 450 workflow runs, of which 436 were

successful. For the chunk-and-merge execution mode (KINC / similarity chunk), 8 subset GEMs

were generated. Each GEM was processed multiple times under a variety of input conditions, for

a total of 96 workflow runs. For the cross-platform and cost prediction experiments, we used the

breast GEM from the unified GTEx-TCGA data [67] to generate a range of 16 subset GEMs. Each

GEM was processed multiple times under a variety of input conditions, using the chunk-and-merge

execution mode, for a total of 194 workflow runs. These runs were used as the training data.

Each GEM from the unified GTEx-TCGA data was processed both on Nautilus and Google Cloud

Platform (GCP), and these runs were used as the evaluation data for the cross-platform and cost

prediction experiments, respectively. Table 1 lists all of the GEMs that were used to generate KINC

runs.

TSPG. TSPG takes as input a GEM of training data, a GEM of perturb data, and a list

of gene sets. To generate trace data for TSPG, we used the thyroid GEM from the unified GTEx-

TCGA data [67]. We generated nine train/perturb splits ranging from 10/90 to 90/10, as well as a
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Process Input Features No. Samples

GEMmaker / download runs n remote run ids, n spots 774
GEMmaker / fastq dump sra bytes 769
GEMmaker / fastq merge fastq lines 768
GEMmaker / fastqc 1 fastq lines 768
Gene Oracle / phase1 fg chunks, gmt lines, gmt genes 186
HemeLB n sites, hardware type, np 320
KINC / similarity chunk n rows, n cols, hardware type, chunks 720
KINC / similarity mpi n rows, n cols, hardware type, np 436
KINC / extract n rows, n cols, ccm bytes, cmx bytes 96
TSPG / train target n genes, n train samples 700
TSPG / perturb n genes, n train samples, n perturb samples 700

Table 2: Input features that were defined for each selected process

list of 100 gene sets drawn from the thyroid GEM itself. We then ran TSPG on each train/perturb

split and the gene set list, for a total of 9 workflow runs, 7 of which were successful.
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Appendix B: Resource Prediction

Results

This appendix contains the full results for the resource prediction experiments. For each

prediction target that was selected, we provide the following: (a) scatter plots of expected vs pre-

dicted values for the neural network (MLP) and random forest (RF) models; (b) expected and

predicted target values plotted in terms of each input feature. Each scatter plot in (a) has a dashed

black line denoting equality, and each point and vertical bar is a point prediction with corresponding

95% confidence interval. Points below the black line are predictions that were less than the target

value, while points above the black line are predictions that were greater than the target value.

Predictions that were identified as anomalies (anomaly score of 0.997 or greater) are colored red.

Each row of plots in (b) shows the predicted and expected target value in terms of a single input

feature. The rows in combination provide a full comparison between the original data distribution

and the distribution of each model. Additionally, target values are marked in yellow, red, or pink if

they were identified as anomalous by the neural network, random forest, or both, respectively. Each

anomaly is marked across all three plots, in order to show the discrepancy between the predicted

and actual resource usage.

This appendix also contains the results for the training set size experiments. For each

prediction target, a neural network was trained and evaluated for each train/test split from 10/90 to

90/10. Each figure shows the prediction error (MAPE) and coverage error for the given prediction

target.
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(b) Expected and predicted target values in terms of each input feature

Figure 1: Resource prediction results for GEMmaker / download runs runtime.
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Figure 2: Resource prediction results for GEMmaker / download runs disk usage.
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Figure 3: Resource prediction results for GEMmaker / fastq dump runtime.
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Figure 4: Resource prediction results for GEMmaker / fastq dump disk usage.
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Figure 5: Resource prediction results for GEMmaker / fastq merge runtime.
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Figure 6: Resource prediction results for GEMmaker / fastq merge disk usage.
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Figure 7: Resource prediction results for GEMmaker / fastqc 1 runtime.
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Figure 8: Resource prediction results for Gene Oracle / phase1 fg runtime.
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Figure 9: Resource prediction results for HemeLB runtime.
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Figure 10: Resource prediction results for HemeLB memory usage.
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(b) Expected and predicted target values in terms of each input feature

Figure 11: Resource prediction results for KINC / similarity chunk memory usage.
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(b) Expected and predicted target values in terms of each input feature

Figure 12: Resource prediction results for KINC / similarity mpi runtime.
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(b) Expected and predicted target values in terms of each input feature

Figure 13: Resource prediction results for KINC / similarity mpi memory usage.
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Figure 14: Resource prediction results for KINC / extract runtime.
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Figure 15: Resource prediction results for TSPG / train target memory usage.
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Figure 16: Resource prediction results for TSPG / perturb memory usage.
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Figure 17: Training set size results for GEMmaker / download runs runtime.
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Figure 18: Training set size results for GEMmaker / download runs disk usage.
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Figure 19: Training set size results for GEMmaker / fastq dump runtime.
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Figure 20: Training set size results for GEMmaker / fastq dump disk usage.
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Figure 21: Training set size results for GEMmaker / fastq merge runtime.
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Figure 22: Training set size results for GEMmaker / fastq merge disk usage.
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Figure 23: Training set size results for GEMmaker / fastqc 1 runtime.
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Figure 24: Training set size results for Gene Oracle / phase1 fg runtime.
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Figure 25: Training set size results for HemeLB runtime.
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Figure 26: Training set size results for HemeLB memory usage.
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Figure 27: Training set size results for KINC / similarity chunk memory usage.
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Figure 28: Training set size results for KINC / similarity mpi runtime.

81



43 / 436 87 / 436 130 / 436 174 / 436 218 / 436 261 / 436 305 / 436 348 / 436 392 / 436
Training Samples / Total Samples

0

10

20

30

40

50

60
M
AP

E 
(%

)

43 / 436 87 / 436 130 / 436 174 / 436 218 / 436 261 / 436 305 / 436 348 / 436 392 / 436
Training Samples / Total Samples

0

1

2

3

4

5

Co
ve

ra
ge

 E
rro

r (
%
)

Figure 29: Training set size results for KINC / similarity mpi memory usage.
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Figure 30: Training set size results for KINC / extract runtime.
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Figure 31: Training set size results for TSPG / train target memory usage.
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Figure 32: Training set size results for TSPG / perturb memory usage.
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Appendix C: Minibench

This section contains the benchmark results for Minibench on each of the computing plat-

forms that were used in this study. Refer to Table 3.1 for a description of each benchmark metric.

Each measurement is the mean of three independent trials, with vertical bars denoting standard

error.

Palmetto. Each node type corresponds to a phase. Each phase in the Palmetto cluster is

a homogeneous collection of nodes.

Nautilus. The Nautilus cluster is extremely heterogeneous, with a wide variety of CPU

and GPU models. As a result, each node type corresponds to a GPU model, and contains all of the

nodes with that GPU model. Additionally, there is a single “CPU” node type for all nodes that do

not have any GPUs.

Google Cloud Platform. While there are many VM types on GCP, only a subset of node

types were measured in order to minimize cloud costs. The Life Sciences API uses the N1 machine

type to provision VMs with custom CPU and memory requirements, and P100 and V100 GPUs are

provisioned through a custom N1 instance. Therefore, we defined three node types, corresponding

to a custom N1 instance with no GPU, a P100 GPU, or a V100 GPU.
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Figure 33: Minibench results for the Palmetto cluster.
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Figure 34: Minibench results for the Nautilus cluster.
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Figure 35: Minibench results for Google Cloud Platform.
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Appendix D: GCP Cost Model

This appendix describes the cost model that was developed to compute the hourly cost of

a VM on Google Cloud Platform (GCP). The hourly cost is combined with the predicted runtime

to determine the predicted cost of a task. This model is formalized in the following equation,

C(t) = (rcpu(t) + rmem(t) + rdisk(t) + rgpu(t))× T (t),

where {rcpu, rmem, rdisk, rgpu} are the hourly rates of each component resource. These rates can

be obtained from the GCP pricing documentation [11]. Table 3 lists the unit prices for the particular

instance type that was used in the cost prediction experiment: a preemptible, custom N1 instance

with some amount of standard disk storage and a P100 or V100 GPU. For example, a preemptible

VM with 2 CPUs, 8 GB memory, 20 GB boot disk, 500 GB scratch disk, and 1 V100 GPU would

cost $0.79 / hour based on current rates.

The above model only quantifies the computational cost of a task, and does not consider the

cost of object storage and egress. While we do not investigate these costs in this dissertation, here

we briefly describe how to model such costs. Object storage is used by Nextflow to store workflow

inputs and outputs. The cost of object storage is denoted as rstorage in Table 3. This cost depends on

whether the workflow data is kept long-term or immediately transferred or removed from the cloud.

In the former case, there is a monthly recurring cost; in the latter case, there is a relatively small

cost for storing the workflow data during workflow execution. For example, 1 TB of object storage

costs $20 / month, or $0.027 / hour. Network egress is the use of networking resources to transfer

data from the cloud to an external location. Nextflow incurs egress costs only if it is configured to

download workflow outputs to an external location, such as the user’s local machine. The cost of

egress is denoted as regress in Table 3. Network egress becomes cheaper at higher amounts. For
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Name Price Unit

rcpu 0.00698 $ / vCPU / hour
rmem 0.00094 $ / GB / hour
rdisk 0.04 $ / GB / month
rgpu,p100 0.43 $ / GPU / hour
rgpu,v100 0.74 $ / GPU / hour
rstorage 0.02 $ / GB / month
regress,0 0.12 $ / GB
regress,1 0.11 $ / GB
regress,10 0.08 $ / GB

Table 3: Unit prices of selected GCP resources, Iowa (us-central1), November 2021

example, downloading 1 TB of data costs $120, another 1 TB in the same month costs $110, and so

on. In other words, downloading 1 TB of data costs the same as storing 1 TB of data for 6 months.

To summarize, the cost of storage and egress depends on how much output data is kept in the cloud,

how long it is kept, and how much data, if any, is downloaded.

We provide concrete examples of compute, storage, and egress costs in order to highlight

which components are likely to dominate. In a typical Nextflow run, input data is uploaded, each

task is executed as a VM, the output data is downloaded, and all intermediate data is deleted. If

the workflow produces a large amount of data, which is the case for most of the workflows used in

this dissertation, the total cost will be dominated by network egress. These examples alone suggest

that workflow outputs should be retained in the cloud, and downloaded only after they have been

sufficiently reduced by downstream analyses (visualizations, statistical summaries, etc). In other

words, the cost of retaining the output data, performing downstream workflows, and downloading

the reduced output data, should be compared to the cost of immediately downloading the full output

data, in order to determine the optimal “withdrawal” point. This strategy can be extended for an

arbitrary sequence of workflows, and the cost of each component can be computed using the cost

models described in this appendix.
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