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ABSTRACT 

Material microstructure prediction based on processing conditions is very useful 

in advanced manufacturing. Trial-and-error experiments are very time-consuming to 

exhaust numerous combinations of processing parameters and characterize the resulting 

microstructures. To accelerate process development and optimization, researchers have 

explored microstructure prediction methods, including physical-based modeling and 

feature-based machine learning. Nevertheless, they both have limitations. Physical-based 

modeling consumes too much computational power. And in feature-based machine 

learning, low-dimensional microstructural features are manually extracted to represent 

high-dimensional microstructures, which leads to information loss.  

In this dissertation, a deep learning-guided microstructure prediction framework is 

established. It uses a conditional generative adversarial network (CGAN) to regress 

microstructures against numerical processing parameters. After training, the algorithm 

grasps the mapping between microstructures and processing parameters and can infer the 

microstructure according to an unseen processing parameter value. This CGAN-enabled 

approach consumes low computational power for prediction and does not require manual 

feature extraction. 

A regression-based conditional Wasserstein generative adversarial network 

(RCWGAN) is developed, and its microstructure prediction capability is demonstrated on 

a synthetic micrograph dataset. Several important hyperparameters, including loss 

function, model depth, number of training epochs, and size of the training set, are 
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systematically studied and optimized. After optimization, prediction accuracy in various 

microstructural features is over 92%.  

Then the RCWGAN is validated on a scanning electron microscopy (SEM) 

micrograph dataset obtained from laser-sintered alumina. Data augmentation is applied to 

ensure an adequate number of training samples. Different regularization technologies are 

studied. It is found that gradient penalty can preserve the most details in the generated 

microstructure. After training, the RCWGAN is able to predict the microstructure as a 

function of laser power. 

In-situ microstructure monitoring using the RCWGAN is proposed and 

demonstrated. Obtaining microstructure information during fabrication could enable 

accurate microstructure control. It opens the possibility of fabricating a new kind of 

materials with novel functionalities. The RCWGAN is integrated into a laser sintering 

system equipped with a camera to demonstrate this novel application. Surface-emission 

brightness is captured by the camera during the laser sintering process and fed to the 

RCWGAN for online microstructure prediction. After training, the RCWGAN learns the 

mapping between surface-emission brightness and microstructures and can make 

prediction in seconds. The prediction accuracy is over 95% in terms of average grain size. 
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CHAPTER ONE 

INTRODUCTION 

In advanced manufacturing, material microstructure prediction based on 

processing conditions could be very useful. It is because to the material’s properties are 

largely determined by its microstructure, and the microstructure is greatly affected by the 

processing conditions [1]. These relationships are also known as process-microstructure-

property linkages [2,3,4]. Conventionally, material development demands the process-

microstructure-property linkages to be established through trial-and-error experiments. 

Numerous combinations of processing conditions need to be exhausted, and the resulted 

microstructures have to be characterized offline (e.g., SEM). Both of them are time and 

resource-consuming. With microstructure prediction capability, microstructure 

information can be obtained right after the sample is fabricated, which saves a huge 

amount of time in microstructure characterization and accelerates the material 

development cycle. Furthermore, when this microstructure prediction capability is 

combined with in-situ monitoring techniques, it is possible to acquire microstructure 

information during the fabrication process. It leads to high-precision microstructure 

control and opens the possibility of fabricating novel devices enabled by specially 

designed microstructure profiles. 

1.1 Process-microstructure-property relationship 

Knowledge about process-microstructure relationships is essential to guide the 

fabrication processes. It basically concerns what the microstructure looks like when the 
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material undergoes a certain process. It is important because the material’s properties are 

largely determined by the microstructure, which is also known as the microstructure-

property relationship [5]. For example, in metallurgy, the strength of the material is 

inversely proportional to the grain size [6]. In proton conduct ceramics, the electrical 

conductivity is proportional to the grain size [7]. Wen Lien et al. studied the 

microstructure-property relationship in a lithium disilicate glass-ceramic and concluded 

that with more lithium disilicate formed, higher elastic modulus and hardness could be 

obtained [8]. In summary, controlling the microstructure is essential to obtain the material 

with the desired properties. 

Trial-and-error experiments have been the common practice to guide fabrication 

process optimization. In trial-and-error experiments, multiple samples are fabricated 

using various processing parameters. Then the microstructures of the samples are 

characterized through scanning electron microscopy (SEM). The obtained microstructure 

data are analyzed to find the correlation between microstructural features and the 

processing parameters. When a multi-pass rolling process was used to fabricate metal 

sheets, experimental results suggested that temperature significantly affected the grain 

size and elongation [9]. Spinelli et. al. found that in strip casting, columnar dendritic 

microstructures formed on the sample surface [10]. Experimental results suggested that 

when the cooling rate was larger, the dendritic spacing was smaller. Wang et al. 

investigated the sintering temperature effect on the microstructure of titanium diboride 

ceramics sintered in a hot-pressing furnace [11]. They found that when sintering time was 

held at 60 min, the grain size and the relative density increased when the sintering 
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temperature increased from 1773 K to 2173 K. Similar relationship was observed when 

Mahmoud et al. sintered titania gel in an electrical furnace [12]. The sintered ceramic was 

nanoporous titania, whose pore size decreased when the sintering temperature increased.  

The trial-and-error approach is also applied to laser-based material processing 

methods, such as laser welding [13], laser sintering [14], laser melting [15], and laser 

drilling [16]. Microstructures formed from laser-based processing methods tend to be 

different from conventional methods because of localized effects and high heating rates 

[17]. Empirical knowledge accumulated from the conventional fabrication methods 

cannot be directly applied. New experimental data are needed to identify the process-

microstructure relationships in laser-based processing methods. Ghaini et al. investigated 

the microstructure formed under pulsed Nd:YAG laser welding [18]. Within the explored 

range, they found that with lower heat input, which means lower laser power or higher 

travel speed, fine columnar dendrites were the dominant microstructure. Increasing the 

heat input resulted in coarser structures. Thijs et al. studied the effect of processing 

parameters on the microstructure formed during selective laser melting of Ti-6Al-4V 

[19]. Elongated grains were observed whose direction depended on the laser scanning 

strategy. Mu et al. demonstrated laser sintering of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ (BCZYYb), a 

proton conductive ceramic material [20]. The resulted microstructure could be engineered 

by varying laser processing parameters.  

In conclusion, the current practice of material development to establish process-

microstructure linkages consists of three steps. The first step is sample fabrication. Then 

SEM micrographs are taken on the samples to characterize the microstructures. In the 
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end, the obtained SEM micrographs are analyzed by experts. Microstructure 

characterization and analysis can take a large amount of time. While laser-based 

advanced manufacturing technologies have accelerated sample fabrication from hours to 

minutes, microstructure characterization and analysis have to be expedited as well, which 

could be solved by microstructure prediction. 

  

1.2 Physical-based modeling 

Physical-based modeling and numerical methods that can predict microstructures 

are investigated to accelerate material research. One of the most successful tools is the 

phase-field models [21]. The phase-field models have been applied to predict 

microstructure evolution for various material processes [22], such as grain growth, crack 

propagation, and solid-state phase transformation. Wang et al. developed a phase-field 

model for the solid-state sintering process [23]. The model successfully predicted the 

microstructure evolution, such as neck formation and grain boundary migration. 

Echebarria et al. demonstrated that a phase-field model could make quantitative 

predictions for the solidification process of a binary alloy [24]. Takaki employed a phase-

field model to simulate large-scale dendrite growth that was often observed during the 

casting of metal materials [25].  

Phase-field models also achieved great success in laser-based processing methods.  

Li et al. used a phase-field model to simulate the solid-liquid phase transition along with 

the thermocapillary effect during laser melting of a single metallic powder [26]. Zhang et 

al. proposed a phase-field model to predict microstructure behaviors during solid-state 
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selective laser sintering of metallic materials [27]. Microstructure features such as neck 

size between adjacent particles were accurately predicted. Yang et al. introduced non-

isothermal assumption into a three-dimensional phase-field model to simulate 

microstructure evolution during selective laser sintering [28]. The predicted 

microstructure agreed well with experimentally obtained SEM micrographs. They then 

used the model to investigate the effect of laser power and scanning speed on the 

porosity. 

While the phase-field models have gradually become the standard approach to 

simulate microstructure evolution and analyze process-microstructure relationships 

theoretically, there are some drawbacks that prevent them from wide adoption. First, 

developing phase-field models is not trivial. Different assumptions, constraints, and 

configurations need to be carefully examined and chosen to produce accurate results. For 

example, in Yang’s work, they demonstrated that the non-isothermal assumption was 

necessary to address the coupling of heat transfer and microstructure evolution [28]. 

Second, phase-field models require a large amount of computational power. As a 

numerical simulation method, phase-field models demand thousands of spatial grid points 

and hundreds of time sampling points to make accurate predictions. The amount of 

computational power makes it impossible for users without access to supercomputers or 

high-performance computing clusters. In Yang’s work, microstructure evolution from 0 

μs to 5000 μs in a 100 µm × 500 µm ×250 µm cube under the laser spot was simulated. 

The simulations were performed with 150 processors, and each simulation consumes 

about 10000 CPU cores×hours. Miyoshi et al. conducted an ultra-large-scale phase-field 
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simulation of ideal grain growth [29]. The most accurate result was obtained by assigning 

25603 grid points to the model. The computation has to be conducted on the 

supercomputer TSUBAME2.5. 

 

1.3 Machine learning approach 

Due to the abundance of data accumulated in the past decades and the rapid 

increase of computational power, machine learning has revolutionized many aspects of 

our lives. From recommending system [30] to fraud detection [31], from speech 

recognition [32] to chatting robots [33], from optical character recognition [34] to 

objective detection and localization [35], machine learning algorithms have achieved 

unprecedented success. Apart from the computer science community, machine learning 

algorithms have also attracted many researchers in other areas for relatively low 

computational cost and high accuracy [36, 37, 38]. 

In the material science community, scientists and engineers are thrilled with the 

possibility that machine learning tools can accelerate material discovery, process design, 

microstructure characterization, and property optimization [39]. A significant number of 

papers propose and demonstrate using machine learning algorithms to explore 

microstructure-property relationships. Convolutional neural networks (CNNs) [40] are 

one of the most popular machine learning algorithms in this application. Yang et al. 

combined principal component analysis (PCA) and CNN to predict the stress-strain curve 

of a composite material based on its microstructure [41]. The mean absolute error of 

prediction was below 10%. Cecen et al. employed a three-dimensional CNN to model the 
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linkage between three-dimensional microstructures and their elastic properties [42]. The 

mean absolute error of prediction was 11.3%. Herriott et al. did similar work utilizing 

CNN to predict mechanical properties of additively manufactured metals based on 

microstructure features [43].  

Using machine learning approaches to predict microstructure based on processing 

parameters is attractive. Hashemi et al. developed a machine learning framework to 

predict microstructure evolution [44]. They first extracted low-dimensional 

microstructural features from the microstructures based on two-point spatial correlations. 

Then they trained a Gaussian process autoregression model to predict the evolution of 

these low dimensional features. Similar work has been done by Brough et al. in studying 

the microstructure evolution in polyethylene films [45]. Brough then formalized this 

approach and demonstrated that it is three times faster than numerical simulations [46]. 

The machine learning approach reviewed above is feature-based. It faces two 

challenges. First, how to extract low-dimensional features from real microstructures is 

still an open question. There is no well-established method to reliably recognize, 

quantify, and extract a wide range of microstructure features from real micrographs. 

Second, predicting microstructural features rather than microstructure itself inevitably 

leads to information loss. It is because the microstructure, which is often represented as 

SEM micrographs, contains numerous features. Representing a microstructure with a 

limited number of features is omitting other features that could hold important 

information. 
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1.4 Generative adversarial network  

Generative adversarial networks (GANs) are one of the most popular deep 

learning algorithms proposed by Ian Goodfellow in 2014 [47]. GANs are able to generate 

highly authentic images with respect to the training data. This capability has invoked 

many amazing applications. Karras et al. developed a progressive growing GAN 

(ProGAN) to synthesize high-quality and high-resolution human face images [48]. Soon 

they take a step forward to incorporate additional information, known as style, to 

generate human face images with adjustable features, such as skin color, facial 

expression, hairstyle [49]. Hamada et al. utilized an augmented ProGAN to synthesize 

anime clips with a character changing its pose [50]. Alsaiari et al. developed a GAN that 

was able to denoise images [51].  

Using GANs to synthesize microstructures is attractive. Compared with the 

experimental approach and physical-based modeling, GANs can produce the same 

quality microstructures with much larger quantities in a short time [52]. Gayon-

Lombardo et al. employed a deep convolutional GAN (DC-GAN) to generate three-phase 

electrode microstructures based on real X-ray computed tomography images [53]. The 

generated micrographs shared the same statistical features, such as phase volume 

fraction, with the real data. They claimed that this approach can generate an arbitrary 

large volume of authentic (statistically similar to real data) microstructures and thus 

explore microstructure space efficiently. Li et al. proposed a GAN-based framework that 

can accelerate microstructure design [54]. They used a GAN to stochastically generate 

realistic microstructures and computed the corresponding properties via physical 
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simulations. The computed properties were fed to an optimization model, which guided 

the optimization of generated microstructure. By doing so, the optical absorption of the 

resulted microstructure was improved by 15%. Chun et al. introduced a morphology 

parameter to control GAN-generated microstructures [55]. This approach enabled more 

controllability on the generated microstructure and could synthesize unseen 

microstructures.  

Conditional GAN (CGAN) is a variant of GANs that allows users to incorporate 

additional information (condition) into image synthesize and control certain features by 

doing so [56, 57]. It is possible to look into process-microstructure relationships using 

CGANs with processing parameters as the conditions. Some preliminary research has 

been published in this direction. Iyer et al. generated authentic metal microstructures 

formed under different cooling methods [58]. Banko et al. used the concentration of Al 

and deposition temperature as the conditions to model the relationship between the 

processing parameters and the thin film microstructure [59].  

1.5 Laser sintering 

Laser sintering [14, 60, 61] is one of the most rapidly growing advanced 

manufacturing technologies because of two reasons. First, in laser sintering process, 

dense products are fabricated in a short time compared with conventional sintering 

methods, such as furnace sintering. Second, the laser sintering process offers unparallel 

flexibility in terms of materials, microstructures, and geometries. Material-wise, laser 

sintering can process almost many kinds of materials, such as polymers, metals, ceramics, 

and glass. By varying processing parameters at different locations, heterogenous 
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microstructures can be obtained. Products of arbitrary geometry can be produced by a 

layer-wise fabrication procedure. By combining those two advantages together, laser 

sintering technology can rapidly fabricate novel products with complex 3D geometry, 

heterogeneous microstructures, and unique properties. 

In the laser sintering process, raw material powders absorb the laser energy and 

are heated up rapidly. Under the elevated temperature, the raw material powders 

experience multiple physical or even chemical processes, such as sintering, melting, 

vaporization, thermomechanical shock, and plasma formation [62, 63, 64]. When the 

laser spot moves away, the local temperature drops quickly. This rapid heating and 

cooling result in unique microstructures that cannot be obtained by conventional 

fabrication methods [17]. While it opens the possibility for new materials with novel 

properties and functionalities, investigations into the process-microstructure-property 

relationships are difficult.  

 There are three reasons why investigating the process-microstructure relationship 

in the laser sintering process with a CGAN-based approach is particularly attractive. 

First, after the CGAN is trained, it can make predictions very fast. Second, a CGAN can 

directly predict microstructures rather than microstructural features. Third, high-

throughput experiments can be designed and conducted with the laser sintering process to 

produce enough data to train machine learning algorithms [65].  
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1.6 In-situ monitoring in laser-based advanced manufacturing processes 

The phrase “Fourth Industrial Revolution”, or “Industry 4.0” was first introduced 

by the German government in 2015 and was the focus of the World Economic Forum 

2016 [66, 67]. The core concept of Industry 4.0 is the “smart manufacturing”, which 

emphasizes sensing, monitoring, automation, and data communication between machines 

[68, 69]. Thus, in-situ monitoring during the manufacturing process plays an important 

role in “smart manufacturing”. 

Extensive efforts have been spent on developing in-situ monitoring and sensing 

methods for laser-based advanced manufacturing systems, especially powder bed fusion 

systems [70]. In powder bed fusion systems, a high-power laser melts the powders 

together to form a melting pool, which then solidifies to the consolidated structure. The 

stability, shape, and temperature of the melting pool are recognized to be important 

features that determine the quality of the final product. Clijsters et al. used a camera and a 

photodiode to measure the thermal emission intensity and geometry of the melting pool 

[71]. By doing so, they identified the overheating points where the melting pool area was 

above a threshold. The pores formed due to the disturbance of the melting pool were then 

found. Zhang et al. adopted a computer vision approach to track the melting pool [72]. 

Using the Kalman filter, they successfully identified the melting pool when there were 

many spatters with similar shapes and brightness.  

Despite the huge progress that has been achieved in in-situ monitoring methods, 

no microstructure information has been extracted during laser processes. All 

microstructure characterizations have to be conducted offline. In-situ monitoring of 
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material’s microstructure is extremely challenging but highly desirable. Once in-situ 

microstructure monitoring is realized, the properties of the material at different positions 

can be precisely controlled. It opens the possibility of manufacturing many novel 

products that cannot be fabricated using traditional methods. 

 

1.7 Motivation and objectives 

1.7.1 Motivation 

Figure 1.1 Approach to train a CGAN-based algorithm and predict the microstructure 

according to unexplored processing parameters. 

A fast microstructure prediction method is needed to accelerate the material 

development cycle because trial-and-error experiments consume too much time and 

resources. Physical-based modeling can predict microstructures. But it takes too much 

computational power to run one simulation. Machine learning approaches have been 

proposed and investigated by researchers. They are computationally cheap, but feature 

extraction is often required. Feature extraction can lead to information loss. In the 
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meantime, there has been no well-established method to extract features from SEM 

micrographs.  

To overcome these limitations, I propose to use a conditional generative 

adversarial network to regress microstructures against processing parameters. After the 

CGAN is trained, it can predict the microstructure given the processing parameters that 

have not been experimentally explored, as shown in Figure 1.1. If the prediction is 

accurate and fast, the material development cycle will be accelerated. 

1.7.2 Objectives 

The main objective is to establish a methodology of using a CGAN to accurately 

predict microstructures based on processing parameters and evaluate the prediction 

accuracy. The following specific objectives are met with this research: 

1) Develop a methodology to train, validate, and optimize a CGAN. 

2) Validate the DL-based microstructure prediction by using laser power as an example 

processing parameter. 

3) Propose and demonstrate an in-situ monitoring microstructure method using the 

CGAN. 

1.8 Organization of the dissertation 

This dissertation is organized into six chapters with their contents briefly 

described below: 

Chapter 1 gives a general introduction to research about microstructure 

prediction. A brief review of the existing methods including trial-and-error experiments, 

physics-based modeling, and feature-based machine learning is provided. The limitations 
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of each method are summarized. A new approach based on deep learning is proposed. 

Some related work is reviewed.  

Chapter 2 describes the procedure to develop a customized CGAN that aims to 

predict microstructures based on processing parameters. A synthetic microstructure 

dataset is established, where the grain size distribution changes with a processing 

parameter. The prediction accuracy of the algorithm is quantitatively evaluated in terms 

of how accurate it can predict the mean aspect ratio and grain size distribution. The effect 

of various hyperparameters on performance is studied. We name the optimized algorithm 

Regression-based conditional Wasserstein Generative Adversarial Network (RCWGAN). 

Chapter 3 is a case study where the RCWGAN is applied to predict 

microstructures of laser-sintered alumina based on laser power. Experimental procedures 

for obtaining laser-sintered alumina’s microstructures are described. The predicted 

microstructure is compared with the real microstructure to prove that the prediction is 

accurate. 

Chapter 4 demonstrates how to monitor the microstructure during the laser 

sintering process based on in-situ captured surface-emission brightness using the 

RCWGAN. The laser-based manufacturing system described in chapter 3 is modified to 

add in-situ monitoring capability. The correlation between the surface-emission 

brightness and the microstructure is presented. After the RCWGAN is trained, its 

prediction accuracy and speed is tested. 

Chapter 5 summarizes the work in this dissertation and comments on the future of 

the research.  
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1.9 Innovation and contributions 

Major scientific and technical contributions of this dissertation include the 

following: 

1) Proposed a new concept of using deep learning to predict material microstructures 

during advanced manufacturing. 

2) Reviewed different methods for microstructure prediction and analyzed their pros and 

cons. 

3) Proposed to use conditional GAN to regress microstructures against processing 

parameters and make predictions. 

4) Established a methodology to train, validate, and optimize the RCWGAN 

quantitatively. 

5) Systematically studied important hyperparameters, including model depth, training 

epochs, and training set size. 

6) Validated the DL-based microstructure prediction by using laser power as an example 

processing parameter. The prediction is accurate under qualitative examination. 

7) Studied and compared two regularization techniques: weight clipping and gradient 

penalty. 

8) Proposed an in-situ monitoring microstructure method using the RCWGAN. 

9) Proved the RCWGAN is capable of accurate and fast microstructure prediction based 

on surface-emission brightness during laser sintering. 
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CHAPTER TWO 
 

PREDICTING MICROSTRUCTURE WITH CONDITIONAL GENERATIVE 
ADVERSARIAL NETWORKS 

 
 

In this chapter, a CGAN that can accurately predict microstructures is 

implemented. The CGAN is trained on a synthetic micrograph dataset whose grain size 

distribution is controlled by a hypothetical processing parameter λ. Many 

hyperparameters, such as loss function and model depth, are studied to optimize the 

algorithm’s performance. The prediction accuracy is quantitatively evaluated by 

comparing the grain size distribution of predicted microstructures and the real ones. 

2.1 Synthesized micrograph dataset 

The CGAN is first demonstrated on a synthetic micrograph dataset for two 

reasons. First, the microstructure features, like grain size distribution, are relatively easy 

to measure on synthetic micrographs, while the grain boundaries in real micrographs are 

much harder to identify. Second, establishing a synthetic micrograph dataset is much 

easier than a real microstructure dataset. A synthetic micrograph dataset can be produced 

by a computer program in ten minutes, while a real microstructure dataset usually 

requires tens of hours of experiments. 

The synthetic micrograph dataset consists of seven subsets, each of which is 

labeled by a distinct λ value from 1 to 7. In one micrograph subset, there are 5,000 

synthetic micrographs. One synthetic micrograph has about 20 randomly distributed 

black dots representing grains. The grain size distribution follows a lognormal 

distribution whose mean linearly increases with λ. Some examples are shown in Figure 
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2.2. Six micrograph subsets labeled by 1,2,3,5,6, and 7 are used for training, while the 

one labeled by 4 is used to test the prediction accuracy.  

2.2 Conditional GAN 

Figure 2.1. The structure of a CGAN. 

 

In Figure 2.1, the structure of a CGAN is shown. The CGAN consists of a 

generator and a discriminator. The generator takes a random seed and a condition to 

generate an image. In this case, the condition is the processing parameter λ. The 

discriminator takes an image, generated or real, and the condition to give a conditional 

validity score. The validity score represents how confident the discriminator is about the 

input image to be real.  

During training, the generator gets better at generating plausible images according 

to the processing parameter, and the discriminator improves at distinguishing the 
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generated images from the real images. After the algorithm is properly trained, the 

generator should be able to generate images that look just like real ones.  

 Figure 2.2 shows the approach to train, validate and optimize the CGAN on the 

synthetic micrograph dataset. First, the CGAN is trained on the dataset. Then, the CGAN 

predicts a microstructure based on a new processing parameter value. Then the predicted 

microstructure is quantitatively compared with the real one. The validation result is used 

to guide optimization of hyperparameters like loss function and network structure. 

Figure 2.2. The approach to train, validate, and optimize a CGAN on a synthetic 

micrograph dataset. 
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2.3 Quantitative evaluation metrics 

To quantitatively evaluate the prediction accuracy, the real micrographs and the 

predicted micrographs are compared in three microstructural features: aspect ratio, 

average grain size, and grain size standard deviation. The microstructural features of the 

real micrographs are measured with the region proposal algorithm in Matlab. It basically 

joins all neighboring pixels with the same black color to form regions. The size, major 

axis length, and minor axis length of a region are also measured by the algorithm. It is 

worth noting that some grains are cropped by the edges, which causes the measured 

features to differ from the designed value. To reduce the edge effect, if the distance of a 

grain’s center to the edge is less than 15 pixels, this grain will not be counted when the 

microstructural features are measured. 1,000 real micrographs under λ equal to 4 are 

measured. The measured aspect ratio is 1.04. The average grain size is 11.00, and the 

grain size standard deviation is 2.10. The aspect ratio slightly differs from the real value 1 

because the edge effect has been greatly reduced.  

The predicted micrographs will also be measured under the protocol described 

above. Then the microstructural features of the predicted micrographs and the real 

micrographs will be compared. The prediction accuracy will be reported in relative error, 

which is calculated as following: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  |
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
− 1|                        (1) 
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2.4 Study the hyperparameters 

2.3.1 Loss function 

The original GAN uses the following loss function [47]: 

𝐿(𝑥, 𝑥̂) = log (𝜎(𝐷𝑤(𝑥))) + log (1 − 𝜎(𝐷𝑤(𝑥̂)))                       (2) 

where 𝑥 represents the real micrograph, 𝑥̂ is a generated micrograph, 𝐷𝑤 stands 

for the discriminator, and 𝜎 is the sigmoid function. 

This loss function measures the Jenson-Shannon divergence between the 

generated distribution and the real distribution. When the discriminator is trained, the 

weights in the discriminator are updated to make 𝜎(𝐷𝑤(𝑥)) = 1 and 1 − 𝜎(𝐷𝑤(𝑥̂)) = 0, 

under which the loss function is maximized. When the generator is trained, the derivative 

is: 

𝜕𝐿

𝜕𝑥̂
= 𝜎(𝐷𝑤(𝑥̂))

𝜕𝐷𝑤(𝑥̂)

𝜕𝑥̂
= 0 ×

𝜕𝐷𝑤(𝑥̂)

𝜕𝑥̂
= 0                           (3) 

As a result, the generator does not get updated. This is also known as gradient 

vanishing. 

Arjovsky et al. proposed to use the Wasserstein distance as the loss function [73] 

to overcome this problem. The Wasserstein distance can provide a useful gradient to 

update the generator and consequently stabilize the training. Many researchers have 

achieved good performance with Wasserstein loss function [74, 75]. The Wasserstein loss 

function is: 

𝐿(𝑥, 𝑥̂) = 𝐷𝑤(𝑥) − 𝐷𝑤(𝑥̂)                                               (4) 
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Figure 3 shows a comparison among the real micrographs, predicted micrographs 

with the JS loss function, and predicted micrographs with the Wasserstein loss function. 

Due to the reason stated above, when using the JS loss function, the generator fails to 

converge. The micrographs predicted under λ = 4 are nothing like the real micrographs. 

On the contrary, the micrographs predicted with the Wasserstein loss function have very 

similar patterns to the real ones. A predicted micrograph has about 18 black dots 

randomly distributed. The sizes of the black dots follow a distribution much like the real 

ones.  

Figure 2.3. Examples of a real micrograph and predicted micrographs with different loss 

functions. 

 

To quantitatively measure the prediction accuracy, 1,000 micrographs are 

generated using the trained generator and measured for microstructure features. The mean 

aspect ratio is calculated to be 1.10. The average grain size is 10.03, and the grain size 

standard deviation is 1.80. The relative error in the mean aspect ratio is 5.77%, which 

suggests the algorithm understands that most grains are round except some that are 

cropped by the edge. The relative error in the average grain size is 8.90%. And the 

relative error in grain size standard deviation is 18.92%.  
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2.3.2 Depth of the model 

In deep learning, the depth of the model plays an important role in improving the 

model’s performance. When Lecun proposed LeNet in 1995 [76], the network had only 5 

layers. The algorithm performed well on a hand-written digit dataset and reached a 0.9% 

classification error. However, when the images to be processed contain more complex 

features and have more pixels, deeper models are needed to extract higher-level features 

and distinguish them. In 2012, Krizhevsky et al. proposed AlexNet that had 11 layers 

[77]. It won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 

with a top-5 error of 15.3%. Later on, K. Simonyan and A. Zisserman from the 

University of Oxford proposed the VGG-16 [78]. It had 16 layers and reduced top-5 error 

to 7.3%.  In 2015, Szegedy et. al. from Google invented GoogleNet [79]. The GoogleNet 

utilized a special structure named “Inception module” to increase the depth of the 

network and reduce the computational cost at the same time. The GoogleNet had 22 

layers but only 5 million parameters, while the VGG-16 had 138 million parameters. And 

the GoogleNet won the ILSVRC-2014 with a top-5 error of 6.7%. 

The success of GoogleNet suggests the improvement in performance and 

reduction in computational cost can be achieved simultaneously. The same design 

guideline might be applied to the CGAN to improve the accuracy as well. At the 

beginning, the structure of the CGAN’s generator follows the same design as the Deep 

Convolution GAN (DCGAN), a benchmark GAN proposed by Radford et al. in 2015. 

The structure of the generator is shown in Figure 2.4. “Transposed Conv5, stride 2, 128” 

stands for a convolutional layer with 128 5×5 kernels with the stride equal to 2. 
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Figure 2.4. A generator structure designed follow the DCGAN. 

 

By stacking strided transposed convolutional layers with 5×5 kernels, the 

generator can predict the micrographs with 8.90% relative error in average grain size. As 

discussed in [79], a 5×5 kernel can be factorized into two 3×3 kernels. A convolutional 

layer with 5×5 kernels can be replaced by two stacked convolutional layers with 3×3 

kernels. Another point raised in [79] is that using convolutional layers with 1×1 kernels 

can reduce the number of channels of a feature map while preserving most of the 

information. By doing so, the depth and the nonlinearity of the model is increased while 

the number of parameters is reduced. Inspired by the two design guidelines described 

above, a stack of a convolutional layer with 1×1 kernels, two convolutional layers with 
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3×3 kernels, and an up-sampling layer is proposed to replace the strided transposed 

convolutional layer with 5×5 kernels.  

Figure 2.5. Illustration of two ways to process a feature map. 

 

Figure 4 shows an example that replacing one strided transposed convolutional 

layer with a stack of convolutional layers and an up-sampling layer can reduce the 

number of parameters while increasing the depth of the model. In this example, a feature 

map of shape 16×16×128 needs to be transformed into a feature map with shape 

32×32×64. One approach is passing the original feature map through a transposed 

convolutional layer with 64 5×5 kernels and stride 2. In this way, (5×5×128+1) ×64 = 

204864 parameters are needed. Another way to do it is processing the original feature 

map with one convolutional layer with 128 1×1 kernels, 2 convolutional layers with 64 

3×3 kernels, and an up-sampling layer subsequently. (128+1)×128 + (3×3×128+1)×64 + 

(64×3×3+1) ×64  = 127232 parameters are needed. By replacing the strided transposed 
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convolutional layer with the stack of the convolutional layers and the up-sampling layer, 

the depth increases from 1 to 4 while the number of parameters decreases by 37.89%. 

Figure 2.6. The structure of the deep model. 

 

Figure 2.6 shows the structure of a deeper model constructed by replacing some 

strided transposed convolutional layers with stacks of 3 convolutional layers and 1 up-

sampling layer. In the following context, the original model is called the “shallow 

model”, and the deeper model is called the “deep model”. The shallow model has 5 

layers, while the deep model has 16 layers. Because each convolutional layer is followed 

by a LeakyRelu activation layer, the deeper model has more nonlinearities than the 
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shallow model. The shallower model has 1,560,641 parameters in total, while the deep 

model has 1,041,409 parameters. 

Table 2.1. Comparison between the deep model and the shallow model. 

 

The deeper model shows a great improvement in performance. Table 1.1 shows 

the mean aspect ratio, average grain size, and grain size standard deviation of the real 

micrographs, the predicted micrographs from the shallow model, and the predicted 

micrographs from the deep model. The deep model has 7.69% relative error in mean 

aspect ratio, which is slightly higher than the shallow model (5.77%). It implies that 

using the strided transposed convolutional layer to let the model learn its own spatial up-

sampling method can benefit the model to learn low-level geometric features. The deep 

model has 1.72% relative error in average grain size and 4.05% relative error in grain size 

standard deviation, where the shallow model has 8.90% relative error in average grain 

size and 18.92% error in grain size standard deviation. The deep model shows a great 

improvement in predicting high-level abstract features, especially the high order feature 

(standard deviation). This observation coincides with the experience that the depth of the 

model promotes the model’s capability of extracting and disentangling high-level features 

because there are more nonlinear activation layers. 
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In summary, the deep model has better performance than the shallow model, 

while the number of parameters is 33.27% less. Thus, the deep model will be used for 

further investigation. 

2.3.3 Number of training epochs 

the number of training epochs, or how many times the algorithm is trained, is an 

important hyperparameter that can greatly affect the model’s performance. If a model is 

trained with an inadequate number of epochs, the GAN model cannot reach a Nash 

equilibrium state where the generator appreciates the distribution of the real data and 

generates plausible images. Training a model with an excessive number of epochs also 

raises two problems. First, it may take too much time and computational resources to 

train the model. Second, the model may be overfitting to the training dataset, which 

results in poor generalizability. 

Figure 2.7. Relative error in aspect ratio vs number of epochs. 
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To quantitatively study the impact of training epochs, the model is trained for 

100, 150, 200, 250, 300, and 350 epochs and the predicted accuracy is quantitatively 

evaluated. In Figure 2.7, the relative error of aspect ratio change against the number of 

epochs is plotted. When the model is only trained for 100 epochs, the generated grains 

are elongated ill-shaped. As the training goes, the grain become rounder and rounder and 

the error in aspect ratio quickly drops.  

Figure 2.8. Relative error in average grain size vs number of epochs. 

 

Figure 2.8 shows the relative error in average grain size changes with the number 

of epochs. When the number of epochs increases from 100 to 250, the error quickly 

drops. However, when the number of epochs increases from 300 to 350, the error 

increases. A similar trend is observed in Figure 2.9, where the relative error in grain size 

standard deviation is plotted against the number of epochs. This is because when the 

number of epochs is smaller than 250, the model is underfitting, which means that the 
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model has not fully grasped the relationship between the processing parameter λ and the 

corresponding micrographs. When the number of epochs is larger than 300, the model 

overfits to the training set and loses some generalizability. In summary, the best number 

of training epochs is between 250 and 300.  

Figure 2.9. Relative error in grain size standard deviation vs number of epochs. 
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2.3.4 Training set size 

The size of the training set is always the critical hyperparameter that determines 

the model’s performance. The success of deep learning algorithms has largely depended 

on the vast amount of data accumulated on the Internet in the past few decades. Usually, 

with a larger amount of training data, the model performs better. However, 

microstructure data has to be acquired through SEM, which is time-consuming and 

expensive. Trying to boost the model’s performance by feeding it more data is not always 

practical because it could take hundreds of hours and cost much money.  

Figure 2.10. Relative error in aspect ratio vs train set size. 
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Figure 2.11. Relative error in average grain size vs train set size. 

Figure 2.12. Relative error in grain size standard deviation vs train set size. 
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The number of training samples is changed to study the impact of train set size. 

The number of training samples in each subset varies from 1,000 to 5,000. Because there 

are six subsets in the train set, the total number of training examples varies from 6,000 to 

30,000. Each time the model is trained, 1,000 micrographs are predicted, and the 

prediction accuracy is shown in Figure 2.10, Figure 2.11, and Figure 2.12. 

As shown in Figure 2.10, Figure 2.11, and Figure 2.12, the prediction accuracy 

improves as the number of training samples increases. By increasing the number of 

training samples from 6,000 to 30,000, the relative error in aspect ratio gradually 

improves from 28% to 8%. The relative error in average grain size decreases from 12% to 

3% rapidly when the number of training samples increases from 6,000 to 12,000. Further 

increase in the number of training samples only improves the relative error in average 

grain size from 3% to 2%. The same trend is observed in Figure 2.12. These observations 

suggest the training set size has to be larger than 12,000. However, further increase in the 

number of training samples may not be worth the time and resources. 

2.4 Conclusion 

The viability of using a GAN to regress microstructure against a processing 

parameter and make predictions is demonstrated on a synthetic micrograph dataset. The 

algorithm is named as Regression-based Wasserstein Generative Adversarial Network 

(RCWGAN) because it uses Wasserstein distance as its loss function. The impact of 

different hyperparameters is studied. A deeper model can outperform a shallow model, 

especially when high-level features are concerned. The number of training epochs greatly 

influences prediction accuracy. Underfitting and overfitting are identified. The best 
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number of epochs is between 250 to 300. The impact of train set size is studied. It is 

found that the number of training examples needs to be larger than 6,000 to ensure good 

performance. Further increase in the number of training examples leads to a moderate 

improvement. 
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CHAPTER THREE 
 
PREDICTING LASER-SINTERED ALUMINA’S MICROSTRUCTURE BASED 

ON LASER POWER 
 

In this chapter, the RCWGAN is validated to model the relationship between laser 

power and the microstructure. Some laser-sintered alumina samples are fabricated under 

different laser powers. SEM micrographs are obtained from those samples to establish a 

dataset. The RCWGAN is trained on the dataset and then used to predict microstructures 

corresponding to a laser power that does not appear in the training set. The prediction is 

accurate after being qualitatively compared with the experimental results.  

3.1 Laser sintering alumina 

Alumina is an important ceramic material that has excellent mechanical 

properties, high thermal conductivity, chemical inertness, and high electrical resistivity. 

Its application ranges from biomedical material [80] to insulators in nuclear fusion 

reactors [81].  

Conventionally, alumina products are fabricated using electrical furnace sintering. 

Plenty work has been done to study the sintering behavior of furnace sintered alumina 

[82, 83]. These studies suggest that low heating rate of electrical furnace results in an 

extensive grain growth, which reduces the mechanical strength of alumina products. In 

the meantime, electrical furnace sintering also consumes a huge amount of electrical 

power and takes a long time. 

In the laser sintering process, materials are rapidly heated cooled when the laser 

beam comes across, which gives a high heating rate that can suppress grain growth. 
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Deckers et. al. used a laser to sinter pre-densified alumina green bodies at elevated 

temperatures [84]. With a laser power of 2 W, they were able to sinter the alumina 

sample to 85% density. Fayed et al. studied the effect of laser sintering parameters on the 

microstructure and physical properties. They demonstrated that a minimum porosity of 

4.34% and micro-hardness of 1682 Hv could be reached [85]. Xiao et al. showed that 

laser sintered alumina had significantly suppressed grain size while the overall density 

can be as high as 98% [17].  

 Studying the process-microstructure relationship in the laser sintering process is 

not easy. The knowledge accumulated from furnace sintering practice no longer works 

because of the huge difference in heating rate. Physics-based modeling is complicated 

because many sintering mechanisms exist simultaneously, such as sintering, melting, 

vaporization, thermomechanical shock, and plasma formation [62, 63, 64].  On the other 

hand, machine learning-based methods have shown their potential in predicting 

microstructures quickly and accurately based on processing parameters. This can 

expedite the material research and design to the next level. In the meantime, we recently 

demonstrated an approach that can produce a large amount of microstructure data through 

high-throughput experiments [65]. It can potentially solve the main challenge of machine 

learning methods: how to get enough data for training. 
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3.2 Laser sintering system 

 
Figure 3.1. Schematic of the laser sintering system 

 
 

A schematic of our laser sintering system is shown in Figure 3.1. The laser 

sintering system consists of a z stage, an x-y translation stage, a carbon dioxide laser, and 

optics that help deliver the laser beam. The laser beam from the carbon dioxide laser 

(firestarv20, wavelength 10.6 μm, SYNRAD, Inc.) was focused by a ZnSe lens after 

being delivered by the optics. The lens was mounted on the z stage so that the height of 

the lens can be adjusted to defocus the laser beam. The translation stage carried the 

sample to move under the laser spot with a controllable speed.  

In this laser sintering system, mainly three processing parameters can be 

controlled: laser power, scanning speed, and defocusing distance. Laser power 

determines how much energy will be deposited onto the sample. Scanning speed controls 
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how long the laser spot stays on a single point. And the defocusing distance controls the 

size of the laser spot and its energy distribution when it hits the sample surface. 

 

3.3 Laser sintering alumina procedure and result 

Alumina paste was prepared before laser sintering. 79.7 wt.% Al2O3 powder 

(Almatis A152SG, d50 = 1.2 μm, Purity: 99.8%, with 0.07% MgO as the sintering aid) 

and 0.1 wt.% dispersant (Darvan 821A) was mixed with 20.0 wt.% deionized water. The 

suspension was ball-milled for 48 hours to ensure that alumina particles were uniformly 

distributed in the water without aggregation. Then, 0.2 wt.% polymer binder 

(hydroxypropyl methyl cellulose) was added into the suspension slowly while the 

mixture was mechanically blended by a vacuum mixer for 1 hour. As a result, an alumina 

paste with appropriate viscosity and green density (~56%) was obtained. 

The paste was then deposited on a silica substrate using a doctor blade. The 

thickness of the film was about 500 μm. After drying for 24 hours, the carbon dioxide 

laser was used to sinter the alumina paste. The sample was placed onto the laser sintering 

system described in 3.1. The translation stage carried the sample to move under the laser 

spot with 0.1 mm/s speed for 50 sec. As a result, a track of laser-sintered alumina with a 

length 5 mm was fabricated. We varied laser power from 1.4 W to 1.9 W to fabricate 6 

lines of laser-sintered alumina. 

The microstructures of laser-sintered alumina under different laser powers were 

characterized using an SEM (Hitachi S4800, Hitachi, Ltd.). For each laser power, we 

took eight SEM images at different locations along the center of the laser-scanned track. 
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The magnification is kept as 2000X. Each image had 896×1280 pixels. To increase the 

SEM dataset size, we segmented the SEM images into smaller images of 128×128 pixels. 

This segmentation size was carefully chosen. If it was too large, the number of samples 

would be insufficient for training. If it was too small, there would be an insufficient 

number of grains in each small image, making the dataset unrepresentative of the 

microstructure features, such as grain size, porosity, and relative density. After 

segmentation, there were 560 images for each laser power. To further augment the 

dataset, we rotated every image by 90, 180, and 270 degrees so that the number of images 

was quadrupled. This image augmentation not only increased the number of samples but 

also prevented the algorithm from overfitting [79]. 

Figure 3.2. Micrographs of alumina sintered by different laser powers.  
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Some SEM micrograph examples corresponding to different laser powers are 

shown in Figure 3.2. A strong correlation between the microstructure and the laser power 

can be observed. From left to right, as the laser power increases, the particles become 

larger, and the porosity decreases. 

 

3.4 Predicting the microstructures under a new laser power 

Figure 3.3. The examples of regenerated and predicted SEM micrographs using the 

RCWGAN.  

 

The entire SEM micrograph dataset contains 6 subsets corresponding to 6 

different laser powers. Five of them whose laser powers were 1.4 W, 1.5 W, 1.7 W, 1.8 

W, and 1.9 W formed the training set, while the other one whose laser power was 1.6 W 

was used for testing. To avoid ambiguity, we call the micrographs that were synthesized 
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using the RCWGAN under the trained conditions, ‘regenerated’ micrographs. We name 

the micrographs synthesized under new or unexplored processing conditions, ‘predicted’ 

micrographs. 

A qualitative comparison among the ‘regenerated’, ‘predicted’, and real 

micrographs is shown in Figure 3.3. The predicted SEM micrographs at 1.6 W laser 

power faithfully imitate the real SEM micrographs in many aspects of microstructural 

features, such as particle geometry and relative density. These key microstructural 

features are very important to predict the material properties in future studies. In addition, 

the predicted microstructure features also accurately reflected the trend of the influence 

of laser power. In our previous study, we showed that a higher laser power resulted in  

larger particle size, larger relative density, and lower porosity [17]. The predicted SEM 

micrographs under 1.6 W of laser had particle size and relative density that are clearly 

larger than those of 1.4 W but smaller than those of 1.9 W. We examined both situations 

of synthesizing SEM micrographs using random seeds and single seed. When random 

seeds were used, the synthesized SEM micrographs showed similar microstructure 

features for one laser condition. We explored the latent space of the generated images to 

rule out the possibility of image generation as a result of “memory effect”. As shown in 

Figure 3, when we use a single seed to synthesize SEM micrographs, the regenerated and 

predicted images morph continuously from one microstructure to the other, indicating 

that the laser power-microstructure relationship is indeed “learned” by the neural 

network. 
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Figure 3.4. The large domain SEM image of an alumina sample sintered under 

1.6W, with small domain of SEM magnified from the large one and the corresponding 

predicted SEM images using the RCWGAN. 

 

It is worth noting that even within one experimentally obtained SEM micrograph, 

there are variations in the microstructure at different locations. We found that the 

RCWGAN can also predict such microstructural variation, as shown in Figure 3.4. On the 

left side of Figure X is a full-size real SEM micrograph of laser-sintered alumina at 1.6 

W. Several segmented images of 128×128 pixels are extracted from the full-size SEM 

micrographs as representatives. On the right to the column of real image segments are the 

predicted images using RCWGAN from random seeds. This variation is an important 

characteristic of laser-sintered ceramics as a result from the nature of the laser sintering 

process. In our training datasets of the laser power of 1.4 W, 1.5 W, 1.7 W, 1.8 W, and 
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1.9 W, we observed microstructure variation. This is the reason that the predicted results 

also present this microstructural variation, which was learned from the training data. 

Apart from the visual similarity, it is another piece of evidence that the RCWGAN is 

capable of predicting microstructures under unexplored values of a processing parameter. 

 
 

3.5 Conclusion 

In this chapter, the RCWGAN developed in chapter two is applied to a real 

micrograph dataset obtained from laser-sintered alumina. With different laser power, 

distinct microstructures are experimentally obtained. The RCWGAN regresses the 

microstructure against laser power and predicts microstructures under an unseen laser 

power. The importance of the loss function is revisited. The impact of two different 

regularization methods are studied. With weight clipping, the predicted microstructure 

loses many details. With gradient penalty, the predicted microstructure is close to the 

experimentally obtained ones.  
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CHAPTER FOUR 
 

DEEP LEARNING-BASED IN-SITU MICROSTRUCTURE MONITORING  
 

4.1 In-situ monitoring system and surface emission 

The RCWGAN is potentially a powerful tool for the real-time monitoring of 

microstructure during laser-based advanced manufacturing. By recognizing the 

correlation between the in-situ sensing signals and microstructures, the RCWGAN can 

make accurate predictions. In addition, the trained RCWGAN consumes relatively low 

computational power, which makes them potent to be integrated into the fabrication 

process for real-time microstructure monitoring. Here, I demonstrate in-situ 

microstructure monitoring by predicting microstructures based on in-situ captured surface 

emission brightness using the RCWGAN. 

Figure 4.1 shows the schematic of the laser sintering system with an in-situ 

monitoring camera. A carbon dioxide laser with a wavelength of 10.6 µm was used as the 

energy source for sintering. The laser beam was delivered by a reflection mirror and 

focused into a line-shape beam by a cylindrical ZnSe lens. The focus distance of the lens 

was 25.4 mm. At a distance of 30 mm from the focal point, the laser beam projected an 

elongated elliptical spot on the sample. The length of the ellipse was about 18 mm, and 

the width was about 4 mm. The power of the laser was set at 46 W. The casted BCZYYb 



 44 

tape was carried by a translation stage to scan through the laser beam. The scanning 

speed was kept at 0.1 mm/s.  

Figure 4.1. Schematic of the laser-based advanced manufacturing system with an in-situ 

monitoring camera. 

 

Surface emission images were in-situ captured using a camera (Canon EOS 90D). 

The camera was set up in an off-axial manner. It aimed at the sintering spot with about 

50° relative to the vertical axis. The camera was fixed to the table, and the view angle did 

not change when the translation stage moved. The ISO sensitivity of the camera was 100, 

the shutter speed was 1/12500 seconds, and the aperture was 1/25. Under these settings, 

the camera was not saturated at the strongest thermal radiation. The images recorded by 

the camera had 1080 × 1920 pixels, and the speed of recording was 30 frames per second. 

The camera was synchronized with the translation stage so that the laser sintering spot 

positions could be accurately correlated with the sample positions for SEM micrographs. 
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The surface-emission images are not direct measurements of the temperature. The 

camera uses a silicon-based sensor with an infra-red filter in front of it. It is difficult to 

infer the surface temperature based on the spectral recording of the camera, because we 

cannot accurately measure the surface temperature during laser sintering. In this study, 

we will directly correlate the brightness of the surface-emission image to the 

microstructure using the RCWGAN.  

4.2 Laser sintering experimental procedure 

4.2.1 Material preparation 

We used BCZYYb with 1% NiO addition as the material for study. The powder 

pastes of the BCZYYb with NiO additive were prepared using ball-milling of the raw 

materials powders of BaCO3 (Alfa Aesar 99.8%), Fe2O3 (Alfa Aesar 99.9%), CeO2 

(Alfa Aesar 99.9%), ZrO2 (Alfa Aesar 99.7%), NiO (Alfa Aesar Ni 78.5%), Y2O3 (Alfa 

Aesar 99.9%), and Yb2O3 (Alfa Aesar 99.9%)] for 48 h in the stoichiometric ratio, 

followed by mixing of the ball-milled powder with water, dispersant (DARVAN), and 

binder (HPMC), as reported in [87]. 

A green anode ceramic film was processed using direct ink writing (DIW) on a 

fused silica substrate. The thin film with a uniform thickness of about 500 μm was 

deposited and dried in the ambient atmosphere for 24 h. The detailed anode layer 

processing is described in our previous paper [87]. A thin electrolyte layer (BCZYYb 

with 1 wt.% NiO addition) was deposited on the printed anode film by spray coater. The 

thickness of the electrolyte layer was about 20 μm. The detailed spray coating processing 

is described in our previous paper [87].  
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4.2.2 SEM image acquisition 

After the BCZYYb film was sintered by the CO2 laser, the microstructure of the 

sample at specific positions was characterized using a scanning electron microscope 

(SEM Hitachi S4800). Seven sampling positions on the surface were selected. Each 

sampling point was a 500×500 μm2 square. At each sampling position, five non-

overlapping SEM micrographs of the same microstructure were taken.  

The collected SEM micrographs (896 × 1280 pixels, grayscale image) were 

segmented into smaller ones to increase the size of the training set. The size of one 

segmented image was 128 × 128 pixels. Two adjacent segments overlap with each other 

by half. After segmentation, one full-size SEM micrograph became 247 smaller 

micrographs. Furthermore, every small micrograph is rotated by 90, 180, and 270 degrees 

so that the size of the training dataset was quadrupled. This image augmentation not only 

increases the number of samples but also prevents the algorithm from overfitting [79]. 

4.3 Correlation between surface emission and microstructure 

4.3.1 brightness calculation 

An example of an in-situ captured surface emission image is shown in Fig. 4.2. 

The bright spot was 18 mm long and 4mm wide, which coincided with the shape of the 

laser spot. A 5×5-pixel square at the center of the bright spot was cropped and extracted, 

as shown in Figure 2 (a). The actual size of the square was 500×500 μm2, matching the 

size of the SEM sampling positions. The pixel values were averaged to calculate the 

mean brightness of the square in order to reduce noise. The result was divided by 255 for 
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normalization. As such, a brightness feature was extracted from each surface-emission 

image. This brightness value ranged from 0.51 to 0.73 among the collected data. 

Figure 4.2. Illustration of brightness calculation. 

 

4.3.2 Average grain size calculation 

The average grain sizes are measured from a micrograph using the standard 

ASTM E112 method [88]. This standard is suitable for the grain size characterization for 

randomly oriented, equiaxed grains. The average grain size was calculated based on the 

number of grains per unit area for a specific SEM magnification. Specifically, one 

individual micrograph in a training set had a size of 128 × 128 pixels. As one pixel 

corresponds to 0.1 μm, the size of the micrograph can be interpreted as 163.84 μm2. Then 

the average grain size was calculated based on ASTM E112. 
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4.3.3 Qualitative and quantitative evaluation of the relationship between the brightness 
and microstructure  

As the laser spot moves on the sample surface from left to right, the brightness of 

the ellipse varies, as shown in Figure 4.3. It suggests that the sintering temperature 

changes at different positions, although the laser power and scanning speed are set to be 

the same. The reasons behind this variation could be manifold [84]. Laser instability 

could be one of the causes. High-power carbon dioxide lasers are inevitably unstable due 

to passive Q-switch pulsation [89] and thermal instability. Insufficient heat dissipation 

through the baseplate could be another reason [90]. Identifying the actual cause of the 

surface color change is beyond the scope of this dissertation. 

Fig 4.3. Qualitative evaluation of the correlation between the surface-emission images 

and microstructure. 

 

Microstructure variation is quantitatively measured by variation of the average 

grain size. 20 micrographs are randomly selected for each subgroup. The mean and the 

standard deviation are calculated from the average grain sizes of the 20 micrographs. The 
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results are plotted against brightness values in Figure 4.4. When the brightness increases 

from 0.51 to 0.67, the average grain size grows from 2.29 μm to 2.74 μm. The further 

increase in the brightness on longer changes the average grain size significantly. 

Figure 4.4. Average grain size vs. brightness. 

4.4 Predicting microstructure with the RCWGAN 

After training, the RCWGAN can produce high-fidelity images corresponding to 

the input brightness value. Several synthesized micrographs and experimentally obtained 

ones are shown in Figure 4.5 as examples. The brightness values 0.56 and 0.72 are in the 

training set. The micrographs synthesized from these brightness values are called 

“regenerated” micrographs in this paper. The micrographs synthesized from the unknown 

brightness value 0.66 are called “predicted” micrographs in this paper because the 
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brightness of 0.66 is not in the training set. The synthesized micrographs were similar to 

the real ones under the same brightness value, in terms of grain size and grain shape. This 

is true for both “regenerated” and “predicted” micrographs.  

Figure 4.5. Examples of regenerated and predicted SEM micrographs using the 

RCWGAN. 

 

In the synthesized micrographs with random seeds, from left to right in Figure 

4.5, the grain size increases as the brightness value increases. This fits the experimental 

trend very well, since normally, a higher brightness corresponds to a higher sintering 

temperature. The ceramics normally have a larger grain size under a higher sintering 

temperature. 
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To better show the trend of microstructural features over the increasing brightness 

values, the micrographs synthesized with a fixed seed are shown at the bottom of Figure 

4.5. Because the seed is fixed, some microstructure features like the spatial distribution of 

the grains are also fixed, which is the reason why they look much alike. From 0.56 to 

0.66, a clear increase in the grain size can be seen. From 0.66 to 0.72, the grain size does 

not change too much. This coincides with the trend we observe in Figure 20. In summary, 

the synthesized micrographs are highly similar to the real ones, and the relationship 

between the brightness value and the grain size is clearly learned by the algorithm. 

To quantitatively measure the algorithm’s accuracy, average grain sizes are 

calculated on the synthesized micrographs and compared with the average grain sizes 

measured on the real micrographs for the same brightness. 20 micrographs under each 

brightness value are synthesized. The average grain sizes are measured and plotted in 

Figure 4.6.  

The average grain sizes of synthesized micrographs are close to the real ones. The 

mean absolute error is 0.05 μm for the “regenerated” micrographs. The real average grain 

size of the validation set is 2.70 μm, while the predicted average grain size is 2.58 μm. 

The absolute error is 0.12 μm, which is 4.5% of the real average grain size. From left to 

right, the average grain size of the synthesized micrographs follows the same trend as the 

real average grain size. When the brightness increases from 0.52 to 0.67, the average gran 

size grows quickly. After the brightness exceeds 0.67, the average grain size hardly 

changes. These results suggest that the RCWGAN grasps the relationship between the 

brightness and the micrograph. It is able to make accurate predictions in terms of the 
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average grain size. The performance of the algorithm can be further improved by 

providing it with more training data. 

Figure 4.6. Average grain sizes of the real micrographs and the synthesized ones. 

 

4.5 Model computation time 

The trained model can generate authentic micrographs in a short time. When the 

model runs on a desktop computer, it can generate 10 micrographs in 1.05 seconds with 4 

CPUs (Intel Core i5-7600K). It is comparable with the speed of the monitoring camera, 

which is 30 frames per second. Thus, our trained model is capable of in-situ 

microstructure monitoring based on the brightness of surface emission. 
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4.6 Conclusion 

In this chapter, in-situ monitoring microstructure using the RCWGAN is proposed 

and demonstrated. An in-situ monitoring that uses a camera to capture surface emission is 

built. The correlation between the surface emission brightness and the corresponding 

microstructure is demonstrated. After the RCWGAN learns the correlation, it is used to 

predict a microstructure under an unseen brightness value. The predicted microstructure 

is accurate when compared with the real one in terms of average grain size. 
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CHAPTER FIVE 
 

CONCLUSION 
 

5.1 Brief summary 

The traditional practice of establishing process-microstructure relationships to 

guide material fabrication is trial-and-error experiments. It is slow at every step. The 

fabrication process, furnace sintering for example, takes hours or even days to complete. 

The microstructures of the fabricated samples are characterized by SEM, which takes 

hours and costs hundreds of dollars for each sample. The obtained microstructure data are 

analyzed by experts to find the correlation between the process parameters and the 

microstructures. It also takes hours to complete.  

The material development cycle can be accelerated by accurately predicting the 

microstructure based on processing parameters. When the laser-based advanced 

manufacturing technology has expeditated the fabrication process from hours to minutes, 

it is highly desirable to fasten the pace in microstructure characterization and analysis. 

Microstructure prediction can potentially save time in these steps. However, current 

microstructure prediction methods face their own challenges. Physical-based modeling is 

computationally expensive. Even with a high-performance computing cluster, a 

simulation could take hours to complete. Feature-based machine learning methods 

consume much less computational power. Nevertheless, these approaches require 

extracting features from microstructures, which inevitably leads to information loss. 

Besides, there is no well-established method to analyze complex features in SEM 

micrographs. 
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In this dissertation, I propose to regress microstructures against processing 

parameters and make predictions with a CGAN. In chapter two, a methodology of 

training, validating, and optimizing a CGAN is developed. A synthetic micrograph 

dataset with simple microstructure features is established to train the CGAN. After 

training, the CGAN predicts the microstructure according to an unseen processing 

parameter value. Aspect ratio, average grain size, and grain size standard deviation are 

selected as quantitative metrics to evaluate the prediction accuracy. A mathematical 

explanation why the Wasserstein loss function should be used instead of the Jenson-

Shannon divergence is offered. The impact of model depth on the prediction accuracy of 

features at different levels is studied. In addition, the number of training epochs and size 

of the train set are studied. Two important conclusions are found. First, there is an 

optimal number of training epochs. Below that number, the model underfits and fails to 

fully appreciate the complex relationship between the microstructure and the processing 

parameter. Above that number, the model overfits the train set and prediction accuracy 

deteriorates. Second, the size of the train set has to be larger than 2,000 times the number 

of subsets to ensure good prediction accuracy. However, further increase in the train set 

size only brings a moderate improvement, which may not be worth the time and 

resources. In the end, the optimized CGAN algorithm is named as regression-based 

conditional Wasserstein generative adversarial network (RCWGAN). The RCWGAN can 

accurately predict microstructures with over 92% accuracy under the quantitative metrics. 

In chapter three, the microstructure prediction capability is validated on an SEM 

micrograph dataset. Two regularization technologies, weight clipping and gradient 
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penalty, are studied. With weight clipping, the generated microstructure loses many 

details. With gradient penalty, those details are well preserved. After the RCWGAN is 

trained, it is used to predict the microstructure corresponding to unseen laser power. The 

prediction is accurate under qualitative evaluation. 

In chapter four, I proposed an in-situ microstructure monitoring method using the 

RCWGAN. The RCWGAN correlates the microstructure with in-situ monitored surface 

emission brightness. After training, the RCWGAN can predict the microstructure based 

on the in-situ monitoring signal in seconds. The prediction is accurate under qualitative 

and quantitative evaluation. Thus, in-situ microstructure monitoring is realized by 

integrating the RCWGAN into a laser sintering system. With this capability, it is possible 

to precisely control the microstructure at any desired location. It enables the fabrication 

of a new kind of materials with heterogeneous microstructure and consequently novel 

properties. 

In summary, a new concept of using deep learning to predict material 

microstructures during advanced manufacturing is proposed and demonstrated. The 

RCWGAN is designed and optimized to accurately predict microstructures, after various 

hyperparameters are systematically studied on a synthetic micrograph dataset. The 

prediction accuracy is over 92% using various microstructural features as metrics. Then 

the RCWGAN is validated by predicting laser-sintered alumina’s microstructure as a 

function of laser power. Then, it is used to realize in-situ microstructure monitoring 

during laser sintering. After training, the RCWGAN can accurately predict the 

microstructure based on in-situ monitored surface emission brightness in seconds. 
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5.2 Innovations and contributions 

The major scientific and technical merits of this work include: 

1) A new concept of using deep learning to predict material microstructures during 

advanced manufacturing is proposed. With this new concept, the material development 

cycle in advanced manufacturing can be accelerated. 

2) Two microstructure prediction methods, physical-based modeling and feature-based 

machine learning, are reviewed. Limitations of them are summarized. 

3) Using a conditional GAN to regress microstructures against processing parameters and 

make predictions is proposed. Related research is reviewed to prove the viability. 

4) A methodology of training, validating, and optimizing a CGAN is developed. First, a 

dataset that consists of many processing parameter-microstructure pairs is established. 

After the CGAN is trained on the dataset, the microstructure corresponding to an 

unexplored processing parameter value is predicted. The predicted microstructure is 

compared with the real one using various microstructural features as metrics. With these 

quantitative metrics, hyperparameters like loss function are studied and optimized. 

5) Various hyperparameters are studied. A mathematical explanation of why the 

Wasserstein distance should be used as the loss function rather than the Jenson-Shannon 

divergence is offered. By comparing a deep model with a shallow model, the impact of 

model depth is quantified. When the number of epochs is studied, underfitting and 

overfitting are observed, which suggests that the number of epochs should be carefully 
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chosen. The study of the size of train set leads to the conclusion that for each processing 

parameter value, the number of samples should be larger than 2,000. 

6) The RCWGAN is validated by predicting laser-sintered alumina’s microstructure as a 

function of laser power. 

7) The laser sintering system is integrated with an in-situ monitoring camera to monitor 

surface emission brightness. 

8) The correlation between surface emission brightness and microstructure is observed 

and quantified. 

9) In-situ microstructure monitoring is proposed and demonstrated by accurately 

predicting the microstructure based on in-situ monitored surface emission brightness 

using the RCWGAN. 

  

5.3 Future work 

5.3.1 Multiple processing parameters 

In this dissertation, only one processing parameter is considered at a time. In the 

synthetic microstructure dataset, a hypothetical processing parameter λ controls the 

microstructure. In the laser-sintered alumina’s microstructure dataset, laser power is the 

parameter of interest. And in the in-situ monitoring case, only brightness is used to 

predict the microstructure. However, in laser-based advanced manufacturing, many 

processing parameters influence the microstructure simultaneously. To better guide the 

fabrication process, the RCWGAN should regress the microstructure against all 

processing parameters at the same time. The essential challenge is to establish an 
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adequate dataset. On the one hand, this dataset should be diverse enough to represent the 

correlation between every processing parameter and the microstructure. On the other 

hand, the dataset should not be too large to build. In addition, an imbalanced dataset 

could deteriorate the RCWGAN’s performance. 

In summary, to address the challenge of using the RCWGAN to regress the 

microstructure against multiple processing parameters, two questions need to be 

answered in future research. The first question is how to design an appropriate dataset. 

The second question is how to solve the data imbalance problem. 

5.3.2 Property prediction 

The predicted microstructure can be used to further predict material properties 

because various of material properties are determined by the microstructure. Several 

papers that used CNNs to predict material properties based on microstructures have been 

reviewed in chapter one. Is it possible to use a CNN to predict properties based on the 

predicted microstructure? To answer this question, three steps will be taken. First, a 

process-microstructure dataset will be established to train the RCWGAN. Second, a 

microstructure-property dataset will be built to train a CNN. Third, the microstructure 

predicted by the RCWGAN will be fed to the trained CNN to predict its properties. The 

predicted properties will be compared with the experimental results to evaluate the 

prediction accuracy. 
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5.3.3 Feedback control 

In chapter four, in-situ microstructure monitoring with the RCWGAN is proposed 

and demonstrated. The next step is to feed microstructure information back to a controller 

to control the processing parameters so that a predesigned microstructure profile can be 

fabricated.  
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Ultra-Fast Laser Fabrication of Alumina Micro-Sample Array and High-Throughput 

Characterization of Microstructure and Hardness. Crystals, 11(8), 890. 

3. Lei, J., Zhang, Q., Song, Y., Tang, J., Tong, J., Peng, F., & Xiao, H. (2020). Laser-

assisted embedding of all-glass optical fiber sensors into bulk ceramics for high-
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