
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

12-2021 

Methods and Applications of Synthetic Data Generation Methods and Applications of Synthetic Data Generation 

Jason Anderson 
Clemson University, jwa2@clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

 Part of the Databases and Information Systems Commons 

Recommended Citation Recommended Citation 
Anderson, Jason, "Methods and Applications of Synthetic Data Generation" (2021). All Dissertations. 
2917. 
https://tigerprints.clemson.edu/all_dissertations/2917 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2917&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2917&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2917?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2917&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

12-2021

Methods and Applications of Synthetic Data Generation Methods and Applications of Synthetic Data Generation 

Jason Anderson 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

 Part of the Databases and Information Systems Commons 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


Methods and Applications of Synthetic Data Generation

A Dissertation
Submitted to

the Graduate School of 
Clemson University

In Partial Fulfillment
of the Requirements for the Degree  

Doctor of Philosophy
Computer Science

Accepted by:
Dr. Amy Apon, Committee Chair

Dr. Ken Kennedy, Committee Co-chair 
Dr. Jim Martin

Dr. Kuang-Ching Wang

by
Jason William Anderson 

December 2021



Abstract

The advent of data mining and machine learning has highlighted the value of large and

varied sources of data, while increasing the demand to make data accessible for academic research

and the development of digital infrastructure. However, in many cases the sharing of large collected

datasets carries a risk of exposing sensitive personal or proprietary information. An alternative

approach is to create synthetic data that is similar to the original data but has values that are

not obtained by direct measurement. Ideally, synthetic data captures the structural and statistical

characteristics of the original data without revealing personal or proprietary information contained

in the original dataset.

In this dissertation, we use examples from original research to show that, using appropriate

models and input parameters, synthetic data that mimics the characteristics of real data can be

generated with sufficient rate and quality to address the volume, structural complexity, and statistical

variation requirements of research and development of digital information processing systems.

First, we present a progression of research studies using a variety of tools to generate syn-

thetic network traffic patterns, enabling us to observe relationships between network latency and

communication pattern benchmarks at all levels of the network stack.

We then present a framework for synthesizing large scale IoT data with complex struc-

tural characteristics in a scalable extraction and synthesis framework, and demonstrate the use of

generated data in the benchmarking of IoT middleware.

Finally, we detail research on synthetic image generation for deep learning models using 3D

modeling. We find that synthetic images can be an effective technique for augmenting limited sets

of real training data, and in use cases that benefit from incremental training or model specialization,

we find that pretraining on synthetic images provided a usable base model for transfer learning.
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Chapter 1

Introduction

Data has been described as “the new oil of the digital economy” [163]. The collection,

storage, transportation, analysis, and presentation of data have become a fundamental aspect of our

world and the digital systems that surround us. From the mobile devices that collect data about our

lives, to the networks transporting data to server farms for deep learning and filtration and analysis,

and to the myriad of ways that data is used to enrich our lives, data is all around us. The digital

computing systems that underlie these processes have emerged as a pinnacle of human engineering.

While there are many ways that valuable business information can be extracted from the

vast quantities of data generated by our society, there is also an increasing demand for accessible

data for academic research and the development of digital infrastructure. Systems designed for the

collection, storage, transportation, analysis, and presentation of digital data typically require large

amounts of that data somewhere in their development cycle. For example, fundamental research in

network communication patterns of complex systems requires the simulation or observation of those

systems. Databases and middleware systems need vast amounts of data to prove their performance

and stability under extreme access and load conditions. Artificial intelligence and, in particular, deep

learning models require large amounts of relevant data to extract patterns for later application.

“The ingestion and integration of raw data, the extraction of valuable business informa-

tion from the raw data, and planning for infrastructure capacity and analytic capability

for analyzing this data are new challenges in the era of big data” [93].

The availability of quality data for research and the development of digital systems can,
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in many cases, be problematic. Data that is collected by industrial or commercial entities may

contain information that is proprietary and confidential to their business. The sharing of data

belonging to government and medical institutions could risk exposing confidential personal records,

even when identifying values are obfuscated or omitted. In some cases, the storage of very large

sets of reproducible measurements may be costly or impractical. In other cases, the necessary data

might simply not exist in the required scale and variation.

Synthetic data, i.e. data that has been created rather than collected, can be used to address

the issues that arise with the collection and use of real data. Ideally, synthetic datasets have

characteristics that are similar to the original data but have values that are not obtained by direct

measurement. Examples to address the previously described used cases include the generation of

synthetic network traffic for network communication research rather than relying on access to real

systems; creating structurally and statistically similar data to test middleware systems rather than

risking exposure of potentially sensitive personal information; and generating varied artificial images

useful for training deep learning models to avoid costly labelling of real images. In many cases it

can be less costly in time and risk to create the volumes of data needed for research and in the

development of digital systems.

“Synthetic data will accelerate the creation of complex and layered learning analytics

infrastructure and help to address the ethical and privacy risks involved during service

development” [17].

Other important use cases for synthetic data include allowing research on enterprise data col-

lections to be conducted by third parties while protecting sensitive information, enabling researchers

to evaluate experimental methodologies prior to granting access to sensitive data, modeling of rare

events that are impractical to capture in observed measurements, and simulation of environments

to efficiently train artificial intelligence systems, such as training autonomous vehicles without the

risk and expense of real driving conditions.

The creation, validation, and use of synthetic data is not without challenges. Data privacy

is an important issue that carries sizeable monetary, legal, and ethical risk if the anonymization

measures are improper or insufficient. In some cases it can be difficult or computationally intractable

to capture the aggregated structural and statistical characteristics of the original data when there

are complex interdependencies between values or record groups. Data architects must consider

2



the tradeoffs between the level of statistical accuracy of the generated data, the need to maintain

anonymity of the original data in the generated set, and the computational complexity and run time

of the data generation process.

This work will explore a sample of these use cases to represent the much larger applicability of

synthetic data generation. Different aspects and challenges of using synthetic data will be examined,

such as information privacy, performant generation techniques, and potential shortcomings. It is the

goal of this work to examine how synthetic data plays a role in current and future digital information

systems, to explain contributions made over the course of the research, and to describe how further

research in this area is warranted as new use cases emerge.

1.1 Thesis Statement

Using appropriate models and input parameters, synthetic data that mimics the character-

istics of real data can be generated with sufficient rate and quality to address the volume, structural

complexity, and statistical variation requirements of research and development of digital information

processing systems.

1.2 Contributions and Thesis Organization

This dissertation provides examples drawn from original research that support the thesis

statement, and is organized as follows. Chapter 2 will give background information on methods,

applications, and challenges of synthetic data generation. Chapter 3 will explore techniques and

applications of synthetic benchmark data related to high performance computer networking. Chapter

4 will present a scalable framework for generating complex synthetic data and using generator output

patterns to benchmark cloud messaging middleware systems. Chapter 5 details the contributions

made toward synthetic image generation for deep learning models. Finally, Chapter 6 will summarize

our contributions and present the conclusions we have drawn.
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Chapter 2

Background

Synthetic data is a very broad term. It can be defined simply as data that is created rather

than observed, or to quote the McGraw-Hill Dictionary of Scientific and Technical Terms, “any

production data applicable to a given situation that is not obtained by direct measurement” [104].

We may reason that the qualifier of “applicable to a given situation” restricts our scope to data

that embodies some characteristics and mimics the form of real observed data. However, as it would

require many more pages to adequately discuss all of the topics that could fit that description, we will

focus instead on a narrower definition that fits the common understanding in the field of computer

science for the purposes of this dissertation:

Synthetic data is generated digital data that is wholly or partly disjoint from real data,

is an ordered series of states or unordered set of records that each conform to a particular

structure and syntax, is able to be generated at scale, and exhibits features relevant to the

intended application that mimic real data in statistical distribution and interdependency.

While more restrictive, most intuitive examples of synthetic data will fall under this def-

inition. The umbrella of synthetic data encompasses data that is generated and stored, such as

collections of tabular data, documents, and images, as well as data that is algorithmically generated

on demand, such as computer simulations and physical modeling.

To understand and discuss both real and synthetic data in more precise terms, we will abide

by the following definitions in this work:
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• record - an individual set of labelled values, also technically known as a singular data1, such

as a structured document or a row in tabular data.

• dataset - a collection of records, commonly used interchangeably with data in the plural form.

• attribute - the values of a dataset sharing a common label, akin to a column in tabular data.

• dimensionality - the number of different attributes in a dataset.

• feature - a joining of one or more attributes or subfeatures of a dataset. As it can consist of

a single attribute, feature is often used in place of attribute in machine learning contexts. In

this work, we will prefer feature and be specific where appropriate.

Records within a dataset may be ordered or unordered.

2.1 Feature Selection and Extraction

Feature selection is the process of identifying a set of data attributes that form the impor-

tant features of a dataset. Feature selection is commonly used in machine learning to limit input

dimensionality, remove irrelevant or redundant attributes, and filter out noisy data, with the goal

of improving generalization capacity, learning speed, or reducing model complexity [81]. The di-

mensionality reduction of feature selection has become even more important in recent years as the

world becomes saturated with a broad variety of data sources, collectively known as “big data” [25].

Feature selection algorithms are commonly evaluated on their stability, or the mean probability of

models trained on feature-selected subsets of the input data to agree in their predictions [147, 78].

Feature selection may be complemented by feature extraction [57], which creates new fea-

tures as functions of other features, where features found through selection map directly to existing

attributes. Feature extraction is most commonly employed in data that has relatively few samples

compared to the number of attributes. Examples of domains where feature extraction is useful in-

clude the analysis of handwriting, which may include thousands of distinct features with very few

samples, and convolutional neural networks, which iteratively aggregate features with each encoding

layer.

In the context of synthetic data, feature selection techniques are used to identify attribute

dependencies that should be modeled and reproduced in the output dataset. Additionally, high

1We will not be using data as a singular noun.
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dimensionality in real-world data can be computationally intensive to reproduce in generated syn-

thetic analogues as the potential dependencies grow factorially. Limiting the selection of modeled

attributes to those that are important to the synthetic data use case can dramatically improve

performance and quality.

Extracted features in the real dataset can introduce other challenges to generating quality

data if the features they derive from are also reproduced, as this introduces additional feature

relationships that should be retained in the output. This could be the case when attributes forming

an extracted feature also form the basis for other features.

2.2 Applications

The many use cases for synthetic data are widely varied, and become difficult to separate

from the uses of data in general. Rather than attempting to cover examples of such a broad scope, we

instead present a loosely classified selection of applications where synthetic data can be of particular

value.

2.2.1 Privacy

Ensuring that confidential data sources are protected is an important component to data-

driven research. Agencies that collect confidential data typically strive to release data that protects

the confidentiality of the subject’s identities, retains properties that make it informative for analysis,

and is straightforward for secondary analysts to use [118]. Simple perturbation methods such as

aggregation, recoding, record-swapping, adding random noise, and omission of sensitive values are

typically not satisfactory; statistical analysis and clever data mining techniques combining multiple

data sources have been used to reverse these techniques when there is enough peripheral information

to make inferences [139, 97, 98]. Statistical disclosure control (SDC) is a body of techniques used to

ensure that individual data subjects are not identifiable from records made available to researchers.

In one of the fundamental works in this field, Rubin [124] proposed using multiple impu-

tation, i.e., averaging multiple samples from a distribution for each value, to generate completely

synthetic microdata with statistical properties similar to the original dataset. Fully synthetic data

offered a means to release data that did not represent real individuals, and therefore protected the

data sources.
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Research on the privacy afforded by synthetic microdata [115, 114, 3, 35, 27] led to re-

finements of principles-based SDC techniques and measurements of data privacy quality, such as

inferential disclosure probability to describe complete datasets and differential privacy ratio to mea-

sure the database query risk [46]. A body of literature was developed exploring the nuances and risks

of generating partially synthetic datasets [116, 117, 112]. A formal notion of plausible deniability

emerged as a quality measure of differentially private synthetic data generated with computationally

tractable methods [20].

In many cases, care must be taken to ensure that SDC techniques do not anonymize data

in ways that alter the interdependence of features. For example, in synthesizing electronic medical

records for researchers studying disease outbreak detection, Buczak et al. [29] had to carefully

preserve the relationship between patient backgrounds and care that was received, so that care

patterns would be present in the synthetic records.

2.2.2 Data Science Research

The meta aspects of synthetic data can be valuable from a research perspective; as an

example, consider this dissertation. Fundamental research on synthetic data enables the tools for

applying that research in the many applicable fields. In [24], the authors use high dimensional

synthetic datasets to evaluate feature selection techniques without the interference of distractors

such as noise, attribute interaction, and irrelevant or redundant features. Burgard et al. [31] and

Raab et al. [112] use privileged access to longitudinal population data to develop new mechanisms

for generating high quality synthetic social science datasets.

2.2.3 Machine Learning

In some analysis applications, the frequency of records that exemplify a particular feature

value need to be normalized to some degree, such as when modeling rare events for training machine

learning systems. Gaber et al. [53] describe using rare event normalization in generated mobile

payment log files to train a system to detect fraudulent transactions.

In other use cases, datasets simply need to be of sufficient size to ensure proper functioning

of the target application. This is particularly important in the field of deep learning, where having

a large and varied set of examples is necessary to train a model that generalizes well with new data.
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Data augmentation has long been used to multiply the size of training datasets while increasing

variation [128]. The current state of the art is for data scientists to employ simple augmentation

techniques such as randomly cropping, warping, and channel shifting images to multiply small

training datasets.

Fully synthetic datasets can be used to train machine learning models with varying degrees

of success, depending on how well the generated domain maps to the real domain. Several researchers

have had success in training text recognition models with rendered text images in natural scenes [73,

56], using tools to simulate a variety of fonts, shading, coloring, distortion, and noise values. 3D

modeling of synthetic images has been used to train robot arm controllers to detect objects in piles

of similar objects [30]. Others have used generated images of humans randomly placed in a camera’s

field of view to train models to estimate the size of crowds [48, 154]. In Chapter 5 we present results

on the effectiveness of training with fully synthetic images and how training with mixed real and

synthetic datasets can improve image segmentation models.

2.2.4 Third Party Analysis

A combination of business and technical reasons makes data analysis difficult from within an

enterprise computing environment, particularly if the data does not fit a common model with widely

available tools. This is especially true in the case of proprietary connected measurement devices such

as industrial sensors, where data can be complex, varied, and inconsistent. The current state-of-the-

art is that there is no common, comprehensive solution for data wrangling problems as each company

has its own unique sets of data with unique attributes. Enterprise computing budgets are typically

devoted to supporting Service Level Agreements and providing stable data operations [32], leaving

little budget and computing resources for experimental research and development on captured data.

One solution for experimental research is to utilize academic partners or commercial cloud

providers who are equipped with large scale computational resources. However, privacy constraints

and security policies often bar the transfer of data to third parties. Synthetic data presents itself

as a solution in this scenario, where a sufficient anonymization process can satisfy the restrictions

placed on data outsourcing.

Data stewards can also opt to share synthetic data as tool for researchers to gather prelim-

inary findings and validate their experiment design. An example comes from the area of patient-

derived health information, where privacy restrictions require controlled access. Benaim et al. [16]
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detail their methods for data anonymization to allow researchers to perform initial analysis before

requesting access by an institutional review board, and find that using synthetic data is a powerful

tool in shaping research hypotheses and estimating analyses without risking patient privacy.

In recent years, tools aimed at simplifying and generalizing the process of generating high

quality anonymized synthetic datasets have emerged. These tools target a variety of data formats

and use cases such as tabular data [102] and relational databases [105].

2.2.5 Benchmarking

Benchmarks typically generate data at some degree of scale, potentially with a configurable

output rate, and are intended for evaluating data flow and processing of digital systems. For struc-

tured data, well-known sources of synthetic data are the two industrial general-purpose database

benchmarks, TPC-C and TPC-H2. These benchmarks can generate arbitrary amounts of data, which

is inserted into flat tables with a number of predefined columns. Similar general-purpose benchmarks,

which also generate synthetic data at scale, are BigBench [54] and YCSB [40].

Data generators can also be distributed, i.e., running in parallel on separate machines. A

potential application is to multiply the potential output rate, such as the network packets generated

by processes in a distributed denial of service attack. Another common use case is in distributed

system benchmarking, such as in high performance computing environments. We describe the use

of distributed synthetic benchmarks such as NPB and LAMMPS to observe network performance

in Chapter 3.

2.3 Methods of Generation

Synthetic data generation can almost universally be separated into two phases: kernel ex-

traction and synthesis. Broadly speaking, kernel extraction is the task of analyzing real data or

simulation requirements to reduce the task to a set of algorithms and parameters. Synthesis is the

invoking of the kernel algorithms to produce output based on the derived parameters. What follows

is a representative sample of different generation mechanisms, classified by their application.

2TPC Benchmarks. http://tpc.org/information/benchmarks5.asp
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2.3.1 Structured Data

For tabular or structured data, where a single schema describes the constraints on a dataset,

synthetic data generation is well studied and can be somewhat generalized. Many approaches exist

for identifying and modeling value distributions and feature interdependencies, however. The sim-

plest methods may simply fit independent statistical distributions to each feature and generate data

by imputation, i.e., sampling values of the synthetic record from the related distribution. To address

the problem of increased noise, one may use multiple imputation, or the aggregation of multiple

synthetic datasets generated from the same kernel [124].

Relationships between features may be modeled in a number of ways. Synthetic recon-

struction and combinatorial optimization are related approaches that apply conditional probability

to impute from different distributions based on feature relations [66]. Increases in computational

power led to the feasibility of more sophisticated machine learning techniques of feature relation-

ship preservation, such as using support vector machines [45] and random forests [33] to generate

categorical values in datasets where relationships between variables with many possible values are

difficult to capture with standard parametric tools.

Other forms of structured data include images and time series measurements, where fea-

ture relationships can be described spatially within a record. Technically, any image transformation

method can be classified as generating new synthetic image data, but one particularly useful ap-

plication of image synthesis is the augmentation of training images in a deep learning pipeline.

Image augmentation techniques range from basic image manipulations such as filters and geometri-

cal transformations to sophisticated methods like adversarial training and neural style transfer [128].

Repeated presentations of training images with randomized augmentation parameters have the effect

of expanding the source dataset with a high degree of variation.

2.3.1.1 Generative Adversarial Networks

Extracted feature relationships can be learned and used to inform particular transforma-

tions of the image to create new synthetic images. An interesting application of this technique is in

Generative Adversarial Networks (GANs) [113], which have shown considerable promise as mecha-

nisms for relationship preservation in generating anonymized synthetic datasets, particularly with

structured data such as tabular records and images.
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Park et al. [103] presented methods for generalizing tabular data with GANs using convo-

lutional neural networks (CNNs) [103], which was built upon in [159] using recombinant CNNs to

focus on preserving marginal distributions. Alzantot et al. [7] explored modeling phone vibration

sensor time-series data using Long-Short-Term-Memory (LSTM) based generator and discriminator,

though their preliminary work does not yet incorporate adversarial training.

GANs have been shown to be effective in generating differentially private synthetic data

and have applications in a variety of use cases, such as anonymizing private medical records [37, 14].

GAN models and trained weights, in essence, form a portable and transferable dataset generator

which has applications in preserving data privacy [160].

GANs have applications in synthetic image generation, whether as part of a deep learning

pipeline [128] or in creating a dataset for other purposes. Zhu et al. [167] use GANs as a form of

augmentation, and demonstrate image-to-image translation models that can convert horses to zebras

in the input. Other applications include using semantic label maps to generate photo-realistic image

segments [155]. Shrivastava et al. [129] use a large dataset of synthetic human eye images as training

input vectors to a GAN rather than random inputs, and achieved significant improvements in the

model’s resulting detection accuracy.

One issue common to synthesizing data with GANs is known as mode collapse, where the

generator focuses on a few examples known to trick the discriminator. Synthetic records generated

from a GAN in such a condition will tend to exhibit strong resemblance to those few examples,

rather than capturing the statistical distributions of the training data. Bayesian GANs [127] at-

tempt to represent the posterior distribution over the generator and discriminator parameters by

sampling the distribution at each training step, rather than finding the most likely parameter vec-

tors. Their resulting models are able to recover complex multi modal distributions where standard

GAN approaches fail.

2.3.2 Semi-structured Data

The synthesis of semi-structured documents such as JSON or XML can be challenging,

particularly when documents exhibit complex nested structures that depend on values within the

document. One approach is to treat document structures as templates, and generate documents

according to template example frequency. In Chapter 4.1, we detail our work on a platform for

scalable generation of synthetic semi-structured document data using the Hadoop platform.

11



Rule-based procedural generation is another possibility, especially to recreate complex and

plausible data structures. The extracted kernel might be condensed to a set of schema segments

with rules for reconstruction, along with the value distributions. The authors of [149] created a

gene regulatory network generator that selects subnetworks from real examples and assembles new

networks based on modeled interaction kinetics. The resulting topologies more closely approximate

real regulatory networks than those created with alternative approaches such as random graph

models.

2.3.3 Benchmarks

The underlying observation characteristics for a simulated benchmark might be modeled

by an algorithm with rules for conditional generation based on external factors, such as the system

clock or network interaction with peers. Examples include simple network traffic generators such as

Iperf3, where output is generated with content and frequency determined by application parameters.

A more complex benchmark application is the NAS Parallel Benchmark suite [15], a distributed

application that generates network traffic patterns modeled on common parallel algorithms used in

high performance computing problems.

2.3.4 Simulations

Related to procedural generation is simulation, where the data generator mimics the relevant

aspects of a real-world process to create an ordered series of outputs. One particularly interesting

type of simulation with respect to synthetic data is in the creation of images for use in training deep

learning applications. In this case, extraction refers to creating the 3D models and rules for scene

simulation and rendering, and synthesis refers to the process of rendering images with conditions

drawn from the input parameters. We present our original research on the viability of synthetic

image data in deep learning applications in Chapter 5.

2.4 Measures of Quality

The quality of synthetic data and the generation processes can be measured in a number of

ways.

3Iperf - The TCP/UDP Bandwidth Measurement Tool. http://dast.nlanr.net/Projects/Iperf/
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Synthetic data can be measured in terms of utility, i.e., the similarity of the synthetic dataset

to the training data or underlying population from which it was derived [12]. The general utility of a

dataset compares the statistical distributions of the synthetic and the real, and can be expressed in

terms of the propensity score mean-squared error (pMSE). The specific utility of a dataset measures

the similarity of the results of analyses conducted with both the synthetic and real data, which can

be expressed with measures such as confidence interval overlap [131]. These measures may not agree;

it is possible to capture the distributions of the real data in the synthetic, and yet fail to capture

feature relationships important to analysis tools.

Another measure of the similarity between real and synthetic data is to compare the perfor-

mance differences in a simulation or system that uses the data. This measure is most useful when

comparing datasets that have complex structures or dependencies between values or records, and

depends on those complexities having significant effect on the system performance. For example,

a collection of complex structured synthetic documents populating a document-oriented database

such as MongoDB [36] should give search query benchmark times that are statistically similar to an

identical database populated with the same number of real documents.
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Chapter 3

Synthetic Data in Network

Performance Testing

The high performance computing (HPC) community has a long and rich history of the study

of the effect of network latency on parallel application performance [89, 64]. HPC applications can

be complex and almost ubiquitously scaled across many interconnected compute nodes. It is well

known that high performance execution of parallel applications demands that computational nodes

be interconnected with low-latency networks.

Researchers use benchmarks such as the NASA Parallel Benchmark (NPB) [15] and Large-

scale Atomic/Molecular Massively Parallel Simulator (LAAMPS) [110] that emulate the most com-

mon communication patterns of HPC applications to study the behavior of network traffic in complex

systems. Administrators of such systems rely on similar benchmarks to validate systems and find

areas for improvement. These benchmarks, which produce vast quantities of synthetic data from

relatively simple algorithms, are a prime example of the applicability of synthetic data generation

for performance testing.

In this chapter, we present our findings using synthetic communication patterns to expose

underlying network characteristics and analyze the effects of a latency variation in several envi-

ronments. First, we use simple low-level benchmarks to measure the effects of software switches

on latency variation in Section 3.1. We expand on that research to include virtual machines and

higher-level abstract benchmarks in Section 3.2. Next, we use those benchmarks to conduct a thor-
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ough examination of latency variation in a low-latency HPC environment in Section 3.3. Finally,

we broaden the research to measure latency variation in cloud-based computing environments in

Section 3.4 and explore its effect on high-level benchmarks that simulate a real HPC application.

The resulting body of original research exemplifies several types of benchmark data gener-

ation, from low-level empty packets to the high-level complex patterns of a real HPC application

at scale. This work has been condensed from its original published form to focus on the aspects

relevant to this dissertation.

3.1 Measuring Long-tailed Latency Distributions with Soft-

ware Switches

Our work began with a collaborative effort to understand how lightweight operating system-

level virtualization (i.e., containers) could be used to isolate software environments in NFV. Over

the course of this work, we observed that some supporting technologies such as software switches

seemed to introduce higher packet delay variation.

In traditional enterprise and telecommunications networks, network services such as routing,

intrusion detection systems, and firewalls are typically performed by specialized hardware appliances

situated in the data plane. With NFV, these services are instead implemented as software applica-

tions that run in virtual environments on standardized general purpose computing hardware. This

gives huge benefits in flexibility and scalability, at the cost of lower operating efficiency through

virtualization and the use of general purpose hardware. It also opens up network services to man-

agement and orchestration techniques that allow for unprecedented control, and removes much of

the complexity and specialized knowledge required with traditional systems.

One of the primary challenges of using virtual machines (VMs) in NFV has been the signif-

icant performance and efficiency costs of hardware virtualization [162]. Furthermore, network I/O,

which is of critical importance to NFV, can also suffer in many configurations.

Containers are a relatively new technology which allows applications to run as sandboxed

user-space instances on the host machine with isolation similar to hardware virtualization. Container

packaging and deployment platforms such as Docker1 simplify using containers to run virtualized

services by packaging applications with a customized view of their runtime environment. Since

1http://www.docker.com
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applications in containers run on the host OS without hardware indirection, they can run more

efficiently than their VM-based counterparts [133] and allow higher application density on a host

[51].

One challenge that is not sufficiently addressed by containers is network I/O. Containers are

typically used to provide isolation for services that communicate using one or more network sockets

bound to a port on the host. Traffic is handled by the host’s network stack using a software switch

such as the Linux bridge, which can incur performance cost and variation. While many services

typically deployed in containers are not bounded by network performance, most use cases for NFV

have strict requirements for network throughput and delay [90] that can be difficult to guarantee

with traditional Linux networking.

Our research is the first in a line of investigations to better understand the networking

issues in operating system level virtualization. It is the goal of this work to identify and quantify the

factors that influence the packet delay and throughput of container-based applications and virtual

machines, in the context of NFV service chains where VNF instances may exist on the same or

multiple hosts on a network. We describe and report on controlled experiments devised to isolate

these factors, and finally identify goals of future research in this area.

3.1.1 Methodology

Since chains of VNFs are meant to replace fast, high throughput hardware middleboxes, the

maximum throughput, latency cost, and delay variation of the service chain is of primary importance.

Throughput can be addressed to an extent by horizontal scaling, but there will always be a minimum

delay cost of the chain even with minimal load. Previous work has found that virtualization can

introduce throughput instability and abnormal delay variations to the network traffic [153].

Experiments were conducted on bare metal instances in CloudLab [120]. Each physical

machine was a Dell C8220 server, with dual Intel Xeon E5-2660v2 10-core 2.20Ghz CPUs, 256GB

ECC RAM, and Intel 82599SE 2-port 10Gbe network interface controller (NIC). In each experiment,

machines were co-located on the same rack and connected by two networks: a 1Gbps control network,

and a 10Gbps experiment network linked to a Dell Force10 S6000 switch.

Machines ran Ubuntu 14.04 LTS with the 3.13.0-57 low latency Linux kernel. In all ex-

periments, task pinning and kernel scheduling exclusion were used to ensure that kernel threads,

hardware interrupt servicing threads, and user threads were run on separate cores within the same
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NUMA node. While this approach explicitly disallows L1 and L2 cache reuse between threads, the

lesser degree of context switching allows us to obtain more reproducible results.

In our experiment configurations, interfaces are added to containers using network names-

paces. SR-IOV VFs are created by the OS after setting the num vfs parameter of the NIC. OVS

and bridge use virtual Ethernet device pairs assigned to the switch and the container. These device

pairs, as well as macvlan subinterfaces, are created with the ip command. Interfaces are then moved

into the container’s network namespace, similar to the direct assignment of a physical interface to a

container.

Packet send and receive timestamps were recorded for measurements of jitter and lateness,

a method validated by [134] and [157], and collected using tcpdump2. Measurements of latency were

conducted using Netperf 2.6.03. Ethernet frame sizes of 64, 128, 256, 512, 1024, 1280, and 1514

bytes were chosen according to the standard network device benchmarking methodology established

by RFC 2544 [28].

3.1.2 Results

To compare performance, we evaluated each of the networking mechanisms for connecting

processes in three environments – Docker containers, Xen virtual machines, and running natively on

the host – and using three metrics: latency, jitter, and efficiency. In each test, UDP packets were

sent from a client running on an external host to a server running on the virtualization host.

3.1.2.1 Latency

We first evaluated the networking technologies using latency to compare the costs of their

different software stacks. Figure 3.1 illustrates the results. We found that for each packet size,

device virtualization mechanisms such as macvlan and SR-IOV incurred less processing delay than

software switches. On average, the Linux bridge and OVS increased latency 3.2% and 4.9% over the

native network stack, respectively, while macvlan and SR-IOV increased the latency by 1.1% and

1.0%.

We then compared latency cost of sending packets to Docker containers, Xen virtual ma-

chines, and host native processes. The results in Figure 3.2 show that with each networking tech-

2http://www.tcpdump.org
3http://www.netperf.org
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Figure 3.1: Latency and standard deviation of various-sized Ethernet packets from an external host
to processes in Docker containers, using different networking technologies.

nology, containerized applications carry an additional latency cost (2.6%-16.1%) compared to native

applications, but less of a penalty than the equivalent Xen VMs (53.9%-92.3%). Our findings of

higher mean latency with Xen agree with those of other researchers [157].

3.1.2.2 Jitter

Next, we measured the delay variation (i.e., jitter) of packets sent from an external host to

a receiver on the virtualization host using each of the network technologies. Ethernet frames of 64

bytes were generated at a constant bitrate of 130Mb/s, and samples were taken excluding the head

and tail of the stream.

As maximum delay is also an important metric in NFV as late packets influence packet loss

ratio[49], we also measured the lateness of packets relative to the minimum observed delay time.

Figure 3.3 illustrates the results, which are detailed in Tables 3.1 and 3.2. In our experiments,

we found macvlan to have the most stable jitter and lateness, while the Linux bridge and OVS

experienced frequent delays in the milliseconds, despite a low mean variation. Included are results

of a Xen VM receiving packets through OVS, which experienced significantly higher variation than

a native process served by OVS, along with a many packets (0.61%) arriving out of order.

18



0

20

40

60

80

100

120

140

direct macvlan SR-‐IOV bridge OVS

la
te
nc
y	  
(m

icr
os
ec
on
ds
)

native Docker Xen

Figure 3.2: Latency and standard deviation of 64-byte Ethernet packets from an external host to
processes running natively, in Docker containers, and in Xen virtual machines.

direct macvlan SR-IOV bridge OVS Xen+OVS

min 0.17 2.57 3.00 1.60 1.35 1.42
max 7.50 10.25 27.97 20.71 24.47 18644.02
x̄ 0.87 6.79 7.96 6.76 6.96 265.36
s 0.69 0.55 1.87 3.43 3.71 1233.03

Table 3.1: Packet delay variation by delivery mechanism (µsec), n = 50000

3.1.2.3 Efficiency

While latency is an important metric, it is not necessarily an indicator of the throughput of

the system. We measured the efficiency of each networking mechanism by sending a controlled-rate

stream of 64-byte packets (˜64Kb/s) from an external host to a receiver within a Docker container,

while observing the CPU usage as reported by the system. Figure 3.4 shows the results according

to user, hardware interrupt, and other kernel threads. We found that SR-IOV had nearly the same

computational efficiency as direct assignment of the interface, while macvlan, the Linux bridge, and

OVS increased overhead per packet substantially (11.2%, 53.4%, 26.6% respectively). As SR-IOV

does not involve the CPU in packet switching, the low overhead is expected.
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Figure 3.3: Packet delay variation (jitter) of 64-byte Ethernet packets received by native processes,
using different network technologies. Measurements using Xen virtual machines and OVS are in-
cluded for comparison.

direct macvlan SR-IOV bridge OVS Xen+OVS

max 214 114 391 3326 9727 72867
x̄ 41.40 12.22 53.83 1685.29 6068.86 782.85
s 40.49 5.88 43.23 1181.90 2289.98 6015.96

Table 3.2: packet lateness by delivery mechanism (µsec), n = 50000

3.1.3 Summary

In this study we used generated network packets to measure the effects of software switches

and virtualization on aspects of network performance. Our results support our hypothesis that OS-

level virtualization can offer network performance benefits compared to hardware virtualization. In

every case, Docker containers have lower latency cost and lower variability than equivalent Xen VMs

running the same software.

In the case of ingress and egress of packets over a physical network interface, both macvlan

and SR-IOV show lower mean latency and more predictable variation than the Linux bridge and

OVS. Furthermore, in both the bridge and OVS we observe latency spikes in the milliseconds that
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Figure 3.4: Computational efficiency and standard deviation of networking mechanisms forwarding
64-byte Ethernet packets from an external host to a Docker container, classified into user processes,
kernel processes, and interrupt servicing.

could affect packet deadlines.

We also concluded that further study was needed on the effects of latency and jitter on

packet throughput and predictable delays in a VNF service chain. We suggested exploring how

packet train dispersion [74] is affected by factors such as chaining VNFs with multiple stages of

buffering and transmission burst compression due to virtualization [157].
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3.2 Measuring the Performance Impact of Software Switches

in HPC

Recent work had shown that lightweight virtualization like Docker containers could be used

in HPC to package applications with their runtime environments [60]. In many respects, applications

in containers perform similarly to native applications [158, 125].

Building on the observation that software switches were associated with increased latency

variation, we hypothesized that these increases could affect the performance of HPC applications in

an environment where software switching was used. This latency variation may have an impact on

the performance of some HPC workloads, especially those dependent on synchronization between

processes [89].

In this work, we measure the latency characteristics of messages to and from Docker con-

tainers, and then compare those measurements to the performance of real-world applications. Our

specific goals are to:

• Measure the changes in mean and variation of latency with Docker containers

• Study how this affects the synchronization time of MPI processes

• Measure the impact these factors have on real-world applications such as the NAS Parallel

Benchmark (NPB)

3.2.1 Methodology

Typical Docker applications use the Linux bridge or Open vSwitch to direct traffic to and

from applications in containers. To understand how applications are affected by both the software

bridge and the container itself, we established four environments to conduct each benchmark:

• native — native application with normal access to the network

• bridged — native application using a veth interface attached to a Linux bridge

• direct — Docker application with the network interface directly assigned to the container

• docker — Docker application using a veth interface attached to a Linux bridge
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Figure 3.5: Mean round trip time of MPI pingpong test.

Experiments were conducted on 6 Cloudlab machines at the Wisconsin site, each consisting

of a Cisco C220 M4 rack server with two Intel ES-2660 v3 10-core CPUs at 2.60 GHz, 160GB ECC

memory, and a dual-port Intel X520 10Gb NIC connected to a shared Cisco Nexus C3172PQ top-

of-rack switch. Machines were running Ubuntu 14.04 LTS, kernel version 3.13.0-68-generic, using

Docker 1.11.2 and OpenMPI 1.6.5 to run NAS Parallel Benchmark for MPI 3.3.

In all experiments, we used custom benchmarks using the MPI framework to generate syn-

thetic network traffic, and used the tcpdump tool to capture packet send and receive timestamps for

analysis.

3.2.2 Results

3.2.2.1 Microbenchmarks

We measured the mean latency imposed by the test environments by conducting a ping-pong

test between two MPI processes on separate nodes. We placed the receive side of the test in the test

environment, while the sender ran natively to avoid doubling the effect. As shown in Figure 3.5,

native had the highest mean latency, while tests using extra software layers of the Linux bridge and

veth interface (bridge and docker) had lower means than direct interface access.
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Figure 3.6: 1st, 25th, 50th, 75th, 99th percentiles of send-side gap variation.

To measure the latency variation, we send a constant rate stream of messages between MPI

processes on separate nodes. To help determine where variation occurs, we further divide the tests

into send-side and receive-side variation. We then calculate and report this inter-message spacing

in Figures 3.6 and 3.7.

On the sending side, using the Linux bridge seemed to decrease latency variance. On the re-

ceiving side, however, the opposite seems to be true; the Linux bridge increased the latency variance.

However, a Docker container had the effect of decreased variance in both network configurations.

3.2.2.2 Synchronization

For these tests, we measured the time required for 8 MPI processes on separate nodes to

synchronize to an MPI Barrier() call. Unlike the microbenchmarks, all nodes were under the testing

environment. We report the mean and distribution of times in Figures 3.8 and 3.9.

As opposed to the microbenchmarks, native and direct had lower means and variation, while

measurements in environments using the Linux bridge were more variable.

We also observe that the environments using containers have a higher mean synchronization

time, despite the lower receive-side latency variation and equivalent mean and send-side latency
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Figure 3.7: 1st, 25th, 50th, 75th, 99th percentiles of receive-side gap variation.

variation of the microbenchmarks.

3.2.2.3 Application Benchmarks

We ran the NAS Parallel Benchmark with seven of the nine benchmarks compiled with

problem sizes appropriate for a 160 core cluster. First, we measured the total number of packets

that were transmitted between nodes for each program, then ran 30 iterations of each benchmark

with processes distributed evenly across eight nodes. To estimate how dependent each benchmark

is on communications, we compare each benchmark’s mean packet size and transmission rate as

compared to native run times in Figure 3.10. To estimate the impact of each environment on

runtime, we compare each test’s min, max, mean, and difference from native mean in Figures 3.11

and 3.12.

As with the synchronization tests, bridge and docker added a significant amount to the

mean and variation on BT, CG, LU, and SP. We observe that tests with lower packet transmission

rates are less affected by the bridge and veth interface.
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Figure 3.8: Mean time to synchronize 8 nodes.

3.2.3 Summary

In this work, we used custom microbenchmarks using MPI primitives to generate low-

level network traffic patterns. Using those tools, we observed the effects of container virtualization

and software switches on measures of latency variation, distributed synchronization, and internode

throughput. We then used the NAS Parallel Benchmarks to generate distributed traffic patterns

common to HPC applications and characterize the higher-level performance impact.

Although we observed in the microbenchmarks that the Linux bridge and veth interface

lowered the mean and sender-side variation of message latency between MPI applications, we saw

that synchronization time increased for the same test environments. Furthermore, we see that

application benchmarks that send many packets per second are more affected by the extra software

switch than those with direct access to the network interface.
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Figure 3.10: Normalized comparison of data transfer characteristics.
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3.3 Characterizing Latency Variation as a Factor in HPC

Performance

We had seen that latency variation, mean latency, and performance degradation in HPC

benchmarks were all correlated with virtualization supporting technologies that introduced software

switches. However, we were not entirely sure what was affecting the HPC benchmarks - mean

latency, or latency variation. In our next work, we set out to find the answer.

To address one shortcoming of our previous work, we decided to use low latency network-

ing to have results comparable to a modern HPC cluster. There has been extensive research on

the development of low-latency, highly performing networks for HPC [109, 23, 21], and research

has demonstrated the considerable effect of average network latency on the performance of HPC

applications [126, 71].

Because compute nodes are increasingly multithreaded, network resources are under in-

creased contention creating competition for these resources and increasing the variation in network

communication time. In this work, we demonstrate that network latency variation by itself can have

a significant effect on HPC workload runtime. That is, with equal mean latency, a higher variation

in the network latency can result in significantly lower HPC application performance.

Our work confirms prior research that has focused on the packet and library level. At the

packet level, increasing of mean network latency affects performance, but point-to-point communi-

cation is less affected by the variation in network latency. At the library level, latency variation

affects the runtime of collective operations, particular those that involve most or all nodes in the

computation [64, 61].

We present new results at the application level. We characterize the negative impact that

latency variation has to the performance of classes of communication-intensive applications. The

decrease in performance ranges up to 3.5 times slower for LU Decomposition [15], for example. We

show that for communication-intensive HPC applications, changes in performance are more highly

correlated with changes of variation in network latency than with changes of mean network latency

alone. These results have implications for the design of HPC applications that must execute in a

highly shared environment, say, using commercial cloud resources or in a multi-tenant environment,

and suggest that implementation of mechanisms to control network variation latency may lead to

better overall application and system performance than efforts to reduce average network latency
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alone. Our main contributions are:

• A design and implementation of a configurable latency injector for many Mellanox and QLogic

InfiniBand cards;

• Characterization of the distributions of latency in network performance for InfiniBand network

in an HPC environment;

• Presentation of an experimental methodology using synthetically-generated latency to demon-

strate the effects of latency variation on HPC workloads;

• Statistically significant evidence that latency variation is more highly correlated with HPC

application performance than latency mean alone.

3.3.1 Background and Related Work

Prior research has reported how congestion-induced latency variation can have significant

effects on application performance [19]. This is straightforward to observe, for example, in the

MPI Barrier routine. With a barrier routine, no process can continue until all of the processes

entering the barrier have completed the synchronization step. Thus, the time to complete the

barrier call is determined by the process that takes the longest time to enter and complete the

barrier [64]. In networks with high latency variation, the time to synchronize to a barrier can be

considerable [42].

Alizadeh et al. [5] explored the effects of high bandwidth consumption on network latency,

and found that increased competition for buffers in Ethernet switches could lead to long-tailed

latency distributions with measurements as high as 1000 times the median. Our work is partly

inspired by theirs, as we questioned whether the latency variation would also impact HPC workloads

using MPI and zero-copy networks like InfiniBand.

One of the earliest papers to examine effects of variation in network protocols was the done

by Zhang et al. in [165]. In their work, they observed that performance of TCP based streams could

experience increased latency if ACK packets were clustered in two way, TCP, communication. They

proposed some adjustments to the TCP congestion control protocol to reduce clustering. Unlike their

work on the latency in the network, our work focuses on the impact of this variation on the runtime

of applications supported by the network. Additionally our paper has the added contribution of
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quantifying the effects of the latency distribution.

There have been many studies of the effect of congestion on network latency. [18, 19]

and [77] observed that increased bandwidth contention on links between nodes in a large cluster

resulted in larger mean latency and significant impact on HPC workloads.

One of the earliest was conducted by Jacobson [72]. These studies essentially show that

congestion introduces additional latency and latency variation increase when congestion is present as

the there is additional contention for the hardware. Our paper introduces the additional contribution

that latency variation can have negative effects in and of itself, and the impacts of latency variation

can be more significant than just considering latency.

3.3.2 Methodology

In this section we describe the methods used to create a controlled test environment for later

experiments. Measurements of low-latency networks are fine-grained and sensitive to perturbations

by other systems. Our goal is to minimize or eliminate noise in our testbed and to collect high quality

measurements so that we ensure that relationships between independent and dependent variables

can be correctly characterized.

3.3.2.1 Hardware Configuration

We ran our experiments on Cloudlab c8220 nodes [120] in the following configuration: dual

Intel E5-2660 v2 10-core CPUs at 2.20 GHz (Ivy Bridge), 256GB ECC RAM, Two 1 TB 7.2K RPM

3G SATA HDDs, Dual-port Intel 10Gbe NIC (X520), and QLogic QLE 7340 40 Gb/s InfiniBand

HCA (PCIe v3.0, 8 lanes). This particular hardware was chosen to provide enough cores to support

our MPI experiment configurations with one core per process, and adequate memory per process for

each benchmark. To allow addition of an artificial latency generator in the network device driver,

we chose hardware with QLogic InfiniBand cards which have a open source user-space driver.

We validated our experiments on Cloudlab c6320 nodes, which have similar specifications

aside from using dual Intel E5-2683 v3 14-core CPUs at 2.00Ghz (Haswell). Results were similar

and produced identical conclusions between the two hardware types so the c6320 results have been

omitted.

Cloudlab provides a means of specifying a desired network topology that it constructs using

software defined networking. However, since this topology is imposed on the existing physical topol-
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ogy, there are artifacts in the underlying topology in latency measurements, such as nodes being

in physically different racks having higher latency. We accounted for this variation by testing the

latency between all nodes. If a node was found to have statistically higher latency than its neighbors

(to the level of α = 0.05), that node was removed from testing and another was selected.

3.3.2.2 Software stack

Given the sensitive nature of < 10µs latency measurements and awareness of the impact of

OS noise on parallel computer performance [108], the software configuration was carefully tuned to

minimize noise and eliminate extraneous variables. To avoid introducing traffic over the processor

interconnect in a dual-socket system, we designed our experiments to use the cores of a single

CPU package with the shortest electrical distance to the network interface over the PCIe bus. We

also required that core “0” was not used for experiment processes, as the operating system always

assigns certain critical tasks to that core. As our MPI experiments required 8 processes per node,

the hardware was required to have more than 8 physical cores per CPU package.

We ran the experiments on a patched Ubuntu 16.04. To prevent OS scheduling of tasks

on the same cores as our experiment processes, we controlled the CPU affinity of tasks by isolating

physical cores 2-9 on CPU 0 of each node with the kernel flag isolcpus=4-27, and then forcing MPI

to distribute processes only among those cores. This required a minor change to the Linux kernel

to prevent scheduling kernel tasks on the isolated cores, a known issue which detailed at [43].

Other OS configuration included disabling hyperthreading and disabling CPU low power

states to prevent clock speed throttling. We achieved this using the kernel commandline options

processor.max cstate=1 and intel idle.max cstate=0.

We compiled our experimental codes using gcc version 5.4.0. When flags were not provided

by the benchmark code, we used the flags -O3 -march=native. When build flags were provided, we

use the provided flags.

We choose OpenMPI 1.10.2 from the Ubuntu repositories as our MPI implementation. We

choose OpenMPI because of its performance on InfiniBand interconnects.

3.3.2.3 Overview of the Packet Level

In this section, we provide an overview of the codes that we ran to examine the packet level

performance. The purpose of these tests are to capture the performance of the network interfaces
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with the minimal amount of overhead. We choose codes from the perftest package, which is

part of the Open Fabrics Enterprise Distribution (OFED) [6], which are well–established for testing

InfiniBand performance at the packet level. In particular, we used ib write lat with Reliable

Connection (RC) transport protocol. This tool uses raw InfiniBand commands (called verbs) to

measure the time to send remote write commands with delivery confirmation, and forms a low level

pingpong test.

We did not consider other tests from OFED such as atomic or send operations because

they introduce additional operations above and beyond what ib write lat does, and have higher

latency and latency variation because they require additional CPU assistance to complete.

Our preliminary experiments indicated use of a software MTU of 2048 bytes as the most

efficient configuration without message fragmentation.

3.3.2.4 Overview of the Library level

In this section we provide an overview of the codes we used to access the library layer.

The purpose of these tests is to capture the performance in a more realistic scenario where a

well–established abstraction such as MPI is used. We used two codes: ping-pong and barrier.

ping-pong times a long sequence of MPI Send and MPI Recv calls. ping-pong is roughly equivalent

to the packet level test except it is preformed at the MPI library level instead of the packet level.

barrier times collective communications by calling a long sequence of MPI Barrier calls. It tests

the efficiency of collective communication. In each of tests, the time to complete each operation was

considered the runtime.

3.3.2.5 Overview of the Application level

At the application level we chose the NASA Advanced Supercomputing (NAS) Parallel

Benchmarks (NPB). The NPB consist of a series of benchmarks designed to test many features of a

high performance computing cluster including its network based on problems seen in computational

fluid dynamics. It consists of benchmarks: Integer Sort (IS), Embarrassingly Parallel (EP), Con-

jugate Gradiant (CG), MultiGrid (MG), 3D Fast Fourier Transform (FT). Of these benchmarks,

three of them have high communication: CG, MG, and FT [15]. NPB also includes three pseudo

applications: a block tri-diagonal solver (BT), a scalar penta-diagonal solver (SP), and a lower-upper

Gauss-Seidel solver (LU). These tests stress the network interconnect and provide a model of latency
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Name size procs Mpkts GB

Conjugate Gradient CG C 64 9.30 3.92
3D fast Fourier Transform FT C 64 22.34 9.76
Integer Sort IS C 64 2.77 1.22
Lower-Upper Gause-Seidel LU B 64 4.75 0.62
Multi-Grid MG C 64 1.47 0.55

Table 3.3: NPB synthetic data generated by benchmark and problem size

variation similar to real-world network conditions.

To examine the effects of increased latency variation on real applications, we executed the

NAS Parallel Benchmark across the eight nodes in our cluster. We ran five of the nine included tests,

detailed in Table 3.3. NPB problem sizes (A-F) were chosen to ensure a long enough runtime for

repeatable results, and the number of processors was chosen to fit each test’s particular requirements

while being evenly divisible by our eight nodes. In Table 3.3, size corresponds to the size we

configured for our cluster, procs corresponds to the number of processes used at that size, Mpackets

corresponds to the number of millions of packets sent across the network, GB corresponds to the

number of gigabytes of traffic generated.

3.3.3 Workload Measurement and Characterization

In this section we describe our methodology for measuring and characterizing the effects of

network resource contention, or (i.e., congestion). Our goal is to measure the effect of congestion

on latency at the packet level, so that we can create a latency model for controlled emulation of

congested network resources.

Latency variation, sometimes also referred to as jitter, is measured at the packet level. in

each experiment we perturb the distribution by introducing congestion or synthetic latency. We

compute the variation by taking the standard deviation of the individual packet delivery times. We

then use the measurements we take at the packet level and apply them to the library and application

level.

We measure the effect of these perturbations to latency variation on the runtime of the

application. We use “wall clock time” of the application as measured using the time command.
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Figure 3.13: Send/receive pairs of background load generating processes on four compute nodes.
Each pair saturates a controllable fraction of the one-way bandwidth between two compute nodes.

3.3.3.1 Characterization Procedure

For our later experiments, it is essential that we have accurate models of latency variation

on InfiniBand hardware to configure our latency injector to match various levels of congestion. In

this section, we describe the procedure for capturing the packet arrival latencies and modeling them

with a latency distribution.

To introduce network congestion, we created an MPI network load generator to send data

between pairs of compute nodes, saturating the one-way bandwidth between the network interfaces.

We then controlled the level of congestion by altering the proportion of time that the sending node

was transmitting. By having each node run the application twice in both sending and receiving

mode, we were able to saturate a fraction of the node’s maximum transmission rate. For each

measurement of congested performance, we ran the load generator on all involved nodes, as illustrated

in Figure 3.13.

There are a few key items to observe from the this pseudo code. First, we used the POSIX

interface clock gettime to measure time. It has two important features: clock gettime is the

highest performing and most precise clock available on most POSIX systems, and it does not require

a trap into the kernel to measure the time as gettimeofday and other interfaces do. On the x86 64

hardware we used, it is implemented using a read of a timing register on the processor.

The sending application, detailed in Algorithm 1, is based on the “leaky bucket” rate con-
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Algorithm 1 Congestion Simulator

clock gettime(CLOCK MONOTONIC, &last time);
nsec delay ← 0;
while !stopping do

if nsec bucket ≥ nsec delay then
MPI Send(...);
nsec bucket -= nsec delay;
nsec delay = random from exponential();

end if
clock gettime(CLOCK MONOTONIC, &cur time);
diff time ← cur time - last time;
last time ← cur time;
nsec bucket += diff time

end while

trol mechanism first described in [146]. To simulate the transmission characteristics of applications

competing for network resources, we sampled the delays between messages from an exponential

distribution, which models the long-tailed and highly variable inter-message gaps in large flow back-

ground traffic observed in [5]. Samples were provided by a Mersenne Twister 19937 pseudo-random

number generator, which provides high quality entropy for its performance [92].

3.3.3.2 Characterization Results

Figures 3.14 and 3.15 illustrate the effects of background load on network packet latency,

expressed as a percentage of the network interface’s bandwidth. As the simulated network load

increases from 0% to 100%, latency mean and variation increase as the sending applications competes

for the network device queues.

There are two conditions to notice about the characterization results. First, for congestion

above 80%, the latency mean and standard deviation become highly chaotic. For that reason we

restrict the remainder of the measurement studies to simulated congestions below 80%. We leave

studies of this region for future work. Secondly, we observe that our results of increasing mean

and standard deviation of latency are consistent with the existing work on congestion. While the

particular distribution collected is hardware and software dependent, the general shape center, and

spread are consistent across hardware. We use these distributions to generate corresponding latency

distributions to use with our injector.
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Figure 3.14: Effects of congestion on mean packet latency distribution.

3.3.3.3 Modeling the Existing Distribution

In this section, we describe the methodology we used to choose the distributions that will

be used in our injector. First, we considered the distribution measurements we measured in Sec-

tion 3.3.3. For an example distribution, refer to Figure 3.16. We observe that the distribution

is skew-right. Preliminary curve fitting showed that it is best modeled by a log–normal function.

The dominant mode is at approximately 6.1µs with a minor mode of 7.2µs. When plotted against

cumulative packet count, the higher latency values are correlated with harmonics of the CPU and

PCIe bus frequencies occurring approximately every 45 to 50µs.

We fit five distributions to the data: a uniform distribution and four log-normal distributions

with increasing shape parameters. The uniform distribution models only the increasing of the mean

of the latency without increasing the standard deviation. The log-normal distributions increase the

spread of the distribution without perturbing the overall shape or the mean. The increasing spreads

leads us to evaluate the claim that increases in latency standard deviation is more highly correlated

with application runtime than latency mean.

The uniform distribution only has one parameter: mean. We fit this parameter by binary
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Figure 3.15: Effects of congestion on variance of packet latency distribution.

searching for each mean from the congestion distribution.

The log-normal distributions has three parameters: shape, scale, and location. We esti-

mated the shape parameter by using SciPy’s lognormal.fit method for the corresponding level of

congestion. We varied the scale parameter as one of our independent variables. We used binary

search to search for the mean from the corresponding congestion distribution.

Finally, we wrote a generator that uses the distributions from the statistical functions in-

cluded in SciPy 0.16.1 to generate the distribution files. The distribution files generated along with

the distribution file generator will be released upon publication.

3.3.4 Summary

We used several tools to generate synthetic network traffic in patterns related to HPC

applications. First, we used low-level benchmarks from the OFED perftest package to gauge per-

formance with minimal software-induced noise. Then, we employed MPI primitives to measure the

relationship between packet-level performance and distributed communication mechanisms. Finally,

we measured the cumulative effect of induced packet-level latency on the synthetic traffic patterns.
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Figure 3.16: Distribution of latency of packets is tight, and highly skew right.

We used our results in a follow-up work and found statistically significant evidence that

latency variation is more highly correlated with HPC application performance than latency mean

alone. These results can be found in the published paper [148].
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3.4 Measuring Latency Variation in Cloud HPC Systems

Our prior work measures and characterizes the impact that the variation in network latency

also has to application performance [148]. Even when the mean network latency is the same across

compute nodes, higher variation in latency leads to a degradation in parallel application perfor-

mance. This effect is significant enough that some environments that have networks with lower

mean network latency but higher network latency variation have application performance that is

worse than an environment with higher mean latency but lower network latency variation. We

note that while we can demonstrate that latency variation in HPC systems correlates with HPC

performance degradation, the small latency variation in a modern supercomputer with low-latency

networking technologies such as InfiniBand generally makes this degradation minimal.

However, the commercial cloud has network performance characteristics that are much dif-

ferent than locally provisioned HPC clusters. The commercial cloud could be an abundantly available

resource for research computing, but several challenges exist for execution of parallel applications in

the cloud. Some challenges have been overcome in recent years. For example, the overhead associated

with the virtualization environment of the commercial cloud was a significant factor in performance

degradation, but the virtual machine implementations today provide only minimal impact to compu-

tation performance [59, 71]. However, the performance of network messaging between cloud compute

nodes can still be significant factor in poor performance of parallel applications [59, 50].

Executing HPC applications on the cloud is a complex task. Due to the number of possible

configurations and options to choose from, a user has many options on how to execute their HPC

application. However, not all of these combinations will yield good performance and some config-

urations may negatively impact the performance of HPC applications. One of these configuration

parameters that can be varied is the network configuration and placement of the different instances

within the cloud.

Our contributions in this work are to provide a thorough measurement study of the point-

to-point latency characteristics of instances in two clouds, Amazon Web Services (AWS) and Google

Cloud Platform (GCP). We characterize performance across a range of node and network configura-

tions. Utilizing the NASA Parallel Benchmark (NPB) [15] suite and Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) [110] benchmark, we evaluate the performance of parallel

messaging and application execution with different node and network configuration options. We
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test across both AWS and GCP and compare performance across the two clouds. Our contributions

are, finally, to give insight to the most appropriate configurations for effective parallel application

execution in these commercial clouds.

3.4.1 Background and Related Work

Cloud computing is the delivery of different types of on-demand computing resources through

the Internet that typically utilize a pay-as-you-go-model. Although the services, terminology, and

hardware can vary between different cloud providers, there are common characteristics that are sim-

ilar across clouds. The construction and design of a cloud provider is similar to a traditional HPC

environment as a cloud is simply a large collection of computing resources controlled by software.

However, unlike HPC environments a typical cloud is designed to be a general purpose resource and

is not highly optimized for parallel workloads as is a traditional HPC environment.

For this research, we focus on two specific cloud providers: Amazon Web Services (AWS)4

and Google Cloud Platform (GCP)5. We focus on these providers as they offer a large number of

hardware combinations and services and are among the top three leading cloud providers in the 2018

Gartner Magic Quadrant6.

3.4.1.1 Compute Resources

The services that are available vary between different cloud providers. Along with the

variations in services, each cloud provider also differs in both terminology and the combinations of

hardware that are made available to users. However, there are some terms and concepts that apply

to both clouds. Both AWS and GCP refer to each server as an instance, referring to the traditional

allocation of a virtual machine (VM) that is managed by a hypervisor. The hypervisor manages

access to the underlying computing resources and hardware contained within the cloud. AWS7 and

GCP8 also both utilize the term vCPU when referring to the compute power of an instance, which

is a hyperthread of an available CPU hardware platform.

AWS provides “Enhanced Networking Capabilities” through Single Root I/O Virtualization

4Amazon Web Services (AWS). https://aws.amazon.com/
5Google Cloud Platform (GCP). https://cloud.google.com/
6Gartner Magic Quadrant, 2018. gartner2018magicquad
7Optimizing CPU Options. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-

cpu.html
8Google Compute Engine FAQ. https://cloud.google.com/compute/docs/faq
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or SR-IOV. SR-IOV is a network virtualization technique that provides higher I/O performance and

lower CPU utilization compared to traditional implementations for supported AWS instance types9.

Another feature of AWS is the availability of “bare-metal” instances. These instance types

provide direct access to the compute and memory resources of the underlying server. Bare metal

instances are built on AWS’s Nitro system which is a collection of AWS-built hardware offload and

server protection components that come together to securely provide high performance networking

and storage resources to EC2 instances. Utilizing these instances it is possible to show the differences

between VM based instances and the “bare-metal” instances.

3.4.1.2 Instance Placement and Networking

Both AWS and GCP refer to the specific geographic location where users can provision

resources as a region. Within these regions, there are multiple datacenters that are divided up

into zones. Each of the zones within a region are isolated from each other and are connected by

a low-latency network.Although the terms for these zones differ slightly between the two clouds,

Availability Zone (AZ) for AWS10 and Zone for GCP11 , they are equivalent in meaning. We will

be using the term Availability Zone (AZ) when referring to both AWS and GCP in this paper for

simplicity.

AWS and GCP have differing mechanisms to govern network performance between instances.

In AWS the instances have a network performance category such as Low, Moderate, or High that

refer to throughput limits from 5 Gigabit up to 25 Gigabit12, and are assigned by the instance

type’s intended use. Throughput limits for GCP, on the other hand, are similar for all instance

configurations and are simply given as 2Gb/s per vCPU and capped at 16Gb/s13. Even with these

specifications, the network performance of instances in both AWS and GCP varies due to other

factors such as the overall utilization of the network and other competing instances that may be

located on the same underlying hardware.

AWS EC2 has a unique feature called a placement group, which is available only for certain

instance types and allows clients to broadly specify how the instances are placed on the underlying

hardware. A clustered placement group ensures that EC2 instances are able to communicate with

9AWS EC2 FAQs. https://aws.amazon.com/ec2/faqs/
10Amazon Regions and Availability Zones. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-

regions-availability-zones.html
11Regions and Zones. https://cloud.google.com/compute/docs/regions-zones/
12AWS EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/
13VPC Resource Quotas. https://cloud.google.com/vpc/docs/quota
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all other instances within the placement group at the full line rate of 10 Gb/s flows and 25 Gb/s

aggregate without any slowing due to over-subscription, and is most suitable for instances that

require either low latency or high throughput. A spread placement group ensures that instances

that placed on distinct underlying hardware to help ensure high availability14.

3.4.2 Experiment Design

AWS Latency in the experimental environment is configured indirectly through the selection

of the architecture of the parallel system in the cloud. In AWS, these architectural choices include

the number of Availability Zones and the decision to use Placement Groups.

We have identified a number of network configuration use cases that we study in this paper

including: single AZ, multi-AZ, single AZ with clustered placement groups, and single AZ with

spread placement groups. The first two use cases apply to both AWS and GCP while the third and

the fourth use case apply directly only to AWS as they utilize the AWS specific placement group

construct.

The first use case that we will be exploring is the single AZ. This use case was chosen

because it is the most likely scenario for a user who is attempting to execute their workload in the

cloud. This use case does not take advantage of any of the additional network configuration or

optimization that AWS has in order to simulate a user who may be unfamiliar with these advanced

cloud constructs. In this use case all of the instances are provisioned in the same AZ and within the

same subnet without any additional parameters specified.

The second use case is multi-AZ. This use case was chosen as executing in multiple AZs is

useful for large scale HTC workloads that require a lot of computational resources which may not all

be available in one AZ. This is also a typical use case when executing HTC workloads utilizing the

AWS Spot Market as the price for each instance type varies per AZ. Due to Spot Pricing being based

upon supply and demand, if a user were to request all of their instances within the same AZ, they

would drive the price up and therefore be unable to obtain all the resources they require for their

specified price. However, if the user were to spread the instances out over multiple AZs, the user

would diffuse the demand and therefore not increase the price on themselves. While this strategy

does not directly apply to preemtible instances on GCP, it is possible that there are resources in one

AZ that do not exist in another AZ and that a user would have to utilize multiple AZs in order to

14Amazon Placement Groups. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
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obtain all the resources they needed for their workload.

The third use case is a single AZ with a clustered placement group. As previously mentioned,

a clustered placement group within AWS is supposed to allow instances to communicate with other

instances inside the placement group at peak network performance. By controlling the placement of

the instances so that they are located in the same physical proximity, a clustered placement group

limits the distance that the network traffic between instances has to travel. This indicates that

this configuration should out perform the single AZ configuration for applications that are network

bound. This is another use case for large scale and tightly coupled HPC applications that utilize

MPI as the additional throughput and lower latency offered by clustered placement groups should

help increase performance. This use case simulates a user who is more cloud aware and wants to

take advantage of some of the additional capabilities offered by the cloud in order to potentially

increase the performance of their application.

The fourth use case is the single AZ with a spread placement group. As previously dis-

cussed, a spread placement group ensures that the instances within the group are placed on distinct

underlying hardware. AWS specifies high availability and fault tolerance as the use case for spread

placement groups, we utilize this use case as a worst case scenario where none of the instances provi-

sioned are in close proximity to each other. Although we have no guarantees on where the hardware

is physically located, since the stated goal of AWS is high availability we can safely assume that the

instances in this group are on different failure planes which allow us to get a measurement of what

one of the possible worst case scenarios is if a user happens to launch instances within a single AZ

and gets instances that are not on the same hardware.

3.4.3 Latency Characterization

In this section, we describe our exploration of the network latency characteristics of both

AWS and GCP cloud infrastructures. Our primary measurement of interest is the latency of a single

message between two nodes at the MPI layer. We also include results from the related measurement

of throughput between nodes, as latency can be a contributing factor in throughput degradation in

guaranteed delivery protocols such as Transmission Control Protocol (TCP).
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3.4.3.1 Methodology

We use two measurement tools to quantify internode latency and throughput. First, we

wrote an MPI application to repeatedly measure the time taken to perform individual MPI Send calls.

This was chosen over other readily available tools because we required individual measurements to

find their distribution, while other tools use a more standard process reporting an average latency

measurement over many iterations. Second, we used the industry standard tool iperf to measure

the TCP throughput between nodes.

To help ensure a comprehensive study of the AWS and GCP cloud infrastructure, we made

efforts to draw measurements from as many unique nodes as was feasible given our resources. In

provisioning nodes for measurement, we were constrained by two factors. First, the cluster and

spread placement groups were limited to 7 instance members within an availability zone. Second,

the us-east1 region has 5 availability zones with the i3.metal and i3.16xlarge instance types that

we used. Therefore, our methodology for internode measurements was to provision 7 instances at a

time when using placement groups, and 5 instances at a time when measuring between availability

zones. We then conducted all internode latency and throughput samples between each unique pair,

giving us 21 and 10 measurements per provisioning, respectively. Each provisioning was repeated

10 times over the course of 24 hours, resulting in measurements between 210 unique node pairs for

each placement group, and 100 unique node pairs between availability zones.

While individual messages sizes in an MPI application can vary widely, we determined that

it would be prohibitively time consuming to expand our independent variable matrix to include a

variety of message sizes. Furthermore, it seemed unlikely that such an effort would yield interesting

differences in our results. To test this assumption, we measured the latency between pairs of nodes

in AWS using a spectrum of message sizes, and plotted the mean and range of the measurements in

Figure 3.17. We observe that the mean latency is similar for message sizes up to 1024 bytes, which

is expected as the transmission time with a 25 Gb/s interface is only 0.33 nanoseconds per byte.

For message sizes larger than 1024 bytes, the Maximum Transmission Unit (MTU) size of 1460 for

GCP and 1500 for AWS causes packets to be fragmented into multiple Ethernet frames, which is

reflected by the increasing mean latency. This, coupled with the similar measurement range between

each message size, gives us reason to believe that restricting our further characterization to a single

message size will yield results that are broadly applicable. We chose a message size of 1 byte for
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Figure 3.17: Mean and interquartile ranges of internode latency on AWS bare metal instances, AWS
VMs, and GCP VMs.

further latency measurements in this section.

Within the AWS cloud, the option to provision non-virtualized instance types offers an

opportunity to quantify the effects of the AWS hypervisor on internode latency. These instances,

labelled by AWS as “i3.metal” and referred to as metal in the following text and figures, use [to

the best of our knowledge, reword] hardware identical to the “i3.16xlarge” instances to which we

compare them.

Choosing a single availability zone that contained both virtualized and bare metal instance

types, we studied the internode latency of both types with a sequence of individual measurements

and plotted the cumulative distributions, shown in Figure 3.18. We observe that the distribution

of measurements between the virtualized instances exhibits higher median value and variation than

measurements between bare metal instances. Furthermore, the vast majority of the 230 samples

drawn from virtualized instance pairs feature a clear bimodal distribution similar to the given exam-

ple. We believe that these characteristics are due to an extra level of queueing added by the AWS

hypervisor. Other samples using different node pairs and availability zones exhibit very similar

characteristics, and have been omitted for brevity.
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Figure 3.18: Histograms and cumulative probability distributions of internode latency measurements
between virtualized and bare metal instance types in AWS.

In order to perform an accurate assessment of the AWS cloud infrastructure, we have chosen

to treat virtualization as a control variable, and evaluate its effects independently. For the remainder

of this section, we will use the AWS bare metal instances to measure characteristics of the cloud

infrastructure, and then conduct a more thorough investigation of the effects of virtualization on

network latency at the end.

One of the challenges we encountered in our exploration of cloud network characteristics

was that, given identical provisioning parameters, the latency measurements between one pair of

nodes could be significantly dissimilar from internode measurements of another pair. As an example,

Figure 3.19 shows measurement studies taken from four different pairs of nodes, while within the

same AZ and using the cluster placement group. The sets of measurements all exhibit long-tailed

characteristics, but have a range of different median values, variances, and modality.

Exploring this phenomenon further, we observed that the distributions could be classified

visually, which supported our intuition that the dissimilarity in latency distributions could be ex-

plained by differences in network cabling and packet forwarding devices between nodes in a pair.

We classified the distributions by their similarity by first building a matrix of 2-sample Komogorov-
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Figure 3.19: Median latency values between node pairs in AWS using cluster grouping, spread
grouping, and between AZs.

Smirnov (KS) test statistics [91] comparing each distribution to all other distributions, and then

used K-medoids clustering to group the most similar distributions. Cluster sizes were chosen using

the pamk implementation of the partitioning about medoids (PAM) method [79]. Sizes were verified

using the “elbow” method of visualizing the inflection point of information gain using the total

within-cluster sum of squares metric.

A visualization of the results are shown in Figure 3.20. We observe that there are reasonably

clear distinctions between groups, and upon further visual inspection, the histograms of samples

belonging to the same cluster are clearly more alike than those between different clusters. While we

cannot know the infrastructure differences that cause these clusters to arise, we surmise that our

clustering may be a reasonable approximation of similar network paths between nodes.

For further measurements in this section, we have specifically chosen node pairs that belong

to the same similarity cluster as a control variable. This is done to ensure that our results are

repeatable and focused on the independent variable in question. In other sections of this paper,

where we will be interested in studying the cloud environment as a whole, we will clearly state

whether or not experiments use a subset of nodes that share similar network characteristics.
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(a) cluster group, n = 100, k = 3

(b) spread group, n = 100, k = 5

(c) Separate AZ, n = 100, k = 10

Figure 3.20: K-medoids clustering of internode latency distribution similarity measured by 2-sample
KS test statistic.
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grouping min Q1 med. mean Q3 max var.

cluster 65.9 78.8 90.9 93.3 102.4 178.4 243.9
spread 187.8 203.8 211.6 215.2 223.5 418.8 341.9

multi-AZ 523.9 584.1 589.7 590.2 595.9 803.2 230.3

Table 3.4: AWS internode latency by grouping option

3.4.3.2 Node Grouping Parameters

We explored the effect of the available node grouping options in AWS on network charac-

teristics by conducting sequences of internode latency and throughput measurements between pairs

of instances assigned via the grouping parameter.

With the cluster placement group option, referred to as cluster, we expect instances to have

a short network distance, possibly within the same datacenter rack. The alternative placement group

option spread is described as maximizing availability within an AZ, so we hypothesize that internode

network distance could be greater, possibly in different facilities. Finally, with no placement group

option selected and nodes selected from different AZs, referred to as multi-AZ, the network distance

could be even greater.

The differences in measurements taken from each grouping type are readily observable, as

shown in the sequence plot in Figure 3.21 and described in Table 3.4. As expected, the cluster

grouping measurements exhibited a lower mean value, followed by the spread grouping measure-

ments. However, perhaps counter-intuitively, the measurements between nodes in separate AZs

exhibited lower variance than those that were supposedly connected by a shorter network path.

3.4.3.3 Virtualization Effects

Using the same node pairs, we also conducted a throughput study using iperf over a 60

second sustained transfer with measurements taken at 1 second intervals. We saw no significant

difference in median throughput between virtualized and bare metal instances, but we did observe

a number of low outlier measurements in the virtualized instance pairs, as depicted in Figure 3.22.

These outliers accounted for 1.1% of the total measurements. Of further note is that the observed

maximum throughput is well below the 25Gb/s theoretical maximum of the instance’s network

interface. This is explained by the AWS documentation of a cap on throughput within an availability
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Figure 3.21: Internode latency measurements from AWS with different node grouping options.

zone at 10Gb/s as of the time of this writing. We believe that further effect of virtualization on the

throughput may be masked by the AWS cap.

3.4.4 Implications to Synthetic Benchmarks

We first conducted a series of trial measurements to ensure that our problem sizes in both

NPB and LAMMPS were large enough to capture normal network performance variance and oper-

ating system interference. Since we sought to compare the performance of dispatching on a cloud

infrastructure to that of a typical HPC cluster, we used the Palmetto Cluster as a baseline. Problem

sizes were adjusted until the 99% confidence interval width over 30 runs was within 5% of the mean.

We then conducted the benchmarks with the same parameters on AWS and GCP cloud

instances provisioned according to the placement configurations, repeating each trial until achieving

a confidence interval as described above. We visualize the runtimes of NPB subbenchmarks in

Figure 3.24. We can see that both the mean and variance of samples varies widely depending on

the particular benchmark. As expected, the performance of the EP benchmark is similar between

each group of nodes, and is appears to be relatively unaffected by network characteristics. We note

that the mean performance correlates with the CPU frequency of the nodes, and that the range of
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Figure 3.22: Internode throughput measurements between virtualized and bare metal instance types
in AWS.

measurements is not readily classified by virtualized vs bare metal instance types.

In other benchmarks, we observed that most benchmarks exhibited performance degradation

when using multiple availability zones. The notable exceptions include EP, MG, and SP. We also

note that on GCP, the BT performance seems to drop when using multiple AZs.

Again using node allocation as provided by the service provider, the LAMMPS benchmark

exhibits runtime dispersions that are as expected, shown in Figure 3.23. In AWS with all node

types, we observe that the largest measurements using spread grouping are up to 73% higher in

bare metal instances, and up to 92% higher in virtualized instances with mean runtime increases of

38% and 71%, respectively. Benchmarks run using multiple availability zones exhibit much greater

degradation, with extreme runtime increases up to 312%, 178%, and 301% compared to the single

availability zone extremes in AWS bare metal, AWS virtualized, and GCP instances respectively.

Mean runtime increases for those node classes were 313%, 181%, and 252% respectively compared

to the means of single AZ measurements without group requirements.
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3.4.5 Summary

In this work we used a custom MPI benchmark tool and the industry-standard benchmark

iperf to generate network traffic, measuring the latency characteristics and throughput of network

paths between cloud computing instances provisioned with different placement strategies. Informed

by our results, we observed the relationship between network performance and distributed applica-

tions using the NAS Parallel Benchmarks and LAMMPS to generate synthetic network patterns.

We observed that the parameters to provisioning cloud resources can impact the network

performance characteristics of internode communication. Furthermore, we saw that for some applica-

tions, suboptimal performance in network latency may be reasonably correlated with a degradation

in application performance. Our results can be summarized as confirming that latency variation does

indeed have a significant impact on the performance of synthetic benchmarks with a high degree of

synchronous communication, and is strikingly apparent in computing environments with long-tailed

internode latency distributions.
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Cluster using available network proximity options.
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Figure 3.24: Dispersion of NAS Parallel Benchmark runtimes on AWS, GCP, and the Palmetto
Cluster using available network proximity options.
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3.5 Conclusions

In this progression of research studies, we used a variety of custom and industry-standard

benchmarking tools to generate synthetic network traffic patterns. These benchmarks allowed us to

observe relationships between network characteristics and application performance at all levels of

the network stack.

In Section 3.1, we used the netperf tool to generate traffic and measure the effects of

software switches and virtualization on aspects of network performance. We found that lightweight

OS-level virtualization tools such as Docker can offer network performance benefits compared to

hardware virtualization in Xen.

Section 3.2 describes our work in using custom microbenchmarks using MPI primitives

to generate low-level network traffic patterns and observe the effects of container virtualization

and software switches on measures of latency variation, distributed synchronization, and internode

throughput. We then employed the NAS Parallel Benchmarks to generate distributed traffic patterns

common to HPC applications and characterize the higher-level performance impact, finding that high

latency variation correlates with performance degradation in a number of benchmarks that depend

on tight node synchronization.

In Section 3.3 we applied our findings to a more traditional HPC environment with low-

latency InfiniBand networking. We used low-level synthetic benchmarks from the OFED perftest

to gauge network performance at the hardware level and validate our tool to introduce artificial

latency. We then measured the impact of artificial latency with custom MPI benchmarks at the

library level and NPB at the application level, and concluded that latency variation has a significant

role in performance degradation in tightly synchronized applications.

Finally, in Section 3.4 we extended our work to an emerging non-traditional HPC envi-

ronment by measuring the effects of network performance on NPB and LAMMPS in AWS and

Google Cloud. Using custom MPI benchmark tools and the industry-standard synthetic traffic gen-

erator iperf, we found large differences in network performance dependent on instance placement

strategies and observed correlated degradation in application performance on synchronization-heavy

benchmarks using deployments with high latency variation.

In the larger context of this dissertation, our research and results demonstrate that algo-

rithmic synthetic traffic generation tools play an important role in the research and validation of
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complex networking systems.
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Chapter 4

Synthetic Data in Infrastructure

Validation

The concept of Internet of Things (IoT) [13] is rapidly moving from a vision to being

pervasive in our everyday lives, and is creating unprecedented opportunities for industry. Raw data

is being collected at an increasing rate from a multitude of devices and sensors – sources that include

connected homes, smart meters, manufacturing, healthcare, fitness trackers, mobile devices, vehicles,

and more. The ingestion and integration of raw data, the extraction of valuable business information

from the raw data, and planning for infrastructure capacity and analytic capability for analyzing

this data are new challenges in the era of big data [93]. This results in a need for the development of

infrastructure support and analytical tools to handle IoT data, which is naturally big and complex.

In addition to developing new infrastructure models, there exists a need to use appropriate data to

benchmark new and existing infrastructure to determine its performance and capacity.

Industries in the position to collect such data are not typically in a position to conduct this

form of research and development, and commonly look to outsource these problems to third parties.

But, research on IoT data can be constrained by concerns about the release of privately owned data,

which may stem from the inclusion of personal records, proprietary information, or both.

Synthetic data offers a potential solution to these problems, as anonymized data modeled

after real IoT data can be used for the design and validation of infrastructure as well as fundamental

research and the development of improved systems. However, the complexity of IoT data can pose
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a significant challenge. Unlike rigidly structured transactional data that follows simple schemas and

can be stored in two-dimensional tables, IoT data is dynamic and self-describing [41] and is often

represented in a hierarchical structure using XML or JSON [55, 4] with complex and potentially

recursive nested schemas. Systems designed generate a synthetic analogue must capture the complex

aggregated structural and statistical characteristics of this original data.

In this chapter, we present original work on two related aspects of synthetic data for infras-

tructure research and validation. First, in Section 4.1 we describe our research on the development

and implementation of a synthetic IoT data generation framework. that is capable of generating ter-

abytes of structurally similar synthetic data from a highly complex and nested original data source.

Second, in Section 4.2 we detail methods and results of benchmarking a scalable cloud-based message

passing system using generated data.

4.1 Generation of Complex Hierarchical Data for IoT

In this original research, we undertook the development and implementation of a synthetic

IoT data generation framework capable of generating terabytes of structurally similar synthetic data

from a highly complex and nested original data source. Our primary motivation for developing the

framework is to enable the design, development, and testing of large scale data analytic tools and

data infrastructures to support IoT research. We evaluate our approach on a real world data source

that includes data that have been collected over a period of several months from hundreds of sensors

on millions of electronic objects located at geographically different locations. We report on the

results of our efforts in two ways. We compare the structural characteristics of the generated data to

the original data, and we evaluate the performance of a data access framework on both the original

and synthetic data.

4.1.1 Background

As a rapidly developing paradigm, the Internet of Things (IoT) presents the concept that

all of the things surrounding us can communicate and exchange information via the Internet, and by

doing so, they enable “autonomic responses to challenging scenarios without human intervention” [4].

However, as IoT data are extremely heterogeneous, noisy, and large-scale, this presents a major

challenge to the process of cleaning, integrating, and processing the data. The complex, nested,
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and potentially recursive schemas of hierarchical data formats used in many IoT sources are distinct

from the more predictable schemas used in tabular or relational databases. For the purposes of this

chapter, we characterize the simpler case as structured data, and refer to the more complex schemas

of IoT as unstructured data.

Synthetic data generation in more rigidly structured formats, such as tabular data and

relational databases, is typically accomplished by developing statistical distributions for a set of

samples from data that were directly measured, and then creating new values in the same format as

the real data from these distributions. This problem area is relatively simple compared to document

collections with more complex schemas.

Unstructured data require a more complex approach for the generation process. The work

by Aboulnaga et al. [2] utilizes the Markovian structures of all paths from the root to every possible

leaf of the XML tree to generate the synthetic data. This work does not evaluate how structurally

similar the synthetic data are compared to the original data. The work by Cohen [39] enables

users to generate synthetic XML documents, but requires users to provide a target DTD (document

type definition) document and detailed global and local constraints on the output synthetic XML

structures. XTaGE [107] uses GUI support to let users define a base XML structure from which

synthetic XML documents can be generated. Todic and Uzelac use pre-defined benchmark queries

to derive the XML structures that can support the relevant benchmarks [143].

These approaches require a priori knowledge of the detailed foundational XML template for

the original data. Today’s IoT data sources exhibit a very large base XML template with millions of

possible XML paths, and prior knowledge of the XML template is often not available. The goal of

this research is to design and implement a scalable system for creating synthetic XML that captures

the complexity and variety of presented IoT sources. Our approach is not constrained to XML data

and can also be applied to other hierarchical data formats.

4.1.2 Characterization of IoT Data

The IoT synthetic data generation proceeds in two major phases. The first phase is to

perform structure and value extraction from the original XML, resulting in a data characterization

called the synthesis set. The second phase uses the synthesis set as input to generate and output

synthetic XML data. In this section we present the steps of phase one, structure and value extraction.

To begin, we provide a formal definition of attributes (as in columns of a data table and
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not the XML attribute construct) of a data object stored as an XML document. The text contents

of an XML document are the collected measurements of the sensors on an object. Each of them

represents a unique attribute of that object. The term value is used instead of attribute in order

to distinguish an object’s data attributes from its XML attribute construct and path to refer to the

list of opening tags and attributes that categorize the value. The name of an object attribute is

determined by the path from the root tag to the first opening tag before the text content of that

attribute. The path includes all opening tags and their accompanying XML attribute constructs

but excludes the closing tags. For example, there are four attributes as shown in the first column of

Table 4.2 for the object device 0001 stored in the following XML:

<?xml ve r s i on = ‘ ‘1.0 ’ ’?>

<dev i ce id = ‘ ‘0001 ’ ’>

<s enso r name= ‘ ‘a ’ ’>

<type>module 01</type>

<weight>4.0</weight>

</sensor>

<s enso r name= ‘ ‘b’ ’>

<type>module 02</type>

<temperature>60</temperature>

</device>

Data characterization is based on a few assumptions. First, due to the absence of strict

schemas, we assume that XML elements at the same nesting level are unordered since order is not

a requirement for well-formed XML [87]. Secondly, we assume that tag attributes are an identifying

characteristic of a path in the XML tree and consider paths with variations in attribute values to

be distinct. We also assume that values in the XML tree can be classified as either numeric or

categorical, as described below.

Data characterization includes: 1) extracting the structure of the data so that similar doc-

uments can be generated, and 2) characterizing the values that exist within the dataset. Figure 4.1

outlines the process. First, the values are removed and the tag/attribute trees are stored along

with an MD5 hash and their frequency of occurrence into the structure data file. The original XML

is examined again, extracting each value along with an MD5 hash of the identifying path and the

number of occurrences of that path/value combination. Non-numeric and infrequently occurring
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Structure Hash Frequency

<device id=“0001”> 9641ABEF... 1
<sensor name=“a”>
<type></type>
<weight></weight>

</sensor>
</device>

<device id=“0001”> C5D7CA98... 3
<sensor name=“b”>
<type></type>
<temp></temp>

</sensor>
</device>

Table 4.1: Examples of XML templates in the structure data table

Tag Path Hash Freq. Value

<device id=“0001”><sensor name=“a”><type> B3EE890F... 1 M01
<device id=“0001”><sensor name=“a”><weight> 0E742374... 1 4.0
<device id=“0001”><sensor name=“b”><type> 57518DAC... 3 M02, M03, M04
<device id=“0001”><sensor name=“b”><temp> 15FDF201... 3 60, 65, 69

Table 4.2: Values and the identifying MD5 hash of their path, with frequency

values are classified into the categorical values file. The remaining values are classified as numeric

for distribution fitting. The results are stored in numeric distributions. The three resulting files

make up the synthesis set. The condensed nature of this set also facilitates obscuring details of the

data through string substitution, as will be discussed in Section 4.1.3. Next, we describe the details

of these steps.

4.1.2.1 Structure Extraction

The first step of data characterization is to extract the structure of the data. We view the

XML structure as a tree of tags along with their associated attributes but which is separate from

the document’s values. We use Hadoop MapReduce [156] to ingest the XML-based IoT data. The

MapReduce framework processes each XML document individually. The initial map phase removes

all of the node values of an XML document while leaving the tags and attributes. Also in the

map phase, the MD5 hash of the remaining XML string is calculated. This hash and the XML
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structure become the key/value pair output of the map phase. The reduce phase aggregates these

pairs and emits a list of unique triples whose first value is the MD5 hash, the second value is the

frequency of this hash in the entire document set, and the third value is the stripped XML structure.

Table 4.1 is an example of the output from this process, which we refer to as structure data within

the synthesis set. The entire XML structure is stored, retaining the hierarchical characteristics of

the XML documents.

4.1.2.2 Distribution Modeling

The next step in data characterization is the calculation of the statistical distributions of

the different values of the data. For a tabular dataset, the set of values to be considered would be

the data columns, but there is no predetermined set of values for hierarchical and schema-less IoT

data. The distributions of the data values must be computed across tens of millions of IoT data

entries, each of which has different combinations of sensor measurements.

The values of an XML object are encoded within the path of the object’s XML structure.

Hadoop MapReduce is used to extract the paths into an intermediate form for classification. A

recursive algorithm is used to descend the XML tree, appending each node’s name and attribute list

to a string. If a text or numeric value is encountered, an MD5 hash of the path string is generated and

emitted with the value. In the reduce phase of the job the hash-value combinations are counted and

output as the intermediate value data file. For example, the XML paths and their respective hashes,

reduced counts, and values of the example XML structures in Table 4.1 are shown in Table 4.2.

The value data is the input into the next phase, where the contents of the values are classified

as numeric or categorical. Any set of contents for which there are 30 or fewer unique values is

classified as categorical. In this initial design and implementation we make the assumption that the

values are independent of each other for the purpose of calculating the statistical distributions.

For a categorical path Ai, we are interested in the possible values that the path might have

on different objects. Let the domain of Ai be 1, 2, ..., dk. Then the categorical path domain is

D = Πk
i=1, which forms a contingency table. The probability of a particular categorical path can be

approximated as π̂d = xd

n where xd is the frequency from the contingency table and n =
D∑

d=1

xd. The

path hash, frequency, and value of categorical data remain in the same format as the value data file,

and are output as the categorical values component of the synthesis set.

Given a numeric path Zj , we use a fitting method to determine the best distribution to
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Distribution n Parameter 1 Parameter 2 IsInteger Maximum Minimum

Poisson 234 728.1 (lambda) - True 35827 1
Poisson 7752 1489.6 (lambda) - True 6948 0
normal 437 9.9 (mean) 14.9 (stddev) False 77.3 0.0

geometric 92 0.0004 (probability) - True 2506 2358
Cauchy 629 80.5 (location) 20.4 (scale) True 122 -48

Table 4.3: Example table entries of distribution information for numeric paths

represent the data, and then calculate n, max, and min. For each distribution, the relevant param-

eters of the data are also written out. For example, the lambda distribution would include λ - the

sample mean, while the normal distribution would have xn, sn where xn is the mean and sn is the

standard deviation. We consider a range of distributions that includes beta, Cauchy, chi-squared,

exponential, F, gamma, geometric, log-normal, negative binomial, normal, Poisson, t, and Weibull

distributions. These distributions were chosen as they are both supported in the R MASS pack-

age [151] and JDistlib1. The R MASS package is used to determine the best fit and parameters

of the data. R’s MASS package includes a function fitdistr that performs a maximum-likelihood

fitting for univariate distributions. JDistlib is used to randomly generate numbers for the synthetic

data from the maximum-likelihood fittings of the distributions.

The results of the fitdistr function are compared and the distribution with the best fit is

selected. The fitdistr function can also estimate the parameters of a given dataset and distribution.

These values, along with their associated path hashes, are recorded in the numeric values component

of the synthesis set to be used by the synthetic data generator. An example of data in this file is

shown in Table 4.3.

4.1.3 Synthesis

The second major phase of the IoT synthetic data generator framework is the use of the

synthesis set to create synthetic XML data. The data generator has a few design requirements. First,

it must scale to handle millions of structural representations, millions of unique paths, and many

millions of possible categorical values. Secondly, it must support an effective method of anonymizing

categorical values to provide an additional level of privacy for industrial and consumer information.

In our approach, we use a simple string substitution mechanism to map every unique string in

1Java Statistical Distribution Library (JDistlib). http://jdistlib.sourceforge.net
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the structure data and categorical values components of the synthesis set to a randomly generated

string of the same length as the original. A new obfuscated synthesis set is then generated using the

string map which retains the qualities of correlation between tag names, attribute names, attribute

values, and categorical values. The string map can be retained by the owner of the data for mapping

synthetic results back to original strings. Note that the string substitution step is optional and

could be replaced with a more sophisticated technique where one is needed. The synthetic generator

performs identically with an original or anonymized synthesis set.

The workflow diagram of the synthetic IoT data generation process is illustrated in Fig-

ure 4.2. The synthesis set is sufficient to create synthetic documents with characteristics similar to

the original data. In this diagram, we obfuscate the textual fields with random strings of the same

length as the originals, while maintaining the relationships between those strings throughout all

generated files. The obfuscated synthesis set is sufficient to export to researchers without exposing

sensitive data; conclusions drawn from that set can only be mapped to the original data with the

obfuscated map set.

One design challenge is to manage millions of possible categorical values associated with

a single path. In our test data some paths have over 5 million possible text values, each with

an associated frequency of occurrence. In order to randomly select from these sets, we insert the

possible values into unbalanced Huffman trees, implementing the linear time Huffman construction

algorithm described in [83]. This allows for fast random selection, but it requires that the tree be

kept in memory to avoid being rebuilt for each matching path.

4.1.3.1 Single Machine Synthesizer

To prepare the descriptive data for generation of synthetic XML files, we first import it

into a database for fast lookups. A synthesis set consisting of three tables is used to describe the

original dataset: structure data, categorical values, and numeric distributions. Each entry of the

structure data table contains a unique structure hash, frequency of occurrence, and the bare XML

structure that generates the structure hash. Each entry in the categorical values table contains a

hash of a non-unique path, frequency of the hash, and the categorical data in the path. Each entry

in the numeric distributions table contains a hash of a unique path, frequency of the hash, and

distribution parameters of the path’s values.

Our Java-based reference synthesizer preloads the numeric distributions and categorical
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Algorithm 2 Synthesize Document Values

1: procedure synthDocument(doc)
2: synthNode(doc.head, “<′′)
3: end procedure
4: procedure synthNode(node, path)
5: path← path+ node.name
6: for all attr in sort(node.attributes) do
7: path← path+ “ ′′ + attr.name+ “=′′ + attr.value
8: end for
9: path← path+ “>′′

10: if len(node.children) == 0 then . base case
11: hash← md5Hash(path)
12: tree← getValueTree(hash)
13: node.value← getRandomValue(tree)
14: return
15: end if
16: for all child in node.children do
17: path copy ← copy(path)
18: synthNode(child, path copy) . recurse
19: end for
20: end procedure

values along with their frequencies from their respective files and into Huffman trees. Structures

are then read from the structure data file and the XML strings are converted into W3C Document

Object Model (DOM) [101] trees for simple parsing. Algorithm 2 describes the recursive method

used to construct the path string for each node as shown in Table 4.2. A hash of the path string is

used to select the relevant value tree, and then a random value is selected from the tree to fill the

document node. During the intermediate calculation it is possible for the path hash to appear in

both the numeric distributions and categorical values datasets. The data type chosen is based on

the frequency of occurrence for those values. Finally, the synthesized document is output as a file

for later analysis.

There are limits to the scalability of the Java-based approach. Numeric distributions require

very little memory to cache, but the Huffman tree holding the possible values and frequencies for

categorical fields can contain millions of nodes. Consequently, the multi-threaded generator is limited

by the memory available to the process, and does not scale well to a very large dataset. In our initial

tests, generating data using a 24 GB set of categorical values could not complete on a machine with

less than 100 GB of memory. This is partly due to the overhead of Java objects, but it was evident

that the approach did not scale for larger datasets. However, it was relatively fast, generating
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approximately 30,000 synthetic XML documents per minute using 12 cores and document sizes

averaging 450 KB.

4.1.3.2 Distributed Synthesizer

Hadoop MapReduce was used to implement a distributed synthetic generator. One design

goal in this case was to minimize the movement of the large amounts of categorical data across the

network. Since any single structure could require loading many of the large value/frequency trees

in the dataset, a design parameter of our approach was to group data that needed to be computed

together. This translated to a design that performs two joins: one to group the structure hashes

with a list of related path-value combinations, and another to join the path-value combinations to

the structure. This is accomplished with a technique known as a reduce-side join (or repartition

join), which we implemented in a manner similar to the Improved Repartition Join described in [22].

In the first phase of the two-part process, shown in Figure 4.2, the structure data, nu-

meric distributions, and categorical values are ingested by instances of the same map class. For

structures, hashes for each path are computed as shown in Table 4.2, and emitted with the frequency

of occurrence and the structure hash in which they were discovered. Numeric and categorical values

are passed through to the reduce phase. The interphase sort ensures that map outputs are grouped

by their path hashes. Each reduce instance can then construct a single Huffman tree for the categor-

ical values related to each of its assigned path hashes, and randomly select enough values to satisfy

every structure. The generated values are keyed by the requesting structure hash, and emitted with

the related path hash.

The second phase of the process begins with an identity mapper that ingests and emits the

results of the first phase, keyed by structure hash, along with the structure data. The interphase

sort groups all values by the structure hash. Finally, each reduce instance has a set of structures

paired with enough values to fill them, accomplished by recursively generating path hashes to match

to the input values as described above. As security is a primary concern, we developed a method

for obfuscating the textual fields of the data while preserving the relationships between the text

values. A series of map-reduce jobs were used to derive a set of all strings in the structure data

and categorical attributes, as shown in Figure 4.2. These strings were then mapped to randomly

generated strings of the same length, giving us a dictionary of obfuscated string pairs. The encoding

map was then used to generate obfuscated structure and categorical data, as well as a mapping
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Tags Attributes Paths Objects

Unique Count 110 29 8,716,624 3,193,783
Max Frequency 143,935,646 150,997,555 115,328,502 2,014
Min Frequency 11 1,383 1 1

Mean Frequency 1,966,444 75,34,407 2,582.4 1.99
Median 60,640 353,358 7.0 1.0

Table 4.4: Descriptive statistics of individual XML tags, attributes, and paths of test data

between the MD5 hashes of the original and obfuscated paths for each value in the datasets. This

obfuscated set can be used in the same manner as the original synthesis set to generate XML

documents. The resulting obfuscated path and string maps can be retained by the owners of the

original data, so that conclusions about the synthetic documents can be mapped to the real data.

4.1.4 Evaluation

Our primary goal in generating synthetic data is to create an experimental framework that

can be used to evaluate the performance tradeoffs of various data infrastructure tools for very

complex data. Our framework creates synthetic data that have values and a structure that match

the statistical characteristics of the original data. To evaluate our framework we start with an

original dataset that was collected from various sensors on 3,193,783 electronic objects over a period

of several months. The total size of the dataset is more than 3 terabytes. The data entries arrive to

the data warehouse in XML format containing 6,347,462 individual XML documents. The dataset

is pre-processed using a simple string substitution for anonymization of identifiers.

The framework is used successfully to extract descriptive statistics of the original data.

Table 4.4 shows the descriptive statistics of the unique XML tags, attributes, and paths of these

structures. While there are a fixed number of XML tags and XML attributes, there is no pre-

determined XML schema or DTD document. Without a fixed schema, out of 6,347,462 XML struc-

tures, 5,758,590 are unique. The combination of different XML tags and attributes generate a total

of 8,716,624 unique XML paths within the original data. Because XML tags, attributes, and paths

can appear multiple times in a single XML structure, the tag seen most often appears more than

140 million times across the dataset and the most frequently seen attribute occurs more than 150

million times.
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Input Phase 1 Phase 2
Months Documents Shuffle (gzip) Output Shuffle (gzip) Output

1 1.61 million 371 GB (73 GB) 198 GB 487 GB (69 GB) 365 GB
2 3.09 million 715 GB (141 GB) 394 GB 975 GB (143 GB) 733 GB
4 6.35 million 1,470 GB (290 GB) 810 GB 2,004 GB (294 GB) 1,506 GB
8 13.72 million 3,177 GB (627 GB) 1,750 GB 4,331 GB (635 GB) 3,255 GB

Table 4.5: Shuffle and output characteristics of the 2-phase MapReduce synthetic generator.

After extracting the unique XML structures and paths and identifying categorical and nu-

meric values, the statistical distribution of each unique numeric value is also calculated. Just three

distributions provide the best fit for 93% of the numeric paths: Poisson (58.1%), normal (23.5%),

and geometric (11.7%). The geometric distribution used is Pr(Y = k) = (1 − p)kp, which models

the number of failures before the first success. This level of statistical accuracy of the values meets

our primary goals of synthetic data generation. The parameters of these distributions are recorded

for use in the data generation phase of the framework. Development of techniques that provide high

statistical accuracy of synthetic data values to original data is possible within the framework.

The synthetic data generation system needed for our problem comprises three features:

the sensor log data consists of approximately 20 terabytes, the generated data needs to be of any

specified size, and the data, stored in XML files, does not have a fixed schema.

We further evaluate the framework by comparing the performance of applications that use

the IoT data when presented with the original and generated synthetic data of the same size. We

use this as an additional measure of the structural similarity between the datasets. We generate

data of equal size to the original IoT data collected in 1, 2, and 4 months, with sizes of 365, 733, and

1,506 GB, respectively. With each of these datasets we run a program to descend into each XML

document and record the instances of certain XML tags with a specific attribute. We verify that the

frequency of occurrence is as expected in the synthetic data, and use the runtime as a measure of

the document complexity. Each test was run to a 95% confidence interval, as shown in Figure 4.3.

In each of the test cases, the performance using synthetic data is similar to using the original data,

supporting our assertion that the synthetic data is structurally similar to the original.

The final aspect of the evaluation of the framework is measurement of the time to generate

synthetic data of various sizes from the descriptive statistics. In the multi-threaded single CPU

implementation, we were able to generate synthetic IoT data in XML format at a rate of 230
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MB/second on a machine with 12 cores and 128 GB of RAM. However, the speed of this approach

is offset by its lack of scalability, since the memory requirement is approximately four times that

of the size of numeric data and categorical values files. To evaluate the distributed framework we

create isolated testing environments for the generation process using the Clemson high performance

computing cluster. In this environment we dynamically allocate four different Hadoop clusters with

10, 20, 30, and 40 compute nodes. Each node is configured with two 8-core Intel Xeon E5-2655

CPUs, 64 GB RAM, 1 Gb/s network link, and a single 900 GB HDD. The memory requirements of

the reduce phase make it necessary to allocate 4 GB of RAM to each reducer JVM. To fit within

memory requirements, we configure Hadoop to spawn 32 map tasks and 4 reduce tasks on each node.

Synthetic data is generated in 1, 2, 4, and 8 month chunks, with sizes as described in Table 4.5.

In both phases of the data generation, we observe roughly linear scaling of the completion

time as the number of compute nodes and size of the data vary, as shown in Figures 4.4 and 4.5.

We note that the speedup from doubling the number of nodes is approximately 1.5x in Phase 1 and

1.3x in Phase 2. We hypothesize that this is due to the 1Gb/s network link between the nodes,

which throttles the shuffle phase of map-reduce. To support this hypothesis, we conduct limited

experiments with compressed vs. uncompressed shuffle traffic, and found the speedup to be worse

with uncompressed data.

We report the results of the data generation process using a truncated set of 278,793 struc-

tures (47 GB), along with the full 200,000 numeric distributions (15 MB) and 473 million categorical

values (24 GB). In the first stage of the synthetic data generation process, distributions and values

are passed through to the reducer, but the structures are parsed for hashes of paths to be filled,

resulting in 800 million path hashes. The reducer matches the structure path hashes to generated

random values, writing 643 million hash/value combinations (48 GB) to disk in preparation for stage

two. These values, along with the original 278,793 structures, are read into the stage two identity

mapper, which partitions them by structure hash and passes them straight to the reducer. The

reducer inserts the values into their matching structures and writes the filled XML documents to

disk, resulting in 66 GB of records. Table 4.6 shows the run time measurement of the two stages of

the generation process on different Hadoop cluster sizes.

We observed over two times speedup as the number of nodes increased from 10 to 20. Adding

additional nodes to the cluster did not scale the performance further. For Stage 2, the performance

with 30 nodes was lower than the performance with 20 nodes. Further examination of the output
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Stage 10 nodes 20 nodes 30 nodes

(40M/20R) (80M/40R) (120M/60R)
1 1045 457 497
2 576 305 374

Table 4.6: Runtime measurement (in seconds) of the generation process

Size (GB) Stage 1 (s) Stage 2 (s) Total (s)

66 457 305 762
133 594 571 1166
199 832 455 1287

Table 4.7: Runtime measurement in seconds of data generation at different sizes for a 20-node cluster

logs indicates that the performance bottleneck lies with the garbage collection processes of the map

and reduce tasks. With the optimal 20-node configuration, we also varied the sizes of the synthetic

data to 66GB, 133GB, and 199GB. As shown in Table 4.7, the rate of run time increase was less

than the rate of data size increases. This was due to the initial constant load time of the synthesis

set which was amortized as the sizes of the synthetic data to be generated increased.

4.1.5 Summary

In this work, we have described methods of synthesizing large scale IoT data with noisy and

complex structural characteristics in a scalable extraction and synthesis framework. The framework

enables access by researchers to IoT data for the development and testing of tools and algorithms,

and enables research by organizations that need to ensure the privacy of their sensitive data.

The modular design of the framework allows for streamlined extensions of the generator to

support inclusion of different statistical distributions as necessary. In addition, the condensed form

of structural and categorical data offers an option for ensuring privacy of confidential data within

the synthetic dataset. The preliminary efforts with string substitution have been successful. The

use of Apache Hadoop and MapReduce for parallel processing makes the framework highly scalable,

and enables a faster turnaround time in research and development.

Future work on the framework is possible. While the majority of the XML structures are

unique in our test case, we need to support the case where there exists a common subtree in all

71



of the XML structures. In this situation, pruning of the common subtree will help to reduce the

size of the structural table and improve performance. The framework will be further modularized

to allow users to specify their own set of distribution functions, including complex functions such as

inter-dependent and correlated marginal distributions.
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Figure 4.1: Structure/Value Extraction – Cascading series of steps to extract the data patterns from
complex XML documents.
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Figure 4.2: XML Synthesis – The workflow of generating synthetic IoT data. Reduce-side joins are
used to combine structure path hashes with possible values, the results of which are recombined
with the structures to fill empty tags.
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confidence interval.

500	  

5000	  

1	  month	  
(365	  GB)	  

2	  months	  
(733	  GB)	  

4	  months	  
(1506	  GB)	  

8	  months	  
(3255	  GB)	  

Co
m
pl
e'

on
	  T
im

e	  
(s
),	  
lo
g	  
sc
al
e	  

10	  nodes	  

20	  nodes	  

30	  nodes	  

40	  nodes	  

Figure 4.4: Synthetic generation Phase 1.
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4.2 Benchmarking of Cloud-based Messaging Systems

The use of sensors within manufacturing has rapidly increased in the last ten years due to

initiatives such as Industry 4.0 and IIoT (Industrial Internet of Things). These initiatives involve

the collection and use of data throughout all aspects of the manufacturing process. Measurements

from these sources are used in many areas, such as predictive maintenance, optimized logistics, and

flexible production. The growing amount of data presents challenging processing questions: how

much data can be moved to and processed by cloud-based systems under a soft real-time deadline,

where edge versus cloud processing [135], and what costs are involved [100].

In this section we present research on using synthetically generated communication patterns

modeled on real-world IoT devices to benchmark the capacity of Azure IoT Hub 2, a scalable

message passing infrastructure. The generated workloads emulate conditions observed in a large

automotive manufacturing plant, and are comprised of synthetic sensor data modeling data sources

such as temperature and humidity, equipment vibration, acceleration, and power consumption. The

synthetic data captures patterns similar to proprietary data of the plant and permits large-scale

experiments. Our experiments measure latency and how it is affected across a range of parameters.

We simulate scaling up to thousands of devices in a manufacturing plant by leveraging the Clemson

supercomputer to generate the messages sent to IoT Hub. The goal of this research is to provide

advice regarding the number of cloud-connected sensors that can be installed within a manufacturing

plant.

4.2.1 Background

Azure IoT Hub uses HTTPS, AMPQ, or Message Queuing Telemetry Transport (MQTT)

to facilitate communication between a device and the cloud. One common message protocol is

Message Queueing Telemetry Transport (MQTT) [96] and the extended MQTT-SN for use with low

power and low bandwidth devices such as wireless sensors [67]. MQTT is an extremely lightweight

publish-subscribe protocol designed for Internet of Things connectivity. Azure IoT Hub implements

MQTT v3.1.1.

Each IoT device, emulated or physical, has a unique connection string between it and IoT

Hub. The connection string contains the hostname for the IoT Hub, the device ID, and the shared

2Microsoft Azure IoT Hub. https://azure.microsoft.com/en-us/services/iot-hub/
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Edition Max. D2Ca Send Operations Max. Messages per Day

B1/S1 100 per secb 400,000 per unit
B2/S2 120 per sec per unit 6,000,000 per unit
B3/S3 6000 per sec per unit 300,000,000 per unit

aDevice-to-Cloud
bThis is 12 per sec per unit if it results in a higher value.

Table 4.8: Azure IoT Hub editions and throttling limits

access key. These connection strings map the cloud-side systems processing the messages to one and

only one actively connected device, enabling securely sending messages.

4.2.1.1 IoT Hub Service Levels

IoT Hub is split into three editions, which are further separated into Basic and Standard

tiers, with extra features such as Device Twins, Cloud to Device messages, and Azure IoT Edge.

Operation throttling limits are identical for the two tiers, so we used the Basic tier as the Standard

tier features are beyond the scope of this project.

Since IoT Hub is a shared resource, the service runs on the same hardware as other IoT

Hubs3. Different editions of IoT Hub come with different quotas, which are throttling limits for

daily message allowance, maximum aggregate messages per second, and maximum new connections

per second. IoT Hub lists quotas in terms of per IoT Hub unit4. These limits are summarized in

Table 4.8. We chose the B3 edition as we needed to send thousands of messages every second. Quota

limits scale linearly with the number of units.

For example, a single unit of Edition 3 IoT Hub allows for 300M messages a day and up

to 6000 messages per second. Adding another unit will double the number of messages per day to

600M and the number of messages per second to 12000. Because of this pricing and quota model5,

we choose to evaluate the Azure IoT Hub in this project.

3IoT Hub Throttling and You. https://azure.microsoft.com/en-us/blog/iot-hub-throttling-and-you/
4IoT Hub quotas and throttling. https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-quotas-

throttling
5Azure IoT Hub Pricing. https://azure.microsoft.com/en-us/pricing/details/iot-hub/
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4.2.1.2 Event Hub and Partitions

Azure IoT Hub is built on Event Hub, an event processing service designed for horizontal

scalability. It employs a partitioned consumer model to ingest data6. IoT Hub has additional

features that are specifically designed with IoT in mind, such as providing unique identities to each

device, servicing millions of simultaneous connections, and sending cloud-to-device messages7 [80].

When creating a new IoT Hub using the online Azure portal, one can request between 4

and 32 partitions, with a default of 4. However, it is possible to request up to 128 partitions if one

creates their IoT Hub using the Azure Command Line Interface. The number of partitions is fixed

upon creation, so it is recommended to plan for the long term when provisioning IoT Hub.

Customers can determine how many partitions they need by deciding how many concurrent

readers of the event stream their downstream applications require. It is recommended to have one

reader per partition, though a maximum of five per partition is allowed. New messages are tagged

to the end of a partition and stored for a specific retention time. Events cannot be explicitly deleted

but must expire. Data is added to partitions in the underlying Event Hub in 32 MB segments.

A segment is not deleted until it is full and the retention period for the newest message stored in

that segment has expired. This means that messages can be read after their retention period. Old

messages are retained until their segment is full and all messages in their segment have exceeded

their retention period. As such, partitions grow at their own rates [142].

Each unique device has a unique device ID and is deterministically hashed and assigned to

a partition. Messages sent from a single device ID go to the same assigned partition and retain their

order. Best service is provided by having approximately 100 times as many devices as partitions [142].

4.2.1.3 Edge processing

Manufacturing environments can have millions of sensors and devices transmitting data.

Azure provides a service, IoT Edge, that can control edge devices for processing data. It can act as

either a transparent or opaque gateway. In the case of a transparent gateway, devices retain their

identity through the pipeline and can therefore be routed to different partitions. However, in the

case of an opaque gateway, all data coming through IoT Edge will act as though it is coming from

6Features and terminology in Azure Event Hubs. https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-
features

7Connecting IoT devices to Azure: IoT Hub and Event Hub. https://docs.microsoft.com/en-us/azure/iot-hub/iot-
hub-compare-event-hubs
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a single device. This means all data passing through an opaque gateway will be routed to the same

partition within IoT Hub [142]. Therefore, the results of our study can be applied to environments

with comparable numbers of sensors as well as environments with a much large number of devices

that route their messages through a comparable number of opaque gateways.

4.2.2 Related Work

Subramanian et al. studied generating synthetic seismic monitoring station readings using

task parallelization in Azure, and conclude that cloud computing is an “ideal platform for the

rapid generation delivery for synthetic seismograms” [137]. However, their pipeline focuses on data

creation in the cloud, not on the transportation of data to the cloud, as is the case with IoT data.

Wireless sensor network simulators such as OMNeT++ [150], J-Sim [132], and ns-3 [122]

offer the means to simulate content generation and data sinks to study sensor traffic interactions at

scale. However, simulators are not well suited for studying the effects on third party cloud-based

sinks due to layers of unknown network complexity.

Various performance studies have found significant differences in the application-layer pro-

tocols commonly used to move data from wireless sensors to message broker services. Thangavel et

al. [140] found that Constrained Application Protocol (CoAP) had lower bandwidth overhead than

MQTT in scenarios with low packet loss, at a cost of higher latency. Luzuriaga et al. [86] com-

pared MQTT and AMQP in the context of an unstable network environment, finding the protocols

to exhibit similar recovery time and message arrival time jitter with intermittent drops in wireless

connectivity. However, this study only used a uniform distribution of message dispatch times, which

we expand upon in this paper.

Other studies such as Nguyen et al. [100] have found tradeoffs between cloud-based message

broker services that make choosing a provider highly use case dependent.

4.2.3 Software and Connectivity Architecture

In our study we emulate data produced by a manufacturing environment. Here, we explain

1) Palmetto, 2) software architecture, 3) the synthetic data generator, 4) the experimental loop, and

the 5) connection process.
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Parameter Range

Statistical Distribution Constant OR Pareto
Inter-message Gap Time 10 ms - 1000 ms

Message Size 512 B - 32,768 B
Experimental Run Time 5 min - 90 min

Network Protocol MQTT

Table 4.9: Synthetic message timing and content parameters

4.2.3.1 Palmetto Cluster

We utilized ten nodes of Palmetto, the Clemson supercomputer, to execute the clients in our

experiments. Thousands of sensors can be emulated by executing our clients across multiple cores

and nodes. We utilize the Clemson network to emulate the network of a real manufacturing plant.

Clemson maintains a complex enterprise computing network to support a wide variety of applications.

Complex multi-level network policies and protocols are implemented to satisfy different SLAs [34].

Palmetto has direct access to the Internet, and being a high performance computing cluster

with low latency interconnects to local storage, there is typically very little network contention for

outbound Internet traffic. To verify a sufficiently high bandwidth network path for our experiments,

we traced packets sent from Palmetto to an IoT Hub provisioned in the Azure East US 2 region, which

is geographically located about 500km away in Virginia. Individual compute nodes are connected

by 10Gb links and share a 100Gb path to the Internet gateway, which is narrowed to 10Gb for

commodity traffic before entering Microsoft’s internal network infrastructure.

4.2.3.2 Software Architecture

The flow of the data is shown in Figure 4.6. We built a synthetic data generator in C++ with

a small memory footprint. The generator represents a single physical sensor in a manufacturing plant

that reads data periodically and sends it to IoT Hub. Simulating 10 sensors requires 10 instances of

the generator running simultaneously. The data generator utilizes many parameters to specify the

behavior of the sensor so as to cover a wide scope of sensors in a real manufacturing environment.

Each instance of the data generator accepts a time parameter to specify how long to send

messages. Each instance writes its own individual log file, logging for each message an ID, send

time, callback receive time, and callback status. The user can choose any of the protocols available
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from the SDK. For this work we use the default MQTT, as seen in Figure 4.7.

4.2.3.3 Data Generator Configuration

Parameters that differentiate data generator behavior are shown in Table 4.9. They include

the message generation frequency, distribution and parameters (constant or Pareto), the message

protocol, payload size, and approximate experiment duration.

4.2.3.4 Experiment Loop

With given parameters, our client generates data modeled after the specified template and

sends it immediately to IoT Hub. The send time and message ID are stored. The SDK automatically

creates threads for every message callback, which asynchronously listens for a response. The amount

of individual data points to generate is based on the the time specified. Between each data point

the main thread sleeps. Responses from Azure are received by the async thread at any time. The

response from Azure reports how IoT Hub processed that message. That status and the time our

client receives the response are both logged.

With these logged values, we calculate the round trip latency with sub-millisecond precision,

and whether the message was successfully processed. The status of a message can be OK (Azure

successfully processed the message), destroyed (Azure could not or would not process the message

and rejected it), or other. We use Python’s data libraries to calculate and measure latencies in

aggregate. We measure round trip latency as we do not include the time costs of any other Azure

services that could be used to process the data from IoT Hub. Some of the latency we observe is

due to the C-SDK creating a separate thread to asynchronously receive the confirmation message.

This is reflective of the actual end-to-end latency in a production application.

4.2.3.5 Connection Process

As noted earlier, everything that connects to IoT Hub is represented as a device. Each

instance of the data generator has a unique connection string so that it acts as an individual device.

Thus every instance of the data generator is a device from Azure’s perspective ans as such we refer

to our data generator as a device for the remainder of this paper.

The initial connection process between device and Azure requires some setup and has higher

than normal latency, so we drop these initial messages (approximately the first 5%). After that
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point the individual device has reached steady state and latencies are indicative of a production

environment.

Experiments use the default of four partitions except when comparing the latency perfor-

mance of different numbers of partitions. We choose the shortest retention time available for events,

which is one day.

4.2.4 Experimental Study

We designed experiments to isolate and measure the effects on IoT Hub processing per-

formance when varying the count of client devices, different message sizes, intermessage gap times

(IMT), and IoT Hub partition count. We used representative synthetic data and performed a valida-

tion of the characteristics of the synthetic data generator prior to the experiments. In all statistical

calculations we disregard approximately the first 5% of messages from each device, which are sent

prior to the device reaching a steady state.

4.2.4.1 Validating Synthetic Data Characteristics

We evaluated the output of the generator to ensure it matched expected characteristics.

Inputs into the data generator were the sending frequency, distribution parameters, and the type of

sensor to emulate, which dictated the payload of each message. In our experiments we used either

a constant distribution with a fixed IMT or a Pareto distribution with shape and scale parameters.

Message payloads were JSON strings similar to those sent by real sensors, but for the purposes of

this paper, we are concerned with the total message size in bytes.

To perform validation, the generator was configured to emit a series of 1000 messages with

target median IMTs of 50, 100, 500, and 1000ms. We used the network packet sniffing tool tcpdump8

to accurately record the host timestamp of packets sent by our data generator. We executed this part

of the validation on an AWS EC2 instance since we lacked sufficient root privileges on Palmetto. For

constant IMT, we calculated the median and standard deviation of the resulting message distribution.

Table 4.10 compares the actual IMT to the target. We observed that standard deviation was less

0.5 ms in all but the 50 ms class, which had a standard deviation of 1.8 ms. The median for all

cases stayed within 0.5 ms of the target.

8TCPdump. http://www.tcpdump.org
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Target Gap Median Std. Dev. Mean Max. Min.

1000 ms 1000 0.45 1000 1005 998
500 ms 500 0.41 500 502 499
100 ms 100 0.48 100 102 99
50 ms 50 1.80 50 70 19

Table 4.10: Constant rate inter-message gap statistics

For the long-tailed Pareto distribution we utilized three different shape parameters and

computed scale parameters to produce median IMT of 50, 100, 500, and 1000 ms. We applied the

Kolmogorov-Smirnov (KS) test [152] to evaluate the goodness of fit of the resulting distributions. The

KS test results showed that in all cases the generated IMTs were a good fit for Pareto distributions

with the input distribution parameters. The test statistics were all <= 0.3 and the p-values all fell

between 0.43 and 0.78.

4.2.4.2 Effects of Different Message Sizes

We examined whether increasing the message size correlates with increased IoT Hub round-

trip latency. To observe the effect of message size on latency, we conducted experiments using

512B, 2048B, 8,192B, and 32,768B messages sizes across the three editions of IoT Hub Basic tier.

Each edition uses the default 4 partitions. We repeated 30 trials for each of the 12 permutations of

message size and edition, with each trial being run sequentially to avoid interference. All other data

generation parameters were held constant: 10 sensors, constant IMT of 200ms, and running time of

120 seconds.

During an initial run, we exceeded the message throttling limit for the Edition 1 IoT Hub.

This caused the subsequent trials of larger message size for Edition 1 to yield latencies with very

large outliers. We re-ran this experiment at a later date to confirm that Edition 1 followed the same

latency pattern for large message sizes as Editions 2 and 3, which was the case. We only include

the results from our first set of experiments and focus on Edition 3, as we are primarily interested

in best case performance.

Figure 4.8 illustrates the very high latencies of the outliers when the message throttling

limit is exceeded. The box and whisker plot is shown for each permutation of message size and

Edition compared to latency. Figure 4.9 shows the same data but focused on the median. Both the

84



outliers and the median do not differ much within each edition as a result of size, nor do they differ

much from edition to edition. The outliers are all between a latency of 42 ms and 500 ms, while the

median hovers around 35 ms across permutations.

Runs using 512B message sizes have a higher interquartile range. We suspected that the

Azure IoT SDK optimizes the sending of 512B messages, perhaps batching messages together, which

would explain the relatively higher standard deviation. However, using tcpdump on AWS as in

subsection 1, we verified that messages were being sent in individual packets so that hypothesis is

not supported.

In Figure 4.10, we plot the Cumulative Distribution Function (CDF) of Edition 3 messages.

2048 B and 8192B messages follow nearly the same trace, crossing the 50% probability mark at 32ms.

32,768B messages show a higher latency until the curve plateaus and joins the other messages.

The 512B messages follow the other message sizes at first when P(L) <50%. However,

between 38 ms to 41 ms latency, the distribution dips as a result of the high standard deviation. As

latency increases, though, the 512B curve joins the message sizes in plateauing so that all message

size cross the 95% probability mark at virtually the same spot.

4.2.4.3 Effects of Varying the Intermessage Gap Time

In a manufacturing environment, devices may send data at various frequencies, ranging

from thousands of times a second to one time a minute or less. Sending data to the cloud at a

high frequency can quickly exceed throttling limits and can overwhelm the message consumers. We

designed an experiment in which data was sent to the cloud at different frequencies while keeping

the generation time constant.

We provisioned a B3 Edition IoT Hub with 4 partitions, and generated messages for ap-

proximately 300 seconds in each trial, sending data at one of three constant IMTs: 1000, 100, or 10

ms. We ran six sequential trials for each IMT, holding the message size constant at 2048B.

We repeated this experiment using the Pareto distribution for IMT instead of the constant

distribution. We chose shape and corresponding scale parameters that would produce median IMTs

of 1000, 100, and 10 ms. Table 4.11 displays the values used to reach the desired median IMTs.

Finally, we split the experiment into two groups. Group 1 had one sensor sending messages

at the specified IMT, while Group 2 had 10 sensors. We performed the Pareto variation of the

experiment with one sensor. All trials stayed within the throttling limits of 1 unit of B3 edition. In
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Shape Scale Target IMT

1.0 500.0 1000
1.0 50.0 100
1.0 5.0 10
2.0 707.0 1000
2.0 71.0 100
2.0 7.0 10
3.0 794.0 1000
3.0 79.0 100
3.0 8.0 10

Table 4.11: Parameters for message generation with Pareto distribution

Distribution IMT Mean Std. dev.

Constant 1000 32.7 8.7
Constant 100 31.3 7.5
Constant 10 48.0 26.6

Pareto α=1 1000 32.3 15.9
Pareto α=1 100 33.1 25.2
Pareto α=1 10 44.4 28.0
Pareto α=2 1000 31.1 11.0
Pareto α=2 100 33.3 15.5
Pareto α=2 10 53.9 69.2
Pareto α=3 1000 31.9 11.0
Pareto α=3 100 31.5 9.3
Pareto α=3 10 52.5 35.3

Table 4.12: Measurements of IoT Hub latency

total, we ran 54 trials, the first group having 36 trials including the Pareto trials and the second

group having 18 trials.

For both constant and Pareto trials, the mean latency was between 31.1 ms and 53.9 ms.

When high frequency runs (those with a median IMT of 10 ms) are removed the mean latency falls

to range of 31.1 to 33.1 ms. The standard deviations of Pareto runs are higher than their constant

counterparts.

The Pareto trials tested a variety of shape and scale parameters as shown in Table 4.12, but

for space reasons we have only included a graph showing the results from the Pareto distributions

with a shape of 3.

For both constant and Pareto distributions the target median IMT of 1000 ms had very few
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spikes in latency, while the target median IMT of 100 ms saw slightly more spikes. However, with

a target median IMT of 10 ms, spikes were very frequent and considerably worse in latency as seen

in Figure 4.11 for constant and Figure 4.12 for Pareto. In all figures relative send time refers to

the amount of seconds elapsed since the first kept message (after the 5% drop). For the constant

distribution these spikes have a regular pattern but this was not the case for the Pareto distribution.

Due to the way partitions work, all of the messages from a single device go to a single

partition in the underlying Event Hub. Subsequently, IoT Hub ensures that all messages from a

single device are persisted in the order they were received. As part of this ensuring of delivery order,

there are limits imposed that are being hit at the very fastest send rate (IMT 10ms). The processing

pipeline will temporarily pause reading of new messages until it has flushed some of the existing

messages to the underlying Event Hub. Thus the short latency spike.

Per Microsoft, the IoT Hub team already has an update planned in the message processing

pipeline for an upcoming release of IoT Hub that they believe will mitigate these small spikes.

4.2.4.4 Effects of Varying the Partition Count

IoT Hub customers specify between 4 and 32 partitions when provisioning an IoT Hub,

where the default value is 4. Once a partition number is set, it cannot be changed. However, the

partition count does not affect the price. Increasing the number of partitions increases the number

of concurrent readers for incoming messages. Thus, we tested whether latency decreased as the

number of partitions increased.

We created four B3 edition IoT Hubs with partition counts of 4, 8, 16, and 32. We sent

messages at a constant IMT of 100 ms and 10 ms for each partition. Each IMT was repeated in

five non-overlapping trials, each using ten client devices, 2048B messages, and a 300s duration. This

resulted in running 40 trials total.

Figure 4.13 illustrates the best case trial based on the lowest latencies, showing the latency

over time for 10 devices sending 100 messages a second, for a total of 1000 messages per second.

This is well below the 6000 messages per second throttling limit for Edition 3 of IoT Hub. However,

the latency was extremely high for 4, 8 and 16 partitions. The reason for this result is that IoT

Hub device IDs are deterministically hashed, with each device assigned to a partition. There is no

load balancing between partitions within IoT Hub, and a device always sends to the same partition.

This means that for a small number of devices sending to small number of partitions, there is a high
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likelihood that partitions will experience an unbalanced load. For instance, the worst case would be

that all 10 of our devices would end up sending messages to a single partition. The IoT Hubs with

fewer partitions have a higher probability of higher average latencies and that rise drastically over

time.

Sixteen partitions had a more gradual climb in latency than either 4 or 8 partitions for the

trial displayed in Figure 4.13, but this was not the case for every trial. In certain trials that used

different devices with unique device IDs, the 16 partition IoT Hub performed similarly or even worse

than the 4 and 8 partition IoT Hubs. This is consistent with the unbalanced loads possible due to

the deterministic device ID hashing.

A count of 32 partitions handled this load well. The CDF of the 32 partition latency is

shown in Figure 4.14. 65% of the messages have a latency under 50 ms, while 83% have a latency

under 100 ms. Finally, 97% of the messages have a latency under 200 ms. We note that there still

exists the possibility of unbalanced device assignments between partitions, even with 32 partitions.

However, the best performing workload for Azure IoT Hub, and the one for which the design is

optimized, is one with a large numbers of partitions and with messages that come from a large

number of devices with a modest message frequency.

We ran another set of partition experiments to test the latency characteristics across 4, 8,

16, and 32 partitions with 1000 devices. Each device sent messages with IMT of 333 ms, or about

three messages per second. Figure 4.15 shows that the performance of 4 partitions is poorer than

higher partition counts, but that this workload is manageable for IoT Hubs across all numbers of

partitions. While latency spikes are still present they are far less extreme and there is no evidence

of climbing latency over time.

Figure 4.16 shows the CDFs of our partition experiments with 1000 devices across all trials.

The CDFs for 8 partitions, 16 partitions, and 32 partitions all follow similar curves. These IoT

Hubs had an 80% probability of latency under 50 ms, a 91% probability of latency under 100 ms,

and a 99% probability of latency under 200 ms. The CDF for 4 partitions follows a slightly different

curve with a 74% probability of latency under 50 ms, a 94% probability of latency under 100 ms,

and a 99% probability of latency under 200 ms. These results are consistent with IoT Hub being

best equipped to handle a large number of devices sending at a modest rate.
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4.2.4.5 Scaling Experiments

In this section we describe scale-up experiments with a large number of client devices sending

to Azure IoT Hub. Palmetto is comprised of multiple computing nodes. To simulate large-scale

manufacturing workloads we tested a large number of client devices executing on Palmetto nodes and

sending to Azure IoT Hub within throttling limits. Each computing node used for this experiment

has 40 CPU cores.

Our first use case trial consisted of 1000 devices placed on 1, 2, or 4 computing nodes,

each sending to a single unit of edition B3 IoT Hub. The messages all had constant IMT of 200

ms, meaning we sent 5000 messages per second. This is close to the the throttling limit (6000

msg/sec), however, we never exceeded it. All of our trial runs lasted for 90 minutes and sent a total

of 27,000,000 messages.

Figure 4.17 displays the CDF of Latency across all experimental trials with devices being

simulated on different numbers of nodes. Each CDF follows the same curve with a 66% probability

of latency under 50 ms, a 85% probability of latency under 100 ms, a 95% probability of latency

under 200 ms, and a 99% probability of latency under 300 ms.

We scaled up this experiment by increasing the number of receiving IoT Hub units. We

ran 2000 devices sending to 2 units of IoT Hub and 4000 devices sending to 4 units of IoT Hub.

We simulated these devices on 1, 2, or 4 Palmetto computing nodes. During these larger trials we

sent 10,000 messages per second and 20,000 messages per second respectively. We stayed below the

throttling limits given for the multiple IoT Hub units. Trials continued to be run for 90 minutes.

Message latency did not show any substantive change as the count of devices was scaled up. The

CDFs from each experiment all follow the same curve. Azure IoT Hub behaved well under these

large, stable workloads, even with message send rates above 80% of its throttling limit.

4.2.5 Summary

Using generated messages that synthesize environmental measurements and emulate pat-

terns similar to real-world industrial IoT devices, we measured the latency and capacity of Azure

IoT Hub. We simulate scaling up to thousands of devices in a manufacturing plant by leveraging

the Clemson supercomputer to generate the synthetic messages.

Our work shows that when the target system does not match the workload requirements the
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performance is poor. For a well engineered system that fits within the specifications of Azure IoT

Hub the results are predictable and well behaved. A system that stresses the specifications of Azure

IoT Hub will have worse results as demonstrated by our Partition Experiment. Azure IoT Hub has

been designed to scale horizontally and achieves the best results when there is a large number of

devices sending data at a rate within the stated throttling limit for the specific IoT Hub Edition

being used.
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Figure 4.6: Synthetic device flow diagram.
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Figure 4.7: System architecture diagram.
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Figure 4.8: Latency outliers of 10 devices, constant IMT of 200 ms.

Figure 4.9: Latency IQR of 10 devices, constant IMT of 200 ms, enlarged.
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Figure 4.10: Latency CDF of 10 devices, Edition 3, constant IMT of 200 ms.

Figure 4.11: Latency of 1 device, 4 partitions, constant IMT distributions.
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Figure 4.12: Latency of 1 device, 4 partitions, Pareto distributions with α=3.

Figure 4.13: Latency mean of 10 devices, constant IMT of 10 ms.
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Figure 4.14: Latency CDF of 10 devices, 32 partitions, constant IMT of 10 ms.

Figure 4.15: Latency IQR of 1000 devices, constant IMT of 333 ms, varying partitions.
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Figure 4.16: Latency CDF of 1000 Devices, constant IMT of 333ms, varying partitions.

Figure 4.17: Latency CDF of 2000 Devices, constant IMT of 200 ms, sending to two Edition 3 IoT
Hubs with 4 partitions each.
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4.3 Conclusions

In this chapter, we have presented research on both the generation and application of syn-

thetic semi-structured data to facilitate the validation of IoT infrastructure.

In Section 4.1 we have described methods of synthesizing large scale IoT data with noisy and

complex structural characteristics in a scalable extraction and synthesis framework. The framework

enables access by researchers to IoT data for the development and testing of tools and algorithms,

and enables research by organizations that need to ensure the privacy of their sensitive data.

Section 4.2 motivates one use case for synthetic IoT data, where used synthetically generated

communication patterns modeled on real-world IoT devices to benchmark the capacity of Azure IoT

Hub. Our approach demonstrates one aspect of how scalable synthetic data generation can be a

useful tool in the development of IoT pipelines.s
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Chapter 5

Synthetic Data in Deep Learning

In the field of image classification and segmentation with deep learning systems, access to sets

of labelled training images with sufficient quantity and quality can be a formidable barrier to training

an accurate model. Collecting, segmenting, and labelling high quality images can be prohibitively

expensive both in time and monetary cost. In some cases, the barrier can be lowered by pretraining

a model with a generic dataset such as ImageNet [44] and then fine-tuned on a smaller set of images

more directly related to the project goals. However, depending on the specificity requirements for

the final model, a generalized dataset may not be useful.

A common alternative to vast quantities of readily available general images and costly task-

specific images is synthetic image generation, where a 3D computer model of a scene relevant to

the deep learning model is rendered to an image, segmented and/or classified, and then used to

augment the training data available to the model. Synthetic image data has been used successfully

in a growing body of research, in many cases reducing the overall cost of training a model.

Advantages to using synthetic images are not limited to overcoming the time and safety

constraints of capturing and annotating real images. 3D modeling systems are very flexible – scenes

and assets can be changed and re-rendered with a cost likely far less than the real world equivalent.

For example, in the use cases presented in this work, the cost of changing the vehicle CAD model

to a brand new vehicle or a new model year and then generating a new training set is far less than

that of acquiring new real world examples, especially when the goal is to have a working detection

system before the model enters production. The costs of developing a synthetic image generation

pipeline specific to a model’s goals can be further recuperated in cases where similar images can be
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used to train other models, potentially requiring only minor alterations to the generator.

While the body of work around using synthetic images in deep learning models has become

broadened in recent years, we have found little exploration of using synthetic images to pretrain a

multistage segmentation model such as the recently proposed Double-U-net which has been shown to

be highly accurate in some applications. Our motivations in this work are to explore the performance

effects of training such a model in various combinations of synthetic and real images.

In this section, we present our research on synthetic image training in the context of a

real world anomaly detection system, including the results of testing on a large set of annotated

proprietary production images. We believe the methodology presented here can be readily applied

to other systems, and make the case that synthetic images can replace the real images and still

achieve a potentially useful level of performance.

5.1 Background

Synthetic data can be used to train deep learning models in a number of ways.

First, in one extreme the model may be trained with only synthetic images, which can be

useful in models where acquiring examples of desired detection conditions can be time consuming

or unsafe. For example, sufficient examples of rare flaws in products on an assembly line could

be time consuming to capture for a quality control model, and examples of unsafe conditions may

be challenging to acquire for a video surveillance system. There has been some success with using

purely synthetic data to train models [121, 136, 62], and may be a good option depending on the

use case. Real images, if they exist, can be used as all or part of the test set to prove the model’s

accuracy.

Next, synthetic images may be mixed with real images in some combination, augmenting

the size and/or variation of the training set presented to the model. In published research, this

method has been used to successfully decrease model training cost or improve model accuracy, and

in some cases both [106, 47, 138].

Finally, synthetic images can also be used to pretrain a model in a two-stage process, either

by fitting a model to the synthetic set and then increasing the model bias toward real world examples

by iterating over the real image set, or in a multi-model system such as Double-U-net [75], which is

the primary focus of this paper. This method is similar to using generalized image sets to pretrain a
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system (such as robotic vision) on patterns common to the real world, and then secondary training

to adapt the model to a specific environment. [sort out citations for examples here]

5.2 Related Work

Jhang et al. [76] demonstrated training a Faster R-CNN [119] object detection model using

synthetic images annotated with Unity Perception and generated at scale with Unity Simulation.

They found that while a model trained purely on a large (400,000) set of synthetic images performed

poorly at detecting objects in situations with occlusions and low lighting, augmenting the synthetic

images with a small number of real images significantly improved the detection accuracy over a

model trained purely on a small (760) set of real images. Their work was inspired by and comple-

ments findings from Hinterstoisser et al. [62], who described a method for domain randomization by

composing a backdrop of random objects in front of which the objects of interest are rendered and

labeled. Our process is distinguished by using a randomly oriented “skybox” surrounding the subject

of interest, which achieves domain randomization with lowered scene complexity and randomized

reflections.

Another method of domain adaptation to insert simulated objects of interest into real im-

ages, such as in [161].

Rendered images of 3D scenes have been used to train object detection models for a long

time, as exemplified by [99] and [85]. More recently, advances in 3D rendering techniques have made

photorealistic image generation practical. [63] [166] [84]

Other researchers have applied full domain randomization [141] to synthetic image genera-

tion with varying degrees of success. [62, 145, 26]. Our approach is a hybrid between full domain

randomization and photorealistic rendering, varying the lighting and subject/background orienta-

tion and random sampling from a set of realistic textures. The approaches described in [94], [111]

and [144] are most similar to our own in this regard.

Successful specialization of U-net models has been achieved [68, 52] using VGG encoders [130]

pretrained on the ImageNet [44] dataset.

Recent research has shown that models developed using synthetic data can be used as a

basis for more specific models. This transfer learning can be used in many tasks, such as enhancing

detection of object position in [69, 161] and separating target objects from visual distractors in [164].
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5.3 Synthetic Image Generation

In this section we describe the tools and workflow developed for creating synthetic images,

followed by our experiment designs for validating the output images and using the generated data to

train a deep learning model. Software used includes Unity 2020.1, Unity High Definition Rendering

Pipeline (HDRP) 7.4.1, and PiXYZ Plugin 2019.2.1.14.

5.3.0.1 3D Modeling

The image generator was built as a set of scene descriptions, models, and scripts in the

Unity 3D game development platform.

For our use case, a vehicle model was translated from its native CATIAv5 CAD format into

a Unity asset with the PiXYZ plugin. Importing the CAD object was relatively labor intensive due

to a technical difficulty in mapping part materials to Unity textures, which is an area of current

work. The work-around for our purposes was to manually assign textures to the approximately

10,000 visible surfaces in the imported Unity asset.

5.3.0.2 Realistic Rendering

In general, synthetic images for model training need to exemplify the characteristics of real

images that the model relies on for accurate classification. While these qualities could be vastly

different depending on the model, for our use case we needed images that embody the broad range

of shadows and reflections seen in the production environment. Rather than attempting to identify

and optimize for the most important image features, our approach was to create images as accurately

as possible with a goal of being indistinguishable from real images by a human observer.

Images were rendered using the Unity High Definition Rendering Pipeline. We relied on a

number of Unity features designed for high rendering accuracy, and avoided many approximation

features designed to improve rendering performance in a game setting requiring high framerate with

limited hardware resources. The Unity “camera” object was configured to mimic the properties of

the physical camera used to capture real images. A full disclosure and justification of the rendering

settings we used would be lengthy and beyond the scope of this paper, and will be made available

on publication.

We found that several external resources were very helpful in creating realistic image render-
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ing, especially in our use case with automotive models. In particular, Unity’s automotive industry-

focused Measured Materials library [88] helped us simulate the paint, glass, rubber, and plastic

textures of a real vehicle. Skyboxes were sampled from the Unity HDRI pack, captured using

techniques described by Lagarde et al. [82].

5.3.0.3 Domain Randomization

We chose a hybrid approach to domain randomization, rendering the image subject as ac-

curately as possible with ambient lighting similar to the production environment. Randomized

attributes included subject position relative to the camera within plausible constraints, vehicle ex-

terior paint colors from a set of possible values, and a single light source (the sun) with varying

position.

To separate the subject from the background, we used a background skybox with a very

“busy” texture, and then randomized its orientation on all 3 axis for every scene. This served a

secondary purpose in creating randomized reflection patterns on all surfaces of the vehicle.

Randomization of objects in the scene was accomplished with a set of scripts written in

C-sharp, used natively in Unity for game logic.

5.3.0.4 Segment Labeling

We labeled image segments by capturing multiple images from each randomized scene –

one fully rendered image, and then one false color image for each segment. This could have been

achieved in many ways, but the approach we found to be most performant in Unity was to maintain

a second “mask” copy of the subject model completely colored with an “unlit” black texture, locked

to the same position as the color model. Two identical cameras in the same position were used,

one able to see the color model, background, and lighting and the other camera only able to see the

mask model.

After the normal image was captured with the color camera, the segment capture phase

would iterate through groups of components comprising each segment, recolor the group with an

unlit white texture, capture an image with the mask camera, and then recolor the group to the unlit

black texture. Figure 5.1 shows the resulting image segments. This approach had the performance

advantage of minimizing the retexturing of materials on the model. This also allowed us to capture

occlusions by components not part of the segment of interest, such as the door handles in the example
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Figure 5.1: A 3D generated image (top left) in addition to a series of one-hot encoded masks
segmenting each object class.

images.

5.4 Model Training

To validate the effectiveness of the synthetic image generator, we conducted experiments

comparing models trained with varying amounts of real labelled images augmented with synthetic

data. Our available data consisted of 14,125 labelled images of real vehicles in a production line,

each of which contained one or more examples of eight distinct feature classes. From this dataset,

a 10% holdout set was randomly selected for validating models, leaving 12,712 images in the real

dataset R for training. The frequency of each feature’s appearance is described in Table 5.1, where

the subset of the real image set R with one or more pixels belonging to a feature class f is given as

Rf = {e|e ∈ R and f ∈ e}, and an example frequency of |Rf |/|R|.

Using the synthetic image generator described in Section 5.3, we rendered a set of 40,406

synthetic images and labels S with the same feature classes as R. Due to a slightly smaller horizontal
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real images R synthetic images S
feature examples frequency examples frequency

back door 5,994 47.09% 40,231 99.57%
back window 5,854 45.99% 40,263 99.65%
rear window 4,844 38.05% 24,080 59.60%
front door 6,599 51.84% 22,308 55.21%

front window 5,985 47.02% 26,171 64.77%
door handle 4,670 36.69% 40,084 99.20%

mirror 3,897 30.62% 6,932 17.16%
tail light 4,511 35.44% 8,501 21.04%

Table 5.1: Feature example frequency in image sets

range of camera freedom, some classes were represented more or less heavily in the synthetic set, as

detailed in Table 5.1. However, as we weight each class equally in our metrics and present aggregate

statistics over the entire dataset, we deemed that the example frequency weights would not affect

the conclusions.

5.4.1 Training Methodology

Images and labels were used to train U-net [123] convolutional neural network models im-

plemented in TensorFlow [1] 2.0.0 and Keras [38] 2.2.4-tf. Models were trained using an NVIDIA

DGX-2 with Tesla V100 GPUs running Ubuntu 18.04.4 LTS.

In this section, all U-net model structure and parameters are identical with the exception

of input datasets. The U-net implementation was derived from code provided by Debesh et al. in

their Double-U-net supplement, to be consistent with the further work in Section 5.5. From the

original U-net description, the only significant difference is the use of batch normalization [70] after

the convolutional layers along the contracting path, which resulted in more consistent training and

better generalization in our use case.

A hyperparameter search using real and synthetic datasets revealed optimal parameters that

were similar enough to avoid differentiation between the domains. As the purpose of this work is

to explore the tradeoffs of synthetic vs real data, we chose parameters that resulted in consistent

and stable training sessions rather than strictly optimizing for the highest possible accuracy. For

our datasets, a dropout probability of 0.30, a batch size of 64, and a learning rate of 0.0020 resulted

in models that converged quickly and consistently within a reasonable limit on training time and
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generalized well to the validation data.

As synthetic data can be seen as a form of data augmentation, we chose to forego any

traditional augmentation techniques (randomized cropping, gamma shifts, etc.) to present clear

results, with the single exception of randomly flipping all training images horizontally to match the

real dataset’s imaging of both sides of the vehicle. During training, models were evaluated each epoch

against the disjoint validation set. To prevent overfitting, we used an early stopping mechanism to

halt training and revert to the best weights if no improvement in validation set prediction loss was

made over 30 epochs.

5.4.1.1 Metrics

While the image generation and training techniques share applicability with object detection

and instance segmentation models with more actionable metrics, we quantify the performance of a

standard multiclass U-net segmentation model simply with per-pixel mean intersection-over-union

(mean IoU) with uniform class weighting and a prediction threshold of 50%.

5.4.2 Real Dataset Supplementation

To determine how supplementing a dataset of real images with synthetic images would affect

model training and accuracy, we trained instances of multiple model classes with different mixtures

of images from both sets. Subsets of the real image set R of sizes N = {0, 16, 32, ..., 8192} were

paired with subsets of the synthetic image set S from the same size range, forming the axes of

the 11x11 matrices shown in Figure 5.2 with model classes at each intersection. For each model

class, random samples from R and S were used to train individual U-net segmentation models

with parameters reported above. The number of models trained in each class was sufficient that

the confidence interval (α = 0.95) width of the mean truth/prediction IoU measurements on the

real image validation set was less than 5% of the mean value, requiring between 7 and 30 model

instances for each image set size pair. We refer to the resulting set of segmentation models as M ,

where mr,s,i ∈ M : r ∈ N, s ∈ N, i ∈ [0..|Mr,s|) is one instance of a class of U-net models trained

on (r, s) random images from datasets R and S, and we report aggregate statistics over the model

class Mr,s at each cell in the matrices of Figure 5.2.

Figure 5.2a aggregates the mean IoU predictions of each trained model class on the unseen

validation set from the real image domain. We observe a general trend of increasing accuracy with
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0.896 0.900 0.905 0.913 0.918 0.929 0.920 0.930 0.930 0.923 0.913
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 0.046  0.030
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       0.162  0.075  0.921  0.975
       0.075  0.077  0.899  0.841
       0.261
       0.071
      
       0.056
      

Figure 5.2: Aggregated mean prediction IoU (a) of U-net models trained on random samples from
real and synthetic datasets. Models augmented with synthetic data showed up to 24.9% higher
prediction accuracy (b) than the baseline, particularly with limited amounts of real training images.
The p-values (c) of one-sided T-tests, Ha : IoU(Mr,s) > IoU(Mr,0), show significant accuracy
increases (p ≤ 0.05, highlighted) in most models trained with 256 or fewer real images.
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Figure 5.3: Mean IoU of model predictions on a validation set of 1176 real images. Each IQR plot
describes between 7 and 30 individual U-net models trained on random subsets of real and synthetic
images. In general, augmenting smaller (≤ 256) sets of real images resulted in higher accuracy and
less variation in the trained models, with diminishing returns as the real data became sufficiently
representative of the domain.

larger samples of real images, with diminishing returns as the training images grow to sufficiently

represent the domain features. Along the horizontal axis, we see that augmentation with synthetic

data tended to increase accuracy, with greater yields in models trained on smaller real datasets. We

also observe that models trained on purely synthetic data tend to poorly predict the real domain,

even with thousands of examples.

To discuss the results of synthetic data augmentation, we first look at the effects of aug-

mentation on model reliability. Figure 5.3 shows the summary statistics of mean validation set

predictions for model classes trained on purely real images and those augmented with 2048 syn-

thetic images, which details columns 0 and 2048 from Figure 5.2a. Models trained with smaller

random samples of real images tended to show more variation in their resulting prediction accuracy.

We observe that augmentation tended to increase mean accuracy and decrease variance in models
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Figure 5.4: Mean prediction IoU of U-net models on real images, viewed by the ratio of real to
synthetic data in the training datasets. Each trend exhibits an inflection point where accuracy
decreased, presumably due to limited capacity of the model to encompass both the real and synthetic
domain.

trained with less than 256-512 real images.

Augmenting the real training sample with varying amounts of synthetic data yields better

results, depending on how accurate the model is to begin with. Figure 5.2b reshapes the data in

Figure 5.2a as a percentage increase in mean prediction IoU relative to that of the pure real set

(column 0). We can see that augmenting models trained with 512 or more real images only results

in a marginal increase, at best 0.6%. However, in models trained with 256 or fewer real images,

the accuracy increase is substantial, up to 25.0% when only 16 real images are available. We can

also see that the addition of any amount of real images results in models that are more accurate

than those trained on synthetic data alone. This is supported by the p-values of one-sided T-tests,

Ha : IoU(Mr,s) > IoU(Mr,0) ∀ r, s ∈ N , shown in Figure 5.2c with p < 0.05 highlighted.

Figure 5.2b also shows that in some cases, particularly in those with 512 or more real

images, the addition of large amounts of synthetic data correlate with a slight decrease in prediction
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Figure 5.5: Segmentation map predictions of U-net models trained with pure real images (top) vs.
the same training sets augmented with 2048 synthetic images (bottom). The input image and ground
truth are shown on the left for reference.

accuracy, presumably due to dilution of the samples from the real domain and a limited capacity

of the model to encompass both the real and synthetic domains. We can observe this trend more

clearly when viewing the relationship between real and synthetic image set sizes as a ratio, shown in

Figure 5.4. Each real image set size exhibits an inflection point where accuracy declines, which we

suspect is dependent on the capacity of the model and similarity between real and synthetic data in

a particular use case.

To visualize the differences in prediction accuracy, Figure 5.5 presents the segmentation

maps predicted by 10 different models, trained on 16-256 real images and augmented with either

0 or 2048 synthetic images. In contrast to the randomly selected images used to train the models

Figure 5.2, each real dataset larger than 16 images is a superset of the smaller datasets, and the

same real datasets and 2048-image synthetic dataset are reused in each of the augmented models.

For this example image, the quality of the predictions are fairly low in the pure real models, limiting

usefulness depending on the use case. The addition of synthetic images results in clearly defined

door/window boundaries with even the smallest real training set, and better identification of smaller

features such as the door handles at 64 real images compared to requiring 128 without augmentation.

5.5 Transfer Learning

Another potential use case for synthetic data is in pretraining models for later improvement

with real data, either as a base for multiple specialized models or as a starting point for incremental

training as real data becomes available. Our results from the previous section indicate that U-net
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models trained with 256 or fewer images from our real image dataset suffer from low applicability

to new images, so in this section we will focus on pretrained model refinement with small numbers

of real images.

The goals and requirements for transfer learning can vary widely, but in our exploration

we will focus on use cases stemming from unavailability of real labelled training images and from

the need to specialize a general model for a particular task. As such, we will quantify results in

terms of accuracy (in this case, mean prediction IoU on real data) and training time of the model

specialization training.

5.5.1 U-net

There are many strategies for transfer learning using the U-net model, most involving freez-

ing, reinitializing, adding, or removing layers. It is beyond the scope of this work to explore the

many factors involved in choosing the optimal strategy for a particular use case. We will instead

focus on a relatively simple technique that compares well to our work with a more advanced model in

the next subsection, which to train a U-net with purely synthetic data, and then continuing training

with real images while optionally freezing or replacing part of the model. Our base synthetic-trained

U-net model uses parameters as described in the previous section, trained with a larger dataset of

36,480 synthetic images, which achieved 0.954 mean prediction IoU on the holdout set from the

same synthetic domain. Accuracy on segmentation of real images was similar to the experiments

with large pure synthetic datasets in the previous section, only achieving a mean prediction IoU of

0.618 on that domain.

Starting with an identical U-net base model initialized with random weights, experiments

were configured as follows:

• synth-random - only the contracting path (encoder) was initialized with weights from the

pretrained base, allowing the untrained expanding path (decoder) to train completely on real

data;

• synth-synth - both the encoder and decoder were initialized with pretrained base weights;

• VGG19-random - the encoder part of the model was replaced with VGG19, detailed below,

and the decoder left with random weights;
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parameters (millions) training time per
model variant total trainable epoch-image (s)

U-net 7.77 7.77 0.0130
U-net frozen encoder 7.77 3.05 0.0120
U-net VGG19 encoder 23.86 23.86 0.0176
U-net frozen VGG19 encoder 23.86 3.83 0.0153
W-net frozen 1st U-net 10.11 2.34 0.0146
W-net frozen VGG19 encoder 26.59 6.56 0.0195

Table 5.2: Model size and relative training times

• VGG19-synth - the encoder was replaced with VGG19, and the decoder initialized with pre-

trained base weights;

• control - the base model was used without freezing or replacing layers, and the initial random

weights were unchanged. Note that this is the same configuration as models in the previous

section, and the resulting model is trained on purely real data.

Finally, we doubled the above configurations with another parameter, choosing to either

freeze the layers of the encoder portion of the model or allow the secondary training with real data

to propagate and update the encoder weights. Our expectations were that freezing the encoder

section of the model would reduce training time as there were less parameters to update with each

back-propagation, but could reduce the model’s ability to adapt to the new data. Table 5.2 details

the number of trainable parameters and mean training time per image-epoch for the four resulting

model architectures, which indeed shows decreased time per image with less parameters to update.

For some experiments, the encoder layers of the model were replaced with a VGG19 [130]

model pretrained with weights from ImageNet [44], following the same procedure as the work done

in [75] for comparability. With the models initialized with pretrained weights, we continued training

using randomly selected subsets of real images until convergence, using the stopping criteria described

in the previous section. All model variant and real image sample size permutations were repeated

30 times.

We first compare on the frozen/trainable encoder variable, visualized in Figure 5.6. In

models using VGG19 as the encoder, we observed greater prediction accuracy and lower training

time, while models using our encoder pretrained on synthetic data tended to perform better when

the encoder was not frozen during secondary training. This is perhaps due to the large difference
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Figure 5.6: Comparisons of mean prediction IoU (a) and training time (b) of secondary training
of pretrained U-net models, with the weights of the contracting path (encoder) either trainable or
frozen.
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in the number of encoder neurons, as propagating the training feedback from each example through

the larger VGG19 encoder is more costly and less impactful. We speculate that limiting the neurons

being updated each epoch lead to faster model convergence while the models with more trainable

weights slowed in training progress enough to trigger early stopping. The training logs support

this conjecture, showing extremely slow improvement before training was terminated. It is possible

that, given enough time, the accuracy differences between trainable and frozen versions of the same

model would minimize. However, since all models use the same early stopping criteria, we present

the results as comparable in a practical sense. In the remainder of this work, comparisons with these

models will use the better-performing frozen encoders in the case of VGG19, and trainable encoders

for the synthetic data-trained models.

Next, we compare the mean prediction accuracy of the retrained models with frozen encoders

to the control models trained from randomly initialized weights. We observed that in cases with 64

or fewer real images, we saw an increase in accuracy over a control model trained on purely real

data. However, in larger real image classes and with all control models trained on a mix of real and

synthetic data, we saw significantly lower accuracy in the specialized models. We again speculate

that the model training may have slowed enough to trigger our early termination criteria, and that

a combination of refined learning rate, early termination parameters, and lengthened training time

may result in improved accuracy. Our goals in this work are in comparability between experiments,

though, so we present these results as a baseline to be improved upon.

In comparing the prediction accuracy of U-net models with different decoder weights, we

saw mixed results; the pretrained synthetic data weights appeared to result in lower performance in

models with synthetic weighted encoders trained on 16 or 32 real images, while having the opposite

effect in models with VGG19 encoders. In models trained on 64 or more real images, the results

were less clear; and a two-sided T-test showed insufficient difference to conclude that the results are

drawn from different distributions at p = 0.05.

Comparing encoder paths of the different model classes was more consistent, in that the

U-net default layers trained with synthetic data resulted in higher mean prediction accuracy than

models using the VGG19 encoder trained on ImageNet, across all real data sample sizes. We conclude

from these findings that a relatively small encoder (4.72m parameters) trained on a few thousand

images drawn from a similar synthetic domain to the target can outperform the already impressive

feature extraction of a large (23.03m parameters) encoder trained on over a million generic real
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Figure 5.7: Limiting to encoder type and decoder initial weights (synthetic pretrained vs. random)
model permutations, we observed a sizeable tradeoff between mean prediction IoU (a) and training
time (b) when compared to models initialized from randomness.
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images.

Figure 5.7b compares the training times of retrained models to those of the control model

for each real sample size class, with results between 10.0% and 20.8% of the time required for the

control. The time can be accounted for in both the number of trainable parameters in the retrained

models with frozen encoders, and the number of epochs required to converge. As the mean training

time for a purely synthetic U-net (r=0, s=2048) is 11,648 seconds, the training time for a retrained

U-net is comparable to that of the control.

5.5.2 Double-U-net

Since the introduction of U-net in 2015, a number of derivative models have been proposed

that improve its applicability to certain use cases. One of these, the Double-U-net [75], improves

upon the localization of segment instances by dividing the task between, as the name suggests, two

U-net models linked together. The first U-net, using a VGG19 encoder trained on ImageNet, outputs

feature maps from each level of the encoding process as well as an intermediate segmentation map

from the decoder. The segmentation map is paired with the original image as input to the second

U-net, while feature map outputs of the first U-net are linked to corresponding layers of the second

U-net decoder. The authors’ results showed impressive accuracy gains over a standard U-net on a

variety of medical segmentation datasets.

As an exercise in applying transfer learning to a more complex model, we chose the Double-

U-net (abbreviated W-net for the remainder of this work) because of its intuitive design as a logical

extension to the standard U-net, as well as having experience and success using the model in some

production use cases. Our experiments in this section will expand on the previous section for ease

of comparison, with the caveat that we made some implementation choices toward this goal while

potentially sacrificing some peak performance. For example, the authors of W-net used squeeze-

excite blocks [65] at the end of each convolutional block, which is not part of the original U-net

specification. Additionally, in our image set, vehicle features were largely scale-invariant, as the

images were captured from a fixed viewpoint with a low variation in the vehicle’s distance from the

camera. This warranted omission of the Atrous Spatial Pyramid Pooling (ASPP) block between the

encoder and decoder in each U-net, which was used in [75] to handle feature scaling. We conducted

a limited exploration and found these features to contribute little to no performance gains on our

particular use case, so we believe that the simplified model is a better comparison to transfer learning
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results on a simple U-net in the previous section.

Our W-net implementation is simply two U-net models, identical to the implementation

described in the previous section, with the following two additions. First, as in the [75], the U-nets

are connected with a pixel-wise multiplication layer, such that the second U-net receives the original

image augmented with the segmentation map output of the first U-net. Second, the encoder layer-

wise feature maps from the first U-net are concatenated to the inputs of the second U-net decoder,

in the same manner as the feature maps from the second U-net encoder.

Following the work in the previous section and as an analog to [75], we chose to construct

W-nets with two model variations. In the first model, we use a U-net trained on synthetic data

as described above, with the entire first U-net frozen. The second model, analogous to [75], uses a

frozen VGG19 encoder and a trainable uninitialized decoder. In both models, the second U-net is

initialized with random weights and is fully trainable. Our hyperparameter search revealed optimal

parameters very close to those used to train the individual U-nets, so we opted to keep the original

parameters for comparability.

Our results, shown in Figure 5.8, show accuracy improvements using the W-net model

with the VGG19 encoder over all training image size classes, and similar or better results with the

synthetic-trained first U-net. The accuracy improvements correlate with a training cost increase,

however, especially with the VGG19-based models with more layers to train. The conclusion we

draw from these results is that secondary training with a multipart model like W-net can be a viable

accuracy enhancement if the time cost can be justified.

5.6 Conclusions

We found that, for this image segmentation problem, synthetic images were an effective

technique for augmenting limited sets of real training data. We observed that models trained on

purely synthetic images had a very low mean prediction IoU on real validation images. We also

observed that adding even very small amounts of real images to a synthetic dataset greatly improved

accuracy, and that models trained on datasets augmented with synthetic images were more accurate

than those trained on real images alone. We noted that for this domain, 256 to 512 images seemed to

be enough to train a reasonably accurate model, with rapidly diminishing returns on adding synthetic

images to the mix, eventually resulting in lower accuracy as the real:synthetic ratio dropped.
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Figure 5.8: Results of transfer learning on U-net and W-net models with (first) encoders trained
on synthetic data or VGG19/ImageNet, compared to training of control models initialized with
random weights. The mean prediction IoU (a) and training time (b) suggest improved accuracy of
synthetic-trained encoders, but in some cases with a time cost.
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In use cases that benefit from incremental training or model specialization, we found that

pretraining on synthetic images provided a usable base model for transfer learning. While we ob-

served that models trained in a single session outperformed those pretrained on synthetic images

and retrained on real data, we also saw that up to 90% of the total training time could be completed

in the pretraining phase.

We conclude that synthetic image generation can be beneficial to segmentation model train-

ing when insufficient images are available to train a satisfactory model. However, testing must be

done to find the break point where adding more synthetic images does not result in higher mean

accuracy.
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Chapter 6

Conclusion

In this dissertation, we have used examples from original research to show that, using

appropriate models and input parameters, synthetic data that mimics the characteristics of real

data can be generated with sufficient rate and quality to address the volume, structural complexity,

and statistical variation requirements of research and development of digital information processing

systems.

In Chapter 3 we presented a progression of research studies using a variety of custom and

industry-standard benchmarking tools to generate synthetic network traffic patterns. These bench-

marks allowed us to observe relationships between network characteristics and the performance of

HPC applications at all levels of the network stack. In Section 3.1, we used the netperf tool to

generate traffic and measure the effects of software switches and virtualization on aspects of network

performance. Section 3.2 described our work in using custom microbenchmarks using MPI primi-

tives to generate low-level network traffic patterns and observe the effects of container virtualization

and software switches various network performance measures. We then employed the NAS Parallel

Benchmarks to generate distributed traffic patterns common to HPC applications and characterize

the higher-level performance impact. In Section 3.3 we continued our work in a traditional HPC

environment with low-latency InfiniBand networking, using low-level synthetic benchmarks from the

OFED perftest to gauge network performance at the hardware level.We then measured and char-

acterized the impact of artificial latency with custom MPI benchmarks at the library level and NPB

at the application level.The project concluded in Section 3.4, where we applied the previous work

to an emerging non-traditional HPC environment by measuring the effects of network performance
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on NPB and LAMMPS in AWS and Google Cloud. These results demonstrate that algorithmic

synthetic traffic generation tools play an important role in the research and validation of complex

networking systems.

Chapter 4 presented research on both the generation and application of synthetic semi-

structured data to facilitate the validation of IoT infrastructure. In Section 4.1 we described methods

of synthesizing large scale IoT data with noisy and complex structural characteristics in a scalable

extraction and synthesis framework. The framework enables access by researchers to IoT data for

the development and testing of tools and algorithms, and enables research by organizations that

need to ensure the privacy of their sensitive data. Section 4.2 motivates one use case for synthetic

IoT data, where used synthetically generated communication patterns modeled on real-world IoT

devices to benchmark the capacity of Azure IoT Hub. Our approach demonstrates one aspect of

how scalable synthetic data generation can be a useful tool in the development of IoT pipelines.

Finally, Chapter 5 details the contributions made toward synthetic image generation for

deep learning models. We found that, for this image segmentation problem, synthetic images were

an effective technique for augmenting limited sets of real training data. We observed that models

trained on purely synthetic images had a very low mean prediction IoU on real validation images, that

adding even very small amounts of real images to a synthetic dataset greatly improved accuracy,

and that models trained on datasets augmented with synthetic images were more accurate than

those trained on real images alone. In use cases that benefit from incremental training or model

specialization, we found that pretraining on synthetic images provided a usable base model for

transfer learning. While we observed that models trained in a single session outperformed those

pretrained on synthetic images and retrained on real data, we also saw that up to 90% of the total

training time could be completed in the pretraining phase.
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Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Ashraf Aboulnaga, Jeffrey F Naughton, and Chun Zhang. Generating synthetic complex-
structured XML data. In Procs. of WebDB, 2001.

[3] John M. Abowd and Lars Vilhuber. How protective are synthetic data? In International
Conference on Privacy in Statistical Databases, pages 239–246. Springer, 2008. ZSCC: 0000095.

[4] Charu Aggarwal, Naveen Ashish, and Amit Sheth. The Internet of Things: A survey from the
data-centric perspective. In Managing and mining sensor data, pages 383–428. Springer, 2013.

[5] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center TCP (DCTCP). In
ACM SIGCOMM Computer Communication Review, volume 40, pages 63–74. ACM, 2010.

[6] OpenFabrics Alliance. Openfabrics enterprise distribution, 2012.

[7] Moustafa Alzantot, Supriyo Chakraborty, and Mani Srivastava. Sensegen: A deep learning
architecture for synthetic sensor data generation. In International Conference on Pervasive
Computing and Communications (PerCom) Workshops, pages 188–193. IEEE, 2017.

[8] Jason Anderson, Christopher Gropp, Linh Ngo, and Amy Apon. Random access in nondelim-
ited variable-length record collections for parallel reading with hadoop. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pages 965–970. IEEE, 2017.

[9] Jason Anderson, Hongxin Hu, Udit Agarwal, Craig Lowery, Hongda Li, and Amy Apon.
Performance considerations of network functions virtualization using containers. In Computing,
Networking and Communications (ICNC), 2016 International Conference on, pages 1–7. IEEE,
2016.

[10] Jason Anderson and Jim Martin. Towards a system for controlling client-server traffic in
virtual worlds using sdn. In 2013 12th Annual Workshop on Network and Systems Support for
Games (NetGames), pages 1–2. IEEE, 2013.

123



[11] Jason W Anderson, Ken E Kennedy, Linh B Ngo, Andre Luckow, and Amy W Apon. Synthetic
data generation for the internet of things. In 2014 IEEE International Conference on Big Data
(Big Data), pages 171–176. IEEE, 2014.

[12] Christian Arnold and Marcel Neunhoeffer. Really Useful Synthetic Data–A Framework to Eval-
uate the Quality of Differentially Private Synthetic Data. arXiv preprint arXiv:2004.07740,
2020. ZSCC: 0000004.

[13] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey. Com-
puter networks, 54, 2010.
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