

Are We Optimizing Nutrition Enough Prior to Hartmann's Reversal?

Benjamin Zollinger^{1,2}, Suzanne Arnott^{2,3}, Sarah Haviland^{2,4}, Matthew Ng², Vincent Obias²

¹ George Washington School of Medicine and Health Sciences, Washington D.C., USA ² Department of Colorectal Surgery, George Washington University, Washington D.C., USA ³ Department of Surgery, George Washington University, Washington D.C., USA ⁴ Department of Surgery, Walter Reed National Military Medical Center,

Bethesda, MD, USA

Background

- Hartmann's reversal (HR) is an elective procedure with complication rates up to 40% and mortality up to 3%
- Malnourishment is underdiagnosed and associated with worse GI and oncologic surgical outcomes
- Variable methods exist to measure nutritional status such as albumin, weight loss, or BMI

Objective

To further evaluate the impact of malnutrition on postoperative outcomes in HR

Methods

- Retrospective of ACS-NSQIP database from 2012-2019
- Primary Outcome of Interest
 - Mortality
- Secondary Outcomes
 - Wound Infection
 - Reoperation
 - Readmission
- Composite variable to define malnutrition
 - 1. Albumin < 3.5 g/dL
 - 2. $BMI < 18.5 \text{ kg/m}^2$
 - 3. > 10% body weight loss in past 6 months

Table 1. Demographics for Patients Undergoing Hartmann's Reversal by Nourishment Status.

Variables	n=8,878	Well Nourished n=7116	Malnourished n=1762	
Age (mean ± SD, years)	59.01±14.07	58.76±14.03	60.06±14.21	.001
Sex (Male %)	4515 (50.9%)	3707 (52.1%)	808 (45.9%)	<.001
BMI (mean \pm SD, kg/m2)	28.55±6.51	28.74±6.20	27.78 ± 7.59	<.001
Preoperative Albumin	$3.98 \pm .55$	4.15±36	$3.25 \pm .59$.000
Indication (%) Diverticulitis CRC Other Malignancy CD	688 (7.7%) 245 (2.8%) 78 (0.9%) 89 (1.0%)	560 (7.9%) 204 (2.9%) 65 (0.9%) 77 (1.1%)	128 (7.3%) 41 (2.3%) 13 (0.7%) 12 (0.7%)	.781
History of Hypertension (%)	4109 (46.3%)	3256 (45.8%)	853 (48.4%)	.048
History of COPD (%)	444 (5.0%)	319 (4.5%)	125 (7.1%)	<.001
Preoperative Dyspnea (%)	445 (5.0%)	323 (4.5%)	122 (6.9%)	<.001
Smokers (%)	2027 (22.8%)	1560 (21.9%)	467 (26.5%)	<.001
History of Dialysis (%)	85 (1.0%)	51 (0.7%)	34 (1.9%)	<.001
Functional Dependence	200 (2.3%)	138 (1.9%)	62 (3.5%)	<.001
History of a Bleeding Disorder (%)	250 (2.8%)	182 (2.6%)	68 (3.9%)	.005
ASA Category >3 (%)	4634 (52.2%)	3581 (50.4%)	1053 (59.9%)	<.001
Wound Class 4 (%)	353 (4.0%)	252 (3.5%)	101 (5.7%)	<.001

Table 2. Multivariate Analysis

	Model for Mortality						
	Covariates	p-value	OR	95% CI			
	Age	<.001	1.062	1.037 - 1.088			
	Dialysis	.023	3.630	1.195 - 11.021			
	Transfusion	.041	11.557	1.104- 120.997			
	Malnourished	<.001	2.720	1.483 - 4.204			
	Higher ASA Class	.002	3.611	1.406 – 6.074			
	Dependent Status	.007	3.011	1.354 - 6.694			
		Model for V	Vound Infection				
	BMI	<.001	1.034	1.025 -1.044			
	Malnourished	.002	1.291	1.019 - 1.383			
	Smoking	<.001	1.374	1.191 – 1.585			
	Steroids	.042	1.286	1.010 - 1.638			
	Higher ASA Class	.005	1.202	1.056 - 1.367			
	MIS Approach	<.001	.541	.464631			

Results

- Malnourished group:
 - 85% w/ Low albumin
 - 11.4% w/ Low BMI
 - 9.1% w/ Preop Weight Loss
- Malnutrition was a significant predictor for 30-day mortality and wound infection
- Malnutrition was not significantly associated with reoperation or readmission

Conclusions

- Malnutrition was a significant predictor of 30-day mortality and wound infection in HR
- Easy and objective screening method for malnutrition
- Nutrition status is a modifiable risk factor that should be optimized prior to HR

References

- Horesh N, Rudnicki Y, Dreznik Y, et al. Reversal of Hartmann's procedure: Still a complicated operation. *Tech Coloproctol*. 2018;22(2):81-87. Accessed Mar 1, 2022. doi: 10.1007/s10151-017-1735-4.
- Sungurtekin H, Sungurtekin U, Balci C, Zencir M, Erdem E. The influence of nutritional status on complications after major intraabdominal surgery. Journal of the American College of Nutrition. 2004;23(3):227-232.
- Williams, D., Molinger, J., & Wischmeyer, P. E. (2019). The malnourished surgery patient: a silent epidemic in perioperative outcomes?. *Current opinion in anaesthesiology*, 32(3), 405–411.