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Abstract 

Context: Anti-Mullerian hormone (AMH) was originally described in the context of 
sexual differentiation in the male fetus but has gained prominence now as a marker of 
ovarian reserve and fertility in females. In this mini-review, we offer an updated synopsis 
on AMH and its clinical utility in pediatric patients.
Design and Results: A systematic search was undertaken for studies related to the 
physiology of AMH, normative data, and clinical role in pediatrics. In males, AMH, 
secreted by Sertoli cells, is found at high levels prenatally and throughout childhood 
and declines with progression through puberty to overlap with levels in females. Thus, 
serum AMH has clinical utility as a marker of testicular tissue in males with differences 
in sexual development and cryptorchidism and in the evaluation of persistent Mullerian 
duct syndrome. In females, serum AMH has been used as a predictive marker of 
ovarian reserve and fertility, but prepubertal and adolescent AMH assessments need 
to be interpreted cautiously. AMH is also a marker of tumor burden, progression, and 
recurrence in germ cell tumors of the ovary.
Conclusions: AMH has widespread clinical diagnostic utility in pediatrics but interpretation 
is often challenging and should be undertaken in the context of not only age and sex but 
also developmental and pubertal stage of the child. Nonstandardized assays necessitate 
the need for assay-specific normative data. The recognition of the role of AMH beyond 
gonadal development and maturation may usher in novel diagnostic and therapeutic 
applications that would further expand its utility in pediatric care.
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Anti-Mullerian hormone (AMH), also known as Mullerian 
inhibiting substance (MIS), is a hormone produced exclu-
sively in the gonads. Alfred Jost, a pioneering researcher 
in the field of fetal endocrinology first proposed the ex-
istence of the “hormone inhibitrice” in the 1940s when 
he demonstrated the regression of the “Mullerian ducts” 
(paramesonephric ducts), anlagen to the uterus, Fallopian 
tubes, cervix, and upper third of the vagina, in undifferen-
tiated female rabbit embryos following surgical implants 
of testicular tissue (1,2). Josso et al demonstrated that the 
Sertoli cells secreted MIS, a glycoprotein (3) that was even-
tually purified, and coined the term “AMH” now widely 
in use today, and Donahoe et al synthesized functional re-
combinant human MIS (4). In the decades that have fol-
lowed, the sexually dimorphic functions of AMH have not 
only played a part in the diagnosis of differences (originally 
“disorders”) in sexual development (DSD) but has found 
extensive clinical utility in female fertility and reproductive 
health and its significance continues to evolve with the 
finding of novel neuroendocrine regulatory actions of AMH 
(5). In this mini-review, we examine the physiological role 
of AMH and its clinical utility in pediatric patients.

Search Strategy

We performed a literature review in PubMed limiting to 
English language articles, with no beginning date and 
search was last updated in July 2021. The search term was 
“anti-Mullerian hormone” (MeSH term) comprising all 
variations of AMH and MIS. We used filters for English 
language and age (child: birth-18 years), and a total of 599 
manuscripts including 41 review articles were identified. 
We narrowed down the search further with filters for clin-
ical studies and systematic reviews to 70 articles. The ref-
erence lists of the original and review articles were then 
reviewed to ensure completeness.

Physiological Role of AMH

AMH is secreted as a 140kDa dimeric glycoprotein hor-
mone structurally related to transforming growth factor 
β and inhibin (6). It undergoes proteolytic cleavage and 
generation of bioactive 25kDa C-terminal dimers that 
bind to the AMH type 2 receptor (7-13). It is thought 
that, in a similar manner to other members of the trans-
forming growth factor β family, the ligand bound AMH 
type 2 receptor phosphorylates the type 1 receptor [also 
a serine/threonine kinase receptor, that belong to a class 
of activin-like kinase (ALK2)] inducing signaling through 

phosphorylation of intracellular Smad proteins, which then 
translocate to the nucleus and modulate gene transcription 
(14) (Fig. 1A and B). The AMH gene has been localized 
to chromosome 19p13.3 (15), and its expression is tightly 
regulated in Sertoli and granulosa cells specific to sex and 
developmental stage (fetal, neonatal, pre-and postpubertal) 
and regulated by SRY with activation of AMH by SOX-9 
(16) and subsequent increase in AMH promoter activity 
by transcription factors steroidogenic factor 1 (SF-1) (17), 
GATA-4 (18,19), and WT-1 (20) and downregulation by 
DAX-1 (20). In the testes, high follicle-stimulating (FSH) 
levels activate AMH secretion (21), but androgens, spe-
cifically intratesticular testosterone, downregulates AMH 
secretion acting through the androgen receptor (Fig. 1A) 
but requires SF-1 binding to AMH promoter sites (22). In 
the ovarian granulosa cells, AMH secretion appears to be 
regulated by transcription factors SF1, FOXL2, FOG2, and 
GATA-4 and stimulated by FSH and luteinizing hormone 
(LH) (23-25).

In the fetal Sertoli cells, AMH expression was seen 
starting around 8 weeks of gestation (26) during a short 
window when Mullerian ducts are responsive to its effect 
(27), leading to irreversible Mullerian duct regression by 
the ninth week (28). AMH continues to be produced by the 
fetal testes throughout gestation despite increase in testos-
terone since Sertoli cells in the fetus do not express androgen 
receptors (29). Jost proposed that AMH may play a role in 
the meiotic and mitotic arrest of germ cells (30), and others 
have suggested roles for AMH in testicular descent, germ 
cell maturation, and gonadal morphology, but these remain 
inconclusive (31). After a transient decline postnatally, 
AMH levels rise in infancy and continue to remain com-
paratively higher in males until they decline by stages 2 and 
3 of puberty as intratesticular testosterone levels start to 
rise (32). At this point, AMH levels in postpubertal males 
are comparable and overlap with AMH levels in females 
considerably although median AMH remains 2- to 3-fold 
higher compared with females (33). Immunohistochemistry 
has shown that the expression of AMH type 2 receptor par-
allels AMH in serum declining after puberty in males (34). 
A paracrine effect of AMH was also postulated given find-
ings that AMH pathway activation may directly suppress 
the expression of steroidogenic enzymes in the Leydig cells 
of the adult testes (35).

In contrast, AMH expression in fetal ovaries was de-
tected around 23 weeks of gestation, with serum AMH de-
tectable postnatally by 26 weeks of gestation (36). AMH 
expression was highest in the granulosa cells of secondary, 
preantral, and small antral cells (less than 4 mm in diameter) 
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and significantly declines in larger antral follicles (6-8 mm) 
(37). Data from rodent studies (38) and immunostaining 
patterns in human ovaries (37) suggest that AMH may 
suppress initial recruitment of primordial follicles and also 

modulate follicular sensitivity to FSH (39), regulating the 
growth of follicles and the cyclic recruitment of the larger 
antral follicles. AMH also downregulates the aromatase 
activity in granulosa cells decreasing estradiol production 

i. Fetal/Neonatal Period

ii. Childhood

iii. Pubertal Period

FSH

AMH

Testosterone

AR Sertoli cell

FSH

AMH

Leydig cell

Testosterone

AR Sertoli cell

Regression of Mullerian structures

FSH

AMH

Leydig cell

Testosterone

AR Sertoli cell

LH

AMHR2 receptor AMH R1 receptor

SMADs

LH

LH

Leydig cell

Figure 1. Regulation of anti-Mullerian hormone (AMH) secretion and signaling. (A) Regulation of AMH secretion in males by developmental stage. 
(B) Regulation of AMH secretion in females and its role in ovarian follicle maturation. Abbreviation: AR, Androgen receptor.
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until follicular selection (40,41). AMH tends to be 35-fold 
lower in females compared with males in infancy and re-
mains stable through childhood and adolescence (42). 
Recent longitudinal data suggest a slight rise in AMH by 7 
to 9 years with a dip around the ages of 10 to 14 years cor-
relating with the transition through puberty, rising again 
by age 16 years to peak in young adulthood (43). AMH 
then declines over the reproductive age proportionate to 
the decline in the antral follicle pool and decreases rapidly 
by menopause and, as such, is suggested as a marker of 
ovarian aging (44).

Serum AMH Measurements

Enzyme-linked immunosorbent assays were first devel-
oped to measure AMH in the 1990s (45) but were not ad-
equately sensitive to measure levels especially in females. 
In 2000, an ultrasensitive assay was developed (46) with a 
detection limit of 2 ng/mL [Immunotech (IOT), Marseille, 
France] followed by a more sensitive assay with a detec-
tion limit of 6.3 pg/mL [Diagnostic Systems Laboratory 
(DSL), Webster, TX, USA] (41). Since the calibrators and 
antibodies were different, the DSL assay results for serum 
AMH in women was 4.6-fold lower than the IOT assay 
(47), invalidating comparisons between studies using these 
2 different nonstandardized assays. A Gen II assay of AMH 

(Beckman Coulter, Chaska, MN, USA) has been in use since 
2010 (48), and normative data on serum AMH are depicted 
in Figure 2 (49). Although calibrated to the IOT assay, sev-
eral studies have raised concerns with regard to the Gen II 
AMH assay, especially related to sample characteristics and 
differences in calibration compared with newer immuno-
assays in the past few years (50). Hence, there is still a need 
to establish assay-specific normative data in the absence of 
an international reference standard.

AMH concentrations are age and sex-specific (49), rise 
in early infancy starting 1 month after birth peaking around 
6 months of age in male infants while they remain low in 
female infants (Fig. 2). Throughout childhood, AMH con-
centrations are distinctly higher in males (almost 35-fold) 
(51), so despite individual variability and a broad normal 
range, it is easily discriminated from female norms (33) 
(Fig. 2). In adolescence with progression through puberty, 
the mean AMH levels decline in males and increase in fe-
males with considerable overlap (33,52).

Clinical Utility of AMH

AMH and Differences in Sexual Development

The process of sexual differentiation is a carefully orches-
trated process with multiple regulatory elements impacting 
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Figure 1. Continued.
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steps of differentiation. AMH was first described in the 
context of dysregulated sexual differentiation, and the first 
clinical utility was in the diagnosis of differences of sexual 
development. While the presence of Mullerian duct deriva-
tives reflects the lack of AMH secretion during the sixth 
to tenth weeks of fetal life, the serum AMH measurements 
after birth reflect not only Sertoli cell function in patients 
with DSD but also serve as a biomarker of the relative in-
fluence of FSH and androgens (53). FSH increases Sertoli 
cell mass and AMH secretion, but testosterone acting via 
the androgen receptors in Sertoli cells postnatally sup-
presses AMH (22,54). So, AMH concentrations are directly 
correlated to FSH but inversely to testosterone levels in 
childhood and adolescence, in contrast to prenatal values. 
AMH concentrations vary by pathology, genetic defect, 
and developmental stage and are summarized in Table 1. 
In 46,XY gonadal dysgenesis, the AMH concentrations are 
proportionate to the presence of testicular tissue, typically 
being low or undetectable in conditions affecting testicular 
development (55). In Leydig cell hypoplasia, and androgen 
synthetic defects, the AMH concentrations are typically 
normal and may even be high during the minipuberty of 
infancy due to a lack of the suppressive effect of androgens 
(55,56). In 5-alpha reductase deficiency, characterized by 
a high testosterone:dihydrotestosterone ratio, AMH was 
in the lower range of normal (<−1 SD) since dihydrotes-
tosterone is not required for suppression of AMH secre-
tion (57). In androgen insensitivity syndrome, however, 
the relatively high gonadotropins and lack of a functional 

androgen receptor cause AMH levels to be inappropriately 
high for the degree of testosterone in the serum (56). Recent 
studies indicate that the hyperestrogenic state in complete 
AIS may also play a role in AMH elevation (58). A study of 
the testosterone response to human chorionic gonadotropin 
(hCG) stimulation in prepubertal patients with 46,XY DSD 
found that a normal serum AMH had a positive predictive 
value of 84% for a normal post-hCG testosterone level, but 
a low AMH was not useful in predicting a suboptimal tes-
tosterone response (59). Gonadal dysgenesis and ovotestes 
were associated with mean AMH concentrations in be-
tween levels seen in anorchia and undescended testes (60). 
In summary, AMH can be a useful tool for assessment of 
Sertoli cell function in 46,XY DSD and can help distinguish 
testicular dysgenesis from biosynthetic defects.

In 46,XX DSD, serum AMH above the female refer-
ence standards suggest the presence of testicular tissue 
(as seen in ovotesticular or testicular DSD), which distin-
guishes these disorders from virilized female infants with 
high extratesticular androgens (such as congenital adrenal 
hyperplasia) (55) who have typical female AMH levels.

AMH in Klinefelter syndrome was found to be within 
the normal reference range during minipuberty of infancy 
and throughout childhood (61). The decline in AMH with 
puberty was delayed in adolescents with Klinefelter syn-
drome although pubertal onset is still on time (62). This 
has been attributed to a downregulation of AMH in these 
affected individuals (63), as well as relatively low testos-
terone concentrations coupled with Sertoli cell destruction 

Figure 2. Reference ranges for serum anti-Mullerian hormone (AMH). Serum AMH in 1027 males (blue circles) and 926 females (red circles) is depicted 
with blue and red lines depicting (median, +/−2 SD) reference ranges for males and females, respectively. Connecting grey lines represent longitu-
dinal values in infancy. Age in years on the x-axis and serum AMH (pmol/L) measured on Immunotech (IOT) on the logarithmic y-axis. Comparative 
data for Diagnostic Systems Laboratory (DSL) and Gen II assays were calculated as follows: AMH (IOT) pmol/L = 2.0 × AMH (DSL) μg/L × 7.14 pmol/μg 
and AMH (IOT) pmol/L = 0.74 × AMH (Gen II) μg/L × 7.14 pmol/μg. This figure is reproduced from Johansen ML, et al (49). Copyright © 2013 Marie 
Lindhardt Johansen et al. This is an open access article distributed under the Creative Commons Attribution License http://creativecommons.org/
licenses/by/3.0/ which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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and lack of meiotic germ cells. AMH levels in adults with 
Klinefelter syndrome were lower than healthy males and 
attributed to the testicular tissue and Sertoli cell destruction 
seen in these individuals (62).

Isolated absence of AMH effect with normal testicular 
Leydig cell function is seen in persistent Mullerian duct syn-
drome (PMDS), a rare autosomal recessive disorder caused 
by loss of function mutations in the AMH gene (AMH de-
ficiency) or the AMH type 2 receptor gene, AMHR2 (AMH 
receptor insensitivity) detectable in nearly 88% of affected 
individuals (64). PMDS is characterized by completely 
virilized male external genitalia in 46,XY males and vari-
able persistence of Mullerian structures, presenting with 
the following phenotypes: (1) bilateral cryptorchidism and 
testes in the pelvis attached to Fallopian tubes/uterus, (2) 
unilateral cryptorchidism associated with a testis in the in-
guinal canal attached to the herniated uterus/Fallopian tube 
(hernia uteri inguinalis), or (3) transverse testicular ectopia 
(unique to PMDS, with bilateral testes and Mullerian 
structures herniated into a single processus vaginalis) (64). 
AMH gene mutations with a few exceptions, are associated 
with an unstable protein and, hence, very low or undetect-
able serum AMH in prepubertal male patients compared 
to a normal-for-age AMH in AMH receptor defects (65). 
The AMH concentrations are not elevated in prepubertal 
males with AMH receptor defects causing PMDS since the 
testosterone and FSH concentrations are normal in these 
patients. There is no reported clinical phenotype in females 
with AMH gene or AMHR2 receptor mutations although 
there is some speculation for possible early menopause in 
these individuals based on animal studies (64).

AMH and Cryptorchidism

In infants with male external genitalia and cryptorchidism, 
the detection of AMH secreted from the Sertoli cells can 
help differentiate between absent gonads (anorchia with 
undetectable AMH) and undescended testicles with in-
tact Sertoli cell function. In patients with cryptorchidism 
without microphallus or genital ambiguity, AMH demon-
strated 98% sensitivity and 91% specificity for the iden-
tification of testicular tissue (60,66). AMH was low or 
absent in nearly half of the patients with isolated crypt-
orchidism, and the number increased to 61% in the pres-
ence of cryptorchidism and microphallus (67). In addition, 
a low AMH was seen in 74% with bilateral nonpalpable 
gonads and 35% of those with gonads palpable in the in-
guinal region reflective of diminished Sertoli cell function 
(67). Additional studies have also shown lower AMH (and 
inhibin B values) compared to normative data in 2-year-
old male children with cryptorchidism, suggesting a func-
tional defect of Sertoli cells in this condition (68). In a large Pa
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cohort of males with cryptorchidism, AMH was shown to 
be significantly lower in those with bilateral cryptorchidism 
compared with unilateral cryptorchidism and controls; ab-
normally low AMH (<3%) was seen in 36.5% of patients 
with bilateral cryptorchidism between the ages of 6 months 
and 2 years (69). In pooled data of the studies by Lee et al 
(60), normal AMH was 100% predictive of the presence 
of testes while a measurable but low value was predictive 
86% of the time, with an unmeasurable AMH being pre-
dictive of absent testicular tissue (anorchia) 94% of the 
time. One exception to this would be patients with AMH-
negative PMDS due to AMH gene mutations, who also 
have undetectable AMH but nondescent of testes due to 
the presence of Mullerian-derived structures affecting des-
cent. A pelvic ultrasound to detect Mullerian structures can 
distinguish this condition from anorchia due to testicular 
regression syndrome where Mullerian derivatives are ab-
sent (53).

AMH and Pubertal Disorders

Low AMH is also characteristic of prepubertal males with 
hypogonadotropic (central) hypogonadism who have di-
minished Sertoli cell number and function due to FSH defi-
ciency and has been shown to be low in hypogonadotropic 
hypogonadism due to multiple pituitary hormone defi-
ciency in infants (70). Inhibin B is often a useful adjunct 
that parallels AMH secretion as well, and basal inhibin 
B had a higher discriminatory value for distinguishing 
hypogonadotropic hypogonadism from constitutional 
delay of growth and puberty (71). During puberty, AMH is 
low for Tanner stage (lack of FSH effect) and high for age 
(lack of testosterone effect) (72). Further, treatment with 
combined recombinant FSH and hCG lowers AMH during 
pubertal induction in hypogonadotropic hypogonadism, 
but testosterone therapy for pubertal induction does not 
appear to lower AMH (73). This has been attributed to 
the LH-driven rise in intratesticular testosterone, which 
suppresses AMH and overshadows the stimulating effect 
of FSH on AMH during combination therapy, whereas 
intratesticular testosterone levels are not adequately raised 
by exogenous testosterone therapy alone (73,74).

In isolated Leydig cell disorders, AMH was normal or 
high (increased FSH effect but lack of testosterone effect) 
(75). Precocious puberty in males including central pre-
cocious puberty and gonadotropin-independent forms 
such as familial male limited precocious puberty were as-
sociated with low AMH secretion for age due to rise in 
intratesticular testosterone (76). Gonadotropin-releasing 
hormone (GnRH) analogue therapy normalizes AMH to 
prepubertal values, suggesting that the Sertoli cell matur-
ation in early puberty may be reversible and AMH could 
potentially serve as an additional tool for diagnosis of 

precocious puberty and treatment efficacy (77), although 
not of routine clinical utility compared to LH/testosterone.

In females, AMH was normal in most patients with ac-
quired multiple pituitary hormone deficiency but low in se-
vere congenital hypopituitarism reflective of gonadotropin 
deficiency (78). AMH has been shown to be lower in pre-
mature thelarche in females ages 1 to 3 years and negatively 
correlated with FSH compared with age-matched controls 
(79). In girls with precocious puberty, AMH levels did not 
differ from healthy age-matched controls at baseline but 
were suppressed compared to the pretreatment levels with 
GnRH analogue therapy and returned to pretreatment 
levels 6  months after discontinuation of treatment (80). 
The authors speculated that the suppression of AMH was 
consistent with gonadotropin-dependence of AMH secre-
tion, but the normal AMH levels and negative correlation 
with FSH at baseline were due to an individual set point for 
the pituitary-gonadal feedback loop (80). Regardless, there 
does not appear to be any clinical utility to routine moni-
toring of AMH in the management of precocious puberty 
in female children.

AMH as a Marker of Granulosa Cell Tumors

Granulosa cell tumors (GCTs), the most common subtype 
of ovarian sex cord-stromal tumors, represent 2% to 5% 
of all ovarian cancers (81). GCTs are divided histologically 
into juvenile GCTs, occurring primarily in children and 
young adults, and adult GCTs, occurring typically in adult 
women. Signs of excessive estrogen secretion such as pre-
cocious puberty in a prepubertal child or menstrual ir-
regularities including hypermenorrhea in a postmenarchal 
adolescent in the presence of an adnexal mass can lead to 
the diagnosis of GCT. However, making an accurate pre-
operative diagnosis remains difficult. These tumors secrete 
estrogen, inhibin B, and AMH. An elevation in AMH level 
has been reported in both juvenile and adult GCTs (82-
84). AMH can be used as a marker of treatment efficacy 
and tumor progression and recurrence and correlates with 
tumor mass as determined by radiology or pathology (84-
86). In a recent meta-analysis evaluating the performance 
of AMH in the diagnosis of GCT, the pooled sensitivity 
was reported as 89% with a pooled specificity of 93% (87). 
However, negative testing does not rule out GCTs, and there 
are reported cases of discrepancy between inhibin B and 
AMH levels in patients with progressive GCT (88). Given 
the possibility of false negatives, measuring both AMH and 
inhibin may improve the detection of GCT.

AMH and Polycystic Ovary Syndrome

Polycystic ovarian syndrome (PCOS) is the most common 
cause of chronic anovulation and hyperandrogenism in 
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young women, with a prevalence of 8% to 13% (89,90). 
The International Guideline for the Assessment and 
Management of PCOS endorses the Rotterdam PCOS diag-
nostic criteria in adults (2 of oligo- or anovulation, clinical 
and/or biochemical hyperandrogenism, or polycystic ovaries 
on ultrasound), after exclusion of related disorders. In ado-
lescents, both oligoanovulation and hyperandrogenism are 
required, with ultrasound not recommended for diagnosis 
(91). Serum AMH levels are consistently higher in women 
with PCOS (92,93). Abnormally slow growth of primary 
follicles results in an elevated number of AMH-producing 
cells. There also appears to be an increased production 
of AMH per follicle as evidenced by a mean AMH level 
4× higher in granulosa cells from ovulatory PCOS and 
75× higher in granulosa cells of anovulatory PCOS (94). 
Adolescent daughters of women affected by PCOS have 
higher AMH levels compared to girls with obesity (95,96). 
Higher AMH levels in adolescent daughters of women af-
fected by PCOS is associated with menstrual cycle irregular-
ities and higher ovarian volumes, suggesting differences in 
ovarian folliculogenesis in adolescents at risk of developing 
PCOS (97). Currently, there is no consensus on an AMH 
threshold for the diagnosis of PCOS. AMH levels have been 
reported to be a more reliable marker of polycystic ovarian 
morphology (PCOM) than follicle number with an AMH 
threshold of 35 pmol/L (5ng/mL) suggested as a possible 
inclusion in the diagnostic criteria of PCOS (98). Some au-
thors have proposed increased AMH levels as an adjunct in 
the diagnosis of PCOS in adolescents and reported that an 
AMH level > 3.4ng/mL best distinguishes adolescents with 
PCOS from controls (99). The International Guideline for 
the Assessment and Management of PCOS does not recom-
mend the use of serum AMH as an alternative to the detec-
tion of PCOM or as a single test for the diagnosis of PCOS. 
However, there is mention that with improved standard-
ization of assays and established cutoff levels or thresholds 
based on large-scale validation in populations of different 
ages and ethnicities, AMH assays would be more accurate 
in the detection of PCOM (91).

AMH as a Marker of Ovarian Reserve/Fertility

Ovarian reserve, as defined by American Society for 
Reproductive Medicine, represents the number of oo-
cytes remaining in the ovary or oocyte quantity (oo-
cyte number) (100). Ovarian reserve tests include both 
ultrasound imaging and biochemical tests. Antral follicle 
count (AFC), a marker of ovarian reserve, is traditionally 
performed in the early follicular phase by transvaginal 
ultrasound, which precludes its use in prepubertal chil-
dren as well as postmenarchal adolescents who do not 
tolerate transvaginal imaging. Although transabdominal 

AFC measurements have been performed in both pre-
pubertal and pubertal children, AMH was only moder-
ately correlated to AFC in premenarchal girls (101). AMH 
is a sensitive biochemical marker of ovarian reserve and 
may be more sensitive when compared to early follicular 
phase FSH and estradiol levels (102). The ideal timing 
of AMH measurement depends on whether serum AMH 
levels vary throughout the follicular and luteal phases of 
the menstrual cycle. Numerous studies have investigated 
AMH variations during the menstrual cycle, and some 
have reported only mild intra- and intercycle fluctuations 
of AMH secretion (103-105), while others have reported 
a peak AMH level in the mid-follicular phase with a sub-
sequent decrease in the luteal phase (106,107). However, 
these fluctuations are not large enough to warrant a rec-
ommendation of timed AMH measurement on specific 
menstrual cycle days or phases (107,108). Although 
AMH has the ability to predict ovarian responsiveness 
to gonadotropin stimulation and oocyte yield in assisted 
reproductive technologies, it is a poor predictor of preg-
nancy and live birth rates (100).

AMH is expressed by granulosa cells of growing follicles 
after recruitment of primordial follicles from the resting 
pool and expression increases until the large preantral and 
small antral follicular stage (109,110) (Fig. 1B). AMH ex-
pression is lost in the atretic follicle as well as corpus lutea. 
With age, AMH decreases, and serum AMH levels correlate 
strongly with the decrease in size of the antral follicle pool 
(111,112). There is no marker that can directly measure 
the number of primordial follicles. However, the number of 
growing follicles recruited from the primordial follicle pool 
reflect the number of primordial follicles. As a marker for 
the number of growing follicles, AMH is used as a proxy 
for the number of primordial follicles and the quantitative 
aspect of the ovarian reserve in adults (113). In prepubertal 
children, however, ovarian follicles remain in a quiescent 
state after the minipuberty of infancy. AMH is not ex-
pressed by primordial or small preantral follicles and, 
prior to the onset of puberty, may correlate poorly with 
ovarian reserve in children. In vitro evaluation of ovarian 
tissue in children undergoing ovarian tissue cryopreserva-
tion (OTC) prior to gonadotoxic therapies due to malig-
nant diseases that do not affect ovarian reserve parameter 
revealed high follicle density despite low AMH levels (114). 
In addition, studies reporting intervals for AMH in children 
demonstrated wide variations in AMH in healthy girls ages 
1 to 12  years (42,115). Despite these limitations, AMH 
has been proposed as a potential biomarker of ovarian 
reserve in childhood to determine possible candidates for 
fertility preservation and the timing of such interventions 
in children and adolescents at risk of primary ovarian 
insufficiency (POI).
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Turner syndrome (TS), caused by X-chromosome anom-
alies with or without mosaicism, is characterized by an in-
creased risk of POI due to accelerated ovarian follicular 
apoptosis before and/or after puberty (116). In adolescents 
and young adults with TS, higher AMH levels are associ-
ated with spontaneous puberty and ongoing ovarian func-
tion (42,115) and negatively correlated with FSH, LH and 
45,X karyotype (117). In addition, AMH < 4 pmol/L has 
been reported as predictive of absent puberty in prepubertal 
girls and POI in adolescents and adult patients (118). Care 
should be taken in the generalization of these results, how-
ever, as the evaluation of AMH as a predictor of spontan-
eous puberty was based only on 15 patients before pubertal 
onset (5 with spontaneous puberty and 10 with puberty 
induced by hormone replacement therapy). Some inves-
tigators have proposed guidelines for performing OTC 
based on serum AMH levels in prepubertal girls with TS 
(119). However, the available limited data on OTC in girls 
<12 years with TS do not allow for meaningful clinical pre-
dictions of the feasibility of OTC and ovarian follicular 
density based on AMH levels alone (120-125).

As the number of childhood cancer survivors increase, at-
tention to long-term adverse health effects outcomes including 
future fertility has been identified as a major concern of pa-
tients and their families (126). Risk factors for POI include age 
at diagnosis, abdominal/pelvic radiation therapy, and exposure 
to alkylating agents (127). In a small study of 16 postmenarchal 
adolescents undergoing chemotherapy for oncology diagnoses 
(leukemia, lymphoma, and sarcoma), 94% showed a decline 
in mean AMH levels at 6  months postdiagnosis, but 80% 
showed at least some recovery of AMH by 18 to 24 months 
(128). Longitudinal follow-up in female childhood cancer sur-
vivors showed that although AMH levels were significantly 
low compared to age-matched controls, in women with sus-
tained ovarian function (AMH  >  1.0µg/L), the decline in 
AMH is similar to that in the normal population (129). In 
adolescents requiring treatment with chemotherapy, the pre-
dictive value of AMH as it relates to spontaneous pregnancy 
requires further longitudinal studies.

Future Directions

The clinical utility of AMH has continued to expand with 
the understanding of sexual differentiation and the eluci-
dation of the molecular basis of AMH action. Originally, 
AMH expression was thought to be limited to the gonads, 
but recent studies not only demonstrate AMH and AMHR2 
expression in different neurons but also confirm AMH 
actions at different levels of the hypothalamic-pituitary-
gonadal axis to increase the activity of GnRH neurons 
and the sensitivity of gonadotropes to GnRH signaling, 
LH pulsatility (130), modulating GnRH/LH/FSH secretion 
through possibly endocrine (circulating gonadal AMH), or 

even autocrine effects (5). Loss-of-function heterozygous 
mutations in AMH and AMHR2 genes were identified in 
congenital hypogonadotropic hypogonadism, suggesting 
a possible role of AMH signaling in the development, mi-
gration, and function of GnRH neurons (131). Paracrine 
actions of AMH in adult ovaries regulating follicular re-
cruitment and in adult testes regulating steroidogenesis and 
Leydig cell/germ cell maturation, as well as a postulated 
role for AMH in the prenatal reprogramming of neuro-
endocrine pathways for pathogenesis of PCOS in the off-
spring, suggest that our understanding of this multifaceted 
hormone and its clinical utility continues to evolve (5,132).
Therapeutic applications of AMH for treating ovarian and 
endometrial cancer and PCOS, preserving fertility, and 
delaying ovarian aging (133) hold promise but will re-
quire standardization of current assays and development of 
AMH analogues (134).

Conclusions

AMH is a valuable tool in the care of pediatric patients with 
diverse conditions affecting gonadal development and func-
tion. The interpretation of serum AMH should be informed 
by assay-specific normative data accounting for age/sex and 
pubertal stage. In conjunction with gonadotropins and testos-
terone, AMH can be a useful diagnostic marker of Sertoli cell 
mass and function in males. Although widely used as a bio-
chemical marker of ovarian reserve in females, the predictive 
value of AMH in prepubertal females for fertility outcomes 
needs further study. Assay standardization and widespread 
availability will further enhance its utility in clinical practice.
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