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1. Introduction and background 

Tornadoes and multiple-tornado days are no rare occurrence in Tennessee; they 
have been and continue to be a significant threat to life and property. In 2011, a 
storm system quickly spawned 20 tornadoes in our study area, the Nashville 
National Weather Service (NWS) county warning area (CWA). Notably, in March 
2020, a strong EF-3 tornado tore through Nashville at 65 mph, and another EF-4 
killed 18 people in Baxter and Cookeville, Tennessee. Though death per population 
index values have decreased from 1.5 to 0.2 over time with improved technology 
and forecasting methods (Agee and Taylor 2019), tornadoes continue to threaten 
at-risk and vulnerable Middle Tennessee residents. As a result, researchers aim to 
improve forecasting successes and better prepare civilians for dangerous weather 
events. 

1.1 Convective mode 

Tornadoes spawn from different types of storms, which can be categorized by their 
convective mode. With the advent of radar imaging, categorizing storms by 
convective mode is a modern strategy for understanding the climatology of severe 
weather in an area (Geerts 1998; Gallus et al. 2008; Smith et al. 2012; Davis and 
Parker 2014; Ashley 2019; Ellis et al. 2019). Not only can scientists study tornado 
path length and intensity, but they can also use a vast network of WSR-88D doppler 
radars to study the morphology and movement of tornado-producing storm 
systems. 

Convective mode determination is a subjective matter. Gallus et al. (2008) 
defined nine different convective modes that considered linearity, organization, 
reflectivity (dBZ), and stratiform cloud formation. Alternatively, Smith et al. 
(2012) created three main categories with several sub-classifications and used a 35-
dbZ threshold when determining linearity, discreteness, or clustering. In other 
studies, storms have been further categorized by how long they keep shape and how 
long those shapes are (Geerts et al. 1998; Ashley et al. 2019). For this study, the 
dataset was derived from convective mode classifications created by Ellis et al. 
(2019), who was influenced by Smith et al. (2012). Classifications were divided 
into four simple categories, cell in line, cell in cluster, discrete supercell, and QLCS.  

Most climatological research using convective mode agrees that the 
Southeast has a unique tornado portfolio. Contrary to the strong, organized storms 
in the central plains, the Southeast’s generally high-shear, low-cape environment 
favors linear, nighttime, and cool-season tornadoes (Anderson-Frey et al. 2019). A 
high-shear environment with low instability produces notoriously difficult to 
forecast QLCS and linear storms. This is because tornadoes associated with these 
storm types are generally weak EF-0s and EF-1s that are difficult to identify on 



radar. Moreover, Ashley (2019) found that 35% of all tornadoes in Tennessee were 
from QLCSs, which makes this region unique to the rest of the United States. 

Research has found that Middle Tennessee faces many QLCS multiple-
tornado days. These storms tend to produce many weak EF-0 tornadoes and occur 
during cool seasons and nighttime hours (Ellis et al. 2019). Though linear storms 
are uniquely common in the Tennessee Valley, discrete supercells and cells in 
clusters are still considered the most dangerous (Brotzge et al. 2013). Ellis et al. 
(2019) found that cells in clusters spawned the most tornadoes in Tennessee 
between 2003 and 2014. Nashville, in general, has a slightly higher risk for tornado 
frequency than its surrounding Tennessee CWAs, Memphis and Morristown, which 
makes it a particularly interesting study area (Ellis et al. 2016).  

1.2 Success metrics 

Tornado warnings are issued by an NWS Weather Forecasting Office (WFO) when 
a tornado is spotted or indicated on radar (NWS 2020). To study warning success 
and its drivers—including convective mode—researchers often use three success 
metrics: average lead time, false alarm ratio (FAR), and probability of detection 
(POD). While the mathematics behind success metrics might be over-simplified, 
they remain a useful tool for understanding general weaknesses and strengths in 
forecasting (Brooks 2004). Success metrics are calculated according to the glossary 
of forecast verification metrics issued by the National Oceanic Administration of 
America (NOAA 2020). Each metric is calculated with variables described in a 2x2 
contingency table (Table 1), which defines hits, misses, false alarms, and correct 
negatives. 

Table 1. The 2x2 contingency table used by NOAA to define hits, misses, false 
alarms, and correct negatives for use in success metrics. 

 Tornado Observed 
Yes No 

Tornado Warned Yes Hits False Alarms 
No Misses Correct Negatives 

1.3 Objectives 

This study expands previous research by assessing convective mode’s influence on 
average lead time, POD, and FAR in the Middle Tennessee CWA. In this study, we 
categorized the convective mode of tornado-warned and tornado-producing storms 
from 2012 to 2018 that crossed into the CWA of the Nashville WFO. This CWA-
focused research may have reduced bias that is usually seen in datasets containing 
several CWAs, because each office has different forecasting methods and 



experience (Doswell and Burgess 1998). In addition to convective mode, success 
metrics may be affected by time of day and whether the day had multiple tornadoes 
(Ellis et al. 2019). Thus, convective mode, nocturnality, and multiple-tornado days 
were considered independent variables in three models that predict lead times, false 
alarms, and warnings. This study is an expansion of Ellis et al. (2019), who only 
studied false alarms and noted that more information could be gleaned if all three 
metrics were studied at once.  Furthermore, the purpose of this study was to 
investigate whether convective mode, nocturnality, and multiple-tornado days can 
be used to predict false alarms (aka FAR), warnings (aka POD), and lead time. 

2. Data and methods 

2.1 Tornado and false alarm data 

Three datasets were generated for this study. First, the tornado dataset was an 
extension of one from Ellis et al. (2019). The Ellis et al. (2019) dataset contained 
tornado information for the three NWS offices located in Tennessee from 2003 to 
2014. For each tornado, attributes included the estimated touchdown time and date 
in UTC, the magnitude on an EF-scale, the number of injuries and fatalities, 
coordinates for the tornado path, the tornado length and width, the lead time (if 
any), and convective mode of the storm. To extend the dataset to our study period 
(2012–2018), we downloaded shapefiles from the storm prediction center (SPC) 
that contained tornadoes between 2015 and 2018 and appended it to the Ellis 
dataset. We then created binary (yes/no) columns if the tornado was part of a 
multiple-tornado day and whether or not it was warned for. This resulted in 89 
tornadoes for use in this study. 

Next, we created the false alarm dataset. This dataset also began with the 
Ellis et al. (2019) dataset, which contained false alarm information from 2012 to 
2016, including warning issuance/expiration time and date in UTC, the counties 
included, and the respective convective modes. To extend this dataset to 2018, we 
downloaded shapefile data from the Iowa State Mesonet API that contained all of 
the aforementioned attributes attached to warning polygons. Similar to the tornado 
dataset, we created binary (yes/no) columns if the false alarm was part of a multiple-
tornado day. There was a total of 213 false alarms used for this study. 

2.2 Warning data 

To complete the tornado and false alarm datasets, we manually assigned convective 
modes to the new samples. Then, we generated a warning dataset with all false 
alarms and warned tornadoes by appending mode, nocturnality, multi-tornado day, 



and warned columns (warned = yes) from the tornado dataset to the false alarm 
dataset. This was used for the false alarm model and contained 270 total warnings. 

Figure 1.  The four convective modes assigned in this study as cell in cluster (a), 
discrete supercell (b), quasi-linear convective system (c), and cell in line (d). 

  

  

The three complete datasets ranged from 2012 to 2018. After all convective 
modes were assigned and the datasets completed, we generated four dummy 
variables to represent cell in line, cell in cluster, QLCS, and discrete supercell, 
which is necessary to perform multiple logistic regressions for binary data. QLCS 
storms were connected at or above a 35-dbZ threshold for at least 100 km. Shorter, 
and generally stronger, linearly connected cells were categorized as cell in line. 
Cell-in-cluster storms were disorganized clusters of convection connected by at 
least 35-dbZ, and discrete supercells were standalone cells greater than 35-dbZ that 
were not connected to other areas of convection. All decisions were made favoring 
the lowest radar tilt and images directly preceding the tornado touchdown or 
warning, without regard to stratiform cloud formation and duration. In cases where 
radar data could not be found, such tornadoes and false alarms were not included 
in the final datasets. 

2.3 Analysis methods 

First, we calculated three success metrics, lead time, FAR, and POD. Lead time is 
the amount of time between an issued warning and the arrival of a tornado. 
Research shows the average lead time has increased from 3 minutes in 1978 to 14 
minutes as of 2011 (Stensrud et al. 2013). Respondents from a survey in 2009 tend 

a b 

c d 



to prefer a 35-minute lead time, though preferred lead times may vary situationally 
(Hoekstra et al. 2011). Understandably, a relatively short lead time may not be long 
enough for people to enact emergency procedures in the wake of a tornado. 
However, research has found that a lead time greater than 15 minutes does not 
necessarily reduce death rates (Brotzge et al. 2013), thus the ideal lead time for 
civilian safety is unknown. 

Next, a false alarm is when a forecaster issues a tornado warning, but no 
tornado enters the warning polygon. False alarm data are used to calculate FAR 
using this formula: 

(1)			𝐹𝐴𝑅 =
𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠

𝑓𝑎𝑙𝑠𝑒	𝑎𝑙𝑎𝑟𝑚𝑠 + ℎ𝑖𝑡𝑠 

A higher FAR has a negative implication in that forecasters are issuing 
relatively more false positives in proportion to positive hits. Some research suggests 
that this may or may not result in the cry-wolf effect (Simmons and Sutter 2009; 
Schultz et al. 2010; Trainor 2015; Lim et al. 2019). This means that if forecasters 
issue too many false alarms, citizens may not respond to tornado-producing 
warnings as they should. However, research does not agree that the cry-wolf effect 
is significant. For example, Simmons and Sutter (2009) suggest that high FAR kills 
more people, while a Lim et al. (2019) survey suggests that people in the Southeast 
tend to take warnings seriously regardless of false alarms. Anderson-Frey et al. 
(2019) found that FAR is worse (78.6%) in the Southeast than the rest of the United 
States (75.6%), which may be an artifact of the higher frequency of nocturnal 
tornadoes. However, Anderson-Frey et al. (2016) also found that QLCS-type 
storms have a lower FAR, and there are an increased proportion of QLCSs in the 
Tennessee Valley than the rest of the United States (Smith et al. 2012). 

Lastly, POD is essentially the likelihood that a forecaster will successfully 
warn for a tornado. The formula for POD is: 

(2)			𝑃𝑂𝐷 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 

 A high POD is ideal because it means the public had warning prior to the 
tornado. Anderson-Frey et al. (2019) found that POD is better in the Southeast 
(71.5%) than the rest of the contiguous United States (65.6%). However, POD tends 
to be lower for linear storms like cell in line and QLCS (Brotzge at al. 2013). 

Finally, multiple logistic regression was used to test if convective mode, 
nocturnality, and multiple-tornado days can predict whether or not a tornado was 
warned for, which is the basis of POD. The tornado dataset was used for this model. 
Multiple logistic regression was used again to answer whether or not those same 
variables have a measurable effect on false alarms. Multiple logistic regressions 



were selected because our independent variables are categorical rather than 
numerical, so the usual multiple linear regression would not work. The combined 
warned tornado and false alarm dataset was used here. Lastly, three separate 
Kruskal-Wallis tests were used to assess whether each of the three categorical 
variables affect lead time, which was based off the warned tornado dataset. 
Kruskal-Wallis tests were chosen because our data fails the common assumption of 
normality in parametric one-way ANOVA tests, and it will assess if our continuous 
lead time variable is significantly different from our three categorical variables. 

3. Results and discussion 

3.1 Descriptive statistics 

The sample sizes for some modes were small (Table 2). The tornado dataset is weak 
in sample size for all modes except QLCS, which became a large issue for models 
using the tornado dataset (the likelihood of detection and lead time models). In 
contrast, the false alarm and warning datasets are larger than the tornado dataset, 
which means that the false alarm model was more likely to produce trustworthy 
results.  

Table 2. Samples used in analysis of tornadoes (hits and misses), false alarms, and 
all warnings (the sum of hits and false alarms). 

Mode Hits 
(n = 57) 

Misses 
(n = 32) 

Tornadoes 
(n = 89) 

False Alarms 
(n = 213) 

Warnings 
(n = 270) 

Cell in Cluster 13 9 22 76 89 
Cell in Line 6 3 9 34 40 
Discrete Supercell 11 7 18 43 54 
QLCS 27 13 40 60 87 

 
 The FAR for QLCS (Table 3) is particularly low (69%) compared to other 
convective modes (80–85%), which compares with Ellis et al. (2019). They found 
that forecasters often include a “tornado-possible” tag on severe thunderstorm 
warnings, which decreases FAR while still warning citizens of a potential weak 
tornado (Ellis et al. 2019).  

Regarding POD, discrete supercell and cell-in-cluster tornadoes had the 
lowest at 61% and 59%, respectively. Cell-in-line and QLCS tornadoes had the 
highest POD at 67% and 68%. These POD results directly contrast those found in 
Brotzge et al. (2013), which found that QLCSs had lower POD than all other 
convective modes and discrete supercells had the highest. A possible explanation 
for these results is that QLCS tornadoes in this dataset usually occurred on multiple-



tornado days (68% of QLCS tornadoes), which has shown to bias the data and 
generate a higher POD (Brotzge and Erickson 2009; Anderson-Frey et al. 2018).  

For lead time, cell in line had the best result (16 minutes) and discrete 
supercell had the worst (7 minutes). In contrast, Brotzge et al. (2013) found that 
discrete supercells had the highest lead time in the contiguous United States. 
However, the lead times in this study were most likely affected by the small sample 
sizes of tornado-producing cells in clusters (n = 22) and cells in lines (n = 9). 

Table 3.  FAR, POD, and average lead times for each convective mode. 

Mode FAR Lead Time (min) POD 
Cell in Cluster 0.85 11.18 0.59 
Cell in Line 0.85 15.67 0.67 
Discrete Supercell 0.80 7.33 0.61 
QLCS 0.69 9.85 0.68 

 
Out of all tornadoes, 40% of them were nocturnal. Specifically, 68% of 

QLCS tornadoes were nocturnal, while no discrete supercell tornadoes were. The 
higher percent of nocturnal tornadoes is likely a remnant of the high number of 
QLCS tornadoes that were part of a multi-tornado day. In fact, 82% of all tornadoes 
occurred on a day with at least one other tornado in this study, in addition to the 
fact that 45% of the tornadoes that occurred during this time period were from 
QLCSs. This aligns with findings from Anderson-Frey et al. (2018) that a higher 
number of nocturnal tornadoes occur in outbreaks (26%), while nocturnal single-
events occur less often. This makes the Nashville basin unique to the rest of the 
contiguous United States and further supports the data shown by Anderson-Frey et 
al. (2018) that outbreaks are more common in the South (42%) than surrounding 
vernacular regions. 

3.2 Likelihood of detection 

A multiple logistic regression model was created to predict whether or not a tornado 
was warned for in advance (detected) with the predictors: convective mode, 
nocturnality, and whether or not a tornado was part of a multiple-tornado day (Table 
4). The regression showed that, compared to isolated tornadoes, tornadoes on 
multiple-tornado days were 7 times more likely to be detected. Nocturnal tornadoes 
were 74 times more likely than daytime tornadoes to be detected. Lastly, QLCS 
tornadoes were 85% less likely than discrete supercells to be detected.  An analysis 
of deviance table between a null model and the logistic regression shows a 
significant chi-squared result (p < 0.05). While the chi-squared results show that 
there is a significant difference between the models with and without explanatory 



variables, the results also suggest collinearity between nocturnal, multiple-tornado 
day QLCS warnings. 
 For this reason, it is understandable that this likelihood of detection model 
is not supported by other research and may not accurately capture the climatology 
of this study area. The nocturnal QLCS outbreaks biased the small sample area and 
short time frame. Because QLCSs made up the majority of the dataset, there was 
not enough data to use lines and clusters as trustworthy predictors in the warning 
model. The remaining predictors (multiple-tornado days and nocturnality) were 
then influenced by QLCSs and thus were likely colinear enough to skew the results 
of the model. 

Table 4. The results of the warning multiple logistic regression, showing each 
coefficient for three convective modes. P-values less than 0.05 are considered 
significant.  

 Coefficient Std. Error Odds Ratio p-value 
Intercept  -1.26 0.77 0.28 0.10 
Cell in line -0.40 0.98 0.67 0.70 
Cell in Cluster -0.01 0.72 0.99 0.99 
QLCS -1.87 0.82 0.15 0.02 
Multiple-tornado day 1.96 0.76 7.09 < 0.01 
Nocturnal 4.30 1.03 73.67 < 0.01 

3.3 Likelihood of a false alarm 

A second multiple logistic regression model was created for predicting whether or 
not a false alarm occurred using the same predictors as the likelihood of detection 
model (Table 5). The regression revealed that, compared to the baseline discrete 
supercell, QLCSs are 90% less likely to produce a false alarm. All other convective 
modes did not show a significant, non-random relationship to the dependent 
variable. All warnings issued on multiple-tornado days were 94% less likely to 
produce a false alarm. Compared to daytime tornadoes, nocturnal tornadoes were 
four times more likely to produce a false alarm. An analysis of deviance table 
between a null model and the false alarm model showed that there was a significant 
difference between the models with and without explanatory variables with a chi-
squared p-value of < 0.05. 
 Ellis et al. (2019) found that false alarms increase at night and that 
forecasters felt QLCSs were more difficult to predict than discrete supercells, so 
they would prefer to issue more tornado warnings during QLCS events and thus 
produce more false alarms. While the Kruskal-Wallis tests did agree that nocturnal 
tornadoes were more likely to produce a false alarm, there was no indication that 



QLCSs had more false alarms. In fact, QLCSs were less likely than discrete 
supercells to produce a false alarm in this model. This directly contrasts the research 
from Ellis et al. (2019) and Anderson-Frey et al. (2016), who found that FAR was 
higher for QLCSs. The contrasting results from this model were likely attributed to 
the high number of QLCSs and multiple-tornado days in the dataset. 

Table 5. The results of the false alarm multiple logistic regression, showing each 
coefficient for the three convective modes, binary multi-tornado day, and binomial 
nocturnality. 

 Coefficient Std. Error Odds Ratio p-value 

Intercept  3.46 0.58 31.72 < 0.01 
Cell in Line -0.66 0.67 0.52 0.32 
Cell in Cluster -0.07 0.51 0.93 0.88 
QLCS -2.29 0.63 0.10 < 0.01 
Multi-Tornado Day -2.84 0.48 0.06 < 0.01 
Nocturnal 1.39 0.48 4.01 < 0.01 

3.4 Lead time 

Lastly, three Kruskal-Wallis tests were used to model lead time using convective 
mode, nocturnality, and whether or not a tornado was part of a multi-tornado day 
as predictors (Table 6). All four convective modes appear to have high variability 
and right or left-skewed distributions for lead time, especially during the day 
(Figure 3). The Kruskal-Wallis tests did not reveal any significant relationship 
between convective mode or multiple-tornado days with regards to lead time. A 
pairwise comparison between each variable and lead time also did not reveal any 
significant relationships. However, nocturnal tornadoes had a significant difference 
in median lead times and are higher than daytime tornadoes, which is visually 
apparent in Figure 3 and is shown by a high h-statistic and low p-value in Table 6.  
 It is unlikely that nocturnal tornadoes are easier to warn for than daytime 
ones, especially because spotters cannot see tornadoes on the ground and because 
previous research indicates otherwise (Brotzge et al. 2013, Ellis et al. 2019). In fact, 
Brotzge et al. (2013) suggests that, for the contiguous United States, discrete 
supercells have the longest lead time. For this study, QLCSs had the longest average 
lead time. This could be a result of the many QLCS multiple-tornado days unique 
to this area, in addition to the large sample size of QLCSs compared to the three 
other convective modes. The bulk of the QLCS data were nocturnal, and the sample 
sizes were particularly small for each mode. Additionally, there were several 



outliers for each convective mode, which may skew the results. However, if the 
outliers are removed, cells in clusters (where n = 6), would be even fewer. 

Figure 3. Boxplots of lead times that are categorized by convective mode and 
faceted by nocturnality. 

 

Table 6. The results of the three Kruskal-Wallis tests for lead time. 

 h-statistic p-value 
Convective mode 1.32 0.72 
Multiple-day tornado 2.38 0.12 
Nocturnal 13.09 < 0.01 

5. Conclusion 

This study has extended the knowledge garnered from Ellis et al. (2019) and created 
a more complete dataset (by including false alarms) than its counterparts (Smith et 
al. 2012, Brown et al. 2016, Davis and Parker 2014). The study suggests that the 
Nashville basin tornado climatology and forecasting metrics are unique to 
Tennessee. The majority of storms were QLCSs (contrary to the Ellis et al. 2016 
findings), which had better success metrics than its counterparts. Multiple-tornado 



days played a large part in this dataset because the study area is small, and the 
sample contains mostly multiple-tornado days.  

In the future, the dataset should be expanded upon to include more years 
and other CWAs in the Southeast. This may improve the results gathered from this 
study and may also create a more trustworthy climatology of the region. It may also 
be of interest to consider how modern climate change could affect the local 
climatology. Additionally, research should focus on automating convective mode 
classification to reduce the inherent bias and subjectivity of the researcher (Ashley 
2019). This will improve models and also reduce the amount of time required to 
identify modes. Lastly, the development of success metrics that include a spectrum 
of warning types rather than hits and misses would be an interesting way to 
understand the challenges concurrent with different convective modes. 
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