
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2022 

The Upgraded Measurement of the Neutron Lifetime Using the In-The Upgraded Measurement of the Neutron Lifetime Using the In-

Beam Method Beam Method 

Jimmy P. Caylor 
University of Tennessee, Knoxville, jcaylor2@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Nuclear Commons 

Recommended Citation Recommended Citation 
Caylor, Jimmy P., "The Upgraded Measurement of the Neutron Lifetime Using the In-Beam Method. " PhD 
diss., University of Tennessee, 2022. 
https://trace.tennessee.edu/utk_graddiss/7195 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/203?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Jimmy P. Caylor entitled "The Upgraded 

Measurement of the Neutron Lifetime Using the In-Beam Method." I have examined the final 

electronic copy of this dissertation for form and content and recommend that it be accepted in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in 

Physics. 

Nadia Fomin, Major Professor 

We have read this dissertation and recommend its acceptance: 

Geoff Greene, Thomas Papenbrock, Sowjanya Gollapinni, David Donovan 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



The Upgraded Measurement of the

Neutron Lifetime Using the In-Beam

Method

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Jimmy Caylor

May 2022



© by Jimmy Caylor, 2022

All Rights Reserved.

ii



Abstract

Precision measurements of neutron beta decay can provide answers to some of the most

fundamental questions in particle physics, astrophysics and cosmology. Neutron beta decay

is the simplest semi-leptonic decay; therefore, it provides a clean test of the charged current

sector of the Standard Model (SM). A precise measurement of the neutron lifetime and λ,

the ratio of axial vector and vector coupling constants of the weak interaction, allows for a

determination of the Cabibbo-Kobayashi-Moskawa (CKM) matrix element Vud that is free

from nuclear structure effects. The SM predicts that the CKM matrix is unitary; therefore,

the measurement of the neutron lifetime provides an important test of the SM. The neutron

lifetime is also an important input parameter into early universe Big Bang Nucleosynthesis

calculations. The neutron lifetime remains one of the most uncertain parameters in the

calculation of cosmic 4He abundance. The in-beam method of measuring the neutron lifetime

requires the absolute counting of decay protons in a neutron beam of precisely known flux.

Improvements in the neutron and proton detection systems as well as the use of a new analysis

technique and apparatus upgrades allow for a rigorous re-examination of the systematic

effects associated with this method. This work will discuss the development and optimization

of new analysis techniques that provide improved proton energy resolution as well as an

absolute timing comparison to simulation. The results of new proton systematic studies and

a new simulation model will also be discussed.
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Chapter 1

Introduction and Theory

1.1 Discovery of the Neutron and Neutron Beta Decay

In March of 1896 while examining photographic plates upon which a uranium sulfate had

been placed, Henri Becquerel discovered radioactivity when he observed the uranium emitted

radiation without any external influence[10]. In the subsequent years, Earnest Rutherford

and Paul Villard identified the observed radiation types by their penetrating depth, calling

them alpha, beta, and gamma. Alpha particles were easily stopped by as little as a sheet

of paper. Measuring the charge-to-mass ratio would eventually lead to identifying alpha

radiation as the 4He nucleus. Gamma rays were highly energetic and the most penetrating

of the three types. As gamma radiation was unaffected by a magnetic field, it was thought

to be massive and neutral. After Rutherford discovered that gamma radiation could be

reflected off a crystal, gamma radiation was identified as electromagnetic radiation, photons

[69]. Becquerel was able to measure the charge-to-mass ratio of beta radiation and found

that it was consistent with J.J. Thomson’s “cathode ray.” This was the first evidence that

beta radiation was an electron.

In 1920, Earnest Rutherford first proposed the idea of a neutral massive particle in the

nucleus of an atom to account for the difference in atomic mass and atomic number [81]. In

the early 1930s Walther Bothe, Herbert Becker, and Iréne and Frédéric Joliot-Curie carried

out a set of experiments that showed that light elements irradiated with alpha particles would

produce neutral penetrating radiation. They originally thought this was gamma radiation.
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However in 1932, James Chadwick submitted evidence of the existence of the neutron [27].

To conserve energy and momentum, he identified the penetrating radiation from irradiated

beryllium must be the neutron and not gamma radiation. In 1934 and 1935, while measuring

the binding energies of deuterium and beryllium, Chadwick and Goldhaber showed that the

neutron mass was between 1.005 and 1.008 atomic mass units, greater than that of the

hydrogen atom [28][29]. This indicated that it was theoretically possible for the neutron

to decay into a proton and an electron. This was in direct contradiction to Rutherford’s

proposal that the neutron was a tightly bound state of a proton and an electron.

Initially, beta decay was thought to be a two-body process that would lead to a very

narrow band of electron energies. However, continuous electron spectra were observed in

nuclear beta decay suggesting a violation of the conservation of energy. In 1930, a solution

to this problem was suggested by Wolfgang Pauli [71]. He proposed that beta decay was a

three body process to explain the observation of a continuous spectrum. He suggested an

additional, neutral particle was ejected from the parent nucleus. Pauli called this particle

a neutron however, it was later renamed to neutrino or “little neutral one” in Italian after

Chadwick and Goldhaber showed the neutron mass to be inconsistent with the proposed

additional particle. In 1934, Fermi first developed his formalism for beta decay. In this

formalism, a neutron transforms into a proton while ejecting an electron and a neutrino

[38]. It was not until the 1940s that neutron decay would be observed at the Oak Ridge

Graphite Reactor [90, 91]. Shortly after at the NRX reactor in Chalk River, Ontario, Robson

made what is considered the first measurement of the neutron lifetime [80]. Pauli’s proposed

neutrino went unconfirmed for more than 20 years until 1956 when Cowan and Reines made

the first identification of a neutrino [33]. After these discoveries, it was clear that Pauli was

correct and the neutron decays into a proton, electron and anti-neutrino as:

n → p+ e+ ν̄e + 782 keV. (1.1)

In the nearly 70 years since the detection of the first neutrino the field of nuclear physics has

made many strides into understanding the subatomic world. Many other forms of decay

have been discovered including: spontaneous fission, proton and neutron emission, and
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positron emission, known as beta plus decay. The world of nuclear theory has also seen

much advancement. From the starting point of Fermi’s theory of beta decay, the Standard

Model (SM) and other effective field theories have set a framework to describe nuclei. Still,

100 years after the discovery of the neutron there is plenty we still have to learn about

neutron beta decay.

1.2 Theory of Nuclear Beta Decay

In 1934, Fermi published the first theory of nuclear beta decay, which was the first attempt

at describing the weak interaction [38]. He modeled it after the electromagnetic interaction

as a 4-point interaction similar to the emission of a photon from an excited nucleus as seen

in figure 1.1. The proposed matrix element for free neutron beta decay was a pure vector

(V) interaction like the electromagnetic interaction and was given by:

MFermi = GF ⟨up|γµ|un⟩⟨ue|γµ|uν⟩, (1.2)

where up, un, ue and uν are the proton, neutron, electron and neutrino spinors, γµ is the

gamma matrix and GF is the Fermi coupling constant [38]. In 1936, Gamow and Teller

proposed that Lagrangian be extended to include all Lorentz-invariant interactions, this

added the scalar (S), pseudoscalar (P), axial-vector (A) and tensor (T) terms to the vector

term [43]. The generalized weak interaction matrix element is then given by:

M = Gi⟨up|Oi|un⟩⟨ue|Oi|uν⟩, (1.3)

where the operators Oi are given by the gamma matrices in table 1.1, andGi is the interaction

strength of each term. Two types of decays have been observed. Fermi decay ∆J = 0, where

∆J is the difference between the initial and final total angular momentum, leaves the leptons

in a spin singlet state and is allowed by the scalar and vector currents. Gamow-Teller decay,

∆J = ±1, leaves the leptons in a spin triplet and is allowed by the tensor and axial-vector

currents. The P interaction is suppressed because neutron beta decay is non-relativistic.
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Figure 1.1: Neutron beta decay as described by Fermi’s 4-point model.

Table 1.1: Bilinear Covariants

Interaction Type Oi

Scalar OS = I
Pseudoscalar OP = γ5

Vector OV = γµ
Axial-Vector OS = γµγ5

Tensor OT = σµν = i
2
[γµ, γν ]
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By the 1950s, a problem with this theory of the weak interaction had developed. Two

particles of the same mass, charge, and strangeness, Θ+ and τ+, were observed to have

different final state parities. The particles decayed with the following reactions:

Θ+ → π+ + π0

τ+ → π+ + π+ + π−.

The parity of each pion was known to be -1 so the initial parity of the Θ+ was taken to be

+1 and the parity of the τ+ was taken to be -1. In 1956, Lee and Yang proposed that the

weak interaction may not be parity conserving and suggested that the Θ+ and the τ+ are

the same particle1. Shortly thereafter, an experiment done by Wu in collaboration with the

Low Temperature Group at the National Bureau of Standards showed that the beta decay

electron direction from polarized 60Co was asymmetric [106]. With this and subsequent

results [44, 41], it was clear that the weak interaction is parity violating and the theory must

account for this.

Evidence from these experiments and others [40, 49] showed that the weak interaction

only involves left-handed particles and right-handed antiparticles. Experiments showed that

the V and A interactions were responsible for the weak interaction. To date, no evidence

for scalar or tensor interactions has been found [52, 94]. In 1958, theorists showed that the

particular form of the weak interaction was V-A [39, 96]. Throughout the 1960s and early

1970s the theory continued to be refined [101, 82, 48, 97, 54]. Thanks to their work, the

matrix element for the weak interaction can be written as:

M =
GFVud√

2
[gV ūpγµun + gAūpγµγ5un][ūeγµ(1− γ5)uν)]. (1.4)

where Vud is the up-down element from the Cabibbo-Kobayashi-Maskawa (CKM) quark

mixing matrix. At the quark level the couplings, gV and gA, are identical, but strong

interaction effects inside the nucleon can change their observed strength. For neutron beta

decay we define λ ≡ gA
gV
. Evaluating the neutron beta decay matrix element and integrating

1Lee and Yang were correct that the Θ+ and the τ+ were the same particle, we now know it as the K+.
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over the kinematic variables, the neutron decay rate at the tree level is given by:

Γ =
1

τn
=

fRm5
ec

4

2π3ℏ7
G2

F |Vud|2(|gV |2 + 3|gA|2), (1.5)

where fR is a phase space factor and me is the electron mass. Using λ, we can rewrite the

neutron lifetime as:

τn =
2π3ℏ7

m5
ec

4fRG2
F |Vud|2(1 + 3|λ|2)

=
5099.34 s

|Vud|2(1 + 3λ2)(1 + ∆R)
. (1.6)

Evaluating the expression, we can see the neutron lifetime can be written as a function of

Vud and λ as:

τn =
5099.34 s

|Vud|2(1 + 3λ2)(1 + ∆R)
, (1.7)

where ∆R is a radiative correction [36, 86].

In general, a description of the weak interaction should include the massive gauge bosons,

the charged W± and the neutral Z0. In neutron beta decay, the down quark of the neutron

transitions into the up quark of the proton via emission of a virtual W− boson that promptly

decays into an electron and an anti-neutrino as seen in figure 1.2. This leads to two three-

particle vertices that must be calculated rather than a single four-particle vertex. The

propagation term of this interaction is given by 1
M2

W−q2
where MW is the mass of the W−

boson and q is the momentum transfer. At low energies, where M2
W >> q2 the propagation

term can be treated as solely 1
M2

W
. The Fermi interaction is an example of an effective

field theory. This effective field theory method is relevant here as the W mass (80.379 ±

0.012GeV/c2) [74] is much greater than any energy transfer between the initial and final

states. In the low energy limit, the coupling is GF√
2
= g2w

8M2
W
, where gw is the weak coupling

and the 8 is from SM convention [18].

1.3 Measuring Vud from Neutron Beta Decay

The CKM matrix describes the mixing between the weak and mass eigenstates of quarks

[60]. The Standard Model requires the CKM matrix to be unitary, any deviation from
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Figure 1.2: Feynman diagram of neutron beta decay showing the constituent quarks and
the virtual W− boson.
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unitarity would indicate some kind of beyond the Standard Model (BSM) physics such as

a deviation from the V-A nature of the weak interaction or another generation of particles.

The CKM matrix elements are not calculable and must be determined by experiment. The

most relevant test of CKM unitary for neutron beta decay is sum of the squares of the top

row as:

∆CKM = 1− |Vud|2 − |Vus|2 − |Vub|2, (1.8)

where the matrix elements correspond to the mixing between the up quark with the down,

strange, and bottom quark respectively and ∆CKM is the deviation from unitarity.

1.3.1 Vud from Superallowed Decay

The current best extraction of Vud is from 0+ → 0+ superallowed nuclear decays. These

decays are between nuclei that are analogs of spin and parity (∆J = 0 and parity even) and

are pure vector decays. This experimental method attempts to minimize nuclear structure

corrections by using nuclei with maximal overlap in the initial and final states. The strength

of these decays are measured with an Ft value. This Ft is a function of the energy, half-life

and branching ratio of the decay. The Ft value is given by:

Ft ≡ ft(1 + δ
′

r)(1 + δNS + δC) =
K

2G2
V (1 + ∆V

R)
, (1.9)

where GV is defined as GFVud, K = 8120.27648(26) × 10−10GeV −4s, and δ
′
R, δNS, δC , and

∆V
R are the transition dependent radiative, nuclear structure, isospin-symmetry-breaking and

universal radiative corrections [53]. Because of conserved vector current hypothesis many

pure vector decays may be averaged together to get a more precise measurement of Vud.

Rearranging equation 1.9, Vud is given as:

|Vud|2 =
G2

V

G2
F

=
K

2G2
F (1 + ∆V

R)F̄t
, (1.10)

where F̄t is the average over all Ft values. GF is well known from muon decay [74] and the Ft

values are consistent with one another, confirming the conserved vector current hypothesis,

leading to a determination of Vud = 0.97373±0.00031 [53]. This value is actually significantly
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lower and somewhat less precise than the previous results. The shift resulted from new

calculations of the universal radiative correction that will be covered in more detail later in

the chapter. The reduction of precision largely comes from the introduction of a new term

in the δNC correction that, when combined with the previous correction [99], largely does

not change the central value but expanded the errors [51].

1.3.2 Vud from Neutron Beta Decay

Extracting Vud from neutron beta decay requires two experimental measurements, τn and λ.

The measurement of τn will be covered extensively later in this work, but in order to measure

λ, consider the differential decay rate give in reference [57]. This decay rate parameterizes

neutron beta decay as a function of the electron and anti-neutrino energy and momenta as:

dw

dEedΩedΩν

∝ peEe(E0 − Ee)
2 ×

[
1 + a

p⃗e · p⃗ν
EeEν

+ b
me

Ee

+ (1.11)

⟨σ⃗n⟩
(
A
p⃗e
Ee

+B
p⃗ν
Eν

+D
p⃗e × p⃗ν
EeEν

)
. . .

]
,

where pe, pν , Ee and Eν are the momenta and energy of the decay electron and anti-neutrino,

E0 is the end point energy of the electron, σ⃗n is the neutron spin, and a, b, A, B, and D

are the so-called correlation coefficients. Here, we will focus on a and A, the correlations

coefficients most commonly used to determine λ. The a and A correlation coefficients are

purely a function of λ.

Currently, the most precise method of measuring λ comes from measuring the neutron

spin-electron asymmetry, A. The world’s most precise measurement of A used the PERKEO

III spectrometer at the Institut Laue-Langevin. The experiment used a cold neutron beam

that was polarized using a supermirror polarizer. After the beam was polarized, a rotating

disk chopper was used to create a pulsed beam. Using a pulsed beam, the neutron bunches

were temporarily stored in-flight in the 8 m long spectrometer to avoid edge effects. If a

neutron decayed in this magnetic field region, the electron was transported to one of two

plastic scintillator detectors upstream or downstream of the decay region. This resulted

in a measurement of A = −0.11955(21) and λ = 1.27641(56) [65]. A systematically
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independent measurement of λ can be made by measuring the electron and anti-neutrino

angular correlation, a. The most precise measurement of a is from the aSPECT collaboration

at the Institut Laue-Langevin. The experiment measured the electron and anti-neutrino

angular correlation by measuring the energy spectrum of the recoiling proton. If the electron

and anti-neutrino are emitted in the same direction the proton gains a larger recoil kick rather

than if the electron and anti-neutrino are emitted in opposite directions. The neutron beam

entered the apparatus in a region of high magnetic field, if the neutron decayed then the

protons were trapped by the magnetic field. The protons were guided by the magnetic

field and are detected with a spectrometer that is carefully designed to longitudinalize the

proton’s momentum before they are incident on a silicon drift detector. This resulted in a

measurement of a = −0.10430(84) and λ = −1.2677(28) [8]. The most recent Particle Data

Group (PDG) value for λ using neutron beta decay is λ = −1.2754(13) [74], this includes

a 2.7 scale factor on the uncertainty because of the non-statistical spread in the measured

values. One may note however that the three most precise measurements of λ are in good

agreement. Now that λ has been measured, Vud may be calculated by using the neutron

lifetime and applying the applicable radiative corrections.

To extract Vud from neutron beta decay one must apply the universal radiative correction,

∆V
R. This is the dominant correction term in free neutron beta decay and is present in all

beta decays, this correction is approximately 2.4%. To extract Vud from nuclear decays one

must also apply the transition dependent radiative, isospin-breaking, and nuclear structure

dependent corrections. For the measured super-allowed decays, δ
′
R varies between 1.4% and

1.7%, δC varies from 0.18% to 1.7% and δNC varies from 0.02% to 0.4%. Therefore, neutron

beta decay provides a cleaner measurement with fewer theoretical corrections. However,

the current experimental precision of neutron beta decay experiments are worse than the

theoretical corrections.
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1.3.3 Status of CKM Unitarity

As recently as 2019, the PDG overview of the first row of the CKM matrix found good

agreement with unitarity [14].

∆CKM2019 = 1− |Vud|2 − |Vus|2 − |Vub|2 = 0.0006(5)

The results included in this determination used the radiative correction ∆R
V = 0.02361(38)

[64]. The reasonable agreement with unitarity was seen as another confirmation of the

Standard Model and placed constraints on BSM physics. However in 2019, a new treatment of

the universal radiative correction was published that reduced the error bars by approximately

40 % but shifted the value of the correction significantly. The new universal radiative

correction is ∆V
R = 0.02467(22) [86], a shift of approximately 3 σ. This new calculation

directly affects the extraction of Vud from both nuclear and neutron decay and had a

significant effect on the consistency with unitarity. This new correction shifted the value

of Vud lower for both the nuclear and neutron decays and lead to significant tension with

unitarity in the 2020 PDG [15].

∆CKM2020 = 1− |Vud|2 − |Vus|2 − |Vub|2 = 0.0015(5)

At present, due to the increased errors in the latest determination of Vud because of δNS, the

disagreement with unitarity is not as large. While the central value of Vud did not significantly

change, the error was expanded by approximately a factor of 2. The most current check of

the top row of the CKM matrix shows a ≈ 2σ tension with predicted unitarity.

∆CKM2021 = 1− |Vud|2 − |Vus|2 − |Vub|2 = 0.0015(7)

This determination uses Vud from superallowed decays. As mentioned earlier, neutron decay

provides a somewhat cleaner, but less precise, determination of Vud. One can also measure

Vud using pion decays, though very small branching ratios make this experiment difficult and
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not competitive. The currently accepted values for Vud are:

Vud = 0.97373(31) (superallowed decays) [53]

Vud = 0.9737(9) (neutron decay) [16]

Vud = 0.9749(21) (pion decay) [78],

(1.12)

where the error in the evaluation for neutron decay includes a scale factor for both τn and λ

due to inconsistencies in the data.

In order to understand the precision required for neutron beta decay experiments, we

can expand the uncertainty of Vud as:

δ(|Vud|2)
|Vud|2

=

[(
δK

K

)2

+

(
2
δGF

GF

)2

+

(
δ(1 + ∆V

R)

1 + ∆V
R

)2

(1.13)

+

(
δf(1 + δ

′
R)

f(1 + δ
′
R)

)2

+

(
δτn
τn

)2

+

(
6λδλ

1 + 3λ2

)2
]1/2

[13],

where δK
K

and δGF

GF
are negligible,

δ(1+∆V
R)

1+∆V
R

= 2.15 × 10−4,
δf(1+δ

′
R)

f(1+δ
′
R)

= 5.25 × 10−5 [103]. and

λ = 1.27641(56). Inserting these values and collecting terms, equation 1.13 becomes:

δ(|Vud|2)
|Vud|2

∼

[
4.885× 10−8 + 1.69 · (δλ)2 +

(
δτn
τn

)2
]1/2

, (1.14)

where the first term on the right is the collection of uncertainties from theory corrections.

If one takes the error on Vud from superallowed decays and simplifies equation 1.14, one can

see that to have a competitive determination of Vud from neutron beta decay

1.69 · (δλ)2 +
(
δτn
τn

)2

< 1.77× 10−7. (1.15)

Using the single most precise measurement of τn [50] and λ [65], the left side of equation

1.15 is 4.75 × 10−7, not competitive with superallowed decays. To be competitive with the
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current uncertainty on Vud the neutron physics community must strive for a measurement

of τn to ≈ 0.2 s uncertainly and λ to δλ ≈ 2× 10−4 relative uncertainly.

Until now we have focused solely on the Vud element of the CKM matrix because that

element dominates the test of unitarity. |Vud|2 makes up ≈ 95% of the squares of the top row

with |Vus|2 constituting ≈ 5% and |Vub|2 contributing a negligible fraction at ≈ 0.002%. Vus

is typically determined in one of three ways, using kaon, hyperon, or tau decays. The most

precise method for determining Vus is with kaon decays. Historically K → πeνe was solely

used to determine Vus because of large errors in the corrections of K → πµνµ. Since the

mid 2000s the form factors have been determined precisely enough for both decay types to

be used. There are five kaon decay channels evaluated for the world data [4]. The currently

accepted values for Vus are:

Vus = 0.2243(8) (kaon decays) [16]

Vus = 0.2250(27) (hyperon decays) [24]

Vus = 0.2221(13) (tau decays) [2],

(1.16)

where only the value from kaon decay is used for test of the first row of the CKM matrix.

1.4 Neutron Beta Decay and Big Bang

Nucleosynthesis

The neutron lifetime is an important input parameter in Big Bang Nucleosynthesis models

that predict the abundance of light (H, He and Li) nuclei in the early universe. The models

use an input of the ratio of the neutrons to protons when these light elements start to form.

The early universe is characterized by the temperature, T. After the Big Bang, the early

universe was extremely hot, during this period the temperature was high enough that protons
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and neutrons were in equilibrium with the following reactions:

n+ e+ ↔ p+ ν̄e (1.17)

p+ e− ↔ n+ νe.

As the hot, early universe began to cool, the neutron to proton ratio was in thermal

equilibrium as given by the Maxwell-Boltzmann distribution:

n

p
∝ e

−∆m
T ,

where ∆m is the mass difference between the proton and the neutron. At approximately 1

s after the Big Bang (T ≈ 1 MeV) this interaction stops being the dominant process that

determines the neutron to proton ratio. This so called “nucleon freeze-out” leaves the neutron

to proton ratio at ≈ 1
6
. However, the universe does not cool enough so that multiple nucleons

can bind into nuclei until ≈ 200 s after the Big Bang. During this period between 1 s and 200

s, the dominant factor in the neutron to proton ratio is the neutron lifetime as seen in figure

1.3. At the time when nucleosynthesis starts the neutron to proton ratio is ≈ 1
7
, but the

neutron lifetime gives the largest uncertainty2 to this ratio for nucleosynthesis calculations

[34, 32, 75]. Currently, measurements of early universe light element abundance are less

precise than the theoretical predictions, but as measurements improve, the uncertainty in

the neutron lifetime will have a larger impact in theoretical predictions.

1.5 Neutron Lifetime Measurement Methods

There are multiple different techniques for measuring the neutron lifetime. This is important

because it allows for independent measurements of the neutron lifetime with differing

systematic uncertainties. An agreement between the different experimental techniques would

give confidence to the measurements. The two most mature experimental techniques are

2The individual uncertainties of the most precise neutron lifetime measurements are competitive with
uncertainties from other inputs into nucleosynthesis models. The major uncertainty in the input comes from
the difference in measured neutron lifetimes from the two major experimental techniques.
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Figure 1.3: Variation of the neutron to proton ratio as a function of time and temperature
in the early universe. The influence of the neutron lifetime is highlighted by the gray dashed
line, taken from reference [88].
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known as the “bottle” and “beam” methods. The bottle method traps ultracold neutrons

(UCNs) in a combination of gravitational, material or magnetic traps and counts the number

of neutrons that remain after a given holding time. The beam method uses a neutron beam

and simultaneously measures the neutron fluence and the rate of the neutron decay products,

either the proton or electron. A third type of experiment is currently ongoing that uses a

time projection chamber. This experiment also uses a cold neutron beam but measures

delayed protons from the n(3He,3H)p reaction to determine the neutron rate and measures

scintillation light generated from decay electrons for the decay rate. Over the past decade, the

bottle experiments have dominated the landscape. According to the PDG, six new neutron

lifetime results using the bottle method were published in the last 10 years compared to one

results using the beam method. One neutron lifetime result with large uncertainties has also

been published but is not included in the PDG average. There has also been recent work

done using space-based measurements of the neutron lifetime as discussed in 1.5.3, these

measurements also have large uncertainties and are not included in the PDG average.

1.5.1 Bottle Storage

All bottle type experiments store extremely low energy neutrons. These UCNs have kinetic

energies ≈ 100 neV, which corresponds to velocities of ≈ 1 m/s. On the earth’s surface,

UCNs have a gravitational potential energy of roughly 100 neV/m, therefore a UCN can be

gravitationally trapped in reasonably sized vessels. The Fermi effective potential of many

materials are > 100 neV, so for a carefully chosen material, UCNs can be totally reflected

upon interaction with the surface. The magnitude of the neutron magnetic moment is

≈ 60 neV/T, so the µ · B potential in a large, inhomogeneous magnetic field is sufficient

to reflect and trap UCNs. With a clever combination of materials and geometry UCNs can

be easily trapped in these “bottles” for 1000s of seconds, longer than the neutron lifetime.

Traditionally, UCN bottles used a combination of vertical confinement by gravity and radial

confinement using material walls. These interactions with the material walls historically

have caused additional neutron losses which lead to large systematic corrections. Some

modern experiments have used a combination of gravitational and magnetic traps, however,

the magnetic interaction is spin dependent. Because of this, UCNs must be kept in a single
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polarization state while in the trapping region to avoid excess losses. These magnetic traps

effectively eliminate interactions with materials and thus far these types of experiments have

smaller corrections.

To carry out a neutron lifetime experiment using the storage method, an initial number

of neutrons, N0 are loaded into a confinement container. After a known storage time, ∆t1,

the remaining neutrons are counted. The process is then repeated with a second storage

time, ∆t2, and the remaining number of neutrons are counted again. Assuming that neutron

beta decay is the only loss mechanism, the neutron lifetime can then be determined as:

τn =
∆t2 −∆t1
ln(N1/N2)

, (1.18)

where N1 and N2 are the number of remaining neutrons after each holding time. Taking

the relative ratio of two measurement cycles allows for many major systematic effects

to cancel, simplifying the amount of systematic tests that are needed. In reality, the

measured lifetime is a combination of all loss mechanisms of the bottle plus the neutron

lifetime. Common loss mechanisms include: inelastic scattering, neutron absorption, and

depolarization. Interactions with the wall of the bottle can lead to inelastic scattering that

can give the neutron enough energy to the escape the gravitational trap, wall interactions

also have some probability for neutron absorption depending of the wall material. In

magnetic bottles, field inhomogeneities can cause depolarization which causes the neutron to

escape through the magnetic potential. Taking into account these effects the corresponding

measured storage lifetime is:

1

τstorage
=

1

τn
+

1

τscat
+

1

τabs
+

1

τdepol
+ · · · , (1.19)

where each τ corresponds to the particular lifetime of each interaction separately. For many

experiments, the difference between τstorage and τn was tens or even > 100 s. These large

corrections must be precisely known to have confidence they are applied correctly. The

world’s most precise measurement of the neutron lifetime is from the UCNτ experiment. This

experiment traps neutrons using a magnetic UCN trap which decreases the size of these loss

mechanisms. This was the first experiment of its kind to have storage loss corrections less

17



than the quoted uncertainty for the result [70, 50]. The current world’s best measurement

using this method is τn = 877.75± 0.28 +0.22
−016 s from the UCNτ collaboration [50].

1.5.2 In-Beam Decay

This method measures the neutron decay rate by counting both neutrons and one of the

neutron beta decay products, the protons or electrons, using a collimated cold neutron

beam. Most of these types of experiments detect the decay proton since it is low energy

and much easier to confine with reasonable electric and magnetic fields. These experiments

are absolute counting experiments which means that the detection efficiency of both the

proton and neutron detector must be accurately known. This method is further complicated

because the neutron density in the decay region must be measured, not the neutron number.

A neutron is more likely to decay if it has a lower velocity in the decay region, thus, the

decay probability is proportional to 1/v where v is the velocity of each neutron. In order to

avoid an unnecessary systemic effect related to v, the typical neutron detection system for

this type of experiment has a detection efficiency that is also proportional to 1/v. Another

complication in this type of experiment is measuring the proton decay volume. The decay

rate is proportional to the decay volume, so the neutron beam profile and decay length, L

must be accurately known. The neutron lifetime can be calculated as:

τn =
L

vo

Ṅn

Ṅp

ϵp
ϵo
, (1.20)

where vo is the thermal neutron reference velocity, Ṅn and Ṅp are the measured neutron

and proton event rates and ϵo and ϵp are neutron and proton the detection efficiencies. The

current world’s best measurement using this method is τn = 887.7±1.2±1.9 s from the BL1

collaboration [108]. As this work (BL2) is an experiment of this type, Chapter 2 will cover

this method in greater detail.
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1.5.3 Other Measurement Techniques

While the beam and storage methods have historically been the most common types of

neutron lifetime experiments, in recent years there have been efforts to make systematically

independent measurements using other techniques. One of those experiments is currently on

going at J-PARC in Japan. It aims to measure the neutron flux and decay rate simultaneously

using a time projection chamber. The experiment uses a polarized, pulsed neutron beam

in a He and CO2 gas time projection chamber (TPC). When a neutron decays in the TPC,

the decay electron creates an ionization track which may be detected with a multi-wire

proportional chamber (MWPC). A -9000 V drift voltage is supplied to the bottom of the

TPC so the charge distribution of a particle track may be projected onto the MWPC at the

top of the TPC. The gas of the TPC is sensitive to charged particle tracks but not γ-rays,

so the background is suppressed. A small admixture of 3He is added to the TPC gas in

order to detect neutrons. The neutron flux is determined using the neutron capture process,

3He(n, p)3H. Since this is a two body process, the outgoing proton and hydrogen have

fixed energies that can looked for using TPC tracks. The neutron beam is pulsed so that

the detection rate has a specific time structure that can be used to reject backgrounds. The

pulsed beam also reduces edge effects from the boundaries of the TPC. The current published

value using this method is τn = 898±10 +15
−18 s [55]. Thus far, this method has not shown the

competitive precision as the other more established methods but further improvements in

statistics and systematics are expected. The proposed improvements in reference [55] hope

to reduce the systematic uncertainty to ≈ 2 s.

Another novel approach to measuring the neutron lifetime uses space based spectrom-

eters, measuring the neutron flux from planetary bodies. Neutrons are generated from

planetary surfaces or atmospheres by spallation when high energy cosmic rays impact the

planets. These spallation neutrons are created with energies > 1 MeV but some portion

of them are scattered by the surface material or atmosphere of the body. This results in

neutrons with energies ranging from 1 eV to 500 keV for epithermal neutrons and < 1 eV

for thermalized neutrons. For planetary bodies the size of the moon or larger, thermal

neutrons are gravitationally bound with flight times that are on the order of the neutron
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lifetime [62]. The feasibility of this technique was demonstrated by a group of scientists

using NASA’s MESSENGER spacecraft [105] and further refined by the same group using the

Lunar Prospector (LP) Neutron Spectrometer [104]. The initial neutron flux from the body’s

surface is heavily dependent on the body’s elemental composition. The first measurement

of this type was done using data from flybys of Venus and Mercury. Uncertainty in the

composition of the planets was the leading uncertainty in that measurement’s precision.

However, the Moon’s surface is well understood, so using data from LP greatly reduced

this uncertainty. The LP’s neutron spectrometer consisted of two gas proportional counters

filled with 3He, one of these detectors was covered with cadmium to shield it from thermal

neutron contributions. The event rate was determined using the difference of the unshielded

detector and the Cd covered detector as a method of background subtraction. Background

events from the spacecraft itself are significant and must also be subtracted from the data.

The background rate and spectral shape were determined during the spacecraft’s approach

to the Moon, when the spacecraft was at a greater altitude than possible trapped neutron

trajectories. The neutron flux is dependent on the altitude of the detectors above the body’s

surface. At higher altitude it is more likely that a neutron has decayed before reaching

the detectors so the neutron flux is lower. Using the elliptical orbit of the spacecraft, the

neutron rate can be measured as a function of altitude. When the detector rate is compared

to neutron production models of the planet, a neutron lifetime can be calculated. The

current most precise measurement of the neutron lifetime using a space based experiment is

τn = 887± 14 +7
−3 s [104].

1.5.4 Status of the Neutron Lifetime

In 2005, when the BL1 experiment published its value of the neutron lifetime, there was good

agreement between all types of neutron lifetime experiments. Later that year, a new storage

type measurement was published by Serebrov et al that was in significant disagreement

with the accepted value [87]. This caused a reanalysis of other storage type measurements

which lead to either withdrawal of the measurement or an added systematic correction

that lowered the. In 2010, Pichlmaier et al [77] published a new storage method result

that was in agreement with the lower value found by reanalyzed storage measurements.
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This was the beginning of the ongoing “neutron lifetime puzzle.” Since 2010, multiple

storage type measurement have published lifetime values that are significantly lower than

the accepted value from 2005. No new data has been published using the in-beam method

but a new systematic study was carried out with the BL1 data that significantly decreased

the uncertainty of the measurement, but did not find a new significant correction. This

leads us to the current day where there is ≈ 4σ discrepancy between the weighted average

of the storage type measurements and the most precise in-beam measurement. The ongoing

BL2 experiment aims to address this puzzle by making the first precision measurement of

the neutron lifetime using the in-beam method in over a decade as well as searching for

previously unaccounted for systematic effects. A summary of the neutron lifetime puzzle

can be seen in figure 1.4.
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Figure 1.4: Neutron Lifetime vs Year, highlighting the difference between in-beam and
storage type measurements. Data include any measurement included in the PDG neutron
lifetime average any time between 2018 and 2021. Data also includes the most recent
published value from the ongoing TPC measurement at J-PARC and a recent space based
measurement. [21, 63, 87, 77, 6, 88, 108, 55, 70, 95, 5, 37, 62, 50]
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Chapter 2

Measuring the Neutron Lifetime at

NIST Using the In-Beam Method

2.1 Overview and Challenges

The in-beam neutron lifetime technique requires the measurement of three main values.

Precision measurements are needed for the proton event rate, the neutron fluence rate,

and the trapping volume. Each of these areas has its own unique challenges and technical

difficulties. The general difficulties in this measurement technique have been covered

previously [22, 21]. For the rest of this paper, with the exception of chapter 3, the techniques

discussed will be only those that apply specifically the BL2 neutron lifetime measurement

at the National Institute of Standards and Technology (NIST).

An illustration of the experimental setup can be seen in figure 2.1. The experiment

consists of a collimated neutron beam, incident from the left in figure 2.1, a superconducting

solenoid operating 4.6 T, a solid state silicon charged particle detector, a segmented electrode

proton trap and an array of four silicon charged particle detectors surrounding a thin 6LiF

deposit. When the neutron beam enters the trapping region, one of two processes can

occur. If a neutron decays in the trapping region, the proton is confined radially by the

4.6 T magnetic field and axially by a +800 V (nominal) potential on the upstream (door)

and downstream (mirror) sections of the electrode trap. The proton trap is activated for a

predefined, finite amount of time before the door electrodes are grounded and the protons
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Figure 2.1: An illustration of the BL2 experimental apparatus showing the proton detector,
electrode trapping region, and the 1/v neutron fluence detectors. The red electrodes on the
right side of the trap are the door, and the red electrodes on the left side of the trap are the
mirror. The central electrodes in blue are the trapping region.
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follow the magnetic field lines and are accelerated to the proton detector. The detected

proton rate is given by:

Ṅp = τ−1
n ϵpL

∫
A

daI(v)
1

v
, (2.1)

where τn is the neutron lifetime, L is the length of the trapping region, A is the area of the

neutron beam, v is the neutron velocity, I(v) is the neutron velocity dependent fluence rate,

and ϵp is the detection efficiency of the proton detector. If the neutron does not decay, then

it continues until it is incident on a 6LiF deposit where it has a small probability of being

captured. If the neutron is captured, the resulting 7Li immediately decays into a triton

and and alpha particle. The array of silicon detectors surrounding the deposit then detect

these decay products with a known efficiency. If the neutron is not captured, it continues

downstream into a beamstop. The detected neutron event rate is given by:

Ṅα+t = ϵ0v0

∫
A

daI(v)
1

v
, (2.2)

where ϵ0 is the neutron detection efficiency and, following a usual convention in neutron

physics, v0 is the thermal neutron velocity (v0 = 2200 m/s) for which the neutron detection

efficiency is defined. The integrals of the previous equations are identical, given the

assumptions that the neutron velocities do not change between the trapping region and

the neutron detector, and the neutron detection efficiency is exactly proportional to 1/v.

Relating equations 2.1 and 2.2 we have the neutron lifetime given as:

τn =
L

Ṅp

Ṅα+t

ϵ0

ϵp
v0
. (2.3)

There are three major challenges about this type of neutron lifetime measurement: 1) the

relatively long neutron lifetime means that decay rate and subsequent proton rate is low

with respect to background rates; 2) the trapping potential of the decay volume must be

accurately measured; 3) the dependency of the decay rate on the neutron velocity means

that the density of neutrons in the decay volume is needed and not the neutron number.

Additionally, significant care must be taken to understand the detection efficiency of the

proton and neutron detectors.
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2.2 Experimental Method and Apparatus

2.2.1 Proton Counting

The absolute proton rate is difficult to measure for a multitude of reasons, including the low

signal to background rate due to the relatively long lifetime of the neutron, and the very low

decay proton energy. In order to decrease the rate of random background events, protons

are not allowed to travel freely to the proton detector as soon as they are born. Instead,

decay protons are trapped for a finite amount of time before being released and sent to the

detector. Because of the periodic release of the protons, the protons may only arrive at the

detector in a finite time window, which produces a significant background reduction. This

trapping technique was first proposed in the late 1980s and has been used successfully in

other experiments in the past [19, 67]. The energy of the decay protons is another reason

the proton rate is difficult to determine. The maximum kinetic energy the decay protons

can have is 751 eV, which is far too low for solid state silicon detectors to detect. In order

for the protons to have enough energy to be detected, they are accelerated with an electric

potential between -25 kV and -35 kV. The proton detectors used are commercially available

silicon semiconductor charged particle detectors. These detectors have low noise, low leakage

current, and thin deadlayers. Two detector types are used, a Passivated Implanted Planar

Silicon (PIPS) detector, which has a SiO2 deadlayer, and a depleted silicon surface barrier

(SB) with a gold deadlayer. These detectors are radiatively cooled to reduce noise and have

high detection efficiencies for protons with energies 20 keV or higher.

2.2.2 Proton Trap

Ideally, the proton trapping region would consist of a perfectly uniform magnetic field and

a perfect square well electric potential high enough to completely trap all energies of decay

protons. If this were the case, the length of the trapping region, L, would be perfectly well

defined and all protons born in the trapping region would be trapped with 100 % efficiency.

However, a perfect square well potential is not physically possible, therefore L is not easily

defined. Because of the shape of the electric potential, there is a region adjacent to the door

26



and mirror where the potential is between the nominal voltage and ground. This section

is call the “end region,” and decay protons are not trapped with 100 % efficiency in that

region. In the end region, the electrostatic potential is such that it is above ground, but not

high enough to trap all energy decay protons. For this reason, the proton trap is segmented,

and the trapping length is varied during the data taking. Because the individual electrodes

are carefully manufactured and assembled, the end region, Lend, for each trapping length is

nominally the same. This makes the proton trapping length, L, easier to determine as only

the difference in trapping length between two or more trap lengths is needed to determine

the neutron lifetime. Using the segmented electrode trap the neutron lifetime relation from

equation 2.3 becomes:
Ṅp

Ṅα+t

= τ−1
n

(
ϵp
ϵoνo

)
(nl + Lend), (2.4)

where l is the length of a single electrode, n is the number of electrodes and Lend is unknown.

It can be seen from the previous equation that when Ṅp/Ṅα+t is fit as a function of the trap

length, the lifetime is proportional to the slope of that fit and Lend is proportional to the

intercept of the line and not needed to measure the neutron lifetime.

The BL2 experiment has two proton traps available for use. The “Mark II” trap is the

same trap that was used in the BL1 experiment and has 16 electrodes. The “Mark III,” which

was built specifically for the BL2 experiment and will be detailed below, has 12 electrodes.

The conducting segments of each electrode trap were manufactured from fused quartz and

coated with a thin conducting layer of gold, spacer pieces for the Mark II trap were also

made from fused quartz but left uncoated. The trap is assembled and measured at room

temperature using a coordinate measuring machine. The dimensions were measured to a

precision of ±5µm. Fused quartz is used because the thermal contraction between room

temperature and 4 K is small. Changes in the measured dimensions when at equilibrium in

the cold magnet bore are approximately 0.01% [100]. The Mark II trap has electrodes that

are nominally 18.6 mm in length and spacers that are 3 mm in length. The total length of

the Mark II trap electrodes is 341.6 mm, with a maximum trapping length of approximately

216 mm. As can be seen in figure 2.2, there is significant amount of hardware necessary for
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Figure 2.2: Photo of the Mark II trap before being placed in the magnet bore.
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holding the electrodes and spaces together on the upstream side of the Mark II trap assembly

that reduces the possible trapping length.

2.2.3 Mark III Proton Trap

Mark III Proton Trap Design

Currently all of the data taking for BL2 has been done with the Mark II electrode trap. The

Mark II trap has 16 different electrodes, 3 of which are used for both the door and mirror

which leaves up to 10 electrodes used for the trapping region. Specifics regarding the Mark

II trap have been detailed elsewhere [67]. In January 2021, the decision was made that all

the systematic tests that could be reasonably accomplished with the Mark II proton trap

had been done and it was time to transition to make a new independent measurement of the

neutron lifetime in the most optimized configuration. The Mark III proton trap was designed

as an incremental improvement over the Mark II proton trap. There were two major design

changes, the first was the trapping electrodes in the Mark III trap are separated by a single

quartz sphere instead of quartz spacer disks. This has three advantages, two of which should

improve the vacuum inside of the trapping region. Since there is open space between the

faces of the trapping electrodes, any residual gas inside the trapping region now has a semi-

direct path to the ultra-cold inner wall of the 4 K magnet bore. The second benefit of this

trap design is there are now fewer places where virtual leaks can occur. The previous trap

design of many disks pressed together had the potential for virtual leaks that could occur

into the trapping region. Both of these design benefits should decrease the likelihood for any

variations in the local vacuum conditions of the trapping region. The third benefit of the

quartz sphere is that it makes the dimensions of the Mark III trap much easier to measure

with the coordinate measuring machine. The second design change was lowering the number

of trapping electrodes from 16 to 12. The length of the trapping electrodes was also increased

slightly so that only two electrodes will be used for the door and mirror regions instead of

three. This allows data to be taken at the same number of unique trapping lengths but shifts

the entire trapping region slightly upstream. Moving the trapping region slightly upstream

is beneficial because the magnetic field uniformity is worse in the downstream region. The
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Figure 2.3: The top figure shows an assembly of the Mark III trap design where the
separating quartz spheres can be seen in pink and green. The bottom figure shows a photo
of the Mark III just prior to being installed in the magnet bore with all electrical connectors
attached.
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Mark III proton trap will allow data to be taken at seven unique trapping lengths while

decreasing the magnetic field non-uniformity correction to the neutron lifetime. The Mark

III trap has electrodes that are nominally 26.6 mm in length and gaps that are 4.8 mm

in length. The total length of the Mark III trap electrodes is 372 mm, with a maximum

trapping length of approximately 251.2 mm. A drawing and picture of the Mark III trap

can be seen in figure 2.3

Mark III Proton Trap Installation and Alignment

To ensure the transport of all trapped protons to the detector, the proton trap must be

aligned to better than a millimeter with respect to the neutron beam center. To do this,

crosshairs are placed in the upstream and downstream ports of the trap, a theodolite is then

used to check the alignment with various beam markers around the apparatus. The Mark

III trap is first inserted into the magnet bore with the cross hairs in the upstream position.

Using a theodolite, the upstream crosshairs are compared to beam center. Both ends of the

trap have 3 “feet” that can be adjusted using setscrews that hold it in place in the bore. The

feet on the upstream section of the trap are adjusted so that the crosshairs align with beam

center to better than 0.5mm. The downstream crosshairs is then placed in the trap and the

same procedure is followed. The axial position of the trap must be accurately known in order

to make the magnetic field nonuniformity correction. Since there are no hard stops inside the

magnet bore, a small block, called the “trap positioning piece,” was designed to accurately

and repeatably position the trap. It is not required that the trap be in a specific location,

only that the location of the trap is accurately known. For the Mark III trap, the trap needed

to be positioned so that the downstream edge of the trap frame is approximately 1” from

the downstream end of the magnet bore. To do this, an aluminium block was machined

so that it could be placed against one of the convenient flat surfaces around the magnet

bore and extend 1” into the magnet bore. The back plate of the Mark III trap could then

be slid into place against the block for consistent and repeatable positioning, see figure 2.4

for a picture of the Mark III being positioned using this piece. After the alignment of the

upstream crosshairs is verified, a single foot on each end is loosened, the trap is pulled out

and the upstream crosshairs are removed. The trap is then reinserted into the bore using
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Figure 2.4: Photo of downstream end of the Mark III trap in the magnet bore with the
trap positioning piece in place.
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the trap positioning piece and the feet are re-tightened. The accessible downstream section

is once more checked with the crosshairs before closing the magnet bore vacuum.

2.2.4 Neutron Counting

In addition to counting the absolute number of trapped protons, the absolute neutron fluence

must also be determined. The density of neutrons in the trapping region is determined by

measuring the decays from the 6Li(n, t)4He reaction. The total product count rate depends

on the neutron fluence, the solid angle of the detector array, the neutron capture cross section,

and the deposit areal density. The detector set up consists of an array of four silicon charged

particle detectors. These detectors are arranged in such a way that the total solid angle of

all four detectors is not sensitive to small movements in the beam position. A schematic of

the detectors can be seen in figure 2.5, and a contour plot of the solid angle dependence on

beam position can be seen in figure 2.6. A detector’s solid angle is defined by a precision

machined aperture that is slightly smaller than the detector active area so that detector edge

effects can be neglected. The tritons and the alphas from the 7Li decay have energies 2.72

MeV and 2.07 MeV, respectively, so they are easily detected by the silicon detectors without

the need for additional acceleration potentials. The target consists of a thin single crystal

silicon wafer with an evaporated deposit of 6LiF . The deposit is made thin enough so that

the neutron beam attenuation and the energy loss of the tritons and alphas are negligible.

6Li has a neutron cross section that is known to 0.3 % from the evaluated nuclear data files

[17]. For cold neutrons the energy dependence is well known and follows closely to a pure

1/v curve. This allows for a handy cancellation of neutron wavelength dependent affects

throughout the experiment. The absorption of neutrons in the 6LiF deposit is sensitive

to the neutron wavelength distribution and deposit areal density. In BL1, this caused the

largest correction to the neutron lifetime [67]. BL2 has remeasured the neutron wavelength

distribution and plans to take data with multiple 6LiF deposit thicknesses, it is expected

that this correction will be cut in half. Determining the neutron fluence monitor efficiency,

ϵ0, is a critical part of the experiment and was the largest source of uncertainty in BL1 the

experiment. Figure 2.1 shows the final corrections and uncertainties for the BL1 experiment.

33



Figure 2.5: A schematic of the 1/v neutron fluence monitor showing the 6Li deposit and
surrounding detectors.
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Figure 2.6: Contour plot of the relative change in solid angle subtended by the four precision
apertures in the 1/v neutron fluence monitor taken from reference [3].
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Table 2.1: Final Corrections and uncertainties for the BL1 experiment, taken from reference
[67].
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One can note the the total uncertainty due to statistics was 1.2 s, the uncertainty due to

systematics was 3.2 s, and the uncertainty associated with ϵ0 was 2.7 s.

Improving this determination and decreasing the uncertainty associated with it was a

crucial factor in the viability of BL2. In BL1, ϵ0 was defined as:

ϵ0 =
σ0

4π

∫ ∫
Ω(x, y)ρ(x, y)ϕ(x, y)dxdy, (2.5)

where σ0 is the 6Li neutron capture cross section at thermal neutron velocity (v0 =

2200m/s), Ω(x, y) is the neutron flux monitor detector solid angle, ρ(x, y) is the areal mass

density distribution of the 6Li deposit, and ϕ(x, y) is the areal density of the neutron beam

at the deposit location. The detector array solid angle was measured in two ways. First, a

coordinate measuring machine measured the precision aperture diameters and the distance

to the center of the deposit. Second, a calibrated alpha source was placed in the array and the

rate was measured in all four detectors. The solid angle was then calculated as the measured

rate divided by the total rate of the calibrated source. These two measurements agreed to

better than 0.1% and had an uncertainty of 0.1%. The 6LiF deposits were specially made

for the experiment by the Institute of Reference Materials and Measurements in Belgium,

by evaporation onto a set of rotating silicon wafers. For a detailed description of the process

see references [72][73]. The areal densities of the deposits were determined using a thermal

neutron beam, and the mass was determined using isotope dilution mass spectroscopy. The

areal mass density was determined to 0.25%. The determination of the areal mass density

was the single largest uncertainty in the BL1 experiment, accounting for 2.2 s of the total 3.2

s systematic uncertainty in the final result. In order to circumvent the necessity to measure

the constituent parts of ϵ0, a device called “Alpha-Gamma” was created to independently

calibrate the neutron flux monitor [46]. Using Alpha-Gamma a new calibration of the neutron

flux monitor was determined with an uncertainly of 0.5 s, a factor of five improvement over

the previous determination, this was the subject of a previous publication and UT Ph.D.

thesis [108, 107]. A detailed description of the ongoing use of the Alpha-Gamma device

can be found in chapter 5. Decreasing the neutron flux monitor calibration to an 0.5 s
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uncertainty made it no longer the leading systematic uncertainly from the previous result

and prompted the proposal of the BL2 experiment.

2.2.5 Proton Trapping Cycle

The proton trapping cycle has three distinct configurations: trapping mode, counting mode,

and flushing mode. The trap spends the vast majority of its time in trapping mode. In

this mode, the door and the mirror electrodes are both kept at +800 V (nom.) and the

central trapping electrodes are grounded. In this mode, any proton born in the central

region is trapped with 100% efficiency. After a nominal trapping time, the trap then is

switched to counting mode. In counting mode, the door electrodes are grounded and a small

gradient potential is placed on the central trapping electrodes while the mirror remains at

+800 V. The small gradient potential, called the “ramp”, forces protons that have low axial

kinetic energies to exit the trap. If the ramp was not applied, protons with low axial kinetic

energy could spend an indefinite amount of time in the trapping region and never reach

the proton detector. High axial kinetic energy protons arrive at the proton detector almost

immediately. Therefore there is some spread in the length of time it takes for protons of

different energies to arrive at the proton detector. The larger the ramp potential, the smaller

this time difference becomes. All protons that leave the trapping region adiabatically follow

the magnetic field lines to the proton detector. The field includes a 9.5◦ bend in the magnetic

field lines so the proton detector can be offset from the neutron beam. Anytime there is a

change in the trapping configuration the DAQ sends a signal to three switcher modules that

very quickly change the voltage on each trapping electrode. These switcher modules are two

voltage output modules with the capability to switch between the voltages in ≈ 10ns. When

counting mode is started, the DAQ begins digitizing the detector signal. This allows for the

suppression of background events because the detector only needs to be active when trapped

protons are able to hit the detector. Depending on the trapping time, this suppression factor

is between 15 and 500. The detector is activated 47.6µs before counting mode is started.

Counting mode is active for 76µs, long enough for all protons to leave the trap even with

a minimal ramp potential. 123.6µs after the detector is activated flushing mode begins. In

flushing mode, the door and the mirror electrodes have a small, -0.5 V, negative potential

38



applied to them and the central trapping electrodes are grounded. This prevents other

changed particles, namely electrons, from being trapped in the door and mirror regions

during the trapping and counting cycle and improves trap stability. After another 30µs,

(153.6µs after detector activation), flushing mode ends and the whole trapping cycle begins

again. The detector is active for a total of 204.8µs per trapping cycle. For the first 47.6µs

and last 51.2µs of the detector activation the trap is in the trapping configuration with

the door and the mirror at + 800 V (nom.). This means there is 106µs of fixed time

when the manipulations occur in each trapping cycle. A full trapping cycle is actually the

nominal trapping time (e.g. 10 ms) plus 200µs. This means that the trapping mode for

any trapping cycle is the nominal trapping time plus 94µs. If we take a 10 ms trap time

for example, that means trapping mode is activated for 10, 094µs and neutrons are being

counting for 10, 200µs. The difference in these two numbers must be added as a correction to

the Ṅp/Ṅα+t ratio and this ratio changes for different trapping times. In BL1, only trapping

times of 5 ms and 10 ms were achieved. The vast majority of data was taken at 10 ms as

the apparatus was highly unstable at longer trapping times. In BL2, stable proton trapping

has now been achieved over a much broader range and data has been taken between 3 and

100 ms. This means the neutron to proton counting time difference ranges between a 0.1%

and a 3.4% correction to the proton rate but this correction is precisely known. Shorter or

longer trapping time have advantages and disadvantages. The shorter the trapping time the

less likely it is that multiple trapped protons are in the trap for any given trap cycle. This

decreases the multiple proton correction, but it also increases the amount of background

that needs to be subtracted. The longer the trap time, the more likely it is to have to

multiple trapped protons leading to a larger multiple proton correction but leads to a smaller

background subtraction. The ability to take data at multiple trapping times allows for a

check of the analysis background subtraction and multiple proton correction as well.
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Chapter 3

Experimental Improvements to the

In-Beam Measurement Technique

The BL2 experiment includes many of the same apparatus components of the original BL1

experiment but with additional upgrades made. The same 5 T superconducting solenoidal

magnet, 1/v neutron fluence monitor, and quasi-Penning electrostatic proton trap are used,

however the apparatus is located on the new, high flux NG-C beamline [89] and upgrades

have been made to other areas of the experiment. These include: better optimized proton

transport, better signal to background and signal to noise ratios, improved neutron flux

calibration, better energy and timing resolution using an improved preamp and modernized

analysis techniques. In the sections below I will outline the upgrades made to the apparatus

in detail.

3.1 Absolute Neutron Fluence Calibration

The neutron fluence monitor that is used in the BL2 experiment uses the same hardware

as the BL1 experiment, but the way in which the neutron detection efficiency is determined

is significantly improved. Previously, in BL1, the determination of the neutron counting

efficiency, ϵ0, was the largest single uncertainty in the neutron lifetime. The total combined

uncertainty associated with ϵ0 was ≈ 2.7 s. Each contribution to ϵ0 in equation 2.5 was

individually measured so the uncertainties of those measurements are compounded in the
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final result. Another issue with this determination is that it uses the input of the 6Li

neutron capture cross section. This relies on other measurements for extrapolation of the

cross section to cold neutron energies because there is little data in this energy regime. This

method also potentially requires ϵ0 to be updated periodically as new measurements of the

neutron capture cross section are made. As a result, a device was developed that was designed

and built to directly calibrate the neutron flux monitor without respect to the lithium cross

section and relies significantly less on the physical shape of the 6Li deposit and neutron

beam. This device reduced the uncertainly of ϵ0 by a factor of 5. A detailed description

of this device, called Alpha-Gamma, may be read in chapter 5. Another improvement from

BL1, is that BL2 plans to take the majority of its production data with a thinner 6Li deposit.

The neutron capture cross section in the energy regime used in this experiment is far away

from any resonances so it is nearly 1/v in the limit that the capture material is very thin.

Using a thinner 6Li deposit leads to a smaller correction due to the deviation of neutron

absorption from the 1/v law.

3.2 Magnetic Field Non-Uniformity

In BL1, the largest correction to the lifetime was caused by the non-uniformity of the

magnetic field in the proton trapping region. Each decay proton is born with a specific

electrostatic and magnetic pseudo-potential. A proton is trapped if its kinetic energy plus

its total potential energy is less than the maximum trapping potential (nominally 800 V).

The magnetic pseudo-potential decreases when magnitude of the field decreases, changing

the potential of the end region of the trapping region. If a proton is born at a position

of higher magnetic field and the door/mirror is placed in a region of lower magnetic field,

the trapping probability decreases. This is analogous to a magnetic mirror, but with the

opposite effect. For a more detailed description of non-uniformity of the magnetic field see

reference [67]. Because of the magnetic field non-uniformity in the trapping region, the

trapping probability is slightly different at each trapping length and requires a correction.

A large portion of the data in BL1 was taken at the maximum trap length, 10 electrodes. It

was determined after the fact that the drop off in the magnetic field in this region was larger

41



than anticipated, leading to a large correction to the neutron lifetime. BL2 improves on this

in two ways. First, when using the Mark II trap, lifetime data is no longer taken with 10

electrodes. Second, the Mark III trap was designed so that the proton trapping region avoids

this area of non-uniformity. The Mark III trap has been installed as discussed in section 2.2,

and it is planned for the majority of production lifetime data to be taken with this trap.

3.3 Neutron Flux and Collimation

In order to achieve the precision goals of this experiment more than 99.9% of trapped protons

must be transported to the detector active area. Therefore, the largest extent of the neutron

beam in the trapping region must be sufficiently small such that the protons following the

magnetic field lines to the detector fall inside the active region of the detector. Extensive

neutron transport and collimation simulations were done so that these requirements are

met. In BL1, beam images were taken at several places along the neutron beam to verify the

extent of the beam. Previously, dysprosium foils were used as the imaging method, neutrons

capture on the Dy foil causing it to become activated. The activated foil is then placed on

a film that can be read with an image reader, and beta decay electrons from the Dy foil

expose the image film. It was estimated that the uncertainty in the image reader was 0.5

mm [67]. In the years since these beam images were taken, the group’s understanding of

this imaging method has improved. It is now believed that the bleeding or smearing out of

the image film was underestimated in BL1, and the neutron beam extent was not as large

as previously believed. With modern neutron imaging technology such as a neutron camera,

beam imaging can be more accurately done in BL2 and there will be no such worry about

the extent of the neutron beam spot. To give further confidence in the proton transport

efficiency to the detector active area, two detector sizes, 300mm2 and 600mm2, have been

used. This allows for a comparison between the proton rates with two detector sizes, if the

detector is not well aligned then the proton rate will increase with the 600mm2 detector

because it is less sensitive to alignment. It is planned for most production lifetime data to

be taken with a 600mm2 detector. With better imaging technology and the larger detector
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size, the correction for protons missing the active region of the detector will be negligible in

BL2.

3.4 Cold Bore Isolation

One of the major questions about the in-beam method is losses out of the proton trap. In

BL1, data was taken almost exclusively at 10 ms trapping time because of stability issues

with the apparatus. In general, when attempting to take data at any other trapping time,

the detector would be bombarded with high energy pulses that corresponded in time to the

voltage manipulations of the trap electrodes. This meant that no trap loss systematic test

could be done by changing the trapping time and comparing the lifetime values. In BL2, with

improved detector and electronic isolation, data was taken at trapping times ranging from

3 to 20 ms. However, when taking data at 30 ms the same behavior was observed where

the detector would be overwhelmed by high energy pulses and kill the detector. It was

hypothesized that the coupling between the 4 K bore of the magnet and the warm vacuum

sections could be the cause of this instability. To isolate the cold bore vacuum section from

the rest of the apparatus, two thin perfect crystal Si window mounts were designed. These

mounts were placed at the closest possible point to the bore itself with the idea being this

would decrease the pressure in the bore and produce a more stable trap. The mounts were

made out of windowed gate values where the typical glass window was replaced with a very

thin Si wafer to minimize neutron scattering. Installing the windows in gate valves allowed

the windows to be opened or closed in situ to test repeatability. The Si window upstream of

the magnet has a diameter of 23 mm and a thickness of 160 µm; the Si window downstream

of the magnet has a diameter of 44 mm and a thickness of 200 µm. It was immediately seen

that the vacuum quality was better in the proton vacuum region with the windows in place.

With the windows installed data has been taken between 3 and 100 ms without a single

incident of instability. 100 ms is approximately the longest trapping time that is reasonable

for data taking because of the pile up associated with multiple protons in the trap. It was

also demonstrated that the instability returns when the windows are in their open position.

These new windows give BL2 the ability to take data over a wide range of trapping times

43



and will allow for previously inaccessible systemic tests of trap losses to be done. A detailed

discussion of the findings of these systematic tests can be found in section 6.5.

3.5 Data Stream Digitization

In BL1, the proton data stream was a single channel from a single detector. The raw

preamp pulse was sent through a spectroscopy amplifier (specamp) so that the output pulse

of a proton signal was Gaussian. This was turned into list mode data where the maximum

energy and the time bin of the maximum energy was recorded, but the waveform was not

digitized. This limited the ability to tailor the analysis to specific systemic tests or monitor

data quality checks such as noise stability. In BL2, there are two proton data stream channels,

still from a single detector. The raw preamp waveform as well as the specamp signal are

now digitized with the use of a GaGe card digitizer [42]. This digitization allows for a more

modernized analysis approach. The raw preamp waveforms may be analyzed with a variety

of different filters that can be tailored to specific goals, for example, energy resolution or

precise timing information. The specific utilization of the new analysis methods will be

discussed in section 4.3.
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Chapter 4

Analysis Techniques

These sections will detail the analysis methods used to determine the neutron and proton

rates and discuss analysis techniques new to BL2. The optimization and benchmarking

of these new techniques will be discussed as well as the advantages of these techniques

over previously used methods. How the neutron lifetime is determined using these analysis

methods will also be discussed.

4.1 Determination of the Neutron Rate

The neutron lifetime is a function of the ratio of the proton and neutron rates. In addition to

the proton rate, described below, one must simultaneously determine the neutron density in

the trapping volume. The total neutron-induced event rate depends on the neutron fluence,

the total solid angle of the four detectors, the areal density of the 6LiF foil, and the neutron

capture cross section. The absolute number density of neutrons in the trapping volume is

determined by measuring the products of the neutron capture reaction 6Li(n, t)4He with four

solid state silicon detectors. The total rate of the measured reaction products is proportional

to the total fluence of neutrons, not the total number. At cold neutron energies (λn≈ 3 Å),

the neutron capture cross section of 6Li is energy independent to better than 0.01% [11].

Therefore, just like for the proton trap, the probability of an event is proportional to 1/v.

The detector array consists of four solid state silicon detectors that are positioned in such a

way that the solid angle subtended by the detectors is insensitive to any change in the source
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position to first order [79, 30]. The detector array can be seen in figure 2.5 and the contour

plot of the total solid angle can be seen in figure 2.6. The solid angle of the four detectors is

precisely defined by precision-machined apertures placed directly in front of the detectors.

The reaction products of the neutron capture reaction have energies of 2-3 MeV, making

them easily detectable and well separated from the noise. In BL1, it was necessary for the

neutron counting efficiency, ϵ0, to be calculated. Included in this calculation is the neutron

capture cross section. In addition to introducing extra uncertainty into the calculation, this

also introduces the possibility that the final determination of the neutron counting efficiency

may need to be updated as new measurements of the cross section are made. Instead, we

are now able to measure the neutron counting efficiency directly without reference to the

neutron capture cross section using Alpha-Gamma, which will be discussed in chapter 5.

The 6Li targets consist of a thin wafer (≈ 400µm) of single crystal silicon with an

evaporated coating of 6LiF . These targets were made with three different areal densities of

6Li, nominally 20, 30, and 40 µg/cm2 [72, 73]. Data have been taken with two 40 µg/cm2

deposits and is planned to be taken with a 30 µg/cm2 deposit. These deposits are thin

enough that the neutron fluence is only slightly attenuated, and the reaction products do

not have significant energy loss getting out of the deposit. It is planned that data will be

taken with the two different thicknesses so that the deviation from a perfect 1/v dependence

can be independently measured.

The signals from the four detectors are sent through a single body CAEN 4-channel

preamplifier. From there the signals are sent to four individual NIM spectroscopy amplifiers.

Because the energy difference of the reaction products is large compared to the detector

noise, the two particle peaks are well separated from each other and from the noise. Because

the peaks are well separated and easily identifiable, no waveform analysis is necessary. Each

shaped signal is sent to a dual window single channel analyzer (SCA). The dual window

SCAs allow thresholds to be set for both the low and high side of two separate windows.

This allows for four individual thresholds to be set for each detector; a total of 16 thresholds

overall. Each SCA counts any pulse that is above the energy threshold, therefore four tallies

are sent to DAQ per detector for every run, we will label these thresholds as 1-4, in increasing

energy. The thresholds are carefully set so that the difference between the count rates of
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Figure 4.1: Example of the energy spectrum of the reaction products from 6Li(n, t)4He in
the 1/v neutron fluence monitor with the SCA thresholds overlaid.
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two of the windows gives the total number of events. Thresholds 1 and 2 are both set below

the lowest energy alpha events. The counts from these two thresholds give a handle on

the noise and background rates. Threshold 3 is set in-between the two signal peaks and

threshold 4 is above the highest energy triton events. With these thresholds, the number

of triton events is determined by the difference in the counts above threshold 3 and the

counts above threshold 4, and the number of alpha events is determined by the difference

in the counts above threshold 2 and the counts above threshold 3. Background rates are

also monitored by looking at the difference in counts between threshold 2 and threshold 1

as well as looking at the counts above threshold 4 alone for any change in the high energy

background. An example of the neutron fluence monitor energy spectrum with the location

of the SCA thresholds overlaid can be seen in figure 4.1. For every run in a series, 16

integer counts (4 per detector) are recorded by the DAQ in a binary format. Using this

data the neutron beam fluence can be determined and many diagnostics can be checked.

The total event rate of alphas plus tritons in the fluence monitor per run, N(α+t)r, which

is proportional to the total beam fluence, is calculated by first reading in the binary data

file from the DAQ and exporting it into a text file. This text file consists of 16 columns of

integers, one for each threshold from the SCAs, and has rows equal to the number of runs,

an example of this file can been seen in appendix A. Using this file, the total event rate in

all four detectors is calculated by:

N(α+t)r =
4∑

i=1

(T3i − T4i) + (T2i − T3i) =
4∑

i=1

(T2i − T4i), (4.1)

where i is indexed for the 4 detectors and Tx corresponds to the threshold of that label.

As can be seen from figure 4.1, the signal to background rate in the detectors is better

than 1000 to 1, this means the background subtraction is small and not critical for the

uncertainty goal of the experiment. However, the vast majority of the low energy events

in the spectrum are neutron beam induced. Which means it is not possible to do a beam-

on, beam-off background subtraction. This means that the background subtraction must

be done using only the threshold values. The background rate is low enough so that it is

not necessary to do this background subtraction for day to day data taking, but the final

background subtraction method still needs to be developed for final analysis.
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Additionally, a good test of the quality of the energy spectrum is the ratio of the alpha

and triton counts. If there is no noise, this ratio should be identically = 1, this ratio is

calculated as:

Rα/t =
T2 − T3

T3 − T4

. (4.2)

With every series that is taken this ratio is checked and used a metric of the goodness of

the noise levels of the spectrum. If there is extra low energy noise that starts to intrude

into the alpha energy range, this ratio becomes > 1. The detectors are independent of each

other so this check must be made for all detectors. For every series, a set of four plots are

created using the above prescription for the alpha and triton counts. Rα/t is plotted as a

function of run number and fit to a constant. An example of this can be seen in figure 4.2.

The deviation from 1 is then calculated, and if the fit value is more than two sigma from 1,

the series is flagged. If the deviation from 1 is greater than 3 sigma, data taking is normally

stopped immediately and steps are taken to resolve noise issues. Once the neutron counting

efficiency is determined using Alpha-Gamma, calculating the neutron fluence per run is then

straightforward. The efficiency is determined in such a way that the total neutron fluence is

a multiplicative factor on Ṅα+t [3].

4.2 Determination of the Proton Rate

The most analysis intensive portion of the experiment is the determination of the proton

rate. During every trapping cycle, the proton detector signal is recorded, and because this is

an absolute counting experiment, a determination must be made whether a proton is present

or not. Depending on the trapping time, upwards of 107 events must be examined per day.

In addition to making a determination on every trap opening, numerous corrections must

be made to account for the proton detection efficiency being slightly less than 100%. In the

sections below I will detail how the determination of each trap opening is made, see chapter

6 for details corresponding to corrections made to the proton rate.

The proton detector electronics chain is made up of a single crystal Si detector and a

low noise preamplifier made specifically for this experiment. The output of the preamp is

sent via a fiber optic cable into a NIM module and split into two parallel signals. The first
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Figure 4.2: Example of Rα/t ratios for each detector vs run number, fit to a constant.
These plots are typically color coded by deviation from 1. Blue: within two σ of 1, yellow:
between two and three σ away from 1, red: more than three σ away from 1.
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signal is untouched and sent directly into a GaGe digitizer before being recorded by the DAQ

computer. The second signal is sent into a specamp NIM module, this acts as a Gaussian

filter and transforms the output of the preamp into a smooth Gaussian pulse. This pulse

is then also sent to the GaGe digitizer before being recorded by the DAQ. For every trap

opening the DAQ saves these two waveforms as 2,048 shorts and writes them to a binary file

for each run. Therefore, each run consists of 20,000 waveforms, two for each of the 10,000

trap openings. To reduce the computation time necessary for detailed analysis, the DAQ has

a software energy threshold. This threshold can easily be adjusted and is set so that it filters

out most of the no-proton trap openings while allowing all proton events above the noise

to be written into a separate file. To do this, the DAQ generates a simple energy spectrum

using the maximum value of the specamp output. After a few runs, there are enough counts

so that a rough spectrum may be seen. The threshold is adjusted so that it is lower than the

noise wall while cutting out most of the noise peak. The noise is dominated by the detector

capacitance so this threshold must only be reset when the detector is changed. Because this

is just a measure used to save computation time, this threshold is always set conservatively

to insure that no proton events are missed. After each run, the DAQ sends the waveforms

that had energy above threshold to a remote server that is used for data storage and analysis.

The data is saved in binary files to minimize storage requirements. The data files consist

of 2,048 time bins for each waveform plus a time stamp that corresponds to which trap

opening the waveforms is from. Each time bin entry is a signed short integer that requires 2

bytes per bin, each time stamp is a double requiring 8 bytes. For a single waveform, 2,048

shorts plus 1 double is saved. For each trap opening two waveforms, the preamp and the

specamp plus a time stamp for each is saved. Therefore, the file format for a single trap

opening is:

double (8 bytes) - time stamp of specamp (channel 1)

short (2 bytes) - time bin 0 for specamp

...

short (2 bytes) - time bin 2047 for specamp

double (8 bytes) - time stamp of preamp (channel 2)

short (2 bytes) - time bin 0 for preamp
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...

short (2 bytes) - time bin 2047 for preamp

for a total of 8,208 bytes per trap opening. As previously mentioned, the DAQ saves two

proton data files per run, one with all trap openings recorded (s XXXX r XXXXXX 5.dat)

and one with only the waveforms above threshold (s XXXX r XXXXXX 1.dat), where

the X’s are an index of the series and run respectively. The s XXXX r XXXXXX 5.dat

files are identically 82080000 bytes (≈ 82 MB) for every run, these files are only kept

locally and are not sent to the remote server to save hard disk space and resources. The

s XXXX r XXXXXX 1.dat files are sent to the remote server for further analysis, depending

on the trapping time these files range in size from < 1 to 8 MB per run. Almost exclusively,

the analysis methods below are done on these s XXXX r XXXXXX 1.dat files.

As mentioned in section 3.5, the digitization of the proton waveforms allows for more

sophisticated analysis techniques to be used than in previous in-beam experiments. In

principle, the analysis for this type of experiment is simple. The energy and the arrival time

of the proton must be determined but neither needs to determined with extreme precision. In

BL1, the Gaussian shaped specamp pulse was exclusively used for analysis. The maximum

of this waveform and the time bin where this maximum occurred was saved and a simple

signal on, signal off background subtraction was done, taking advantage of the known proton

arrival time window. The difficulty of determining the proton rate comes from the absolute

counting nature of the experiment. A determination must be made for each trap opening

if there was a proton present or not. Because of this, it is important that the analysis

method has good noise rejection and is robust over a wide range of signal energies and types.

Previously, it was not possible to tailor the analysis technique, adapt the filter parameters to

changing experimental conditions, or have any absolute timing information. A new analysis

method has been developed that uses a finite impulse response software filter on the raw

preamp waveform. The specific filter used is a trapezoidal filter that has been shown to

have advantages for high resolution applications [58]. Below I will detail the development,

implementation, advantages, and results achieved using this filter to analyze the BL2 data.
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4.3 Trapezoid Filter

A trapezoid finite response filter is applied to the raw preamplifier to extract the proton

energy and arrival time. A detailed derivation and discussion of the trapezoid and other

filters can be found in reference [58]. A trapezoid filter is ideal for extracting the energy

in circumstances where the rise time of the waveform is short and the exponential decay

time is long. For this experiment, the rise time of a proton is < 0.4 µs and the decay

time of the exponential tail is > 50 µs. The trapezoidal output is generated by convolving

the trapezoid shaper impulse response with the raw preamplifier waveform. In practice, it is

computationally expensive to preform this convolution with every single waveform generated.

A mathematically identical recursion relation exists for discrete data [58], this is used in place

of the trapezoid shaper impulse response. This analysis uses the recursion relation; however,

for simplicity, an example will be shown using the convolution. If h(t) is the trapezoid shaper

impulse response:

h(t) =



τdecay + t; t < τrise

τrise; τrise ≤ t < τrise + τtop

2 · τrise + τtop − τdecay − t; τrise + τtop ≤ t < 2 · τrise + τtop

0; t ≤ 2 · τrise + τtop

(4.3)

where t is a time bin, τdecay is the decay time of the exponential tail of the preamp waveform,

τrise is the length of the trapezoid legs, and τtop is the length of the trapezoid top. If v(t) is

the raw preamp waveform then s(t), the output of the trapezoid filter is given by:

s(t) =
1

τriseτdecay

length∑
k=1

v(k)h(k − t), (4.4)

where length is the total length of the discrete waveform. For an example of the exact

recursion relation used in the analysis, see appendix B. The trapezoid shaper impulse

response can be seen in figure 4.3 with an example of the output of the trapezoid filter

53



Figure 4.3: Example of the trap filter convolution on a generated preamp waveform.
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for a perfect preamp waveform. The output of the trapezoid filter for a perfect preamp

waveform with Gaussian noise added can be seen in figure 4.4.

The trapezoid output has many useful features. It increases the signal to noise of each

waveform while not distorting the original energy and arrival time of the preamp waveform.

If the correct parameters are used it also has a unique shape that can be used for pulse shape

analysis, the two legs of the trapezoid should be equal in magnitude but with opposite slopes

and the top of the trapezoid should be flat. If the decay time parameter of the trapezoid

filter is slightly mismatched from the real decay time of any waveform, this can lead to an

unflat top. To avoid biasing the energy extraction from this effect, the midpoint of the top

of the trapezoid is used instead of the maximum of s(t). This is done by first finding the

maximum of the output trapezoid, s(tmax) and then finding times s(t1) and s(t2) with the

requirement that:

s(t1) ≤ 0.7 · s(tmax) ≤ s(t1 + 1)

s(t2) ≥ 0.7 · s(tmax) ≥ s(t2 + 1).

The corresponding midpoint time is calculated by t(mid) = t1+t2
2

, then the energy extracted

from the trapezoid filter is s(tmid). As an example of how using the midpoint makes the

energy extraction more robust, let’s consider the cases shown in figure 4.5. Assume there are

three example preamp waveforms of the same energy, one with the assumed correct fall time,

τpreamp = τdecay and the other two with a fall time of ± 5% τpreamp. The trapezoid filter is then

applied to these three waveforms resulting in three output trapezoids that should all have

the same energy. As seen in figure 4.5, the input energy of the example preamp waveforms

are all 280. If one were to naively take the maximum point of the output trapezoid filters

one would see a deviation of as much as 1 % from the input energy. However, if one applies

the midpoint method described above, the extracted energies are within 0.05% of the input

energy. A summary of the energies extracted using these two methods can be seen in table

4.1. Using the midpoint of s(t) for the extracted energy also gives more noise suppression

than using the maximum. If the maximum of the waveform were used, the extracted energy

is more sensitive to single noise spikes.
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Figure 4.4: Example of the trap filter convolution on a generated preamp waveform with
typical noise added.

Table 4.1: Comparison of extracted energy from the trapezoid filter for waveforms with
varying exponential decay times. The consistency of the extracted energy shows advantage
of using the trapezoid output midpoint rather than the maximum.

Fall Time s(tmax) t1 t2 tmid s(tmid)

700 280.39 598 762 680 280.06
735 281.31 599 765 682 280.04
665 282.71 598 759 679 280.11
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Figure 4.5: Example of the dependence of the output trapezoid filter on the fall time of
the preamp waveform.
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The trapezoid filter can also be used for pulse shape discrimination. One expects that if

the decay time is well known, then the shape of s(t) is symmetric. This means that the two

legs of the trapezoid will have the same magnitude slope. These legs can be independently

fit to a linear function and if v(t) is well understood, the fits will be equal in magnitude

but with opposite sign. This procedure has been used to verify that the chosen τdecay fits

the data well. On a waveform by waveform basis this can also be used to significantly

increase signal to background. One can choose waveforms that have legs with slopes in good

agreement and tops that are flat. Depending on how strictly the requirements are chosen

this can functionally eliminate all noise waveforms from the data. While this is not a useful

prescription for lifetime data taking because the precise efficiency of the cuts is not known,

it can be useful for systematic tests where relative rates are being compared. If relative

rates are being compared, then the cut efficiency does not need to be known, only that it is

constant for similar data. Using the trapezoid filter allows the analysis to be tailored to the

specific needs of the tests being run. If lifetime data is being taken, then the trapezoid filter

increases the energy resolution and noise suppression compared to the traditional methods.

The trapezoid filter also allows for an absolute extraction of the arrival time of the events,

which was not previously possible. If systematic tests are being done, the trapezoid filter

can be used for pulse shape analysis to significantly increase the signal to background ratio.

In the sections below I will discuss how the trapezoid parameters were optimized, how the

new analysis methods were benchmarked and how the analysis is used to determine τn.

4.3.1 Parameter Optimization

The output trapezoid shape depends on a number of parameters. To obtain a flat top,

using the correct decay time is crucial. The decay time parameter must be set equal to

the decay time of the exponential tail of the preamp waveform. Since the decay constant

of the waveform is almost solely a function of the electronics chain, it is not necessary for

the decay parameter to be adjusted for different detectors. Several different methods were

used to determine the correct decay time parameter. The first method was fitting every

preamp waveform before applying the trapezoid filter. This was done to try to account for

any drifts in the electronics. There were two main problems with this method: 1) fitting each
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waveform increased the analysis time, and 2) difficulty in fitting to imperfect pulses. If a

waveform had a baseline oscillation or multiple events separated in time, the fit could either

fail or fit to a nonsensical value. Using the fit value for each waveform lead to an increased

peak width in the proton energy spectrum and was abandoned. Another method that was

tried was creating an average of many “good” waveforms so that noise was averaged out

and a “perfect” proton waveform was generated. However, because protons can arrive in a

time window much larger than the rise time of the waveform, the generated perfect proton

waveform had a softened leading edge that did not do a good job representing the data. It is

possible to only choose proton events that arrive in a very narrow time window to alleviate

this issue, however this significantly decreases the usable event rate. In the end, a parameter

scan was done over a wide range of decay parameters to optimize the energy resolution of

the proton energy spectrum.

To determine the optimal trapezoid filter parameters, a scan was done over the

τtop, τrise, and τdecay parameters. Figure 4.6 shows a two dimensional scan over τtop and τrise

where a larger value on the color scale is proportional to better energy resolution. The energy

resolution was determined by fitting a Gaussian to the single proton energy peak and taking

the ratio of the peak position and the width of the peak. The ideal energy resolution occurs

with a zero length top [59], but this neglects real effects like waveform noise, pileup events,

and the finite risetime resulting in ballistic deficit. Ballistic deficit occurs because charge

liberated inside the detector is all collected by the cathode and the anode of the detector

over a finite period of time. Because charge collection does not occur instantaneously, some

charge will have dissipated before it is collected. The difference in the amplitude of the

output waveform with the finite shaping time and one that would have been produced with

an infinite shaping time is the ballistic deficit. Typically, a correction would be needed for a

precision energy spectrum to be made. Because the ballistic deficit should be similar for all

waveforms and accurate energy information is not required for a counting experiment, we

can focus solely on the energy resolution of the proton energy spectrum.

Something unique to this experimental method is the control over the arrival time of

events. The control over the trapping potential causes trapped protons to arrive at the

detector in a small, finite time window, but this also means all trapped protons hit the
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Figure 4.6: Heat map of a trapezoid filter parameter scan. Top: color scale is proportional
to energy resolution, bottom: color scale is the ratio of the extracted energy of double proton
and single proton events.
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detector in that time window. For all trapping times there is a significant probability that

multiple protons may be trapped in any single trapping cycle. Because of this, pileup,

when multiple protons hit the detector at similar times, must be handled appropriately. If

multiple protons arrive at the detector, the time separation depends on the ramp voltage.

In general, this time separation ranges from 0 to 20 µs. Even the maximal time separation

between protons from the same trapping cycle causes the proton waveforms to significantly

overlap. Because of this, the top parameter of the trapezoid filter must be long enough to

fully integrate this type of event. Figure 4.6 shows the energy resolution for only single

proton waveforms, thus it does not suffer from having too short of a top parameter. If

single proton events were the sole data type in the experiment the optimization would be

rather straightforward. However, the top parameter must be long enough to integrate time

separated proton events while having the highest energy resolution possible.

To optimize the trapezoid filter parameters, parameter scans were done to increase

energy resolution, test linearity and test biases in extracting the energy and arrival time

of the protons. The top parameter must be long enough to integrate time separated proton

events while having the highest energy resolution possible. As can be seen in figure 4.6,

the theoretical prediction that the energy resolution is maximized with a triangular filter

(τtop = 0) is valid. One can see that after τrise is greater than 60 time bins, the energy

resolution is best when τtop = 0 and smoothly becomes worse as τtop is increased. However,

because the analysis must be able to identify multiple proton events that have different

arrival times, an increased top length effectively increases the integration time of the filter

making it more robust. While the energy resolution is maximized with a zero length top

for single proton events, the energy resolution decreases when multiple proton events are

analyzed. To account for this, a similar parameter scan was done looking at the energy

resolution and linearity of multiple proton events. One would expect that multiple protons

in the trap can be treated as independent. Therefore two trapped protons will deposit, on

average, double the energy as a single proton event. To test this, the ratio of the single and

double proton energy peaks is plotted on the color axis for a parameter scan. As can be

seen in the second plot of figure 4.6, when either τrise or τtop is too short the ratio of the two

energies deviates from the expected ratio of 2. It can be seen that generally the linearity is
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better when the trapezoid parameters are long, but this decreases the energy resolution. This

means there is no obvious optimized set of trapezoid filter parameters in all scenarios. The

optimized parameters were chosen so that the top parameter could be long enough so that

the double proton energy would be within 1 % of the expected value while still retaining as

much energy resolution as possible. The chosen optimized parameters for energy extraction

were τtop = 80 and τrise = 140. The filter using these parameters will be called the “energy

optimized trapezoid filter” denoted by SE(t). Figure 4.7 shows a comparison of a proton

energy spectrum from BL1 (red) and BL2 (black). In addition to the reduction in the noise,

one can see the proton peak widths are significantly narrower using SE(t) to extract the

proton energy.

4.3.2 Analysis Benchmarking with Pseudodata

Pseudodata was generated to mimic the output signal of the preamp with the goal of

benchmarking the new trapezoid filter analysis. The pseudodata was generated by first

analyzing high quality data and making probability density functions (PDFs) out of the

energy and timing spectra histograms. Then, these PDFs were used as input files for the

energy and time of a model function to mimic the preamp waveforms. To generate each

pseudo waveform a random energy and arrival time is chosen from the two PDFs. The

pseudo waveforms are generated using:

Vout(t) = A

(
t

τ

)j

e
−t
τ , (4.5)

where τ is the fixed fall time of the decaying exponential, j is proportional to the rise

time, A is a scaling factor to match the energy, and t is the time bin ranging from 0 to

2047. For a single proton this generates a perfect pulse where the energy and time are

exactly known before any noise is added to the waveform. To further mimic the real lifetime

data, Gaussian distributed noise is added on top of this perfect pulse. To get the correct

distribution of noise, the root mean square (RMS) of real, pure noise waveforms is calculated

on a waveform by waveform basis. The RMS of each waveform is then histogrammed so that

a distribution of noise spectrum is generated. To apply this noise spectrum to the pseudodata
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Figure 4.7: Comparison of analyzed energy spectra for similar detector types with the
standard BL1 (red) and the optimized trapezoid filter analysis (black), normalized to the
peak value.
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waveforms a Gaussian noise function is used with input parameters taken from the fitted

noise distribution histogram. This way of generating pseudodata can be used to create a wide

range of waveforms that mimic most (if not all) possibilities of real data. This includes single

and multiple proton events, pure noise events, and a variety of background events including

high energy electron and cosmic events as well as combinations of protons and background

events in the same waveform. Appendix C shows examples of the types of pseudodata that

were created.

The purpose of generating this pseudodata was two-fold. First, the pseudodata was

used to check the optimized parameters of the trapezoid filter. This is useful because the

energy and arrival time of each individual waveform is known beforehand so an absolute

comparison on a waveform by waveform basis can be made. In addition to optimizing the

energy resolution by minimizing peak widths, one is also able to check for systematic biases

that could result in misidentification of events, this is only possible with pseudodata. Checks

of the proton arrival time are particularly difficult with real data because of the low signal

to noise ratio and no known value for the sharp rise time of the preamp proton pulses.

Additionally, the shape of the timing spectra is not fit by any regular function. Therefore,

it is not possible to run a parameter scan that minimizes some width parameter. Instead, a

comparison to pseudodata is used for an absolute comparison to the arrival time of events.

Because of the fixed risetime of both the pseudodata generation and the trapezoid filter,

absolute comparisons are easily made.

Using this type of comparison, a parameter scan can be done to see what effect the

risetime and top length have on the accuracy of arrival time extraction. Figure 4.8 shows a

comparison between a short (20 time bins) and a long (180 time bins) risetime parameter

trapezoid filter with a zero length top. This shows there is very little dependence on the

risetime length to the arrival time extraction as long as the appropriate risetime offset is

accounted for. This allows for the choice of risetime to be driven by other factors, including

noise suppression and the buffer length required to have a proper energy or time extraction.

The buffer length is caused because the shaper impulse response needs to fully integrate a

time bin before the energy or time can be fully reconstructed. Therefore the buffer length is

2τrise+ τtop. Only time bins within this value of either end of the waveform are considered to
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Figure 4.8: Comparison of the extracted arrival time with pseudodata for a τrise = 20 and
a τrise = 180 trapezoid filter.
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Figure 4.9: Absolute difference between pseudodata arrival time compared with a τtop = 0
and a τtop = 5 trapezoid filter, showing larger error when the top parameter is increased.
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be good points. Figure 4.9 shows a comparison between the extracted arrival time between

filters with τtop = 0 and τtop = 5. Increasing the top length of the trapezoid filter slightly

increases the width of the arrival time peak, and leads to a larger difference in the extracted

arrival time when compared to pseudodata. For precise timing information, the chosen

optimized parameters were τtop = 0 and τrise = 60, the filter using these parameters will be

refereed to as the “short trapezoid filter” denoted by Ss(t). Figure 4.10 shows a comparison

of the extracted timing spectrum histogram with the optimized filter parameters compared

to the known pseudodata values.

Using a zero top length trapezoid filter is useful for comparison to simulated timing

spectra because it allows for the most accurate extraction of the arrival time and the

narrowest peak width. This absolute comparison allows for a benchmark of the simulation

that was not previously possible with other hardware filters.

4.3.3 Multiple Proton Rate Correction

The proton detector has sufficiently linearity over the relevant energy range such that the

deposited energy in the detector can be treated as directly proportional to the incident

energy of the proton. Because the decay protons are born with such low energy and the

energy resolution of silicon detectors is much worse than the proton’s initial energy, we

can also assume that all deposited energy in the detector is from the acceleration potential

applied to the detector, typically -25 kV to -35 kV. Also, because of the large volume of the

proton trap, if multiple protons are trapped at the same time we can assume these protons

are completely independent. Therefore, if multiple protons are trapped in the same trapping

cycle, they will independently interact with the proton detector, depositing the same amount

of energy as a single trapped proton. Therefore, on average, multiple protons events have an

integer multiple of energy deposited in the proton detector, i.e. two protons deposit twice as

much energy as a single proton. There is a non-negligible probability that multiple protons

are trapped in the same trapping cycle, regardless of the trapping time. The multiple proton

correction depends on the trapping time and can be as large as a 10% correction to the

proton rate. Using the newly developed analysis techniques, this correction can be made in

two different ways.
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Figure 4.10: Comparison of τtop = 0 trapezoid filter with pseudodata arrival time.
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Poisson Statistical Correction

Previous analyses accounted for multiple trapped protons by applying a Poisson statistical

correction to the proton rate. Because the trapping time is fixed, the number of trap openings

is fixed, and the decay probability is constant in time; the number of protons in the trap

follows a Poisson distribution. The proton rate is determined by treating each trap opening

as either having an event or being empty, where an event can be any number of protons.

With a suitable background subtraction, the probability of there being an event, P (1+), in

the trap is calculated by dividing by the number of trap openings over a run. The simplest

way to correct for multiple proton events is to start with the probability of having zero events

in the trap, P (0). P (0) can be easily determined by P (0) = 1 − P (1+). Then, using the

general Poisson distribution equation, the probability of having k protons in a given trapping

cycle is given by:

P (k) =
λke−λ

k!
, (4.6)

where λ is the average number of protons in the trap. We see that P (0) = λ0e−λ and

therefore

λ = −ln(P (0)). (4.7)

As an example, a typical run has 10,000 trap openings, and out of those approximately 300

have an event. Using this Poisson method, we can see that P (0) = 0.97. Using equation

4.7, λ = −ln(0.97) ≈ 0.03046 protons per trap opening. When multiplied by the number

of trap openings we see that the 300 events corresponds to about 304.6 protons in the trap,

approximately a 1.5 % difference. Because of the poor energy resolution and rudimentary

trigger systems, this was the only way the multiple proton correction could be applied in

previous experiments.

Individual Particle Identification

Taking advantage of the optimized trapezoid filter, SE(t), with significantly improved energy

resolution, a new method for determining the multiple proton event correction can be used.

With only a 4 keV FWHM energy resolution, the trapezoid filter analysis has the ability to

distinguish multiple proton events on a waveform by waveform basis. As mentioned above,
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multiple proton events deposit integer multiples of the single proton energy in the proton

detector. With this energy resolution and deposited energies > 15 keV after accounting for

energy loss through the deadlayer, the overlap of multiple (as many as four protons in the trap

have been observed using this method) proton peaks are small in all apparatus configurations.

As seen in figure 4.11, all protons peaks are well separated and easily distinguishable. Energy

windows are made around each proton peak and multiple events can be counted individually.

Here we can see the valley between the singles and doubles peak drops to just a few counts

per bin over a small range of bins compared to > 1000 counts per bin at the maximum

of the singles peak over a much wider range of bins. Using this, we can place a bound on

the misidentified multiple events of < 0.1% of the whole spectrum. Given that the multiple

proton events correction to the neutron lifetime is on the order of 20 s, the misidentification

of multiples must be known to approximately 1%. During data analysis, both the multiple

proton identification and Poisson statistics methods are employed. This gives a cross check

of the correction, but good agreement between the two methods also lends credence to the

Poisson method that has been used for analysis in the past.

4.4 Analysis Method for Determining the Neutron

Lifetime

Using the two optimized trapezoid filters, the energy and the arrival time for each proton

signal is determined. The energy is determined by using the energy optimized trapezoid filter

and finding the midpoint of the output waveform, SE(tmid), using the method above. The

arrival time of the proton, tarr, is found by taking the time bin of the maximum value from the

output of the short trapezoid filter, SS(t). This same process is applied for each waveform in

the s XXXX r XXXXXX 1.dat files. Using these two values, three basic plots are generated.

A proton energy histogram, a proton arrival time histogram and a 2-dimensional histogram

of proton energy and arrival time. An example of these three plots can be seen in figures

4.11, 4.12, and 4.13. Using these plots, several analysis windows are determined. As

can be seen in figure 4.12, the protons arrive promptly when the door opens and all of the
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Figure 4.11: Example of proton energy spectrum, peaks from left to right: noise, single
trapped proton, two trapped protons, three trapped protons, four trapped protons.
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Figure 4.12: Example of proton timing spectrum, showing the narrow arrival time of
trapped protons.
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Figure 4.13: Example of a 2D histogram of proton energy vs arrival time. The windows
show the analysis energy range for single (black), double (red), triple (green) and quadruple
(purple) proton events. The accompanying analysis background subtraction energy windows
are shown with the same colors, shaded with gray.
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trapped protons arrive at the detector in about 10 µs. Different ramp voltages can change

the amount of time the protons take to arrive at the detector, for small ramp voltages this

can take up to 20 µs. Similarly to how the DAQ software threshold is set conservatively,

the proton arrival time window is also set wider than the true proton arrival time windows

and a background subtraction is done later to account for extra noise events. For simplicity,

we will take the proton arrival to be -5 µs to 20 µs from when the door opened. Next,

the proton energy threshold and energy windows must be determined. Using the proton

energy spectra as seen in figure 4.11, the proton threshold is taken to be just higher than

the noise wall, around 2,000 in this example. Then, multiple proton energy windows are

determined. In this example, we see proton peaks for up to four trapped protons. The

proton energy spectra shape is not symmetric, it is expected that the high energy side of a

proton peak should be Gaussian while the low energy side has a tail from detector effects.

For this reason, the multiple proton widows are taken to include the lower energy side of each

peak. In this example, the single proton window would be approximately 2,000 to 8,000,

the double proton window 8,000 to 14,500, the triple proton window 14,500 to 20,000 and

the quadruple proton window 20,000 to 26,000. Using these energy windows, a comparison

can be made between the Poisson statistical correction for multiple protons and individual

multiple proton identification. To account for noise and background events, similar windows

are used for background subtraction outside of the proton arrival time windows, as can be

seen in figure 4.12. Typically, the background subtraction window is taken to be the same

width as the proton arrival time windows, and placed adjacent to it. In this example, the

background subtraction window would be from 20 µs to 45 µs after the door opens. If

the background subtraction time window is a different width than the proton arrival time

window, a multiplicative factor is necessary for the background subtraction. Figure 4.13

shows these analysis windows overlaid on the 2D proton energy and arrival time histogram.

After these windows have been defined, two parallel analyses take place, one using the

Poisson statistical correction and the other identifying multiple proton events individually.

For the Poisson method, the total number of events above threshold in the proton arrival

window are counted, N(Poi)pro. The number of events above threshold in the background

subtraction window as also counted as N(Poi)back. Then, a single background subtraction
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is done and we are left with the total number of events above threshold,

N(Poi) = N(Poi)pro −N(Poi)back. (4.8)

Next the probability of an event per trap opening is calculated as:

P (1+) = N(Poi)/10, 000, (4.9)

where 10,000 is the number of trap openings per run. As previously mentioned, the analysis

is simplified by using P (0) rather than P (1+), P (0) = 1 − P (1+). The average number of

protons per trap opening is given by equation 4.7, where λ is calculated independently for

each run for a check of systemic drifts. The total number of trapped protons per run is then

given by:

N(Poi)r = λ · 10, 000, (4.10)

where r is an index for each run.

To get the total number of protons per run by identifying multiple protons individually,

the counts in all proton energy windows must be tallied. For simplicity I will explain how

this is done with only single and double proton events. In general, the analysis is done for

up to four proton events. The total number of events in the proton arrival time window

and the single proton window is given by, N1(Multi)pro while the total number of events in

the same time window and the doubles energy range is given by N2(Multi)pro. Similarly,

the background data are taken during the timing window previously defined, but now each

energy window has a separate background subtraction. The number of events in the two

background subtraction windows are given by N1(Multi)back and N2(Multi)back respectively.

Therefore, the total number of background subtracted events in each energy window is given

as:

Ni(Multi) = Ni(Multi)pro −Ni(Multi)back, (4.11)

where i is the index for each proton energy window. Since Ni(Multi) is the number of

background subtracted events in the arrival time window, not the number of trapped protons,

a multiplicative factor is necessary to accurately count the total number of trapped protons.
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Accounting for all energy windows, the total number of trapped protons for a run is given

as:

N(Multi)r = 1 ·N1(Multi) + 2 ·N2(Multi) + 3 ·N3(Multi) + 4 ·N4(Multi) . . . , (4.12)

where the multiplicative factors are for the number of protons that would be trapped in

each energy window. In principle, this summation should extend to infinity but, in practice,

with all trapping times used, the total number of events in the 5+ trapped proton energy

windows has been consistent with background rates and can be neglected.

Now that the protons per run have been determined, the neutrons per run must be

similarly determined. Using the method described in section 4.1, the total number of events

per run in the 1/v neutron fluence monitor, N(α+t)r are determined. As discussed in section

2.1, the neutron lifetime, τn is inversely proportional to the ratio of the proton and neutron

rates, Ṅp/Ṅα+t. Therefore, we must transition from events per run to events per time. To do

this we must correct for the difference in the proton trapping time and the neutron detection

time. As discussed in section 2.2, this correction is dependent on the trapping time, and for

this example we will focus on a nominal 10 ms trapping time. Since there are 10,000 trap

openings per run and the proton trapping time is 10,094 µs and the neutron detection time

is 10,200 µs per cycle, the proton and neutron event rates are given as:

Ṅp(Multi) =
N(Multi)r
100.94 s

(4.13)

Ṅp(Poi) =
N(Multi)r
100.94 s

(4.14)

Ṅα+t =
N(α+t)r

102.0 s
. (4.15)

These rates are the total detected event rates, which must be corrected by the detection

efficiency for each detector.

With the proton and neutron rates now determined, we can obtain the neutron lifetime by

plotting Ṅp/Ṅα+t as a function of the length of the trapping region. An example of this plot

can be seen in figure 4.14. In chapter 5, I will discuss how the neutron detection efficiency is
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determined using the Alpha-Gamma device. We cannot determine the neutron lifetime from

the slope of equation 2.4 without this efficiency. For quick checks of the neutron lifetime

during data taking we can calculate the neutron lifetime similarly to how it was determined

in BL1 [67]. Using this method, the neutron lifetime is given by:

τn =
M

2ΩσvρtNam
, (4.16)

where M is the atomic weight of 6Li, Ω is the measured solid angle subtended by the 1/v

neutron detectors, σ is the neutron capture cross section on 6Li at defined thermal velocity,

v, ρt is the areal density of the Li deposit, NA is Avogadro’s number and m is the slope of

the lifetime fit as seen in figure 4.14.
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Figure 4.14: Typical neutron lifetime fit showing Ṅp

Ṅα+t
as a function of trapping length, as

in equation 2.4.
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Chapter 5

The Precise Determination of

Neutron Fluence Using the

Alpha-Gamma Technique

The Alpha-Gamma device is used to calibrate the 6Li deposits used in the 1/v neutron

fluence monitor. In this chapter, I will discuss this calibration and how the device can also

be used to measure neutron capture cross sections at very low energies. The apparatus

consists of a practically identical copy of the neutron fluence monitor that is on the BL2

apparatus. This Alpha-Gamma (AG) fluence monitor (FM) is placed upstream of the AG

device on the NG-6m beamline at the NCNR. The AG device consists of two HPGe gamma

detectors, a Si solid state alpha detector and a target holder placed in the neutron beam. A

drawing of the detector arrangements can be seen in figure 5.1.

5.1 The Alpha-Gamma Technique and Apparatus

The Alpha-Gamma technique relies on the neutron capture reaction of 10-Boron, 10B(n, α)7Li.

The reaction has two relevant branching ratios, one leaves the 7Li in an excited state, 7Li∗,

and the other does not. For our purposes the de-excitation occurs immediately, and emits a

478 keV gamma ray [46, 61]. Therefore, the two relevant reactions are an alpha-only reaction
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Figure 5.1: Drawing of the Alpha-Gamma device and the FM installed upstream.
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(branching ratio bα= 6.3%),

n+ 10B → 7Li(1, 015 keV ) + α(1, 776 keV ), (5.1)

and an alpha+gamma reaction (branching ratio bαγ = 93.7%),

n+ 10B → 7Li∗ + α → 7Li(840 keV ) + γ(478 keV ) + α(1, 472 keV ). (5.2)

In the alpha only reaction, the decay products are produced isotropically but in the

alpha+gamma reaction, the recoiling 7Li nucleus has v
c

= 0.016 which causes a slight

anisotropy in the gamma distribution. The total neutron flux is determined using a calibrated

gamma detector array. The calibration is performed using a series of high precision transfer

calibrations which will be explained below.

The FM calibration has four main parts: (1) the calibration of an alpha source, (2) the

measurement of the AG alpha detector efficiency, (3) the measurement of the AG gamma

detector efficiency, and (4) the measurement of the neutron flux. (1) The calibration starts

with the measurement of a 241Amα source in a precision machined counting stack (figure

5.2) [35]. The counting stack has three main components: a source holder for repeatable

placement of the source, a Si charged particle detector with precision machined aperture,

and precision machined spacers to change the distance between the source and the detector.

Because of the precision machined components, the solid angle of the detector with respect

to the source location is known to better than 0.05%. Using the known solid angle, Ωstack,

and the measured α rate in the detector, rα(stack), the source activity, Rα(Am) is calculated

as:

Rα(Am) =
rα(stack)

Ωα(stack)
. (5.3)

(2) The 241Am source is then transferred to the AG device where the α rate, rα(Am) is

measured with another Si charged particle detector with a precision aperture as seen in

figure 5.2. With the known activity of the source, the efficiency of the AG alpha detector,

ϵα, is calculated by:

ϵα =
rα(Am)

Rα(Am).
(5.4)
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Figure 5.2: Top: assembly of the precision counting stack, traces show the solid angle
subtended by the detector, used to measure Rα(Am). Bottom: drawing the Alpha-Gamma
device with the 241Am source installed in the holder, traces show the solid angle subtended
by the Alpha-Gamma alpha detector, used to measure ϵα.
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(3) The 241Am is then removed and a “thin” 10B4C foil is then placed in the target holder

of the AG device (figure 5.3). The 10B capture cross section is very large for cold neutrons,

10,580 barns for 5 Å neutrons. Therefore, the thin foil is only ≈ 25µg/cm2 of 10B, which is

thin enough to cause little attenuation of the alphas from the decay process. With the thin

10B foil in place, the ≈ 5 Å monochromatic neutron beam is turned on and the absorption

rate in the thin foil, R, is then determined by:

R =
rα
ϵα

= rα
Rα(Am)

rα(Am)
. (5.5)

With the neutron beam on, there is now a gamma rate from the 7Li∗. The measured gamma

rate with the thin foil is defined as:

rγ(thin) = ϵγbαγR. (5.6)

From this we can determine the gamma detector efficiency, ϵγ, as:

ϵγ =
rγ(thin)

bαγ

rα(Am)

rα

1

Rα(Am)
. (5.7)

(4) To determine the total neutron flux, a “thick” 10B target is placed in the AG device

(figure 5.3). Because of the large neutron capture cross section of boron, only a few tenths

of a millimeter of boron is needed to stop all but a negligible fraction of neutrons from the

beam. The total neutron fluence, ṅAG is then determined as:

ṅAG = rγ(thick)ϵγ (5.8)

where rγ(thick) is the measured rate in the gamma detector array with the thick 10B deposit.

The quantities above have been defined with certain assumptions. One is that the

detection efficiency in the AG alpha detector is the same for the ≈ 5 MeV alphas from

the 241Am decay and the ≈ 2 MeV alphas from the 11B decay. The other assumption is that

there is no attenuation in the thin boron deposit for the alpha particles and in the thick boron

deposit for the gamma rays. In reality, the attenuation of the gamma rays in the thick boron

deposit is about 1-2 %. This is one of the largest corrections in the determination of the 1/v
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Figure 5.3: Top: drawing the Alpha-Gamma device with the thin boron deposit installed
and the neutron beam in blue, used to measure ϵγ. Bottom: drawing of the Alpha-Gamma
device with the thick boron deposit installed and the neutron beam in blue, used to measure
rγ.
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neutron detector efficiency. For a more detailed discussion of assumptions and corrections

made in determining the gamma detection efficiency, see the dissertation of Andrew Yue

[107].

Because the cross section is 1/v dependent, it is important to make this measurement

with a monochromatic neutron beam. For this reason, the experiment is done on the NG-6m

beamline at the NCNR [31]. The NG-6m beamline has a pyrolytic graphite monochromator

placed in the beam to Bragg reflect neutrons of approximately 0.496 nm (≈ 5 Å) in

wavelength. The reflected beam is then sent through a beryllium block that is cooled

to 77 K by a liquid nitrogen bath. This block filters out higher order Bragg reflections

from the graphite monochromator. To measure the neutron wavelength on NG-6m, λ6m, a

perfect silicon crystal is placed in the beam just before the 1/v neutron monitor. When the

crystal is placed at the correct angle, θB, the Bragg conditions are met. The crystal reflects

the neutrons at a known angle where 3He proportional counters are placed to track the

reflected neutron rate. With the approximate neutron wavelength known from the graphite

monochromator, the approximate Bragg angle can be determined with

nλ6m = 2dsinθB, (5.9)

where n is the diffraction order, and d is the lattice spacing of the Si crystal. Using the

approximate Bragg angle, the Si is then rotated over the appropriate range (typically 2-3

degrees from the center of the Bragg peak) so that a peak may be fit. An example of this

scan may be seen in figure 5.4, taken from reference [107]. From this scan, θB was determined

to be 52.279◦ ± 0.017◦, which corresponds to En = 3.3155± 0.0016meV .

5.2 Absolute Neutron Fluence Calibration

As discussed in section 2.2, the determination of the 1/v neutron fluence monitor efficiency,

ϵ0, was the limiting systematic uncertainty in the BL1 result. With the use of the AG

device, an independent, absolute calibration of the 1/v neutron fluence monitor is now

possible without reliance on the 6Li neutron capture cross section. To extract ϵ0, once
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Figure 5.4: Typical scan of the silicon crystal angle resulting in a peak when the Bragg
conditions are met, taken from reference [107].
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ϵγ is determined, is straightforward in principle and is defined as:

ϵ0 =
ṅFM

ϵγṅAG

(5.10)

where ṅFM is the detected rate in FM. If the efficiencies of all the detectors are constant,

then a simple average over high statistics measurements would yield a < 0.05% relative

measurement in approximately 8 days with the limiting factor being the 6 Hz count rate in

the FM. However, in the previous running of the AG device it was discovered that the ratio

of the gamma detector rate and FM rate was not constant in time. A 0.07%/day linear shift

was seen in the previous running that needs to be accounted for [107]. It is believed that

this change in efficiency is not due to a gain shift in either detector, but a physical change in

the fundamental efficiency in the device. For the result to be trusted, ϵγ must be the same

for the thin boron deposit calibration as for the thick boron deposit data taking. To account

for the drift, a method of book-ending the thick boron data taking runs by two thin boron

deposit calibrations was developed. This so-called “triplet” method takes one day of data

with the thin deposit, one day with the thick deposit, followed by a second day of the thin

deposit. This allows for the two thin deposit calibrations to be fit to a linear function in

time, and then ϵγ is taken to be the midpoint of this fit. This method significantly increases

the runtime needed for a < 0.05% relative measurement but increases the robustness of the

technique.

There are two main components to the calibration of the neutron fluence monitor, ϵ0 is

a function of both the FM detector array solid angle and the 6LiF deposit areal density.

Using the same calibrated 241Am source from the calibration of the AG device, the solid

angle of the FM detector array can be measured. This is critical because two FM vacuum

cans exist. One is installed upstream of the AG device, rig 1, and the other is downstream

of the BL2 magnet and proton trap, rig 2. When ϵ0 is determined for the FM installed

on the AG beamline that ϵ0 is valid for a specific 6LiF deposit in a specific rig. A small

correction factor must be used when a calibrated foil is transferred to the BL2 apparatus

for data taking. The solid angles of the two rigs have been measured to a 0.04 % relative

precision [108].
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5.3 Absolute measurement of Neutron Capture Cross

Sections

In addition to being used to calibrate the BL2 neutron fluence monitor, the alpha-gamma

device can be used to measure neutron capture cross sections in a much lower energy regime

than other cross section measurements. In particular, the 6Li(n, t)4He neutron capture cross

section is critical for neutron fluence determinations in measurements of other cross sections.

The standard energy range used in this type of cross section is 25.3 meV (thermal) to 1

MeV. However, most cross section measurements have been made at energies far greater

than thermal energy [26]. The previous measurements at or near thermal energy have been

limited to integral-type measurements [66], measurements of the difference between the total

and scattering cross sections [9], or measurements of the ratio of cross sections [25]. No

absolute measurement of the 6Li(n, t)4He cross section has been made at energies close to

thermal energy. At energies less than 50 keV, the 6Li(n, t)4He cross section has been shown

to deviate from the 1/v law by less than 0.01% [11], therefore extrapolations from higher

energies are straightforward to make. However, the beam energy on the NG-6m beamline

has been measured to be (3.3255 ± 0.0016) meV [107], which would be the lowest energy

measurement of the 6Li(n, t)4He cross section by almost a factor of ten.

The measurement is made by relating the total neutron flux in the Alpha-Gamma device

with the totally absorbing boron target, ṅAG, to the total neutron induced events in the FM

thin 6Li deposit, ṅFM . The energy dependent efficiency is then given by:

ϵ(En) = 2σ(En)Φ, (5.11)

where the factor of two comes from the double counting of alpha and tritons due to the nature

of the detector array, σ(En) is the energy dependent cross section, and Φ is a quantity that

depends on the neutron monitor solid angle, the areal density of the 6Li deposit and the

neutron beam profile similar to how the neutron detection efficiency was determined in the
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BL1 experiment. Φ is given by:

Φ =
NA

A

∫ ∫
Ω(x, y)ρ(x, y)ϕ(x, y)dxdy, (5.12)

therefore, the cross section is given by:

σ(En) =
ṅFM

ṅAG

1

2Φ
. (5.13)

The determination of the areal density of the 6Li deposits has been discussed previously

[84, 73, 47]. The deposits were manufactured by the Institute for Reference Materials and

Measurements (IRMM) in Geel, Belgium, and their relative densities were determined with

a thermal neutron beam at the BR1 reactor in Mol, Belgium [83]. The deposit’s profile

shape and edge quality were measured with spectrophotometry and a Talystep measurement

respectively [73]. These measurements were then compared to the calculated profile from

the known construction geometry and found to be consistent. The absolute 6Li mass was

then determined by sacrificing two of the fabricated deposits with a destructive isotope

dilution mass spectroscopy (IDMS) measurement done by the IRMM. We currently plan to

sacrifice another of the measured deposits for a second round of IDMS carried out at NIST

to verify the mass of 6Li has not changed in the last 30 years. It is also planned that the

profile of the deposits be re-measured at NIST using ellipsometry. Data taking is ongoing for

this measurement but it is believed that a relative precision of < 0.3% on the 6Li(n, t)4He

neutron capture cross section at sub-thermal energy can be achieved.

Similarly to the 6Li(n, t)4He cross section measurement, a 235U(n, f) neutron capture

cross section measurement is currently underway. This measurement is similar to the

previously discussed 6Li measurement except where the 6Li(n, t)4He reaction has ≈ 5 MeV

of excess energy the 235U(n, f) carries ≈ 211 MeV of energy. Of this 211 MeV, about 169

MeV is carried by the fission products. This means that the dynamic range of the FM

must be much larger for this cross section measurement. Yet another complication is the

multi-body decay of the 236U . Because the 6Li(n, t)4He reaction is a two body decay, the

products have fixed energies. This allows for the analysis to look in a very particular energy

window. For the 235U(n, f) fission products, the energy range is much larger, which makes
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the analysis more difficult. Another difference between the 6Li and the 235U measurements

is the presence of multiple isotopes in the 235U deposit. While there is also 7Li present in

the 6Li deposit, the 7Li is stable and does not complicate the analysis (it does complicate

the mass determination). However, the 235U deposits contains a fraction of 234U . This 234U

alpha decays with a lifetime of 2.46 × 105 years and energy of 4.8 MeV and occurs with or

without the neutron beam. Because the solid angle of the detector array is known, the total

mass of the deposit may be determined if the 234U alpha rate and the relative mass fraction

is known. This measurement also requires knowledge about the deposit shape, which will be

measured using X-ray Fluorescence at NIST. Similarly to the 6Li measurement, the energy

range used in this experiment is far from any neutron capture resonances and is in a region

that is almost purely 1/v. This measurement is ongoing and the estimated relative precision

is commensurate with the 6Li(n, t)4He measurement.
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Chapter 6

Assessment of Systematic Tests and

Corrections

This chapter will discuss experimental aspects that have the potential to modify the measured

neutron lifetime and may require a correction to the final result. As a systematics limited

experiment, the majority of data is collected for different systematic tests. This chapter will

outline the systematic tests that have been carried out for BL2, but is not as an exhaustive

list of all possible systematic effects in this experiment.

6.1 Magnetic Field Corrections

If the proton trap is perfectly symmetric and the magnetic field is perfectly uniform, the

end region, Lend, is exactly the same for all trapping lengths, and the lifetime fit, from

equation 2.4, will be perfectly linear. In reality, small differences in electrode sizes, small

misalignments of the electrodes, the neutron beam divergence, and the magnetic field

nonuniformity across the trapping region cause slight deviations to this fit. As a result,

a correction is necessary for all trapping lengths. The electrostatic potential of the trap

electrodes can be calculated to an accuracy of better than 0.02% using an approximate

solution to Laplace’s Equations for axially symmetric lenses [20]. Due to the physical open

cylinder-like shape of the electrodes, there is some radial dependence to the potential. On the

center axis of the trap electrodes, the trapping potential is slightly lower, and that potential
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increases closer the electrodes. Figure 6.1 shows the potential shape for a 3 electrode trapping

region on the left and the radial dependence of the potential distribution as a function of

radius on the right.

Because the trapping potential is not perfectly square shaped, a decay proton can be

born at a positive potential in the end regions and still be trapped. In this case, a proton is

trapped if its axial kinetic energy and electrostatic potential energy is less than the maximum

of the trapping potential. Because of this, protons born in the end region are trapped with

less than 100% efficiency. A small correction is applied to the trapping lengths to account

for these effects. The nonuniformity in the magnetic field dominates these corrections.

The trapping region acts as a quasi-Penning trap, however, it is not a true Penning trap

because it lacks an axial quadruple electrostatic field. The same basic particle modes exist:

1. An axial “bounce” along the axis of the beam with period Tz.

2. Cyclotron motion around the magnetic field lines with period Tc =
2πmp

eB
.

3. Magnetron drift motion perpendicular to the magnetic field lines that is proportional

the E⃗ × B⃗ force. Since the electric and magnetic fields are almost solely axial, this force is

small and this motion can be ignored [67].

For a charged particle moving in a magnetic field, it can be shown that
p2⊥
B⃗ ·⃗l

is an adiabatic

invariant; where l⃗ is the vector along the guiding center of the proton (the axial center of the

helical proton trajectory), and p⊥ is the proton momentum perpendicular to l⃗ [56]. It can

also be shown that the adiabatic conditions are satisfied everywhere in the trapping region

[67]. If one defines the longitudinal kinetic energy along the guiding center to be Kl, then a

variation in the magnetic field, B⃗, along l⃗ will cause a change in Kl. The dot product, B⃗ · l⃗,

acts as a one-dimensional scalar potential that is proportional to the energy of the proton.

This quantity is treated as a magnetic pseudo-potential. The magnetic pseudo-potential for

a proton’s trajectory can be expressed as a voltage that is a function of the guiding center. A

proton’s initial pseudo-potential can be defined as zero, then the change in pseudo-potential

is added to the electrostatic potential along the proton’s trajectory. Therefore, a proton

is trapped if the sum of the axial kinetic energy and electrostatic potential at birth is less

than the sum of the electrostatic potential plus the magnetic pseudo-potential at every point

along the proton’s path. The nominal trapping potential (800 V) is high enough and the
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Figure 6.1: Left: electrostatic trapping potential for 3 electrodes and 800 V, showing the
trapping potential shape. Right: radial dependence of the electrostatic trapping potential,
taken from [67].

93



maximum value of the magnetic pseudo-potential variation is small enough (≈30 V) that all

protons born in the grounded center region are trapped.

If a proton is born in the end region of the trap, at an elevated electrostatic potential,

the trapping probability will depend on the magnetic pseudo-potential along the proton’s

trajectory. Since the magnetic field is not uniform over the entire trapping region, and

data are taken at many different trapping lengths, this probability is not constant for all

trapping lengths. Figure 6.2 shows the magnitude of the axial magnetic field in relation

to the placement of the trapping electrodes. In the normal data taking mode, the door

electrodes are kept fixed but the mirror electrodes are moved up and downstream to increase

or decrease the trapping volume. These effects cause the neutron lifetime to be slightly

non-linear as a function of trapping length, and a correction factor must be applied to each

trapping length to account for this. At a much smaller level, these correction factors to the

electrode lengths will also depend on the divergence of the neutron beam in the trapping

region, and variations in electrode and spacer length. For a more detailed descriptions of

these smaller effects see reference [67]. These electrode length corrections depend on the

exact placement of the Mark II and Mark III traps in the magnet bore and will be calculated

after data taking is finished.

To verify this calculation, data needs to be taken so that the magnetic field nonuniformity

is minimized for a particular apparatus configuration. Data was taken with a 3 electrode scan

of the trapping region. 3 electrodes is the smallest trapping region that is usable because

a smaller trapping region causes the end regions to overlap. Data was taken at 7 different

trapping regions, in 3 electrode segments, starting with electrode 4 and ending with electrode

13. Because the magnetic field strength is highest at the middle trapping electrodes, and

lower at the door and for downstream positions of the mirror, protons born in the end region

are more likely to be trapped when using 6 or 7 electrodes, for example, and less likely to

be trapped when using the most extreme cases of a short or long trap, 3 and 10 electrodes

respectively. Because protons are trapped further away from the proton detector the more

downstream the trapping region, some care must be taken in the analysis to insure that all

trapped protons are counted. The most highly energetic protons still arrive at the proton

detector almost immediately no matter the trapping location. However, low energy protons
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Figure 6.2: Measured axial magnetic field strength showing the position of the Mark II
trap electrodes, taken from [67].
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that are kicked out of the trap by the ramp can take up to 7 µs longer to reach the detector

from the most downstream trapping region compared to the normal trapping position. Figure

6.3 shows an example of the arrival time of the protons for different sections of the trap. This

data allows the Monte Carlo, which is similar to the Monte Carlo described in section IV-C of

reference [67], be experimentally verified and gives confidence in both the measurement of the

magnitude of the magnetic field and the Monte Carlo. The Monte Carlo has many test cases,

but generally a comparison is made between the number of trapped protons with a perfectly

uniform magnetic field and the measured magnetic field. The difference between these two

provides a correction to the trapping length. Figure 6.4 shows a comparison between the Ṅp

Ṅα+t

ratio for different 3-electrode segments of the trap compared to the expected variation due to

the known magnetic field shape assuming a rough placement of the trap. The good agreement

between the data and the calculation shows that the magnetic shape is well understood and

can be easily corrected. In BL1, a significant portion of the data was taken with 10 central

trapping electrodes. In this configuration, the magnetic field varied more than was expected

and led to a large, -5.3 s, correction to the neutron lifetime. BL2 plans to take data only

up to 9 central trapping electrodes, we believe this should decrease the correction to the

∼ 1 s level. Moreover, because the magnetic field was changing quickly in the vicinity of

10th trapping electrode, the axial placement of the trap had a relatively large effect on Ṅp

Ṅα+t
,

leading to systematic uncertainty of ±0.71 s. Now, only using up to 9 trapping electrodes

and axially positioning the trap using the trap positioning piece mentioned in section 2.2,

the uncertainty in the trap position and the sensitivity to that position will be significantly

decreased to the ≈ ±0.2 s level.

6.2 Proton Trap Unloading Efficiency

Decay protons in the trapping region must be transported to the proton detector with near

unit efficiency to minimize a necessary correction to the neutron lifetime. To guarantee

proper unloading of the proton trap, a small gradient potential is placed on the previously

grounded central electrodes. This gradient, the ramp, forces protons with low axial kinetic

energy out of the trap and into the acceleration potential of the proton detector. Because of
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Figure 6.3: Comparison of proton arrival times for 3 electrode trapping regions, showing
that protons trapped further downstream can take longer to reach the proton detector. Red:
trapping electrodes 4-6, black: trapping electrodes 7-10, blue: trapping electrodes 11-13.

Figure 6.4: Comparison of 3 electrode scan of trapping region with calculation taking into
account the change in the magnetic field strength.
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the trapping potential of the door and mirror, protons in the trap have axial kinetic energies

ranging from 0 to 800 V. If there was no ramp voltage placed on the grounded electrodes,

low axial energy trapped protons could take an indefinitely long period of time to reach

the proton detector. This would require an open ended arrival time window in the analysis

which would cause an unnecessary decrease in the signal to background ratio. Because the

detector signal is digitized for only a small portion of the trapping cycle the ramp must be

sufficiently high so that the slowest possible protons arrive within this digitization window.

It is preferable that protons arrive much earlier than the end of the digitization window

because the analysis is most efficient if the whole exponential decay tail preamp waveform

can be seen. As a systematic test of the proton trap unloading efficiency, data was taken

varying the maximum ramp voltage between 0 and 60 V. One would expect that above a

certain cut off voltage the Ṅp

Ṅα+t
ratio would plateau for a fairly wide range of ramp voltages.

As seen in figure 6.5, a reasonable plateau is achieved anywhere between 14.4 and 60 V, and

the Ṅp

Ṅα+t
ratio was significantly lower with no ramp voltage. 14.4 V was the most common

ramp voltage during the running of BL1. For BL2, it was decided that the ramp voltage

be increased so that the proton arrival time window in analysis could be narrower. This

increases the signal to background ratio. The power supply used for the ramp voltage was

not able to supply the current necessary for voltages > 60 V. As a result most of production

data taking the ramp voltage was set at 45 V. This is far enough away from the current limit

that we did not have to strain the power supply. It is believed that for a range of maximum

ramp voltages between 14.4 and 45 V, there will be no correction necessary to the neutron

lifetime caused by the unloading efficiency of the proton trap.

6.3 Proton Trapping Efficiency

Decay protons have a maximum energy of 751 eV, so the trapping potential must be at

least 751 V to completely trap the whole decay proton energy spectrum. The most useful

trapping potential is one that is large enough to completely trap the protons while being

as low as possible to avoid any problems with instability that may arise with high voltages.

The nominal trapping potential used in this experiment has been 800 V. To verify that 800
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Figure 6.5: Example of Ṅp

Ṅα+t
vs ramp voltage showing a large plateau in rate for ramp

voltages > 14.4V .
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V is sufficient, data was taken varying the trapping potential between 200 and 1100 V. It is

expected that the measured neutron lifetime is constant from 800 to 1100 V and below 800

V the measured lifetime increases in a predictable way. To compare to the data, a GEANT4

simulation was done using the measured magnetic field and electrode sizes.

Because the central trapping electrodes are kept at 0 V the electrostatic potential gradient

between the energized electrodes and the central electrodes changes as the applied voltage

changes. Higher trapping potentials increase this gradient and functionally increases the

proton trapping volume and changes the end region. Because of this, the Ṅp

Ṅα+t
ratio for each

trapping potential also changes, which means the neutron lifetime must be compared for this

systematic test, which significantly increases the necessary run time. Data was taken with

two different electrode lengths and 14 different trapping potentials between 200 and 1100

V. With two electrode lengths, the neutron lifetime is proportional to the difference in the

Ṅp

Ṅα+t
ratio which makes comparison to simulation much simpler. Doing the systematic test

at only two trapping lengths also significantly decreases the amount of time needed for data

taking and simulation.

The GEANT4 simulation was done using the results of neutron beam transport

simulations to weight the starting positions of protons. The proton energies are sampled

from the decay energy spectra ranging from 0 to 751 eV with randomized momenta. These

protons are born at axial positions covering the whole trapping region plus some extent

outside of the trapping region to replicate the real neutron beam decays. Realistic electric

and magnetic fields are also included in the simulation. The axial magnetic fields are taken

from previous measurements of magnetic field. The electrostatic potential is calculated

with COMSOL using realistic electrode geometries. The simulation is done for three and

nine electrode trapping lengths. After the initial proton positions are determined, the proton

tracks are evolved for enough time so that the vast majority of protons make multiple bounces

back and forth off of the door and mirror potentials. After this run time, the number of

protons that are still trapped is tallied. The neutron lifetime is proportional to the difference

in the trapped proton fraction between the 9 and 3 electrode simulation. This same set of

simulations was then repeated for many trapping potentials ranging from 200 to 1600 V. As

seen in figure 6.6, the simulation shows the expected increase in proton rate (here proton

100



rate is perfectly analogous to the Ṅp

Ṅα+t
assuming constant neutron fluence) ratio for both the

three and nine electrode cases above 800 V. The fast drop of the proton rate is also seen

when the trapping potential is below the proton endpoint energy. Although the proton rate

is expected to increase because of the effective change in the trapping length, the neutron

lifetime is expected to remain constant (neglecting any small changes in the magnetic field

in the end region). Figure 6.7 shows the simulated data fit from 700 - 1600 V with a linear

function, the resulting slope is consistent with 0. It may also be noted that there is not a

significant increase to the neutron lifetime with only a 700 V trapping potential. Only 2% of

all protons are born with total kinetic energy > 700 V, but axial kinetic energy is required to

escape over the trapping potential. From the simulated data we see that 800 V is sufficient

to trap all decay protons, and we should see a constant neutron lifetime with a trapping

potential from about 700 V to much greater than 1000 V. Figure 6.8 shows a wide range

of data taken between 200 and 1100 V door/mirror voltage. As expected, the measured

neutron lifetime increases quickly as the trapping voltages drop below the end point energy

of the decay protons and a large plateau is achieved for trapping voltages greater than 700

V. From the simulation, it can be seen that we are not able to detect an increase in the

neutron lifetime until the trapping voltages are below ≈ 700V . To show this, the inset of

figure 6.8 shows a fit to the measured lifetime from 700 to 1100 V, as expected; this data

shows no change in the neutron lifetime over this range. As a result, the nominal trapping

voltage of 800 V is sufficient to trap all decay protons born in the central grounded region

and no correction is expected for this effect.

6.4 Proton Detector Alignment

Because of the absolute counting nature of the experiment, detector alignment with the

neutron beam must be treated carefully or trapped protons may miss the detector. The

neutron beam has a 7 mm diameter collimator (C2) directly upstream of the superconducting

magnet, and a 25.4 mm diameter collimator (C1) approximately 5.5 m upstream. From this

we can calculate that the extent of the neutron beam is < 9mm in radius at all points in the

trapping region. Using the proton end point energy of 751 eV and the 4.6 T magnetic field in
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Figure 6.6: Top: Simulated dependence of the proton rate as a function of door and mirror
voltage, the increase in rate above 800 V comes from the change in Lend. Bottom: Simulated
dependence of the neutron lifetime as a function of door and mirror voltage.
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Figure 6.7: Simulated dependence of the neutron lifetime as a function of door and mirror
voltage. Simulated data from 700 to 1600 V fit with a linear function. Fit slope is consistent
with 0, showing that no neutron lifetime dependence is expected for these trapping potentials.

Figure 6.8: Measured lifetime data as a function of door and mirror voltage. Inset shows
the data from 700 to 1100 V fit to a constant.
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the trapping region, the maximum cyclotron radius of the protons is < 0.9mm. Combining

these two, the full extent of the proton distribution is slightly less than 10 mm in radius. The

smallest detector that could be used for lifetime data is a 300mm2 detector with a radius of

9.77 mm. To achieve a negligible amount of missed protons, < 0.1 s effect on the neutron

lifetime, the proton detector must be aligned to better than 1 mm to the neutron beam

center. To align the proton detector a theodolite is placed downstream of the apparatus.

This theodolite is aligned to the neutron beam center using precisely placed beam markers

on the floor and shielding walls. The height of the beam is found using beam markers on the

shielding, as well as the magnet flange, and the horizontal position and the angle of the beam

is found using multiple beam markers on the floor of the guide hall. The proton detector

mount is attached to two encoder motors that are controlled by the DAQ. These motors

allow the detector to be moved in the X-Y plane normal to the incoming protons. When

the theodolite is aligned, the proton detector position is then centered to this alignment

using the encoder motors. The location of the proton detector is now defined as (0,0) on the

encoder motors in the X-Y plane. Because of space restrictions caused by the vacuum and

high voltage systems, the detector is only able to move a few mm in any direction before it

would run into a wall. The DAQ was programmed so that this process of moving the proton

detector was automated; this allowed for data to be taken in a much finer grid compared to

manually moving the detector. Data was taken by moving the detector in 1 mm increments

over the full movable range; this amounted to an approximate 10 mm x 10 mm grid.

The proton detector alignment test was initially done with a 300mm2 detector that was

moved from -4 to +6 mm in the horizontal and -5 to +3 mm in the vertical direction.

The results of this scan can be seen in figure 6.9. Because of the relatively small area over

which the proton detector can be moved and the peaked neutron beam distribution, the fall

off in the Ṅp

Ṅα+t
ratio is small compared to the uncertainty over a large portion of the scan

area. As can be see in figure 6.9, the Ṅp

Ṅα+t
ratio is practically constant from -2 to +4 mm

in the horizontal and -2 to +2 mm in the vertical. A fall off can be seen as the proton

detector moves to the extremities of the scan grid; this is most noticeable where the proton

detector is furthest away from (0,0) at +6 mm horizontal and -5 mm vertical. The bottom

plots of figure 6.9 show the calculated dependence of the proton rate on detector position

104



Figure 6.9: Top: contour plot of a full proton detector scan, Ṅp

Ṅα+t
ratios are on the z-axis.

A large plateau in Ṅp

Ṅα+t
ratio relative to errors (not shown) can be seen in the region of (0,0).

Relative error on the data approximately 2 %. Bottom: 1-dimensional proton scan data
along horizontal (left) and vertical (right) axes. The data is compared with the excepted
rate dependence (see text for details). Because of the restriction in detector movement, only
one shoulder can be seen with data.
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compared to 1 dimensional scans of the proton detector. This dependence is calculated using

a convolution of neutron beam images with the active area of the detector. Using this scan, it

is difficult to be certain that the proton detector is aligned to the center of the beam because

a large portion of the scan is flat. However, this gives us confidence that the neutron beam

distribution is well understood and the proton detector placement is not more sensitive than

anticipated.

A smaller active area proton detector would increase the sensitivity to small changes in

alignment. GEANT4 simulations were done for detectors ranging in size from 1 to 10 mm in

radius to better understand this effect. A smaller detector is more sensitive to misalignment,

but at a loss of stats which would require longer running times. For example, a 2 mm

radius proton detector would start to see a noticeable drop off in Ṅp

Ṅα+t
ratio after only a 1

mm misalignment, but would only have 16 % of the proton rate in the center of beam. A

5 mm radius active area detector was chosen for the next proton scan. This setup would

show a noticeable drop off in rate after a 2 mm misalignment and keeps approximately

70 % of the proton rate. The 5 mm radius simulation also had the added benefit that the

functional shape of the Ṅp

Ṅα+t
ratio dependence is roughly Gaussian, which would allow for

straightforward fitting to the data. To create a detector with an active region with a 5 mm

radius, a 10 mm diameter hole was drilled into one of the plastic detector caps, and the

detector was installed with this cap. A simple drilled hole in a plastic cap is not a precision

aperture, but since relative rates are being compared, small imperfections in the cap hole can

be ignored. The same proton scan technique as with the unmasked detector was followed,

and data was taken in 1 mm intervals at roughly 100 different points. The data is plotted

and fit to a two dimensional Gaussian and can be seen in figure 6.10. From the plot, the

smooth drop off in Ṅp

Ṅα+t
ratio in all directions can be seen. The results from the Gaussian

fit gives a central value of (-0.16,0.63), which is within the requisite 1 mm. This gives us

confidence that we can align the detector optically to the neutron beam center using the

theodolite to better than the required precision. Furthermore, it is planned for production

neutron lifetime data to be taken with a 600mm2 detector with a radius of 13.8 mm. Using

these larger detectors significantly lessens the restrictions on the proton detector alignment.
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Figure 6.10: Contour plot of a full proton detector scan with a 5 mm radius detector mask,
Ṅp

Ṅα+t
ratios are on the z-axis. The data is fit to a 2-D Gaussian, and the centroid of the fit is

within 1 mm of the nominal (0,0) centered position. Relative error on the data ranges from
2 to 5 %.
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6.5 Proton Trapping Time Effects

One of the major questions about this experimental method is whether or not protons escape

during the trapping sequence and going undetected. This would cause an artificially long

measured neutron lifetime and was not extensively tested in BL1. One of the main goals

of the BL2 systematic testing was to take data at multiple different trapping times to see

if there was any change in the neutron lifetime. In BL1, a 10 ms trapping time was used

almost exclusively. In 2018 and 2019, BL2 took data with trapping times ranging from 3 to

20 ms. In this data, it was inconclusive if the trapping time affected the neutron lifetime.

In figure 6.11, it can be seen that there was no strong preference for a constant or a linear

fit, and more data taking would be necessary.

The most powerful way to leverage data taking in this test is to take data with as long

a trapping time as possible. However, because of stability issues in the BL1 apparatus, the

trapping times used in BL2 were increased slowly. When the trapping time was increased to

30 ms, similar instability to that in the BL1 experiment was seen. If the apparatus was left

running for too long, high energy pulses, correlated with the door opening, would start and

damage the proton detector. This damage caused proton detector noise to increase to an

unusable level. It was later discovered that completely zeroing the trapping voltages every

few hours would stop this instability from occuring. Therefore, data taking continued at 30

ms trapping time with the caveat that data taking would be paused every few hours to zero

the trapping voltages. With this procedure, enough data was collected at 30 ms to measure

the neutron lifetime to a slightly worse precision than the data taken between 3 and 20 ms.

In figure 6.12, it can be seen that there was an increase in the measured lifetime with a

30 ms trapping time. It can be seen from the fits in figure 6.12 that the data does not fit well

to a constant. This data fits reasonably well to a linear function, but the p-value for both

fits with the 30 ms point added is worse than in the fits from figure 6.11. Because of the

instability concerns of the apparatus at 30 ms, there is some reason to distrust the measured

lifetime at 30 ms. It was then decided that we would attempt to improve the stability of the

apparatus and take data at longer trapping times before making any conclusions about the

dependence of the neutron lifetime on the trapping time.
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Figure 6.11: Change in the measured neutron lifetime vs trapping time. October 2019
reactor cycle, pre Si windows installation.

Figure 6.12: Change in the measured neutron lifetime vs trapping time with added data
at 30 ms. October 2019 reactor cycle, pre Si windows installation.
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At this point, a significant amount of time was devoted to pinpointing the cause of the

instability. Some of the major findings of the instability studies are: 1) the neutron beam

is not required for the instability to occur, 2) shutting off the accelerating potential does

not stop the high energy pulses, 3) changing the door and flush voltages seemed to have

no effect on stability, 4) increasing the ramp and mirror voltages made the apparatus less

stable, decreasing them made the apparatus more stable. The instability was particularly

sensitive to manipulating the mirror voltage as it could be made to come and go by turning

the mirror voltage on and off.

In addition to the trapping voltages, the connection of the magnet bore to the upstream

and downstream vacuum sections was also investigated. Because the instabilities were not

dependent on the neutron beam, the vacuum gate values could be opened or closed during

this testing. With the gate valves connecting the cold magnet bore to the rest of the room

temperature beamline closed, stability improved significantly. Similarly to the test of the

trapping voltages, it was also seen that the stability was affected more by the downstream

gate valve (closer to the mirror) than it was by the upstream gate valve (closer to the door).

With both gate valves closed, the apparatus was able to run stably up to 100 ms trapping

time. At that point, we started to design an apparatus modification to better isolate the

cold magnet bore from the rest of the warm beamline vacuum sections.

The goal of the cold bore isolation was mainly to improve the pressure in the trapping and

proton detection regions. An additional goal was to decrease possible interactions between

the warm and cold vacuum sections while affecting the neutron beam as little as possible.

As discussed in section 3.4, two thin, perfect silicon windows were installed upstream and

downstream of the magnet at the closest possible flange connection. Even though the total

scattering cross section of silicon is slightly larger than some other possibilities, aluminum

for example [68, 85], the ability to make single crystal silicon decreases the likelihood of

scattering. From previous experience with silicon wafers [83, 67, 108], the scattering in a

polychromatic beam is larger than one would expect from pure Bragg scattering. However,

this type of systematic effect was previously accounted for because of the silicon wafer backing

of the 6Li target. Because the silicon windows are installed in gates valves, this gives the

ability to do an in situ measurement of the change in neutron flux with the windows open
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and closed. No data has yet been taken for this systematic effect but it is planned at the

end of the running period.

These silicon windows were installed in November 2019, and over the next couple months,

data was taken comparing the neutron lifetime with the windows in the open and closed

positions between 3 and 20 ms trapping time. It was consistently seen that the pressure

in the vacuum section connected to the proton detector was lower when the windows were

closed, routinely going under range (< 3.79× 10−9 Torr) of the pressure gauge.

As can be seen in figure 6.13, the neutron lifetime values are similar at short trapping

times, but at 20 ms the windows closed data continued to be flat while the neutron lifetime

with the windows open increased. Because of instability concerns at trapping times greater

than 20 ms, it was decided that data taking at 30 ms and longer trapping times would

continue with windows closed only. With the windows closed, we continued to see lower

pressure in the proton vacuum section and have seen no stability issues at trapping times up

to 100 ms. The January 2020 and March 2020 reactor cycles were dedicated to investigating

the neutron lifetime dependence on the trapping time. The January 2020 cycle was roughly

6 weeks of data, but the March 2020 was only approximately a week before the facility was

shutdown due to the Covid-19 pandemic. In the January cycle, data was taken at 10 different

trapping time ranging from 3 ms to 100 ms, in the March cycle, data was taken at 3 ms and

50 ms.

As can be seen in figures 6.14 and 6.15, the conclusions from these data are not

straightforward. In the January 2020 cycle, the data fits well with a linear function with

the exception of the 100 ms data, which has a longer lifetime than one would expect with a

linear trend. The March 2020 data shows no change in the neutron lifetime out to 50 ms.

Unfortunately, no data was taken at longer trapping times because the cycle was cut short.

If the trend from the January 2020 cycle was present in the March 2020 data one would

expect the neutron lifetime at 50 ms to be about 15 s longer than the neutron lifetime at

3 ms. Even with very little data, this would be clearly seen. Throughout the rest of the

2020, reactor operation was sporadic and time in the lab was limited due to the pandemic.

However, some data was taken with a variety of different detector types. While carrying out

other systematic tests, data was always taken at different trapping times. Between November
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Figure 6.13: Change in the measured neutron lifetime vs trapping time showing the
difference between Si windows open and Si windows closed. November 2019 reactor cycle
data.
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Figure 6.14: Change in the measured neutron lifetime vs trapping time for the January
2020 reactor cycle.

Figure 6.15: Change in the measured neutron lifetime vs trapping time for the March 2020
reactor cycle.
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2019 and present, data has been taken in 6 reactor cycles that varied between 1 and 6 weeks.

A collection of the neutron lifetime vs trapping time plots for all of these cycles can be seen

in appendix E. As can be seen in the collection of plots, there are a variety of results. Two of

the cycles produced results that did not show a neutron lifetime dependence with trapping

time, the other four cycles show a roughly linear relationship, with the neutron lifetime

increasing as trapping time increases. One possible explanation for the differences in each

cycle could be the average pressure during data taking. One could imagine that there is a

correlation between the pressure and the change in the lifetime. However, looking at the

closest pressure monitor to the proton trap and detector we see no significant difference in

the pressure when comparing the cycles.

Figure 6.16 shows the pressure recorded by two different pressure gauges installed in

the same vacuum section as the proton detector. As mentioned earlier, after the windows

were installed the pressure gauge routinely read “under range,” this can be seen in the

black points. After series S1046, a different pressure gauge was installed with the ability

to read lower pressures, these points can be seen in red. Figure 6.16 covers all series in

which the data in appendix E was taken, the newer gauge was installed before the July 2020

cycle. There is no correlation between the pressure in these series and the measured neutron

lifetime dependence. Currently, there is no concrete explanation for some cycles showing a

significant neutron lifetime dependence on the trapping time. The current best guess is there

are subtle, local vacuum effects in the trapping volume that change when the apparatus is

opened to atmosphere in-between reactor cycles. This is part of the reason the Mark III

trap was installed as it should have better local vacuum conditions as discussed in section

2.2. Unfortunately, no data has been taken with the Mark III trap for comparison due to

the reactor outage discussed in section 8.2. The goal is to take similar data with the Mark

III trap and compare this data to the Mark II trap data before making any conclusions.

6.6 Proton Detector Backscatter Extrapolation

Because of the absolute counting nature of the experiment, proton backscatter off of the

detector leads to a direct shift in the measured neutron lifetime. There is currently no
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Figure 6.16: Proton detector vacuum section pressure vs series. Change at series 1046
corresponds to the installation of a new pressure gauge. The error bars are equal to the the
manufacturer’s specifications for repeatably for each gauge.
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possible way to account for this effect with data, so we rely heavily on simulation for this

systematic correction. There is a further complication that any proton that backscatters

will be turned around by the acceleration potential and may still have enough energy to be

detected. To account for these effects, neutron lifetime data is taken with many different

detector types. These detectors have different backscatter fractions, and by taking data with

different detectors, the neutron lifetime can be plotted against the simulated backscatter

fraction. The neutron lifetime dependence on the backscatter fraction can then be fit and

extrapolated to zero backscatter. This is by far the most time consuming systematic test of

the experiment because, for each detector type, the neutron lifetime must be measured to

good precision.

The backscatter fraction depends on the acceleration potential, the deadlayer material,

and the deadlayer thickness. This gives the experiment a wide range of backscatter fractions

to measure. Depending on the configuration, the backscatter fraction can vary by up to a

factor of 40. Rutherford scattering from the atomic nuclei can be calculated analytically.

Although this does not take into account multiple scattering and energy loss in material,

this is still a good check of the backscatter fraction. If one has protons of energy E, incident

on a material of atomic number Z, the Rutherford backscattering cross section is given by:

σRuth = 2π

∫ π
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where θ is the scattered proton angle, integrated over all possible angles, and re is the classical

radius of the electron. It then follows that the backscatter probability is given by:

Pbk =
NA

A
σRuthρ, (6.3)

where NA is Avogadro’s number, A is the atomic weight of the deadlayer material, and

ρ is the areal density of the detector deadlayer. It can be seen that Pbk is dominated

by the material of the detector, but it is also inversely dependent on the square of the
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acceleration voltage. As an example, let’s consider the two most extreme cases used in

this experiment, a PIPS detector at high acceleration voltage and an SB detector with a

thick deadlayer at low acceleration voltage. Let’s assume the PIPS detector has a deadlayer

of SiO2 with density 2.65 g/cm3, for a nominal deadlayer thickness of 775 Å, the areal

density is then 2.05× 10−5 g/cm2. Our thickest deadlayer SB detector has an areal density

of 100×10−6 g/cm2 per the manufactures spec sheet. If we now assume the highest operating

voltage for the PIPS detector (35 kV) and the lowest operating voltage for the SB detector

(25 kV), we see that PbkPIPS
≈ 0.125% and PbkSB

≈ 5.4%, a difference of more than 40 times.

For an example of how varying the acceleration potential changes the backscatter probability

see figure 6.17. The plotted data encompasses four detector types, a PIPS detector and SB

detectors with 20, 40 and 60 µg/cm2 Au deadlayers, these detectors are the mostly likely

to be used for production data. Each detector type has its backscatter fraction calculated

for four different acceleration potentials between 25 and 32.5 kV. This plot demonstrates

how the material and thickness of the deadlayer dominate Pbk, but varying the acceleration

potential can also change Pbk by a factor of 2 or 3. Note that this calculation does not include

any energy loss of the protons as they traverse the deadlayer. In general, the proton energy

loss is proportional to 1/A and Pbk is proportional to A. This means that higher Z materials

have less energy loss through the deadlayer, but larger Pbk [67]. For this experiment, that

means that for similar deadlayer thickness a PIPS detector will have greater energy loss

but less backscatter than a SB detector. These effects are taken into account by using the

Stopping and Range of Ions in Matter (SRIM) software package [109].

6.6.1 SRIM Simulation of the Proton Backscatter Fraction

While the analytic expressions in equations 6.2 and 6.3 are useful for quick estimates of

the backscatter fraction, it neglects to account for some aforementioned effects like multiple

scattering (allowing for a proton to scatter multiple times in the material) and energy loss

in the material. For a full treatment of backscatter physics SRIM 2013 is used [109]. The

simulation setup is rather straightforward for our purposes. The user inputs the energy of

the incident ion (proton), the incident angle, the material of the deadlayer, and the deadlayer

thickness. The simulation then uses a large collection of tabulated stopping ranges that are
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Figure 6.17: Predicted change in the neutron lifetime vs backscatter probability calculated
with equation 6.2. The spread in each detector type corresponds to varying the HV potential.
Error bars on the points are commensurate with typical measured lifetime uncertainties.
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dependent on the density of the deadlayer to calculate the trajectory of the incident ion.

One significant complication to these simulations is the thickness of the deadlayer used.

The detector manufacturers typically do not give an uncertainty of the deadlayer of the

detector (and if they do the uncertainties are large), so the deadlayer must be determined

experimentally. To do this, the detector is calibrated using the 59.5 keV gamma from a 241Am

source. After the detector is calibrated, the single proton energy peak is fit to a Gaussian

giving the deposited energy of a typical proton. The difference between the acceleration

potential and this deposited energy is the energy loss through the deadlayer, Eloss. Eloss is

a direct result of the deadlayer thickness, which can be estimated using the stopping range

calculations in SRIM. The exact thickness of the deadlayer is slightly more complicated

and tedious to extract. Because one is not able to give SRIM a desired energy loss, only

the deadlayer thickness, the precise determination is an iterative process. The simulations

are run initially for only a short period of time necessary for fitting to the central proton

peak. This value is then compared to Eloss for the calibrated proton energy spectrum. The

deadlayer thickness is then varied slightly and the process is repeated until the simulated

energy loss agrees with Eloss. After this is determined, a much longer simulation is run with

1× 106 events; each of these simulations takes approximately 12 hours.

SRIM gives the user the option of three “damage calculation models,” the description of

these three models from the SRIM textbook [110] can be seen in appendix D. For BL1, the

simulations used the default “quick” calculation model. Using this model for comparisons

to BL2 data it was seen that the output energy spectra did not match well as the width of

the proton energy peak was far greater in the simulation than the data.

As seen in figure 6.18, the quick and “full” damage calculation types are nearly identical

while the “monolayer” damage calculation type is significantly narrower. A narrower peak

is expected as the simulation does not account detector noise that widens the analyzed

spectra. The SRIM textbook [110] describes that to save computation time the quick and

full damage calculation models use a “Free Flight Path” approximation which allows an

incident ion to travel up to 1µm in the detector material without interactions. This is

acceptable in some applications but with deadlayers < 1µm for all detector types this

is not an appropriate model to simulate BL2 data. Using the monolayer damage model
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Figure 6.18: Top: comparison of the quick, full, and monolayer damage calculation model
for a proton with 25 kV of energy incident on 500 Å of Si. This is similar to a PIPS detector
deadlayer Bottom: comparison of the quick, full, and monolayer damage calculation model
for a proton with 25 kV of energy incident on 500 Å of Au. This is similar to a SB detector
deadlayer. Both plots show that the quick and full calculation models are similar and result
in a significantly wider proton peak than the monolayer model.
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SRIM does not use approximations, and it forces the ion to interact every few Å. This

significantly increases the simulation time but results in a more believable energy spectrum.

All simulations were done using this damage calculation model.

The output of the SRIM simulation is two files, “BACKSCAT” which contains the

kinetics of ions that “after one or more target collisions, have a trajectory that exits the

target back through its surface,” and “TRANSMIT” which contains the kinetics of ions

that “leave the bottom of the target.” Each of these files lists the energy and trajectory

of each ion (proton) that leaves the deadlayer. From the TRANSMIT file, the energy of

each ion is taken as the amount of energy that will be deposited in the detector. The

BACKSCAT file is largely used to tabulate the number of backscattered events, although

the trajectories of the backscatter protons can be used as input for a more sophisticated

simulation to estimate the number of protons that return to the detector. Using these files,

one can determine f(H)ruth and f(H)act. f(H)ruth is the fraction of proton events that

backscatter from the deadlayer and f(H)act is the fraction of proton events that backscatter

from active region of the detector. f(H)act requires an extra simulation to calculate but,

Pbk was previous dominated by f(H)ruth so, f(H)act will be ignored for now. This leaves a

simple calculation for f(H)ruth. It is simply taken as the ratio of the total number of events

in the BACKSCAT output file to the total number of simulated events. For all possible

experimental configurations, the proton backscatter fractions can be seen in table 7.2. The

exact backscatter correction to the neutron lifetime will not be known until all detector types

and acceleration voltages are known.

6.7 Undetected Protons

There are two possibilities where a proton could be trapped, hit the detector and not deposit

enough energy to be detected. Those are denoted by f(H)stp and f(H)BT , which correspond

to the fraction of protons that stop in the deadlayer of the detector and the fraction of protons

that enter the active region but do not deposit enough energy to be detected, respectively.

f(H)stp is impossible to determine experimentally, so SRIM is used to simulate all possible

detector configurations. The SRIM simulation tabulates each particle that is transmitted
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or backscattered from the deadlayer, any event that is not in either of these categories is

considered to be stopped in the deadlayer and undetected. The value of f(H)stp changes

significantly depending on the acceleration potential and deadlayer of the detector. With a

thin deadlayer, f(H)stp can be neglected entirely. With a low acceleration potential, and a

thick gold deadlayer detector f(H)stp can be as large as a 1.2% effect on the proton rate.

For a determination of f(H)stp for all possible run configurations see table 7.2.

The fraction of below threshold protons, in addition to being dependent on the detector

deadlayer and the acceleration potential, is also dependent on variables that are not captured

in simulation. The two largest contributors that are not captured are intrinsic detector noise

and the noise suppression in the analysis. Data is generally taken with either a 300mm2

or a 600mm2 area detector and these vary from 300µm to 1000µm depletion depth. The

detector noise is proportional to the capacitance of the detector, which is proportional to

the ratio of the detector area to the depletion depth. The smaller the area or the thicker

the detector, the less intrinsic noise the detector has. Using the optimized trapezoid filter

parameters from section 4.3, the proton energy threshold is typically between 5 keV and 8

keV depending on the detector used. To determine f(H)BT , the energy transmitted through

the deadlayer from the SRIM simulation is overlaid against the analyzed data. In principle,

the low energy proton tail matches well with the data, and f(H)BT is taken as the fraction of

proton events that are below the analysis threshold. However, at low acceleration potential or

with thick deadlayer detectors it can be difficult to make this comparison precisely. In these

scenarios, there is only a small portion of the low energy proton tail visible above the noise.

To address this, data is taken with the same detector at multiple acceleration potentials. An

example of these energy spectra with varying acceleration potentials can be seen in figure

6.19. Using this type of data, the analyzed tails can be benchmarked against the simulation.

If the low energy proton tails agree well with the high acceleration potential data, then it can

be assumed they will also agree well with lower acceleration potential data. The reason that

not all data is taken with a high acceleration potential is that this increases the likelihood of

catastrophic detector breakdown. This benchmarking allows for the majority of data to be

taken at a safer acceleration potential, while still having confidence in the below threshold
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proton correction. A list of f(H)BT for all possible apparatus configurations and a reference

threshold (6 keV) can be seen in table 7.2.
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Figure 6.19: Example of proton energy spectra for varying high voltage potentials. The
larger the accelerating potential the more proton tail can be seen which can more easily be
compared to simulation.
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Chapter 7

Detection Efficiency of Molecular

Hydrogen

On average, protons make many axial bounces during the trapping cycle. This enhances

the possibility that protons could interact with the residual gases in the trapping volume.

These interactions could change the trapping or detection efficiency of the protons leading

to a systematic shift in the neutron lifetime. In this chapter, I will discuss one of these

interactions and the effects it causes in the data.

7.1 Residual Gas Interactions in the Proton Trap

Protons bouncing back and forth in the proton trap are subject to three types of interactions

with residual gas: 1) elastic scattering, 2) inelastic scattering, and 3) charge exchange. The

first two types of scattering do not change the efficiency of proton detection, because they

do not increase the proton energy as the residual gas molecules are extremely low energy.

However, charge exchange, where one or more electrons are transferred between a residual

gas atom (molecule) and the proton, results in an ionized atom (molecule). The now ionized

atom (molecule) will follow the magnetic field lines and be accelerated to the detector just like

a normal trapped proton. This has the potential to decrease the proton detection efficiency

because the heavier atom (molecule) losses more energy in the deadlayer of the detector. The

charge exchange interaction dominates in this low energy regime where the proton velocity
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is less than the orbital electron velocity of the residual gas atom (molecule) [23]. Charge

exchange of a trapped proton and a residual gas atom (molecule) is represented by:

p+M → H +M+, (7.1)

where p is a proton, M is any atom or molecule and H is a neutral hydrogen atom. The

proton captures an electron from a residual gas atom (molecule) and is converted to a

neutral hydrogen atom, which escapes the trap and the singly charged atom (molecule) is

left trapped. The new ion, M+, then acts as a normal trapped proton, confined axially by

the electrostatic field of the door and mirror and radially by the magnetic field. When the

trap transitions into counting mode, the M+ ion is transported to the proton detector by

the acceleration potential and is detected with efficiency ϵM , where each M+ has a separate

efficiency.

The superconducting magnet is cooled by liquid helium. When the magnet comes to

equilibrium with the rest of the apparatus, its bore is < 10K. At these temperatures all

residual gasses “freeze out” except for hydrogen, helium and neon. Figure 7.1 shows the

calculated saturated vapor pressure for many common gasses as a function of temperature

[7].

It is expected that the partial pressure of all other species except for helium and hydrogen

are low enough as to not contribute to charge exchange with trapped protons. The majority

of the pumping for the two lightest gasses is done by three ion pumps outside of the cold

magnet bore. This makes the partial pressure of H2 and He difficult to estimate.

The probability, PM(x), of a proton charge exchange occurring is

PM(x) = 1− enσMx ∼ nσMx, (7.2)

where σM is the charge exchange cross section for each residual gas, x is the distance traveled

through the residual gas, and n is the number density of the residual gas [23]. At low energies,

< 1 keV , charge exchange cross sections vary significantly over the range of light elements

and common molecules [98, 76, 12, 93, 45, 92, 1]. The charge exchange cross section for 4He

is approximately two orders of magnitude lower than molecular hydrogen for the relevant
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Figure 7.1: Saturated vapor pressure of common gases as a function of temperature,
calculated in [7], taken from [102].
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energy ranges [76, 1, 93], and we assume the partial pressure of all other gasses are extremely

low. As a result we will focus solely be on molecular hydrogen, H2, in this chapter.

7.2 Evidence of Trapped H+
2

Proton charge exchange with molecular hydrogen, H2, resulting in singularly ionized

molecular hydrogen, H+
2 , and a neutral hydrogen atom, H, would result in many observable

effects in the BL2 data. In the sections below, I will cover indications that show why we

believe H+
2 ions are being created via charge exchange. Many of these effects have been

observed including, evidence for low energy, trapped ions, deposited energies that agree with

the simulation of H+
2 molecules in solid state silicon detectors, a pressure related dependence

on these type of events, and a change in the backscatter fraction.

7.2.1 Low energy H+
2 Ions

A proton undergoing p(H2, H
+
2 )H would result in the H+

2 molecule being trapped while

the H atom escapes. This H+
2 molecule would have very low energy because the initial H2

molecule is thermalized with the cryogenic magnet bore, on the order of 10 K. Since these

H+
2 molecules are now trapped with much lower energies than decay protons they will behave

differently after the trap is opened. The majority of the decay protons have enough energy

to escape the trap without the need of the potential ramp. Because of this, we see protons

almost immediately after the door is opened and continuing until the low energy protons are

pushed out by the ramp. Because the H+
2 molecules have such low energy it is not expected

to promptly see these type of events. The vast majority of these events would be kicked out

by the ramp, and it is expected that the arrival time of these events would depend almost

entirely on the ramp voltage.

Figure 7.2 shows an example of the typical 2-dimensional histogram of proton energy

and arrival time with a high and low ramp voltage. In these plots, it can be seen that there

is an excess amount of events at the tail end of the trapped proton peak that is consistent

with the expected arrival time of H+
2 . It is also expected that a lower ramp voltage would

make it easier to see these events at the tail end of the proton timing spectrum because fewer
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Figure 7.2: Comparison of 2-dimensional proton energy and proton arrival time histograms,
showing the difference in the arrival time of the bonus peak as a function of the ramp voltage.
Top: 14.4 V ramp, Bottom: 45 V ramp.
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protons are kicked out by the lower ramp, but nearly all H+
2 molecules are kicked out by the

ramp. Figure 7.3 shows the arrival time spectra for five different ramp voltages. One can

see that as the ramp voltage decreases the H+
2 peak becomes more visible, and at zero ramp

voltage there is no H+
2 peak because there is no potential to bunch the ions in time. Seeing

these excess events at the tail end of the proton arrival time was the first indication that

something other than decay protons were being trapped, these events came to be known as

the “bonus peak.”

7.2.2 Pressure and Trap Time Dependence

The charge exchange mechanism is dependent on the number density of the residual gas.

Therefore, it is expected that as the partial pressure of a gas increases, the probability of

charge exchange would also increase. After the two, thin perfect crystal silicon windows

were installed just upstream and downstream of the magnet bore, the pressure in the proton

vacuum section was noticeably lower. As a result, the fraction of bonus peak events seen

in the data was smaller for apparatus configurations that were otherwise identical. Figure

7.4 shows the arrival time spectrum for two series with identical run parameters except the

blue histogram was taken with the windows closed and the red histogram was taken with

the windows open. One can see that for otherwise identical arrival time spectra, there is a

much more noticeable peak at times where the bonus peak is expected.

Residual gas analyzer (RGA) data is also taken periodically, usually at the end of a

reactor cycle. The RGA is positioned in the warm region of the proton detector vacuum

section. This is not a direct measurement of the bore vacuum; however, we believe the

trends in the data are useful. Using these spectra it is possible to track correlations between

bonus peak events and specific atomic masses. As seen in figure 7.5, RGA spectra can

differ substantially from reactor cycle to reactor cycle, this is because the vacuum system is

opened in-between reactor cycles to swap detectors. It is rarely seen that there are significant

changes in the bonus peak fraction during the same reactor cycle, further evidence suggesting

that the composition of the vacuum make up is important, and taking RGA spectra at the

end of a reactor cycle is sufficient. While figure 7.5 shows much more H2O and CO2 in the

vacuum during the March 2020 cycle the, January 2020 RGA spectra shows an increased
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Figure 7.3: Comparison of the arrival time of bonus peak with varied ramp voltage. Lower
ramp voltages lead to a later arrival time and easier identification of the bonus peak.
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Figure 7.4: Comparison of proton arrival time spectra between Si windows open (red) and
Si windows closed (blue), showing the increase in the bonus peak at time bin ≈ 700 with
the Si windows open.
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Figure 7.5: Comparison of RGA spectra taken in the January and March 2020 reactor
cycles. Bonus peak events are seen in the January 2020 cycles and not seen in the March
2020 cycle.
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amount of mass 2. The data from the January 2020 and March 2020 reactor cycles show a

significant difference in the bonus peak fraction. The March 2020 cycle shows little evidence

of a bonus peak even though the overall pressure from that cycle is higher. The January

2020 cycle shows a clear bonus peak, suggesting that the dominant gas species contributing

to the bonus peak is molecular hydrogen at mass two.

The charge exchange mechanism is also dependent on the distance that the proton has

traveled through the residual gas. Because the decay proton energy spectrum is always

constant, the average distance traveled is proportional to the amount of time a trapped

proton spends in the trap. Because of this, it is expected that the bonus peak fraction

would increase linearly with trapping time. Data was successfully taken at 10 trapping

times varying from 3 to 100 ms. Figure 7.6 shows a comparison of timing spectra between

different trapping times, while all other experimental variables are kept the same. It can

be seen that as the trapping time increases the bonus peak fraction also increases. This

is consistent with what one would expect from a proton interaction with a residual gas in

the trap itself. Seeing positive correlations in the data between the two variables expected

to affect the probability of charge exchange gives us confidence that this is the mechanism

leading to H+
2 in the trap.

7.2.3 Energy Loss in the Proton Detector

If H+
2 ions are being trapped, one would expect that the deposited energy of the protons and

the H+
2 ions would be slightly different because of the energy loss through the deadlayer.

Using the energy spectra from different series at many different experimental configurations,

a comparison of the bonus peak energy spectra can be made to that of the proton spectra. By

changing the trapping time, the fraction of bonus peak events changes relative to the number

of proton events in the spectra. Using this, the bonus peak energy can be isolated from the

proton energy subtracting spectra with different trapping times or by isolating the bonus

peak events in the timing spectra. After the bonus peak energy spectra is determined, it may

be compared to simulation. The H+
2 energy spectra are simulated using the SRIM software

package. SRIM simulations were done for each apparatus configuration, for the proton at the

full acceleration potential and for a proton with half the acceleration potential. We assume
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Figure 7.6: Comparison of the proton timing spectra with the Si windows closed, showing
the increase in the bonus peak events with increased trapping time. Blue: 3ms, black: 10
ms, purple: 20 ms, red: 50 ms trapping time. Spectra are normalized arbitrarily so that all
spectra can be seen.
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that the two constituent protons of H+
2 are loosely bound, therefore we can model H+

2 as

two independent protons each with half the energy of the acceleration potential. Each of

these “half-energy” protons is then simulated so that the energy loss and backscatter fraction

are determined independently. To reconstruct the full H+
2 deposited energy, the simulated

energy spectra for the half-energy protons are treated as a probability density function

(PDF). Using this PDF, we use a simple Monte Carlo to select two half-energy proton

energies. These two energies are then added together to make a new total energy spectrum

for the H+
2 . The result is a energy spectrum that is slightly wider and lower energy than

the normal proton spectrum. The resulting H+
2 spectrum is slightly lower energy because

each of the two half energy protons loses some energy through the deadlayer. Figure 7.7

shows the difference between two 2-dimensional proton energy and arrival time histograms

taken with a 60 µg/cm2 SB detector at 5 and 75 ms trapping time. Because the bonus peak

fraction is larger at longer trapping times, this difference can isolate the H+
2 peak energy.

The dark blue points show where there is a deficit in the 5 ms data compared to the 75 ms

data. This can be seen in two places, at ≈ 11, 600 energy and time bin ≈ 570 where the

double proton peak is centered and at ≈ 4800 energy and time bin ≈ 640. This cluster,

which is slightly lower in energy and later in time than the main proton peak, is the bonus

peak. It can be seen that the average deposited energy of the bonus peak is about 85 %

of that of the proton peak for this specific apparatus configuration. The SRIM simulation

gives a deposited energy of 18.2 keV for the H+
2 ion and a deposited energy of 20.9 keV for

a proton with the same detector configuration. The deposited energy ratio of ≈ 87 % is well

within the approximate range from figure 7.7. This comparison gives us confidence that the

simulation does a good job at matching the relative energies of the proton and H+
2 ion, and

this matching is another piece of evidence that H+
2 is being generated via charge exchange.

7.2.4 Change in Backscatter Fraction

Another unique characteristic observable of an H+
2 event is a different backscatter fraction

compared to the proton. Because theH+
2 molecule is composed of two loosely bound protons,

each proton acts independently as it enters the detector. Not only does each proton have

energy loss through the deadlayer that leads to a slightly lower deposited energy than a single
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Figure 7.7: Time normalized difference between 5 ms and 75 ms proton energy and arrival
time 2-dimensional histogram, showing the increase in the bonus peak at larger trapping
times.
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trapped proton, but it also means that both protons have a chance to backscatter. A normal

trapped proton has two options after it backscatters out of the detector. It can either be

re-accelerated by the electric field and return to the detector or backscatter at such an angle

that it misses the detector and is completely lost. If the proton re-enters the detector it may

or may not have enough energy to get completely through the deadlayer. If the proton has

enough energy to get through the deadlayer, it deposits the rest of its energy into the active

region leading to less deposited energy than a typical proton. The proton may also return

to the detector with less energy than is needed to get through the deadlayer. In this case,

the proton is completely lost. For H+
2 , each of the two protons has all of these same options.

This leads to three main cases: 1) both half-energy protons from H+
2 enter the detector on

their first hit, this leads to a slightly lower energy peak than a single accelerated trapped

proton, 2) both H+
2 protons backscatter in such a way that they are both completely lost,

or 3) one H+
2 proton backscatters in such a way that it is lost and the other enters the

detector on its first hit. The causes a unique feature in the bonus peak energy spectrum

where there should two peaks visible, one at slightly lower energy than the main proton

peak, and a second peak at roughly half the energy of the main bonus peak corresponding

to only a single H+
2 proton being detected. As the amount of bonus peak events increase

with increased trapping time, this half-energy peak should become more visible. Figure 7.8

shows the proton energy spectra with time cuts made to enhance the visibility of the bonus

peak.

The plot on the left is 5 ms data and the plot on the right is 75 ms data. One can see that

as the trapping time increased this half-energy peak is more visible. This half-energy peak

is comparable to simulation since it should be the energy of a single proton accelerated by

approximately half of the nominal acceleration potential. The Monte Carlo used to generate

the H+
2 energy spectrum takes into account the probability each of the half-energy protons

to backscatter or be stopped in the deadlayer. Because there are two half-energy protons

incident on the detector there is some probability (this depends of the detector type and

acceleration voltage) that one of the half-energy protons backscatters or is stopped in the

deadlayer and the other does not. This results in a single half-energy proton depositing its

energy in the active region. The SRIM + Monte Carlo H+
2 energy spectrum encapsulates
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Figure 7.8: Comparison of energy spectra at 5 ms (top) and 75 ms (bottom), showing the
increase of backscattered H+

2 events with increased trapping time.
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this, resulting in a main H+
2 peak, slightly lower in energy than the normal proton peak and

a half-energy peak that is caused by a single half-energy proton. While it is not possible for

the simulation to give any estimate of the dependence of the half-energy peak on trapping

time, one can see from figure 7.9 that the simulated half-energy peak does behave as one

would expect. In figure 7.9 one can see that the half-energy peak fraction increases as the

backscatter fraction of the detector increases. This is also seen in the data. The half-energy

peak is much more difficult to identify with PIPS detector data than for SB detector data

because the smaller backscatter fraction suppresses this peak.

7.2.5 Better Matching to Energy Spectra

Because the H+
2 ion arrives at the proton detector in a time range overlapping with the

trapped protons, the energy spectra of the two are practically impossible to disentangle.

Therefore, the measured energy spectra should be some combination of the proton energy

spectra and the H+
2 energy spectra.

The SRIM + Monte Carlo H+
2 energy spectra, as well as the normal proton spectra, can

be compared to the analyzed energy spectra. One would expect that if H+
2 was present in the

trap some admixture of the H+
2 and proton spectra would best fit the data. Two test cases

are examined here, one with a negligible amount of bonus peak visible (PIPS detector) and

one with a large amount of bonus peak visible (100 µg/cm2 SB detector). To do this, noise

must be added to the simulated spectra to match the width of the data. Approximately 1.3

keV of Gaussian noise is added to both the H+
2 and the proton spectra. The same 1.3 keV

of added width makes a good match to most of the data, suggesting that the noise is rather

stable over long periods of running. After the noise is added, the simulated spectra may be

compared directly to the data.

As seen in figure 7.10, the normal proton simulation (blue) agrees with the data (red)

in the central peak region as well as the high energy shoulder of the peak. However, it

starts to deviate from the data on the low energy shoulder and the low energy tail. It can

also be seen that the H+
2 spectra does not do a good job by itself of matching the data

spectra, suggesting that if H+
2 is present in the proton trap, it makes up a relatively small

fraction of the total events. It can also be seen in figure 7.10 that the half-energy peak
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Figure 7.9: Example of simulated H+
2 energy spectra for three different detector types.
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Figure 7.10: Top: Comparison of PIPS detector data (red) with the SRIM simulated
energy spectra of the proton (blue) and H+

2 (black). Bottom: Comparison of 100 µg/cm2

SB detector data (red) with the SRIM simulated energy spectra of the proton (blue) and
H+

2 (black). Both plots illustrate that the proton spectra alone is not sufficient to match the
data.
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of the H+
2 spectra varies significantly depending on the apparatus configuration. Because

the half-energy peak is caused by one backscattered half-energy proton, the probability of a

half-energy event increases when the backscatter fraction of the half-energy proton increases.

From those plots it can be seen that with the PIPS detector the small backscatter fraction

causes a small half-energy peak. The 100 µg/cm2 SB detector has the highest backscatter

fraction of any detector used in the experiment. The probability that a half-energy proton

is not transmitted into the active region with this detector is > 30%, thus the size of the

half-energy peak is larger than that of the full energy H+
2 peak.

Using the simulated proton and the H+
2 energy spectra, an admixture of the two can

now be generated to try and mimic the data with a single free parameter. This “combined”

energy spectrum is generated by taking a small amount of the H+
2 spectrum and adding it

to the normal proton spectrum until the best match to the data is achieved. This is done

independently for each series. As seen in figure 7.11, the combined energy spectra fits the

data much better than the proton spectrum alone. This is yet another indication that there

is some H+
2 in the proton trap, and the H+

2 is easily detected because of the accelerating

potential. The total amount of H+
2 in the combined spectrum admixture is ≈ 2.5% for

the PIPS detector comparison, and is ≈ 5.0% for the SB detector comparison. Above, it

was stated that the PIPS detector data had a “negligible amount of bonus peak visible,”

but the admixture spectra suggests that there is only a factor of 2 less H+
2 in the data

than the SB detector data. The keyword is “visible,” during standard diagnostic checks on

the data, the tell-tale sign of bonus peak in the data is the half-energy peak. Because the

backscatter fraction is significantly smaller with the PIPS detector, the half-energy peak

is highly suppressed compared to the full energy H+
2 peak. This means that even when

the half-energy peak is not easily visible that does not mean there is no H+
2 present in the

data. A more careful comparison of the spectral shapes, like the examples in figure 7.10, is

necessary to determine whether or not there is H+
2 in the data.
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Figure 7.11: Top: Comparison of PIPS detector data (red) with the SRIM simulated
energy spectra of the proton (blue) and combined admixture of the proton and 2.5% H+

2

spectra (black). Bottom: Comparison of 100 µg/cm2 SB detector data (red) with the SRIM
simulated energy spectra of the proton (blue) and combined admixture of the proton and
5% H+

2 spectra (black). Both plots illustrate that combined spectra fit the data much better
than the proton spectra alone.
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7.3 Determination of the Detection Efficiency

As described above, there is ample of evidence that H+
2 is being created via charge exchange

with a trapped proton and that the H+
2 is being detected. The question remains, what

effect does that have on the measured neutron lifetime? To answer this question, one must

calculate what the detection efficiency for trapped H+
2 ions would be for a wide range of

apparatus configurations. To do this following the same method for correcting the proton

rate in BL1, one must calculate the Rutherford backscatter fraction, fruth, the fraction of

events stopped in the deadlayer, fstp, and the events below threshold, fBT with simulation.

The detection efficiency for protons is given by:

ϵp = 1− fruth(p)− fstp(p)− fBT (p),
1 (7.3)

where there are three possibilities for a proton to go undetected. However, because H+
2

is modeled as two independent protons, this simple calculation is not valid. There are now

three possibilities for each of the H+
2 protons to go undetected, for a total of nine distinct

outcomes for the two protons. The two protons are identical so the probability for these

events are the same which simplifies the calculation. Nevertheless, “cross terms” exist where

the two protons have different outcomes. Take for example, an H+
2 ion where one of the

protons backscatters but the other deposits its full energy in the active region. This event

would only go undetected if the deposited energy were below threshold. The complete list of

H+
2 ion possibles can be seen in table 7.1. When adding the two half energy protons together

with the previously described Monte Carlo, the probability for a single proton to backscatter

or be stopped in the deadlayer is taken into account. Therefore, the five outcomes in table

7.1 that include the fraction of transmitted events, fX(H2), are consolidated by looking at

the simulated H+
2 energy spectrum. An example of the typical proton threshold used in

analysis overlaid on simulated H+
2 spectra can be seen in figure 7.12. fBT (H2) is calculated

by taking the fraction of events to the left of the threshold seen in figure 7.12 and dividing

it by the total number of simulated events. As a result, the detection efficiency for an H+
2

1In [67] there is also a given fraction for the protons that backscatter off the active region of the detector
and do not deposit energy above threshold fact. As discussed in section 6.6, fact requires doubling the
amount of simulations and gives a negligible change to the neutron lifetime so it has been excluded.
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Figure 7.12: Example of simulated H+
2 energy spectra for three different detector types,

showing a typical analysis threshold.

Table 7.1: 9 possible outcomes for a H+
2 ion to be undetected. Events that enter the active

region may be undetected if they are below threshold.

proton outcome Backscattered Stopped in Deadlayer Enters Active Region

Backscattered fruth(H) ∗ fruth(H) fstp(H) ∗ fruth(H) fX(H) ∗ fruth(H)
Stopped in Deadlayer fruth(H) ∗ fstp(H) fstp(H) ∗ fstp(H) fX(H) ∗ fstp(H)
Enters Active Region fruth(H) ∗ fX(H) fstp(H) ∗ fX(H) fX(H) ∗ fX(H)
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ion is given by:

ϵH2 = 1− fruth(H2)− fstp(H2)− 2(fruth(H)fstp(H))− fBT (H2), (7.4)

where fruth(H2) is the fraction of H+
2 events that have both half-energy protons backscatter,

fstp(H2) is the fraction ofH+
2 events that have both half-energy protons stop in the deadlater,

fruth(H) is the fraction of a half-energy events that backscatter, fstp(H) is the fraction of

half-energy events that stop in the deadlayer and fBT (H2) is the fraction of H+
2 events that

are below threshold. This method has been used to calculate ϵH2 for all possible detector

and acceleration voltage configurations. A collection of the of the given fs and the detection

efficiencies for the proton and the H+
2 ion can be seen in tables 7.2 and 7.3, respectively.

As can be seen in the tables, for the PIPS detector and SB detectors with Gold layers of

60µg/cm2 and below, the difference in the detection efficiencies are < 1.5%. It is not until

the gold deadlayer becomes relatively thick and the backscatter fraction large that there are

large differences in the detection efficiency. This gives us two insights. The first is a run

planning insight: to avoid large differences in detection efficiency, it is best to avoid using

100µg/cm2 SB detectors, and 80µg/cm2 SB detectors should be run at acceleration voltages

of 30 kV or larger. The second insight is an indication of how the neutron lifetime would be

affected by the presence of H+
2 . For the vast majority of the apparatus configurations, there

is little change to the neutron lifetime when compared to the total uncertainties of previous

measurements of this type. As an example, let us consider a case where 5% of the trapped

events are H+
2 ions for a 60µg/cm2 SB detector at 30 kV. In this scenario, the detection

efficiency difference is 1.07%, this would equate to a change in the measured neutron lifetime

of ≈ 0.5 s or a relative change of ≈ 0.06%.
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Table 7.2: SRIM input parameters (left) and output results (right) for the determination
of proton detection efficiencies.

Au Esim(p) Ethresh fruth(p) fBT (p) fstp(p) ϵp

(µg/cm2) (keV) (keV) (keV) (%) (%) (%)

0 25 6.0 0.2744 0.0951 0.1019 99.5286
0 27.5 6.0 0.2223 0.0656 0.0674 99.6447
0 30 6.0 0.1889 0.0432 0.0487 99.7192
0 32.5 6.0 0.1591 0.0319 0.0356 99.7734
0 35 6.0 0.1322 0.0240 0.0254 99.8184
20 25 6.0 0.8312 0.0006 0.0000 99.1682
20 27.5 6.0 0.6911 0.0003 0.0000 99.3086
20 30 6.0 0.5891 0.0002 0.0000 99.4107
20 32.5 6.0 0.5180 0.0000 0.0000 99.4820
20 35 6.0 0.4443 0.0001 0.0000 99.5556
40 25 6.0 1.9565 0.0310 0.0019 98.0106
40 27.5 6.0 1.6206 0.0168 0.0004 98.3622
40 30 6.0 1.3898 0.0106 0.0005 98.5991
40 32.5 6.0 1.1674 0.0055 0.0004 98.8267
40 35 6.0 1.0247 0.0031 0.0001 98.9721
60 25 6.0 3.4607 0.2071 0.0433 96.2889
60 27.5 6.0 2.8517 0.1214 0.0273 96.9996
60 30 6.0 2.3728 0.0721 0.0165 97.5386
60 32.5 6.0 2.0273 0.0466 0.0117 97.9144
60 35 6.0 1.7492 0.0307 0.0075 98.2126
80 25 6.0 5.2507 0.6016 0.3187 93.8290
80 27.5 6.0 4.3362 0.3647 0.2030 95.0961
80 30 6.0 3.6404 0.2450 0.1390 95.0961
80 32.5 6.0 3.0984 0.1690 0.0831 96.6495
80 35 6.0 2.6553 0.1108 0.0577 97.1762
100 25 6.0 7.0557 1.3017 1.1730 90.4696
100 27.5 6.0 5.8895 0.8537 0.7750 92.4818
100 30 6.0 4.9691 0.5709 0.5317 93.9283
100 32.5 6.0 4.2546 0.3907 0.3783 94.9764
100 35 6.0 3.6033 0.2847 0.2530 95.8590
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Table 7.3: SRIM input parameters (left) for the half-energy H+ simulations used to
determine the detection efficiencies for H+

2 . Output results (right) for the determination
of H+

2 detection efficiencies using the Monte Carlo method described in the text.

Au Esim(H) Ethresh fruth(H2) fBT (H2) fstp(H2) 2(fruth(H)fstp(H)) ϵH2

(µg/cm2) (keV) (keV) (%) (%) (%) (%) (%)

0 12.5 6.0 0.0129 1.7950 0.0186 0.0310 98.1425
0 13.75 6.0 0.0090 0.5251 0.0088 0.0179 99.4391
0 15.0 6.0 0.0065 0.1330 0.0045 0.0108 99.8452
0 16.25 6.0 0.0046 0.0387 0.0023 0.0066 99.9478
0 17.5 6.0 0.0035 0.0156 0.0013 0.0043 99.9753
20 12.5 6.0 0.0784 0.0091 0.0000 0.0000 99.9125
20 13.75 6.0 0.0577 0.0039 0.0000 0.0000 99.9384
20 15.0 6.0 0.0419 0.0014 0.0000 0.0000 99.9567
20 16.25 6.0 0.0311 0.0007 0.0000 0.0000 99.9682
20 17.5 6.0 0.0242 0.0004 0.0000 0.0000 99.9754
40 12.5 6.0 0.4964 0.2768 0.0001 0.0116 99.2151
40 13.75 6.0 0.3598 0.1360 0.0000 0.0060 99.4982
40 15.0 6.0 0.2636 0.0724 0.0000 0.0034 99.6606
40 16.25 6.0 0.1999 0.0381 0.0000 0.0018 99.7602
40 17.5 6.0 0.1568 0.0236 0.0000 0.0012 99.8184
60 12.5 6.0 1.4356 1.9343 0.0176 0.3177 96.2948
60 13.75 6.0 1.0761 0.9279 0.0075 0.1803 97.8082
60 15.0 6.0 0.8022 0.5015 0.0032 0.1018 98.5912
60 16.25 6.0 0.6084 0.2990 0.0016 0.0621 99.0289
60 17.5 6.0 0.4716 0.1804 0.0008 0.0394 99.3078
80 12.5 6.0 2.5201 7.7788 0.3271 1.8159 87.5581
80 13.75 6.0 2.0011 3.7027 0.1670 1.1561 92.9731
80 15.0 6.0 1.5775 2.0014 0.0877 0.7438 95.5897
80 16.25 6.0 1.2515 1.1824 0.0458 0.4789 97.0414
80 17.5 6.0 1.0058 0.7218 0.0259 0.3228 97.9237
100 12.5 6.0 3.2207 21.8126 1.9545 5.0180 67.9942
100 13.75 6.0 2.7132 11.1364 1.1587 3.5462 81.4454
100 15.0 6.0 2.2422 5.9109 0.6722 2.4554 88.7192
100 16.25 6.0 1.8817 3.4424 0.3980 1.7307 92.5473
100 17.5 6.0 1.5603 2.1283 0.2389 1.2210 94.8516
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Chapter 8

Conclusion

8.1 Results

8.1.1 Updated Determination of the Proton Backscatter

Extrapolation for BL1 Data

With the use of the new monolayer calculation model, the BL1 backscatter extrapolation

can be recalculated. All nine different apparatus configurations used in the final result for

the BL1 experiment have been re-simulated using the SRIM monolayer damage calculation

model with at least a factor of three higher stats. This allows for a re-examination of the

BL1 final result with a simulation model that is better tailored to the physical conditions of

the experiment. With the updated simulation, a new fruth, fBT , and fstp were determined

for each apparatus configuration; fact has been neglected. Looking at the previous BL1

simulation results Pbk was dominated by fruth, and neglecting fact only resulted in a 0.1 s

change in the determined neutron lifetime.

The neutron lifetime, τBL1update for all 13 separate BL1 series were taken from table V

in reference [67], from that point on, the new simulation is independent of the BL1 result.

Because the monolayer damage calculation results in a much narrower proton peak, the

output energy spectra must be corrected for the energy resolution in the BL1 experiment.

According to reference [67], the energy resolution was approximately 6 keV FWHM during

the BL1 experiment. Gaussian noise was added to the simulated energy spectra so that
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a Gaussian fit to the central peak region has a width of approximately 2.5 keV, which

corresponds to ≈ 6 keV FWHM. Then, using the method described in sections 6.6 and

6.7, fruth, fBT , and fstp were determined for each series. The new simulation method does

show substantial differences in resulting values. For all instances, the new method showed

fewer protons being stopped in the deadlayer of the detector and slightly fewer events below

threshold. This results in a smaller fraction of undetected protons by about a factor of 3.

From there, τnBL1update is corrected for the fraction of undetected protons:

τBL1updateundet
= τBL1update

(
1

1 + (fBT+fstp
100

)

)
. (8.1)

Now that the lifetime is corrected for undetected protons, the lifetime must be corrected

for backscattered protons. The new simulation also shows a difference in the backscatter

fraction for the configurations used in the BL1 experiment. fruth is larger for all

configurations by up to 10%. Now τBL1updateundet
is plotted against fruth and fit to a linear

function. This fit may now be directly compared to the BL1 results, where the y-intercept is

the neutron lifetime corresponding to zero backscatter. Ignoring fact and redoing the exact

same analysis from reference [67], one obtains a neutron lifetime of 886.72 ± 1.2 s with a χ2

of 0.69 per degree of freedom for 11 degrees of freedom. For the updated SRIM monolayer

simulation, the extrapolated lifetime is 886.69 ± 1.16 s with a χ2 of 0.63 per degree of freedom

with the same 11 degrees of freedom. The results of these data can be seen in figure 8.1.

The slightly smaller uncertainty in the new result is caused by the larger backscatter fraction

leading to a larger lever arm of the fit. Despite the noticeable changes in proton events that

stopped in the deadlayer and the number of events that were backscattered using the new

simulation model, these two almost perfectly account for each other and cause no change to

the resulting lifetime. The monolayer simulation model is still preferred, however, because it

better models the interactions in thin material layers and results in a much narrower proton

energy spectra that one would expect before taking into account detector noise.
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Figure 8.1: Comparison of the previous BL1 backscatter extrapolation neglecting fact
(red diamonds) and the updated results using the monolayer damage calculation model in
SRIM (black open circles). This more appropriate simulation model shows no change in the
extrapolated neutron lifetime.
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8.1.2 Previously Inaccessible Systemic Tests

The in-beam method of the neutron lifetime is a systematically limited measurement. One

of the major goals of the BL2 experiment was to search for new systematic effects that could

possibly affect the neutron lifetime. One of the biggest questions about this experimental

method is the possibility of protons escaping the trap. In the BL1 experiment, the apparatus

was only able to run stably at trapping times of 5 ms and 10 ms, and the vast majority of

data used in the final analysis was taken at 10 ms. With the design and installation of

the cold bore isolation thin silicon windows, the BL2 experiment is now able to run stably

between 3 and 100+ ms. This is well over an order of magnitude improvement in the range

of possible trapping times compared to BL1. While more data still needs to be taken and

conclusions from the data that have been taken are difficult to make, the ability to explore

this effect is a major step forward in understanding this experimental method.

One of the largest systematic effects that must be accounted for is the different detection

efficiencies of the proton detector depending on the detector type, deadlayer, and acceleration

voltage. A new simulation model was used that provides a more believable understanding

of the proton detection efficiencies over a wide range of configurations. As discussed in

chapter 7, it is believed that charge exchange with molecular hydrogen is occurring. Seeing

these H+
2 ions in the data and seeing positive correlations with trapping time and pressure

allows for a new systematic test to be explored. The detection efficiency for H+
2 has been

compared to the proton detection efficiency over all possible apparatus configurations. It

has been shown that for the vast majority of configurations the difference in the detection

efficiency is small. Through fits to the proton spectrum shape we see a sizable fraction of

H+
2 events in the data. However, the high detection efficiency of H+

2 for the majority of

apparatus configuration show that these events would lead to a minimal correction to the

neutron lifetime. Furthermore, the high detection efficiency of H+
2 ions show that this is

effect is not a viable explanation for the difference in the average measured lifetimes between

the beam and bottle methods.
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8.2 Continued Data Taking

While data taking began in 2017 and continued through 2019, data taking in 2020 and

2021 was erratic at best. The March 2020 reactor cycle was cut short by the onset of the

Covid-19 pandemic and the reactor did not run for months thereafter. From July 2020 until

November 2020, reactor cycles were completed, but with minimal staffing. Because of the

staffing requirements, the typical run configuration scheduling was not possible. Another

Covid-19 pause in the reactor schedule occurred from December 2020 to January 2021. In

February 2021, during reactor start-up, elevated levels of radiation were detected and the

reactor was shut down. For an overview of the incident, one can see the Nuclear Regulatory

Commission’s report at https://www.nrc.gov/reactors/non-power/event-at-nist.html. From

February 2021 until present, the reactor has been shut down and no new data collection

has been possible. NIST currently gives a “no earlier than” start date for the reactor of

July 2022. Further complicating the schedule, a planned cold source upgrade that begins

in December 2022 and will last approximately one year. While the NIST is confident that

the reactor will restart before this extended shutdown, it remains to be seen how much data

taking will be possible. We have tentatively laid out a plan for approximately half a year’s

worth of data, broken into three reactor cycles. With the Mark III trap installed we plan to

use the first half of the first cycle to quickly re-do some systematic tests that were previously

done with the Mark II trap. These include checking the magnetic field linearity like in

section 6.1, the unloading efficiency as a function of ramp voltage like in section 6.2, and the

trapping efficiency as a function of door/mirror voltage like in section 6.3. The last half of

the first cycle is planned to be devoted to proton trapping time effects like in section 6.5.

The second cycle will be solely used to collect high statistics neutron lifetime data primarily

with a PIPS detector. The third cycle plans to use the first half for neutron lifetime data

with primarily an SB detector and the second half for neutron systematic tests, like those

covered in [67, 3, 108]. Significant effort has been made to optimize the data taking run plan

for such a short period of time, with the hope of completing a neutron lifetime measurement

that is still useful to the community despite the disruptions in data taking.
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8.3 Future Experiments

The BL2 apparatus uses re-purposed equipment that was designed for a smaller, less intense

neutron beam; as such is not able to take full advantage of the NG-C beamline. The output

of the NG-C neutron beamguide is an 11 cm x 11 cm square, however, the size constraints of

the BL2 superconducting magnet require the beam collimator to be about 7 mm. A proposed

experiment, called BL3, plans to take advantage of the high flux NG-C beamline by using all

new equipment designed for a large area neutron beam. The designed BL3 magnet allows for

beam collimator of 35 mm, an increase of over 20 times in beam area. The proton trapping

region is also 2 times longer. With reactor upgrades and optimized collimation the neutron

flux is expected to increase up to a factor of 4. These upgrades are expected to increase the

proton rate by ≈ 90 times. Figure 8.2 shows a size comparison of a Mark III trap electrode

currently used in BL2 and a BL3 test electrode blank.

The increased beam size will require a more sophisticated proton detection system. The

proposed detector design is a 10 cm diameter pixelated solid silicon detector. The pixelation

serves multiple purposes. Each pixel serves as its own individual detector, so a smaller pixel

area decreases detector noise due to capacitance. The small pixels also keep the proton rate

per pixel at a level where active multiple proton identification as described in section 4.2 is

still possible.

Another major proposed upgrade is to create an Alpha-Gamma 2 (AG2) device that

will calibrate the BL3 1/v neutron fluence monitor. AG2 plans to run with an increased

beam diameter of 35 mm compared to the current 10 mm diameter beam and increase

the number of gamma detectors from 2 to 8. These upgrades will provide an almost 100x

increase in total gamma count rate. AG2 also plans to have an in situ deposit holder for

multiple different targets. As discussed in section 5.1, it is necessary to swap between thin

and thick boron targets to account for drifts in the detection efficiency. This is currently a

time consuming process as the vacuum system must be opened and closed every time there

is a swap. With the proposed AG2 design there will be no need to open the vacuum system

when swapping between deposits. With these rate increases and additional upgrades, it

is estimated that the BL3 will be able to measure the neutron lifetime to better than the
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Figure 8.2: Comparison between a Mark III trap electrode and an electrode test blank for
the proposed BL3 experiment.
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1 s level every day. With this statistical power, a wide range of systematic tests can be

performed quickly and with a precision never before achieved. The BL3 experiment hopes to

have a fully operable apparatus by the end of 2025 and start running shortly thereafter with

the ultimate uncertainty goal of measuring the neutron lifetime to a precision of < 0.3 s,

comparable to the most precise measurements to date.

8.4 Summary and Conclusion

The goal of this work was to develop a new analysis method with improved energy resolution

and noise suppression, and to explore systematic tests with the in-beam measurement of

the neutron lifetime. The former was accomplished by optimizing and implementing a

finite response trapezoid filter for proton waveform analysis. This software filter allows

for the optimization of filter parameters to suit the specific analysis needs and experimental

conditions. Optimizing the trapezoid filter parameters improved the energy resolution of

the analyzed proton energy spectrum and now allows for an absolute timing comparison to

simulation that was not previously possible. The improved energy resolution also allows

for waveform by waveform multiple proton identification. This method can now be used

along side the typical Poisson statistical method used in this type of experiment. Using both

methods to extract the proton rate gives a cross-check of analysis methods and increases the

confidence in results.

Many systematic tests have been carried out over the course of this work. The systematic

tests of the proton detector alignment and the dependence of the proton rate on the magnetic

field showed that the neutron beam and magnetic field shapes are well understood. The

implementation of a trap positioning piece, as well as better understanding of how the

magnetic field shape affects the data, will significantly improve the systematic uncertainty

for that effect. Tests of the quasi-Penning electrode trap unloading and trapping efficiencies

showed that the trapping voltages are well understood and agree well with applicable

simulation. It is believed no correction will be required for these effects. With the installation

of the cold bore isolating silicon windows, data was taken over almost two orders of magnitude

in trapping time. This has never before been achieved and allows for tests of previously
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inaccessible systematic effects. While conclusions from tests of proton trapping time effects

require additional data, the ability to make these measurements is a break through for the

experimental method.

Charge exchange resulting in H+
2 ions in the trap has been observed. A never before

used SRIM damage calculation package, that is more applicable to the conditions of the

experiment, showed good comparison to data. With this simulation, it was shown that

the simulated proton energy spectrum alone was not enough to match the data. A small

fraction of the H+
2 ions energy spectrum added to the proton energy spectrum provided

a much better match to data. The H+
2 ion’s detection efficiency has been calculated for

all possible apparatus configurations and found to be within 1.5 % of the proton detection

efficiency for the vast majority of likely apparatus conditions. Comparison of data and

simulation show that the detection efficiency of H+
2 ions is sufficiently high and the relative

fraction low as to not make a significant impact on the measured neutron lifetime. Using this

new simulation method, the previous BL1 backscatter extrapolation was re-simulated and

re-analysed. Significant changes in the fraction of protons that backscatter or stop in the

deadlayer were observed for some detector configurations, however, these differences resulted

in no change to the extracted neutron lifetime.
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A Example of 1/v Neutron Flux Monitor SCA Threshold Counts

Figure 3: Example of the text file of the 16 integer values from the 1/v neutron monitor SCAs. Each row is a single run, the
first column is the run number, additional columns are the SCA threshold values Tij, where i is the threshold label and j is the
detector label.
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B Trapezoid Filter Recursion Relation Used in Analysis

h(i) =



h(i− 1) + v(i); i < τrise

h(i− 1) + v(i)− v(i− τrise); τrise ≤ i < τrise + τtop

h(i− 1) + v(i)− v(i− τrise)− v(i− τrise − τtop); τrise + τtop ≤ i < 2 ∗ τrise + τtop

h(i− 1) + v(i)− v(i− τrise)− v(i− τrise − τtop) + v(i− 2 ∗ τrise − τtop); i ≤ 2 ∗ τrise + τtop
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C Collection of Pseudodata Waveforms Showing a

Wide Variety of Proton and Background Events.

Figure 4: Example of pseudodata waveforms showing the most common signal types.

175



Figure 5: Example of pseudodata waveforms of the most common background events.

176



D Damage Calculation Model Descriptions from SRIM

Textbook

D.1 Ion Distribution and Quick Calculation of Damage

This option should be used if you don’t care about details of target damage or sputtering.

The damage calculated with this option will be the quick statistical estimates based on the

Kinchin-Pease formalism (see section Physics of Recoil Cascades for details about target

damage). The following data will be calculated correctly: Final distribution of ions in the

target, Ionization energy loss by the ion into the target, Energy transferred to recoil atoms,

Backscattered Ions and Transmitted Ions. You will get identical ion range results as when

you use the Full Damage Cascade option below, since the random number generator for the

ions is separate from that used for the recoils. This is useful to compare calculations.

D.2 Detailed Calculation with Full Damage Cascades

This option follows every recoiling atom until its energy drops below the lowest displacement

energy of any target atom. Hence all collisional damage to the target is analyzed. The one

exception is for very rare massive cascades which exceed 20,000 atoms. At this point TRIM

runs out of memory, and an error message is posted indicating that the limit of 20,000

recoiling atoms in a single cascade has been exceeded. The calculation continues after the

message is posted. This error can be eliminated using the datafile:

\Data\TRIM.cfg.

See the later section in this chapter on “Changing Maximum Size of Recoil Cascades

(TRIM.cfg)”

D.3 Monolayer Collision Steps

This calculation requires TRIM to make the ion have a collision in each monolayer of the

target. This omits any use of the Free Flight Path, described in Chapter 7, and every

collision will be calculated without any approximations. The results of using this option
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will ultimately give the same averaged quantities such as mean range, ionization, damage,

etc., but the calculation will take far longer to execute. This type of calculation is essential

for special applications such as sputtering (below) and to generate data on every possible

collision in the file COLLISON.txt (see Chapter 9 for more details).
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E Collection of Neutron Lifetime vs Trapping Time

Plots for Post Silicon Window Installation

Figure 6: Change in measured neutron lifetime vs trapping time, November/December
2019 reactor cycle.

Figure 7: Change in measured neutron lifetime vs trapping time, January 2020 reactor
cycle.
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Figure 8: Change in measured neutron lifetime vs trapping time, March 2020 reactor cycle.

Figure 9: Change in measured neutron lifetime vs trapping time, June 2020 reactor cycle.

180



Figure 10: Change in measured neutron lifetime vs trapping time, August/September 2020
reactor cycle.

Figure 11: Change in measured neutron lifetime vs trapping time, November 2020 reactor
cycle.
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