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Abstract

The intracellular environment is crowded with macromolecules that can occupy a

significant fraction of the cellular volume. This can give rise to attractive depletion

interactions that impact the conformations and interactions of biopolymers, as well

as their interactions with confining surfaces. We used computer simulations to study

the effects of crowding on biologically-inspired models of polymers. We showed that

crowding can lead to attractive interactions between two flexible ring polymers, and

we further characterized the adsorption of both flexible and semiflexible polymers

onto confining surfaces. These results indicate that crowding-induced depletion

interactions could play a role in the spatial organization of biopolymers in cells, and

they also suggest that macromolecular crowding could be used to alter the spatial

organization of cell-free synthetic systems. A major limitation of cell-free expression

systems, which are widely used to study gene expression, is the lack of means to

achieve spatial control of gene expression components. With a coarse-grained model

of DNA plasmids and crowders, we showed that plasmids were uniformly distributed

at low levels of crowding but, due to depletion interactions, became strongly adsorbed

to confining surfaces at high levels of crowding. These results were experimentally

validated by our collaborators using DNA and crowders in cell-sized vesicles. We

used reaction kinetic models to study the effect of crowding and confinement on gene

expression dynamics and noise, giving insight into experiments. Our work provides

insights into the role of crowding and confinement on the spatial organization and

dynamics of gene expression in cellular and cell-free systems.
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Chapter 1

Introduction

1.1 Crowding in biology

The intracellular environment is not a dilute environment, but is rather highly

crowded with macromolecules such as proteins and RNA. Macromolecules within

cells can occupy up to 40% of the total cellular volume and crowd the intracellular

environment.2–4 In E. coli, the total macromolecular concentration is estimated to

be ∼ 300-400 mg/mL.4 Proteins are a major source of intracellular crowding as they

account for ∼ 55% of the total dry weight, followed by ribosomal RNAs which account

for ∼ 15% of total dry weight.5 A large fraction of the protein and RNA is ribosomal,6

and hence ribosomes make a significant contribution to cellular crowding.7

The reported diffusion coefficients in eukaryotes is larger in comparison to

prokaryotes,8 and it has been shown that the cytoplasm of prokaryotic cells is more

crowded than that of mammalian cells.9 It has been proposed that cells maintain

their overall macromolecular concentration in a narrow range, a process termed as

homeocrowding, for optimal cellular processes.10 Experimentally, it has been shown

that the crowding levels remain the same within the cytoplasm throughout the cell

cycle while the crowding levels inside the nucleus change during the cell cycle for

HeLa cells.11

1



There has been a growing interest on the role of crowding-induced depletion

interactions in biological systems where they have been shown to affect genome

organization,12–15 gene regulation,3,16 cellular organization,7,17 protein stability18 and

biochemical reaction equilibria.19,20 Computer simulations provide the means to

mechanistically probe the effects of crowding on biopolymers encountered in biological

systems. In this thesis, we have used computer simulations to study the role of

crowding on conformations and spatial organization of biopolymers. Since cellular

environments are characterized by the presence of confining surfaces such as cell

membranes, we have also studied the role of crowding on spatial organization of

polymers in the presence of confining surfaces. Crowding is particularly important

in the organization and conformation of DNA and other large biopolymers inside

cells. Crowding has been shown to compact DNA molecules21–23 and also cause

self-association.24 It has also been experimentally shown that crowding can lead to

aggregation of DNA plasmids25 and formation of large polynucleosome assemblies

that sediment in the presence of crowders.26 Depletion interactions by non-adsorbing

polymeric crowders have been shown to be sufficient to condense semiflexible actin

filaments.27

The ∼2 m long DNA in human cell is constrained in a ∼ 200µm3 nucleus

and the ∼ 2mm long E. Coli genome is packaged in nucleoid of ∼ 0.5µm3 size.28

Depletion interactions, due to the presence of macromolecular crowding, play a major

role in the organization of long chromosomal DNA into the compact space inside

cells.13,28–30 It was observed that isolated E. coli nucleoids became more compact

upon addition of PEG macromolecules.30 The theory put forward by Odijk 31 and

simulations conducted by Shendruk et al. 29 showed how an increase in crowding

leads to a continous decrease in size of the model chromosome polymer. While

crowding plays a major role in compaction of the chromosome, other factors such

as nucleoid-associated proteins in bacteria are also important for the organization of

chromosomes.13,32
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There has been a growing interest in the cell biology community on the formation

of membraneless compartments in cells. Some of these compartments are formed

as a result of liquid-liquid phase separation (LLPS).33,34 Weak transient interactions

between proteins and RNAs facilitate phase separation.35 There have been recent

studies which have suggested that the formation of phase-separated condensates

formed by LLPS is facilitated by crowding.7,36,37 For instance, Kaur et al. 37 showed

that the liquid-liquid coexistence boundary of ribonucleoproteins (RNP) gets lowered

by the presence of macromolecular crowders in in vitro. It was shown, both in vivo

and in vitro, that crowding by ribosomes in the cytoplasm controlled the formation

of phase separated compartments.7

Besides being crowded, the cellular environment is also characterized by the

presence of confining membranes such as the plasma or nuclear membrane. Crowding

can also lead to attractive forces between surfaces and a biomolecule of interest.17

For instance, DNA plasmids have been shown to preferentially localize near the

walls of vesicles.38,39 Besides the DNA, other polymers such as actin have been

shown to partially and completely adsorb to confining surfaces in the presence

of macromolecular crowding.40 Interactions of proteins with surfaces in crowded

environments have also been implicated in the enhanced formation of protein

fibrils.41,42

1.2 Effects of crowding on biomolecular reactions

Crowding inside cells affects biomolecular reaction kinetics and promotes equilibrium

to bound states.3 It has been proposed that any reaction in which reactants exclude

more volume than products will be favored in crowded environments.43 However, the

effects of crowding on reactions are more nuanced than the effects of excluded volume

alone due to the effects of crowding on diffusion.

Crowding decreases the diffusion coefficients of the reactants because crowder

molecules act as obstacles to the diffusion of reactant species.44 The decrease of a
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diffusion coefficient depends on the size of the species, with larger species experiencing

more pronounced decrease in their diffusion coefficient. If collision of reactants

mostly leads to reaction, then reaction can be termed as diffusion-limited. Since

crowding can lead to differential decrease in diffusion of different species, interesting

non-trivial effects of crowding on reaction rates have been observed. For instance,

transcription-translation reactions showed non-monotonic dependence on crowder

concentration and were most efficient at some intermediate crowder concentrations.45

This is consistent from the simulation work carried out by Matsuda et al. 46 where

they used Brownian dynamics simulation and Monte Carlo simulations to observe

non-monotonic dependence of mRNA abundance on crowding, with the maximum

abundance observed at physiologically relevant crowding levels.

Crowding is also expected to impact the noise properties of transcription and

translation. Gene expression is bursty in cells with the production of mRNA

and proteins occuring in short bursts separated by periods of no mRNA/protein

production. It has been shown that crowding-induced colocalization and exclusion

patterns as well as reduced diffusion play a major role in gene expression bursting.47

Since it is difficult to manipulate crowding in live cells, in vitro systems are used to

study the effects of crowding on gene expression kinetics and noise.

1.3 Cell-free protein synthesis systems

Cell-free protein synthesis (CFPS) platforms are in vitro systems utilized to express

proteins using minimal reactants from cell lysates. Cell-free protein synthesis systems

facilitate control over physical parameters such as macromolecular crowding, volume

of reactants, etc. and are devoid of complicated genetic networks observed in live

cells. The cell-free reactants can also be encapsulated inside vesicles to study the

effects of confinement and surfaces. Because of these features, CFPS platforms are

regularly employed to study gene expression.
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However, the current paradigm in cell-free platforms lacks the ability to spatially

control the organization of gene expression components to mimic the spatial

organization observed in cells. For instance, the DNA-rich nucleoid region and the

ribosome rich region are spatially segregated in prokaryotes, even in the absence of

a membrane. Hence, a cell-free platform with the ability to spatially organize gene

expression components can help to shed light on the role of resource availability and

spatial organization on gene expression.

1.4 Depletion Potentials

1.4.1 Particle-particle interactions

Asakura Oosawa’s (AO) seminal paper, published in 1954, described attractive forces

between two colloidal particles due to the presence of polymeric solutes.48 They

assumed the polymer to be penetrable hard spheres i.e. polymers modeled as spheres

had hard sphere interaction with the colloidal particles and no interaction with each

other. They calculated the force on the two colloidal particles as a function of the

polymer concentration. When the separation between the two particles is less than the

diameter of solute particles, the solute particles are excluded from the region between

the two particles because of volume exclusion. Hence, there exists an osmotic pressure

imbalance that leads to an effective attractive force between two particles.

Another way of thinking about the solute is as “depletants”. Due to the presence

of the excluded volume interactions, there is a region adjacent to the colloidal particles

that is excluded from the solute particles(Figure 1.1). This region is known as the

depletion layer. When the depletion layer of the two colloidal particles would overlap,

it would increase the volume available for the solute particles and hence increase

the overall entropy of the system. Because of this origin of the attractive force, the

potential between two colloidal particles due to the presence of solute macromolecules

is known as a depletion interaction.
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Figure 1.1: Two hard spheres of radius R in the presence of penetrable hard spheres
of diameter σ. The centers of the two hard spheres are separated by distance r and
the surfaces are separated by distance h = r − 2R. The effective depletion radius Rd

can be defined as Rd = R + σ/2. Adapted from Tuinier and Lekkerkerker 1 .
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The force on the two particles is proportional to the osmotic pressure of the

medium (P ), which for a dilute and monodisperse solution is given by P = nbkBT ,

where kB is the Boltzmann constant and nb is the bulk number density of solute

particles. It is important to note that this expression for osmotic pressure (P =

nbkBT ) is only valid for dilute systems and more sophisticated expressions such as

third-order virial expansion (P = (φc+4φc
2+10φc

3)
νc

kBT ), scaled particle theory (P =

(φc+φc
2+φc

3)

νc(1−φc3)
kBT ) are used to determine osmotic pressures outside of the dilute regime.

The total force Ks(r) acting on two spherical particles of radius R that are separated

by distance r in a solution of spherical solute particles with diameter σ was shown to

be,1

Ks(r)

nbkBT
=

−πRd
2 [1− (r/2Rd)

2] , 2R ≤ r < 2R + σ

0, r ≥ 2R + σ

(1.1)

where Rd is the effective depletion radius defined as Rd = R + σ/2. The depletion

potential between two particles can then be obtained by integration of the depletion

force, and is given by

Ws =

−nbkBTVov(r), 2R ≤ r < 2R + σ;

0, r ≥ 2R + σ,

(1.2)

with

Vov(r) =
4π

3
R3
d

[
1− 3

4

r

Rd

+
1

16

(
r

Rd

)3
]

(1.3)

The overlap volume Vov(r) can also be written as:

Vov(r) =
π

6
(σ − h)2(3R + σ + h/2) (1.4)

Note that, in the limit of σ/2 � R, the depletion potential takes the quadratic

form,
Ws

nbkBT
= −πR1

2
(σ − h)2, (1.5)
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for h(= r − 2R) < σ.

1.4.2 Particle-wall interactions

The presence of crowding macromolecules can give rise to attractive particle-wall

interactions. The physics behind the particle-wall interactions is the same as particle-

particle depletion interactions. There are regions adjacent to the particle and wall that

are excluded of penetrable hard spheres (Figure 1.2). The overlap of the depletion

layer of the particle and the wall results in excess volume for the solute, thereby

increasing the entropy of the system.

The depletion potential between a spherical particle of radius and a wall is given

by,

Ws

nbkBT
=

−
1
3
π(σ − h)2(3R + σ

2
+ h), 0 ≤ h < σ;

0, h ≥ σ,

(1.6)

For σ � R, this equation simplifies to

Ws(h) =

−nbkBTπR(σ − h)2, 0 ≤ h < σ;

0, h ≥ σ,

(1.7)

Hence, for σ � R, the particle-wall interaction (Equation 1.7) is twice that of

the particle-particle interaction (Equation 1.5) under same solute concentrations.

Hence, crowding can lead to attractive depletion interactions between two particles

and between a particle and a wall. The minimum of the depletion potential occurs

when two particles are in contact or in case of particle-wall interactions, when the

particle contacts the wall. This is because these configurations result in maximum

overlap of the depletion layers. As seen in Equation 1.6 and Equation 1.4, the

magnitude of the depletion potential scales linearly with solute concentration in the

dilute regime.
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Figure 1.2: A hard sphere of radius R in the presence of penetrable hard spheres of
diameter σ. The center of the hard sphere is separated by a distance r from the wall
while the surface of hard sphere is separated from the wall by a distance of h = r−R.
Adapted from Tuinier and Lekkerkerker 1 .
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Depletion interaction regimes have been characterized based on the size of the

depletant (for polymers, characterized by the radius of gyration, Rg) and the size of

the particles of interest (characterized by radius R). The relative size of the particle

and the polymer is given by the size ratio q = Rg/R. Three regimes as shown in

Figure 1.3 can be identified based on the size ratio q: q . 0.5 is known as the colloid

limit, q = O(1) is known as the equal size limit and q & 2 is known as the protein

limit.

While much of the early work in colloid-polymer mixtures has been done in the

colloid limit,1,49 significant works have also been done in the equal size and protein

limit regimes.50 Previous works have studied and quantified the effective potentials

between colloidal potentials in the protein limit via simulations.51,52 These studies

have also given insights into the resultant shape changes of the polymers as a result

of the presence of colloidal particles.52–54 Since the size of macromolecular crowders

in cells, such as globular proteins, is similar to the size of proteins in cells, the

protein limit is particularly important in biological problems such as protein folding

in crowded environments55 Apart from these three regimes comparing the polymer

and colloid size, another relevant length scale in biological systems is the size of

the monomers making the polymer and the size of the colloidal particle relative to

the monomers. In cellular and cell-free systems, the linear size of macromolecular

crowders is often comparable to the cross-sectional diameter of biopolymers such as

DNA or actin. The size of globular proteins crowding the intracellular environment

is within the 3-6 nm range56 and comparable to the effective diameters of actin (≈ 6

nm)40 and dsDNA (≈ 6.6 nm at 60 mM ionic strength).57,58 Furthermore, synthetic

crowders such as dextran 70 and Ficoll 70, widely used in in vitro studies, have

hydrodynamic radii of ≈ 6.8 nm and ≈ 5 nm, respectively.59 Hence, understanding

the role of crowding on conformations and spatial organization of polymers in this

regime is quite relevant for biological systems. In this thesis, we have extensively

studied the regime where the size of crowders is of the same order as the size of the

monomers making the biopolymer.
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Figure 1.3: Different size regimes for the particle-polymer interaction with the left
most representing the colloid limit, the middle panel representing the equal size
regime and the right panel representing the protein limit. Adapted from Tuinier
and Lekkerkerker 1 .
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1.5 Polymer physics under crowding

Recently, there has been considerable interest in understanding the impact of

crowding on conformations of biopolymers. While it is challenging to analytically

study the role of crowding on conformation of polymers, computer simulations have

become an important tool. Typically, polymers are coarse-grained into bead-spring

chains, with consecutive beads connected by springs. Simulation packages/ custom

codes are then used to solve for equations governing the motion of the beads.

In this thesis, we have used Langevin dynamics to simulate polymers and crowders,

with the solvent modeled implicitly in the Langevin equation. The dynamics of the

ith particle with position ri and velocity vi is evolved using the Langevin equation,

given by:

m
d2ri
dt2

= −τvi −∇riU + Fi(t) (1.8)

where m and τ are the mass and friction coefficient,respectively, of the ith particle.

The first term in the RHS of the equation 1.8 accounts for the frictional drag due

to the solvent. The second term is the conservative force acting on the particle due

to the total potential U . Fi(t) is the random force acting on the ith particle due to

collisions with the solvent molecules and satisfies the fluctuation-dissipation theorem:

〈Fi(t) · Fj(t
′)〉 = δij6kBTτδ(t− t′) (1.9)

The equation 1.9 shows that the random force acting on particle i at time t is not

correlated with the random forces on other particles j and is not correlated with

random force on the particle i at any other timepoint t′.

In our work, we have used LAMMPS60 simulation package to carry out Langevin

dynamics simulation of polymers in the presence of explicit crowding particles and

confining surfaces. The LAMMPS simulation package is used to integrate equations

of motion (Equation 1.8) forward in time, and the resulting trajectories are then

analyzed to study properties such as size and spatial organization of the polymer.
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Typically, radius of gyration, Rg is used as a measure of the size of the bead-spring

polymer and is given by,

R2
g =

1

N

N∑
n=1

(ri −Rcm)2

where N is the number of beads, ri is the position of bead i and Rcm is the center of

mass of the polymer beads and is given by

Rcm =
1

N

N∑
n=1

ri

Simulation works have provided considerable insights on polymer physics in

crowded environments. In their pioneering work, Kang et al. 61 investigated the effects

of spherical crowders on the conformations of a flexible polymer. The authors found

that an increase in the volume fraction of crowders resulted in a decrease in the radius

of gyration of the flexible polymer. They also found that for the same volume fraction

of crowders, the decrease was more prominent for smaller crowder sizes. At sufficiently

small crowder sizes, they observed a coil-to-globule transition of the flexible polymer.

Other works have studied the problem of flexible polymer in crowded environments in

different contexts,29,62,63 and have shown how crowding by spherical crowders results

in compaction of a flexible polymer. The size effect of the polymer and the crowder

beads was also explored by a recent work on crowding-induced compaction of a

heterogeneous polymer of different sized beads.63 They showed that clustering of few

large monomer beads lead to sharp compaction at small crowding followed by gradual

compaction due to clustering of smaller monomer beads at higher crowding.63

Some studies have also explored the role of shape of the crowder on conformation of

polymers. Chen and Zhao 62 found that a flexible polymeric crowder resulted in more

compaction of the probed chain with an increase in length of the polymer crowder.

This is in contrast with the observations for a spherical crowder. Larger spherical
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crowders result in lesser compaction because the probed chain can be accomodated

in the cavity created by larger crowder particles, and hence the probed polymer beads

experienced weaker depletion interactions. In contrast, a flexible polymeric crowder

induces local bead-bead interactions which do not change with increase in crowder

polymer lengths. In addition, the longer crowder polymer can mutually interpenetrate

the probed chain and hence induce greater depletion interactions. They also studied

conformations of flexible polymer in the presence of rod-like crowders and found a

non-monotonous dependence of radius of gyration of the probed polymer with the

length of the rod-like crowder. This non-monotonic dependence on rod size can

be understood in terms of competition between anisotropy-induced stretching and

the crowding-induced depletion potential. Additionally, Kang et al. 64 have shown

how a combination of spherical and spherocylindrical crowders can result in non-

trivial additive effects on compaction. They also showed how crowding can result in

unexpected swelling of sufficiently stiff semiflexible polymers.

1.5.1 Crowding with confining surfaces

Crowding can lead to attractive depletion interactions between a polymer and a wall.

Understanding the interactions of polymers with surfaces has been a long-standing

problem in the field of polymer physics.65–67 The effects of crowding on polymer

conformations and spatial organization in the presence of surfaces have been probed

by many simulation studies.68–70 Simulations have shown that crowding can lead

to adsorption of a polymer chain onto a cylindrical wall.68 It has been shown that

crowding leads to preferential localization of a flexible polymer chain near the walls

of spherical confinement and that the attractive interaction between crowder and the

polymer impedes polymer adsorption to wall.70 The role of crowding on the separation

of the two arms of chromosome has also been probed by simulation studies.15

While there has been considerable work done on understanding the adsorption

of flexible polymers to a wall,71–73 much less is known about the adsorption of
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semiflexible polymers.69,74 Previous simulation works have focused on the problem of

adsorption of semiflexible polymer to a wall via an implicit attractive potential and

not by explicit crowder particles.40,69,74–76 Since depletion potentials has been shown

to scale non-linearly at high crowder concentrations,77 explicit crowding particles need

to be considered to accurately study the role of bending stiffness on crowding-induced

polymer adsorption.

1.6 Thesis Outline

In this thesis, we used computer simulations to understand the role of crowding on

spatial organization of biopolymers and gene expression. In Chapter 2, we used

Langevin dynamics simulations to study the effects of crowding on polymer-polymer

and polymer-wall interactions. While a lot of studies have highlighted the importance

of crowding-induced intra polymer interactions, there hasn’t been substantial work

done on understanding polymer-polymer interactions. A quantitative understanding

of the polymer-polymer and polymer-wall interactions is lacking in the literature. We

have addressed that gap by calculating the depths of the attractive potential well for

both i) polymer-polymer and ii) polymer-wall case. Chapter 2 is adapted from the

article “Crowding induced interactions of ring polymers” originally published in Soft

Matter in 2021. Along with that, we have also studied the dependence of persistence

lengths on crowding-induced adsorption of semiflexible polymers onto surfaces by

considering explicit crowding particles (Chapter 3). This chapter is adapted from

the article “Adsorption of semiflexible polymers in crowded environments” originally

published in Journal of Chemical Physics in 2021. Finally, we have used computer

simulations to guide experimental efforts towards the design of a cell-free platform

capable of spatially organizing gene expression akin to a prokaryotic cell (Chapter 4).

By using computational simulations and cell-free experiments, we also study the role

of crowding-induced spatial organization on gene expression.
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Chapter 2

Crowding-induced interactions of

flexible ring polymers

A version of this chapter was originally published by Gaurav Chauhan, Michael L.

Simpson and Steven M. Abel: Chauhan, G., Simpson, M. L., & Abel, S. M. (2021).

Crowding-induced interactions of ring polymers. Soft Matter, 17(1), 16-23.

2.1 Introduction

Macromolecules within cells can occupy up to 40% of the total cellular volume and

crowd the intracellular environment.2,3 The presence of macromolecular crowders

can induce attractive depletion interactions between larger objects, an entropically-

driven phenomenon first described by Asakura and Oosawa.78 Crowding-induced

depletion interactions have been shown to impact protein stability18 and biochemical

reaction equilibria,19,20 and there is a growing realization that they play an important

role in cellular organization.7,17 For example, macromolecular crowding impacts the

organization of bacterial chromosomes13–15,79,80 and can lead to phase separation in

the cytoplasm.7,37
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Crowding-induced depletion interactions have been shown to impact biopolymers

like DNA in a number of experimental studies. Polymeric crowders can lead to the

compaction of both linear DNA and circular DNA plasmids.22,23 While linear DNA

chains collapse with an increase in crowding in bulk conditions, in nanochannels, they

can exhibit depletion-induced elongation.81 Crowding can also lead to aggregation of

DNA plasmids,25 and polynucleosomes that are soluble in uncrowded solutions form

large assemblies and sediment in the presence of crowders.26

Computer simulations have been an important tool for understanding the effects of

crowding on conformations of biopolymers. Shendruk et al. 29 showed that crowding-

induced depletion interactions can lead to the collapse of a model chromosome

polymer, causing a coil-to-globule transition. Kang et al. 61 carried out simulations of

a linear polymer for different sizes of crowding particles. They found that crowding

decreased the radius of gyration of the polymer and that smaller crowding particles

resulted in a larger decrease at the same volume fraction of crowders. Additionally,

polydispersity in the size of crowding particles has been shown to swell sufficiently

stiff polymer chains,64 and flexible polymeric crowders result in larger compaction of

a polymer chain than hard spheres at the same crowding fraction.62

The presence of surfaces such as cell membranes can be of consequence to

biopolymers because crowders can induce depletion attractions between a polymer

and a surface. Simulations have shown that crowding can induce adsorption of

a polymer chain onto a cylindrical wall,68 that a model DNA chain in spherical

confinement preferentially resides near the boundary at high levels of crowding,70

and that depletion interactions are responsible for separation of two arms of a model

chromosome or two ring polymers under strong cylindrical confinement.15,82 However,

these studies did not quantify the magnitude of the effective interactions, which is

important for understanding the relative importance of interactions in the bulk versus

at the surface.

In parallel with the previous studies, there has been a growing body of work on

gene expression in synthetic, cell-free platforms.83 Recent studies have used synthetic,

17



monodisperse crowding molecules to study the impact of crowding on expression

from DNA plasmids.38,47,84 Interestingly, crowding can lead to spatially heterogeneous

regions of gene expression,47,84 and confining the crowded systems to cell-sized vesicles

caused DNA to localize near the inner surfaces.38,39 The physical reasons for the

spatial organization remain unclear.

Taken together, a variety of experimental and simulation studies highlight

the importance of crowding-induced depletion interactions between biopolymers in

cellular and cell-free systems. However, in most instances, a detailed quantitative

understanding of the depletion interactions is lacking. In this work, we help to address

this gap by using computer simulations to characterize effective interactions in a

model that captures key physical features of DNA plasmids and crowding particles.

We focus particularly on characterizing depletion interactions in the context of cell-

free gene expression platforms, but our results are relevant in other biological and

non-biological contexts as well.

2.2 Methods

The ring polymer was modeled as a self-avoiding flexible chain consisting of 50 beads.

The adjacent beads of the polymer were connected by the finitely extensible nonlinear

elastic (FENE) bond potential,85 given by

UFENE = −1

2
KR0

2 ln

[
1−

(
r

R0

)2]
,

where r is the center-to-center distance between two adjacent beads. The maximum

distance between two beads connected via a FENE bond (R0) was chosen to be 2σ

with spring constant K = 15ε/σ2. In this work, σ and ε set the length and energy

units respectively.

Crowder particles were modeled as purely repulsive particles of radius Rc. All

particles (polymer beads and crowders) interacted via the short-ranged and purely
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repulsive Weeks-Chandler-Andersen (WCA) potential,86

Uij =


4εij

[(
σij
rij

)12

−
(
σij
rij

)6]
+ εij rij < 21/6σij

0 rij ≥ 21/6σij

where rij is the center-to-center distance between particles i and j. The strength

parameter was the same for all pairs, εij = ε = kBT . Further, σij = Ri+Rj, where Ri

and Rj denote the radius of particles i and j respectively. The sizes (σii) of polymer

beads and crowder particles were chosen to be 1.5σ and 0.6σ, respectively, because

the Kuhn length of DNA is larger than the size of typical crowding molecules. The

level of crowding was controlled by the number of crowding particles (Nc), with the

volume occupied defined as Vc = Nc4πRc
3/3. We refer to the volume fraction of the

crowding particles (φ = Vc/V ) as the crowding fraction.

The size of the system without walls was 30σ×30σ×30σ, with periodic boundaries

in all dimensions. For the system with walls, we imposed repulsive walls in one

dimension (z) and periodic boundaries in the other dimensions (x and y). This system

was 30σ in the z direction and 25σ in the x and y directions. Particles interacted with

the walls via the 9-3 Lennard-Jones wall potential at the lower and upper boundaries

in the z direction,87

Uiw =


εiw

[
2
15

(
σiw
riw

)9

−
(
σiw
riw

)3]
+ (10

9
)
1/2
εiw riw < (2

5
)1/6σiw

0 riw ≥ (2
5
)1/6σiw

where riw is the distance between the particle and the wall surface. The strength

factor for wall-particle interactions was the same for all particles, εiw = ε = kBT . The

length parameter σiw was specified by the relation (2/5)1/6σiw = σii/2. With this

condition, a particle experienced a repulsive force when the distance between the wall

and the particle was less than the particle radius.
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The Langevin equation was integrated forward in time using the velocity-Verlet

algorithm in the LAMMPS simulation package.60,88 The timestep for integration was

0.005τ , where τ is the natural unit of time. The friction coefficient for component k

was chosen to be τk = 0.2 σkk
σmm

τ−1 with σmm and σkk being the diameter for polymer

beads and component k respectively. Resulting trajectories were visualized using

OVITO.89

Umbrella Sampling

We employed umbrella sampling and the Weighted Histogram Analysis Method

(WHAM) to determine the potential of mean force (PMF) as a function of the

distance between the centers of mass of two polymers (r12). We sampled along

the coordinate r12 via a harmonic bias potential using the COLVARS module in

LAMMPS.90 Distances and the strength of the biasing potential were chosen to

obtain good overlap of histograms generated in adjacent windows (see Supplementary

Information). WHAM was then used to determine an unbiased potential.91,92 Because

the reaction coordinate r12 is a nonlinear function of the Cartesian coordinates

defining the state of the system, an additional term (2kBT ln r12) was added to the

potential obtained using WHAM to give the PMF, U(r12). The additional term

accounts for the r12-dependent size of configuration space.93

Umbrella sampling for polymer-polymer interactions

We performed umbrella sampling along the distance between the centers of mass of

two ring polymers. For φ ≥ 0.2, we sampled from a distance of 3σ to a distance of

13σ with a step size of 0.5σ between the centers of the biasing potentials. For φ = 0

and 0.1, we sampled until 15σ. The simulation box was periodic in all dimensions

with box size of 30σ×30σ×30σ for all crowding fractions for φ ≥ 0.2. For φ = 0 and

0.1, the box size was 40σ × 40σ × 40σ. In the bias potential Ubias = 1
2
k(r0

12 − r12)2,

the force constant k was set to ε/σ2.
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For each window considered, simulations were run for a total of 5×107 timesteps,

with timestep ∆ = 0.005τ . The production run for each window was obtained after

7.5125 × 106 equilibration timesteps. Histograms of the distances sampled in each

window are shown in Fig. S2 below. In the Weighted Histogram Analysis Method

(WHAM), we used a bin width of 0.1σ and a convergence tolerance of 10−6 for the

iterations.

Umbrella sampling for polymer-wall interactions

We also calculated the PMF as a function of the distance in the z direction between a

wall and the center of mass of the ring polymer (zpw) using same procedure as above.

Because the size of accessible configuration space remains constant with increasing

zpw, no correction term was required in this case.

We performed umbrella sampling along the distance between the center of mass

of a ring polymer and a fixed wall. The simulation box was 30σ in the z direction

(normal to the wall) and 25σ in the x and y directions. Table 2.1 provides the

parameter values used for the umbrella sampling for different crowding fractions. We

limited our umbrella sampling to crowding fractions φ ≤ 0.25.

For each window considered, simulations were run for a total of 5×107 timesteps,

with timestep ∆ = 0.005τ . The production run for each window was obtained after

1.5×107 equilibration timesteps. Histograms of the distances sampled in each window

are shown in Fig. S3 below. In WHAM, we used a bin width of 0.1σ and a convergence

tolerance of 10−6 for the iterations.

For the umbrella potentials, larger force constants were used to study the polymer-

wall interactions compared with the polymer-polymer case. This was due to the

strong effective interactions between the polymer and wall at small distances. Using

the strong biasing potential, we obtained good sampling of distances for the entire

range of zpw, as shown in Fig. S3.
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Figure 2.1: Umbrella sampling for polymer-polymer interactions: Histograms of
distances between the centers of mass (r12) observed in each sampling window at
different crowding fractions (φ).
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Table 2.1: Parameters for umbrella sampling along the distance between the center of
mass of the polymer and the wall. The biasing potential was Ubias = 1

2
k(z0

pw − zpw)2.

φ = 0.0

z0
pw(σ) k (ε/σ2)

0.75 20.00

1.00 20.00

1.50 20.00

2.00 20.00

2.50 20.00

3.00 20.00

3.50 20.00

4.00 20.00

4.50 20.00

5.00 20.00

5.50 20.00

6.00 20.00

6.50 20.00

7.00 20.00

7.50 20.00

8.00 20.00

8.50 20.00

9.00 20.00

9.50 20.00

10.00 20.00

10.50 20.00

11.00 20.00

11.50 20.00

12.00 20.00

12.50 20.00

13.00 20.00

φ = 0.1

z0
pw(σ) k (ε/σ2)

0.75 10.00

1.00 10.00

1.50 10.00

2.00 10.00

2.50 10.00

3.00 10.00

3.50 10.00

4.00 10.00

4.50 10.00

5.00 10.00

5.50 10.00

6.00 10.00

6.50 10.00

7.00 10.00

7.50 10.00

8.00 10.00

8.50 10.00

9.00 10.00

9.50 10.00

10.00 10.00

10.50 10.00

11.00 10.00

11.50 10.00
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Figure 2.2: Umbrella sampling for polymer-wall interactions: Histograms of distances
between the polymer’s center of mass and the wall (zpw) observed in each sampling
window at different crowding fractions (φ).
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The statistical errors in the PMFs were calculated using a Monte Carlo bootstrap

analysis method.92 For each time series corresponding to a different umbrella

potential, we first calculated the correlation time (τc) by determining the time it

took for the autocorrelation function to decay by a factor of e. Each original time

series consisted of tf data points. 50 new bootstrapped distributions, with a total of

tf/τc data points, were generated at random (with replacement) from the probability

distribution of the simulated trajectory at each distance. 50 PMFs were calculated

from the bootstrapped data sets, which were then used to calculate the mean and

standard deviation of the PMF.

2.3 Results

Crowding causes compaction of an isolated ring polymer

We first considered a single ring polymer in a simulation box with periodic boundaries

in all dimensions. No walls were present, and the volume fraction occupied by

crowding particles (φ) ranged from no crowding (φ=0) to highly crowded (φ=0.42).

Figure 2.3A shows the radius of gyration (Rg) of the polymer as a function of the

crowding fraction. The average radius of gyration decreased with an increase in

crowding, with a pronounced decrease seen at the largest crowding fractions (φ = 0.4

and 0.42). Figure 2.3B shows the full distributions of Rg for each crowding fraction.

The distributions shift to smaller values with increasing φ and have a qualitatively

different shape at φ = 0.4 and 0.42, where they are less symmetric. Figure 2.4 shows

that at these crowding levels, the mode of the distribution shifts to the left of the

mean.
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Figure 2.3: A) Radius of gyration of an isolated polymer at different crowding
fractions (φ). Error bars denote the standard deviation. B) Probability density of
the radius of gyration scaled by 〈Rg(0)〉, the average radius of gyration in uncrowded
conditions. Distributions are shown for different crowding fractions. C) Asphericity
of the polymer. D) Snapshots of the ring polymer for the most probable value of Rg

at different crowding fractions.
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We also calculated the asphericity (b) of the polymer, b = λ1 − 1
2
(λ2 + λ3), where

λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the gyration tensor,94,95

Sij =
1

N

N∑
k=1

(rk,i − rcm,i)(rk,j − rcm,j) .

Here, N = 50 is the number of beads in the polymer, rk,i is the ith coordinate of the

position of the kth particle, and rcm,i is the corresponding component of the center of

mass. The asphericity is zero for a sphere and non-zero for non-spherical shapes, with

larger values indicating larger deviations from sphericity. Figure 2.3C shows that the

average asphericity also decreases with an increase in crowding.

Figure 2.3D shows snapshots of the ring polymer at various crowding fractions.

For each case, a representative snapshot was chosen from the most probable bin in

Fig. 2.3B. By inspection, the snapshots illustrate the decreasing size and asphericity

at higher crowding fractions.

Taken together, these results show that increased crowding causes a decrease in the

characteristic size (〈Rg〉) and in the asphericity (〈b〉) of a ring polymer. Figures 2.3B

and 2.4 further demonstrate a qualitative change in the distribution of Rg at large

values of φ. These results indicate that the ring polymer adopts conformations

that are more compact and globule-like as crowding increases. This effect arises

due to crowding-induced depletion interactions between beads of the polymer and is

consistent with previous work on linear polymers.61

Crowding promotes interactions between two polymers

In the absence of crowding particles, two ring polymers are expected to experience an

effective repulsion when they approach one another due to the entropic penalty arising

from reduced conformational degrees of freedom.96 In Fig. 2.3, we characterized

changes in the size and shape of a single ring polymer due to crowding-induced

depletion interactions between its segments. Based on this, we hypothesized
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that crowding could also induce attraction between two otherwise purely repulsive

polymers.

We simulated two polymers in a box with periodic boundaries and characterized

N12, the number of beads of polymer 1 within the WCA cutoff distance (21/6σmm) of

any bead of polymer 2. Figure 2.5A shows N12 as a function of time. When the two

polymers were in contact, larger crowding fractions resulted in a longer duration of

contact and an increase in the number of beads in contact (N12). The larger values

of N12 are not attributable to an effect of slower diffusion alone, suggesting that

there was a crowding-induced reduction in the effective repulsion between the two

polymers. The effect was most pronounced at large crowding fractions (φ = 0.4 and

0.42). Inset snapshots show the conformations of the two polymers at the maximum

value of N12 in each figure. At low levels of crowding, the polymers stayed relatively

expanded with small numbers of beads in contact. At higher levels of crowding, the

polymers made more extensive contacts and were closer together in more compact

conformations.

To quantify the strength of the effective interaction between the two polymers, we

used umbrella sampling to calculate the potential of mean force (PMF) as a function

of the distance between the centers of mass of the two polymers (r12). Figure 2.6 shows

the resulting PMFs at different crowding fractions. As expected, the PMFs are flat

at large distances, indicating that the polymers did not interact when sufficiently far

away from one another. For reference, we set the PMFs to zero at the largest value

of r12 considered (15σ for φ = 0.0 and 0.1, and 13σ for larger crowding fractions).

This was in the regime in which the two polymers did not interact. When not in

contact, the two polymers were more compact at higher crowding fractions, which

was analogous to the single-polymer results in Fig. 1b. In Fig. 2.6, we present the

PMFs in terms of the characteristic polymer size by scaling the distance (r12) by the

average radius of gyration for each crowding fraction.
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Figure 2.4: For an isolated ring polymer, the probability density of the radius of
gyration (Rg(φ)) scaled by the average radius of gyration (〈Rg(φ)〉). Distributions
are shown for different crowding fractions (φ).
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ɸ=0.40

ɸ=0.10 ɸ=0.30

ɸ=0.42

Figure 2.5: Number of beads of polymer 1 in contact with any bead of polymer
2 (N12) as a function of time for different crowding fractions (φ). Inset: Snapshot
corresponding to the configuration with the largest value of N12 for each crowding
fraction.
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For the uncrowded system (φ = 0) in Fig. 2.6, the PMF indicates a purely repulsive

interaction, with the repulsive part of the potential (dU/dr12 < 0) emerging when the

centers of mass of the polymers are slightly farther apart than 2〈Rg〉. The PMFs

associated with crowding fractions φ = 0.1, 0.2, and 0.3 exhibit similar monotonic

behavior, indicating purely repulsive interactions. However, the magnitude of the

PMF is modestly smaller for φ = 0.3. This indicates a smaller energetic penalty

to bring two polymers into contact at higher crowding fractions, which is consistent

with the larger number of beads in contact (N12) observed in Fig. 2.5. For φ = 0.4,

in contrast with smaller values of φ, the PMF exhibited a small attractive minimum

(Umin = −0.64 kBT ) at r12 = 1.65〈Rg〉 = 6.10σ. The behavior at smaller values

of r12 was repulsive. For φ = 0.42, the PMF exhibited a deeper minimum (Umin =

−2.59 kBT ) at r12 = 1.27〈Rg〉 = 4.20σ.

These results highlight the role of depletion interactions in shaping the effective

interactions of two ring polymers. In the absence of crowding, there is an

effective repulsion between the two polymers at short distances due to the decreased

conformational entropy of the polymers. Depletion interactions due to crowding can

offset the loss of conformational entropy. This leads to enhanced contact between

the polymers due to a smaller effective repulsive potential (φ ≤ 0.3) that becomes

attractive at large crowding fractions (φ = 0.4 and 0.42).

Crowding leads to polymer adsorption at a wall

Biopolymers commonly encounter extended surfaces in both cellular and cell-free

environments. Crowding-induced depletion interactions can influence the effective

interaction between a polymer and a surface. To characterize this effect, we simulated

a single ring polymer in the presence of repulsive walls.
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Figure 2.6: Potentials of mean force (U) between two polymers as a function of the
distance between their centers of mass. For each crowding fraction (φ), the distance
(r12) is scaled by the average radius of gyration of an isolated polymer (〈Rg(φ)〉). Error
bars indicate the standard deviation determined using the bootstrapping procedure
described in Methods.
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We first simulated a ring polymer in a simulation box with walls located at z =

±15σ. Figure 2.7A shows the time-dependent position of the center of mass of the

polymer in the z direction when the polymer started near the center. At φ = 0.1,

the polymer remained within the bulk of the simulation box, with the center of mass

remaining separated from the wall. This is consistent with an effective repulsion that

the polymer is expected to experience near the wall due to reduced conformational

entropy.

However, at φ = 0.2, qualitatively different behavior emerged. Here, the center of

mass of the polymer was more likely to reside close to a wall for an extended period

of time. At larger crowding fractions (φ = 0.3 and 0.4), the polymer became strongly

associated with one of the walls for the duration of the simulation. The behavior

for φ ≥ 0.2 is consistent with the polymer experiencing an effective attraction to the

wall, with the strength of the attraction increasing with larger crowding fractions.

Figure 2.7B shows snapshots of the polymer in the presence of walls at different

crowding fractions (viewed from the side). To facilitate comparison, each snapshot

corresponds to the polymer configuration that was closest to the wall in Fig. 2.7A. At

φ = 0.2, the polymer appears to be partially adsorbed to the surface. In conjunction

with the time-dependence of the center of mass, this suggests that the polymer was

transiently adsorbed with parts of the polymer in contact with the wall. Because

only part of the polymer was in contact, the center of mass remained farther from

the wall than the polymer configurations seen at φ = 0.3 and 0.4. At these crowding

fractions, the polymer is strongly adsorbed, with almost all of the polymer beads in

contact with the wall.

To further characterize the conformations of the polymer, Figs. 2.8A and 2.8B

show the radius of gyration (Rg) and asphericity (b) of the polymer. With a wall

present, both quantities increased for φ ≥ 0.25. This is in contrast with the behavior

of an isolated polymer in the bulk (Fig. 2.3), which became more compacted and

spherical at these crowding fractions.
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Figure 2.7: A) Center of mass of a polymer in the z direction (zCOM) as a function of
time in unbiased simulations. A single trajectory with a polymer starting away from
the walls is shown for each crowding fraction (φ). B) Snapshot from each trajectory,
with walls denoted by the thick black lines at the upper and lower bounds of the
box (z = ±15 σ). To facilitate comparison between different crowding fractions, each
snapshot corresponds to the frame in which the polymer was closest to the wall.
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Snapshots from Fig. 2.7B suggested a flattening of the polymer against the wall

at higher crowding fractions, so we investigated a measure of the extension of the

polymer in the directions parallel to and perpendicular to the wall:97

R2
‖ = λ1 sin2 θ1 + λ2 sin2 θ2 + λ3 sin2 θ3,

R2
⊥ = λ1 cos2 θ1 + λ2 cos2 θ2 + λ3 cos2 θ3.

Here, θi is the angle between the eigenvector corresponding to eigenvalue λi of the

gyration tensor and the z axis, which is normal to the wall. Figure 2.8C shows that

for φ ≥ 0.25, the polymer became extended in the directions parallel to the wall and

contracted in the direction perpendicular to the wall.

In this regime, the presence of a wall leads to a flattening of the polymer against

the wall, resulting in conformations that are extended in the x and y dimensions

relative to the z dimension (Figs. 2.8C and 2.8D). This leads to the increase in the

average radius of gyration and asphericity and the decrease in the average value of

R⊥. This demonstrates that crowding can lead to markedly different conformations

of the polymer in the presence and absence of a confining wall.

We also observed modest decreases in the average radius of gyration and the

average value of R‖ between φ = 0.3 and 0.4. However, the average asphericty was

relatively constant in this range. This was due to the polymer remaining flattened

against the wall but becoming more compact in two dimensions due to depletion

interactions between different parts of the polymer. Thus, at high crowding fractions,

the degree of crowding can impact the quasi-two-dimensional conformations of the

strongly adsorbed polymer.
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Figure 2.8: A) Radius of gyration of a polymer in the presence of walls at different
crowding fractions. B) Asphericity of the polymer. C) Extension of the polymer in
the directions parallel to (R‖) and perpendicular to (R⊥) the wall. D) Snapshots of
the polymer for the most probable value of Rg at different crowding fractions. The
polymer is viewed along the z direction (toward a wall).
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To quantify the strength of the effective interaction between the ring polymer and

the wall, we determined the PMF as a function of the distance between the center of

mass of the polymer and the position of the wall in the z direction (zpw). Figure 2.9

shows the PMFs for various crowding fractions. We considered crowding fractions φ ≤
0.25 because of challenges associated with obtaining adequate, equilibrated sampling

at larger values of φ, where the polymer strongly adsorbs to the wall. At φ = 0 and

0.1, the PMFs are strictly repulsive at small distances. At φ = 0.2, there is a shallow

attractive well (Umin = −1.21 kBT ) with a minimum at zmin = 4.3σ. This is consistent

with the typical location of the center of mass of the polymer being close to the wall,

as observed in Fig. 2.7. The effective repulsion at small values of zpw indicates that

depletion interactions do not offset further loss of conformational entropy associated

with more monomers being in contact with the wall.

Increasing the crowding fraction further resulted in stronger attraction to the

wall. For φ = 0.25, the well depth was −10.59 kBT . This is notably larger than

the depth of the attractive well between two polymers in the bulk at the largest

crowding fraction considered (φ = 0.42). The location of the minimum for φ = 0.25

was zmin = 1.2σ, which is closer to the wall than the minimum for φ = 0.2.

This is consistent with increased crowding driving the polymer from a partially

adsorbed state at intermediate crowding fractions to a strongly adsorbed state at

larger crowding fractions. When strongly adsorbed, the polymer nearly completely

flattens against the wall, as shown in Fig. 2.8. We anticipate that larger crowding

fractions would result in PMFs with even deeper attractive wells.
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Figure 2.9: Potentials of mean force (U) between a polymer and a wall as function
of the distance between them (zpw), for different crowding fractions.
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2.4 Discussion

Crowding-induced depletion interactions have been long studied in the context

of soft matter systems, especially those comprised of colloids and polymers. The

impacts of depletion interactions in cellular environments, which are crowded with

macromolecules, have been increasingly appreciated.7,17,37 Additionally, cell-free

experiments incorporating biological components and synthetic crowders have become

a new way to study the impact of crowding on biological systems.47,84

In this work, we studied a simple model of a ring polymer, monodisperse crowding

particles, and a static wall. All components of the system interacted only via short-

ranged repulsive interactions. We neglected specific energetic interactions that can

play important roles in the organization of biomolecules, and the static wall provided

an approximation of dynamic membrane surfaces in the cell. Instead, our focus

was on characterizing the magnitude and consequences of depletion interactions as

they would apply to a variety of biological systems. We focused on exploring the

strength of polymer-polymer and polymer-wall attraction, which was motivated by

recent experiments in cell-free systems.38,47,84 While we studied a specific crowder

size in this work, based on crowding-induced compaction of linear polymers,61 we

expect that decreasing the crowder size would increase the magnitude of attractive

interactions. However, it would not impact the qualitative features.

We first studied the conformations of isolated ring polymers without a wall present.

We observed that crowding generated depletion interactions between segments of

the same polymer, leading to compaction of the polymers (Fig. 2.3). Our results

are consistent with studies that observed the effects of depletion interactions on

the compaction of linear polymers29,61 and penetrable ellipsoids.53 The collapse of

a polymer with crowding may have important consequences in biology. It has been

attributed as a major factor in the condensation of chromosomes in prokaryotes.98

Additionally, macromolecular crowding improves the encapsulation of polymers in

lipid vesicles, which has been attributed to polymer condensation due to crowding.99
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This is of particular consequence to synthetic cell-free systems encapsulated in

vesicles.

We further studied how crowding impacts the effective interactions between two

polymers and between a polymer and a surface. We first showed that crowding can

lead to enhanced interactions between two ring polymers, and that at sufficiently

high crowding fractions (φ ≈ 0.4), an effective attraction between polymers emerged

(Fig. 2.6). Attraction between polymers can result in aggregation and phase

separation, and the impact of crowding-induced depletion interactions on phase

separation in biological systems is a topic of intense current interest.100 Our work

helps to contextualize the magnitude of depletion interactions between ring polymers

like DNA plasmids.

We also showed that crowding can induce adsorption of a ring polymer to a

wall, with an effective attraction emerging at lower crowding fractions (φ ≈ 0.2).

Between φ = 0.2 and 0.3, the polymer transitioned from partially adsorbed to fully

adsorbed, with nearly all of the monomers in direct contact with the wall. In this

regime, the polymer adopted a flattened conformation that was extended in the lateral

dimensions. We characterized the strength of the attraction to the wall for φ = 0.2

and 0.25 by the depth of the minimum in the potential of mean force. The polymer-

wall interactions for φ = 0.25 exhibited a deeper minimum than those observed for

polymer-polymer interactions, indicating a significantly stronger interaction.

The markedly different conformations of ring polymers in the bulk versus adsorbed

at the wall have the potential to influence the interactions of the polymer with

other molecules. Transcriptional machinery is less likely to be able to access

compacted conformations of DNA plasmids, potentially impacting the dynamics of

gene expression. Tsuji and Yoshikawa 101 showed that different conformations of

the widely studied bacteriophage T4 DNA lead to significantly different behavior

of transcription. They observed that high concentrations of Mg2+ ions caused DNA

to adsorb at the surface of cell-sized lipid vesicles, leading to extended conformations

of the DNA. The extended conformations exhibited transcription similar to DNA
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coils in aqueous solutions. In contrast, collapsed DNA obtained via addition of the

polycation spermine showed no transcriptional activity.

Our work suggests that crowding could be used in much the same way to

influence the conformations of DNA, hence impacting gene expression. In a crowded

environment, it is also possible that an effective polymer-polymer attraction could

impact gene expression by causing aggregation of DNA. It highlights crowding as a

potential variable with which to control the spatial organization and conformations

of DNA, as well as dynamics of gene expression. This control is possible in both

cellular and cell-free environments. Indeed, our results suggest a possible mechanism

to explain recent cell-free experiments in which crowding modulated the spatial

organization of biopolymers. In systems with large volumes, there was evidence of

spatially localized transcription that emerged with increasing crowding,47,84 which

could potentially arise due to attractive depletion interactions. In systems confined

in small vesicles, crowding induced localization at the walls,38 which is consistent

with the strong attraction we found for polymer-wall interactions.

Our results show that crowding can impact the conformations of individual

ring polymers, enhance interactions between two polymers, and strongly promote

interactions with surfaces. It has implications for understanding the role of

entropic interactions in shaping the behavior of biopolymers in both cellular

and cell-free systems. Interesting directions for future investigation include the

effects of polydisperse crowders, flexible membrane surfaces, and additional species

differentially impacted by depletion interactions.
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Chapter 3

Adsorption of semiflexible

polymers in crowded environments

A version of this chapter was originally published by Gaurav Chauhan, Michael L.

Simpson and Steven M. Abel: Chauhan, G., Simpson, M. L., & Abel, S. M. (2021).

J. Chem. Phys. 155, 034904

3.1 Introduction

Asakura and Oosawa’s seminal paper on depletion interactions, published in 1954,

describes how attractive depletion forces arise between objects due to the presence

of smaller solute particles.48 Depletion interactions have been studied widely in the

context of colloid-polymer and other soft matter systems, and many outstanding

questions remain to be addressed.1,49 More recently, there has been growing interest

in the roles of depletion interactions in biological systems, where they have been

suggested to play a role in cellular organization,17 genome organization,12–15 gene

regulation,3,16,84 and controlling intracellular phase separation.7,37

The interiors of cells contain large concentrations of macromolecules that can

occupy up to 40% of the total cellular volume.2 The cellular environment is replete
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with semiflexible polymers such as DNA, actin, microtubules, etc., which have a wide

range of persistence lengths. These polymers are often in the presence of surfaces such

as the plasma or nuclear membrane. The abundance of macromolecules can result in

attractive depletion interactions between biopolymers and surfaces,17 which can lead

to adsorption of the polymers. Understanding the effects of crowding on properties

of semiflexible polymers and their interactions with surfaces will help shed light on

the role of depletion interactions in organizing cellular systems.

Crowding-induced depletion interactions have been shown to impact the confor-

mations of both flexible and semiflexible biopolymers. For flexible polymers, crowding

can cause a coil-to-globule transition,61 induce collapse of model chromosomes,29 and

lead to attraction between ring polymers.102 For semiflexible polymers, which have

an inherent bending stiffness, experiments have shown that actin filaments undergo

condensation upon addition of non-adsorbing polymeric crowders.27 Simulations have

also shown that polydispersity of crowder sizes and shapes can unexpectedly swell

polymers of intermediate bending stiffness.64

Crowding can also lead to the adsorption of biopolymers onto surfaces. DNA

plasmids have been shown to preferentially localize near the walls of crowded cell-

sized vesicles,38,39 and by tuning the concentration of depletants, Welch et al. observed

actin filaments in both partially and fully adsorbed states.40 Interactions of proteins

with surfaces in crowded environments have also been shown to enhance the formation

of protein fibrils.41,42 For flexible ring polymers, the magnitude of crowding-induced

attraction to a wall was shown to be notably stronger than the magnitude of polymer-

polymer attraction, and an effective polymer-wall attraction emerged at a lower

volume fraction of crowding particles.102

Understanding interactions of polymers with surfaces has been a long-standing

problem of interest in polymer physics.65–67 While polymer adsorption has been

studied extensively for flexible polymers,71–73 much less is known about the adsorption

of semiflexible polymers.67,69 To characterize adsorption, theories and simulations

must account for internal degrees of freedom of the polymer, and stiffer polymers lose
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less conformational entropy upon adsorption. As a consequence, when there is explicit

attraction between a semiflexible polymer and a flat wall, adsorption is promoted by a

larger bending stiffness and the critical strength of attraction required for adsorption

decreases with increasing stiffness.40,69,74–76,103 Milchev and Binder 69 recently showed

that the conformations of partially adsorbed chains are not well-described by the

wormlike chain model and that adsorption does not lead to the expected 2-dimensional

decay of the orientational correlation function over an intermediate but broad range

of the bending stiffness. Additionally, for semiflexible polymers, the curvature of

the surface can impact the adsorption behavior due to an energetic bending penalty

experienced by polymers when adsorbed to a curved surface.95,104–106

Over the past two decades, there have been a number of theoretical and com-

putational studies aimed at characterizing the relationship between the persistence

length (lp) of a semiflexible polymer and the adsorption threshold, εc, of a short-

ranged attractive adsorption potential between a polymer bead and a wall.69,104,107,108

Potentials studied have typically been a square well characterized by depth ε or

another short-ranged attractive potential between a polymer bead and a wall. A

well-established result is the relation

εc ∝ kBT/(l
1/3
p l2/3) ∝ l−1/3

p , (3.1)

where l is the range of the adsorption potential. The quantity ld = l
1/3
p l2/3 is the

Odijk deflection length.109 A number of elegant theoretical and scaling arguments

have been provided to justify this result, which holds for l� lp in the thermodynamic

limit. More recently, Kampmann and Kierfeld analyzed the adsorption threshold for

polymers of finite length and carefully established scaling relations for adsorption

data of finite semiflexible polymers, which can deviate from Eqn. 3.1.110

In this paper, we use computer simulations to study crowding-induced interactions

of linear semiflexible polymers with surfaces. Previous works studying the adsorption

of semiflexible polymers have typically used generic, short-ranged attractive potentials
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between polymer beads and a surface. In contrast with these works, we explicitly

simulate crowding particles and their effect on a bead-spring model of a semiflexible

polymer. This allows us to capture features missing from simpler approaches,

including (i) details of crowding-induced interactions between polymer beads and

walls that may not be reflected in simple potentials and (ii) crowding-induced

interactions between different segments of the same polymer. Additionally, it

is challenging to determine a quantitative relation between the properties of the

crowders (size, volume fraction, etc.) and the strength of the depletion interaction,

especially at higher concentrations where the depletion interaction may not scale

linearly with the concentration of crowders.

In the following, we explore how polymer adsorption is impacted by the bending

stiffness of the polymers and the volume fraction and size of the crowders. We

characterize properties of the polymers and show that the shape of the system and

curvature of the surface can impact the adsorption. Taken together, our work sheds

light on the role of crowding in the spatial organization of semiflexible polymers in

cellular and cell-free environments.

3.2 Methods

We studied effects of crowding on a semiflexible polymer in the presence of a

surface using Langevin dynamics simulations. The polymer was modeled as a linear,

semiflexible chain consisting of N = 50 beads. Adjacent beads were connected via

the finitely extensible nonlinear elastic (FENE) bond potential,

UFENE = −1

2
KR0

2 ln

[
1−

(
r

R0

)2]
,

where r is the center-to-center distance between two adjacent beads. The diameter

of each bead was σm = σ, the maximum distance between two connected beads was

R0 = 1.5σ, and the spring constant was K = 15ε/σ2. σ and ε set the length and
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energy units, and we report lengths and energies in terms of them. The persistence

length of the polymer was controlled by changing the bending stiffness, κ, of the

bending potential,

Uangle = κ(1 + cos θ) ,

where θ is the angle formed by three consecutive beads of the semiflexible polymer.

The persistence length (lp) denotes the length scale over which tangent correlations

decay along the polymer chain. The theoretical relationship between the bending

stiffness and the persistence length in d spatial dimensions is lp = 2κ/(d−1).104,111,112

Crowding particles (“crowders”) were modeled as purely repulsive particles of

diameter σc. We considered two sizes, σc = 0.8σ and σ. The volume fraction

of crowders, φ = Nc(4/3)π(σc/2)3/Vbox, was controlled by changing the number of

crowder particles in the simulation box of volume Vbox. We refer to φ as the crowding

fraction. All particles (polymer beads and crowders) interacted via the short-ranged

and purely repulsive Weeks-Chandler-Andersen (WCA) potential,86

Uij =


4εij

[(
σij
rij

)12

−
(
σij
rij

)6]
+ εij rij < 21/6σij

0 rij ≥ 21/6σij ,

where rij is the center-to-center distance between particles i and j. The strength

parameter was the same for all pairs, εij = ε = kBT . Further, σij = (σi + σj)/2,

where σi and σj denote the diameter of particles i and j, respectively.

We simulated a single polymer with many crowders in the presence of confining

surfaces, which were represented by the purely repulsive 9-3 Lennard-Jones potential,

Uiw =


εiw

[
2
15

(
σiw
riw

)9

−
(
σiw
riw

)3]
+ (10

9 )
1/2
εiw riw < (2

5)
1/6σiw

0 riw ≥ (2
5)

1/6σiw
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Here, riw is the closest distance between the particle and the wall, the strength factor

for wall-particle interactions was the same for all particles (εiw = ε = kBT ), and the

length parameter σiw was specified by (2/5)1/6σiw = σii/2. To simulate a flat wall,

we used a repulsive wall in the z-direction with periodic boundaries in the x- and y-

directions. The dimensions of the simulation box were 50σ in the x- and y-dimensions

and 40σ in the z-dimension. We also studied shorter polymers (N = 10 and 30) to

assess finite-length effects. For computational efficiency, we used smaller system sizes

for the shorter polymers (30σ × 30σ × 30σ and 12σ × 12σ × 12σ, respectively). We

also simulated polymers in spherical confinement with a radius of 30σ using the above

potential.

The Langevin equation was integrated forward in time using the velocity-Verlet

algorithm in the LAMMPS simulation package.60,88 The timestep for integration

was 0.005τ , where τ is the natural unit of time. The total number of timesteps

was typically 4.95 × 107, with data sampled after an initial equilibration time of

2 × 107 timesteps. For systems at large crowding fractions (φ = 0.4), we ran

simulations for an additional 5×107 timesteps, for a total sampling time of 7.95×107

timesteps. Averages of dynamical variables were calculated by time averaging along

each trajectory. Resulting trajectories were visualized using OVITO.89

3.3 Results

In cellular and cell-free systems, the linear size of macromolecular crowders is often

comparable to the cross-sectional diameter of biopolymers such as DNA or actin.

Widely-used synthetic crowders such as dextran 70 and Ficoll 70 have hydrodynamic

radii of ≈ 6.8 nm and ≈ 5 nm, respectively.59 These sizes, which can be varied

with molecular weight, are similar to the effective diameters of actin (≈ 6 nm)40 and

dsDNA (≈ 6.6 nm at 60 mM ionic strength).57 As such, we simulated crowder sizes

that were comparable to the size of a bead of the polymer chain.
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3.3.1 Interplay between polymer stiffness, volume fraction of

crowders, and crowder size

As a measure of association of the polymer with the wall, we characterized the number

of polymer beads within distance σ of a wall (Nwall). Figure 3.1 shows 〈Nwall/N〉, the

average fraction of polymer beads in close proximity to a wall, as a function of bending

stiffness (κ) for various crowding fractions (φ). When φ = 0, there are no depletion

interactions, and the polymer interacts with the walls only via short-ranged repulsive

interactions between its beads and the wall. In this regime, 〈Nwall/N〉 remains close

to zero for all κ.

When crowders were present, we first considered the case in which the crowding

particles were the same size as the monomer beads (σc = σm, dashed lines in Fig. 3.1).

For a flexible chain (κ = 0), the average fraction of monomers near the wall remained

close to zero for all crowding fractions up to φ = 0.4. Thus, the flexible chains did

not experience an appreciable crowding-induced attraction to the wall. Physically,

there is a reduction in the conformational entropy of the polymer when it is close

to the wall. In the absence of crowders, this leads to an effective repulsion between

the center of mass of the polymer and the wall as well as a reduction in the density

of monomers near the wall.102 Our results indicate that when κ = 0 and σc = σm,

depletion effects do not overcome the loss of entropy resulting from the association

of the polymer with a wall. That is, when the polymer is in close contact with the

wall, the entropic gains by crowding particles due to a larger effective volume do not

offset the loss of conformational entropy of the polymer.
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Figure 3.1: Average fraction of monomers near a wall, 〈Nwall/N〉, as a function of the
bending stiffness, κ. Two sizes of the crowding particles are shown: σc = σm (dashed)
and σc = 0.8σm (solid). Different volume fractions of the crowding particles (φ) are
shown.
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Even though there was no crowding-induced adsorption for flexible polymers

at these conditions, we observed that increasing the bending stiffness resulted in

association with a wall when φ ≥ 0.2. For φ = 0.2, weak adsorption emerged at

κ = 50 and 100. In this regime, the adsorption is characterized by partial contact

with the wall. The contact is transient, being characterized by intermittent excursions

away from the wall. For φ = 0.3 and 0.4, we observed a transition to strong adsorption

(〈Nwall/N〉 ≈ 1) with increasing κ. The transition occurs at smaller values of κ for

the larger crowding fraction. When the polymer was strongly adsorbed, we did not

observe excursions of the center of mass away from the wall during the timescale of

the simulations.

Previous work has shown that smaller crowding particles can induce considerable

compaction of flexible polymers61 and strong attraction of a flexible ring polymer to

a wall.102 We studied the effect of crowder size on polymer adsorption by considering

smaller crowding particles with σc = 0.8σm (Fig. 3.1, solid lines). Note that the

volume of each particle is roughly half that of the previous case. The smaller crowding

particles promote stronger adsorption than the larger particles at the same volume

fraction (φ) and polymer stiffness (κ). This is reflected by (i) the transition to strong

adsorption (〈Nwall/N〉 ≈ 1) at smaller values of κ and (ii) the larger fraction of

monomers close to a wall in the weak and moderate adsorption regimes. Thus, the

strength of the depletion interactions increased with a decrease in crowder size at

fixed volume fraction, which is consistent with previous work.61,102 In the rest of the

paper, we focus on the smaller crowding particle with σc = 0.8σm.

Figure 3.2 further explores the contact of the polymer with the wall. It shows

the full distribution of contact fractions for different φ and κ. There is a prominent

peak at Nwall/N = 0 for cases without adsorption (e.g., φ = 0.2, κ = 0), indicating

that the polymer rarely contacts the wall in these cases. Analysis of trajectories with

φ ≤ 0.1 produced similar results with a prominent peak at 0. For φ = 0.2, adsorption

occurs at sufficiently large values of κ. In Fig. 3.2, the first hint of this transition can

be seen at κ = 15, where the peak at Nwall/N = 0 is slightly lower than for smaller
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values of κ, indicating a slight increase in the weight of configurations in which the

polymer is in contact with a wall. For κ = 50, this feature is more prominent, and

a broad distribution of contact fractions can be observed, including configurations in

which the polymer is fully in contact. This is reflective of partial adsorption, in which

fluctuations are prominent: The polymer is commonly not associated with the wall,

but when it is, it exhibits a broad distribution of the number of monomers in contact.

Similar behavior is observed at φ = 0.3 with κ = 15 and at φ = 0.4 with κ = 5, also

indicating weak, partial adsorption. For crowding fractions of φ = 0.3 and 0.4, the

probability distribution is peaked at Nwall/N = 1 for the stiffest polymers, indicating

strong adsorption in which the polymer is typically in complete contact with the wall.

3.3.2 Properties of the polymers

The distributions of weakly adsorbed polymers in Fig. 3.2 indicate a broad distribu-

tion of the fraction of monomers in contact with the wall. Figure 3.3 shows repre-

sentative snapshots of the polymer in the partially adsorbed states. Conformations

of partially adsorbed polymers are often described using the terminology of trains,

tails, and loops.40,110 Trains are continuous adsorbed segments of the polymer, tails

are non-adsorbed end segments of the polymer, and loops are non-adsorbed segments

between two trains. Examples for φ = 0.2, 0.3, and 0.4 are shown; as the crowding

fraction increases, a smaller bending stiffness is needed for the polymer to adsorb to

the wall. Three snapshots are shown for φ = 0.2 and κ = 50. In each, there is a

single train along with one or two tails. Because the polymer is relatively stiff, it

would be energetically costly for a loop to form (due to high local curvature). Hence,

monomers not in contact with the wall tend to be located at the tails of the polymer.

As the crowding fraction increases, the presence of tails decreases and eventually, in

the limit of strong adsorption, the polymer is completely in contact with the wall as

a single train.
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Figure 3.2: Probability density of the fraction of monomers near a confining wall.
The volume fraction of crowding particles (φ = 0.2, 0.3, 0.4) increases from left to
right. The bending stiffness of the polymer (κ = 0, 5, 15, 50) increases from top to
bottom. Simulations were carried out with σc = 0.8σm.
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Figure 3.3: Snapshots of partially adsorbed semiflexible polymers. Boundary
conditions are periodic in the x- and y-directions; confining walls in the z-direction
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three cases (different values of κ and φ) that exhibit partial adsorption of the polymer.
Three snapshots are shown for each case. The system is viewed along the y-axis, and
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Similar behavior was observed for φ = 0.3 and κ = 15, in which the adsorbed

polymer adopted conformations with trains and tails but no loops. However, a greater

degree of flexibility is evident in the tails compared with the previous case. For

φ = 0.4 and κ = 5, the partially adsorbed polymer formed trains, tails and loops. In

this regime, the polymer is sufficiently flexible so that the energetic penalty associated

with forming loops is offset by entropic gains.

The effects of crowding on the polymer are further illuminated by the radius of

gyration of the polymer. Figure 3.4a shows the radius of gyration as a function of

bending stiffness in uncrowded (φ = 0) conditions. Figures 3.4b and 3.4c show, for

different κ, how the radius of gyration varies as a function of the crowding fraction

(Rg(φ)) in relation to the corresponding value in uncrowded conditions (Rg(0)). For

the purely flexible polymer chain (κ = 0), the radius of gyration decreases with an

increase in crowding, which is consistent with previous work on flexible polymers.61

The decrease is less pronounced for the semiflexible polymer with κ = 5 in the regime

without adsorption (φ ≤ 0.3), and no decrease is evident for stiffer polymers. A

notable feature is that at sufficiently large values of φ, there is an increase in Rg.

The largest relative increase in size is observed for intermediate values of the stiffness

(κ = 10 and 15), with a nearly 20% increase in Rg at φ = 0.4. These increases

occur in regimes in which the polymer adsorbs to the wall and flattens against it.

The increase is considerably smaller for κ = 50 and especially κ = 100 because these

polymers are relatively extended even in the bulk.

To further characterize the shape of the polymer, we calculated the radius of

gyration parallel to the wall (Rg,‖) and perpendicular to the wall (Rg,⊥), using

R2
g,‖ =

1

N

N∑
i=1

(
(xi − xCOM)2 + (yi − yCOM)2

)
,

R2
g,⊥ =

1

N

N∑
i=1

(zi − zCOM)2 .
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Figure 3.5 shows the average values of Rg,‖ and Rg,⊥ as a function of the crowding

fraction. For the flexible polymer (κ = 0), the behavior of each reflects the decrease

seen in Rg, indicating that crowding leads to a compaction in directions both parallel

and perpendicular to the wall.

For κ ≥ 5, Rg,‖ increases when the polymer is adsorbed to the wall. Small

increases are seen for partially adsorbed polymers (e.g., κ = 5 and φ = 0.4). Larger

increases are seen for fully adsorbed polymers, although the relative increase in Rg,‖

is less for large values of κ. When Rg,‖ increases, there is a concomitant decrease in

Rg⊥, with the value approaching zero for strongly adsorbed polymers. These results

are consistent with the polymer flattening against the wall (decreasing Rg⊥) and

increasing its size in the directions parallel to the wall (increasing Rg,‖). The relative

increase in the parallel direction is largest for smaller values of κ because the polymer

can adopt more compact conformations when not adsorbed. In contrast, in the limit

of a rigid-rod polymer (κ → ∞), Rg would remain constant upon adsorption and

changes in Rg,⊥ and Rg,‖ would reflect the change in the orientational degrees of

freedom only.

3.3.3 Adsorption threshold and finite-size effects

Equation 3.1 relates the critical adsorption strength to the persistence length of

semiflexible polymers, with εc ∝ l
−1/3
p (recall that lp ∝ κ). However, finite-size

effects associated with polymers of finite length may impact the scaling. Kampmann

and Kierfeld provided extensive analysis of the adsorption threshold for polymers of

finite length.110 Given the length of polymer considered above and the fact that we

considered persistence lengths exceeding the contour length, we sought to analyze

our simulation data in the context of this work. To this end, we considered shorter

polymers with N = 10 and 30 in addition to our previous results with N = 50.
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perpendicular to the wall (Rg,⊥, solid), for various values of the bending stiffness
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Figure 3.6 shows the results of these simulations. The average fraction of adsorbed

beads is plotted as a function of the crowding fraction. For each value of κ, we

determined the critical value of the crowding fraction, φc, as the crowding fraction

at which 〈Nwall/N〉 = 1/2. In contrast with previous theoretical and computational

work, we do not have direct access to the potential strength, so we use φ as a proxy.

In the limit of dilute crowding, Asakura-Oosawa (AO) and related theories predict

that the minimum of the depletion potential is umin ∝ −kBTφ.48,77 However, at larger

values of the crowding fraction, a nonlinear relation between φ and umin is expected,

which complicates attempts to find a scaling relationship between φc and lp.
77

As before, we observe that stiffer polymers adsorb at smaller values of φ.

The adsorption transition is also broader for shorter polymer lengths and is quite

pronounced for the case with N = 10. These results are consistent with broadening

seen in recent results of Milchev and Binder, who studied much longer tethered

polymers that interacted with a wall via a short-ranged attractive potential.69,107

Figure 3.8a shows φc plotted as a function of κ for the three polymer lengths.

The results with N = 50 appear consistent with a scaling of φc ∝ κ−1/3, whereas the

results for N = 30 and 10 are clearly not consistent. In the rigid rod limit (not shown

on the figure), the longest polymer’s adsorption threshold is the smallest of the three.

For κ = 104, φc = 0.075, 0.081, and 0.143 for N = 50, 30, and 10, respectively. Note

that each polymer length was simulated in a different box size, which can affect their

adsorption threshold and hence limit direct comparison of the values of φc between

polymer lengths.
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Figure 3.6: Average fraction of monomers near a wall as a function of the crowding
fraction (φ) for different values of the bending stiffness (κ). Results for three polymer
lengths (N = 50, 30, and 10) are shown. The size of the crowders is σc = 0.8σm.
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Following Kampmann and Kierfeld, we analyzed ∆φc = φc − φc,rod for N = 30

and 10. We used φc obtained for κ = 104 as an estimate for φc,rod and plotted ∆φc

as a function of κ/L, where L is the contour length of the polymer. These results are

shown in Fig. 3.8b. In the regime in which L < lp, the scaling behavior is expected

to depend on the relation of the deflection length ld to L. Although we do not know

the range of our depletion interaction exactly, using l ∼ σc suggests that that ld ∼ L,

placing us near the transition between two regimes. Based on the simulation results,

at large values of κ/L, the results appear to be close to the scaling predicted for

L < ld, where ∆φc ∝ (κ/L)−1/2. The alternative scaling of (κ/L)−1/3 is expected

when ld < L < lp. Test: ld . L for κ = 100 and N = 10

3.3.4 Adsorption in spherical confinement

Confining semiflexible polymers in small regions can significantly impact their

conformations,113 but even modestly confined systems can have an impact because

the bending energy of the adsorbed polymer, imposed by curvature of the surface,

can compete with depletion interactions. We carried out simulations of a semiflexible

polymer with crowding in a spherical domain with a diameter of 60σ. For comparison,

the volume is about 13% larger than that of the cuboid in the previous sections, and

the ratio of the surface area to volume is twice as large.
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Figure 3.7: Average fraction of monomers near a wall as a function of the bending
stiffness. Solid lines correspond to a flat wall and dashed lines correspond to spherical
confinement with a radius of 30σ. The size of the crowders is σc = 0.8σm.
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Figure 3.7 shows the average fraction of monomers near the spherically confining

wall as a function of κ for various crowding fractions. Like the previous case with

flat walls, contact of the polymer with the wall is promoted by larger values of both

the crowding fraction and bending stiffness. In contrast with the previous case, the

transition to strong adsorption occurs at smaller values of the bending stiffness. This

is evident in the regions in which the polymer is partially adsorbed, where the fraction

of monomers near the wall is larger for the spherically confined case than for case with

flat walls. These differences are likely primarily because of the increased surface area

to volume ratio, and hence the larger effective volume near the wall in the spherically

confined case.

Figure 3.9 shows representative snapshots of the polymer in spherical confinement

for different values of κ at φ = 0.4. There is no adsorption at κ = 0, partial adsorption

at κ = 5, and strong adsorption at κ = 15. The partially adsorbed polymer has

a train with two tails that extend into the interior of the sphere. The strongly

adsorbed polymer follows the contour of the sphere. The plots in Fig. 3.9 show

the corresponding time-averaged distribution of the fraction of polymer beads as a

function of the radial distance, r. For comparison, the results for the uncrowded

system are also shown. For the uncrowded system, the fraction of monomers first

increases with increasing radial distance because the volume grows with increasing

r (∝ r2dr). The fraction of monomers decreases close to the wall because there is

an effective repulsion between the wall and the center of mass of the polymer that

arises due to the wall restricting conformations of the polymer. For φ = 0.4, the

polymer does not adsorb to the wall at κ = 0, but the distribution is shifted slightly

toward larger values of r. This indicates that the polymer resides slightly closer to

the wall on average. The effect of crowding is likely to make the effective interaction

between the polymer and wall less repulsive.102 A strong enhancement of the bead

density is observed near the wall for κ = 5 (partial adsorption) and κ = 15 (strong

adsorption). Like before, the adsorption of stiffer polymers is promoted because they

lose less conformational entropy than their flexible counterpart upon adsorption.
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Figure 3.8: (a) Critical crowding fraction (φc) as a function of the bending stiffness
(κ) for three polymer lengths. φc is defined as the crowding fraction at which on
average 50% of polymer beads are in contact with a wall. (b) ∆φc = φc − φc,rod as a
function of κ/L for N = 30 and 10. Here L = (N − 1)σ is the contour length of the
polymer.
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The adsorption of a semiflexible polymer to a flat surface is promoted by increasing

κ. Adsorption to a curved surface, however, introduces an additional competing

energy contribution: the energetic penalty associated with bending an adsorbed

semiflexible polymer along the contour of the surface. This suggests that adsorption

should be suppressed at sufficiently large values of the bending stiffness.

To explore this, we carried out simulations at larger values of κ for the polymer

in spherical confinement. Figure 3.10 shows the fraction of polymer beads near the

wall for bending stiffness up to κ = 2000. There was no adsorption for φ ≤ 0.1 over

the extended range of κ, but there were regimes of strong adsorption for φ = 0.2,

0.3, and 0.4. For φ = 0.2, this regime emerged for κ > 100. However, when κ

was sufficiently large (κ = 2000), we observed another regime in which the polymer

was not adsorbed. In contrast, the cases with φ = 0.3 and 0.4 remained strongly

adsorbed at κ = 2000. The case with φ = 0.2 generates the weakest depletion

interactions of the three cases. The non-adsorbed regime at high κ emerged due

to the bending energy penalty imposed by being in close proximity to the curved

wall. At φ = 0.3 and 0.4, the depletion interactions were still sufficiently strong to

promote adsorption, highlighting the interplay between crowding-induced depletion

interactions and curvature of the surface.

3.4 Discussion

The adsorption of semiflexible polymers is a problem of fundamental interest that is

relevant to cellular and cell-free biological systems, where macromolecular crowding

can lead to depletion interactions that affect biopolymers such as DNA and actin. In

this work, we used computer simulations to study the crowding-induced adsorption

of a bead-spring model of a semiflexible polymer. Unlike most previous works on the

adsorption of semiflexible polymers, we explicitly accounted for crowding particles,

which were modeled as purely repulsive particles.
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Figure 3.9: Snapshots of the polymer in spherical confinement with φ = 0.4. Three
values of the bending stiffness are shown. The plots below correspond to the same
values of κ and show the average fraction of monomers, N(r)/N , as a function of the
radial distance, r. For each, results are shown for φ = 0 and 0.4.
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Figure 3.1 demonstrates that polymer adsorption to a flat surface is promoted by

stiffer polymers, smaller crowding particles, and larger volume fractions of crowders.

With increasing bending stiffness (κ), we observed transitions from non-adsorbed

states to partially and then fully adsorbed states. The transitions occurred at smaller

values of κ as the volume fraction of crowders (φ) increased. Smaller crowding

particles enhanced the effective polymer-wall attraction at the same volume fraction,

shifting the adsorption transition to smaller values of the polymer stiffness. The

transitions were accompanied by changes in the radius of gyration (Figs. 3.4 and 3.5)

demonstrating that the polymer flattened against the wall while increasing in size in

directions parallel to the wall.

Physically, adsorption of a polymer due to crowding results from an increase in

the entropy of the crowders (due to an increase in the accessible volume) that exceeds

the loss of entropy associated with the polymer. Semiflexible polymers are more likely

than flexible polymers to adsorb to a wall because the conformational entropy of a

polymer depends on its persistence length and stiffer polymers experience a smaller

loss of conformational entropy upon adsorption.40,69,74,103 Additionally, the strength

of depletion interactions increases with increasing concentration of depletants.48 Our

results showed that crowding-induced polymer adsorption was promoted by larger

values of κ and φ, which is consistent with these physical underpinnings of depletion

interactions and polymer adsorption.

For partially adsorbed polymers, the bending rigidity of the polymer impacted the

conformations of the polymer. Loops were observed when partial adsorption occurred

at smaller values of κ, but not when the polymer was partially adsorbed at larger

values. In this regime, only one or both ends of the polymer were not in contact

with the wall. We also showed that curved surfaces, such as those observed in cells

and vesicles, can give rise to behavior in which the number of monomers in contact

changes nonmonotonically with κ, indicating a desorption transition at large κ. In

this regime, the energetic cost of bending the polymer competes with the crowding-

and stiffness-dependent depletion interactions.
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Figure 3.8 shows the relation between the threshold crowding fraction for

adsorption (φc) and the bending stiffness of the polymer for different polymer lengths.

Asakura-Oosawa theory predicts that umin ∝ −φ, but it is formally valid only in the

limit of dilute crowding (φ � 1) and small crowders (σc � σm). Neither of these

conditions is satisfied in this study, and theory and simulations predict nonlinear

relationships between φ and umin in crowded conditions.77 However, the scaling

relationships in Fig. 3.8 appear consistent with existing theory when κ is large (and

φ is small), suggesting a linear relationship between φ and umin in this regime. Given

the computational constraints of simulating large numbers of crowding particles, it is

challenging to assess the nonlinear effects when φ is larger. However, the results hint at

nontrivial effects associated with explicit crowders: There is no adsorption for φ ≤ 0.4

for N = 50 when κ is small. In this regime, we expect adsorption to be suppressed

by crowding-induced attractions between different segments of the polymer, which

also cause a decrease in the radius of gyration. It is also interesting that the shorter

polymers do not exhibit a regime of scaling consistent with φc ∝ κ−1/3, even at smaller

values of κ. These will be interesting topics to study in the future and may help to

shed insight into the role of crowding on polymer adsorption.

In this work, we considered monodisperse crowding particles and static walls. In

reality, cellular environments are crowded with macromolecules of different shapes

and sizes, which can can give rise to unexpected effects on the shapes of semiflexible

polymers64 and can affect the depletion interaction experienced by polymers.21,62

Additionally, cell membranes are deformable, and adsorption of a semiflexible polymer

can lead to an interplay between the shapes of the membrane and polymer due to

competing bending energies.95 In the future, it would be interesting to study the effect

of crowder polydispersity and membrane flexibility on the adsorption of semiflexible

polymers in crowded environments.

The cellular environment is replete with biopolymers that have a variety of

persistence lengths. Our work sheds light on how crowding and the presence of

surfaces – both features of cells – affect the spatial organization of biopolymers
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through their interactions with surfaces. In the context of cell-free systems, our work

provides guidance on how crowding can be used to rationally organize components

with different persistence lengths.
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Chapter 4

Crowding-induced spatial

organization of gene expression in

cell-sized vesicles

This work was carried out by Gaurav Chauhan, S. Elizabeth Norred, Patrick M.

Caveney, Rosemary M. Dabbs, C. Patrick Collier, Steven M. Abel and Michael L.

Simpson. GC and SMA designed the computer simulations which were performed

by GC. SEN, PMC, CPC and MLS designed the experiments, which were performed

by SEN and RMD. GC and SEN wrote MATLAB and python scripts for image

segmentation, data extraction, and data analysis. GC, SEN, CPC, SMA and MLS

analyzed the data and wrote the manuscript which is adapted in this chapter here.

4.1 Introduction

Gene expression is self-organized in both eukaryotic and prokaryotic cells.114–116

Despite the lack of a nuclear membrane, many prokaryotes such as E. coli show

spatial organization of gene expression where different components localize in different
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microenvironments. Superresolution microscopy in E. coli shows that the DNA-

rich nucleoid region is localized in the midcell whereas most ribosomes are spatially

segregated from the nucleoid region and are localized at the endcap poles (Figure

4.1).114 This spatial segregation creates different expression behavior inside and on

the nucleoid periphery. In E. coli, the actively transcribing genes are relocated

to the nucleoid periphery closer to the pool of ribosomes.116 It has also been

speculated that the chromosome template provides a means to spatially organize gene

expression in prokaryotes, since transcripts often remain localized near their origin.115

Understanding the role of spatial organization on gene expression in cells is important

but remains difficult to study due to the inherent challenges in manipulating spatial

organization in live cells.

Cell-free protein synthesis platforms provide a simpler experimental system to

study gene expression because of their open nature and the ability to manipulate

the physical environments. Cell-free systems have hence been extensively used to

understand cellular behavior and specifically study gene expression.47,84 A major

limitation of cell-free systems is the inability to mimic the spatial organization

observed in cells. Cell-free systems have been shown to spatially self-organize in some

systems and can mimic some physical features of cells.47,117 However, more closely

mimicking cell-like spatial organization of gene expression components in cell-free

systems has remained elusive.

The intracellular environment is crowded with macromolecules such as ribosomes

and proteins, and the high volume fraction occupied by crowding molecules ( 30-40%)

can result in attractive depletion interactions between molecules as well as between

biomolecules and a confining surface.17 Crowding-induced depletion interactions have

been attributed to play a major role in the compaction of chromosome13 as well as

on cellular organization.17 Gene expression kinetics has been studied using cell-free

systems and crowding has been shown to induce spatial correlations on transcription

and also affect gene expression noise.47,84 Simulation studies have shown that crowding
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Figure 4.1: A) Schematic of an E. coli cell showing spatial organization of DNA and
ribosomes. The nucleoid DNA is in the middle of the cell and most ribosomes are
excluded from the DNA-rich nucleoid region. B) Homogeneously distributed DNA
and ribosomes in a cell-sized vesicle (left) and spatially organized DNA and ribosomes
(right). This chapter explores the question: Can crowding lead to spatial organization
of DNA and ribosomes in cell-sized vesicles?
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can lead to attractive depletion interactions between two polymers, and between a

polymer and a wall.102,118

In this work, we demonstrate, using computer simulations and cell-free experi-

ments, how crowding in cell-relevant confinement in vesicles can be used to control

spatial organization of gene expression akin to prokaryotic cells (Figure 4.1). To

understand self-organization in crowded and confined environments, we first used

computer simulations to study the spatial organization of model DNA plasmids in

the presence of macromolecular crowder in spherical confinement. These simulations

guided imaging experiments of fluorescently-labelled DNA and ribosomes in cell-sized

vesicles and showed that crowding in vesicles can lead to the spatial segregation of

DNA and ribosomes. We then used a two compartment reaction kinetics model to

study the effects of crowding-induced segregation of DNA and ribosomes on protein

abundance. The effects of this spatial segregation on gene expression were then

studied using a dual mRNA/protein reporter assay at different concentrations of the

macromolecular crowder Ficoll-70. Our work here would help to understand the role

of crowding and cell-sized confinement on spatial organization of gene expression

components and the resultant effects on gene expression.

4.2 Results

We used Langevin dynamics computer simulations to guide experimental efforts to

control the spatial organization of DNA and ribosomes in vesicles using macromolec-

ular crowding. We utilized a coarse-grained description of the system, with the

DNA plasmids modeled as a semiflexible ring polymer. The macromolecular crowder

Ficoll-70 was modeled as a purely repulsive spherocylindrical particle119,120 as shown

in Figure 4.2. In this model, all components interacted via the purely repulsive

Weeks-Chandler-Andersen (WCA) potential (Uij in Figure 4.1), thereby accounting

for the volume excluded by constituents of the system. The effect of confinement

was incorporated by using a confining sphere with purely repulsive walls (Figure
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4.1). Interactions with the spherical wall were modeled using the purely repulsive 9-3

Lennard-Jones potential (Uiw in Figure 4.1) as described in previous works.102,118

We studied the effect of crowding on equilibrium properties of the model plasmid by

varying the number of crowding particles (Nc) in the system. The volume fraction

occupied by crowders is φ = Nc× Vc/Vsphere where Vc and Vsphere are the volume of a

crowding particle and the confining sphere, respectively.

The simulations revealed that the spatial distribution of the model DNA plasmid is

sensitive to the level of crowding (Figure 4.2B). At low crowding fraction (φ <2.5%),

the polymer density was depleted near the confining surface since that would result

in lowering of the conformational entropy of the polymer. The polymer instead

localized away from the confining surface and in the bulk of the sphere at low

crowding. As crowding is increased further, the attractive depletion interactions

between the polymer and the wall became strong enough to compensate for the loss

of conformational entropy of the polymer near the wall and the polymer became

partially adsorbed (φ=5%) and fully adsorbed (φ=10%) to the confining surface as

can also be seen from the radial distributions (Figure 4.2B). At high crowding,

the polymer adsorbed to the walls of the confining surface resulting in an increase

in volume accessible to crowders and thereby increasing the overall entropy of the

system.

Next, we fluorescently imaged DNA by separately encapsulating plasmid DNA in

vesicles crowded with Ficoll-70. Briefly, polydisperse vesicles, containing the DNA

plasmids with the Pico488 dye, were fabricated using a shearing method adapted

from Nishimura et al. 121 . We observed that the DNA plasmids remained uniformly

distributed at low levels of crowding (Ficoll-70 concentration of 0 and 10 mg/mL) and

preferentially localized near the walls of the vesicles at high crowding (Figure 4.2C).

This is consistent with the simulation predictions in Figure 4.2B, where crowding-

induced depletion interactions due to spherocylindrical crowder resulted in adsorption

of model DNA plasmid to the confining surface.
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Figure 4.2: A) Schematic of the computational model showing DNA plasmids and
spherocylindrical crowders in spherical confinement. Particle-particle interaction
potentials are given by the purely repulsive WCA potential Uij, and particle-wall
interactions are given by the purely repulsive 9-3 LJ potential Uiw. B) Representative
snapshots of the plasmid polymer and crowders in spherical confinement (top) along
with the radial distribution of the monomers N(r) as a function of radial distance
r from the center of sphere (bottom). Different crowding fractions (φ) are shown.
C) Confocal images of DNA, fluorescent labelled with Pico488, in cell-sized vesicles.
The volume fraction φ in experiments is estimated from the partial specific volume
of Ficoll-70.
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Since gene expression is sensitive to the spatial organization of the ribosomes,

we next imaged fluorescently-labelled ribosomes separately in cell-sized vesicles at

different crowder concentrations. Ribosomes remained uniformly distributed in

vesicles at all crowding levels (Figure 4.3A). Figure 4.3B plots and compares the

fraction of fluorescence near vesicle walls for both ribosomes and DNA. We observed

that ribosomes and DNA show different spatial organization at high crowding: most

ribosomes remain in bulk whereas the DNA gets spatially localized near the vesicle

membrane.

Next, we used a two compartment reaction kinetics model to study the effects

of crowding-induced spatial organization on gene expression (Figure 4.3C). The

vesicle was divided into a bulk and a wall-associated compartment. The DNA was

either uniformly distributed across the vesicle or localized in the wall-associated

compartment while the ribosomes were uniformly distributed. Consistent with a

previous study in prokaryotic cells and mRNA imaging experiments here, mRNA

was assumed to colocalize with the DNA in our simulations. Crowding also results

in substantial decrease in the diffusion coefficients of the reactants,44 and hence the

exchange rate of ribosomes between the compartments was decreased to account for

the effects of crowding on diffusion. The localization of DNA to the wall at sufficiently

low exchange rate resulted in lower protein abundance as compared to the uniform

distribution since most ribosomes in bulk are spatially segregated from the mRNAs in

the wall (Figure 4.3D). As the exchange rate was slowed further, there was even fewer

ribosomes capable of translating in the wall compartment. In the limiting case of no

exchange between the two compartments, only the ribosomes in the wall-associated

compartments contributed to the protein production and hence protein abundance

scaled as R2 instead of the expected R3 scaling (Figure 4.4).
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Figure 4.3: A) Confocal images of representative vesicles with fluorescently-labelled
ribosomes at different Ficoll-70 concentrations. B) Fraction of fluorescence in the wall
region as a function of crowder concentration for DNA and ribosomes. C) Schematic of
the two compartment reaction kinetics model of gene expression, where ribosomes can
be exchanged between the bulk compartment and the wall-associated compartment.
Results of the simulation of the two compartment model showing protein abundance
as a function of exchange rate from wall to the bulk compartment (Γwb). Results for
the two different spatial organizations of the DNA are shown.
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Figure 4.4: Protein abundance as a function of radius for different exchange rates
of ribosomes. The legend denotes the exchange rates of ribosomes from the wall
compartment to the bulk compartment (Γwb) and the associated slopes for the protein
abundance vs radius plots on log-log scale.
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We then studied gene expression in crowded vesicles by tracking transcription and

translation using a coupled mRNA/protein reporter technique described in previous

works.84,122–124 Briefly, the RNA aptamer Spinach2125 was inserted downstream of

a gene coding for a red fluorescent protein, mCherry126 (Figure 4.5A). Spinach2

fluoresces in the green range upon hybridization with the fluorophore DFHBI-1T. The

Spinach2 fluorescence intensity was indicative of the mRNA populations, while the

mCherry fluorescence intensity was indicative of the protein population. Ficoll-70 at

concentrations from 0-90 mg/mL was added to the cell-free protein synthesis (CFPS)

reactions. Polydisperse vesicles containing the CFPS reactants were fabricated using

a shearing method adapted from Nishimura et al. 121 (Figure 4.5B). The mean mRNA

and expressed protein populations were inferred from the mean Spinach2 and mCherry

fluorescence levels measured across the population of vesicles.

We observed that, similar to DNA, the mRNA was uniformly distributed

throughout the vesicle at low crowding and localized near the vesicle walls at high

crowding (Figure 4.5C). In contrast, protein was distributed throughout the vesicle

at all crowding levels (Figure 4.5D). Figure 4.5D shows the three dimensional

reconstruction of an individual vesicle showing the spatial distribution of mRNA

and protein. Next, we compared the protein and mRNA abundance across different

crowding fractions by inferring mean Spinach2 and mCherry fluorescence across the

population of vesicles in the 14-16 µm diameter range (Figure 4.5F). The mRNA

abundance first decreased with an increase in crowding, showed minimum at 40

mg/mL crowder concentration and then increased with an increase in crowding.

In comparison to the mRNA, protein abundance decreased dramatically at high

crowding levels. This is consistent with the simulation predictions in Figure 4.3C)

where the two compartment reaction kinetics model showed that spatial segregation

and slow diffusion would result in a decrease in protein abundance.

Next, we quantified translation efficiency, defined as protein abundance for a unit

mRNA abundance, and observed that the translation efficiency decreased at high

crowder concentrations (Figure 4.5G). Consistent with previous studies,45 we also

79



observed maximum protein abundance at intermediate crowding (10 mg/mL Ficoll-

70 concentration). We then characterized the size dependence of vesicles of radius R

on protein abundance P (P ∝ Rm) with scaling exponent m given by the slope of

the protein abundance vs radius plots on log-log scale (Figure 4.5H). We observed

the scaling exponent to be close to 3 for crowder concentrations of 0, 10, 40, 60

mg/mL, as observed before for the PURE system.127 In contrast, we observed an

anomalous scaling exponent close to 2 for the crowder concentration of 90 mg/mL

(Figure 4.5I). This is consistent with the model predictions and can be explained by

the observation that with slow diffusion and spatial organization of DNA at the wall,

most of the translation is carried out by ribosomes near the walls of the vesicle. Hence,

we are able to spatially segregate DNA and ribosomes at high crowding and obtain

low efficiency translation. In contrast, the colocalizatipn of DNA and ribosomes

throughout the vesicle at low crowding results in high efficiency translation.

4.3 Discussion

Cell-free systems are an important platform for studying mechanisms in living

systems and for standalone applications, such as sensors and in manufacturing of

therapeutics.128 Because of the open nature of the platform and the ability to

manipulate the system, cell-free systems are also used to study cellular mechanisms

such as the role of macromolecular crowding on gene expression bursting.47,84 A major

limitation of the current state-of-the-art in cell-free synthetic biology is the inability

to spatially organize biological components and mimic spatial organization observed

in live cells. In this work, we used macromolecular crowding in cell-sized vesicles to

spatially organize gene expression. This organization of gene expression components

is conceptually similar to how they are organized in bacterial cells including E. coli

and B. Subtilis.

We first used Langevin dynamics computer simulations to show that crowding

by Ficoll-70 can lead to the adsorption of a model DNA plasmid to the walls of
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Figure 4.5: A) The plasmid used for cell-free experiments included a T7 promoter,
a gene coding for mCherry, and a sequence encoding an untranslated RNA aptamer,
Spinach2. B) Fabrication steps for forming vesicle microreactors. Cell-free reagents
and Ficoll-70 were placed in an oil phase solution containing phospholipids, sheared
into polydisperse vesicles by vortexing, layered onto a balanced aqueous solution,
and centrifuged into the solution. (C and D): Representative vesicles demonstrating
spatial distribution of mRNA (c) and protein (D) at different crowder concentrations.
E) 3-D reconstruction of an individual vesicle showing the spatial distribution of
mRNA and protein. F) mRNA and protein abundance as a function of crowder
concentration for vesicles with a diameter of 14-16 µm. G) Translation efficiency as
a function of crowder concentration for vesicles with a diameter of 14-16 µm. H)
Protein abundance as a function of radius for different crowder concentrations. I)
The exponent of the protein abundance versus radius scaling as calculated by linear
regression. The error bars denote the 95% confidence intervals.
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the spherical confinement. Next, we imaged DNA and ribosomes to observe their

spatial distribution at different concentrations of Ficoll-70. The DNA was uniformly

distributed at low levels of crowding but became localized near the vesicle walls at

high crowding. In contrast, ribosomes remained uniformly distributed at all crowding

levels. This spatial organization is akin to the DNA-ribosome segregation observed

in bacterial cells like E. coli. The resultant effect of crowding on gene expression

was monitored by dual mRNA/protein fluorescence reporters. The concentration of

Ficoll-70 affected mRNA and protein expression, and at high levels of crowding, lead

to a decrease in translational efficiency. This result is consistent with predictions

of computer simulations, which accounted for the spatial segregation of DNA and

ribosomes, along with decreased diffusion coefficients at high levels of crowding.

The cell-free results reported here have important consequences for understanding

spatial organization of gene expression in bacteria. Our cell-free results help to shed

light on the role of spatial organization and resource availability on gene expression.

Depending on the degree of DNA-ribosome segregation observed in bacteria, different

localization patterns of transcription are observed. For instance, E. coli has significant

DNA-ribosome segregation and transcription occurs predominantly at the nucleoid

periphery (close to the ribosome-rich region). In contrast, C. crescentus does not

exhibit DNA-ribosome segregation and transcription occurs throughout the nucleoid2.

Based on our work, we can speculate that access to ribosomes is an important factor

in spatially organizing transcription in the prokaryotic nucleoid.

The realization of an artificial cell has been a long-standing goal of the synthetic

biology community. Our work here demonstrates a cell-free platform that can mimic

the gene expression spatial organization observed in cells. We hope our work here will

contribute to future efforts towards the design of an artificial cell and more advanced

experimental cell-free platforms to probe the effects of spatial organization on gene

expression.
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4.4 Methods

4.4.1 Coarse-grained simulation of DNA plasmid and crow-

der in spherical confinement

We carried out Langevin dynamics simulation of a model DNA plasmid and crowder

molecules in spherical confinement. The DNA plasmid was modeled as a semiflexible

ring polymer of 184 beads with size of each bead of the polymer chosen to be 7

nm (1 σ). Adjacent beads of the polymer were connected via the FENE potential

while the stiffness of the polymer was maintained by using a cosine bending potential.

Since the reported shape of the Ficoll-70 molecule is spherocylindrical with an aspect

ratio of 7:1,119,120 we modeled the crowder molecule as an oligomer of 7 beads with

a very stiff bending potential, to give it a spherocylindrical shape. The size of

each bead in the 7-mer oligomer was chosen to be 28 Å (0.4 σ) with the end-to-

end length of 196 Å. The volume fraction of crowders in the confined sphere of

radius R = 23 σ was φ = Noligomers × 7 × (0.2)3/R3. All particles (crowders and

polymer beads) interacted via the short-ranged and purely repulsive Weeks-Chandler-

Andersen (WCA) potential, and particles interacted with the confining surface via the

purely repulsive 9-3 Lennard-Jones potential. The Langevin equation was integrated

forward in time using the velocity-Verlet algorithm in LAMMPS and the resulting

trajectories were visualized using OVITO.

4.4.2 Reaction kinetics model

We developed a two compartment reaction kinetics model to study the role of spatial

organization and diffusion on protein abundance. As shown in Figure 4.3 C, vesicle

was divided into two compartments: a wall-associated and a bulk compartment.

The DNA was either uniformly distributed in the vesicles or was only localized in

the wall-associated compartment. The following reactions can take place in the two

compartments:
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DNA
α−→ mRNA

mRNA + Ribosome
kb−→ C

C
kp−→ mRNA + Ribosome + protein

Ribosomes are exchanged from the wall compartment to the bulk compartment

by a rate Γwb and from the bulk compartment to the wall compartment by a rate

Γbw. The two rates are constrained such that: Γbw

Vwall
= Γwb

Vbulk
, where Vwall and Vbulk are

the volume of the wall-associated and bulk compartments. The system of ordinary

differential equations (ODEs) are solved by using a custom code in Python.

4.4.3 Experimental methods

Spinach2, a plasmid vector coding for mCherry and a downstream fluorescent

mRNA aptamer,123,124 was expressed in order to simultaneously track transcription

and translation outputs. The plasmid pRSET-b-mCherry-Spinach2 transcribes

from a T7 polymerase promoter to create a transcript with a translated re-

gion coding for mCherry, followed by an untranslated aptamer tag which fluo-

resces after folding and binding with the fluorophore DFHBI-1T23 ((Z)-4-(3,5-

difluoro-4-hydroxybenzylidene)-2-methyl-1-(2,2,2-trifluoroethyl)-1H-imidazol-5(4 H)-

one, Lucerna, Inc). A commercial cell-free protein synthesis kit (PURExpress, NEB)

was used to express the plasmid in the presence of DFHBI-1T and a crowding

molecule, Ficoll-70 (Sigma-Aldrich).

Vesicles containing the cell-free expression system and added components (the

“Inner Solution” were prepared by a shearing method adapted from Nishimura

et al. 121 . In summary, vesicles are prepared by assembling the cell-free reaction

mixture, plasmid, DFHBI-1T, sucrose (to aid with visualizing vesicles), and Ficoll-

70. Concentrated Ficoll-70 was added at a final concentration from 0-90 mg/mL. The

Inner Solution is vortexed in a paraffin oil solution containing phospholipids (POPC,

Avanti Polar Lipids) to create a polydisperse population of water-in-oil droplets. This

paraffin oil mixture with droplets is layered on to an aqueous “Outer Solution” and
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then centrifuged for 20 minutes at 4C at 14k g. The Outer Solution is balanced

with the inner solution, containing small molecules found in the PURE system

reactions.129,130 Vesicles are collected by pipetting and are prepared for microscopy

by placing 10 µL of vesicles in Outer Solution between two glass coverslips separated

by a 2 mm PDMS spacer. Most vesicle diameters range from 5-30 µm.

Vesicles were observed while resting on a coverslip, using a (Zeiss LSM 710 Axio

Observer) confocal microscope to image every 5 minutes for 6 hours. A 20x objective

(Zeiss Plan Apochromat 20x/0.8 M27) was used for the timescale data, followed by

a 63x objective (Zeiss Plan Apochromat 63x/1.40 Oil DIC M27) for a more detailed

image of fluorescence distribution at the end of the experiment. The Spinach2-

DFHBI-1T signal was measured using a 561 nm laser from 488/536 nm Ex/Em. The

mCherry was measured using a 561 nm laser from 561/637 nm Ex/Em. Brightfield

images were also acquired contemporaneously. For each timepoint, the vesicles were

imaged using a z-stack capture, using 14 images per slice at 2 um increments. The

images were analyzed using ImageJ and custom MATLAB code to detect vesicle size

and location and to acquire intensity values for Spinach2-DFHBI-1T and mCherry

from individual vesicles over time.

To determine spatial DNA distribution in the vesicles, vesicles were prepared as

normal with the 0.25 µL of the 200x fluorophore Pico488 (Lumiprobe) in the Inner

Solution, instead of DFHBI-1T. These vesicles were imaged using confocal microscopy,

using a 63x objective and 561nm laser at 488/536 Ex/Em. Ficoll-70 was added at

a final concentration at 0, 10, 20, 30, 40, 60, and 90 mg/mL. A control reaction

containing no DNA was also performed. Z-stack renderings and cross-sections in the

middle of vesicles were used to characterize DNA distribution within vesicles.

Cell-free protein synthesis experiments were performed for each Ficoll-70 crowder

concentration of 0, 10, 40, 60, and 90 mg/mL. Built-in functions in ImageJ and custom

MATLAB code were used to identify the boundaries of vesicles in a brightfield view,

select regions of interest around each vesicle, and extract fluorescence information
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from each ROI. For an individual vesicle in each experiment, mRNA and protein

abundance was extracted at the last timepoint for the detected vesicles.
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Chapter 5

Conclusions

The presence of macromolecules such as proteins and ribosomes can significantly

crowd the intracellular environment. Large volume fractions of crowding molecules

can result in depletion interactions that can affect the conformations and spatial

organization of biopolymers. In this thesis, we used computer simulations to study

impact of crowding on polymer-polymer and polymer-wall interactions. We also

studied how crowding can be used to spatially organize gene expression in cell-

free systems and studied the role of crowding-induced spatial correlations on gene

expression noise.

We first studied a flexible ring polymer in the presence of spherical crowding

particles and observed that crowding could lead to compaction of the ring polymer

and weak aggregation between two ring polymers at high crowding. In the presence

of a flat confining surface, the polymer was partially adsorbed onto the wall at

intermediate crowding and fully adsorbed at high levels of crowding. We calculated

the potential of mean force (PMF) for polymer-polymer and polymer-wall interactions

as a function of crowding fraction and observed that the polymer-wall interactions

were much stronger than polymer-polymer interactions. We also observed, both

from PMF calculations and unbiased simulations, that the attractive polymer-wall
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interactions emerged at much smaller crowding fractions as compared to the polymer-

polymer interactions. Our work has implications in understanding the role of

depletion interactions on spatial organization and conformations of a flexible polymer

in the crowded cellular environment.

We also observed that crowding resulted in different conformations of the polymer

depending on the presence/absence of confining wall. Crowding in the presence of a

flat wall resulted in adsorption and flattening of the polymer onto the wall, and an

extension of the polymer chain. In contrast, crowding in the absence of a confining

surface resulted in compaction of the polymer chain. Thus, crowded environment

can lead to different conformations in the bulk vs the confining surface and that can

result in different reaction kinetics by limiting/promoting access of reactants to the

polymer. For instance, DNA plasmids compacted via the polycation spermine showed

no transcription activity while the DNA in extended conformations adsorbed on lipid

vesicles showed transcriptional activity similar to that in aqueous solutions.101

In this work, we only considered excluded volume interactions between the

polymer beads but it would be interesting to study how crowding would affect

polymer-polymer and polymer-wall interactions for polymers with “sticky” interac-

tions. Presumably, it would favor the polymer-polymer interactions over polymer-

wall interactions. In some cases with weak “sticky” interactions between the two

polymers, polymers may remain as a dimer/multimer in the bulk but crowding-

induced adsorption to the wall might result in demixing of the polymer chains.

Another interesting avenue for future work would be on understanding the role of

semiflexibility of polymers on crowding-induced depletion interactions. While we

have studied the role of bending stiffness on polymer adsorption to wall in Chapter

3, it would also be interesting to study how bending stiffness would affect polymer-

polymer interactions in a crowded environment.

In light of our results, it is imperative to ask why does a bacterial chromosome

condense in the midcell and not adsorb on the cell membrane. The answer to

that question might lie in the fact that a cellular environment is not just crowded

88



by macromolecules but also has proteins modulating interactions between different

segments of the chromosome polymer. Different nucleoid-associated proteins (NAPs)

can act as DNA-bridging proteins and have been implicated in playing a role in

condensing the chromosome polymer.32 In order to accurately understand the role of

crowding on conformations of chromosome inside cells, future studies studying role

of crowding on chromosome organization should also incorporate the role of NAP-

mediated intra-chromosome interactions.

The cellular environment is replete with polymers of varying persistence lengths:

for example, actin has a persistence length of 17.7 µm131 and DNA has a persistence

length of ∼ 55 nm. We studied the role of bending stiffness on crowding-induced

adsorption of a semiflexible linear polymer. We observed that the adsorption of

a semiflexible polymer to a flat surface was promoted by stiffer polymers, smaller

crowding particles, and larger volume fractions of crowders. The transition from non-

adsorbed to adsorbed states was facilitated by an increase in bending stiffness, and a

sharper transition occurred with small changes in crowding for stiffer polymers.

In our studies in chapters 2 & 3, we only focused on the role of monodisperse

spherical crowders on polymer-polymer and polymer-wall interactions. In contrast,

cellular environment has crowding molecules that span from globular proteins and

ribosomes to proteins with highly assymetric shapes and intrinsically disordered

proteins. Hence, it would be interesting to study how polydispersity in crowder shapes

and sizes would affect depletion interactions between polymers and between a polymer

and a wall. In addition, there are proteins in the cellular environment that can act

as DNA-bending proteins. It would be interesting to study how the DNA-bending

proteins modulate bending stiffness of a polymer and in turn what role that would play

on crowding-induced polymer-wall interactions. Depending on whether the DNA-

bending proteins associate with the DNA in a sequence specific way or in a non-

specific manner, different local stiffness effects are likely to be observed. Computer

simulations can be utilized to address the role of DNA-bending proteins on intra-

polymer, polymer-polymer and polymer-wall interactions in a crowded environment.
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Crowding in cells has been implicated in many cellular processes such as gene

expression bursting. It is difficult to study the role of crowding on these processes in

live cells due to the inherent difficulty in modulating crowding in live cells. Due to

their open nature and ability to manipulate physical environments, cell-free protein

synthesis (CFPS) systems are being used to study gene expression. A major limitation

of the cell-free paradigm in studying cellular behavior is the inability to control

spatial organization of gene expression components in synthetic systems. We used

computational modeling to guide the design of a cell-free experimental platform

capable of spatially organizing DNA and ribosomes akin to a prokaryotic cell. We

carried out Langevin dynamics simulations of a coarse-grained DNA plasmid and

crowder Ficoll-70 to show that crowding-induced depletion interactions could lead to

adsorption of the DNA plasmid to the confining surface. Experimentally, we observed

that the DNA is uniformly distributed throughout the vesicle at low crowding but

localized near the vesicle walls at high crowding. In contrast, the ribosomes remained

uniformly distributed at all crowding levels creating spatial segregation of DNA and

ribosomes at high crowding. We further analyzed the effects of this spatial segregation

on protein abundance, by using a two-compartment reaction kinetics model. We

observed that the segregation of DNA and ribosomes along with altered diffusion lead

to a decrease in protein abundance, consistent with the experimental observations.

Our work sheds light on the role of spatial organization and resource availability on

gene expression.

The design of an artificial cell has been a long-standing goal of the synthetic

biology community. The ability to control the production and the spatial organization

of desired protein product in an artificial cell would be a huge engineering feat. As

one of the initial steps in that direction, our work here provides an experimental

platform with the ability to control the spatial organization of gene expression. It

is quite exciting to speculate on the more advanced cell-free platforms that can be

created by building on our work. These advanced cell-free systems can either take

inspiration from the natural world and mimic For instance, future works can study
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the role of spatial segregation of two plasmid species by using crowding to spatially

organize one plasmid species near the vesicle membrane while the other species

can remain uniformly distributed throughout the vesicle. Our results in Chapter

3 show that crowding-induced adsorption to a confining surface is dependent on

the bending stiffness of the polymer and hence the two plasmid species might be

spatially segregated by changing the bending stiffness of one of the plasmid species

(for example, by subjecting it to DNA-bending proteins such as HP1).

We also studied the role of crowding on gene expression noise by using a

computational model to understand CFPS experiments carried out in 15µL reaction

volumes. We developed a phenomeonological model to understand how crowding

in cell-free systems affects gene expression noise. We observed that the crowding-

induced spatial correlations and altered diffusion affected gene expression noise, with

the exclusion and colocalization of translation factors leading to an increase in gene

expression noise. The exclusion of reactants due to crowding lead to a decrease in

burst frequency while rapid rebinding due to colocalization of reactants lead to an

increase in burst size. Thus, cell-free platforms in combination with computational

simulations can help to understand the role of crowding on gene expression kinetics

and noise in cells.

In conclusion, work in this thesis would help to understand the role of crowding

on the cellular and cell-free organization as well as understanding gene expression

kinetics in cells.
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