
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2022

Optimization Methods for Day Ahead Unit Commitment Optimization Methods for Day Ahead Unit Commitment

Jonathan David Schrock
jschroc1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Industrial Engineering Commons, Operational Research Commons, and the Power and

Energy Commons

Recommended Citation Recommended Citation
Schrock, Jonathan David, "Optimization Methods for Day Ahead Unit Commitment. " PhD diss., University
of Tennessee, 2022.
https://trace.tennessee.edu/utk_graddiss/7083

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7083&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Jonathan David Schrock entitled

"Optimization Methods for Day Ahead Unit Commitment." I have examined the final electronic

copy of this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Industrial

Engineering.

Jim Ostrowski, Major Professor

We have read this dissertation and recommend its acceptance:

Mingzhou Jin, Hugh Medal, Hector Pulgar

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Jonathan D Schrock entitled

“Optimization Methods for Day Ahead Unit Commitment.” I have examined the

final paper copy of this dissertation for form and content and recommend that it

be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Industrial Engineering.

Jim Ostrowski, Major Professor

We have read this dissertation
and recommend its acceptance:

Mingzhou Jin

Hugh Medal

Hector Pulgar

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

Optimization Methods for Day

Ahead Unit Commitment

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Jonathan D Schrock

May 2022

© by Jonathan D Schrock, 2022

All Rights Reserved.

ii

I would like to dedicate this dissertation to my parents and the rest of my family for

the support they have given me through all of my schooling and beyond.

And to my Tiziu who has put up with me and my never-ending schooling

iii

Acknowledgements

Foremost, I would like to thank my advisor Dr. Jim Ostrowski for his support and

guidance on my doctoral work. He guided me towards this topic, and was always

willing to help me understand the material and make progress on the research. He

has also helped me to get my internship and has been working with me to find

employment after graduation.

I would also like to thank the rest of my dissertation committee: Dr. Mingzhou

Jin, Dr. Hugh Medal, and Dr. Hector Pulgar. I’m grateful for their willingness to

work with me and the insights they brought.

I am also grateful for my friends and teammates at UTK, including Amelia

McIlvenna, Tony Rodriguez, Ben Knueven, Ethan Deakins, Rebekah Herrman, and

Lorna Treffert.

iv

Abstract

This work examines a variety of optimization techniques to better solve the day ahead

unit commitment problem. The first method looks at the impact of almost identical

generators on the problem and how to exploit that fact for computational gain. The

second work seeks to improve the fidelity of the problem by better modeling the

impact of pumped storage. Lastly, the relationship between the length of the planning

horizon and the quality of the solutions is investigated.

v

Table of Contents

1 Introduction 1

2 Exploiting Almost Symmetries Day Ahead Unit Commitment 3

2.1 Introduction . 3

2.2 A Framework . 5

2.2.1 Differences in Bidding from Identical Players 9

2.3 The Unit Commitment Problem . 13

2.3.1 Symmetries in Unit Commitment 14

2.3.2 Almost Symmetries in Unit Commitment 15

2.4 Computational Results . 17

2.4.1 Experimental Setup . 19

2.5 Discussion and Conclusions . 26

3 Pumped Storage Hydropower in Unit Commitment 28

3.1 Introduction . 28

3.2 PSH Model In Unit Commitment . 29

3.3 Computational Results . 35

3.3.1 Experimental Setup . 35

3.3.2 Results . 38

3.4 Discussion and Conclusions . 40

4 Impact of Planning Horizon Length in Unit Commitment 43

vi

4.1 Introduction . 43

4.2 Experimental Setup . 44

4.3 Computational Results . 45

4.4 Conclusions . 47

A The Unit Commitment Model 54

A.1 Notation . 54

A.2 Model . 58

Vita 61

vii

List of Tables

2.1 Number of orbits by orbit size in a problem from our test suite. . . . 18

2.2 Times to solve UC for each method measured in seconds 21

2.3 Successful gaps out of ten random seeds 23

2.4 Impact of concurrently running BA and TCC versus 2 BA instances . 25

3.1 Average times to solve the test weeks 39

3.2 Comparison of the PSH methods using known demands 41

3.3 Comparison of the PSH methods using stochastic demands 41

3.4 Comparison of the PSH methods between stochastic and known demands 41

4.1 Percent differences of the costs for different horizon lengths against the

standard UC model for week 1 . 46

4.2 The average time in seconds to solve the five days from week 1 46

4.3 Percent differences of the costs for different horizon lengths against the

standard UC model for week 2 . 48

4.4 The average time in seconds to solve the five days from week 2 48

viii

List of Figures

3.1 The week-long charging schedule for a PHS unit in week 1 36

3.2 The week-long charging schedule for a PHS unit in week 2 36

ix

Chapter 1

Introduction

The unit commitment problem (UC) is that of finding a minimum cost production

schedule for a set of power generators subject to both (1) the technical constraints

of the individual generators, such as minimum and maximum power output,

minimum up and down time, ramping limits, and reserve qualification and (2)

the system operational requirements, which include load satisfaction, transmission

(deliverability) constraints, and reserve requirements (Garver, 1962; Chen et al., 2016;

Anjos et al., 2017; Knueven et al., 2020). Due do to the operational characteristics

of large thermal electric generators, electric grid system operators, such as the

Midcontinent Independent System Operator (MISO) in the United States, must make

decisions well ahead of real-time which generating units should be committed to meet

the system operational requirements. Such decisions are typically made a day in

advance, ensuring the following day’s operational requirements will be met (Chen

et al., 2014); this particular optimization problem is typically referred to as the day-

ahead UC.

In the electricity markets in the United States and Canada, and the organized

power exchanges in Europe, the system operator serves as an intermediary between

generators and loads, but does not typically own any generating assets. In the context

of day-ahead UC, the system operator typically operates a day-ahead market, which

1

ideally schedules generators to minimize total cost while providing a price signal to

support that schedule (Johnson et al., 1997). While the purpose of the present study

has little to do with price formation, it is important to note that in many contexts a

sub-optimal UC solution not only wastes resources, but brings into question market

fairness between different market participants, e.g., generator units (Sioshansi et al.,

2008; Eldridge et al., 2019). Therefore obtaining high-quality solutions to the day-

ahead UC problem is of upmost importance to system operators and the stakeholders

they serve.

As Garver (1962) demonstrated long before it was practical, UC admits a

natural mixed integer linear programming (MILP) formulation. While in the past

system operators relied on approximate solution techniques to solve the day-ahead

UC, advancements in MILP theory and computation (Jünger et al., 2009; Bixby,

2012) have enabled system operators to switch to off-the-self commercial MILP

solvers (O’Neill, 2017). The last two decades have seen a explosion of work in finding

effective MILP formulations for UC (Malkin, 2003; Lee et al., 2004; Rajan and Takriti,

2005; Carrion and Arroyo, 2006; Frangioni et al., 2009; Ostrowski et al., 2012; Morales-

España et al., 2013; Damcı-Kurt et al., 2016; Wu, 2016; Silbernagl, 2016; Gentile et al.,

2017; Brandenberg et al., 2017; Knueven et al., 2018c; Atakan et al., 2018; Knueven

et al., 2020); i.e., MILP formulations which enable branch-and-cut solvers to rapidly

find and certify high-quality solutions.

Despite the research conducted on the unit commitment problem, there are still

avenues to explore in improving the solution times and quality when solving these

problems. In Chapter 2, exploitation of underlying similarities between generators is

leveraged to produce improved solutions quickly over the standard methods used by

MISO. Chapter 3 looks at the benefits to the costs and profits of more realistically

representing pumped storage hydropower units in the unit commitment model.

Finally, Chapter 4 looks at the effects of varying time horizon lengths in the UC

problem on solution time and quality.

2

Chapter 2

Exploiting Almost Symmetries

Day Ahead Unit Commitment

2.1 Introduction

Symmetries within UC instances are typically caused by generating units with

identical parameters. It is well known that without proper mitigation, symmetries

within combinatorial optimization problems can slow down the branch-and-cut

solution process by requiring the solver to explore many optimal solutions (Margot,

2002; Ostrowski et al., 2011). While modern MILP solvers employ generally-

applicable advanced symmetry-mitigation techniques, these cannot capture all the

primal degeneracy sometimes found in UC instances (Knueven et al., 2018b). Several

methodologies have been proposed to address these additional symmetries and

degeneracies, including specialized branching methods (Ostrowski et al., 2015) and

(sub-)symmetry breaking inequalities (Lima and Novais, 2016; Bendotti et al., 2020).

Another approach, undertaken by (Knueven et al., 2018b), and extended in the

present work, involves reformulating the unit commitment problem such that identical

units are aggregated into a single set of generator variables and constraints. Due to

advancements in convex hull formulations for generating units (Gentile et al., 2017;

3

Guan et al., 2018; Bacci et al., 2019; Knueven et al., 2018a, 2020), such reformulations

can be done in a way that ensures primal feasibility and optimality to the original

problem. In this context, the present work makes the following contributions.

• We relax the condition that the symmetric reformulation preserve primal

optimality from (Knueven et al., 2018b) and consider a symmetric relaxation

of the original UC instance. This allows for aggregation of generators whose

feasible regions are identical but with differences in costs. These differences in

cost break the exact symmetry relied upon for the aforementioned symmetry

mitigation techniques, but if the cost differences are slight enough, this will have

a similar impact on branch-and-cut algorithms as unmitigated exact symmetry.

We explore trade-offs between solution quality and unit aggregation, as well as

methods for tightening the proposed symmetric relaxation.

• We demonstrate that both the exact and proposed almost-symmetric refor-

mulations are practically applicable to large-scale real-world day-ahead unit

commitment problems with the full set of operational constraints used by MISO.

While transmission constraints, in general, force only co-located generators to

be aggregated, we demonstrate that this is not a practical issue. Further, the

considered symmetric reformulations and relaxations can improve performance

20%-25% over existing practice on a test suite of real-world MISO day-ahead

UC instances.

• Most UC instances are easily solved using standard formulations. However,

there are occasional instances that take much longer to solve. We demonstrate

that symmetry-exploiting methods can be an effective backup for the standard

approach. Solving standard formulations and symmetry-exploiting formulations

concurrently can yield much faster solution times as well as cheaper solutions

than simply running multiple standard formulations.

The remainder of the chapter is organized as follows. In Section 2.2 we discuss

the use of MILP for solving market-clearing problems, and the impact of identical

4

market participants. In Section 2.3 we apply this framework to the unit commitment

problem, discussing specific formulation issues for aggregating generators. Section 4.3

introduces the problem test suite and reports the main numerical results of the paper.

Finally we discuss the implications of our findings in Section 4.4.

2.2 A Framework

While the focus of this work is primarily for UC models, we present the framework

in terms of a more general market clearing model. Specifically, we consider problems

of the form:

zclearing = min
∑
p∈P

cp(xp, yp) (2.1a)

s.t.
∑
p∈P

Apxp +
∑
p∈P

Gpyp ≥ b (2.1b)

(xp, yp) ∈ Πp, p ∈ P (2.1c)

xp ≥ 0, integer (2.1d)

yp ≥ 0 (2.1e)

In this context, (xp, yp) denotes the actions of a player p from the set of players P

while Πp represents the set of feasible actions for that player. The rows of (3.1b)

represent the market products with constraints ensuring that enough of each product

of is produced. The cost function cp(xp, yp) represents how much player p is bidding

to perform (xp, yp).

Consider the permutation πp,p′ which swaps the values of (xp, yp) with (xp′ , yp′)

respectively while keeping the remaining variables fixed.

Remark. If Ap = Ap′ , Gp = Gp′ , Πp = Πp′ , and cp = cp′ , then πp,p′ is a symmetry

of the market-clearing problem above. That is, swapping the values of (xp, yp)

5

with (xp′ , yp′) does not change the feasibility of the solution nor does it change the

corresponding objective value.

We let Gswap denote the group generated by all such permutations, i.e.,

Gswap
def
=
〈
πp,p′ | Ap = Ap′ , Gp = Gp′ , Πp = Πp′ , and cp = cp′

〉
.

We note that while Gswap is only guaranteed to be a subset of (3.1)’s group, they are

likely to be equal in any realistic application. In addition, unlike the full symmetry

group, there is a simple polynomial-time algorithm to compute Gswap.

The set Gswap can be used to partition the entire solution space into sets of

equivalent solutions called orbits. The orbit of given solution to (3.1) with respect

to Gswap contains that solution and any other equivalent solutions formed by any

combinations of the swaps allowed by Gswap.

While the permutations act on and partition vectors, they can also be used to

partition the players into equivalence classes. We say that the two players share the

same orbit with respect to Gswap if swapping their schedules is a symmetry. That

is, p′ is in the orbit of p with respect to Gswap if and only if there is a πp,p′ ∈ Gswap.

We let P = {P1, . . . , Pk} represent the orbital partition of the players, where each

Pi represents an orbit of players. We will refer to players in the same orbit as being

identical. Moreover, we let R represent the set of unique representatives for the

partition P .

In this work we examine how and when to exploit the presence of identical

players. Ideally, we would like to aggregate the actions of identical players into one

representative of each player orbit. This is equivalent to projecting the feasible region

down to the set of representative players. To understand when this is allowable, we

need to consider when a polytope has the mixed-integer decomposition property.

Definition. A polytope Π has the mixed-integer decomposition property (MIDP) if for

any positive integer k and for any (x, y) ∈ kΠ with x integer, there exists (xi, yi) ∈ Π

6

with xi integer for all i ∈ {1, . . . , k} such that (x, y) = (x1, y1) + · · ·+ (xk, yk). Such

a polytope Π is said to be mixed-integer decomposable.

In the context of our market clearing model, the MIDP property ensures us that any

solution found by aggregating the actions of identical players can be disaggregated

into feasible solutions to the full model.

First, we show the following result:

Theorem 2.1. Let P be the orbital partition of players with representative set R.

If Πp is mixed-integer decomposable and cp is linear in (xp, yp) for all p, then

zclearing is equal to:

min
∑
r∈R

cr(x
r, yr) (2.2a)

s.t.
∑
r∈R

Arxr +
∑
r∈R

Gryr ≥ b (2.2b)

(xr, yr) ∈ |Pp|Πr, for Pp 3 r, ∀r ∈ R (2.2c)

xr ≥ 0, integer ∀ r ∈ R (2.2d)

yr ≥ 0 ∀ r ∈ R. (2.2e)

Note that we are using the superscript r to refer to the problem in the projected

space and the subscript p to refer to the problem in its original space.

Proof. Proof: Let (xr, yr)r be an optimal solution to the restricted problem. We will

show how (xr, yr)r can be disaggregated to create a feasible solution to the full model

with the same objective value.

By the mixed-integer decomposition property of Πr, for every (xr, yr) ∈ kΠr

there exists a set of x-integral solutions (xr, yr)
1, . . . , (xr, yr)

k ∈ Πr with (xr, yr) =∑k
j=1(xr, yr)

j. Using (2.2c), for pi ∈ Pp 3 r we create a solution in the original space

by letting (xpi , ypi) = (xr, yr)
i. Note that (xpi , ypi) ∈ Πr = Πpi , so constraints (3.1c)

are satisfied.

7

Similarly, for Pp 3 r we have:

Arxr +Gryr =

|Pp|∑
i=1

(Arx
i
r +Gry

i
r) =

|Pp|∑
i=1

(Apixpi +Gpiypi),

since Ar = Api and Gr = Gpi for all pi in Pp, implying that constraints (3.1b) are

satisfied.

Furthermore, by the linearity of cr we have that

cr(x
r, yr) =

|Pp|∑
i=1

cr(x
i
r, y

i
r) =

|Pp|∑
i=1

cpi(xpi , ypi)

Thus, any solution (xr, yr) can be disaggregated while preserving the feasibility

and cost.

Similarly, any solution (x, y) can be aggregated into (xr, yr) by the following. For

every r ∈ R, let xr =
∑

p∈Pp3r xp and yr =
∑

p∈Pp3r yp. �

Remark. Note that the above theorem relies on the mixed-integer decomposition

property of the Πp formulations to disaggregate the reduced solution. If Πp is not

integer decomposable then (2.2) will provide a lower bound for (3.1). Moreover, if

only a subset of Πp formulations are MIDP, then one may choose to restrict Gswap to

only include permutations πp,p′ where Πp is MIDP.

Remark. A necessary, but not sufficient, condition for Πp to admit the MIDP is that

the polytope projxp(Πp) is totally unimodular (Baum and Trotter Jr, 1978).

Remark. The aggregation can do more than just project symmetric solutions onto

one representative solution. Consider an aggregated solution xr, the aggregation of

two players, with

xr = (1, 2, 2, 2, 1).

8

Suppose

x1 = (0, 1, 1, 1, 0), x2 = (1, 1, 1, 1, 1)

is a feasible aggregation of xr. By symmetry between players one and two, we also

have that the solution

x1 = (1, 1, 1, 1, 1), x2 = (0, 1, 1, 1, 0)

reduces to xr. One can think of xr as representing both of these symmetric solutions.

However, xr can represent more than just symmetric solutions. Observe

x1 = (0, 1, 1, 1, 1), x2 = (1, 1, 1, 1, 0),

also reduces to xr. While these solutions are not symmetries of the formulation

group, they do have identical objective values. Such solutions may lead to more

tree exploration in the branch-and-cut process. Symmetric aggregation allows us to

consider these solutions simultaneously, saving computation time.

2.2.1 Differences in Bidding from Identical Players

It may be common for many players to have the same feasible region, but bid in

different cost functions. In fact, it might be common to intentionally break problem

symmetry by adding a small, random amount to the cost function. In doing so, the

resulting MILP formulation has all of the negative aspects of a symmetric instance

but without the structure to allow for any of the benefits. We look to hedge

against this behaviour by generalizing the ideas of symmetry to allow us to deal

9

with almost identical players, whose swaps would result in schedules with almost

identical objective costs. To do this, we relax the requirement that symmetries have

to preserve objective values. Specifically, we look at permutations that are guaranteed

to maintain feasibility but not maintain optimality.

We let Aswap denote the group generated by all such permutations, i.e.,

Aswap
def
=
〈
πp,p′ | Ap = Ap′ , Gp = Gp′ , and Πp = Πp′

〉
.

Note that Aswap can also be thought of as the symmetry group of an MILP when

the cp functions are set to zero. Let A = {PA
1 , . . . , P

A
l } be the orbital partition of

players associated with the group Aswap with representative set RA. Since Aswap is a

relaxation of Gswap, we have that Gswap is a refinement of Aswap (and k ≥ l).

We construct a symmetric relaxation of (3.1) as follows. Let p be in PA
i . We let

cp be any cost function with the property that:

cp(xp, yp) ≤ min
∑
p′∈PA

i

cp′(xp′ , yp′) (2.3a)

s.t.
∑
p′∈PA

i

xp′ = xp (2.3b)

∑
p′∈PA

i

yp′ = yp (2.3c)

(xp′ , yp′) ∈ Πp′ ∀p′ ∈ PA
i . (2.3d)

Notice that the cp cost function is related to the entire partition PA
i , so if cp is

valid for player p, it is also valid for player p′ with p′ also in PA
i . With that in mind,

the symmetric relaxation of (3.1) can be formed by assigning all players in PA
i the

same cost function:

10

zrelaxation
def
= min

∑
{r∈RA}

∑
{p∈PA

i | r∈PA
i }

cr(xp, yp) (2.4a)

s.t.
∑
p∈P

Apxp +
∑
p∈P

Gpyp ≥ b (2.4b)

(xp, yp) ∈ Πp, p ∈ P (2.4c)

xp ≥ 0, integer (2.4d)

yp ≥ 0. (2.4e)

This relaxation was created specifically to give all players in partition PA
i the same

objective function, meaning that permutation amongst these players are symmetries

of the relaxed problem. As a result of Theorem 2.1, we have that

zrelaxation = min
∑
r∈RA

cr(x
r, yr) (2.5a)

s.t.
∑
r∈RA

Arxr +
∑
r∈RA

Gryr ≥ b (2.5b)

(xr, yr) ∈ |PA
p |Πr, r ∈ RA, with r ∈ PA

i (2.5c)

xr ≥ 0, integer ∀r ∈ RA (2.5d)

yr ≥ 0 ∀r ∈ RA. (2.5e)

The hope is that by aggregating variables, the problem (2.5) can be solved

significantly faster than the original model and that the lower bound, zrelaxation, will

be reasonably tight. Moreover, given an optimal solution (xr, yr)r to this relaxation,

upper bounds can be quickly obtained by solving the disaggregation problem for every

PA
i ∈ A with representative r:

11

zr(x
r, yr) = min

|PA
i |∑

p=1

cp(xp, yp) (2.6a)

∑
p∈PA

i

(xp, yp) = (xr, yr) (2.6b)

(xp, yp) ∈ Πp p ∈ PA
p (2.6c)

xp ≥ 0, integer , ∀p ∈ PA
p (2.6d)

yp ≥ 0 ∀p ∈ PA
p , (2.6e)

where the upper bound has objective value
∑

r∈RA zr(x
r, yr). Similarly, the (xp, yp)

values in the disaggregate give the solution.

Theorem 2.2. Let (xr, yr)r be the optimal solution to zrelaxation. We have that

zrelaxation ≤ zclearing ≤
∑

r∈RA zr(x
r, yr).

Proof. Proof: zrelaxation ≤ zclearing: This is clear when solving the disaggregated

model, (2.4), for zrelaxation, as the only difference between this and the original model

is that the cost function for (2.4) is not greater than the cost function for (3.1).

zclearing ≤
∑

r∈RA zr(x
r, yr): Each solution in zrelaxation is feasible for (3.1), thus the

true cost of each solution must be at least as large as zclearing. �

The quality of such bounds are directly related to the quality of cp as an under-

estimator of the true cost function.

Theorem 2.3. If cr(x
r, yr) = zr(x

r, yr) for all r ∈ RA, then we have that zrelaxation =

zclearing.

Proof. Proof: This is easy to see by observing that the above condition is equivalent

to stating that

zrelaxation =
∑
r∈RA

zr(x
r, yr).�

12

Theorem 2.4. If the feasible region to (2.6) is integer for all integer xr inputs for

all r ∈ RA, then there exists a piecewise linear function c s.t. zrelaxation = zclearing.

Proof. Proof: This can be seen by noting that if (2.6) is integer, then strong duality

must hold. Note that the terms (xr, yr) will appear only on the objective function to

the dual problem. As the cost of any dual feasible solution is linear in (xr, yr), taking

the maximum of the finitely-many dual vertices will result in a cost function that is

piecewise linear in (xr, yr).�

The integrality of (2.6) for every integer x may seem like an overly strong condition.

However, if the cp functions are linear, the integrality of (2.6) is a consequence of

MIDP. The trick is in ensuring that nonlinear cost functions are modeled as tightly

as possible.

Note that the proof of Theorem 2.4 gives a recipe for a Benders-type approach to

improve the gap between zrelaxation and zclearing. If the difference between the relaxed

cost cr(x
r, yr) is significantly less than the actual cost zr(xr, yr) then one can use the

formulation (2.6) to generate cuts that improves the relaxed cost function.

2.3 The Unit Commitment Problem

The UC problem is the problem of minimizing the production cost of a set of

power generators such that demand can be satisfied. The transmission network

is represented by a flow network where each node has its individual demand over

time and each edge has a given capacity. Generators are located at various nodes

throughout the network. Transmission obeys alternating current (AC) power flow,

which introduces a set of highly nonlinear constraints that represent how physics

governs power flows through a network. These constraints, however, make real-world

UC problems computationally intractable. As a result, linear approximations are

typically used in practice. In the context of market clearing models, the transmission

13

network is represented by the set of equations (3.1b) while Πg represents the feasible

production schedules of generator g. The region Πg is known as the generator

polytope, something that has been well studied in the UC literature. Common

constraints in Πg include minimum up- and down-times, minimum and maximum

power outputs, and ramping constraints. There are three different costs for operating

a generator. The first is based on production, which is typically modeled as an

increasing piecewise linear cost, the second is a fixed-running cost for commitment

(no load cost), and the third represents the cost of starting a generator. Startup cost

is usually a non-decreasing function of the generator off-time. A key point is that,

for these generators, formulations of Πg that have the MIDP property are known,

Knueven et al. (2018b). Some generators have additional physical constraints such

as a maximum daily production limit or a maximum number of startups in one day.

These additional constraints may break the MIDP structure of the generator polytope,

but fortunately, they are not commonly seen in practice. This can be easily dealt with

by not aggregating generators with these additional constraints.

2.3.1 Symmetries in Unit Commitment

While it is possible for some symmetry to exist in the transmission network, the

predominant source of symmetry in unit commitment comes from having identical

generators. Specifically, generators that have identical:

• Production Costs

• Startup Costs

• Minimum Up and Down Times

• Ramping Rates

• Minimum and Maximum Power Output

• Impact on the Transmission Network.

14

Such generators do exist in practice as identical generators tend to be co-located and

owned/operated by the same entity.

2.3.2 Almost Symmetries in Unit Commitment

Using orbits allows us to aggregate variables to reduce the size of the optimization

model. However, there are strict requirement for two generators sharing the same

orbit. Consider two generators with the same physical constraints, but have costs

that are slightly different. We approach this by creating a symmetric relaxation of

the UC model. Now, we partition the generators into A = {PA
1 , . . . , P

A
k }, where

two generators g and g′ are in a set PA
j if and only if they have identical:

• Minimum Up and Down Times

• Ramping Rates

• Minimum and Maximum Power Output

• Impact on the Transmission Network.

The quality of our relaxed model is directly related to how we construct the

c function for each set of nearly identical generators. Theorem 2.4 indicates that

we can find the most accurate c by projecting the disaggregation problem onto the

set of aggregated variables and aggregate cost function. However, this approach is

computationally intractable. A more practical approach is to find a simple under-

approximation and seek to iteratively improve it.

The simplest way of creating a symmetric relaxation is that for every almost-

identical generator and for every type of cost, assign it the smallest value of each of

the generators in the partition. We refer to this as the naive cost reduction. We note

that the cost function associated with the naive cost approach is convex piecewise

linear.

A natural approach would be to start with the naive cost model and then use

cut generation to iteratively improve the approximation. Benders’ decomposition

15

could be used to improve the quality of c through the generation of optimality

cuts. However, using callbacks turns off advanced features in commercial solvers.

Preliminary computational experiments demonstrated the impact of losing these

advanced features outweighed the benefit of exploiting symmetry. Instead, we

considered how to quickly and easily produce high quality cuts. In the data that

we considered, we saw difference in all three different types of costs. We propose the

following set of strategies to generating high quality c functions.

Ignore small differences: Many times the differences in no load costs and

production costs are trivial with respect to the size of the model. Approximately

half of all difference in no-load costs amongst nearly identical generators are less than

$50 per time period. Similarly, nearly half of the difference in production costs are

less then a $5 per hour. On the scale of the UC solutions, these do not matter in the

objective and adding additional constraints to represent these costs only slows down

the model with no benefit.

Break Partitions with Large Costs: Similarly, there are sets of generators that

have significant differences in costs. This is especially true when considering startup

costs. Rather than attempt to incorporate these difference in the c function, we

simply break the partition and treat them as separate units. This does not end

up hurting computationally, as this usually happens when a specific generator is

extremely expensive and will easily be determined to be off in either pre-processing

or in the linear relaxation. This can happen when a generator owner intends to

perform maintenance on the generator unless the owner can profit considerably.

Piecewise Linear Cost Constraints: For generators whose price differences are not

negligible, but also not extreme, we add piecewise linear cost constraints for both the

non-negligible production and no load constraints. This is done by simply ordering

the costs from smallest to lowest and assuming that the lowest cost is always chosen.

For example, given three generators with no load costs of $100, $150, and $200, we

assume that if one generator is on, then the no load cost is $100, if two generators

are on then the no load cost is $250, and if all three are on then the no load cost is

16

$450. This can be enforced by a simple piecewise linear cost function. Production

costs are handled in a similar way.

2.4 Computational Results

To explore the impact of symmetries and almost symmetries in unit commitment

problems, we examined eleven real-world instances seen by MISO in operation. Nine

of these instances occurred during the 2014 polar vortex. These specific instances were

chosen because they were examples of the most notoriously difficult problems seen by

MISO in the past decade. Interestingly, using advanced UC formulations (Knueven

et al., 2020) has greatly improved our ability to solve some of these problems.

However, a subset are still very difficult. The remaining two instances were randomly

chosen from the set of typical days. These instances were chosen and pre-screened by

MISO.

While many parameters of the UC model such as cost and demand change from

day to day, generator data, such as symmetry, tends to be relatively consistent across

days. Table 2.1 gives the description of the symmetry information for a representative

instance. The composition of pure orbits may vary slightly in different instances

depending on the prices bid into the market, but the almost data is consistent

among instances (though some generators do not always participate in the day ahead

market). Unsurprisingly, most of the generator orbits are small, consisting of just

pairs of identical generators, though there are some larger orbits. Relaxing from

pure orbits to almost orbits does add a significant amount of symmetry, there are

41 pure orbits representing 119 generators while the 86 almost orbits represent 229

generators. Using cost cutoffs to break up almost orbits does not significantly change

the amount symmetry found in the problem. While the concept of symmetry in UC

has been studied before (Ostrowski et al., 2015; Lima and Novais, 2016; Knueven et al.,

2018b; Bendotti et al., 2020), it has always been in the context of a copper-plated

system, that is, a UC model without transmission constraints. It is interesting that

17

Table 2.1: Number of orbits by orbit size in a problem from our test suite.

Model / Orbit Size 2 3 4 5 6 7 8
Exact symmetry 22 12 3 1 0 2 1

Almost symmetry 59 11 11 0 2 2 1
Almost symmetry w/ cost cutoff 54 11 8 1 1 2 1

18

so much symmetry exists in real-world instances even after transmission constraints

are included.

We emphasize that the difference between pure symmetries and almost symmetries

are due only to the bidding behavior of generator owners. Pure symmetry can easily

be broken by making small changes to any of the costs.

2.4.1 Experimental Setup

Testing of the above additions to the UC model were performed on several real world

instances of the UC problem provided by MISO. We compare various models to the

standard UC “Tight” formulation from Knueven et al. (2020). They are described as

follows:

• Base (BA): The standard formulation used in practice, no consideration of

symmetry except for Gurobi’s internal methods.

• Pure Symmetry (PS): Aggregates generators that are identical.

• Naive Almost Symmetry(NAS): Aggregates generators that are identical after

ignoring all costs.

• Cost Cutoff (CC): Aggregates generators are identical after ignoring small

differences in costs.

• Tightened Cost Cutoff (TCC): Symmetry preserving constraints are added to

CC to improve the relaxation.

We note that models BA and PS will always return the same solution value

by (Knueven et al., 2018b) and construction (we do not aggregate units whose

formulation is not known to have the MIDP). The solving of NAS will always return

the weakest lower bound, followed by CC, then by TCC. Even though the formulation

for BA does not consider symmetries, we note that these symmetries are still exploited

in the solver, as Gurobi can mitigate symmetries in branching . However, there is

19

no such method to exploit almost symmetries. If generator owners chose to add

random, small, perturbations to the prices of identical generators, neither Gurobi’s

native methods nor the PS method would be able to identify and exploit this almost

symmetry, leading to a potential explosion in computational times for these methods.

When solving NAS, CC, and TCC, a standard model with some modifications was

used to produce a disaggregated solution of the almost symmetric model. The time

needed to disaggregate the solution was trivial and is not reported. For each instance

several models were created and run 10 times with different seed values. These models

all contained full transmission security constraints, and were solved using the larger

of a 0.25% or $12,000 gap using Gurobi 8.1.1 with a time limit of 12,000 seconds.

Computations were done on a Linux server hosted by MISO with 32GB of RAM and

a 12-core Intel processor running at 2.5GHz.

Table 2.2 shows the average over ten random seeds of time required to solve the

UC instances using each of the methods The results show exploiting symmetries

can have a positive impact on overall solution times, but that a naive aggregation

may not always produce the best results. Using pure symmetries does help in the

hardest instances, but does not always offer improvements. This makes sense when

considering what makes UC instances difficult. In any instance, the on/off status

for most generators will be clear from the linear relaxation. Cheap generators will

always be on, expensive generators will always be off. The computational difficulty

comes from choosing which of the (near-)marginal generators, those with fractional

on/off variables, are on at what times. If the set of marginal generators contains

a nontrivial orbit, then choosing which of the marginal generators are on can be

difficult. For example, suppose you knew that two out of a set of three generators

should be on. Choosing any pair of those generators to be on would result in an

equivalent solution, and thus be harder to prune from the search. The success in PS

occurs in the difficult problems, specifically Instance 8, where this happens. The set

of marginal units contains a nontrivial orbit, and the PS method is able to efficiently

reduce the search over that orbit. We would expect no impact, like Instance 1 for

20

Table 2.2: Times to solve UC for each method measured in seconds

Instance BA PS NAS CC TCC
1 123 121 115 113 132
2 280 294 285 292 307
3 182 397 147 156 346
4 1,200 1,249 1,222 1,202 1,150
5 3,650 3,100 2,651 2,798 3,324
6 831 823 704 735 824
7 820 762 939 787 878
8 3,139 1,428 3,305 1,275 1,345
9 1,414 1,393 1,431 1,345 1,042
10 164 166 124 150 168
11 125 131 121 119 140

Total 11,927 9,864 10,105 8,972 9,656

21

example, where the set of marginal generators does not include a nontrivial orbit.

Interestingly, however, the naive aggregation (NAS) under performs the PS method.

This seems counter intuitive as it is more likely that the set of marginal generators

consists of almost-identical generators. We think there are two explanations for this

behavior. First, that more generators are marginal in the NAS method. By reducing

the costs of some expensive generators, some generators that were clearly off now

become marginal. So, while the set of marginal generators do contain groups of

almost-identical units, the benefit of exploiting that structure does not outweigh the

cost of increasing the set. Secondly, recall that the integrality gap was the maximum

of 0.25% and $12,000. For all but two instances, the relative gap of 0.25% was the

binding gap. Reducing the cost of a subset of generators can noticeably decrease both

the lower bound and the optimal objective value. In practice, this lowers the absolute

optimality gap needed, increasing solution times.

Both CC and TCC are meant to avoid both of the drawbacks of NAS at the

expense of a more conservative aggregation procedure. By performing CC, we limit

the changes in costs for each generator, avoiding the issues of adding to the set of

marginal units as well as limiting the change in bounds. Despite this limit, CC may

still be too much of a relaxation, so TCC is developed by adding additional constraints

that are meant to increase the quality of the relaxation (increase dual bounds) while

preserving the symmetry. Despite the fact that these constraints are sparse and that

there are not too many of them, adding them does impact the solution time over CC.

We must note that while CC tends to solve the fastest overall, there is no guarantee

that the solution obtained after disaggregation is within the specified tolerance gap.

Table 2.3 show how often the symmetric relaxations provide a provably near-optimal

solution. In this table, we compute the optimality gap to be the difference between

the disaggregated solution’s true cost and the lower bound provided by the symmetric

relaxation. As expected, increasing the quality of the relaxation increased the quality

of the solution (and it’s bound).

22

Table 2.3: Successful gaps out of ten random seeds

Instance NCA CC TCC
1 100% 100% 100%
2 0% 0% 90%
3 100% 100% 100%
4 100% 100% 90%
5 50% 30% 70%
6 70% 70% 20%
7 0% 80% 100%
8 0% 20% 50%
9 0% 100% 100%
10 0% 100% 100%
11 100% 100% 100%

Average 47.3% 74.5% 83.6%

23

Ensemble of Models

Recent advances in integer programming have made most UC instances reasonably

easy. In the instances considered in this work, five of the eleven instances are

easily solved within five minutes. Our experience in work with real data is that

improvements in modeling and algorithms is not likely to produce any meaningful

impact on most daily instances. The concern for ISOs is not about reducing the

computational time needed for these easy instances, but in minimizing the impact of

the hard instances. We classify four of the instances studied, Instance 4, 5, 8, and

9, as hard, as they take on average 20 minutes or longer to solve. The TCC model

has the best average solution times in three of these four instances compared to BA

and PS. A closer look at Instance 5, the only hard instance TCC does not win at,

reveals that the average computational times for both BA and TCC are driven by

anomalous behavior, one seed in TCC taking approximately 7,500 seconds and one

seed in BA taking over 9,000 seconds. It is not entirely clear why this particular

instance has such extreme behavior. If we were to consider it chance that BA and

TCC experienced this anomalous result and PS did not, then by ignoring those two

runs would pull down the average of the TCC instances to 2,864 seconds and the BA

instances to 3,031 seconds, both faster than PS, with TCC being the fastest.

Given that BA will do well on most instances, it makes sense to consider alternative

approaches as backups to BA, to be run in parallel and there to offer a solution when

BA experiences hard instances. Running different algorithms concurrently not only

has the benefit of improving solution times, but can also be used to improve the

bounds. Even if a particular method fails to solve an instance in a given amount of

time, it might have found a better solution or improved the lower bounds more so

than the winning algorithm. In Table 2.4 we show the potential impact of running

BA and TCC concurrently both in terms of improved speedup but also in terms of

improved solutions. For a fair comparison, we compare this to running two seeds

of BA concurrently. For these results, we let both seeds run to completion if their

24

Table 2.4: Impact of concurrently running BA and TCC versus 2 BA instances

Time Improvement (s) Cost Improvement ($)
Instance 2BA BA + TCC 2BA BA + TCC

1 3.33 0.14 611.43 613.27
2 5.75 0.70 79.80 718.92
3 5.71 0.00 0.00 1,872.48
4 44.14 104.74 121.98 1,716.48
5 757.06 886.35 273.70 1,084.04
6 18.62 27.95 68.02 0.00
7 39.91 20.46 352.20 787.39
8 67.19 1,793.64 149.80 351.33
9 380.39 453.01 263.67 1,020.55
10 5.02 2.74 253.66 31.27
11 2.02 0.00 0.00 0.00

Total 1,329.13 3,289.73 2,174.26 8,195.74

25

completion time is under 20 minutes. After 20 minutes has passed, we halt both seeds

as soon as one solves to optimality.

As the table indicates, running TCC concurrently with BA can offer significant

protection in solving hard instances. Most notably, instance eight is solved 30 minutes

faster on average. As expected, there is little to no improvement in solution times for

the easy problems. However, concurrently solving can significantly impact the overall

solution quality of even the easy instances. For example, while no seed from Instance 3

is solved faster using TCC, all seeds for this instance are solved within 20 minutes, and

solving concurrently leads to an average cost improvement of approximately $1,700.

While both cost and time savings are seen when solving two BA seeds concurrently,

the extent of the savings does not compare to BA with TCC.

2.5 Discussion and Conclusions

Standard UC models, combined with modern MILP solvers are very good at solving

most day ahead problems. However, there are always some days where these models

take much longer than normal to solve. Our results indicates that one explanation for

why some instances take much longer to solve than other lies with the composition of

identical and nearly identical generators. Deciding which of a set of identical or nearly

identical generators is on is difficult without symmetry-exploiting techniques. This

inspires this use of symmetry/almost-symmetry exploiting models that, when used

concurrently with standard models, are able to provide a backup to standard models,

providing solutions when standard models run the risk of timing out. At the same

time, this also exposes a potential flaw in the current day ahead market. By bidding

with the specific intent to break symmetry, generator owners could potentially create

situations where the day ahead model is not solvable in the allowed window. This

would lead to using higher cost schedules, possibly allowing the generator owners to

achieve higher profits.

26

We believe that the importance of these symmetry-exploiting methods will grow

as the scale of day ahead UC models increase. Moving to longer time horizons (ex.

48 hours) and/or shorter time intervals (ex. 15 minutes) will stress standard models.

At the same time, the symmetry-exploiting methods can continue to be improved as

more instances will help us learn the tradeoff between tighter models and improved

computational time.

27

Chapter 3

Pumped Storage Hydropower in

Unit Commitment

3.1 Introduction

Pumped-storage hydropower (PSH) is a type of hydroelectric energy storage. These

systems consist of two water reservoirs at different elevations to generate power

(discharge) as water moves from the upper reservoir to the lower through a turbine;

they draw power as water is pumped (charge) back to the upper reservoir. PSH

systems can be classified as open loop, where a reservoir is connected to a natural

body of water, or closed loop, where the reservoirs are isolated from outside sources

of water. PSH units currently account for 95% of large-scale energy storage in the

United States U.S. Department of Energy (2021).

Incorporating PSH constraints in the UC model is not a new idea. Many

models have looked to incorporate PSH units as reserve for other renewable energy

sources Bruninx et al. (2016); Brown et al. (2008); Jiang et al. (2012). Most of these

models provide similar constraints to capture the charge/discharge behavior of PSH

units; tracking the amount of energy stored in the reservoir and the operating states

of the turbines and pumps Borghetti et al. (2008); Bruninx et al. (2016); Brown et al.

28

(2008); Jiang et al. (2012); Van den Bergh et al. (2014). Though some models do not

prevent the system from charging and discharging simultaneously Brown et al. (2008);

Van den Bergh et al. (2014), most include constraints to prevent this from occurring.

While PSH formulations exist, they may not be used in practice. MISO, for instance,

does not currently include advanced PSH models. Instead, they attempt to treat

PSH generation as conventional generators. Doing so has the benefit of being easier

to implement and makes the resulting MILP formulation easier to solve. However,

treating PSH as conventional generation might lead to schedules that are not actually

feasible and could lead to inefficient production schedules. Improvements in solving

the current UC models, as cited in chapter 1, allows ISO’s to investigate the impact

of incorporating more detail in the models.

In this work, we show that more advanced PSH models do not significantly impact

the time to solution on large-scale instances like those solved at MISO. However, one

difficulty with the improved modeling is related to end of time horizon affects. UC

instances are solved over a 36-hour time horizon. If optimized myopically, solutions

would exhaust the stored energy in PSH units, leading to more expensive future days.

We investigate how to use forecasted data to deal with these end of time horizon

effects.

The remainder of the chapter is organized as follows. In Section 3.2 we introduce

the PSH constraints added to MISO’s unit commitment model. Section 4.3 introduces

a variety of strategies to deal with the end of time horizon affects. Finally we discuss

the implications of our findings in Section 4.4.

3.2 PSH Model In Unit Commitment

The prototypical unit commitment formulation is given as

29

zUC = min
∑
g∈G

cg(ug, pg) (3.1a)

s.t.
∑
g∈P

Ag(ug, pg) = D (3.1b)

(ug, pg) ∈ Πg, g ∈ G (3.1c)

ug ≥ 0, integer ∀g ∈ G (3.1d)

pg ≥ 0, ∀g ∈ G, (3.1e)

where the cost of production, c(∗), over a collection of generators, G, is minimized

in such a way that demand is met and each generator’s production schedule, (ug, pg),

is feasible. In this formulation, Πg denotes the feasible region for each generator g,

while (ug, pg) denotes its production (both the discrete and continuous parts). While

G typically contains a variety of different types of generators, this paper focuses

specifically on how to model PSH units.

Current practice: Modeling PSH via maximum daily energy constraints

Current MISO formulations decouple the charging and discharging decisions of

PSH units. In doing so, the discharging (production) can be treated as a generic

thermal generator. Charging decisions are treated as virtual bids. While fitting into

the existing UC framework, decoupling the charging and discharging decisions may

lead to infeasible schedules, as there is no way to ensure that the storage levels remain

feasible (as there are typically minimum and maximum water levels that need to be

maintained). As a proxy for maintaining the minimum water levels, daily energy

constraints are included in the generator model that are designed to limit the total

energy produced in a day. They have the form

∑
t∈T

pg,t ≤Max Daily,

when g is a PSH unit. Note that these constraints are placed on each PSH unit.

30

Most generators associated with thermal units have large ramping capabilities,

enough so that ramping constraints typically found in generator formulations become

redundant. Technically, this occurs when the ramping capability exceed the difference

between the maximum and minimum production levels. The formulations of generic

generators without ramping constraints are perfect formulations. However, adding

constraints of the form (3.2) breaks the perfect formulation, weakening the quality of

the formulation.

Proposed Method: Modeling via State of Charge

We propose to replace the current formulation with a typical state of charge

formulation that couples the charging and discharging decisions by explicitly modeling

the state of charge at every time interval. This formulation for a given pump is:

sg,t+1 = sg,t + qing,t
√
εg −

qoutg,t√
εg
, (∀t, ∀g ∈ G) (3.2a)

sg,1 = Sinitg , (∀g ∈ G) (3.2b)

Sg ≤ sg,t ≤ Sg, (∀t,∀g ∈ G) (3.2c)

0 ≤ qing,t ≤ P
in

g zg,t, (∀t, ∀g ∈ G) (3.2d)

0 ≤ qoutg,t ≤ P
out

g ug,t, (∀t, ∀g ∈ G) (3.2e)

ug,t ≤ (1− zg,t), (∀t, ∀g ∈ G) (3.2f)

ug,t, zg,t ∈ {0, 1}, (∀t,∀g ∈ G) (3.2g)

Here t is over the number of time periods considered, and G is the set of PSH

units. The variable sg,t tracks the state of charge of the reservoir that unit g sits on

with εg as the round-trip efficiency of the unit. qing,t is the amount unit g is charging at

a given time period, and zg,t indicates whether the unit is pumping at time t. Finally,

ug,t indicates whether unit g is producing at time t, and qoutg,t is the amount of power

g produces.

31

Similar to the maximum daily model, the state of charge constraints make the

models more difficult, a perfect formulation is likely too large to be computationally

tractable.

Exploiting Symmetry in PSH Models

Constraints in (3.2) assume that each generator is associated with its own

reservoir. It is common that one reservoir will have multiple pumps and generators

associated with it. In this case, the state-of-charge constraints are a function of the

aggregate generation/pump. Let R denote the set of reservoirs in the model and

Gr denote the set of PSH units associated with reservoir r ∈ R. We can model the

aggregate of the PSH units as

sr,t+1 = sr,t +
√
εg
∑
g∈Gr

qing,t −
1
√
εg

∑
g∈Gr

qoutg,t , (∀t,∀r ∈ R) (3.3a)

sr,1 = Sinitr , (∀r ∈ R) (3.3b)

Sr ≤ sr,t ≤ Sr, (∀t, ∀r ∈ R) (3.3c)

0 ≤ qing,t ≤ P
in

g zg,t, (∀t,∀r ∈ R, ∀g ∈ Gr) (3.3d)

0 ≤ qoutg,t ≤ P
out

g ug,t, (∀t,∀r ∈ R, ∀g ∈ Gr) (3.3e)

ug,t ≤ (1− zg,t), (∀t,∀r ∈ R, ∀g ∈ Gr) (3.3f)

ug,t, zg,t ∈ {0, 1}, (∀t, ∀r ∈ R, ∀g ∈ Gr) (3.3g)

The advantage of this formulation is that we can use the potential symmetry in

the model to aggregate decision variables. Knueven et. al. Knueven et al. (2018b)

shows that variables associated with identical generators can be aggregated if they

admit a perfect formulation. This is the case in formulation (3.3), as long as each

PSH unit in Gr has similar charging/discharging capacities and efficiencies. As such,

the entire collection PSH units can be modeled as

32

sr,t+1 = sr,t + qinr,t
√
εr −

qoutr,t√
εr
, (∀t,∀r ∈ R) (3.4a)

sr,1 = Sinitr , (∀r ∈ R) (3.4b)

Sr ≤ sr,t ≤ Sr, (∀t,∀r ∈ R) (3.4c)

0 ≤ qinr,t ≤ P
in

r zr,t, (∀t,∀r ∈ R) (3.4d)

0 ≤ qoutr,t ≤ P
out

r ur,t, (∀t,∀r ∈ R) (3.4e)

ur,t ≤ (|Gr| − zr,t), (∀t, ∀r ∈ R) (3.4f)

0 ≤ ur,t ≤ |Gr|, (∀t, ∀r ∈ R) (3.4g)

0 ≤ zr,t ≤ |Gr|, (∀t,∀r ∈ R) (3.4h)

Note that in this model only one integer variable is needed per time period to reflect

the charge/discharge status of the entire collection of identical PSH units associated

with the same reservoir.

Challenges with State-of-Charge Model

End-of-time-period affects can greatly impact the quality of solution produces by

a UC model. MISO typically solves 36-hour UC instances, even though they intend

to use only the first 24 hours. The additional 12 hours are included in the model

to ensure that decisions aren’t made too myopically; that the impact of tomorrow’s

schedule on future costs is considered in the decision making. Unfortunately, because

PSH units are limited by their charging behaviour, decisions made tomorrow can have

a significant impact on power production several days in the future. To account for

this, we need to account for the state of charge at the end of the planning horizon

in the model. We have three proposed strategies for dealing with this end-of-time-

horizon affect.

Base: The first method is straight forward; the PSH constraints are added with

no day to day expectations on the state of charge of the reservoirs. That is, we

only provide the initial state on the first day and the required state on the final day.

33

Each intermediate day only has the requirement that its initial state of charge is the

final charge of the previous day. The advantage of this model is that no additional

information is needed.

Naive: The next method is a naive approach. Here we begin with a full week

model that is relaxed and solved. This model allows us to calculate an estimate of

the state of charge for the end of a day-ahead model using knowledge of the full week.

The state of charge at hour 24 is then fixed in the day-ahead model which is solved,

and the state of charge values at the end of the day are stored. A 6-day model is then

constructed from the following day to the end of the week with the stored state of

charge values used as the initial charges. This transition to a 6-day model as opposed

to another 7-day model is due to restrictions in our access to MISO’s data. The 6-day

model is solved and the state of charge at hour 24 in the corresponding day-ahead

model is fixed. This process continues through the week. In short, the multi-day

model is used to determine a fixed state of charge for PSH p at time 24, SOCp,fixed,

and the following constraint is added to the day-ahead model:

socp,24 = SOCp,fixed.

Dual Pricing: The final method also relies on multi-day models, but with a soft

constraint for the state of charge at time period 24. We still compute SOCp,fixed as

in the naive method, but we also attempt to price deviations from the fixed amount.

In the linear relaxation to the multi-day model, we compute the dual price associated

with the state of charge constraint on the PSH unit p. Denote this price as πp. We

then add the following constraint to the day-ahead model:

t1 − t2 = SOCp,fixed − socp,24

t1, t2 ≥ 0

34

where t1 and t2 are new variables each with a cost of πp in the objective function.

These variables effectively penalize any deviation from the state of charge calculated

by the linear relaxation but still permit it.

3.3 Computational Results

Our goal with this work is to see if there is any cost or profit benefits to more

explicitly representing PSH units in MISO’s UC model. To that end, we incorporate

PSH constraints into the existing model, and look at different ways of giving the

day-ahead model expected end of day charge values for the reservoirs. We need to

make these comparisons across a week since the reservoirs in our models are expected

to be full at the beginning of a week.

The following figures shows the price and charge schedules for a PSH unit in a

typical summer week, Figure 3.1. Notice that every day the unit is able to fully cycle,

discharging during the expensive peak times and fully charging at night when the

price of electricity is cheap. In these weeks, the value of future information is not

important for determining the optimal state of charge, so any of the three methods

should return similar, if not identical results.

This “full-cycle” behavior is not always seen, however. Some times, pumps

undergoing maintenance may not allow for the PSH unit to fully charge every night.

In other instances, extreme weather events may break the cyclical pattern. Figure 3.2

gives the prices at a given node experienced during a polar vortex. In this case, using

predictions of future behavior can have a significant impact on how we manage the

PSH units.

3.3.1 Experimental Setup

For each of our state of charge methods, first a linear relaxation of a multi-day model

is solved to compute SOCp,fixed and the dual price πp. Then the model for the day

35

Figure 3.1: The week-long charging schedule for a PHS unit in week 1

Figure 3.2: The week-long charging schedule for a PHS unit in week 2

36

under consideration is built and solved employing SOCp,fixed and/or πp depending on

the method used. The solution to this day-ahead model is used to calculate the 24

hour costs for the day and the profit on the PSH units as well as the initial state of

charge for the following day.

For testing, each day-ahead model contained full transmission security constraints,

and were solved using the larger of a 0.25% or $12,000 gap using Gurobi 8.1.1 with

a time limit of 12,000 seconds. Computations were done on a Linux server hosted by

MISO with 32GB of ram and 12-core Intel processor running at 2.5GHz. The multi-

day models were run on the same system with the same relevant parameters. These

multi-day models were built by combining data from several consecutive 36-hour

instances. In each of these 36-hour daily instances, the last 12 hours were dropped

and the days concatenated. We omitted the virtual bids and demand responses and

limited the number of transmission constraints in our multi-day models; otherwise

the corresponding linear program would be too large to store in memory/solve.

To test the effectiveness of our different methods, we looked at two weeks seen by

MISO in operation. These weeks were chosen to represent normal operation (week

1) and extreme conditions (week 2). Each week was iterated through as described

above, and each method was used in turn. The 24 hour costs and the PSH profits

were collected for each day and method. Since our time frame was a week, we were

most interested in the total costs and profits for the week as a whole.

The multi-day models described above are built using data from the day-ahead

models. However, if building such models in real time, this fidelity of data would not

be available. For a power system, the expected demands for a day become less certain

the further in the future considered. To account for this, we looked at varying the

demands for each day after the first. In operation, MISO has seen the demands vary

up to 10% a week out. So, when building a multi-day model, the demands after the

first day are allowed to drift up to 2% more each consecutive day. These drifts are

randomly generated from a uniform distribution, and 10 such demand scenarios were

created. These 10 models were solved and the dual prices and state of charge values

37

at hour 24 were averaged to be used in the corresponding day-ahead model. After

these values were computed, the procedure continued as before.

3.3.2 Results

To show that the PSH constraints don’t greatly increase the difficulty of the model, the

computational performance of the original day-ahead models were compared against

those with the new constraints. The original day-ahead model was built and run for

each day in our test set 10 times with different seeds, and the times were averaged.

The same was done for the PSH models with random initial and final state of charge

values. Table 3.1 shows these averaged times. Though there are some days where

the average performance is poorer, most days have similar run times. The poor

performance is likely a result of the randomness introduced in setting initial and final

state of charge values for the PSH units. It’s possible that these values could increase

of the difficulty of satisfying the demand for the day.

Table 3.2 compares the grid costs and PSH profits for the different methods with

known demands; the percent change from the base method to the naive method and

the base method to the dual method are reported. The percent difference is used

due restrictions on what data can be disseminated which includes actual costs and

profits. In week 1, which is normal operation, no method significantly outperforms

the others in either measure. This is expected given Figure 3.1 which shows the

reservoir depleting over the day and filling overnight. Knowledge of future days is

not necessary. In week 2, this knowledge shows some utility. Again, the objective

is not significantly improved, but the profits for the PSH operators benefits greatly.

Both methods that rely on this future information provide substantial improvement

here. This makes sense given the prices seen in figure 3.2. There is no longer a simple

daily, cyclical structure. Instead, the prices are low early in the week discouraging

discharge, but higher later which discourages charging. Knowledge of future days can

then be used to better balance this behavior.

38

Table 3.1: Average times to solve the test weeks

Week 1 Week 2
Original Time PSH Time Original Time PSH Time

117.18 116.79 607.55 681.82
123.46 125.25 315.91 506.9
122.37 223.79 217.18 247.58
155.42 167.3 182.34 181.84
155.11 226.72 177.96 176.05
153.81 299.04 175.14 164.93
146.98 151.75 196.8 197.01

39

In table 3.3, the grid costs and PSH profits are compared for the different methods

where the demands are stochastic. Again, the percent change from the base method

to the naive method and the base method to the dual method are presented. The

performance for each method is very comparable to the models where the demands

are known. In week 1, the methods behave similarly with little difference in system

costs and operator profits. Week 2 sees significant benefit, particularly in profits, to

using forward knowledge to set an expected final state of charge for each day. This

is what would be expected based on the models with demand knowledge, reinforcing

the validity of the stochastic models.

To better measure the accuracy of the stochastic models, table 3.4 compares the

performance of each method to those from the model with known demands. The table

shows that the stochastic model provides values that are very close to the model using

known demands with costs and profits differing by less than 1%. This suggests that

the stochastic model can be used to effectively plan the final state of charge for each

day-ahead model.

3.4 Discussion and Conclusions

We have seen in this work that incorporating more realistic constraints for PSH

units into the day-ahead model does not severely impact the computational difficulty

of these problems. Indeed, though some days appeared to solve slower with the

constraints, the performance was generally comparable. One main reason for this

discrepancy is the randomness of the initial and final state of charge values used in

testing. Future studies can be done with more realistic charge values in this timing

test. Beyond computational performance, even the objective values with the added

constraints do not change drastically from the original approach. All this suggests

that incorporating these constraints could provide a more realistic representation of

power generation on a grid without serious effect on the computational performance

and solution quality.

40

Table 3.2: Comparison of the PSH methods using known demands

Naive Dual

Week 1
−0.044% −0.041% Grid Costs

0.58% 1.09% PSH Profits

Week 2
−0.25% −0.28% Grid Costs
812% 867% PSH Profits

Table 3.3: Comparison of the PSH methods using stochastic demands

Naive Dual

Week 1
−0.085% −0.0096% Grid Costs

1.31% 0.51% PSH Profits

Week 2
−0.26% −0.28% Grid Costs
824% 874% PSH Profits

Table 3.4: Comparison of the PSH methods between stochastic and known demands

Base Naive Dual

Week 1
0.0% −0.042% 0.031% Grid Costs

0.00046% 0.72% −0.57% PSH Profits

Week 2
0.0% −0.0064% 0.00031% Grid Costs
−0.35% 0.94% 0.40% PSH Profits

41

With the PSH constraints added to the day-ahead model, the initial and final state

of charge values on the reservoirs need to be set for the day. As specified by MISO,

the reservoirs on their part of the electric grid need to be full at the beginning of

the week. This provides an initial and final charge for a week which leads to several

approaches for setting these values each day. These are our base, naive, and dual

methods. This work has shown that utilizing future knowledge, such as in the naive

and dual methods, is beneficial in improving the profits of PSH owners and even on

the total costs of the grid though this impact is fairly minimal. This can even be seen

when the demands are stochastic which better models the uncertainty of expected

loads several days in the future. When looking at comparing these methods using

future data, the dual method outperforms the naive method though not as extremely

as both over the base method. So, using a multi-day model to set the final state of

charge for a day is beneficial to solving the day-ahead problem.

This work suggests that incorporating more accurate PSH constraints does not

significantly effect computational difficulty of the day-ahead problem and can be used

to improve overall system costs while improving operator profits. In models provided

by MISO, there are only three such units. So, we could expect this to be of even

greater benefit for ISOs with many PSH units in the parts of the grid they manage.

Additionally, more accurate modeling could benefit work looking at using PSH units

to back up renewable power sources.

42

Chapter 4

Impact of Planning Horizon

Length in Unit Commitment

4.1 Introduction

Given the improvements in solving the MILP formulation of the UC problem

presented in chapter 1, a natural extension is to look at the effect of using longer time

horizons. The current day-ahead UC problem looks at 36 hours when planning. This

horizon was a compromise between solving in a reasonable time frame and considering

the effects of expected demands in finding a suitable schedule. Longer time horizons

should improve this further by considering the impact of different generators being

scheduled several days out. This is of particular utility for generators with long up-

times. In normal operation, if a generator has an up-time greater than 36 hours and

is scheduled on a given day, it may be forced to stay on through the next day. With a

longer time horizon, a better schedule may be found that waits to use the generator

until a more opportune time. Of course, there is a trade-off between longer time

horizons and solution times. Increasing the length of time considered for a solution

will increase the number of variables that need to be solved. Given that many of the

43

variables are integer, the branch and bound process will be slowed. However, some

of this may be mitigated by relaxing integrality on later time periods.

The remainder of this chapter is organized as follows. In Section 4.2 we discuss

the experiments for testing extended horizons. Section 4.3 reports the main numerical

results of the paper. Finally we discuss the implications of our findings in Section 4.4.

4.2 Experimental Setup

Our goal in this work was to see if there are any cost benefits to extending the

optimization horizon of the UC problem. This must be balanced against the time

required to solve these bigger problems. To that end, we looked at three different

horizon lengths and compared their objective values and solution times against those

of the original UC formulation. The horizons chosen were 48 hours, 60 hours, and 72

hours. We also considered the effect of relaxing integer variables at the end of the

horizon. We looking at relaxing the last 12 hours, the last 24, and everything after

hour 36.

These extended horizon models were built by combining data from several

consecutive 36-hour instances. In each of these 36-hour daily instances, the last

12 hours were dropped and the days concatenated. We omitted the virtual bids and

demand responses and limited the number of transmission constraints in these models

past hour 36. This was necessary to ensure the corresponding linear program would

fit in memory and be solvable in a reasonable time frame.

To test the effect of these different horizons, we looked at two weeks seen by

MISO in operation. These weeks represent normal operation (week 1) and extreme

conditions (week 2). Full weeks were needed in order to combine consecutive days into

longer horizon models. For each week, only five days were compared to ensure that

all time horizons can be tested. The first day was solved with a given horizon and

relaxation; the 24 hour costs and solution times were collected. Then the generator

schedule was used to set the initial conditions for the following day which was in turn

44

solved. This process continued for each of the five days in each week. Once both

weeks were run for a specific horizon and relaxation, this process was repeated for

the next combination until all were tested. Finally, this process was repeated using

the standard UC model to establish a base.

For testing, each UC model was solved using the larger of a 0.25% or $12,000 gap

using Gurobi 8.1.1 with a time limit of 3,600 seconds. Computations were done on a

Linux server hosted by MISO with 32GB of ram and 12-core Intel processor running

at 2.5GHz.

4.3 Computational Results

Table 4.1 and table 4.3 show the percent difference between the costs for the various

extended horizon models and the costs from the standard UC model. Table 4.1 shows

the differences for a week under normal conditions. The results suggest that increasing

the time horizon can be beneficial seeing around 3.6% reduction in the system costs

for five consecutive days. This becomes more significant when considering a potential

3% reduction in costs weekly over the course of a year or more. Though the results

on week 2 will show that such a reduction is unlikely every week. Interestingly, the

48-hour model appears to outperform the other horizon lengths. It may be that

there are no generators with up or down times significantly greater than 48 hours

in these instances making the longer horizons less useful, especially if they timeout

when solving. Table 4.2 shows the average time to solution over the 5 days of week

1 for each horizon. Given this and the solution improvements, the 48-hour seems to

produce much better solutions without significant increase in solution times.

Table 4.3 shows the differences for a week under extreme conditions. The results

again suggest that increasing the time horizon can be beneficial seeing around 1.8%

reduction in the costs for the five consecutive days. This is less significant than for

week 1, as mentioned, but it shows that even during extreme conditions these horizons

can provide improvement. Here we see that the 48-hour model still outperforms the

45

Table 4.1: Percent differences of the costs for different horizon lengths against the
standard UC model for week 1

Hours Relaxed
0 12 24 36

H
or

iz
on

L
en

gt
h

(h
) 72 -3.46% -3.52% -3.50% -3.40%

60 -3.46% -3.41% -3.44% *

48 -3.58% -3.59% * *

Table 4.2: The average time in seconds to solve the five days from week 1

Hours Relaxed
0 12 24 36

H
or

iz
on

L
en

gt
h

(h
)

72 596.87 738.29 929.28 1261.86

60 327.49 354.53 352.28 *

48 189.81 173.87 * *

36 131.25 * * *

46

other horizon lengths. Table 4.4 shows the average time to solution over the five

days of week 2 for each horizon. Here we see that the average times to solution are

much different than for the standard UC model even with a 48-hour model. For

the 48-hour model, only one day solves significantly slower which brings the whole

average up. However, the other two horizons solve slowly for at least three of the

five days. This is surprising but due to the extreme weather conditions of the week,

it’s possible that longer horizon lengths struggled to find solutions that satisfied the

security constraints on the system.

4.4 Conclusions

In this work, we have seen that using longer time horizons in the UC problem can

improve solution quality. Especially in a week with normal operating conditions

though even under extreme conditions there can be some benefit. As expected, this

comes with a cost in time to solution. This is particularly apparent for week 2 where

even a slight increase in the time horizon can lead to bad average solution times;

though that is mostly due to one or two days taking an abnormally long time to

solve. In general, this study suggests that a modest increase in the length of the time

horizon can be beneficial while not severely impacting the time to solution for the

problem. Future work could test additional days or even perform a study over a year

to determine the benefits using longer time horizons.

A surprising result found during testing is that relaxing variables in later hours

seems to hurt performance. These relaxations appeared to inhibit the pre-processing

stage while solving with Gurobi. This issue might become less relevant with smaller

mip gaps or longer time horizons. Though it could also be beneficial if using some

open source optimization packages McIlvenna et al. (2020).

47

Table 4.3: Percent differences of the costs for different horizon lengths against the
standard UC model for week 2

Hours Relaxed
0 12 24 36

H
or

iz
on

L
en

gt
h

(h
) 72 -1.64% -1.71% -1.58% -1.71%

60 -1.64% -1.53% -1.56% *

48 -1.77% -1.78% * *

Table 4.4: The average time in seconds to solve the five days from week 2

Hours Relaxed
0 12 24 36

H
or

iz
on

L
en

gt
h

(h
)

72 2081.66 2405.04 2248.62 1795.86

60 1193.27 1573.35 1371.66 *

48 1077.41 913.42 * *

36 218.53 * * *

48

Bibliography

Anjos, M. F., Conejo, A. J., et al. (2017). Unit commitment in electric energy systems.

Foundations and Trends® in Electric Energy Systems, 1(4):220–310. 1

Atakan, S., Lulli, G., and Sen, S. (2018). A state transition MIP formulation for the

unit commitment problem. IEEE Transactions on Power Systems, 33(1):736–748.

2

Bacci, T., Frangioni, A., Gentile, C., and Tavlaridis-Gyparakis, K. (2019). New

minlp formulations for the unit commitment problems with ramping constraints.

Optimization Online. 4

Baum, S. and Trotter Jr, L. E. (1978). Integer rounding and polyhedral decomposition

for totally unimodular systems. In Optimization and Operations Research, pages

15–23. Springer. 8

Bendotti, P., Fouilhoux, P., and Rottner, C. (2020). Symmetry-breaking inequalities

for ilp with structured sub-symmetry. Mathematical Programming, 183(1):61–103.

3, 17

Bixby, R. E. (2012). A brief history of linear and mixed-integer programming

computation. Documenta Mathematica, (2012):107–121. 2

Borghetti, A., D’Ambrosio, C., Lodi, A., and Martello, S. (2008). An milp approach

for short-term hydro scheduling and unit commitment with head-dependent

reservoir. IEEE Transactions on Power Systems, 23(3):1115–1124. 28

49

Brandenberg, R., Huber, M., and Silbernagl, M. (2017). The summed start-up costs

in a unit commitment problem. EURO Journal on Computational Optimization,

5(1-2):203–238. 2

Brown, P. D., PeÇas Lopes, J. A., and Matos, M. A. (2008). Optimization of pumped

storage capacity in an isolated power system with large renewable penetration.

IEEE Transactions on Power Systems, 23(2):523–531. 28, 29

Bruninx, K., Dvorkin, Y., Delarue, E., Pandžić, H., D’haeseleer, W., and Kirschen,

D. S. (2016). Coupling pumped hydro energy storage with unit commitment. IEEE

Transactions on Sustainable Energy, 7(2):786–796. 28

Carrion, M. and Arroyo, J. M. (2006). A computationally efficient mixed-integer

linear formulation for the thermal unit commitment problem. IEEE Transactions

on Power Systems, 21(3):1371–1378. 2

Chen, Y., Casto, A., Wang, F., Wang, Q., Wang, X., and Wan, J. (2016). Improving

large scale day-ahead security constrained unit commitment performance. IEEE

Transactions on Power Systems, 31(6):4732–4743. 1

Chen, Y., Wang, Q., Wang, X., and Guan, Y. (2014). Applying robust optimization to

miso look-ahead commitment. In 2014 IEEE PES General Meeting— Conference

& Exposition, pages 1–5. IEEE. 1

Damcı-Kurt, P., Küçükyavuz, S., Rajan, D., and Atamtürk, A. (2016). A polyhedral

study of production ramping. Mathematical Programming, 158(1-2):175–205. 2

Eldridge, B., O’Neill, R., and Hobbs, B. F. (2019). Near-optimal scheduling in

day-ahead markets: pricing models and payment redistribution bounds. IEEE

transactions on power systems, 35(3):1684–1694. 2

Frangioni, A., Gentile, C., and Lacalandra, F. (2009). Tighter approximated MILP

formulations for unit commitment problems. IEEE Transactions on Power Systems,

24(1):105–113. 2

50

Garver, L. L. (1962). Power generation scheduling by integer programming-

development of theory. Power Apparatus and Systems, Part III. Transactions of

the American Institute of Electrical Engineers, 81(3):730–734. 1, 2

Gentile, C., Morales-Espana, G., and Ramos, A. (2017). A tight MIP formulation

of the unit commitment problem with start-up and shut-down constraints. EURO

Journal on Computational Optimization, 5(1–2):177–201. 2, 3

Guan, Y., Pan, K., and Zhou, K. (2018). Polynomial time algorithms and extended

formulations for unit commitment problems. IISE transactions, 50(8):735–751. 4

Jiang, R., Wang, J., and Guan, Y. (2012). Robust unit commitment with wind power

and pumped storage hydro. IEEE Transactions on Power Systems, 27(2):800–810.

28, 29

Johnson, R. B., Oren, S. S., and Svoboda, A. J. (1997). Equity and efficiency of unit

commitment in competitive electricity markets. Utilities Policy, 6(1):9–19. 2

Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R.,

Reinelt, G., Rinaldi, G., and Wolsey, L. A. (2009). 50 Years of integer programming

1958-2008: From the early years to the state-of-the-art. Springer Science & Business

Media. 2

Knueven, B., Ostrowski, J., and Wang, J. (2018a). The ramping polytope and cut

generation for the unit commitment problem. INFORMS Journal on Computing,

30(4):739–749. 4

Knueven, B., Ostrowski, J., and Watson, J.-P. (2018b). Exploiting identical

generators in unit commitment. IEEE Transactions on Power Systems, 33(4).

3, 4, 14, 17, 19, 32

Knueven, B., Ostrowski, J., and Watson, J.-P. (2018c). A novel matching formulation

for startup costs in unit commitment. 2

51

Knueven, B., Ostrowski, J., and Watson, J.-P. (2020). On mixed-integer programming

formulations for the unit commitment problem. INFORMS Journal on Computing,

32(4):857–876. 1, 2, 4, 17, 19

Lee, J., Leung, J., and Margot, F. (2004). Min-up/min-down polytopes. Discrete

Optimization, 1(1):77–85. 2

Lima, R. M. and Novais, A. Q. (2016). Symmetry breaking in MILP formulations for

unit commitment problems. Computers & Chemical Engineering, 85:162–176. 3,

17

Malkin, P. (2003). Minimum runtime and stoptime polyhedra. CORE, Université

catholique de Louvain. Working Paper. 2

Margot, F. (2002). Pruning by isomorphism in branch-and-cut. Mathematical

Programming, 94(1):71–90. 3

McIlvenna, A., Herron, A., Hambrick, J., Ollis, B., and Ostrowski, J. (2020).

Reducing the computational burden of a microgrid energy management system.

Computers & Industrial Engineering, 143:106384. 47

Morales-España, G., Latorre, J. M., and Ramos, A. (2013). Tight and compact

MILP formulation for the thermal unit commitment problem. IEEE Transactions

on Power Systems, 28(4):4897–4908. 2

O’Neill, R. P. (2017). Computational issues in ISO market models. Workshop on

Energy Systems and Optimization. 2

Ostrowski, J., Anjos, M. F., and Vannelli, A. (2012). Tight mixed integer linear

programming formulations for the unit commitment problem. IEEE Transactions

on Power Systems, 27(1):39. 2

52

Ostrowski, J., Anjos, M. F., and Vannelli, A. (2015). Modified orbital branching

for structured symmetry with an application to unit commitment. Mathematical

Programming, 150(1):99–129. 3, 17

Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S. (2011). Orbital branching.

Mathematical Programming, 126(1):147–178. 3

Rajan, D. and Takriti, S. (2005). Minimum up/down polytopes of the unit

commitment problem with start-up costs. IBM Research Report, RC23628 (W0506-

050). 2

Silbernagl, M. (2016). A polyhedral analysis of start-up process models in unit

commitment problems. PhD thesis, Technische Universität München. 2

Sioshansi, R., O’Neill, R., and Oren, S. S. (2008). Economic consequences

of alternative solution methods for centralized unit commitment in day-ahead

electricity markets. IEEE Transactions on Power Systems, 23(2):344–352. 2

U.S. Department of Energy (2021). Pumped storage hydropower. https://www.

energy.gov/eere/water/pumped-storage-hydropower. Accessed: 2021-09-07.

28

Van den Bergh, K., Bruninx, K., Delarue, E., and D’haeseleer, W. (2014). A mixed-

integer linear formulation of the unit commitment problem. WP EN2014-07. 29

Wu, L. (2016). Accelerating NCUC via binary variable-based locally ideal formulation

and dynamic global cuts. IEEE Transactions on Power Systems, 31(5):4097–4107.

2

53

https://www.energy.gov/eere/water/pumped-storage-hydropower
https://www.energy.gov/eere/water/pumped-storage-hydropower

Appendix A

The Unit Commitment Model

A.1 Notation

Sets and indices

G set of generators.

T set of consecutive time periods.

S set of states in which a generator starts. E.g., S = {cold, warm, hot}.

V T set of virtuals.

DD set of dispatchable demands

Data

ait constant production cost coefficient of generator i, no load cost.

bit linear production cost coefficient of generator i.

cit quadratic production cost coefficient of generator i.

dis cost for starting up generator i in the state s.

crit unit cost of regulating reserve at generator i in period t.

54

csit unit cost of spin reserve at generator i in period t.

csnit unit cost of online supplemental reserve at generator i in period t.

csfit unit cost of offline supplemental reserve at generator i in period t.

cxit unit cost of virtual i at time t.

cyit unit cost of dispatchable demand i at t.

M penalty cost of shedding a unit of load.

Dt demand in period t.

Rt regulating reserve requirement at t.

RSt spin reserve requirement at t.

RCt contingency reserve requirement at t.

P it minimum power output of generator i at t in economic mode.

P it maximum power output of generator i at t in economic mode.

PRit minimum power limit of generator i at t in regulating reserve mode, P it ≤ PRit.

PRit maximum power limit of generator i at t in regulating reserve mode, PRit ≤ P it.

RSF it maximum offline spin reserve on generator i at t.

TDi minimum downtime of generator i.

TDi maximum downtime of generator i.

TU i minimum uptime of generator i.

TU i maximum uptime of generator i.

RRit ramp-rate limit of generator i at t.

55

PUi startup capacity of generator i.

PDi shutdown capacity of generator i.

T hoti , Twarmi , T coldi

the minimum number of periods for the hot, warm and cold starts for generator

i.

T
hot

i , T
warm

i , T
cold

i

the maximum number of periods for the hot, warm and cold starts for generator

i. For example, hot start for generator i is between T hoti and T
hot

i periods after

the a shutdown.

αilt shift factors for entity i and branch l at t.

F lt, F lt upper and lower limit for branch l at t.

TPi daily maximum energy generation for generator i.

TSi daily maximal number of starts for generator i.

X it energy capacity of virtual i at t.

vmit multiplier for virtual i at t, 1 for injection and -1 for withdrawal.

Y it energy capacity of dispatchable demand i at t.

`i,b The size of the bth energy offer by generator i.

hi,b The price of energy in the bth offer by generator i.

Derived data

hkit the slop of the kth segment of piecewise approximation of the production cost of

generator i at time t.

pkit the x intercept of the kth segment of piecewise approximation of the production

cost of generator i at time t.

56

Control variables

uit binary variable, 1 if unit i ∈ V is on at t ∈ T ; 0 otherwise.

vit binary variable, 1 if unit i ∈ V starts up at t; 0 otherwise.

wit binary variable, 1 if unit i shuts down at t; 0 otherwise.

si,t′,t′ binary variable, 1 if unit i shut down in time t′ and the next turn on was at

time t.

xit energy produced by virtual i at period t.

yit energy dispatched by demand i at period t.

λlt amount of violation in constraint l at time t.

qit amount of energy produced by generator i at time t.

rit amount of energy for regulating reserve by generator i at t.

urit binary variable, 1 if unit i is committed to regulating reserve at t; 0 if o.w.

rrit amount of regulating reserve in generator i at t.

rsit amount of spin reserve in generator i at t.

rsnit amount of online supplemental reserve in generator i at t.

rsfit amount of offline supplemental reserve in generator i at t.

kitb amount of power generator i produces in price bin b at time t.

Auxiliary variables

fit Keeps track of generator costs at time period t.

57

A.2 Model

min
f,q,u,v,w,s,λ;

,ur,rr,rs,rsn,rsf

∑
i∈G

∑
t∈T

fit +
∑
t∈T

∑
i∈V T

vmitcxitxit −
∑
t∈T

∑
i∈DD

cyityit (A.1)

+
∑
i∈G

∑
t∈T

(critrrit + csitrsit + csnitrsnit + csfitrsfit) +
∑
t∈T

Mλlt (A.2)

s.t. fit ≥ CS
t + aiuit +

∑
b∈Bg

kgtb ∀i ∈ G,∀t ∈ T (A.3)

kgtb ≤ `g,bug,t ∀g, b, t (A.4)∑
b∈Bg

kgtb = pgt ∀g, t (A.5)

pi,t ≥ P ituit + (PRit − P it)uri,t ∀g, t (A.6)

pi,t + rri,t + rsi,t + rsni,t ≤ P ituit + (PRit − P it)uri,t ∀g, t (A.7)∑
i∈G

(qit) +
∑
i∈V T

vmitxit −
∑
i∈DD

yit = Dt ∀t ∈ T (A.8)

∑
i∈G

rrit ≥ Rt ∀t ∈ T (A.9)

∑
i∈G

(rrit + rsit) ≥ Rt +RSt ∀t ∈ T (A.10)

∑
i∈G

(rrit + rsit + rsnit + rsfit) ≥ Rt +RCt ∀t ∈ T (A.11)

t∑
t′=t−TUi

vit′ ≤ uit t = [TU i, |T |],∀i ∈ G (A.12)

t∑
t′=t−TDi

wit′ ≤ 1− uit t = [TDi, |T |],∀i ∈ G (A.13)

vit ≤
t+TU i∑
t′=t

wit′ t = [0, |T | − TU i],∀i ∈ G (A.14)

uit − uit−1 = vit − wit ∀i ∈ G, t ∈ T (A.15)

qit + rrit ≤ P ituit + (PRit − P it)urit ∀i ∈ G1, t ∈ T (A.16)

qit − rrit ≥ P ituit + (PRit − P it)urit ∀i ∈ G1, t ∈ T (A.17)

58

qit − qit−1 ≤ (RRit + P it−1)uit − P it−1uit−1 + (P it − P it−1 −
1

2
RRit)vit

∀i ∈ G, t ∈ T \ {0} (A.18)

− qit + qit−1 ≤ −P ituit + (RRit + P t)uit−1 + (P̄it−1 −RRit − P it)wit

∀i ∈ G, t ∈ T \ {0} (A.19)∑
t∈{0,··· ,23}

qit ≤ TPi,
∑

t∈{24,··· ,35}

qit ≤ TPi ∀i ∈ G (A.20)

∑
t∈{0,··· ,23}

vit ≤ TSi,
∑

t∈{24,··· ,35}

vit ≤ TSi ∀i ∈ G (A.21)

0 ≤ xit ≤ X it ∀i ∈ V T, ∀t ∈ T (A.22)

0 ≤ yit ≤ Y it ∀i ∈ DD, ∀t ∈ T (A.23)

urit ≤ uit ∀i ∈ G ∀t ∈ T (A.24)

0 ≤ rrit ≤ min{1

5
Rt,

1

12
RRit}urit ∀i ∈ G, ∀t ∈ T (A.25)

0 ≤ rsit ≤ min{1

5
RCt,

1

6
RRitui,t} ∀i ∈ G, ∀t ∈ T (A.26)

0 ≤ rsnit ≤ min{1

5
RCt,

1

6
∗RRitui,t} ∀i ∈ G, ∀t ∈ T (A.27)

0 ≤ rsfit ≤ min{1

5
RCt, RSF it(1− uit)} ∀i ∈ G, ∀t ∈ T (A.28)

F lt − λlt ≤
∑
i∈G

(qit)αilt +
∑
i∈V T

vmitxitαilt −
∑
i∈DD

yitαilt ≤ F lt + λlt

∀l ∈ L∀t ∈ T (A.29)

λlt ≥ 0 ∀l ∈ L, t ∈ T (A.30)

t−TDi∑
t′=t−T cold

i +1

si,t′,t ≤ vit ∀t ∈ T (A.31)

t+T cold
i −1∑

t′=t+TDi

si,t,t′ ≤ wit, s ∈ S (A.32)

CS
t = di,coldvit +

∑
k∈S\{cold}

(dik − di,cold)(
t−Tk

i∑
t′=t−Tk−1

i +1

si,t′,t), ∀t ∈ T.

(A.33)

59

Note that this is a fairly typical UC model with the small exception of the matching

variables s that keep track of time-dependent startup costs and the k variables that

keep track of how much power is produced at what price (a contrast to the piecewise

linearization of the quadratic cost curve).

60

Vita

Jonathan Schrock was born in Chattanooga, TN to Randy and Karen Schrock. He has

a younger and older sister: Sarah and Rachel respectively. He attended Wheatfield

Elementary School in Wheatfield, IN followed by Kouts Middle and High School in

Kouts, IN. After graduating, he began studying Mathematics and Computer Science

at Taylor University in Upland, IN. Jonathan worked on several research projects with

faculty at Taylor as well as a REU at the University of Illinois Urbana/Champaign.

The projects covered topics such as knot theory, network mapping, and large scale

power systems. Additionally, he worked as a tutor and teaching assistant during

his time at Taylor. Jonathan obtained a Bachelor of Science degree from Taylor

University in May 2011 in Mathematics and Computer Science. After which he

worked for the Department of Defense before beginning work at Oak Ridge National

Laboratory and graduate school at the University of Tennessee, Knoxville. He studied

mathematics at UT, and worked on projects in quantum computing, graph generation,

and HPC benchmarking at ORNL. Jonathan received his Master of Science degree

from UT in May 2015. He continued working at ORNL before returning to UT

seeking a PhD in Industrial Engineering. In pursuit of that degree, Jonathan is

primarily working on the unit commitment problem using symmetry methods to

improve solution time and quality. He also is employed as an intern with MISO.

61

	Optimization Methods for Day Ahead Unit Commitment
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	1 Introduction
	2 Exploiting Almost Symmetries Day Ahead Unit Commitment
	2.1 Introduction
	2.2 A Framework
	2.2.1 Differences in Bidding from Identical Players

	2.3 The Unit Commitment Problem
	2.3.1 Symmetries in Unit Commitment
	2.3.2 Almost Symmetries in Unit Commitment

	2.4 Computational Results
	2.4.1 Experimental Setup

	2.5 Discussion and Conclusions

	3 Pumped Storage Hydropower in Unit Commitment
	3.1 Introduction
	3.2 PSH Model In Unit Commitment
	3.3 Computational Results
	3.3.1 Experimental Setup
	3.3.2 Results

	3.4 Discussion and Conclusions

	4 Impact of Planning Horizon Length in Unit Commitment
	4.1 Introduction
	4.2 Experimental Setup
	4.3 Computational Results
	4.4 Conclusions

	A The Unit Commitment Model
	A.1 Notation
	A.2 Model

	Vita

