

Journal of Applied Sport Management

Volume 14 | Issue 1

Article 6

3-15-2022

Determinants of Competitive Advantage for Sport Firms: Using Public Big Data in Korea

Iksu Jun iksuinje@chungbuk.ac.kr, iksuinje@chungbuk.ac.kr

Hojun Sung Incheon National University, hsung@inu.ac.kr

Juho Park Texas A&M University, juhopark@tamu.edu

Hyun-Woo Lee *Texas A&M University*, hwlee@tamu.edu

Follow this and additional works at: https://trace.tennessee.edu/jasm

Part of the Business Commons, and the Economics Commons

Recommended Citation

Jun, Iksu; Sung, Hojun; Park, Juho; and Lee, Hyun-Woo (2022) "Determinants of Competitive Advantage for Sport Firms: Using Public Big Data in Korea," *Journal of Applied Sport Management*: Vol. 14 : Iss. 1. https://doi.org/10.7290/jasm14yKeB

Available at: https://trace.tennessee.edu/jasm/vol14/iss1/6

This article is brought to you freely and openly by Volunteer, Open-access, Library-hosted Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Journal of Applied Sport Management by an authorized editor. For more information, please visit https://trace.tennessee.edu/jasm.

Determinants of Competitive Advantage for Sport Firms: Using Public Big Data in Korea

Cover Page Footnote

This work was financially supported by the Research Year of Chungbuk National University in 2020.

Determinants of Competitive Advantage for Sport Firms: Using Public Big Data in Korea

Iksu Jun

Chungbuk National University

Hojun Sung Incheon National University Juho Park Texas A&M University Hyun-Woo Lee Texas A&M University

Abstract

This study examines the determinants of competitive advantage with respect to economic performance of sport firms. Logit regressions estimated dependent variables of economic performance measures based on sales per capita of firms. Determinants of competitive advantage were estimated by efficiency indicators, organization characteristic indicators, and industry classification indicators. Increase in efficiency was a significant determinant of competitive advantage as well as organizational type, size of human resource, diversification of products, and sales growth rate. Operationalizing competitive advantage as outperforming the market average and better than the top 10%, the logit regression model provides means for sport firms to analyze industry data to evaluate their own performance. Namely, including efficiency estimates showed practical significance for market analysis.

Keywords: competitive advantage, sport firms, economic performance

Please send correspondence to Hyun-Woo Lee, hwlee@tamu.edu

Introduction

Competitive advantage of a firm arises when it creates better economic performance than its competitors in a specified market (Sigalas et al., 2013). Factors affecting competitive advantage were investigated in this study to better understand how certain sport businesses may gain a competitive advantage or their sport business rivals. Specifically, by helping a company harness their data and identify new opportunities, the application of big data analytics represents a significant area for better understanding the determinants (e.g., factors such as firm resources) of competitive advantage (George et al., 2016). Thus, the investigation of sport industry-wide data should contribute to a more thorough understanding of competitive advantage.

The main objective of this study is to understand the determinants of competitive advantage for sport firms and use this understanding to demonstrate how public big data represents a valuable source for analytic modeling that sport management scholars and practitioners can exploit. Public microdata provided by the Korean government was analyzed for the purpose of this study. By modeling sport firm performance, practical implications for market analysis should be gained by sport professionals.

Based on Barney's (1995) pivotal work of resource-based view (RBV), the current study focused on the micro-internal resources of a firm based on organizational characteristics and its efficiency. A RBV has been particularly useful to study heterogeneity of firms leading to competitive advantage (Bhawsar & Chattopadhyay, 2015; Powell & Lloyd, 2005). Hence, we a firm's micro-internal factors based on efficiency and organizational characteristics should predict competitive advantage.

A logit regression was used to estimate competitive advantage using dichotomous situations of firm performance as dependent variables on whether their (1) sales per capita was bigger than market average and (2) sales per capita was bigger than market's top 10%. Such operationalization of competitive advantage promotes the use of logit modeling for market analysis. Each dichotomous outcome of competitive advantage was estimated by 17 variables, consisting of efficiency indicators calculated by Data Envelopment Analysis (DEA), organization characteristic indicator variables (i.e., age, organization type, workers, growth rate, diversification, and profit characteristics), and dummy variables of industry classification.

Modeling Method

The 2017 Survey on the Sports Industries consisted of 11,332 microdata collected by a stratified sampling method from a population of 95,387 sport firms (Statistics Korea, n.d.). Survey on the Sports Industries provides a special classification system for the sport industry where microdata is aggregated from 65 segmented fields. The latest accessible data with sufficient microdata of sport firms were the 2017 report due to the embargo periods of public data. The microdata reported in 2017 also included statistics based on the national economic census held in 2015 which in result provided rich information aggregating more than 12,000 firm information. The classification we used based on the large, middle, and small level categories are reported in Table 1. Sport information services categories were merged and then scrutinized to be excluded from the model to avoid the dummy trap (Gujarati, 2004).

Table 1Korean Sport Industry Classification and Available Data

Classification Categories	Code	Data
Sport facility		
Sport facility operation		
Arena and stadium operation	10101	123
Participation sport facility operation	10102	3709
Golf course and skiing facility operation	10103	318
Water sport facility operation	10104	280
Other sport facility operation	10199	458
Sport facility construction		
Sport construction	10200	266
Sporting goods		
Sport game & exercise goods		
Sporting goods manufacturing	20101	347
Sport clothes & textile product manufacturing	20102	246
Sport bags and shoes manufacturing	20103	119
Sporting goods distribution & rental		
Sporting goods wholesaling	20201	500
Sporting goods retailing	20202	1769
Sporting goods rental	20203	85
Sport services		
Sport game services		
Sport gaming	30101	42
Sport betting	30102	35
Sport marketing	30103	327
Sport information services		
Sport media	30201	25
Other sport information services	30299	1
Sport educational institution		
Sport education institution	30300	2319
Other sport services		
Sport online/mobile game development and suppy	39901	20
Sport travel	39902	343
Total		11332

Competitive Advantage Indicators

In line the studies that have used above-average performance as the dependent variable (Newbert, 2008; Schoemaker, 1990; Sigalas et al., 2013), two competitive advantage indicators were used as dependent variables. Sales average variable (*Sales_D_avg*) was generated based on whether an organization's sales per capita is bigger than the average sales per capita pooled from its respective classification category. Sales in top 10% variable (*Sales_D_10*) was generated based on whether an organization's sales per capita is bigger than a given industry's top 10%.

Efficiency Indicators

An input-oriented Banker, Charnes, and Cooper (BCC) model (Banker et al., 1984) was used for efficiency indicators. This was done by using sales as the output and total production cost, total selling, general/administrative expenses, and number of workers as input variables. The input-oriented BCC model calculates efficiency based on how a unit can reduce inputs maintaining the level of output. This allows variability to the scale by adding a convexity constraint which is a sum of weight restriction. BCC model allows variability to the scale by adding a convexity constraint which is a sum of weight restriction of $\sum_{k=1}^{n} w_{k} = 1$ to the dual problem of the ratio model:

$$Min E_{0} = \delta$$

$$s.t. \sum_{k=1}^{n} w_{k} X_{ik} + S_{i}^{-} = \delta X_{i0}, \qquad i = 1, 2, ..., m$$

$$\sum_{k=1}^{n} w_{k} Y_{jk} + S_{j}^{+} = Y_{j0}, \qquad j = 1, 2, ..., m$$

$$\sum_{k=1}^{n} w_{k} = 1$$

$$S_{i}^{-}, S_{j}^{+}, w_{k} \ge 0 \qquad \forall i, j, k$$

In provided equation, efficiency measure of E_0 is shown as an efficiency value of δ , where w_k is the weight for each decision making unit to exist on the frontier; X_{ik} and Y_{jk} are decision making unit k's i^{th} input and j^{th} output; and S_i^- and S_j^+ are slack variables for input and output. Rstudio IDE (Racine, 2012) version 1.3 was used to compute the indicators of efficiency (*Efficiency1*) and its squared value (*Efficiency2*). The squared value was added to examine whether the relation between efficiency and competitive advantage was linear or quadratic.

Organization Characteristics Indicators

Organizational characteristic indicator variables are shown in Table 2. The firm's age was calculated by the difference between the survey year and the founding year of an organization (*Age*). There were five organization types: private/sole-proprietorship (*Form_Private*); incorporated company (*Form_Inc*); non-business corporation (*Form_NoBusiness*); unincorporated association (*Form_UnInc*); and governmental organization. The four available organization type variables were coded as dummy variables. For the number of workers, total number of workers (*InWorkers*), female worker ratio (*Female_ratio*), and temporary worker ratio (*Temp_ratio*) were used. For growth rate, sales change compared to sales in the previous year (*Sales_ growth*) was used. Product diversification had two variables: the number of product type (*Product_type_N*) and product diversity dummy (*Product_Diverse*). Regional diversity had two variables: existence of export (*Export*) and the foreign sales ratio (*Forgn_sales_ratio*). There were two profit characteristics variables: profit margin ratio (*Profit_Marg_R*) and a dummy variable (*Profit_R_avg*) to check whether the profit margin ratio is bigger than a given market's average. Summary statistics of the variables are given in Table 3.

Table 2

V	ariabl	le Li	st an	d D	escrip	otion
---	--------	-------	-------	-----	--------	-------

Variable	Description
Sales_D_avg	Organization's sales per capita is bigger than a given market average(1=Yes)
Sales_D_10	Organization's sales per capita is bigger than a given market's top 10%(1=Yes)
Age	Age of an organization in the survey year, 2017
Form_Private	Organizational form is 'Individual proprietorship'(1=Yes)
Form_Inc	Organizational form is 'Incorporated company'(1=Yes)
Form_NoBusiness	Organizational form is 'Non-business corporation'(1= Yes)
Form_UnInc	Organizational form is 'Unincorporated association'(1=Yes)
lnWorkers	Logarithm of total workers in an organization
Female_ratio	Female worker ratio to the total number of workers
Temp_ratio	Temporary worker ratio to the total number of workers
Forgn_sales_ratio	Foreign sales ratio to total sales(%)
Sales_growth	Sales growth rate(%) reported in survey compared to previous year's sales
Product_type_ N	Number of product type
Prduct_Diverse	Product diversification, whether the product type is more than $2(1 = \text{Yes})$
Export	Foreign market diversification, whether there is export(1=Yes)
Efficiency1	Efficiency index(%) calculated by Data Envelopment Analysis(DEA)
Efficiency2	Square of the above efficiency index
Profit_Marg_R	Profit margin ratio, i.e., profits/sales
Profit_R_avg	A firm's profit margin ratio is larger than a given market average(1=Yes)
Mkt_s10101	Given market is 'Arena and stadium operation'(1=Yes)
Mkt_s10102	Given market is 'Participation sport facility operation'(1=Yes)
Mkt_s10103	Given market is 'Golf course and skiing facility operation'(1=Yes)
Mkt_s10104	Given market is 'Water sport facility operation'(1=Yes)
Mkt_s10199	Given market is 'Other sport facility operation'(1=Yes)
Mkt_s10200	Given market is 'Sport construction'(1=Yes)
Mkt_s20101	Given market is 'Sporting goods manufacturing'(1=Yes)
Mkt_s20102	Given market is 'Sport clothes & textile product manufacturing'(1=Yes)
Mkt_s20103	Given market is 'Sport bags and shoes manufacturing'(1=Yes)
Mkt_s20201	Given market is 'Sporting goods wholesaling'(1=Yes)
Mkt_s20202	Given market is 'Sporting goods retailing'(1=Yes)
Mkt_s20203	Given market is 'Sporting goods rental'(1=Yes)
Mkt_s30101	Given market is 'Sport game'(1=Yes)
Mkt_s30102	Given market is 'Sport betting'(1=Yes)
Mkt_s30103	Given market is 'Sport marketing'(1=Yes)

Table 2 Con	tinued
-------------	--------

Variable	Description
Mkt_s30300	Given market is 'Sport educational institution'(1=Yes)
Mkt_s39901	Given market is 'Sport online/mobile game development and supply'(1=Yes)
Mkt_s39902	Given market is 'Sport travel'(1=Yes)

Table 3

Summary Statistics for the Variables (N=11,332)

Variable	М	SD	Min	Max
Sales_D_avg	.280	.449	0	1
Sales_D_10	.096	.294	0	1
Age	9.956	9.747	0	109
Form_Private	.707	.455	0	1
Form_Inc	.213	.409	0	1
Form_NoBusiness	.044	.206	0	1
Form_UnInc	.012	.109	0	1
InWorkers	1.272	1.311	-4.605	8.198
Female_ratio	.339	.325	0	1
Temp_ratio	.100	.221	0	1
Forgn_sales_ratio	.609	5.847	0	100
Sales_growth	-6.338	16.277	-120	300
Product_type_ N	.544	1.127	0	5
Prduct_Diverse	.117	.322	0	1
Export	.034	.182	0	1
Efficiency1	31.088	24.943	.511	100
Efficiency2	1588.57	2392.93	.261	10000
Profit_Marg_R	.100	2.057	-139.94	0.9996
Profit_R_avg	.428	.495	0	1
Mkt_s10101	.011	.104	0	1
Mkt_s10102	.327	.469	0	1
Mkt_s10103	.028	.165	0	1
Mkt_s10104	.025	.155	0	1
Mkt_s10199	.040	.197	0	1
Mkt_s10200	.023	.151	0	1
Mkt_s20101	.031	.172	0	1
Mkt_s20102	.022	.146	0	1
Mkt_s20103	.011	.102	0	1
Mkt_s20201	.044	.205	0	1
Mkt_s20202	.156	.363	0	1
Mkt_s20203	.008	.086	0	1
Mkt_s30101	.004	.061	0	1
Mkt_s30102	.003	.055	0	1

Variable	М	SD	Min	Max
Mkt_s30103	.029	.167	0	1
Mkt_s30300	.205	.403	0	1
Mkt_s39901	.002	.042	0	1
Mkt_s39902	.030	.171	0	1

Table 3 Continued

Emperical Models

The following empirical models were equated to estimate the determinants of competitive advantage. Logit regression was performed using maximum likelihood estimation.

(1) Sales_D_avg

$$\begin{split} &= \beta_{0} + \beta_{1} \text{Age} + \beta_{2} \text{Form_Private} + \beta_{3} \text{Form_Inc} + \beta_{4} \text{Form_NoBusiness} \\ &+ \beta_{5} \text{Form_UnInc} + \beta_{6} \text{InWorkers} + \beta_{7} \text{Female_ratio} + \beta_{8} \text{Temp_ratio} \\ &+ \beta_{9} \text{Forgn_sales_ratio} + \beta_{10} \text{Sales_growth} + \beta_{11} \text{Product_type_N} \\ &+ \beta_{12} \text{Prduct_Diverse} + \beta_{13} \text{Export} + \beta_{14} \text{Efficiency1} + \beta_{15} \text{Efficiency2} \\ &+ \beta_{16} \text{Profit}_{\text{Marg}_{\text{R}}} + \beta_{17} \text{Profit}_{\text{Ravg}} + \gamma_{1} \text{Mkt}_{s10101} + \gamma_{2} \text{Mkt}_{s10102} \\ &+ \gamma_{3} \text{Mkt}_{s10103} + \gamma_{4} \text{Mkt}_{s10104} + \gamma_{5} \text{Mkt}_{s10199} + \gamma_{6} \text{Mkt}_{s10200} \\ &+ \gamma_{7} \text{Mkt_s20101} + \gamma_{8} \text{Mkt_s20102} + \gamma_{9} \text{Mkt_s20103} + \gamma_{10} \text{Mkt_s20201} \\ &+ \gamma_{11} \text{Mkt_s20202} + \gamma_{12} \text{Mkt_s20203} + \gamma_{13} \text{Mkt_s30101} + \gamma_{18} \text{Mkt_s30102} \\ &+ \gamma_{15} \text{Mkt_s30103} + \gamma_{16} \text{Mkt_s30300} + \gamma_{17} \text{Mkt_s39901} + \gamma_{18} \text{Mkt_s39902} + \epsilon \end{split}$$

(2) Sales_D_10

 $= \beta_0 + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Form} \operatorname{Private} + \beta_3 \operatorname{Form} \operatorname{Inc} + \beta_4 \operatorname{Form} \operatorname{NoBusiness} + \beta_5 \operatorname{Form} \operatorname{UnInc} + \beta_6 \operatorname{InWorkers} + \beta_7 \operatorname{Female} \operatorname{ratio} + \beta_8 \operatorname{Temp} \operatorname{ratio} + \beta_9 \operatorname{Forgn} \operatorname{sales} \operatorname{ratio} + \beta_{10} \operatorname{Sales} \operatorname{growth} + \beta_{11} \operatorname{Product} \operatorname{type} \operatorname{N} + \beta_{12} \operatorname{Prduct} \operatorname{Diverse} + \beta_{13} \operatorname{Export} + \beta_{14} \operatorname{Efficiency1} + \beta_{15} \operatorname{Efficiency2} + \beta_{16} \operatorname{Profit} \operatorname{Marg} \operatorname{R} + \beta_{17} \operatorname{Profit} \operatorname{R} \operatorname{avg} + \gamma_1 \operatorname{Mkt} \operatorname{s10101} + \gamma_2 \operatorname{Mkt} \operatorname{s10102} + \gamma_3 \operatorname{Mkt} \operatorname{s10103} + \gamma_4 \operatorname{Mkt} \operatorname{s10104} + \gamma_5 \operatorname{Mkt} \operatorname{s10199} + \gamma_6 \operatorname{Mkt} \operatorname{s10200} + \gamma_7 \operatorname{Mkt} \operatorname{s20101} + \gamma_8 \operatorname{Mkt} \operatorname{s20102} + \gamma_9 \operatorname{Mkt} \operatorname{s20103} + \gamma_{10} \operatorname{Mkt} \operatorname{s20201} + \gamma_{11} \operatorname{Mkt} \operatorname{s20202} + \gamma_{12} \operatorname{Mkt} \operatorname{s20203} + \gamma_{13} \operatorname{Mkt} \operatorname{s30101} + \gamma_{14} \operatorname{Mkt} \operatorname{s30102} + \gamma_{15} \operatorname{Mkt} \operatorname{s30103} + \gamma_{16} \operatorname{Mkt} \operatorname{s30300} + \gamma_{17} \operatorname{Mkt} \operatorname{s39901} + \gamma_{18} \operatorname{Mkt} \operatorname{s39902} + \epsilon$

Results and Discussion

Model estimation results are reported in Table 4. In interpreting the results, special attention should be given to the direction of the coefficients of explanatory variables as well as its statistical significance, as a positive sign means that the probability of belonging to the competitive advantage group increases due to the property of the logistic function. In other words, the direction of the probability is easily recognized from the logistic function property even though the specific marginal effect of an explanatory variable should be calculated again from the result. The calculated value of the marginal effect of a given explanatory variable in each model is reported in Table 4 as a column of dy/dx.

Table 4			
Estimation	Result	(N=11,	332)

	Sales_D_avg				Sales_D_10			
Variables	Coeff.	SE	р	dy/dx	Coeff.	SE	р	dy/dx
Age	-0.013	0.003	0.000	-0.0023	-0.010	0.004	0.007	-0.0007
Form_Private	-0.022	0.166	0.894	-0.0038	-0.193	0.260	0.458	-0.0137
Form_Inc	0.802	0.169	0.000	0.1390	0.948	0.260	0.000	0.0675
Form_NoBusiness	0.080	0.191	0.675	0.0139	0.257	0.286	0.368	0.0183
Form_Uninc	-0.651	0.308	0.034	-0.1130	-0.286	0.442	0.517	-0.0204
InWorkers	0.369	0.028	0.000	0.0641	0.303	0.038	0.000	0.0216
Female_ratio	-0.046	0.072	0.523	-0.0080	0.220	0.107	0.041	0.0157
Temp_ratio	-0.370	0.117	0.002	-0.0642	-0.251	0.204	0.220	-0.0179
Forgn_sales_ratio	0.0001	0.005	0.979	0.00002	-0.003	0.007	0.691	-0.0002
Sales_growth	0.012	0.002	0.000	0.0020	0.016	0.002	0.000	0.0011
Product_type	-0.115	0.069	0.095	-0.0199	-0.061	0.112	0.585	-0.0044
Prduct_Diverse	0.873	0.187	0.000	0.1515	0.614	0.302	0.042	0.0437
Export	-0.120	0.168	0.474	-0.0208	-0.139	0.247	0.573	-0.0099
Efficiency1	0.099	0.004	0.000	0.0171	0.135	0.006	0.000	0.0096
Efficiency2	-0.001	0.000	0.000	-0.0001	-0.001	0.000	0.000	-0.0001
Profit_Marg_R	0.144	0.056	0.010	0.0250	0.043	0.057	0.450	0.0031
Profit_R_avg	-0.301	0.054	0.000	-0.0522	-0.672	0.084	0.000	-0.0479
Mkt_s10101	1.104	0.526	0.036	0.1915	2.382	0.847	0.005	0.1697
Mkt_s10102	2.456	0.466	0.000	0.4259	4.018	0.772	0.000	0.2862
Mkt_s10103	0.470	0.479	0.327	0.0815	1.949	0.789	0.014	0.1388
Mkt_s10104	1.645	0.480	0.001	0.2854	2.579	0.794	0.001	0.1837
Mkt_s10199	1.430	0.472	0.002	0.2481	2.361	0.782	0.003	0.1682
Mkt_s10200	1.334	0.484	0.006	0.2314	2.184	0.797	0.006	0.1555
Mkt_s20101	1.994	0.487	0.000	0.3458	2.435	0.806	0.003	0.1735
Mkt_s20102	1.400	0.496	0.005	0.2428	1.761	0.817	0.031	0.1255
Mkt_s20103	0.586	0.515	0.255	0.1016	0.439	0.859	0.610	0.0312
Mkt_s20201	1.445	0.483	0.003	0.2506	2.499	0.797	0.002	0.1780
Mkt_s20202	2.771	0.479	0.000	0.4805	4.455	0.789	0.000	0.3173
Mkt_s20203	0.962	0.533	0.071	0.1669	1.576	0.882	0.074	0.1123
Mkt_s30101	-0.379	0.575	0.510	-0.0657	-0.240	0.928	0.796	-0.0171
Mkt_s30102	-0.429	0.636	0.500	-0.0743	-0.089	1.028	0.931	-0.0063
Mkt_s30103	1.161	0.488	0.017	0.2014	2.395	0.797	0.003	0.1706
Mkt_s30300	1.579	0.465	0.001	0.2739	2.841	0.771	0.000	0.2023
Mkt_s39901	-0.351	0.688	0.610	-0.0608	0.417	1.087	0.701	0.0297
Mkt_s39902	0.716	0.483	0.138	0.1242	1.748	0.792	0.027	0.1245
Intercept	-5.296	0.512	0.000		-9.024	0.836	0.000	
	Log likelih	ood	-5,899		Log likelihood		-	2,847
Model's	LR x^{2} (36)		1631.02		LR x^{2} (35)		14	464.71
and Goodness of Fit	$Prob > x^2$		0.000		$Prob > x^2$		(0.000
	Pseudo <i>R</i> ² 0.1215		Pseudo R ²		0	.2046		

Note. 1. Coeff.=coefficients of the estimated models, *SE*=standard errors of the estimated coefficients, *P*=*p*-value of the estimated coefficients, and dy/dx=the marginal effect of the each variable in the models. 2. Model's significance test was done by Likelihood Ratio test (LR) and the model's Goodness of Fit was measured by pseudo R^2 .

Efficiency Indicators

The coefficient of *Efficiency1* was statistically significant and positive, indicating that an increase in a firm's efficiency increased the probability for the firm to be competitively advantageous. However, the negative sign of the square value, *Efficiency2*, indicates that this increase has a diminishing marginal effect so that efficiency increase is not linearly proportional to the competitive advantage. Hence, a unique quadratic variance is also explained in the current model when holding other variables constant. In this respect, a firm may need to first set a desired level of competitive advantage to meet a minimum level of efficiency.

Organizational Characteristic Indicators

There were four statistically significant and positive organizational characteristic variables; *Form_ Inc, lnWorkers, Sales_growth*, and *Product_Diverse*. There were also three statistically significant but negative indicators: *Age, Form_UnInc*, and Temp_ratio). The negative effect of *Age* implies that inertia caused by age may have a negative impact on the competitive advantage (Koch & Windsperger, 2017).

Organization type of being incorporated was a source of competitive advantage as incorporated companies had a positive impact and unincorporated associations had a negative impact. The positive effect of total number of workers on competitiveness implies that an increase in organization size may increase the operational resources for superior performance whereas the temporary worker ratio had a negative effect on the probability of being competitively advantageous. This is consistent with other research on firm performance (e.g., Roca-Puig et al., 2012). The sales growth rate positively impacted competitiveness, while only the product diversity dummy showed a positive effect on competitiveness for the diversification. It is worth mentioning that a firm with only one product were less competitive, while a greater number of products did not linearly lead to competitiveness when holding other variables constant. This result aligns with previous findings, such as the work of Hitt et al. (1997), that has shown diversification strategy has a positive impact on competitive advantage.

Industry Classification Categories

Based on the classification categories, 11 coefficients were statistically significant and positive (see Table 4). Sport organizations in these subindustries showed a relatively higher probability of having competitive advantage than other firms. Specifically, the subindustry *Mkt_s20202* had the highest marginal effect, implying that sporting goods manufacturing firms were most likely to be competitively advantageous within the Korean sport industry.

This tendency is similar in the stricter model using the dependent variable of Sales_D_10. The difference between the two models was that two additional industries, Mkt_s10103 and Mkt_s39902 , showed significance in the Sales_D_10 model. This implies that a relatively smaller number of firms of the two subindustries are included in the competitive group. Checking the characteristics of these two subindustries data, the cross-tabulation analysis indicated only 7.6% and 9.3% of the firms were included in the competitively advantageous group of top 10% sales per capita and the distribution graph showed that tails were longer and skewed into the top 10% sales per capita in the histogram. Comparing the two, the subindustry Mkt_s10103 had a higher probability than the subindustry Mkt_s39902 .

Profit Margin Ratio on Sales per Capita

 $Profit_Marg_R$ was statistically significant and positive. This result suggests that profitability increases the probability to enter the competitively advantageous group. However, the effect of the dummy variable $Profit_R_avg$ was statistically significant and negative, implying that firms in a subindustry with a higher profit margin ratio than the average of the given market has a rather lower probability to enter the competitive advantage group in terms of sales criteria. In other words, the firms with lower-than-av-

erage profitability had a higher probability of belonging to the competitively advantageous group than the firms with higher-than-average profitability when holding other variables constant. Based on the data from Korean firms, even when considering the positive effect size of profit margin ratio, the economy of scale mattered more than maintaining higher profit margins. That is to say, considering the efficiency of a firm based on increasing market shares in larger markets may be a better strategy compared to focusing on margins in smaller markets. This result is further evidenced in the cross tables reported in Table 5.

Table 5 shows there were more firms with lower-than-average profitability in the competitive advantage group than those with higher-than-average profitability. Also, for the model with stricter criteria of predicting *Sales_D_10*, *Profit_Marg_R* did not show statistical significance. These results imply that substantial market share should be strategically prioritized to increase sales.

Table 5

Cross tables between profitability measure and sales per capita measures

Profit Margin Ratio Above Average or Not	Sales_per_Capita			Sales_per_Capita		
	Above Average or Not		Above Top 10% or Not			
	Below	Above	Total	Below	Above	Total
Below	6,197	1,993	8,190	7,467	723	8,190
Average	3,819	1,484	5,303	4,819	484	5,303
Total	10,016	3,477	13,493	12,286	1,207	13,493

Note. Unit is number of firms.

Conclusions and Limitations

The current paper adds evidence of organizational micro factors affecting economic performance, particularly in sport-related industries. Evidence from this analysis indicates that a firm with higher efficiency through better management of its inputs and outputs was able to achieve competitive advantage within the industry. Additionally, corporate organizations with greater human resources, higher sales growth, and more diverse products were likely to be competitive. Therefore, based on the aspiration level a firm sets (e.g., whether it is to perform higher than industry average or to be in top 10%), sport-related firms may carefully determine the level of efficiency, whether to change its organizational type, the size of its human resources, and the magnitude of investment in sales.

Moving forward, more international efforts to aggregate and publicly open big data are recommended. Such data can be invaluable to both academia and practitioners to scrutinize industry trends, consumer and firm behavior, and firm management. Even so, investigating competitive advantage of firms through public data may not be sufficient. For example, other determinants of competitive advantage such as innovation or human resource may not be captured by public data. Thus, a better comprehension of the complexity of competitive advantage could be achieved through strategically merging both public and private data. In addition, while the scope of the current study was limited to operationalizing sales data as the above-average performance (i.e., competitive advantage indicators), some micro-internal predictors such as efficiency indicators, sales growth, and profit margin ratio could be considered as competitive advantage indicators or mediators in future studies.

Sport practitioners can benefit from adopting the operationalizations of competitive advantage variables and the efficiency variables used in this study. Managers, regardless of whether they are in Korea or the United States, can use these modeling techniques to set their goals for competitiveness and

efficiency levels. Furthermore, when larger datasets are consistently accumulated, machine learning for setting those goals and automated analytical modeling could be implemented for strategic competitive advantage management.

The results of this study could be significantly different in other economies such as those found in Europe or North America where the media market and stadium business is much larger than the Korean industry. For instance, according to an annual report of sport industry in Korea, business in 2017 was related to Sport facility (37.8%), Sporting goods (35.4%), and Sport service (26.5%), respectively (Ministry of Culture, Sports and Tourism, 2017). Europe and North America may be different, which is why the nature of the industry should be considered first to better understand the determinants of competitive advantage in a specific context.

References

- Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. *Management Science*, *30*(9), 1078-1092.
- Barney, J. B. (1995). Looking inside for competitive advantage. *Academy of Management Perspectives*, 9(4), 49-61.
- Bhawsar, P., & Chattopadhyay, U. (2015). Competitiveness: Review, reflections and directions. *Global Business Review*, 16(4), 665-679.
- Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. *Journal of Business Research*, 69(2), 897-904.
- George, G., Osinga, E. C., Lavie, D., & Scott, B. A. (2016). Big Data and Data Science Methods for Management Research. *Academy of Management Journal*, 59(5), 1493-1507.
- Gujarati, D. N. (2004). Basic Econometrics (4th ed.). McGraw Hill.
- Hitt, M. A., Hoskisson, R. E., & Kim, H. (1997). International diversification: Effects on innovation and firm performance in product-diversified firms. *Academy of Management Journal*, 40(4), 767-798.
- Koch, T., & Windsperger, J. (2017). Seeing through the network: Competitive advantage in the digital economy. *Journal of Organization Design*, 6(1), 1-30.
- Ministry of Culture, Sports and Tourism (2017). 2017 Sport Industry White Paper. Retrieved from https://www.mcst.go.kr/kor/s_policy/dept/deptView.jsp?pSeq=1743&pDataCD=040600000&p-Type=07
- Powell, T. C., & Lloyd, C. J. (2005). Toward a general theory of competitive dominance: comments and extensions on Powell (2003). *Strategic Management Journal*, *26*(4), 385-394.
- Racine, J. S. (2012). RStudio: A platform-independent IDE for R and Sweave. *Journal of Applied Econometrics*, 27(1), 167-172.
- Roca-Puig, V., Beltrán-Martín, I., & Cipres, M. S. (2012). Combined effect of human capital, temporary employment and organizational size on firm performance. *Personnel Review*, 41(1), 4-22.
- Sigalas, C., Economou, V. P., & Nikolaos, B. G. (2013). Developing a measure of competitive advantage. *Journal of Strategy and Management*, 6(4), 320-342.
- Statistics Korea. (n.d.) Microdata Integrated Service. Accessed July 24, 2020, https://mdis.kostat.go.kr/ eng/pageLink.do?link=mdisIntro.