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Abstract1

Viruses are major pathogens of agricultural crops. Viral infections often start after the virus enters2

the outer layer of a tissue, and many successful viruses, after local replication in the infected tissue,3

are able to spread systemically. Quantitative details of virus dynamics in plants, however, are4

poorly understood, in part, because of the lack of experimental methods which allow the accurate5

measurement of the degree of infection in individual plant tissues. Recently, Tromas et al. PLoS6

Genetics (2014) followed the kinetics of infection of individual cells in leaves of Nicotiana tabacum7

plants using Tobacco etch virus (TEV), labeled with either Venus or blue fluorescent protein (BFP) to8

produce to different strains. Assuming that viral spread occurs from lower to upper leaves, the authors9

fitted a simple mathematical model to the frequency of cellular infection by the two viral variants10

found using flow cytometry. While the original model could accurately describe the kinetics of viral11

spread locally and systemically, we found that many alternative versions of the model, for example,12

if viral spread starts at upper leaves and progresses to lower leaves or when virus dissemination is13

stopped due to an immune response, fit the data with reasonable quality, and yet with different14

parameter estimates. These results strongly suggest that experimental measurements of the virus15

infection in individual leaves may not be sufficient to identify the pathways of viral dissemination16

between different leaves and reasons for viral control. We propose experiments that may allow17

discrimination between the alternatives. By analyzing the kinetics of coinfection of individual cells18

by Venus and BFP strains of TEV we found a strong deviation from the random infection model,19

suggesting cooperation between the two strains when infecting plant cells. Importantly, we showed20

that many mathematical models on the kinetics of coinfection of cells with two strains could not21

adequately describe the data, and the best fit model needed to assume i) different susceptibility of22

uninfected cells to infection by two viruses locally in the leaf vs. systemically from other leaves,23

and ii) decrease in the infection rate depending on the fraction of uninfected cells which could be24

due to a systemic immune response. Our results thus demonstrate the difficulty in reaching definite25

conclusions from extensive and yet limited experimental data and provide evidence of potential26

cooperation between different viral variants infecting individual cells in plants.27

Abbreviations: ODE – ordinary differential equations, TEV – Tobacco etch virus, BFP – blue28

fluorescent protein, nll – negative log-likelihood, LS – least squares, LOD – limit of detection, AIC29

– Akaike Information Criterion, SSR – sum of squared residuals, OR – odds ratio.30

Keywords: Virus infection, plants, flow cytometry, mathematical model, coinfection31



Introduction32

With a burgeoning human population expected to reach between 7 and 13 billion by 2100, humans’33

lifeblood, food and water, will be evermore difficult to protect and sustain over time [1–3]. Under34

these circumstances, dependence on agriculture will only increase [4]. Food crops, however, are35

vulnerable to numerous biotic stresses, including but not limited to animal pests, fungi, bacteria, and36

viruses. Viral infections especially can devastate food-crops, with documentation of such infections37

being identified as early as eighth-century Japan; however it was not until the nineteenth century38

that it was known and accepted that microscopic agents like viruses could cause diseases in plants39

[5, 6].40

Mathematical models have been widely used to understand virus-plant interactions. For example,41

early studies investigated how the virus concentration in the inoculum influences the number of42

lesions formed by the virus on plant leaves [7–10]. More recent studies investigated virus dynamics in43

individual plant cells or in the whole plant [11–14]. Most studies, however, focused on understanding44

epidemiological spread of viral disease in plant populations with the aim to control viral spread and45

to limit damage to agricultural crops [15–25].46

Mechanisms of viral spread within individual plants remain incompletely understood. Usually47

infection of a single cell or a small group of cells occurs via mechanical means or by an animal or48

insect vector. After replication in the inoculation site, virions move to neighboring cells through49

plasmodesmata – pores between individual cells in the leaf [26]. The replication-movement process50

is repeated until the virus enters the vasculature. It has been experimentally demonstrated that51

viral distribution via the vasculature follows the path of sugar distribution, i.e., from source to sink52

tissues, with strong sinks like roots receiving a larger portion of the viral cargo [27]. Once arriving53

at sink tissue, the virus exits the vasculature via the plasmodesmata and enters neighboring cells.54

From there viruses use plasmodesmata once again to invade the ground tissue [27, 28]. In some cases,55

however, viruses can be introduced directly into the vasculature resulting in rapid infection of sink56

tissues.57

Different methods have been used to measure the degree of infection of a given leaf in the plant58

including ELISA for viral proteins and PCR for viral genomes [12, 29]. However, these methods are59

semi-quantitative and typically do not allow measurement of the degree of infection of individual60

cells in the leaf. Recently, a new method to measure the frequency of infection of cells in plant61

leaves through the use of flow cytometry was developed [14]. In their experiments, Tromas et al.62

[14] infected lower (3rd) leaves of 4 week old Nicotiana tabacum (henceforth referred to as “tobacco”)63

plants with two strains of Tobacco etch virus (TEV), TEV-Venus and TEV-BFP, carrying different64

fluorescent proteins. At different times after the infection cells (protoplasts) were isolated from65

individual leaves, and the fraction of protoplasts infected with either or both viral variants was66

quantified using flow cytometry [14]. Flow cytometry allowed the measurement of virus infection in67

thousands of individual cells, thus providing unique quantitative information about kinetics of TEV68

infection in tobacco plants.69

Tromas et al. [14] performed several important analyses including calculation of basic reproductive70

number and multiplicity of infection of cells (MOI) by different viruses. In addition, the authors71

developed a detailed mathematical model of how the virus spreads over time from the 3rd leaf to72

other leaves and fitted the model to experimental data. Importantly, the model was able to accurately73

describe virus dissemination and predicted that viral spread kinetics was similar within the leaves.74

One major difference between infection levels in individual leaves was due to different import rates75

of the virus from the lower to upper leaves [14].76

1



Here we built upon this pioneering work and further analyzed experimental data of Tromas77

et al. [14] with use of mathematical models. The main objectives of our study were to understand78

the details of dissemination of TEV in tobacco plants and to determine if coinfection of individual79

plant cells with two TEV variants occur independently. Specifically, because exact pathways of80

TEV dissemination in tobacco plants have not been unequivocally identified and may depend on81

the age of plants and details of virus inoculation, we investigated whether mathematical models of82

TEV dissemination, alternative to the Tromas et al. [14] model, may be also consistent with the data.83

Surprisingly, we found that indeed many different routes of TEV dissemination (e.g., when the initial84

infection first spreads in top (7th) leaf and then disseminates to lower leaves) are quite consistent with85

experimental data, even though some such models fitted the data with slightly reduced quality (as86

evaluated by AIC, [30]). By analyzing kinetics of coinfection of individual cells by two TEV variants87

we found that coinfection does not proceed randomly; rather, cells are more likely to be coinfected88

with two viruses than infected with either of the variants suggesting cooperativity in infection (or89

that plant cells vary in susceptibility to infection). Our results suggest that understanding pathways90

of virus dissemination in plants will be difficult using only data on virus infection in individual leaves91

and may likely require specific experiments that determine the systemic distribution of virions in92

host tissues over the time course of infection.93

Materials & Methods94

Data95

Specific details of how infection of plants had been performed are given in the previous publication96

[14]. In short, 4-week-old Nicotiana tabacum L. cv. Xanthi plants, a widely used model plant97

host [31], were inoculated into the 3rd leaf with an equal mixture of TEV-BFP and TEV-Venus.98

These two viral strains express blue and yellow fluorescent proteins, respectively. Preliminary work99

demonstrated that expression of these proteins does not impair growth kinetics of the viral variants100

[14]. To measure the kinetics of viral dissemination 3rd, 5th, 6th, and 7th true leaves of individual101

plants were removed at days 3, 5, 7 and 10 post inoculation; five plants per time point were analyzed.102

Leaf 4 was skipped because it did not show any infection under the experimental conditions. From103

these leaves, plant cells with their cell walls removed (protoplasts) were isolated and the number of104

protoplasts expressing none, one, or both of the two fluorescent proteins was measured with flow105

cytometry. The data have been formatted and are available as a supplement to this paper.106

Mathematical models107

Original virus dissemination model of Tromas et al. [14]108

To predict kinetics of infection of the inoculated leaf and dissemination of infection to other leaves109

in the plant Tromas et al. [14] developed a novel mathematical model. The model tracks the fraction110

of infected cells in a kth leaf, Ik, over time with Sk being the fraction of susceptible cells. In the model111

a cell infected with either of two viral variants or both viral variants is considered to be infected.112

The model assumes that infection starts at leaf 3 and then proceeds in the leaf k = 3 at a rate β and113

disseminates to upper leaves (leaves 5, 6, 7) at a rate proportional to the total infection rate of the114

leaves below a given leaf k at a rate χk (Figure 1A). When the virus reaches other leaves, infection115
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also proceeds locally at a rate β. Local virus dissemination at a kth leaf stops when the fraction of116

infected cells reaches a critical level ψk:117

dI3
dt

= βI3S3, (1)

dIk
dt

= βIkSk + χkSk

k−1∑
j=3,j 6=4

Ij, k = 5, 6, 7, (2)

Sk =

{
1− Ik

ψk
, Ik < ψk,

0, Ik ≥ ψk,
k = 3, 5, 6, 7, (3)

where β is the rate of infection of uninfected cells in the leaf during to local viral spread in the leaf,118

χk is the rate of virus infection of other (upper) leaves, and ψk is the level at which infection of new119

cells in leaf k stops (see eqns. (S.1)–(S.4) for full set of equations of the model). Initial conditions120

for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise, and Sk(0) = 1. In total, this model121

has 9 parameters to be estimated from the data.122

Alternative virus dissemination models for the total leaf infection123

While the original mathematical model of Tromas et al. [14] seems logical we sought to investi-124

gate whether alternative mathematical models of virus dynamics within individual leaves and virus125

dissemination to other leaves in the plant may be consistent with experimental data. In most of126

these alternative models we use the same nomenclature for the model parameters (I0, β, χk, and ψk)127

as in Tromas et al. [14].128

• Alternative model 1. In this model the dynamics of infection of the leaf 3 is given in eqn.129

(1), and instead of summing the infection from all the leaves below, we suppose that only the130

leaf immediately below the one in question can infect it. The dynamics of uninfected leaves is131

given by eqn. (3). Dynamics of infection in other leaves is described by the following equations132

(see Figure 1B):133

dIk
dt

= βIkSk + χkSkIk−1, k = 5, 6, 7. (4)

Initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise, and Sk(0) = 1.134

• Alternative model 2. Leaf 3 infects only leaf 5 which then infects leaves 6 and 7. Leaf 6 also135

contributes to the infection of leaf 7. Infection for leaf 3 is given by eqn. (1) and dynamics of136

uninfected leaves is given by eqn. (3). Dynamics of infection in other leaves is described by the137

following equations:138

dI5
dt

= βI5S5 + χ5S5I3, (5)

dIk
dt

= βIkSk + χkSkI5, k = 6, 7. (6)

Initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise, and Sk(0) = 1.139
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Figure 1: Examples of several alternative mathematical models of virus spread in plants analyzed in this
paper. In experiments of Tromas et al. [14], two different viruses (“Venus” and “BFP”) were rubbed into
leaf 3 and the fraction of infected leaf cells (protoplasts) was followed by flow cytometry over time (see
Materials and Methods for more detail). In schematics, Sk and Ik denote uninfected and infected cells in
the kth leaf, respectively, and the syringe indicates the primary place where infection started in the model.
Arrows denote the process of leaf infection (at a rate β) and transmission of infection between leaves (at
a rate χ). In the original Tromas et al. [14] model (A, eqns. (1)–(3)), infection starts at leaf 3 and is then
transported to other leaves at a rate proportional to the total fraction of infected cells in leaves below. In
alternative model 1, infection starts with leaf 3 but upper leaves are only infected by the leaves just below
them (B, eqn. (4)). In alternative model 4, infection starts in leaf 5 and then proceeds to leaves above or
below leaf 5 similar to the alternative model 1 (C, eqn. (11)). Finally, in the alternative model 7 infection
starts at the upper leaf 7 and proceeds to lower leaves in a manner similar to the original Tromas et al. [14]
model (D, eqn. (15)). Other alternative models are described in the Materials and Methods.
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• Alternative model 3. Infection for leaf 3 is given by eqn. (1) and dynamics of uninfected140

leaves is given by eqn. (3). Leaf 3 is the only leave that contributes to infections of higher141

leaves. Dynamics of infection in other leaves is described by the following equations:142

dIk
dt

= βIkSk + χkSkI3, k = 5, 6, 7. (7)

Initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise, and Sk(0) = 1.143

• Alternative model 4. The initial infection occurs on leaf 5 which contributes to infections of144

leaves 3, 6, and 7. All imported virions for these leaves come exclusively from leaf 5. Dynamics145

of uninfected leaves is given by eqn. (3). Dynamics of infection in other leaves is described by146

the following equations (see Figure 1C):147

dI5
dt

= βS5I5, (8)

dIk
dt

= βIkSk + χkSkI5, k = 3, 6, 7. (9)

Initial conditions for the model are Ik(0) = I0 if k = 5 and Ik(0) = 0, otherwise, and Sk(0) = 1.148

• Alternative model 5. The initial infection occurs on leaf 6 which contributes exclusively to149

the infections of leaves 3, 5, and 7. Dynamics of uninfected leaves is given by eqn. (3) and150

dynamics of infection in other leaves is described by the following equations:151

dI6
dt

= βS6I6, (10)

dIk
dt

= βIkSk + χkSkI6, k = 3, 5, 7. (11)

Initial conditions for the model are Ik(0) = I0 if k = 6 and Ik(0) = 0, otherwise, and Sk(0) = 1.152

• Alternative model 6. The initial infection occurs on leaf 7 which contributes exclusively to153

the infections of leaves 3, 5, and 6. Dynamics of uninfected leaves is given by eqn. (3) and154

dynamics of infection in other leaves is described by the following equations:155

dI7
dt

= βS7I7, (12)

dIk
dt

= βIkSk + χkSkI7, k = 3, 5, 6. (13)

Initial conditions for the model are Ik(0) = I0 if k = 7 and Ik(0) = 0, otherwise, and Sk(0) = 1.156

• Alternative model 7. The initial infection occurs on leaf 7 and virus accrues downward; it157

is essentially the model by Tromas et al. [14] being inverted. Dynamics of uninfected leaves158

is given by eqn. (3) and dynamics of infection in other leaves is described by the following159

equations (see Figure 1D):160
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dI7
dt

= βS7I7, (14)

dIk
dt

= βIkSk + χkSk

k∑
j=7

Ij, k = 3, 5, 6. (15)

Initial conditions for the model are Ik(0) = I0 if k = 7 and Ik(0) = 0, otherwise, and Sk(0) = 1.161

• Alternative model 8. The model assumes that infection starts in all leaves and proceeds162

independently (aka “logistic” model for individual leaves). Dynamics of infection in all leaves163

is described by the following equations:164

dIk
dt

= βkIk

(
1− Ik

ψk

)
, k = 3, 5, 6, 7, (16)

Initial conditions are Ik(0) = I0k , k = 3, 5, 6, 7. This model has 12 parameters to be estimated165

from the data.166

• Alternative model 9. In all previous models virus dissemination within a given leaf stops167

when the fraction of infected cells reaches ψk (e.g., eqn. (3)). This stop of infection is also168

observed in the data. However, specific mechanisms of why the infection stops while not all169

cells in the leaf are infected were not fully investigated. Therefore, in our alternative model we170

assume that the dynamics of virus infection in a given leaf are not infection level-dependent171

but instead time-dependent. We define Tk to be the time that the kth leaf accumulates the172

“immune response” to stop the spread of the virus inside it, and nk represents how quickly this173

immune response kicks in [32]. The dynamics of the infection is given by the same equations as174

in the Tromas et al. [14] model (eqns. (1)–(2)), and the dynamics of uninfected cells available175

for infection due to generation of the immune response in the kth leaf is given by176

Sk =
1

1 +
(

t
Tk

)nk
, (17)

where the initial conditions for the model are Ik(0) = I0 if k = 3 and Ik(0) = 0, otherwise.177

This model has 4 extra parameters as compared to other alternative models but the model178

can be reduced in size by assuming that some of the parameters (e.g., Tk or nk) to be leaf179

number-independent (see Main text for results). In such cases, the model has 10 parameters180

to be estimated from the data.181

Virus dissemination models for the infection/coinfection with two viral variants182

In the experiments, the plants were infected with an equal mixture of two viral variants, TEV-183

Venus and TEV-BFP [14]. However, the original model of Tromas et al. [14] and our previous184

alternative models did not discriminate between infection of the cells with two variants. The following185

alternative models now make this distinction. In these models we denote Vk and Bk as the fraction186
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of Venus-infected and BFP-infected cells, respectively, and the fraction of coinfected cells is denoted187

as Mk. Because our analysis illustrated that the specific pathway of TEV dissemination in 4-week-188

old tobacco plants cannot be fully resolved using infection data alone, we assume the dissemination189

pathway of Tromas et al. [14]. Then the dynamics of infection of plant leaves with the two viral190

variants we use the following equations:191

dVk
dt

= βV SkVk + χkSk

k−1∑
i=3

Vi, k = 3, 5, 6, 7, (18)

dBk

dt
= βBSkBk + χkSk

k−1∑
i=3

Bi, k = 3, 5, 6, 7, (19)

Sk =

{
1− Ik(t)

ψk
, Ik(t) < ψk,

0, Ik(t) ≥ ψk.
k = 3, 5, 6, 7, (20)

where βB and βV are the within-leaf infection rates for BFP and Venus viruses, respectively, and192

Ik(t) = Vk + Bk + Mk. Note that we assume that virus dissemination to upper leaves is strain-193

independent. The initial conditions for all the following models are Vk(0) = V0, Bk = B0, and194

Mk(0) = M0 if k = 3 and 0 otherwise. To describe the kinetics of viral coinfection we consider195

several alternative mathematical models.196

• 1-alpha coinfection model. In this model, we describe the coinfection growing as dependent197

on the within-leaf spread dynamics of both viruses. Here, and in other models VkBk is propor-198

tional to the rate at which coinfections are expected to arise by chance. We sum these these199

rates assuming that cells are first infected by one variant and then coinfected with another,200

and use a scaling factor α to indicate synergy (α > 1) or inhibition (α < 1) of the coinfection201

process as compared to random, mass action-like infection process:202

dMk

dt
= α(βBVkBk + βV VkBk), k = 3, 5, 6, 7. (21)

This model has 12 parameters.203

• 2-alpha coinfection model. We assume that the rate of coinfection may proceed differently204

by the two viral strains denoted by α1 and α2 which is a simple extension of the 1-alpha205

coinfection model (eqn. (21)):206

dMk

dt
= α1βBVkBk + α2βV VkBk, k = 3, 5, 6, 7. (22)

This model has 13 parameters.207

• Probabilistic model. Because Vk and Bk measure the fraction of cells infected by the par-208

ticular virus in the kth leaf, then for fraction of coinfected cells, Mk, we can think of the209

probability of a cell being infected by both strains as being determined by BkVk. We can then210

use parameter α to measure how much more or less often coinfection is happening as compared211
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with random chance: α = 1 means coinfection is behaving like a random process; α < 1 means212

coinfection is occurring less often than it would by random chance, and α > 1 means coinfection213

is occurring with greater frequency than random chance [33]. Multiplying by α the product214

BkVk and differentiating it with respect to t gives:215

d

dt
(αBkVk) = α

(
Bk
dVk
dt

+ Vk
dBk

dt

)
, (23)

which then with the use of eqns. (18)–(19) results in the following model for the dynamics of216

coinfected cells:217

dMk

dt
= α

[
SkVkBk(βB + βV ) + χkSk

(
Bk

k−1∑
i=3

Vi + Vk

k−1∑
i=3

Bi

)]
, k = 3, 5, 6, 7. (24)

This model has 12 parameters. Note that in contrast with previous models (e.g., eqn. (22)), in218

this model coinfection within the leaf depends on the fractions of uninfected (Sk) and virus-219

infected cells in the leaf (Vk and Bk).220

• 2-alpha probabilistic model. As in the original Tromas et al. [14] model, the equation221

for coinfection in the probabilistic model is composed of two parts (eqn. (24)): the first term222

with parameters βB and βV represents the within-leaf spread, and the second term with the223

parameter χk represents the leaf-to-leaf spread. It seemed reasonable that coinfection may224

be driven more by one form of spread or the other, so we used α1 and α2 to measure their225

respective contributions:226

dMk

dt
= α1SkVkBk(βB + βV ) + α2χkSk

(
Bk

k−1∑
i=3

Vi + Vk

k−1∑
i=3

Bi

)
, k = 3, 5, 6, 7. (25)

This model has 13 parameters.227

• Logistic model for coinfection growth. The details of how plant cells become coinfected228

by two different viruses during the local spread are not fully understood. Because typically229

plant viruses spread to adjacent cells via plasmodesmata, a coinfected cell may be a source230

of both viral strains when infecting neighboring cells. In this alternative model we therefore231

assume that the frequency of coinfected cells increases randomly due to viral dissemination232

systemically from other leaves and logistically due to local, within-leaf spread:233

dMk

dt
= α

[
SkMk(βB + βV ) + χkSk

(
Bk

k−1∑
i=3

Vi + Vk

k−1∑
i=3

Bi

)]
, k = 3, 5, 6, 7. (26)

This model has 12 parameters.234
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Figure 2: Examples of schematics of two alternative mathematical models for coinfection with two viruses.
These diagrams show the infection pathways of infection by TEV-Venus (Vk) or TEV-BFP (Bk) in the leaf 5
of the plants, and how these strains combine to form coinfected cells (Mk) in the 1-alpha coinfection model
(A, eqn. (21)) or 2-alpha probabilistic model (B, eqn. (25)). Major model parameters such as β and χk
have the same meaning as in the previous models (e.g., Figure 1). We only show what happens in leaf
5 because in the 2-alpha probabilistic model (B, eqn. (22)), the connections between higher leaves become
very complicated and difficult to illustrate in a figure such as this one. Like Figure 1, arrows represent
the transmission of virions. In the 1-alpha coinfection Model (A, eqn. (21)), coinfection comes from the
combination of the Venus and BFP viruses within leaf 5 only. In the 2-alpha probabilistic model (B, eqn.
(22)), coinfection comes also from the combination of Venus and BFP virions in leaf five, but is also fed by
the combination of virions imported from leaf 3 and combining with their opposite, e.g. Venus from leaf
3 combining with BFP from leaf 5. Two separate alpha terms are used to distinguish dynamics between
within-leaf growth and infection from virions imported from lower leaves.

• 2-alpha logistic model for coinfection growth. Similarly to the 2-alpha probabilistic235

model, the rate of coinfection may be different between local and systemic viral spread (eqn.236

(25)). Therefore, we use α1 and α2 to differentiate between coinfection occurring as within-leaf237

and leaf-to-leaf/systemic spread, respectively:238

dMk

dt
= α1SkMk(βB + βV ) + α2χkSk

(
Bk

k−1∑
i=3

Vi + Vk

k−1∑
i=3

Bi

)
, k = 3, 5, 6, 7. (27)

This model has 13 parameters.239

Statistical treatment240

To fit models to data we used two alternative approaches. Tromas et al. [14] proposed to use the241

following binomial distribution-based likelihood to fit the models to data242
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L(Ik,p,t|Ak,p,t, Vk,p,t) =
∏
k,t,p

I
Vk,p,t
k,p,t (1− Ik,p,t)Ak,p,t−Vk,p,t , (28)

where L is the likelihood of the model given the data, Ik,t,p is the model prediction for the frequency243

of infection (by either or both viral variants) of the particular leaf k and time point t of a plant p,244

Vk,p,t is the number of infected cells observed in a sample, Ak,p,t is the total number of cells observed245

in the sample (k is the leaf number, p = 1 . . . 5 is the plant replicate number, and t is the day on246

which the observation was made). The model parameters are estimated by minimizing the negative247

log likelihood nll248

nll = −
∑
k,t,p

(
Vk,p,t log(Ik,p,t) + (Ak,p,t − Vk,t,p) log(1− Ik,t,p)

)
. (29)

In the “coinfection” models we track the dynamics of cells infected with individual viral strains as249

well as coinfected cells. In these models IVk,p,t , IBk,p,t
, IMk,p,t

represent the model predictions for the250

frequency of Venus- or BFP-infected, or coinfected cells, respectively. Therefore, to fit the coinfection251

models to data we extended the binomial distribution-based likelihood in the following way. We let252

VVk,t,p , VBk,t,p
, VMk,t,p

be the number of cells infected by Venus, BFP, or both, respectively, as was253

measured experimentally. Note that Vk,t,p = VVk,t,p + VBk,t,p
+ VMk,t,p

. Then we let254

nllV = −
∑
k,t,p

(
VVk,p,t log(IVk,p,t) + (Ak,p,t − VVk,t,p) log(1− IVk,t,p)

)
, (30)

nllB = −
∑
k,t,p

(
VBk,p,t

log(IBk,p,t
) + (Ak,p,t − VBk,t,p

) log(1− IBk,t,p
)
)
, (31)

nllM = −
∑
k,t,p

(
VMk,p,t

log(IMk,p,t
) + (Ak,p,t − VMk,t,p

) log(1− IMk,t,p
)
)
, (32)

and nll is simply255

nll = nllV + nllB + nllM , (33)

where the best fit parameters are found by minimizing the nll.256

Binomial distribution-based likelihood takes into account the number of cells (protoplasts) ex-257

tracted from each leaf. The total number of extracted cells varied dramatically between leaves (by258

up to 8 fold). It was therefore possible that different numbers of cells in the data may skew the259

likelihood-based estimates towards measurements with more cells. We therefore aimed to investigate260

whether other methods, e.g., assuming normally distributed data, i.e., normal distribution-based261

likelihood or least squares, can be used to fit the models to data. We tried several different ways of262

how least squares could be used to fit the models to data.263

One approach is to use the frequency of infected cells Ik,t,p as predicted by the mathematical264

model with the data Vk,t,p/Ak,t,p. For the models that only consider uninfected and infected cells265
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(i.e., cells infected with either viral variant or coinfected with both variants), the sum of squared266

residuals (SSR) was then calculated as follows:267

SSR =
∑
k,t,p

(
Vk,t,p
Ak,t,p

− Ik,t,p
)2

. (34)

In our analyses we found that such a method does not typically result in normally distributed268

residuals (see Results section for details). Given large variability in the frequency of infected cells269

over time we applied log-transformation to the data and the model predictions and calculated the270

SSR using the following formula:271

SSRLog =
∑
k,t,p

(
log

(
Vk,t,p
Ak,t,p

)
− log (Ik,t,p)

)2

, (35)

where the notations are the same as in eqn. (34). Log-transformation of the data, however, is272

problematic because in 2 cases of leaf 5 infection, the measured frequency of infected cells was 0.273

One approach was to remove such data points from the analysis but data removal can generate biases274

in the model fits, and therefore, we opted for a more appropriate approach whereby we replaced zeros275

in the data and the model predictions with the limit of detection (LOD). LOD in the data for infected276

cells was defined as the lowest value of the frequency of infected cells found in the data (for infected277

cells LOD = 5.12× 10−4).278

Similarly to eqn. (33) we used the following definition for SSR to fit the coinfection models to the279

data on the frequency of cellular infection with Venus (VVk,t,p), BFP (VBk,t,p
) or both viruses (Mixed,280

VMk,t,p
)281

SSR =
∑
k,t,p

(
VVk,t,p
Ak,t,p

− IVk,t,p
)2

+
∑
k,t,p

(
VBk,t,p

Ak,t,p
− IBk,t,p

)2

+
∑
k,t,p

(
VMk,t,p

Ak,t,p
− IMk,t,p

)2

, (36)

and the following is the log-transformed variant (eqn. (37)):282

SSRLog =
∑
k,t,p

(
log

(
VVk,t,p
Ak,t,p

)
− log

(
IVk,t,p

))2

+
∑
k,t,p

(
log

(
VBk,t,p

Ak,t,p

)
− log

(
IBk,t,p

))2

+

∑
k,t,p

(
log

(
VMk,t,p

Ak,t,p

)
− log

(
IMk,t,p

))2

, (37)

where data in which the frequency of infected cells was zero, we replaced these zero values with283

the LOD for frequency of cells infected with different viral variants as LODV enus = 8.43 × 10−5,284

LODBFP = 3.26× 10−4, and LODMixed = 3.2× 10−5.285

For binomial distribution-based likelihood, confidence intervals for best fit parameters were es-286

timated by bootstrapping the data with replacement (sampling a given plant) 1000 times [34]. For287
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least squares, we used routine minimize from the python library lmfit that provided 95% confidence288

intervals for the estimated parameters.289

To compare alternative mathematical models we used Akaike Information Criterion, AIC, that290

are calculated differently for binomial distribution- and normal distribution-based (least squares)291

likelihoods [30]:292

AICLik = 2Npar − 2 ln(L) = 2nll + 2Npar, (38)

AICLS = N log

(
SSR

N

)
+ 2Npar, (39)

AICLSlog
= N log

(
SSRLog

N

)
+ 2Npar, (40)

where N is the number of data points in the sample (in this case N = 80), and Npar is the number of293

model parameters estimated by fitting the model to the data. Note that AIC differences of 0-4 are294

typically considered to be small while a difference of 10 indicates inferiority of the model in describing295

the data [30].296

If plant cells are infected randomly by two different strains of the virus we expect that the297

frequency of coinfections with two viruses should be proportional to the product of the frequency of298

infections with single viral strains. To estimate the deviation from the random coinfection we used299

Odds Ratio of infection (OR) proposed previously to estimate deviation from random coinfection for300

HIV [33]:301

OR =
(Ak,t,p − Vk,t,p)×Mk,t,p

VVk,t,p × VBk,t,p

, (41)

where Ak,t,p − Vk,t,p is the number of uninfected cells and Vk,t,p = VVk,t,p + VBk,t,p
+ VMk,t,p

is the total302

number of infected cells in the data for the kth leaf, time point t, and plant p.303

Programming details304

All major analyses were done in Python (ver. 3.7.2) and some analyses were repeated in R (ver.305

3.9.1). Python libraries used were matplotlib (ver. 3.3.2), Pandas (ver. 1.1.3), NumPy (ver. 1.19.0),306

lmfit (ver. 1.0.1), and SciPy (ver. 1.5.2). To solve the ODE-based models we used the odeint307

routine from scipy.integrate package. To fit models to data we used a differential evolution308

algorithm when the goodness of fit metric was nll, and when minimizing least squares residuals we309

used the Levenberg-Marquardt algorithm with a trust region. Both methods are part of Python’s310

lmfit library. To ensure reproducibility of our results as a part of this publication we share the data311

and the code to fit the original virus dissemination model to data using either binomial distribution-312

based likelihood or least squares, and the code to illustrate the impact of various parameters on the313

virus dynamics according to the 2-alpha probabilistic model (eqn. (25)).314
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Results315

The experimental dataset of the kinetics of TEV spread316

In their original study, Tromas et al. [14] manually introduced two different strains of TEV to317

the third leaf of the 4 week old tobacco plants and counted the number of infected and uninfected318

cells in different leaves (k = 3, 5, 6, 7) of the infected plants over time (t = 3, 5, 7, 10 days). Given319

that plant cells are immotile and are surrounded by cellulosic cell walls, viruses can infect other320

cells in the leaf via two ways: 1) by passing through pores in the cells’ membranes and cell walls321

(called plasmodesmata) creating portals between adjacent cells, or 2) by entering the vasculature322

and migrating with phloem to other (sink) leaves of the plant [35]. Over time, the viral infection323

disseminates unequally between the leaves (Figure 3 and Supplemental Figure S1). In particular,324

only about 10% of all cells in the originally inoculated leaf 3 become infected by 10 days of infection325

(Figure 3A), while on average 30% of cells become infected in leaves 6 and 7 (Figure 3C-D).326

Interestingly, leaf 5 becomes minimally infected (Figure 3B), and infection did not spread to leaf 4327

[14]. There was great variability between infection of leaves in individual plants; for example, in leaf328

7 by day 10 less than 10% of cells were infected in one plant while over 40% were infected in another329

plant (Figure 3D).330
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Figure 3: Previously published parameter estimates in Tromas et al. [14] do not provide a reasonable
description of the data. We simulated basic mathematical model for viral spread in plants developed by
Tromas et al. [14] (given in eqns. (1)–(3) and Figure 1A) using parameter values provided in the original
publication (solid lines), or fitted the model to the data using binomial distribution-based likelihood method
(eqn. (29), dashed lines). Data for the fraction of infected cells are shown by markers for leaf 3 (A), leaf 5
(B), leaf 6 (C), and leaf 7 (D) with red horizontal lines denoting average fraction of infected cells per time
point. Parameters for the model fits are shown in Table 1.

13



Model with Tromas et al. [14] parameter values does not match the data331

To estimate basic parameters determining kinetics of TEV spread in tobacco plants, Tromas et al.332

[14] developed a mathematical model assuming that virus infection proceeds locally in each leaf and333

spreads from lower to upper leaves (Figure 1A). Via several model iterations, the model in which334

within-leaf virus spread was leaf number-independent but the virus transport to upper leaves from335

the lower leaves was leaf number-dependent, fitted the data with best quality [14].336

Original parameters (nll) New parameters (nll) New parameters (log LS)

Parameter Estimate 95% CIs Estimate 95% CIs Estimate 95% CIs

I0 0.00372 (0.001,0.017) 0.00022 (0.00011,0.00108) 0.0005 (0.0001,0.0008)
β, 1/day 0.871 (0.257,1.66) 0.950 (0.549,1.183) 0.902 (0.730,1.618)
χ5, 1/day 0.724 (0.033,0.813) 0.167 (0.042,17.291) 0.063 (0.023,0.162)
χ6, 1/day 1.38 (0.580,2.340) 1.046 (0.228,1.487) 0.691 (0.387,1.053)
χ7, 1/day 0.107 (0.050,0.263) 0.029 (0.009,0.160) 0.029 (0.015,0.051)

ψ3 0.083 (0.053,0.147) 0.080 (0.074,0.134) 0.074 (0.051,0.096)
ψ5 0.018 (0.002,0.050) 0.016 (0.005,0.024) 0.006 (0.004,0.010)
ψ6 0.233 (0.155,0.345) 0.224 (0.203,0.287) 0.204 (0.181,0.234)
ψ7 0.286 (0.234,0.346) 0.269 (0.130,0.418) 0.224 (0.092,0.557)

Table 1: New parameter estimates for the basic mathematical model of virus spread in plants. We list
the parameter estimates and 95% confidence intervals (CIs) of the basic mathematical model of viral spread
in plants (eqns. (1)–(3)) as provided by Tromas et al. [14] (“Original parameters (nll)”) or by fitting the
model to data in this work using using binomial distribution-based likelihood (“New parameters (nll)”, eqn.
(29)) or using least squares with a logarithmic transform (“New parameters (log LS)”, eqn. (35)). Fits
of the mathematical model for two sets of model parameters are given in Figures 3 and 4. Confidence
intervals for best fit parameters were generated using bootstrap by resampling the data (for likelihood-based
fits) or were provided by the routine minimize in from python library lmfit for least square-based fits (see
Materials and methods for more detail).

To verify these results we simulated virus spread dynamics using Tromas et al. [14] published337

model equations (eqns. (1)–(3)) and parameter values (Table 1) and compared model predictions338

with the data (provided by Tromas et al. [14]). Surprisingly, the model predictions did not match the339

average infection levels observed in the data (solid lines in Figure 3). While we did not fully know the340

exact reasons for this discrepancy, we found that if we were to shift the infection trajectories predicted341

by the model by 3 days, the model predictions matched the data relatively well (Supplemental342

Figure S2). We therefore hypothesize that when numerically solving the model, Tromas et al. [14]343

may have initiated the solver starting at day 3 post infection given that it is the first time point at344

which experimental measurements were taken. (It is typical to obtain model predictions for times as345

given in the data, and solvers in R or python typically take the first time point as the time at which346

initial conditions are provided and not at the time 0 as is often assumed in models.)347

To check that the virus dissemination model of Tromas et al. [14] is consistent with experimental348

data we fitted the model to the data using binomial distribution-based likelihood (see Materials and349

Methods for more detail). Importantly, the model fitted the data visually with good quality (dashed350

lines in Figure 3) indicating consistency of the model with the data. Interestingly, while some model351

parameters, such as ψk, varied little between the original and corrected values, others such as I0 or352

χk differed substantially (Table 1). While confidence intervals for newly estimated parameters of353
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the Tromas et al. [14] model are a bit large, we found that there is large difference in AICLik for this354

model when used with previously published Tromas et al. [14] parameters and our new estimates355

(∆Lik > 100, results not shown). Thus, our analysis provided updated and correct estimates of356

parameters characterizing kinetics of TEV spread in tobacco plants in the Tromas et al. [14] model.357

Fitting the models using binomial distribution-based likelihood or normal358

distribution-based likelihood (least squares) delivers similar parameter359

estimates360

In their study, Tromas et al. [14] proposed the use of binomial distribution-based likelihood to fit361

the models to data. In this approach, the probability of a plant cell being infected was treated as a362

Bernoulli trial in which A total cells are sampled, and the number of infected cells V is determined.363

While it seemed reasonable it was not fully justified why such a likelihood is a good choice. There364

may be several potential issues with it. First, because there was a large variability in the total number365

of cells recovered from different leaves (from minimal 4314 to maximal 32168 protoplasts/leaf), the366

data are unbalanced. Sources of such variability, however, are not entirely clear and may be due to367

variation of leaf sizes but also may be related to difficulty of isolating protoplasts from leaves [36].368

Parameter estimates may be biased if the fit favors better description of the data with the larger369

number of isolated cells. Second, while the large number of cells isolated may indicate certainty in370

estimation of the frequency of infected cells in a sample, there is a great variability in frequency of371

infected cells in the same leaf number between individual plants (e.g., Figure 3D), and binomial372

distribution-based likelihood may not adequately take such variability into account. Third and finally,373

given that a relatively large number of cells was measured in each leaf (> 103), the distribution of the374

fraction of infected cells per central limit theorem may approach normal distribution, and therefore,375

one could use a normal distribution-based likelihood (least squares) for fitting models to data.376

Therefore, we fitted the Tromas et al. [14] model (eqns. (1)–(3)) to the data using several dif-377

ferent versions of least squares (see eqns. (34)–(35) and Materials and Methods for more detail).378

Surprisingly, independent of the method used, the model predictions of the binomial distribution-379

based fits or least squares fits were nearly identical (e.g., Figure 4) and with a minimal, statistically380

non-significant difference in the parameter estimates for both fits (Table 1). Therefore, this result381

suggests that it may be reasonable to use least squares (or more generally, normal distribution-382

based likelihood) to fit virus dissemination models to these data. We did, however, find that not383

all least squares-based methods were appropriate. In particular, least squares with the frequency of384

infected cells resulted in skewed, non-normally distributed residuals (Shapiro-Wilk test, W = .785,385

p = 1.887 × 10−9). Some of the traditional approaches, for example the arcsin(
√
x) transformation386

for the frequency of infected cells did not normalize the residuals (W = 0.803, p = 5.745 × 10−9),387

however, log-transformation in which zero values were replaced with the limit of detection (LOD,388

see Materials and Methods for more detail) nearly did (W = 0.963, p = 0.021). Therefore, this389

analysis suggests that log-transformation of the data and model predictions is a viable alternative to390

the binomial distribution-based likelihood method of Tromas et al. [14] that may better account for391

variability in the frequency of infected cells between individual plants.392
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Figure 4: Best fits of the basic mathematical model found using either binomial distribution-based like-
lihood or least squares are nearly identical. We used either binomial distribution-based likelihood method
(eqn. (29), [14]) or least squares for log-transformation of the data and model predictions (eqn. (35)) to
fit the basic mathematical model (eqns. (1)–(3)) to the virus spread data for leaf 3 (A), leaf 5 (B), leaf
6 (C) and leaf 7 (D). Data on proportion of virus-infected cells are shown by markers and lines are the
predictions of best fit models. Parameters for the model fit using likelihood and least squares with the log
transform are given in Table 1 (“New parameters (nll)” and “New parameters (Log LS)” columns, respec-
tively). In fitting the models using least squares for log-transformed data, the limit of detection (LOD) was
LOD = 5.12× 10−4.

An alternative model with variable within-leaf replication kinetics is con-393

sistent with observed viral spread kinetics394

In their analysis Tromas et al. [14] investigated which parameters of the virus dissemination model395

may vary with the leaf number. By comparing alternative models they found that ψ and χ must be396

leaf-dependent to explain the data accurately. However, in that analysis they did not investigate if397

differences in virus dissemination may be due to variable within-leaf replication kinetics, determined398

by the parameter β, and not due to virus dissemination rate between leaves χ. Interestingly, we399

found that the alternative model (based on eqns. (1)–(3)) in which βk and ψk vary with the leaf400

number k (i.e., virus dynamics in a given leaf is determined mainly by the local spread in the leaf)401

while systemic dissemination of the virus to upper leaves is constant (χk = χ) fitted the data with402

similar quality (as judged by SSR or AIC) as the original model. This alternative model has an403

extra parameter because of four β for four leaves studied while in the original model χ was defined404

for three leaves only. Yet, this result already suggested that the data on variable virus accumulation405

in different leaves can be explained equally well by differences in how much virus is delivered to upper406

leaves (χk) or by differences in how the virus replicates and spreads in individual leaves (βk).407
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Fitted with least squares method (Log transformation & 0 ≡ LOD)
Parameter Original Alt. Alt. Alt. Alt. Alt. Alt. Alt.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

I0 0.0005 0.0008 0.0006 0.0001 0.00006 0.0008 0.0005 0.0005
β, 1/day 0.902 0.744 0.871 1.299 1.050 1.028 1.116 1.159
χ3, 1/day N/A N/A N/A N/A 1.672 0.133 1.541 0.286
χ5, 1/day 0.063 0.059 0.059 0.322 N/A 0.025 0.277 0.050
χ6, 1/day 0.691 8.201 8.025 3.987 3.663 N/A 3.079 3.263
χ7, 1/day 0.029 0.073 0.749 0.477 0.332 0.026 N/A N/A
ψ3 0.074 0.083 0.075 0.072 0.060 0.059 0.055 0.051
ψ5 0.006 0.006 0.006 0.005 0.006 0.006 0.005 0.005
ψ6 0.204 0.204 0.199 0.194 0.201 0.215 0.189 0.184
ψ7 0.224 0.228 0.238 13.000 0.215 0.211 0.218 0.209

SSRLog 52.713 51.991 52.255 55.612 54.468 55.148 55.486 56.309
AICSSRLog

-15 -16 -16 -11 -13 -12 -11 -10
∆AIC 1 0 0 5 3 4 5 6

W 0.963 0.959 0.960 0.973 0.969 0.973 0.972 0.973
p 0.021 0.012 0.013 0.099 0.049 0.091 0.080 0.084

Table 2: Several alternative models provide similar fits of the virus spread data with different parameter
sets. We fit seven alternative models for virus spread kinetics (given in eqns. (4)–(15)) to the data on viral
spread in plants using least squares with a logarithmic transform (see eqn. (35)). Along with parameter
values for every model we provide the total error (SSRLog), AICLSLog

, and ∆AIC (difference in AIC between
the model with the lowest AIC and all other models). We also show the results of the Shapiro-Wilk normality
test (W and p value) applied to the residuals of the fitted models.
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Alternative models with differing patterns of viral dissemination are408

largely consistent with observed viral spread kinetics409

We next questioned whether a specific pattern of virus dissemination from the inoculated leaf410

3 to the upper leaves can be determined from these experimental data. While there is a general411

understanding of how viruses in plants disseminate after a local infection (e.g., [28]) details of the412

dissemination may vary by the plant species, age, conditions in which the plant was grown, the virus413

species, inoculation method, and many other details. For example, the time when individual leaves414

become sources or sinks for sugar transport – which will influence virus dissemination pathways415

– depends on many environmental and developmental factors [27]. Because many of these details416

are unknown for a specific experimental set-up, we investigated if the information provided by the417

experimental data on the fraction of infected cells in individual leaves over time is sufficient to418

establish a pattern for systemic viral dissemination.419

Therefore, we developed a series of alternative mathematical models in which the pattern of virus420

dissemination differed in multiple ways from the original dissemination model of Tromas et al. [14]421

(Figure 1B-D and eqns. (4)–(17)) and fitted these models to data. For example, alternative model422

1 assumed that virus dissemination to upper leaves occurs only from the leaf below it, i.e., from leaf423

3 to leaf 5, and then from leaf 5 to leaf 6 and so on (Figure 1B). Alternative model 7 assumed that424

even though virus inoculation occurred at leaf 3, via access to vasculature, the virus immediately425

disseminated to leaf 7, and then spread to lower leaves (Figure 1D and see Materials and Methods426

for details for other models). Some of these alternative models should not be necessarily considered427

as inappropriate because, for example, at day 3 after infection, leaf 6 on average had already nearly428

twice the frequency of infected cells as leaf 3 (0.014 vs. 0.009).429

Finding the best fit model depended strongly on the statistical method used for fitting models430

to data. For example, using binomial distribution-based likelihood method suggested that best fit is431

provided by the alternative model 2 with the Tromas et al. [14] model fitting the data significantly432

worse (Supplemental Table S1,∆AIC = 290). We hypothesize that this result arose because of433

the high sensitivity of such a likelihood function to the experimental measurements, especially at the434

low frequency of infected cells. In contrast, fitting the models to data using least squares (eqn. (34))435

provided fits of all models with identical quality (results not shown). This result was driven by the436

need of the models to more accurately fit the data with high frequency of infected cells in leaves 6437

and 7 at later time points, at the expense of poorer fits of other data. These fits, however, were not438

adequate due to non-normally distributed residuals as was observed when fitting Tromas et al. [14]439

model to data (see above). Finally, fitting the models to log-transformed data (and replacing the440

zero values with the LOD) provided a more graded classification of alternative models (Table 2).441

In particular, three models (original and alternative models 1&2) assuming that virus dissemination442

starts from leaf 3 provided better fits (based on AIC) than the models assuming that spread starts443

from upper leaves (e.g., alternative model 7). Interestingly, the quality of the model fits deteriorated444

as the models assumed virus dissemination did not originate from leaf 3 — i.e., the models in which445

dissemination started at leaf 5 or 6 fitted the data with better quality than the model in which446

dissemination started at leaf 7 (Table 2 and Supplemental Figure S3). This result suggests447

that the data on virus dissemination does contain the signal indicating the virus most likely starts448

spreading from leaf 3 upwards; however, the strength of such a statement from our mathematical449

modeling-based analysis is relatively weak. Thus, these experimental data do not provide strong450

evidence for a specific route of TEV dissemination in tobacco plants. There is some good news,451

however. Some parameters appear to be robustly estimated in all the models such as β and ψk; that452
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is perhaps unsurprising given that these parameters determine within-leaf viral spread.453

Alternative models incorporating independent replication or immune re-454

sponses are also consistent with observed viral spread kinetics455

We tested two additional alternative models for how well they may describe the data. Alternative456

model 8 assumed that upon virus inoculation, virus disseminates to all leaves and then replicates457

in individual leaves independently of other leaves, as described by the logistic equation (eqn. (16)).458

Alternative model 9 assumed that reduction in the fraction of susceptible cells in a leaf is not459

determined by the fraction of infected cells but by the time since infection (eqn. (17)). The rationale460

for this modification is that it is possible that infection induces generation of a local or systemic461

immune response after a delay Tk which renders uninfected cells resistant to infection [32]. Both of462

these alternative models fitted the data well based on SSR or AIC metrics (Supplemental Table463

S2). Interestingly, the time-dependent cell susceptibility model suggested that differences in how464

quickly cells become resistant is leaf-dependent (Supplemental Table S2); however, this could be465

due to differences in the timing of initiation of immune responses and/or virus“arrival” in a given466

leaf (determined by Tk) or the speed at which uninfected cells in the leaf are rendered resistant467

(determined by nk). Taken together, our results strongly suggest that multiple pathways of TEV468

dissemination and growth in individual leaves in the tobacco plants are consistent with the data and469

additional experiments and/or data need to be involved to eliminate unreasonable models [37].470

Odds ratio test implies a higher than random rate of coinfection471

Our modeling-based analysis so far and that of Tromas et al. [14] treated cells in our data as472

infected or uninfected. However, in their experiments Tromas et al. [14] measured the fraction of cells473

infected with either or both of two viral strains of TEV, Venus or BFP (see Materials and Methods for474

more detail). Virus coinfection may impact many facets of viral dynamics and growth. A paramount475

consequence of two or more virions infecting the same cell simultaneously is that it may result in476

production of recombinant variants, which has been well documented for human immunodeficiency477

virus (HIV) [38, 39]. In particular, in acute HIV infection, variants representing recombinants of478

infecting/founding strains, arose rapidly within a few months; interestingly, a simple mathematical479

model predicted that accumulation of the variants can be simply due to random coinfection of the480

susceptible cells by two viral variants [40]. Dang et al. [33] investigated whether infection of CD4481

T cells in culture occurs randomly by two different HIV variants, HIV-eGFP and HIV-IHSA. The482

authors proposed an odds ratio (OR) metric to estimate deviation of the rate of cell coinfection483

with two viruses as compared to single infections (eqn. (41)). Interestingly, in all their experiments484

with 2 HIV strains and different types of target T cells OR > 1 (typically, OR = 2− 8), suggesting485

that coinfections were observed more often than single infections [33]. The authors explained this486

result by variability in CD4 T cell susceptibility to infection with susceptible cells being more easily487

infected with the two variants. A similar result was found later in another study [41]. Given our rich488

dataset on the dynamics of coinfection of plant cells with two variants of TEV we calculated the OR489

(eqn. (41)) for every leaf and every time point in our data.490

Interestingly, we found very high values for OR for most of the data, all exceeding one, with491

many values being in the range 10-100 (Figure 5). Note that in some cases, mostly for leaf 5, we492

could not calculate OR due to absence of coinfected cells (Figure 5B). OR of 10 to 100 is much493

higher than that found previously for HIV [33]. There may be several reasons for that. First, it is494
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Figure 5: There is a high degree of coinfection of individual leaf cells by two different viruses. For each
leaf we calculated the odds ratio (the relative probability of a cell being coinfected by two different viruses
as compared to infection rate of cells by individual viruses, eqn. (41)) using a previously published method
[33]. Note that when infection proceeds randomly, the expected odds ratio is 1. Resulting odds ratio for
individual plants are shown for leaf 3 (A), leaf 5 (B), leaf 6 (C), and leaf 7 (D); lines connect the average
values per time point. Missing values (when odds ratio could not be calculated) are denoted as crosses.
Spearman-Rank correlation ρ of the change in odds ratio with time per leaf and p-values from the test
(ρ = 0) are shown on individual panels (when calculating ρ missing values were excluded).

possible that there is a high degree of variability in susceptibility of different plant cells to infection,495

and cells that are highly susceptible get infected with both variants easily. We also found that there496

is a significant decline in OR with time of infection for all but leaf 5; this decline is consistent with497

the hypothesis that initially highly susceptible cells are infected resulting in high OR which declines498

as more resistant cells are infected (Figure 5). Alternatively, the mode of virus transmission within499

the leaf may have played a major role. Indeed, in plants viruses are transmitted from the infected500

cell to adjacent cells via plasmodesmata, and if a cell is coinfected with two variants, it is possible501

that all new infections occur by both variants simultaneously [35]. Finally, if infection of cells occurs502

sequentially, infection with one variant may suppress any potential antiviral activity in the cell,503

allowing that cell to be coinfected with another variant [42–44]. To further test these hypotheses we504

used mathematical modeling.505

A probability-based coinfection model performs best compared to other506

coinfection models507

Given that many alternative mathematical models are consistent with the pathway of systemic508

virus dissemination (Table 2) to investigate potential mechanisms of TEV coinfection dynamics in509

different leaves we decided to fix the details of virus dissemination between leaves to those provided510

in the previous study [14], i.e., we let the virus infection to be initiated in the leaf 3 and dissemination511

to upper leaves to depend on the infection frequency of leaves below (Figure 1A and eqns. (1)–(3)).512

To describe how coinfected cells are generated we developed six alternative “coinfection” models (see513
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Figure 2 for 2 examples, eqns. (21)–(27), and Materials and Methods for more detail). In the first,514

1-alpha coinfection model, dynamics of coinfected cells are driven only by the within-leaf frequency515

of cells infected with either of two variants with the parameter α determining deviations of the516

coinfection from random (Figure 2A and eqn. (21)). A simple extension of this model was to allow517

for different efficacies of coinfection depending of which virus infected the susceptible cell first (eqn.518

(22)). Two other models assumed that coinfection may happen via two different pathways: local,519

within-leaf infection dependent on the frequency of single-infected cells and uninfected cells and via520

between leaf virus dissemination, with either identical (α) or different (α1 and α2) weights for this521

coinfection processes (Figure 2B and eqns. (24)–(25)). Finally, the third set of two models assume522

that coinfection due to within-leaf dynamics occurs due to coinfected cells transmitting both viral523

variants to susceptible cells, and due to between-leaf dynamics occurs similarly as in the previous524

model. We similarly assume that these two processes may proceed with different deviations from a525

random process which is captured by parameters α1 and α2 (eqns. (26)–(27)).526

Parameters 1-a Prob. 2-a Prob. 1-a Coin. 2-a Coin. 1-a Log. 2-a Log.
eqn. (24) eqn. (25) eqn. (21) eqn. (22) eqn. (26) eqn. (27)

nll 512112 511728 519132 525576 515892 517656
AICLike 1024246 1023480 1038286 1051176 1031806 1035336
∆AIC 766 0 14806 27696 8326 11856

SSRLog 339.459 269.521 335.169 514.719 421.662 477.806
AICSSRLog

109 56 106 211 161 193
∆AIC 53 0 50 155 105 137

Table 3: The 2-alpha probabilistic model fits the coinfection data with best quality. We fitted a series
of mathematical models (see Materials and methods and Figure 2) that make different assumptions on
how coinfection of individual cells with two different viruses occur to the data on viral spread. The models
were fitted using the binomial distribution-based likelihood method (eqn. (33)) or the least squares method
with a log transform of the data (eqn. (37)). AICs were calculated using eqn. (38) and eqn. (40), for the
likelihood and least squares methods respectively. Values for nll, AICLik, and AICLSLog

were rounded to
the nearest whole number. ∆AIC for both methods are calculated by taking the AIC score from the model
and method in question and subtracting it from the lowest AIC in its corresponding row. In fitting models
using least squares to log-transformed data we used the following values for the limit of detection of the
frequency of infected cells: LODV enus = 8.43× 10−5, LODBFP = 3.26× 10−4, and LODMixed = 3.2× 10−5.

We fitted these models to experimental data using two alternative approaches, log-transformed527

least squares (with LOD replacements of zero values) and binomial distribution-based likelihood,528

both extended to account for singly and co-infected cells in each leaf (see eqn. (37) and eqn. (33) in529

Materials and methods for more detail). The 2-alpha Probabilistic model (eqn. (22)) was the best530

performing model when fitted by either method (Table 3). Importantly, with both methods the531

basic models assuming that coinfections occur randomly, due to within-leaf coinfection of cells poorly532

described the data (Table 3 and Supplemental Figure S4).533

We also fitted the models using the least squares method for raw, untransformed frequencies of534

infected cells, but these fits poorly described the dynamics of coinfected cells (see “AllMaterialsAnd-535

Methods.xlsx” in https://github.com/Plant-Virus-Spread/Models-And-Tools/tree/7553fd98261d1c4b4e75bd3f0cfac4fb49067174).536

We reasoned that this is because there are typically fewer coinfected cells than single-infected cells,537

and this least squares method favored fitting the dynamics of single-infected cells with better quality538

(due to their higher abundance). In this specific case, a statistical model based on untransformed539
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least squares does not appear to be adequate.540
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Figure 6: The 2-alpha Probabilistic Model fits the coinfection data with best quality. The 2-alpha Prob-
abilistic Model (eqns. (18)–(19) and eqn. (25)) assumes that coinfection of individual cells by two different
strains depends on the level of uninfected cells in the leaf (Sk) and that local coinfections in the leaf occur at
different kinetics that coinfection between leaves (Figure 2B). We fitted this model to the data on infection
of cells by either individual viruses or coinfection of the same cell by different viruses. The model was
fitted using the binomial distribution-based likelihood method (eqn. (29)). Markers show frequency of cells
infected with Venus or BFP viruses or coinfected with both viruses (“Mixed”), and lines are predictions of
the mathematical model. The short horizontal bars show the average infection rate for a given virus variant
for a particular day and infected cell type. The parameters providing the best fit and their 95% confidence
intervals (estimated using by boostrapping the data) are as follows: V0 = 0.0002 (2 · 10−5, 0.001), B0 =
0.0002 (2 · 10−8, 0.001), M0 = 0.0008 (0.0, 0.001), βV = 0.975 (0.606, 10)/day, βB = 0.835 (0.426, 10)/day,
χ5 = 0.116 (0.004, 9.522)/day, χ6 = 0.858 (0.0001, 10)/day, χ7 = 0.031 (0.0001, 10)/day, ψ3 =
0.073 (0.040, 0.118), ψ5 = 0.016 (0.003, 0.260), ψ6 = 0.223 (0.124, 0.260), ψ7 = 0.247 (0.067, 0.400),
α1 = 10.120 (3.686, 16.275), α2 = 0.814 (0, 20).

With both of the appropriate methods we found that the 2-alpha probabilistic model fits the data541

with best quality, and the next best, 1 alpha probabilistic model performed significantly worse (per542

AIC scores, Table 3). Indeed, the best fit model could very accurately describe the dynamics of543

single- and co-infected cells and predicted a more rapid increase in the coinfected cells for leaf 6 and544

7 than that for single-infected cells (Figure 6). Unfortunately, we found relatively wide confidence545

intervals for estimates of many of these parameters except ψk suggesting that the amount of data546

available was relatively low, and increasing the number of time points and/or plant repeats may have547

allowed for more precise estimates. We should note, however, that mean estimates for within-leaf548

infection rates βV and βB and between-leaf spread rates χk were very similar to those found when549

fitting Tromas et al. [14] model to the data on infected cell dynamics (Table 1) lending some support550

that our model parameters are not unrealistic. Excitingly, we found that for within-leaf virus spread,551

coinfection rate was much higher than cell infection by single viruses (α1 = 10.1) supporting our552

analysis using odds ratio (Figure 5). The between-leaf coinfection rate was not different from the553
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random model (α ≈ 1) suggesting that most coinfection events were driven by within-leaf dynamics554

and not due to transfer of viruses systemically. This, perhaps, makes sense because locally it is easier555

for one cell to be coinfected by 2 viruses while when viruses enter the leaf at random locations due556

to systemic dissemination, coinfection is expected to be rare.557

Both probabilistic models assume that the dynamics of coinfection within the leaf depends on the558

product of frequency of cells infected with either of two viral variants and the frequency of uninfected559

cells in the leaf (eqn. (25)). We found that removing Sk term in these models resulted in significantly560

poorer fit of the data (results not shown). Intuitively, the frequency of uninfected cells drives the dy-561

namics of infection and when Sk approaches 0, infection of the leaf mostly stops, thus over-predicting562

the data. However, when such a term is absent in the equation for coinfected cells Mk, co-infection563

would proceed even when single infections stop. With this mechanistic/mathematical insight it was564

difficult to come up with a biological explanation for why coinfections are dependent on the fre-565

quency of uninfected cells. One possibility that infections stop not because the number of uninfected566

cells declines to zero, but because of leaf-specific immune response makes uninfected cells in the leaf567

resistant to infection – similar to the alternative model 9 for the dynamics of infected/uninfected568

cells that we considered earlier (eqn. (17)).569

We found it interesting that the model in which the frequency of coinfected cells due to within-leaf570

dynamics grows logistically (eqns. (26)–(27)) could not well describe the data (Table 3). The model571

underestimated the frequency of coinfected cells at early time points (results not shown). This result572

argues that the high odds ratio for the coinfection of cells observed in our data is not likely to arise573

exclusively due to adjacent cells being coinfected with the two TEV variants at once. This model574

prediction can be tested experimentally, for example, by using microscopy and examining spatial575

distribution of foci of cells infected with individual viral variants or with both variants [45].576

Dynamics of coinfected cells compared to singly-infected cells577

While our analysis provided solid evidence that coinfection of plant cells by two TEV variants578

does not proceed randomly we sought to investigate how coinfection rate varies with the frequency579

of single-infected cells. Previous mathematical modeling-based work on HIV infection of target cells580

suggested that the frequency of doubly-infected cells should scale as square of the frequency of single-581

infected cells [46]. As far as we are aware such prediction has not been tested for plant-infecting582

viruses. For every leaf we therefore plotted the relationship between the frequency of coinfected cells583

versus the frequency of cells infected with Venus (Figure 7A-D) or BFP (Figure 7E-H) strains of584

TEV and compared these data with predictions of the two alternative probabilistic models. We also585

fitted a line to log-log transformed frequencies and estimated the slope n of the relationship (Figure586

7). Several interesting results emerged.587

First, we found that the relationship between frequency of coinfected cells and cells infected with588

a single virus is either sub-linear or linear for lower leaves (leaves 3 and 5, respectively, Figure589

7A-B and E-F). This is not fully consistent with the results found using odds ratio (Figure 5A-B)590

suggesting that different ways of data analysis may result in different conclusions. However, for591

upper leaves we found strong deviation from the linear relationship whereby coinfection frequency592

increased more rapidly than linearly with increasing frequency of single-infected cells (n > 1, Figure593

7C-D and G-H). This is consistent with what we found using odds ratio (Figure 5C-D). Predictions594

of our best fit 2-alpha probability model were mostly consistent with the data except for the leaves595

6-7 and cells, singly infected in BFP variant (Figure 7G-H). Finally, we noticed that at later time596

points (∼ 7-10 days post infections), all of the curves in Figure 7 approximate lines. To understand597

23



10 4 10 3 10 2 10 1 100

Venus

10 4

10 3

10 2

10 1

100

M
ix

ed

n = 0.727

A
Leaf 31-alpha Prob.

2-alpha Prob.
Day 3
Day 5
Day 7
Day 10

10 4 10 3 10 2 10 1 100
10 4

10 3

10 2

10 1

100

n = 0.947

B
Leaf 5

10 4 10 3 10 2 10 1 100
10 4

10 3

10 2

10 1

100

n = 1.52

C
Leaf 6

10 4 10 3 10 2 10 1 100
10 4

10 3

10 2

10 1

100

n = 1.428

D
Leaf 7

10 4 10 3 10 2 10 1 100

BFP

10 4

10 3

10 2

10 1

100

M
ix

ed

n = 0.848

E
Leaf 3

10 4 10 3 10 2 10 1 100
10 4

10 3

10 2

10 1

100

n = 0.964

F
Leaf 5

10 4 10 3 10 2 10 1 100
10 4

10 3

10 2

10 1

100

n = 1.664

G
Leaf 6

10 4 10 3 10 2 10 1 100
10 4

10 3

10 2

10 1

100

n = 1.133

H
Leaf 7

Figure 7: The two-alpha probabilistic model accurately describes the relationship between frequency of
coinfected cells and those infected with a single virus for most data. We plot the relationship between
frequency of cells coinfected with Venus and BFP strains of TEV and the frequency of cells infected with a
single strain (A-D for Venus and E-H for BFP) for various leaves of the plant (different panels) and different
days since infection (shown by markers). Some of the data are not shown on a log-log plot due to zeros
of the number of infected or coinfected cells. Solid lines are the predictions of 2-alpha probabilistic model
(eqn. (25)) and dash-dotted lines are the predictions of 1-alpha probabilistic model (eqn. (24)). The red
dotted lines are power functions fitted to the data. The exponents of these functions are shown in the top
right corners below the leaf number. Asymptotic relationship between the frequency of coinfected and single
infected cells appears to become a straight line for all three models, a feature which we examine in eqns.
(S.41)–(S.48). We also provide a python-based script in which these data and model predictions can be
explored further (Supplemental Figure S5).
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why this occurs, and what the slopes of these lines are, we performed additional analyses (shown in598

Supplemental Information).599

Discussion600

In this paper we performed extensive analyses of the recently published data on the kinetics of601

infection of tobacco plants with two variants of TEV [14]. We found that the pathway of virus602

dissemination in the plant could not be robustly determined directly from the data on the change in603

frequency of infected cells in different leaves over time — several alternative models that assumed604

slightly different pathways of dissemination fitted the data with very similar quality. The model605

assuming that viral dissemination starts from the upper leaf 7, however, fitted the data poorer than606

the models assuming that dissemination starts with lower (3rd) leaf suggesting that these data do607

contain some information on the direction of virus dissemination.608

The best performing model in our analysis was dependent on the method of how the models were609

fitted to data; fitting the models using binomial distribution-based likelihood (eqn. (29)) suggested610

that alternative model 2 (eqn. (6)) was the best (Supplemental Table S1). On the other hand,611

when total infection models were fitted using the least squares method based on log-transformed data612

and model predictions (eqn. (35)), Tromas et al. [14] model and alternative models 1&2 (eqn. (4)613

and eqn. (6)) fitted the data with the best quality (Table 2). The way experimental measurement614

errors influence the data remains poorly understood, and therefore, which statistical model – log-615

transformed least squares or binomial distribution-based likelihood – are more appropriate in fitting616

the models to such data remains undefined. The way forward is to understand better sources of617

errors in experiments measuring the fraction of infected protoplasts by flow cytometry.618

It is generally unknown why not all cells in the leaves were infected 10 days post infection; for619

example, leaf 3 had less than 10% of its cells infected by the end of experiment (Figure 3). One620

possibility is that not enough time has passed for all cells to be infected. Tracking virus infection621

at longer than 5.5 week periods may be complicated because at this time plant physiology changes622

dramatically due to development of flowers. Tromas et al. [14] assumed that infection stops after the623

fraction of infected cells in a leaf exceeds some critical value ψk, but how the physiological aspects624

of the plant, or the virus infecting it, determine the value of ψk remain a mystery. We showed that625

an alternative model in which infection of a given leaf slows down due to a time-dependent factor626

and not directly due to increase in the fraction of infected cells, can describe the data with similar627

quality (Supplemental Table S2). Such time-dependent factors may be an immune response such628

as RNAi generation and dissemination via plasmodesmata that may render cells in the leaf resistant629

to infection. Another factor could be changes to plasmodesmata themselves, like the accumulation630

of callose at the pores, that prevent the local cell-to-cell movement of the virus [47]. Physiological631

changes in the leaves in a growing plant may also contribute to the increased resistance of some plant632

cells to infection.633

Our main findings, however, are about coinfection of cells with two different variants of TEV.634

Interestingly, by using odd ratio metrics [33] we found significantly higher frequency of coinfections635

of leaf cells by two viruses, in some cases with OR = 100 or more that is much higher than that636

observed in other systems [33] and is in contrast with another study finding suppression of coinfections637

[45]. Importantly, we developed a series of novel mathematical models that track the coinfection638

dynamics; the best fit model also predicted higher rates of coinfections of plant cells with two639

viruses for the within-leaf virus spread but not for virus dissemination to other leaves (Figure 6).640
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Additional analysis showed that at least for the upper leaves (leaf 6&7) the frequency of coinfected641

cells increases more rapidly than linear with frequency of single-infected cells (Figure 7), and we642

show analytically that this is not expected in the random infection model. It has been proposed643

that deviation of coinfection frequency from random is likely to result from heterogeneity in target644

cell susceptibility to infection [33]. However, given the mechanics of virus spread in plants via645

plasmodesmata, ability of multiple viruses to enter the same cell, and thus increase chances of646

coinfection, remains a possibility (although the model assuming this mechanism did not fit the data647

with best quality, (Table 3))[48, 49]. Given that virus coinfection of leaf cells in other systems can648

be high and that virus coinfections may result in higher virus production by infected cells [50, 51],649

impact of coinfections on virus evolution has received considerable attention [52–54].650

As far as we are aware, Tromas et al. [14] performed the first comprehensive analyses of virus651

dissemination in plants, and so far, no similar works (experiments and modeling) on virus dissemi-652

nation within and between multiple tissues have not been performed in animals. However, several653

studies have investigated how, for example, hepatitis C virus (HCV) spreads locally in the liver [55–654

57]. There is also evidence for local spread of influence A virus in humans and animals (reviewed655

in [58]), and mathematical models that take into account physiology of the lung tissue to study656

virus spread have been proposed [59]. Our observation of potential cooperativity between viruses657

infecting individual cells extends the results found with animal viruses such as HIV or vaccinia virus658

[33, 46, 60, 61]. Our analyses thus illustrate that additional insights can be generated by experi-659

ments in which infection accumulation (and loss) are tracked over time systematically in the whole660

organism; using barcoded viruses may be particularly useful in this regard [62].661

Our study has several limitations. In our analysis we ignored the complexity of the growing, 4662

week old tobacco plants, and changes that occur with leaves in the growing plant. Plants do not have663

pumping systems like animals, and therefore systemic movement of viruses must follow the already664

established pathways provided by the phloem, typically, from source to sink tissues such as leaves.665

However, it is not always obvious based on visual appearance when a given leaf changes from being666

a sink to being a source (or vice versa). Viruses can manipulate source-sink relationships in their667

hosts; e.g., some viruses can convert source tissues into sinks [27, 63]. While we had information668

on the fraction of infected cells in different leaves, spatial aspects of the infection process were lost669

during protoplast extraction. Better understanding of virus dissemination kinetics is likely to benefit670

when such spatial details are also recorded, along with the high throughput flow cytometry-based671

measurements.672

While we provided evidence that coinfection occurs at higher frequency than predicted by the673

random infection hypothesis, we were unable to provide a solid explanation for this effect. Variability674

in susceptibility of cells to viral infection, local, cell-to-cell virus transmission via plasmodesmata, or675

cooperation between viral variants may be contributing.676

We showed that inference of the best fit model depends on the method used to fit models to data.677

Given limited understanding of the sources of errors in these data, the most appropriate statistical678

models that take into account measurement errors will need to be developed. In particular, by fitting679

the models to data using binomial distribution-based likelihood we found large differences in quality680

of how alternative models fitted the data (based on AIC values). We hypothesize that binomial681

distribution-based likelihood amplifies small differences in the infection frequency of individual leaves682

at early time points, leading to significant favoring of one model over the other. However, this683

method does not truly account for experimental noise in extraction efficiency of protoplasts from the684

leaves and false positives when detecting fluorescence signals from individual cells by flow cytometry.685

Therefore, we believe that the finding that there is one best fit model among the alternative models686

26



when models are fitted using binomial distribution-based likelihood is insufficient to choose a specific687

model. Additional experiments that better address experimental errors in measuring the fraction of688

infected cells in different leaves will be needed to derive a better statistical model to fit our dynamical689

models to such data.690

Similarly to Tromas et al. [14] we ignored the fact that infection occurs in a plant, and pooled all691

infection-per-leaf data together without tracking infection per plant. It is clear, however, that some692

plants may have more infection in all leaves than others (e.g., Supplemental Figure S1) and fitting693

the models to such “paired” data may provide additional insights into details of viral spread locally694

and systemically. Finally, we showed that the pathway of virus dissemination in plants cannot be695

easily determined from experiments that measured virus accumulation in different leaves over time,696

although this result was dependent on the way the models were fitted to data.697

Biases introduced by extraction of protoplasts for use with flow cytometry, remain unclear. For698

example, infected cells may preferentially die during the extraction process which would reduce the699

fraction of infected cells measured. In immunology, one potential way to understand such biases has700

been by comparing the flow cytometry-based measurements with microscopy-based measurements701

[64, 65].702

Conclusions and future directions703

Our study opens avenues for future research. In particular, similar analyses may need to be704

performed for other plant viruses. TEV is a potyvirus, one of the largest classes of viruses in705

plants, [66], and together with the geminiviruses, they are responsible for the majority of disease706

in commercial agriculture. Understanding how these viruses disseminate in their hosts may bring707

practical benefits through improved interventions (e.g., [67]). To understand better details of local708

virus dissemination it will be necessary to combine measurements of spatial virus spread in individual709

leaves with flow cytometry-based measurements of the fraction of infected cells. Local virus spread710

can be measured by confocal microscopy and larger spread by light microscopy [26, 45, 68, 69];711

previous studies have developed frameworks of how such local viral spread may be modeled [57].712

Future studies should better understand why infection of a given leaf stops when not all cells are713

infected. Whether this is related to changes in leaf physiology (moving from sink to source) or immune714

responses in the leaf or systemically needs to be tested in experiments and modeled appropriately.715

Whether measurement of infection in leaves is sufficient to accurately predict virus dissemination716

kinetics is unclear. For example, roots are typical sink tissues in plants [70]. Thus, it is likely717

that virus accumulation in the roots precedes or coincides with systemic virus dissemination to718

upper above-ground structures. Future experiments and modeling studies may benefit to include719

the dynamics of virus-infected cells in the plant roots. Finally, more precise understanding of the720

pathway of virus dissemination will benefit from additional data in which infection is initiated in721

different leaves and experiments in which some leaves are removed after a specific time period (e.g.,722

[28]). Such experiments are not without caveats because removing a leaf may induce systemic changes723

in the plant that in turn may influence virus dissemination kinetics. Therefore, such experiments724

would be helped by mathematical models that can make quantitative predictions on the impact of725

different leaf removal on the virus dissemination kinetics, and these models can be tested and some726

falsified [37]. Ultimately, a combination of well designed experiments to test specific hypotheses and727

quantitative mathematical models is likely to bring novel insights into how viruses disseminate in728

their plant hosts. Such knowledge will be critical for development of novel strategies for limiting729

27



agricultural losses to viruses.730

Data sources731

The data for our analyses have been provided by S. Elena [14]. Formatted data are available732

with this publication as a supplement (csv file) and via Github (https://github.com/Plant-Virus-733

Spread/Models-And-Tools/tree/7553fd98261d1c4b4e75bd3f0cfac4fb49067174).734

Codes735

We performed most of our analyses in python and provide several key codes to ensure reproducibil-736

ity of our results on github (https://github.com/Plant-Virus-Spread/Models-And-Tools/tree/7553fd98261d1c4b4e75bd3f0cfac4fb49067174).737

Specifically, we provide the codes to 1) plot the predictions of Tromas et al. [14] model with their738

parameter estimates, 2) fitting [14] model to the data using either binomial distribution-based likeli-739

hood or least squares, 3) fitting the 2-alpha probabilistic model to the coinfection data using binomial740

distribution-based likelihood, and 4) sliders code allowing to explore the relationship between coin-741

fected and singly-infected cells (in the data and predictions of 2 alpha probabilistic model).742
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Supplemental Figure S1: Kinetics of TEV dissemination in tobacco plants partitioned per individual
plant show variability in leaf infection levels. We plot the data on infection of cells with either or both
variants of TEV for individual leaves of a given plant for 3 (A), 5 (B), 7 (C), or 10 (D) days since infection.
Symbols denote the frequency of infected cells in a leaf with lines connecting measurements in individual
plants. Solid red line denotes average infection per leaf for a given time point.
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Fitted with binomial distribution-based likelihood method
Parameter Original Alt. Alt. Alt. Alt. Alt. Alt. Alt.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

I0 .0003 .0005 .0004 .00006 .0001 .0006 .0001 .0001
β, 1/day .950 .837 .887 1.289 1.040 1.000 1.037 1.032
χ3, 1/day N/A N/A N/A N/A .391 .042 .385 .064
χ5, 1/day .167 .120 .135 .775 N/A 1.876 .239 .047
χ6, 1/day 1.046 5.489 4.964 8.101 2.275 N/A 2.269 2.251
χ7, 1/day .029 .059 .465 .972 .193 .022 N/A N/A
ψ3 .080 .083 .081 .075 .074 .075 .072 .072
ψ5 .016 .017 .016 .016 .016 .011 .016 .016
ψ6 .224 .223 .223 .217 .225 .235 .219 .219
ψ7 .269 .276 .276 .590 .265 .268 .269 .269

nll 378317 378212 378172 378343 378495 379377 378442 378524
AICLik 756652 756442 756362 756704 757008 758772 756902 757066
∆AIC 290 80 0 342 646 2410 540 704

Supplemental Table S1: Alternative models for viral dissemination fitted to data using binomial
distribution-based likelihood describe the data with different quality based on AIC values. We performed
the same analysis as Table 2 except that models were fitted to data using binomial distribution-based
likelihood.

Param I0 β, 1/day χ5, 1/day χ6, 1/day χ7, 1/day SSRLog AICSSRLog
∆AIC

Fixed n T3 T5 T6 T7 n

0.0005 0.829 0.061 0.724 0.032 5.762 4.194 5.192 7.654 7.122 52.960 -13 3

Fixed T n3 n5 n6 n7 T

0.00008 2.518 0.049 0.835 0.055 3.524 6.017 3.659 1.82E+00 3.2 53.073 -13 3

Fixed n, T T n

0.001 0.673 0.025 0.602 0.068 6.127 9.316 67.555 0 16

Supplemental Table S2: A mathematical model assuming that virus dissemination is influenced by the
leaf-specific and systemic immunity can describe the experimental data. We changed the original, Tromas
et al. [14] model by assuming the time-dependent and leaf-dependent Sk function (Alternative model 9, see
eqn. (17)) and fitted the model to the data using least squares with a logarithmic transform eqn. (35). In
fits we either varied the time (Tk) at which Sk declines to zero, the Hill coefficient (nk) which determines
the speed at which Sk declines to zero, or both parameters being independent of the leaf number (k).
The resulting SSRLog and AICSSRLog

values for different model fits are shown (AICs are rounded to the
nearest whole number). We found the following values of the alternative model 8 (eqn. (16)) fits of the data:
SSRLog = 52.285 and AICSSRLog

= −10.
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Supplemental Figure S2: Shifting original model predictions (found in Tromas et al. [14]) by three days
reasonably well matches experimental data. We integrated the original model (given in eqns. (1)–(3)) using
an ODE solver in python either assuming that infection starts at day 0 (solid lines) or infection starts at
day 3 (dashed lines); data are shown by markers for leaf 3 (A), leaf 5 (B), leaf 6 (C), and leaf 7 (D). By
default, ODE solver in python is initialized by the first time point provided in the data which is day 3 in
the data set. We overrode the default by forcing the solver to start infection at day 0.
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Supplemental Figure S3: The difference between the best performing alternative model 1 (eqn. (4))
and the worst-performing, alternative model 7 (eqn. (15)) is visually small. We fitted the two models
using the least-squares method with a log transformation where zeros were replaced with a limit of detec-
tion model (LOD) value, in this case 5.12 · 10−4. The parameters for Alt Model 1 with 95% confidence
intervals are: I0 = 0.0008 (0.0002, 0.0017), β = 0.744 (0.554, 1.308), χ5 = 0.059 (0.033, 0.119), χ6 =
8.201 (4.151, 13.206), χ7 = 0.073 (0.052, 0.152), ψ3 = 0.083 (0.059, 0.117), ψ5 = 0.006 (0.005, 0.013), ψ6 =
0.204 (0.186, 0.227), ψ7 = 0.228 (0.081, 0.699). The parameters for Alt. Model 7 with 95% confidence
intervals are: I0 = 0.0005 (2 · 10−6, 1 · 10−5), β = 1.159 (0.973, 1.898), χ3 = 0.286 (0.117, 0.645), χ5 =
0.050 (0.023, 20), χ6 = 3.263 (2.365, 5.890), ψ3 = 0.051 (0.041, 0.069), ψ5 = 0.005 (0.003, 0.008), ψ6 =
0.184 (0.143, 0.226), ψ7 = 0.209 (0.081, 0.415). The goodness of fit metrics for Alt. Model 1 are: SSRLog =
51.991 and AICSSRLog

= −16, and for comparison the Alt. Model 7’s metrics are: SSRLog = 56.309 and
AICSSRLog

= −10, giving ∆AIC = 6.
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Supplemental Figure S4: The simplest 1-alpha coinfection model does not adequately describe coin-
fection data. The 1-alpha coinfection model (given by eqns. (18)–(19) and eqn. (21)) assumes that coin-
fection of individual cells by two different strains occurs independently (α = 1) or coinfection may be
more (α > 1) or less (0 < α < 1) likely that infection of an uninfected cell (Figure 2A). Other graph
details are similar to those given in Figure 6. The parameters and 95% confidence intervals for this
model are: V0 = .0006 (.0003, .001), B0 = .0003 (0.3 × 10−5, .001), M0 = .0001 (.0004, .001), βV =
.744 (.443, 6.178)/day, βB = .666 (.260, 6.580)/day, χ5 = .269 (.034, 8.76)/day, χ6 = .939 (.395, 2.292)/day,
χ7 = .044 (.015, 2.107)/day, ψ3 = .078 (.044, .954), ψ5 = .016 (.006, .028), ψ6 = .201 (.156, .267),
ψ7 = .254 (.100, .449), α = 2.332 (.103, 5.772).
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Supplemental Figure S5: A python-based tool to study the impact of parameters of a given mathematical
model on the infection rate of a given leaf. By using a function Slider from pylab in python we visualized
the dynamics of cell infection by individual viruses (Venus and BFP) and coinfection of cells by the two
viruses according to the Probabilistic Analytic Model. Parameters of the model can be changed using sliders
resulting in the changed kinetics of virus infection (shown in the left panel), or changes in the predicted
relationships between the degree of coinfection of cells by two viruses (denoted as “Mixed”) and singly
infected cells (Venus or BFP for middle and right panels, respectively). The example shown is for infection
of leaf 6; the code allows to chose any individual leaf for visualization. In all panels data are shown by markers
and predictions of the model by lines. Additional parameters shown are i) the negative log-likelihood (nll,
see eqns. (30)–(33)); ii) the average ratio of the frequency of coinfected cells to singly-infected cells (secant);
iii) the values of the expressions mM

V
and mM

B
evaluated at the rightmost timepoint in the leftmost panel,

in this case t=12 (mM
V

and mM
B

).

S6



Expansion of the Tromas et al. [14] model945

dI3
dt

= βI3S3 (S.1)

dI5
dt

= βI5S5 + χ5S5I3 (S.2)

dI6
dt

= βI6S6 + χ6S6(I3 + I5) (S.3)

dI7
dt

= βI7S7 + χ7S7(I3 + I5 + I6) (S.4)

Alternative formulations of coinfection models946

Expansion of the 1-alpha coinfection model (eqns. (18)–(20) and eqn. (21)):947

dV3
dt

= βV V3S3 (S.5)

dB3

dt
= βBB3S3 (S.6)

dM3

dt
= α(βBV3B3 + βV V3B3) (S.7)

dV5
dt

= βV V5S5 + χ5S5V3 (S.8)

dB5

dt
= βBB5S5 + χ5S5B3 (S.9)

dM5

dt
= α(βBV5B5 + βV V5B5) (S.10)

dV6
dt

= βV V6S6 + χ6S6(V3 + V5) (S.11)

dB6

dt
= βBB6S6 + χ6S6(B3 + V5) (S.12)

dM6

dt
= α(βBV6B6 + βV V6B6) (S.13)

dV7
dt

= βV V7S7 + χ7S7(V3 + V5 + V6) (S.14)

dB7

dt
= βBB7S7 + χ7S7(B3 +B5 +B6) (S.15)

dM7

dt
= α(βBV7B7 + βV V7B7). (S.16)

Expansion of the 2-alpha coinfection model (eqns. (18)–(20) and eqn. (22)):948
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dV3
dt

= βV V3S3, (S.17)

dB3

dt
= βBB3S3, (S.18)

dM3

dt
= αBβBV3B3 + αV βV V3B3, (S.19)

dV5
dt

= βV V5S5 + χ5S5V3 (S.20)

dB5

dt
= βBB5S5 + χ5S5B3 (S.21)

dM5

dt
= αBβBV5B5 + αV βV V5B5 (S.22)

dV6
dt

= βV V6S6 + χ6S6(V3 + V5) (S.23)

dB6

dt
= βBB6S6 + χ6S6(B3 + V5) (S.24)

dM6

dt
= αBβBV6B6 + αV βV V6B6 (S.25)

dV7
dt

= βV V7S7 + χ7S7(V3 + V5 + V6) (S.26)

dB7

dt
= βBB7S7 + χ7S7(B3 +B5 +B6) (S.27)

dM7

dt
= αBβBV7B7 + αV βV V7B7. (S.28)

Expansion of the 1-alpha probabilistic model (eqns. (18)–(20) and eqn. (24)):949
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dV3
dt

= βV V3S3, (S.29)

dB3

dt
= βBB3S3 (S.30)

dM3

dt
= α[S3V3B3(βB + βV )] (S.31)

dV5
dt

= βV V5S5 + χ5S5V3 (S.32)

dB5

dt
= βBB5S5 + χ5S5B3 (S.33)

dM5

dt
= α[S5B5V5(βB + βV ) + χ5S5(B5V3 + V5B3)] (S.34)

dV6
dt

= βV V6S6 + χ6S6(V3 + V5) (S.35)

dB6

dt
= βBB6S6 + χ6S6(B3 +B5) (S.36)

dM6

dt
= α[(S6V6B6(βV + βB) + χ6S6(B6(V3 + V5) + V6(B3 +B5))] (S.37)

dV7
dt

= βV V7S7 + χ7S7(V3 + V5 + V6) (S.38)

dB7

dt
= βBB7S7 + χ7S7(B3 +B5 +B6) (S.39)

dM7

dt
= α[(S7V7B7(βV + βB) + χ7S7(B7(V3 + V5 + V6) + V7(B3 +B5 +B6))]. (S.40)

Deriving relationship between coinfected and single-infected cells950

We found that the relationship between the frequency of coinfected cells and of singly infected cells951

is approximately linear (e.g., Figure 7). To understand this we performed the following analyses.952

Specifically, we aim at calculating asymptotic behavior of dMk

dVk
and dMk

dBk
.953

Derivation of the “Vk” case954

Using basic calculus and eqn. (18), eqn. (19), and eqn. (23) we find:955

dMk

dVk
=

dMk

dt
dVk
dt

=
α[BkV

′
k + VkB

′
k]

V ′k
= α

[
Bk +

VkB
′
k

V ′k

]
. (S.41)

where ′ denotes derivative in time. The key to the behavior of the relationship between coinfected956

and single-infected cells thus lies in understanding the behavior of957

VkB
′
k

V ′k
. (S.42)
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Leaf 3. We first consider the leaf 3 as it is the simplest and provides a method we can use to958

understand patterns for higher leaves. Simplifying eqn. (S.42) gives:959

V3B
′
3

V ′3
=
V3(βBS3B3)

βV S3V3
=
βB
βV
B3 (S.43)

Using this, we can find the expression for the original equation.

dMk

dVk
= α

[
B3 +

βB
βV
B3

]
= α

(
1 +

βB
βV

)
B3 = cB3 (S.44)

Further leaves. In the cases where k > 3 we have:

VkB
′
k

V ′k
=
Vk(βBSkBk + χkSk

∑k−1
i=3 Bi)

βV SkVk + χkSk
∑k−1

i=3 Vi
(S.45)

This expression is much more difficult to simply than the k = 3 case. However, if we take a linear960

combination between V3, V5, etc. we can proceed. For simplicity, we can use the average:961

V =
1

n+ 1

(
Vk +

k−1∑
i=3

Vi

)
, B =

1

n+ 1

(
Bk +

k−1∑
i=3

Bi

)
(S.46)

where n is the number of proper leaves below the kth leaf. Using this eqn. (S.45) becomes:962

V (βBSkB + χkSkB)

βV SkV + χkSkV
= B

βB + χk
βV + χk

(S.47)

And thus we have:963

dMk

dVk
= α

[
B +B

βB + χk
βV + χk

]
= α

(
1 +

βB + χk
βV + χk

)
B = cB (S.48)

Because V and B are linear functions of Vk and Bk, we can conclude that indeed dMk

dVk
is propor-964

tional to Bk, and by inference, dMk

dBk
is proportional to Vk.965

966

Derivation of the “Bk” case967

Proceeding similarly as with eqn. (S.41) we find968

dMk

dt
dBk

dt

=
α[BkV

′
k + VkB

′
k]

B′k
= α

[
BkV

′
k

B′k
+ Vk

]
. (S.49)
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Leaf 3.969

B3V
′
3

B′3
=
B3(βV S3V3)

βBS3B3

=
βV
βB
V3 =⇒

dMk

dt
dVk
dt

= α

[
βV
βB
V3 + V3

]
= α

(
βV
βB

+ 1

)
V3 = cV3 (S.50)

Further leaves. In the cases where k > 3 we have:

BkV
′
k

B′k
=
Vk(βV SkVk + χkSk

∑k−1
i=3 Vi)

βBSkBk + χkSk
∑k−1

i=3 Bi

(S.51)

Let

V =
1

n+ 1

(
Vk +

k−1∑
i=3

Vi

)
, B =

1

n+ 1

(
Bk +

k−1∑
i=3

Bi

)
(S.52)

where n is the number of proper leaves below the kth leaf.

BkV
′
k

B′k
−→ B(βV SkV + χkSkV )

βBSkB + χkSkB
= V

βV + χk
βB + χk

(S.53)

And thus we have:

dMk

dBk

= α

[
V
βV + χk
βB + χk

+ V

]
= α

(
βB + χk
βV + χk

+ 1

)
V = cV (S.54)
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