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Abstract

Cancer is an intricate disease that can attack different parts of the human body. In the most

common types of cancer, abnormal cells divide uncontrollably and impair body tissue. Cross

disciplinary research has long aided expansion of our knowledge and ability to approach

problems with a different perspective. Engineers and clinicians can collaborate to solve

mysteries surrounding cancer cells function and responses. Engineers have contributed to

cancer treatment, by studying new ways to diagnose and treat cancer. According to a study

by John Hopkins university [6] engineered nano-particles can induce immune reaction and

kill cancer cells. In addition, new ways of delivering cancer therapy to actuate the immune

system to kill cancerous cells were found through engineering research.

The goal behind modeling biological systems is to drive the states to a desirable outcome

using control elements in the dynamic system. In this thesis, we explore the effects of an

Intelligent Proportional Integral Derivative (iPID) controllers; using optimal and model free

control to improve the state of a cancer patient using recommended safe dosages. A non-

linear mathematical model of Ordinary Differential Equations (ODE) is used to simulate a

virtual cancer patient using realistic valued parameters. It is important to bear in mind

that the human body is complex and variable. In particular, the immune response can vary

from one patient to another. The parameters used to model the cancer have been deduced

by clinicians and engineers to represent the tumor immune interaction using mathematical

equations.

The dissertation will begin by exploring the cancer therapy’s mathematical model, the

controllability and observability to assure that the model is controllable, and explore different

control methods and compare the results.
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Chapter 1

Introduction

The objective of this thesis is to control a nonlinear set of ODEs that represents a virtual

cancer patient. Control theory has long been used in different applications such as economics,

engineering, biological systems, etc. to control outside elements to produce the best possible

outcome [36]. The aim of this thesis is to explore control techniques that cure the malignant

tumor through chemo and immunotherapy and bring the virtual patient to a healthy state.

It is worth mentioning that the nonlinear cancer model does not apply to all cancer patients

because the biology of humans is different: immune response, genetics, varying underlying

health conditions, and type of cancer. Therefore, the biological reaction will also differ. In

addition, due to the lack of information in biological processes, it is difficult to accurately

model and parameterize a paradigm that is general to all cancer patients.

1.1 Motivation

Cancer is a disease in which a cluster of cells (tumor) form and divide uncontrollably. A

tumor can be benign (non cancerous) or malignant (cancerous) [7]. Benign tumors tend to

grow slowly and do not spread or invade other body parts on the other hand, a malignant

tumor can attack healthy cells and tissues and grow rapidly from the initial place where it

formed . Early diagnosis often leads to a more effective treatment because the spread of the

cancerous cells will not have reached dangerous levels. Cancer is treated differently based on

the type of cancer and how far it has expanded. Cancer severely impacts people all over the
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world. According to the National Cancer Institute (NCI), cancer is one of the most causes

leading to death. In 2018, there were 18.1 million new cases and 9.5 million cancer-related

deaths worldwide [1]. The number is projected to increase yearly.

In recent decades, much research toward modeling the dynamics of immune system and

cancer therapy has been conducted. As a result of modeling biological systems, using

computational tools, and applying different control methodologies researches have obtained

desirable outcomes in treating illnesses as seen for example in [19, 13, 39]. The motivation

behind the thesis is to explore control methods than can assist medical professionals in cancer

treatment scheduling. The various control methods can be analyzed in order to select the

most effective drug delivery therapy. The therapy should be balanced, meaning safe amount

of dosage for quickest possible recovery time. In the next section we present a review of

cancer modeling in recent decades, the different cancer dynamics presented, and the clinical

tests carried out to attain the system parameters.

1.2 Cancer Dynamic Model

Due to the overwhelming effect of cancer on the lives of millions of people, much research

has been devoted to treatments, therapy scheduling, and diagnosis. Modeling systems in

various fields of study has been a powerful tool, allowing researchers to better understand the

behavior of systems. In addition, it allows in identifying potential outcomes due to a change,

or making adjustments to enforce a a certain outcome. Certainly, through control theory and

simulation tools, we are able to manipulate the behavior of the system and achieve desired

results. The cancer model dynamic being investigated in this thesis is composed of states

and input variables. The states are: tumor cells, lymphocyte cells, and pharmacokinetics.

The input variables include chemo and immunotherapy injections.

1.2.1 Modeling Tumor growth

Tumors occur because of accumulated epigenetic alterations within single cells which is

the change of organisms due to change in gene expression rather the genetic code itself. That

cell then divides and expands uncontrollably. The abnormal proliferation (rapid increase
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and expansion) of tumor cells puts a strain on the human body in the sense that, these cells

feed on nutrients and oxygen to cause the tumor to grow even larger. They compete against

the healthy cells for these resources. Once the tumor starts growing in size, the cells in the

center of tumor begin to die due to lack of resources. As a results the growth of the tumor

slows down. The necrotic (dead) cells Vascular endothelial growth factor (VEGF) is

activated. It is a protein signal that stimulates angiogenesis which is the formation of

new blood vessels by sprouting from existing blood vessels to restore oxygen; since there

is a lack of blood flow. Once the new blood vessels have formed the tumor then begins to

expand again. The process is described in figure 1.1. The Tumor cells are always the first to

arrive on the scene meaning, they deplete the resources and unlike the healthy cells they can

expand and break out to other parts of the body to continue feeding and growing to form

new tumors. This process is called metastasis, where the word malignant is derived from.

According to [5], some of the key differences between tumor and normal cells are as follows:

• The cancer cells have abnormal shapes and nucleus size.

• Cancer cells are less specialized than normal cell. When normal cells form, they mature

to be distinct and have special functions and tasks.

• Tumor cells can evade signals that tell cells to stop dividing. The process is known

as programmed cell death, or apoptosis. The body uses this function to discard

unnecessary cells.

The differences between normal and cancerous cells can be seen in figure 1.2. It is evident

that the underlying process of the tumor growth is complex. So how did researchers formulate

the mathematical model of tumor growth?

In the literature one will find a variation of mathematical formulations of tumor growth

and cancer treatments. The mathematical formulations resorted to expressing the model by

Partial (PDE) or Ordinary Differential Equations (ODE) as in [31, 19] respectively. The

model parameters may also differ based on the treatment used, for example the model used

in [39] the author presents chemo and immunotherapy as control inputs while in [20] only

3



Figure 1.1: (A) Angiogenesis is the process of the development of new blood vessels from
pre-existing vessels, which allows for tumor progression; (B) Steps in angiogenesis [42]
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Figure 1.2: Differences between normal and cancerous cells [43]
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a chemotherapy inhibitor is used.

The general form of Tumor growth is represented by:

ẋ1 = µC · x1, x1(0) = x01. (1.1)

where x1(t) represents the tumor cells at time t and µC is the growth rate. Most models

have expanded on equation (1.1) by incorporating proliferation rate, the affect of necrotic

cells, the therapy agent inhibitors, angiogenesis, etc.

In order to limit the carrying capacity of tumor cells other terms have been proposed in the

literature [34, 38]:

ẋ1 = µCx1(1−
x1
x∞

), x1(0) = x01. (1.2)

ẋ1 = −µCx1 ln(
x1
x∞

), x1(0) = x01. (1.3)

which is mainly logistic growth and Gompertizian growth as seen in equations (1.2) and

(1.3) respectively. Both consider a limited cancer carrying capacity represented by x∞. In

the thesis we focus on the logistic growth.

1.2.2 Modeling Lymphocyte Cells

In this section we present facts pertaining to the immune system summarized from [3, 8].

A Lymphocyte is a type of immune cell that is made in the bone marrow and found in the

lymph tissues. It is a type of white blood cell that combats antigens and foreign bodies. It

is part of the adaptive immune system. There are two types of immune responses: innate

and adaptive immunity. The innate immune system is the first line of defence; soon after

the appearance of antigens or a foreign substance the nonspecific defense mechanisms is

activated within hours of an antigen’s appearance in the body. The innate immune system

reacts the same way to different antigen’s every time and it does not have immune memory

which is the reason the mechanism is referred to as nonspecific. These mechanisms include

6



physical barriers such as skin, chemicals in the blood, and immune system cells that attack

foreign cells in the body.

Adaptive immunity refers to antigen-specific immune response. The mechanism of the

adaptive immunity is far more intricate than the innate response. The adaptive immunity

combats antigens as follows:

1. The antigen must be first processed and recognized

2. The adaptive immune system sends an array of immune cells to kill the antigen. It

tries using distinct types of cells and methods to get rid of the antigen.

3. If the immune system is successful in defeating the antigen, the treatment type along

with the specific antigen type are saved to the immune memory in case of future breach

of the same antigen, the immune system will be more efficient.

In Oncology modeling, the lymphocyte cells is a good indicator of the immune system and

the healthy cells. An oversimplified expression pertaining Lymphocyte cell growth is given

in (1.4):

ẋ2 = µIx2, x2(0) = x02. (1.4)

where x2(t) represents the lymphocyte cells at time t and µI denotes the tumor stimulated

proliferation rate of the lymphocyte cells. The author in [10] proposed a model that takes

into account the effects of tumor cells on lymphocyte cell growth, as can be seen in equation

(1.5)

ẋ2 = µIJ (x1, x2), x2(0) = x02. (1.5)

where J (x1, x2) denotes the growth rate function of Lymphocyte cells.
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1.2.3 Modeling Chemotherapy

Chemotherapy is a drug treatment that uses powerful chemical agents such as Alkylating,

Antimetabolites, Antitumor antibiotics, etc [4]. The different types of chemotherapy agents

differ in compound and in which phase the agent interacts with the body, but it is mainly

used to kill fast growing tumor cells. Much work has been done to examine the effects of

chemotherapy interactions, in [37] the author introduced the function M in equation (1.6):

ẋ1 = µCx1(1−
x1
x∞

)−M(x1, u1), x1(0) = x01. (1.6)

The concentration at time t of the chemotherapy drug is u1(t) and M denotes the decrease

in tumor cells due to the chemotherapy agent. The assumption made is that the net

change in the tumor cell population is the difference between the increase in cells due to

cell proliferation, and decrease in cells due to the chemotherapy drug injection M(·). The

chemotherapy drug used in equation (1.6 is assumed to be nonspecific phase Alkylating

agents so that, differences in growth fraction are insignificant thus, the proportion of cells

killed depends on the tumor growth rate. The drug effect term is usually considered

proportional to the tumor cell population, so M(x, u1) = σx1u1. According to [35],

the Pharmacokinetics is not taken into account, because the drug dosage is equal to the

concentration of the chemotherapy drug in the body however, that is an inaccurate depiction.

The authors suggest evaluating the concentration by adding another state x3 to represent

the chemotherapeutic concentration:

ẋ3 = −ax3 + bu1, x3(0) = 0. (1.7)

Equation (1.7) allows us to model the drug concentration growth or decay. The

chemotherapy also has an effect on the lymphocyte cells. The authors in [41] proposed

a model that takes account the effects of chemotherapy agents on the lymphocyte cells:
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ẋ2 = µIJ (x1, x2)− L(x2, u1)−, x2(0) = x02. (1.8)

where L(x2, u1) is the effect of chemotherapy agent on lymphocyte cells. It will have an

adverse effect on both the tumor and lymphocyte cell populations.

1.2.4 Modeling Immunotherapy

In section 1.2.4, we summarize facts about immunotherapy from [2] and introduce the notion

of modeling immunotherapy on the tumor-immune interaction dynamic. The immune system

instinctively combats infections and diseases. It is made up of white blood cells, organs, and

lymph tissues. One of the tasks of the immune system, is to detect and destroy abnormal

cells and prevents the growth of cancer tumors. Ordinarily immune cells can be found in and

around tumors. These cells referred to as tumor-infiltrating lymphocytes or TILs are a

sign that the immune system is responding to the tumor. It has been found that patients

whose tumors have TILs often have a better chance in fighting cancer.

Although the immune system can halt or minimize cancer growth, cancer cells have ways

to evade the immune system. Cancer cell’s defence mechanism includes:

• Changing their genetic structures to imperceptible to the immune cells.

• They have proteins on their surface of that can disengage immune cells.

• Interfering with the response of the immune cells by changing the formation of the cells

on the surface of the tumor.

It is evident that in some cases the immune system is successful in combating the tumor

however, if the tumor growth expands, immunotherapy can help the immune system fight

cancer. There are various types of immunotherapies used to treat cancer, these include [2]:

• Immune checkpoint inhibitors, They block proteins that are called immune

checkpoints. These checkpoints keep the immune response from being too strong.
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When the check points are blocked they allows immune cells to be more severe and kill

cancer cells.

• T-cell transfer therapy, The most active T-cells (immune cells) in a patient’s body

combating against the tumor are extracted. In the lab they reproduce and modify those

T-cells to better kill the cancer cells. Then they are injected back into the patient’s

blood stream.

• Monoclonal antibodies, which are immune proteins created in the lab to mark the

cancer cells so that the immune system can easily spot and target the cancer cells.

• Treatment vaccines, which are used to boost the immune system. They are different

from normal vaccines that prevent viruses or disease.

Immunotherapy is not as widely used as other therapies such as chemotherapy, radiation, and

surgery. In addition, not all patients respond to immunotherapy. There’s ongoing clinical

research to find better combinations of immunotherapies to treat cancer.

Constructing a mathematical model to capture the mechanism of the immunotherapy is very

complex and there are unknown parts of the system. According to [21], although there have

been large strides in biological modeling, there are still some open questions in immune

system modeling. The dynamic of the innate and immune response need to be examined at

the molecular tissue and cellular level to better grasp the dynamics of the immune system.

Researchers have focused on the immune system parts that have significant effect on tumor

growth [17]. A general model that is accepted among oncology researchers presented in [19]

formulates the tumor-immune interaction as follows:

ẋ1 = µCx1(1−
x1
x∞

)− γx1x2 − σx1u1,

ẋ2 = µIx1x2 − µIβx21x2 − χx2 + α + λx2u2. (1.9)

We will use the model represented by the system in (1.9) in the thesis with a modification

introduced in equation (1.7).
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1.3 Background and Overview

The dynamic tumor growth model in [40] is used in this thesis. The model is concerned

with tumor-immune interaction with the presence of outside control to achieve the necessary

outcome. Two control methods are used to attain a healthy state: Model Free Control (MFC)

and Optimal Control (OC). OC introduces an objective function which is the goal that the

control tries to reach, while the MFC technique steers the controls toward the healthy state

and injects it back into the dynamical model in iterative fashion. In the following subsections

we provide a brief introduction of the control techniques used.

1.3.1 Optimal Control

Optimal Control theory is a mathematical optimization method that obtains a control to

produce the best outcome possible based on a predetermined goal. It is also referred to

as dynamic optimization [36]. Optimal Control strategies have long been used in dynamic

models. In [22], optimal control was used for harvesting in a predator-prey parabolic system,

while in [16] it was used for maximizing final yield when growth is limited by time or

resources. For more examples of optimal control strategies see [13, 15, 18, 17].

In this research, the OC method is used to control the dynamical tumor model for a specified

time interval. We use varying objective functions and impose different constraints on the

states and control inputs. We analyze the different OC objective functions to capture the

optimum solution. In the case of the tumor growth model the desired outcome is to treat

the virtual patient and reach a healthy equilibrium using minimal chemotherapy injections.

Although chemotherapy has shown successful outcome in treating cancer, it can causes

serious side effects, and high dosages can be toxic.

1.3.2 Model Free Control

Through research and derivation of mathematical equations different control methods have

been developed. The formulation of control methods differ, but the ultimate objective is to

control the system. Model Free Control is an intelligent Proportional Integration Derivative

controller (iPID), which uses an online approach to estimate parameters [24]. Although
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MFC was only introduced in 2008-2009 [23] it was applied to numerous control problems

in different areas and displayed favorable results. For example implementing MFC to study

immune response in [13], MFC was also used for controlling intelligent transportation systems

in [9]. For more examples on MFC applications see [14, 11, 45].

Using functional analysis and elementary differential algebra, MFC can be applied to

complex models to deduce control inputs capable of acquiring desirable outcomes. The

MFC methodology includes a set of parameters that need to be tuned by trial and error,

and are dependent on the dynamics of model. A detailed interpretation of the theoretical

formulation of MFC control will be presented later in chapter ??.

1.4 Summary of Contributions

The contribution of the thesis is summarized as follows:

1. The thesis proves the nonlinear cancer model is locally controllable. The controllability

matrix is found and the rank is calculated. It is important to establish that the system

is indeed controllable in order to reach the goal of treating the patient. If the system

is uncontrollable then the therapies used are deemed insufficient and will not help the

patient get to a healthy state.

2. The thesis proves the nonlinear cancer model is locally observable. The observability

matrix is found and the rank is calculated. It is important to establish that the system

is indeed observable in order to have a clear understanding of the behavior of the

dynamic cancer model.

3. Using OC methods, the cancer patient is cured and recovers within a 60-day treatment

regimen. The OC strategy proves to be successful when tested under different

constraints and initial conditions.

4. The model-free control method was also explored. The online intelligent controller

showed positive results and was able to provide a successful treatment regimen within

the 60-day treatment period. Some of the MFC parameters displayed better results

and so they were selected by means of trial and error.
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1.5 Organization of Thesis

The Thesis is organized as follows:-

– Chapter 2 introduces the dynamical model of the tumor-immune interaction. The

parameters of the model will be defined. Based on the dynamical model the

healthy equilibrium and unhealthy equilibrium are derived.

– In Chapter 3 the concept of controllability and observabilty for the nonlinear

dynamical model consisting of ODE is explained. The Controllability and

Observability rank is calculated.

– Chapter 4 gives an in-depth examination of two distinct control methods: OC and

MFC. The control methods are applied to the virtual patient to derive suitable

controls to treat the patient and the results are presented.

– Chapter 5 concludes the work that has been done in this research thesis and

suggests future work to be explored.
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Chapter 2

The Cancer Mathematical Model

tumor-immune biological models were first introduced in 1980 by Stepenova [44]. In Chapter

2 we introduce the mathematical cancer model for the tumor-immune interaction. The

model explored throughout the thesis was previously introduced in [40]. The author in [35],

deduced that the dosage of the therapy is not equal to the amount of drug concentrated in

the patient’s body, so the initial model used in [19] and [39] has been expanded by adding

a state representing pharmacokinetics (PK) which captures the amount of chemotherapy

concentrated in the patient’s body.

2.1 Virtual Patient

The mathematical model is composed of nonlinear ODEs, which represents the tumor-

immune interaction given by equations (2.1) - (2.3).

ẋ1 = µCx1 −
µC
x∞

x21 − γx1x2 − σx1x3, (2.1)

ẋ2 = µIx1x2 − µIβx21x2 − χx2 + α + λx2u2 − %x3x2, (2.2)

ẋ3 = −ax3 + bu1. (2.3)

The biological model referenced above is attentive to the progression of Tumor Cells

(TC) population, the Lymphocyte Cells (LC) population, and the chemotherapy drug

concentration. A tumor can either be malignant (cancerous) or benign (non-cancerous). The
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tumor forms as a result of abnormal cells dividing in the body. The cells in the human body

continuously divide for repair and growth. However, the tumor formation is an irregularity

that can lead to cancer. The TC count is observed by equation (2.1).

LCs are a type of white blood cells composed mainly of B lymphocytes and T lymphocytes.

B lymphocytes make antibodies, while T lymphocytes help kill tumor cells and help control

immune responses [3]. LC count can be an indication of the body’s immune response. LC

count is observed by equation (2.2).

Monitoring levels of chemotherapy concentration in the body is extremely important in

cancer treatment. Using high quantities of chemotherapy can be toxic and lead to death.

As mentioned previously, the concentration of chemotherapy existent in the body of the

patient is not equal to the chemotherapy dosage. The model monitors the chemotherapy

concentration in equation (2.3).

The dynamic cancer model is represented by the tumor-immune system interactions in the

presence of input variables: cytotoxic agents and immuno-stimulator to treat the virtual

patient. The aim is to move the initial conditions of the states from the malignant to the

benign region.

The tumor-immune system interaction is composed of three states:

• x1 : Tumor cell population;

• x2 : Lymphocyte cell population; and

• x3 : Chemotherapy drug concentration in patient.

The model comprises two time varying control inputs denoted as follows:

• u1(t) : dosage of a cytotoxic agent; and

• u2(t) : cytokines which is a generic immuno-stimulator.

The treatment duration of the model examined is 60-days. Given initial conditions of

the states and after performing the distinct control techniques, the condition of the virtual

patient is examined and the following outcomes can be expected:
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1. benign outcome: The treatment is considered successful in reducing the tumor size to

the benign equilibrium and preventing further spread of the cancer.

2. Malignant outcome: The treatment has failed in containing the spread of the cancer

leading the states to travel to the malignant equilibrium due to tumor growth and

immunity suppression.

When the dynamic model is uncontrolled: meaning that the time varying control inputs

are not injected in the system (u1,u2=0) the outcome of differing initial conditions is given

in the phase portrait in figure 2.1. The phase portrait is the state space trajectory of the

system. It reveals invaluable information of the behavior of the system and determines

the equilibrium points. It can be seen from the phase portrait that the behavior of the

dynamic relies heavily on the initial conditions which is logical. It has been established that

the results of combating cancer in early stages is far more optimistic than the late-stage of

cancer when the spread has overwhelmingly reached lymph nodes and other parts of the

body. The macroscopic malignant equilibrium point is xm = (766.4, .018, 0), and the benign

one is xb = (41.45, .954, 0).

Although the state of the virtual patient can only be benign or malignant, the interplay of

interaction is not confined to tumor suppression or tumor expansion. On the contrary, studies

have shown that tumors may survive in microscopic levels having a dormant state, and can

be reactivated due to sudden events affecting the immune system [32]. If the immune system

experiences impairments due to disease or in some cases drugs such as immuno-suppressing

agents that are used to prohibit the immune system from causing damage to the body

preceding an organ transplant, then the tumor may restart developing [19].

Figure 2.2 illustrates the interconnections of the mathematical model in equations (2.1) -

(2.3) of tumor and immune interaction in the presence of other parameters and time varying

inputs. The larger shapes symbolize the states of the system which are the TCs, LCs, and

PKs. The two smaller shapes symbolize the time varying inputs consisting of chemotherapy

drug and immunotherapy stimulators. The lines connecting the states and inputs are the

parameters of the system which will be defined in table 2.1.
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The dynamic equations describe the interactions of the three states: x1,x2, and x3 are

governed by various parameters and two time varying control inputs: u1(t) and u2(t). The

reference set of parameters are given in [40], and shown in Table 2.1 along with their

definitions and numerical values.
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Figure 2.1: Phase portrait of tumor-immune interaction model
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Figure 2.2: Diagram of tumor-immune system interaction in response to time varying input
controls consisting of u1 and u2 which denote chemotherapy and immunotherapy respectively
[40].

Table 2.1: Numerical values and definitions of the parameters in the cancer model [40].

Parameter Definition Numerical Value
µC tumor growth rate 1.0078 · 107 cells/day
µI tumor stimulated proliferation rate .0029 day−1

α rate of immune cells influx .0827 day−1

β inverse threshold .0040
γ interaction rate 1 · 107 cells/day
χ death rate .1873 day−1

σ chemotherapeutic killing parameter 1 · 107 cells/day
λ immunotherapy injection parameter 1 · 107 cells/day
x∞ fixed carrying capacity 780 · 106 cells
% chemo-induced loss of immune cells 1
a chemotherapy concentration decay 0.5
b drug rate effect on chemotherapy concentration 1
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Chapter 3

Nonlinear Controllability and

Observability

3.1 Introduction

Before designing a controller for any system, a control engineer must examine a system

and determine that it is controllable: the inputs injected into the system will achieve the

desired outputs. Systems deemed to be uncontrollable will behave at random and may never

achieve the required outputs. Controllability relates to our model in the sense that; the

chemotherapy and immunotherapy injections will indeed reduce the tumor size to the benign

region without compromising the health of lymphocyte cell count. Observability is also

another important concept which conveys how well the state variables are estimated based

on the output or the external states. In linear systems the controllability and observability

are easily checked based on the rank of the controllability and observability matrices, the

system can be verified as being controllable and or observable. However, the dynamic of the

tumor-immune interaction model is nonlinear and requires more rigorous computation. The

local controllability and local observability of the system can be checked using linear algebraic

manipulation of the system equations. Chapter 3 presents the concept of local controllability

and local observability of nonlinear systems alongside the computation to ascertain that

the system is locally controllable and locally observable. The theorems, definitions, and

equations used in chapter 3 are summarized from the work presented in [29, 27, 26, 30, 25].
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3.2 Nonlinear Controllability

The dynamical system is said to be locally controllable if there exists an external input u

that is able to move the internal state of a system from any initial state x0 to any other

final state x1 in a finite time interval. Otherwise, the system is said to be uncontrollable.

Note that controllability does not mean that the final state can be maintained, merely that

any state can be reached. Lie Brackets are used in calculating controllability matrix rank in

nonlinear system. The Lie Bracket and nonlinear controllability is defined below.

Definition 3.1. Consider two vector fields f(x) and g(x) in <n space. Then the Lie bracket

operation generates a new vector field [25]:

[f, g] ≡ dg

dx
f − df

dx
g (3.1)

Higher order Lie brackets can be defined as follows:

(ad1f ) ≡ [f, g],

(ad2f ) ≡ [f, [f, g]],

...

(adkf ) ≡ [f, (adk−1f )] for k = [1, 2, ...]. (3.2)

Note: the ”ad” stands for adjoint.

Consider an affine control system
∑

, described in local coordinates by [29]:

∑
:

ẋ(t) = f(x(t), u(t)) = f(x(t)) +
∑m

i=1 gi(x(t))ui(t),

y(t) = h(x(t)), x(0) = x0.

(3.3)

where t 7→ ui(t) is a control function with values in a convex set Ω ⊂ IR, t 7→ x(t) is the

state trajectory with x(t) ∈ IRn, and t 7→ y(t) is the output curve with y(t) ∈ IRp. Given
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the system in equation (3.3) initialized at x0, the map:

Sx0 : {t 7→ u(t), t ∈ [0, T ]} −→ {t 7→ y(t), t ∈ [0, T ]} (3.4)

is called the input-output map.

Suppose we are given a system
∑

and an initial state x0. Let x1 be another state. Is it

possible to choose a control input t 7→ u(t) to steer
∑

from x0 to x1? Is x1 accessible from

x0?
∑

is said to be controllable if every state is accessible from every other state [29].

Theorem 3.2. The system is said to be locally accessible about a point x0 if and only if

the controllability matrix C spans IRn: rank (C)=n and C is defined by [25]:

C = [g1, ..., gm, [f, g1], ..., [f, gm], [f, (ad1f )], ..., [f, (ad
k
f )]] (3.5)

3.2.1 The Controllability Rank

In this section, the concept of nonlinear controllability is applied to the tumor-immune

interaction model to calculate the controllability matrix C defined in equation (1). The

tumor-immune interaction model given by equations (2.1) - (2.3) can be rewritten as:

∑
:

ẋ(t) = f(x(t)) + g1(x)u1 + g2(x)u2,

y(t) = h(x(t)), x(0) = x0.

(3.6)

where f(x) is a function such that: IR3 → IR3, x(t) ∈ IR3, y: IR3 → IR2. g1(x),g2(x), and

f(x) of system (3.6) are defined as follows:
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g1 =
[
0 0 b

]T
, (3.7)

g2 =
[
0 λx2 0

]T
, (3.8)

f(x) =


µCx1 − µC

x∞
x21 − γx1x2 − σx1x3

µIx1x2 − µIβx21x2 − χx2 + α− %x3x2
−ax3

 . (3.9)

From theorem 3.2 and the defined functions of the dynamical system in (3.7)-(3.9) the

controllability matrix becomes:

C =
[
g1, g2, [f, g1], [f, g2], [f, [f, g1]], [f, [f, g2]]

]
. (3.10)

The controllability matrix is calculated using the Matlab function ”liebracket” which

results in:

C =


0 0 3 x1 x1x2 .. ..

0 x2 const x2 .08 .. ..

1 0 3 1/2 0 .. ..

 (3.11)

The rank of C = 3 which means the system is deemed locally controllable. Note that

columns five and six of C are not calculated because the current matrix C has a rank of

three and cannot go any higher, so there is no need for further calculations.

System
∑

defined in equation (3.6) is locally controllable; which means that every state

is accessible from every other state. In other words, the virtual patient can be treated by

using chemo and immunotherapy u1 and u2, respectively, to compress the TC (x1) while

maintaining a healthy level of lymphocytes (x2) in the patient’s body.
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3.3 Nonlinear Observability

Intuitively, a system is said to be observable if in a finite system the previous states can

be obtained by observing sensor measurements. For controllability in nonlinear systems

the concept of accessibility is studied, similarly for observability in nonlinear systems it is

expressed by the notion of distinguishability.

Definition 3.3. Two states x0 and x1 are distinguishable if there exists an input function

u∗(t) such that: f(x0) 6= f(x1) [25].

To obtain the local observability matrix the ”Lie derivative” is used.

Definition 3.4. Given a system ẋ = Ax [25],

zi = Mix i ∈ [1,p], Mi is 1×n vector

=⇒ zi = hi(x) = L0
f (hi)

żi = L1
f (hi)

z
(k)
i = Lkf (hi)

Define G =


L0
f (h1) ... L0

f (hp)

... ... ...

Ln−1f (h1) ... Ln−1f (hp)

 =


M1x ... Mpx

... ... ...

M1A
n−1x ... MpA

n−1x


Note that the term L0

f (h) = h and the Lie derivative looks like :

Lf (h) =
[
dh
dx1
, ..., dh

dx2

] 
f1(x)

...

fn(x)

 =⇒ Lf (h) is a scalar.

Now, a gradient operator is defined:

dG =


dL0

f (h1) ... dL0
f (hp)

... ... ...

dLn−1f (h1) ... dLn−1f (hp)

 = O

O is the local observability matrix.

For control u∗, and initial state x0, the local observability matrix is defined as follows:
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O(x0, u∗) =



dL0
f (h1)

...

dL0
f (hp)

dLn−1f (h1)

...

dLn−1f (hp)


(3.12)

Theorem 3.5. Let G denote the set of all finite linear combinations of the Lie derivative of

h1,...,hp with respect to f for various values of u(t) (constant value). Let dG denote the set

of all their gradients. If n linearly independent vectors are found within dG, then the system

is locally observable [25].

The system is locally observable, that is distinguishable at point x0 if there exists a

neighborhood of x0 such that in this neighborhood,

x0 6= x1 =⇒ z(x0) 6= z(x1)

”if the sensor reading are different, then the states are different”

3.3.1 The Observability Rank

Applying the definitions and theorems of section 3.3; the local observability matrix of the

tumor-immune interaction model is defined as follows:

O =



dh1

dh2

dh3

dL1
f (h1)

dL1
f (h2)

dL1
f (h3)


(3.13)
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where h1, h2, h3 are equal to x1, x2, and x3, respectively, and L1
f (h1), L

1
f (h2) and L1

f (h3)

are equal to f1, f2 and f3, respectively. It is easily determined that the observability matrix

dh1, dh2, and dh3 forms a 3x3 identity matrix which will have a rank of 3. This means that

the system is locally observable.

3.4 Controllability and Observability Summary

Controllability addresses the issue of actuation and the ability of the actuators to control

the states of the system. On the other hand, observability addresses the issue of sensing and

the ability of the sensors to capture the dynamical behavior of the system.

Observability is the dual notion of controllability. It deals with determining the states of the

system from the knowledge of the input u(t) and output y(t). More precisely:

1. Observability refers to determining the initial state x0 from future inputs and outputs

u(t) and y(t), respectively, for duration time T .

2. Controllability refers to determining the final state x1 from past inputs and outputs

u(t) and y(t), respectively, for duration time T .

From the theorems and definitions referenced in chapter 3, it was determined that the system

is locally controllable and locally observable.
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Chapter 4

Applying Distinct Control Techniques

on tumor-immune Interaction Model

4.1 Control of Nonlinear Systems

Nonlinear control theory is concerned with nonlinear analysis of dynamic systems. The

systems can be Time Invariant (TI) or Time Varying (TV). In TI systems the dynamical

model is not time dependant while a TV system is. The tumor-immune model does not

depend on time so it is considered to be TI. Nonlinear systems do not adhere to the

superposition principle. Nonlinear control deals with applying mathematical techniques for

stability analysis and designing nonlinear feedback control [30, 28]. Chapter 4 will cover

the use of two different control techniques: optimal control and model free control. After

formulating the control techniques to design a controller to drive the tumor to the safe region,

we run simulations and preview results.

4.2 Optimal Control

Optimal Control theory is concerned with finding an adequate control input for a system,

such that the optimality criterion is achieved. The optimal control problem has an objective

function composed of state and input variables. For e.g. a sufficient objective function in the

cancer immune system would be to minimize the tumor size. An objective function is chosen
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by the practitioner to achieve a certain objective. What follows was summarized from the

work presented in [36, 39]. In section 4.2, we introduce the mathematical definitions and

formulation of the OC.

Definition 4.1. Consider a system with n state variables, m control inputs, and a payoff

function Γ [36],

J = inf
u1,...,um

∫ t1

t0

f(t, x1(t), ..., xn(t), u1(t), ..., um(t))dt+ Γ(x1(t1), ..., xn(t1))

subject to

ẋi(t) = gi(t, x1(t), ..., xn(t), u1(t), ..., um(t)),

xi(t0) = xi0 for i = 1, 2, ..., n, (4.1)

where f and gi are continuously differentiable in all variables. There are no requirements on

m,n. The system at hand has three states and two inputs (m = 2, n = 3). where x ∈ IRn is

the state, u ∈ IRm is the control input, functions f : IR × IRn × IRm 7→ IR, g : IR × IRn ×

IRm 7→ IR, and Γ: IRn 7→ IR are polynomials.

Remark 1. The Objective function also known as the cost function ”J” is selected based on

the desired goal. It can have numerous terms, such as setting the end bounds for the final

states or integrals of inputs to satisfy different control objectives.

Formulating the nominal Optimal Control problem using definition 4.1 yields

J = min
u1,u2

∫ 60

0

f(t, x1, x2, x3, u1, u2)dt

subject to

ẋ1 = µCx1 −
µC
x∞

x21 − γx1x2 − σx1x3,

ẋ2 = µIx1x2 − µIβx21x2 − χx2 + α + λx2u2 − %x3x2,

ẋ3 = −ax3 + bu1.
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x(0) = xt0 = {500, 0.5, 0},

x(60) = xt1 = {41.45, 0.954, 0},

0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1,

0 ≤ x1 ≤ 780,

0 ≤ x2 ≤ 5,

t ∈ [0, 60]. (4.2)

Remark 2. The states have fixed end points defined by xt1 which ensures that the states will

reach the benign region by the end of the time interval at t1 = 60.

Remark 3. The control inputs u1 and u2 are bounded between [0,1] in the normalized system

dynamic where the maximum dosage injection is 1.

Remark 4. Constraints are added to the states to ensure practical limits and compactness

of the state set.

Remark 5. The different objective functions used are as follows:

f1 = (x1 + x2) dt, (4.3)

f2 = (x21 + x22) dt, and (4.4)

f3 = (u21 + u22) dt. (4.5)

Optimal Control allows formulation of control problems as mathematical optimization

problems. OpenOCL provides a modeling language that helps to implement a direct

collocations method, and interfaces CasADi and ipopt to solve nonlinear system dynamics

[33, 12]. The toolboxes are used in conjunction with Matlab to solve the optimal control

problem and simulates the state trajectories after solving for the optimal inputs u∗1 and u∗2.

Note that the objective function must be formulated in a manner to achieve the objective.

In the tumor-immune interaction model, we minimize the controls to drive the state to the

benign region. The reason for minimizing the chemotherapy and immunotherapy injections

is due to their toxicity. Over dosage of the injections is life threatening and may lead to a
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death outcome. For example overusing the cytotoxic agent u1 may rid the patient of the

tumor cells but also lead to death; although the tumor was treated the patient is dead which

defeats the purpose of the treatment. In the addition, the immunotherapy injection u2 is also

toxic if used in large amounts and so it must be constrained accordingly. The constraints of

the optimal control problem in equation (4.2) will keep the system in the safe region, thus

the treatment is safe and the patient will not be subject to poisoning due to overdose of the

chemical agents used for treatment.

4.2.1 Simulations

In section 4.2.1 the OC method is applied to the cancer dynamical model and the system (4.2)

was used to formulate the OC problem and the results from the simulations are presented.

As can be seen the OC method successfully treated the virtual patient within the treatment

duration, but only after choosing the correct objective function given by equation (4.5). The

OC method converged to the benign equilibrium in approximately forty days in most cases.

The OC technique also reserved the use of chemotherapeutic agent; large doses were used

in cases with an initially high tumor cell count and only for approximately the first 10-days

of the treatment regimen. The results are presented in figures 4.1 - 4.7. Equations (4.3),

(4.4), and (4.5) were used to produce the state trajectories in figures 4.1, 4.2, and 4.3 - 4.7,

respectively.

4.3 Model Free Control

The MFC technique and procedure in section 4.3 was summarized from the work presented

in [13, 23, 24]. Model Free Control is based on a continuously updated local model using

the knowledge of the input-output behavior of the system. The framework behind MFC was

derived using differential algebra. The advantage of using MFC, is that unknown or finite

dimensional complex models can be replaced with an ultra local model [24]. It is an online

controller because it continuously examines the current and previous states of the system to

derive the inputs for the next iteration. MFC is applied to the cancer model and the results
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Figure 4.1: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). Initial condition is x0 = (500, 0.5) and the integrand
in the cost function is f = x1 + x2.
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Figure 4.2: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). Initial condition is x0 = (500, 0.5) and the integrand
in the cost function is f = x21 + x22.
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Figure 4.3: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). Initial condition is x0 = (30, 0.2) and the integrand in
the cost function is f = u21 + u22.
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Figure 4.4: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). Initial condition is x0 = (100, 0.2) and the integrand
in the cost function is f = u21 + u22.
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Figure 4.5: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (330, 0.9) and the integrand
in the cost function is f = u21 + u22.
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Figure 4.6: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (500, 0.5) and the integrand
in the cost function is f = u21 + u22.
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Figure 4.7: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). Initial condition is x0 = (700, 0.7) and the integrand
in the cost function is f = u21 + u22.
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are presented. The next set of equations define the methodology behind model free control

[23].

y(v) = Fest + αu (4.6)

Fest =
−6

L3

∫ t−L

t

(L− 2σ)y(σ) + ασ(L− σ)u(σ)dσ (4.7)

e = y − y∗ (4.8)

u =
Fest − ẏ∗ +Kpe

α
(4.9)

where

• y(v) is the derivative of order v >= 1 of y.

• u and y are the control input and output variables.

• Fest represents the plant estimate in its entirety including the poorly known parts, and

the disturbances.

• α is a constant parameter that is selected such that y(v) and αu are of the same

magnitude.

• y∗ is the reference trajectory.

• e is the tracking error.

Implementing the MFC procedure is done in the following order [13]:

1. Set u1 = 0, define reference trajectory y∗1, and initialize Kp1 and α1

2. Obtain measurement of states x1 and inputs u1

3. Estimate Fest1 by using equation (4.7)

4. calculate u1 according to equation (4.9) and return to step 2.
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Remark 6. Since the cancer model used contains two inputs and three outputs we will treat

them as a decoupled system and find u1 and u2 accordingly.

Remark 7. To avoid any confusion α is a parameter in the cancer model, while α1,2 is a

parameter used in the Model Free Control method.

The MFC parameters are shown in table 4.1.

• Selecting α1,2 is done through trial and error to obtain desired results of the output

states x1 ,x2. The states will vary widely depending on the numerical values chosen

for α1,2. This shows that MFC parameters chosen are specific to the model they are

intended for. As stated in [24] α1,2 is not a priori defined parameter, but it is chosen

by the practitioner.

• L represents the number of the most recent measurements considered for each iteration

of the MFC.

• y∗1,2 is the reference trajectory which is the benign equilibrium which is where we want

the states x1, x2 to settle.

• The sample time tsamp1,2 is .1 so for 60 days there is 601 samples.

• Kp1,2 represents the tuning parameters for MFC. In the same fashion of finding α1,2,

the tuning parameters are determined by trial and error.

4.3.1 MFC Simulations

In section 4.3.1 the MFC method is applied to the cancer dynamical model using parameters

in table 4.1 and the results from the simulations are shown. As can be seen, the MFC method

successfully treated the virtual patient by reducing the tumor size through chemotherapy

and immunotherapy injections over the period of the treatment while maintaining safe levels

of Lymphocyte cell population. It is evident from the figures 4.8 - 4.17 that the model free

control method converges within approximately twenty days, half the time it takes when

using the optimal control method. However, the MFC method uses the chemotherapeutic

agent u1 immoderately even in cases where there is a low number of tumor cells in the initial

condition.
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Figure 4.8: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (500, 0.5).

Table 4.1: Numerical values and definitions of the Model Free Control parameters

MFC Parameter Definition Numerical Value
α1,2 magnitude adjuster 1000, 5000
L1,2 past measurements taken 3, 3
y∗1,2 Reference Trajectories 41.45, 0.954

tsamp1,2 time lapse 0.1, 0.1
Kp1,2 Tuning parameters 0.001, 6
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Figure 4.9: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (700, 0.7).
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Figure 4.10: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (30, 0.2).
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Figure 4.11: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (100, 0.2).
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Figure 4.12: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (330, 0.9).
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Figure 4.13: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (250, 1.2).
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Figure 4.14: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (350, 1.2).

46



Figure 4.15: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (80, 0.5).
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Figure 4.16: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The initial condition is x0 = (100, 0.5).
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Figure 4.17: Plot of tumor and immune cells x1 and x2, respectively, in response to time
varying input controls (u1) and (u2). The Initial condition is x0 = (200, 0.7).
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Chapter 5

Conclusion and Future Works

In this thesis, we introduced a dynamical model of tumor-immune interaction of a virtual

patient. The benign and malignant equilibrium points were calculated to see how the

dynamic model will react for different initial conditions with absent controls; chemotherapy

and immunotherapy injections. We successfully showed that the mathematical model was

locally controllable and observable. Hence, we implemented two distinct control techniques

to treat the virtual patient and reduce the tumor size to the benign region. Optimal control

and model free control were successful in curing the patient within the treatment period and

the results were presented. To obtain the desired results we needed to define the correct

objective functions of the OC problem and solve it given the constraints of the system. On

the other hand, some of the MFC parameters needed some tuning through trial and error to

produce the sought after results. We observed that using the OC resulted in driving the states

to the benign region in approximately forty days and the use of chemotherapeutic agents

was minimized, especially for low initial tumor cell populations. The MFC consistently

used chemotherapy even when the initial condition of the tumor cells was relatively low.

This presents a trade-off between treatment time and the use of chemotherapy. It would

be interesting to apply the control techniques in a real setting, where the data is measured

and the cancer model is simulated to obtain the optimal control injection dosages to treat a

patient.

50



Bibliography

51



[1] National Cancer Institute. Cancer Statistics. https://www.cancer.gov/about-cancer/

understanding/statistics. 2

[2] National Cancer Institute. Immunotherapy to Treat Cancer. https://www.cancer.gov/

about-cancer/treatment/types/immunotherapy. 9

[3] National Cancer Institute. Lymphocyte. https://www.cancer.gov/publications/

dictionaries/cancer-terms/def/lymphocyte. 6, 15

[4] National Cancer Institute. Types of Chemotherapy Drugs. https://training.seer.

cancer.gov/treatment/chemotherapy/types.html. 8

[5] National Cancer Institute. Understanding Cancer. https://www.cancer.gov/

about-cancer/understanding. 3

[6] (2021). John Hopkins Institute for nanobiotechnology. Engineering for Cancer therapies.

https://inbt.jhu.edu/engineering-for-cancer-therapies/. Accessed: 2021-01-18.

iii

[7] (2021). Stanford Healthcare. Cancer. https://stanfordhealthcare.org/

medical-conditions/cancer/cancer.html. Accessed: 2021-03-20. 1

[8] (2021). University of Arizona Biology department. Introduction to Immunology. http:

//www.biology.arizona.edu/immunology/tutorials/immunology/page3.html. Ac-

cessed: 2021-01-18. 6

[9] Abouaissa, H., Fliess, M., Iordanova, V., and Join, C. (2012). Freeway ramp metering

control made easy and efficient. 12

[10] Afenya, E. (1997). Acute leukemia and chemotherapy: A modeling viewpoint.

Mathematical biosciences, 138:79–100. 7

[11] Andary, S., Chemori, A., Benoit, M., and Sallantin, J. (2012). A dual model-free control

of underactuated mechanical systems, application to the inertia wheel inverted pendulum.

pages 1029–1034. 12

52

https://www.cancer.gov/about-cancer/understanding/statistics
https://www.cancer.gov/about-cancer/understanding/statistics
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/lymphocyte
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/lymphocyte
https://training.seer.cancer.gov/treatment/chemotherapy/types.html
https://training.seer.cancer.gov/treatment/chemotherapy/types.html
https://www.cancer.gov/about-cancer/understanding
https://www.cancer.gov/about-cancer/understanding
https://inbt.jhu.edu/engineering-for-cancer-therapies/
https://stanfordhealthcare.org/medical-conditions/cancer/cancer.html
https://stanfordhealthcare.org/medical-conditions/cancer/cancer.html
http://www.biology.arizona.edu/immunology/tutorials/immunology/page3.html
http://www.biology.arizona.edu/immunology/tutorials/immunology/page3.html


[12] Andersson, J., Gillis, J., Horn, G., Rawlings, J., and Diehl, M. (2018). Casadi: a software

framework for nonlinear optimization and optimal control. Mathematical Programming

Computation, 11. 29

[13] Bara, O., Fliess, M., Join, C., Day, J., and Djouadi, S. (2018). Toward a model-free

feedback control synthesis for treating acute inflammation. Journal of Theoretical Biology,

448. 2, 11, 12, 30, 38

[14] Chang, Y., Gao, B., and Gu, K. (2011). A model-free adaptive control to a blood pump

based on heart rate. ASAIO journal (American Society for Artificial Internal Organs :

1992), 57:262–7. 12

[15] Clark, C. (1990). The optimal management of renewable resources. 11

[16] Cohen, D. (1971). Maximizing final yield when growth is limited by time or by limiting

resources. Journal of theoretical biology, 33:299–307. 11

[17] Depillis, L., Gu, W., Fister, K., Head, T., Maples, K., Murugan, A., Neal, T., and

Yoshida, K. (2007). Chemotherapy for tumors: An analysis of the dynamics and a study

of quadratic and linear optimal controls. Mathematical biosciences, 209:292–315. 10, 11

[18] Ding, W. (2006). Optimal control of a hybrid system and a fishery model. University of

Tennessee dissertation. 11

[19] D’Onofrio, A., Ledzewicz, U., and Schättler, H. (2012). On the Dynamics of Tumor-

Immune System Interactions and Combined Chemo- and Immunotherapy, pages 249–266.

2, 3, 10, 14, 16
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A Summary of Equations

A brief recap of the equations and formulas used throughout the thesis is summarized below.

A.1 Tumor Immune Interaction Model

The mathematical model of nonlinear ODE representing the tumor-immune interaction is

given below:

ẋ1 = µCx1 −
µC
x∞

x21 − γx1x2 − σx1x3,

ẋ2 = µIx1x2 − µIβx21x2 − χx2 + α + λx2u2 − %x3x2,

ẋ3 = −ax3 + bu1.

The tumor-immune system interaction is composed of three states [40]:

• x1 : Tumor cell population;

• x2 : Lymphocyte cell population; and

• x3 : Chemotherapy drug concentration in patient.

The model comprises two time varying control inputs denoted as follows:

• u1(t) : dosage of a cytotoxic agent; and

• u2(t) : cytokines which is a generic immuno-stimulator.

A.2 Nonlinear Controllability

The system is said to be locally accessible about a point x0 if and only if the controllability

matrix C spans IRn: rank (C)=n and C is defined by [25]:

C = [g1, ..., gm, [f, g1], ..., [f, gm], [f, (ad1f )], ..., [f, (ad
k
f )]] (1)
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Consider two vector fields f(x) and g(x) in <n space. Then the Lie bracket operation

generates a new vector field [25]:

[f, g] ≡ dg

dx
f − df

dx
g (2)

Higher order Lie brackets can be defined as follows:

(ad1f ) ≡ [f, g],

(ad2f ) ≡ [f, [f, g]],

...

(adkf ) ≡ [f, (adk−1f )] for k = [1, 2, ...]. (3)

Note: the ”ad” stands for adjoint.

A.3 Nonlinear Observability

For control u∗, and initial state x0, the local observability matrix is defined as follows:

O(x0, u∗) =



dL0
f (h1)

...

dL0
f (hp)

dLn−1f (h1)

...

dLn−1f (hp)


where dL is the Lie derivative.
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A.4 Nonlinear Optimal Control

Consider a system with n state variable, m control inputs, and a payoff function Γ,

J = inf
u1,...,um

∫ t1

t0

f(t, x1(t), ..., xn(t), u1(t), ..., um(t))dt+ Γ(x1(t1), ..., xn(t1))

subject to

ẋi(t) = gi(t, x1(t), ..., xn(t), u1(t), ..., um(t)),

xi(t0) = xi0 for i = 1, 2, ..., n,

A.5 Model Free Control

y(v) = Fest + αu

Fest =
−6

L3

∫ t−L

t

(L− 2σ)y(σ) + ασ(L− σ)u(σ)dσ

e = y − y∗

u =
Fest − ẏ∗ +Kpe

α

where

• y(v) is the derivative of order of v >= 1 of y.

• u and y are the control input and output variables.

• Fest represents the plant in it’s entirety including the poorly known parts, and the

disturbances.

• α is a constant parameter that is chosen such that y(v) and αu are of the same

magnitude.

• y∗ is the reference trajectory.

• e is the tracking error.
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