
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2021

Accelerating Dynamical Density Response Code on Summit and Accelerating Dynamical Density Response Code on Summit and

Its Application for Computing the Density Response Function of Its Application for Computing the Density Response Function of

Vanadium Sesquioxide Vanadium Sesquioxide

Wileam Y. Phan
University of Tennessee, Knoxville, wphan@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Condensed Matter Physics Commons, and the Numerical Analysis and Scientific

Computing Commons

Recommended Citation Recommended Citation
Phan, Wileam Y., "Accelerating Dynamical Density Response Code on Summit and Its Application for
Computing the Density Response Function of Vanadium Sesquioxide. " Master's Thesis, University of
Tennessee, 2021.
https://trace.tennessee.edu/utk_gradthes/6327

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F6327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=trace.tennessee.edu%2Futk_gradthes%2F6327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=trace.tennessee.edu%2Futk_gradthes%2F6327&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=trace.tennessee.edu%2Futk_gradthes%2F6327&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Wileam Y. Phan entitled "Accelerating Dynamical

Density Response Code on Summit and Its Application for Computing the Density Response

Function of Vanadium Sesquioxide." I have examined the final electronic copy of this thesis for

form and content and recommend that it be accepted in partial fulfillment of the requirements

for the degree of Master of Science, with a major in Physics.

Adolfo G. Eguiluz, Major Professor

We have read this thesis and recommend its acceptance:

H. Hanno Weitering, Anthony Mezzacappa, Stanimire Tomov

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Accelerating Dynamical Density

Response Code on Summit and Its

Application for Computing the Density

Response Function of Vanadium

Sesquioxide

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Wileam Yonatan Phan

December 2021

© by Wileam Yonatan Phan, 2021

All Rights Reserved.

ii

For science!

iii

Acknowledgments

I would like to thank the following people for their numerous contributions that made this

work possible:

• My family (Gunawan Phan, Ribka M.K. Lioe, and Yosua Phan) for their moral and

financial support throughout this journey. I miss y’all.

• Prof. Adolfo G. Eguiluz for letting me tackle this big project.

• Fellow Eguiluz group member (soon to be Dr.) Casey J. Eichstaedt. I wish you well

for everything.

• Dr. Eduardo F. D’Azevedo (ORNL), who basically serves as my technical thesis advisor

in all but official recognition. Thanks for mentoring me throughout the project.

• My thesis committee: Prof. Anthony Mezzacappa, Prof. Hanno Weitering, and Prof.

Stanimire Tomov (ICL UTK). Thanks for your valuable comments and advice to bring

this work closer to excellence.

• The 2020 OLCF Hackathon team, especially our mentor Prof. Piotr Luszczek (ICL

UTK) and our friends at NVIDIA (Jeff Larkin, Robbie Searles, Max Katz)

• The people at ICL UTK, especially Prof. Mark Gates, Prof. George Bosilca, and Dr.

Ahmed Abdelfattah

• The OLCF support group – Dr. Tom Papatheodore, Dr. Suzanne Parete-Koon, Dr.

George Markomanolis, Brian Smith, Subil Abraham, Hong Liu, and everyone else.

Thanks for your help with my tickets.

iv

• The NERSC support group – Dr. Yun "Helen" He, Dr. Rebecca Hartman-Baker, Dr.

Woo-Sun Yang, Dr. Zhengji Zhao, Dr. Johannes Blaschke, Dr. Brian Friesen, and

everyone else. Thanks for your help with my incidents.

• Physics UTK people – especially Prof. Marianne Breinig, Dr. Christine P. Cheney,

Chrisanne Romeo, and Showni Medlin-Crump. Thanks for bearing with me.

• Aliceann Talley, Linda Tipton, Josh Flory for proofreading the manuscript.

• The "Bomb Squad" (Corey Gilbert, Brian Rollick, Xiaobin "Jeremy" Lu). Thanks for

providing continual entertainment and camaraderie.

Soli Deo gloria,

Wileam Yonatan Phan

Knoxville, July 2021

v

Abstract

This thesis details the process of porting the Eguiluz group dynamical density response

computational platform to the hybrid CPU+GPU environment at the Summit supercom-

puter at Oak Ridge National Laboratory (ORNL) Leadership Computing Center. The

baseline CPU-only version is a Gordon Bell-winning platform within the formally-exact time-

dependent density functional theory (TD-DFT) framework using the linearly-augmented

plane wave (LAPW) basis set. The code is accelerated using a combination of the OpenACC

programming model and GPU libraries – namely, the Matrix Algebra for GPU and Multicore

Architectures (MAGMA) library – as well as exploiting the sparsity pattern of the matrices

involved in the matrix-matrix multiplication. Benchmarks show up to a 12.3× speed-up

compared to the CPU-only version. This performance boost should accelerate discovery

in material and condensed matter physics through computational means. After the hybrid

CPU+GPU code has been sufficiently optimized, it is used to study the dynamical density

response function of vanadium sesquioxide, and the results are compared with spectroscopic

data from non-resonant inelastic X-ray scattering (NIXS) experiments.

vi

Table of Contents

1 Introduction 1

1.1 Scope . 3

1.2 Organization . 3

2 Fundamentals I: Time-Dependent Density Functional Theory (TD-DFT) 5

2.1 A brief introduction to Density Functional Theory (DFT) 5

2.1.1 Early attempts to solve the many-electron problem 5

2.1.2 Hohenberg-Kohn theorems . 16

2.1.3 The Kohn-Sham algorithm . 18

2.1.4 Exchange-correlation potential functionals 22

2.1.5 The DFT+U method . 23

2.1.6 Choice of basis . 24

2.2 Time-Dependent Density Functional Theory (TD-DFT) 25

2.2.1 Runge-Gross theorems . 26

2.2.2 The dynamical density-density response function 31

2.3 TD-DFT and spectroscopy experiments . 36

2.3.1 Non-resonant Inelastic X-ray Scattering (NIXS) 36

2.4 The modern landscape of DFT . 39

2.5 The Elk DFT software package . 40

2.5.1 The Linearly-Augmented Plane Wave (LAPW) basis set 41

2.5.2 The discrete momentum space and the macrocrystal 42

2.5.3 Electronic structure: band structure and density of states 44

2.6 Wannier function projection methods . 46

vii

2.7 The constrained Random Phase Approximation (c-RPA) method 55

3 Fundamentals II: Programming Graphics Processing Units (GPUs) 56

3.1 The Graphics Processing Unit (GPU) . 56

3.2 Accelerators and High Performance Computing 59

3.3 GPU Programming 101 . 60

3.3.1 "Heavy" and "light" cores . 60

3.3.2 The three-step paradigm . 63

3.3.3 GPU programming models . 64

3.3.4 The OpenACC programming model 70

3.3.5 GPU-optimized libraries . 77

3.4 Multiple levels of parallelism . 78

4 Porting dynamical density response computational platform to the hybrid

CPU+GPU environment 79

4.1 The dynamical density response algorithm 79

4.1.1 Matrix element calculation . 80

4.1.2 Matrix element calculation in Bloch basis 82

4.1.3 Matrix element calculation in Wannier basis 83

4.1.4 Dynamical response function in Bloch basis 83

4.2 About the code . 83

4.3 Porting strategy . 85

4.3.1 The debug environment . 87

4.3.2 Test cases . 88

4.4 The Summit supercomputer . 90

4.5 Technical details of the GPU porting process 93

4.5.1 Part 1: Pure OpenACC implementation 93

4.5.2 Part 2: Batching the ZGEMM calls with MAGMA library 96

4.5.3 Part 3: Exploiting the sparsity patterns 100

4.6 Performance of the GPU port on Summit . 103

4.6.1 The c-RPA calculation on NiO paramagnetic test case 106

viii

4.6.2 The c-RPA calculation on La2CuO4 test case 107

5 The dynamical response function of vanadium sesquioxide 109

5.1 The crystal structure of vanadium sesquioxide 109

5.2 The ground state of vanadium sesquioxide 111

5.3 Bloch functions in vanadium sesquioxide . 114

5.4 The dynamical density-density response function of vanadium sesquioxide in

the complete Hilbert space . 116

6 Conclusions 118

6.1 Suggestions . 118

Bibliography 119

Appendices 128

A The BaseCamp workstation . 129

A.1 Hardware specifications . 129

A.2 Output from lscpu . 129

A.3 Output from lstopo -p . 129

A.4 Software environment . 129

A.5 Output from NVIDIA CUDA example deviceQuery 132

A.6 Output from AMD rocminfo . 132

B Test systems for the Exciting-Plus code development 133

B.1 c-RPA calculation on nickel oxide (NiO) 133

B.2 c-RPA calculation on lanthanum cuprate (La2CuO4) 133

B.3 Response calculation on strontium cuprate (Sr2CuO3) 133

Vita 134

ix

List of Tables

3.1 Systems ranked first in the TOP500 ranking of supercomputer facilities [1],

from 2008 to 2020 . 61

3.2 High level comparison of OpenACC and OpenMP. Quoted with permission

from Ref. [2]. 69

4.1 Summary of physical and numerical parameters, as well as the launch

configuration for the 6 different test cases . 89

x

List of Figures

2.1 Solution of the Kronig-Penney model for electrons in a periodic potential

lattice, plotted for the value of P = 3
2
π. Accessible regions to in the energy

spectrum are shaded yellow. 11

3.1 A brief timeline of the rise of the graphics processing unit (GPU) and the

development of accelerated high performance computing. 57

3.2 Comparison between the CPU core and the GPU "core". Adapted with

permission from ?? . 62

3.3 The three-step paradigm of programming a GPU. 65

4.1 The statistics table as seen with ParaProf from TAU performance system for a

c-RPA calculation on nickel oxide (NiO) paramagnetic test case using the base

CPU-only version of the Exciting-Plus code. genmegqblh() subroutine is

highlighted as the most time consuming part of the code. 81

4.2 Summit node architecture, from the Summit User Guide [3]. 92

4.3 Performance of single and batched double-precision complex matrix-matrix

multiplication functions from MAGMA BLAS on a Summit compute node. 98

4.4 Illustration of packing the [gntuju] matrix due to its sparsity pattern . . . 101

4.5 Wall clock time and speed-up for each of the six test cases, performed using

all four code versions with OpenMP (CPU only) and OpenACC (CPU+GPU) 104

5.1 The phase diagram and crystal structure of V2O3. The face-sharing VO8

octahedra involved in the V–V bond are shaded in light green. Yellow arrows

denote the relative magnetic moment directions. 110

xi

5.2 Band structure and density of states for V2O3 in the paramagnetic metallic

(PM) phase. 112

5.3 Band structure and density of states for V2O3 in the antiferromagnetic

insulating (AFI) phase. 113

5.4 3-D contour plots of the Bloch function of V2O3 in non-magnetic, metallic

(NM) phase at Γ point in the first Brillouin zone for band indices j = 41− 45. 115

5.5 The imaginary part of the Kohn-Sham density-density response function

χ(KS)(~q, ω) and the dynamical density-density response function χ(~q, ω) for

V2O3 in the PM phase. 117

xii

Chapter 1

Introduction

Over the last two decades, computation has been increasingly gaining a foothold in science.

Computation has risen to be considered as the third leg of science, joining the two legs of

theory and experiment [4]. This is especially important in the field of condensed matter

physics – the physics of solid matter – where theory can be divided into the two very broad

categories of matter modeling and first-principles ("ab initio") based methods. This thesis

is concerned with the latter – porting an ab initio dynamical density response platform

developed in the Eguiluz research group at the Department of Physics and Astronomy,

University of Tennessee, Knoxville, so that it can be used efficiently in a leadership-class

supercomputing facility, namely the Summit supercomputer at the Oak Ridge Leadership

Computing Facility (OLCF), Oak Ridge National Laboratory (ORNL) [5].

Recent trends in leadership-class supercomputing facilities show an increasing reliance on

a fairly recent piece of hardware – the Graphics Processing Unit (GPU) [6]. Originally

designed solely for video processing in the early 2000’s, the GPU has evolved into a general-

purpose specialized computing unit able to process a massively parallel amount of data.

Such devices are now commonly called accelerators. In the November 2012 edition of the

TOP500 ranking of the world’s fastest supercomputers, the Titan supercomputer at OLCF

debuted at number 1 [?]. Titan is an accelerated supercomputer with one 16-core AMD

"Interlagos" CPU paired with one NVIDIA "Kepler" GPU per node [7, 8]. This trend

continues with Titan’s successor, Summit, which has two IBM POWER9 CPUs paired with

six NVIDIA "Volta" GPUs per node [5, 9]. In addition, the future Frontier supercomputer,

1

the planned successor to Summit, will use AMD CPUs and AMD GPUs, and is scheduled

to come on-line in late 2021 [10].

The porting process from the CPU-only version to the hybrid CPU+GPU environment

relies on two major components: using the OpenACC programming model [11] version 2.7

to offload certain parts of the code to be computed on the GPU, and performing calls to

optimized GPU libraries, namely the Matrix Algebra for GPU and Multicore Architectures

(MAGMA) library [12], which is developed by the Innovative Computing Laboratory at the

University of Tennessee, Knoxville.

Preliminary benchmarks using nickel oxide (NiO) as a test system on the first hybrid

CPU+GPU version of the code that is implemented purely using the OpenACC programming

model show a wall clock time to solution that is on par compared to the CPU only version for

the constrained Random Phase Approximation (c-RPA) calculation. The hybrid CPU+GPU

version is subsequently optimized by rewriting the OpenACC kernels and refactoring the

matrix element calculation in Bloch basis to use matrix-matrix multiplication, which is then

offloaded to the GPU using calls to the MAGMA library. This version shows a ∼1.3×
speedup over the CPU-only version for the same test case (c-RPA on NiO). One of the

notable events during the optimization process is the discovery of the sparsity pattern of one

of the matrices involved in the matrix-matrix multiplication. While exploiting this sparsity

pattern didn’t significantly improve the speed-up over the CPU-only version for the c-RPA

on NiO test case, it significantly reduces the GPU memory usage.

After successful porting and optimization of the dynamical density response computa-

tional framework from the CPU-only environment into the hybrid CPU+GPU environment

suitable for execution on Summit, the code is used to study the dynamical density response

function χ~G~G′(~q, ω) – as well as related physical observables1, such as the effective complex

dielectric function εeff(~q, ω) – of vanadium sesquioxide (V2O3). This material system is

widely known as a time-honored prototype for a strongly correlated condensed matter

system [13]. The Eguiluz research group at the University of Tennessee, Knoxville (UTK)

has received intriguing data on V2O3 obtained from a non-resonant inelastic X-ray scattering
1These physical observables are related to the dynamical density response function, and thus are also

computed by the code. ~q denotes momentum transfer in units of inverse Ångströms (Å−1) and ω is the
energy transfer in units of electronvolts (eV).

2

(NIXS) spectroscopy experiment performed by Professor Simo Huotari (University of

Helsinki) at the European Synchrotron Research Facility (ESRF) in Grenoble, France. This

NIXS data reveal a subtle interplay between a sharp d-d excitation and the development of

the insulating Mott gap [14].

. . . paragraph on V2O3 results . . .

1.1 Scope

This thesis covers the process of porting the Eguiluz research group dynamical density

response computational platform, which I will refer to using our "internal" name Exciting-

Plus. As mentioned in the previous section, the porting process consists of three phases:

1. An implementation using pure OpenACC

2. A refactoring of the code into matrix-matrix multiplication (ZGEMM) and using the

MAGMA library

3. Exploiting the sparsity patterns of the matrices involved in the ZGEMM call

In addition, after the ported code has been sufficiently optimized, the Exciting-Plus

code is applied to compute the dynamical density response function χ~G~G′(~q, ω) of vanadium

sesquioxide (V2O3), both in the complete Hilbert space represented by Bloch wavefunctions,

and the downfolded Hilbert space of Wannier functions. The Wannier functions are generated

using a state-of-the-art algorithm developed in the Eguiluz group [15]. This response

calculation is performed only within the Random Phase Approximation (RPA) 2.

1.2 Organization

This thesis is divided into six chapters. Chapter 2 explains the basic theory of Time-

Dependent Density Functional Theory (TD-DFT) – upon which the Exciting-Plus

codebase is developed. Next, Chapter 3 gives a brief introduction into the continuously
2Note that the RPA within Time-Dependent Density Functional Theory (TD-DFT) differs from the RPA

in diagrammatic methods. This will be explained further in Chapter 2.

3

growing field of GPU programming and explains some practical ways to port a CPU-only

code into the CPU+GPU architecture using the OpenACC programming model. Chapter 4

details the porting process of Exciting-Plus to specifically target the hybrid CPU+GPU

environment at the Summit supercomputer at the OLCF, which is organized as a three-step

process (in chronological order), as well as the benchmarks and profiling data that have

been obtained on Summit. Chapter 5 discusses the application of the optimized Exciting-

Plus code to calculate the dynamical response function of V2O3 and its comparison to the

aforementioned experimental NIXS data. Finally, Chapter 6 summarizes the insights gained

from this project and suggests further improvements, both on the computational side as well

as the physical side.

4

Chapter 2

Fundamentals I: Time-Dependent

Density Functional Theory (TD-DFT)

This chapter covers the basics of Density Functional Theory (DFT), its extension into Time-

Dependent Density Functional Theory (TD-DFT), and how this formalism can be applied

to compute the dynamical density-density response function of real materials within the

framework of linear response theory.

2.1 A brief introduction to Density Functional Theory

(DFT)

This section provides a brief historical viewpoint of the development of Density Functional

Theory (DFT), as well as some of the basic concepts of DFT.

2.1.1 Early attempts to solve the many-electron problem

Condensed matter physics (and its predecessor solid state physics) deals with one of the most

formidable physics problems available: the many-body problem of interacting electrons in

solid crystalline matter. This problem is exceptionally difficult to solve for the following

reasons:

• It involves ∼ 1023 electrons (and that’s just for a single mole of matter!).

5

• Electrons have intrinsic spin 1
2
and thus obey Fermi-Dirac statistics for indistinguish-

able particles.

• Electrons are negatively charged particles that interact with each other through the

Coulomb interaction.

• The atomic nuclei that make up the material carry positive charge and thus also interact

with the electrons through the Coulomb interaction.

• Electrons are quantum mechanical objects and thus measurements change the state of

the electrons in the system (unlike in classical mechanics).

Thus, the interacting many-electron system has no known closed-form solutions. There

are, however, approximations that can be made such that the problem can be solved

computationally.

The Born-Oppenheimer approximation

First, since the electrons and the atomic nuclei differ in mass by four orders of magnitude

(10−31 kg and 10−27 kg, respectively), the atomic nuclei move much more slowly (relative

to the electrons) and thus they can be treated separately from one another. This is called

the Born-Oppenheimer approximation. It was first proposed by Max Born and Julius

Robert Oppenheimer in 1927 [?]. This powerful concept of the separation of the degrees of

freedom in the system into electronic (eV1), vibrational (meV), rotational (µeV), and nuclear

magnetic (∼ 10−8 eV) degrees of freedom, in order of decreasing energy scale, is a very useful

approximation.

Etotal = Eel + Evib + Erot + Enuc (2.1)

Let’s focus on the electronic degrees of freedom, since the rest of the terms are very small in

comparison.
1The electronvolt (eV) is a convenient energy unit used extensively in solid state and condensed matter

physics. It is defined as the amount of energy needed to move an electron through an electric potential
difference of 1 volt. 1 eV = 1.602176634 · 10−19 J (joules).

6

The electron gas model

The next step involves treating the electrons as a homogeneous, non-interacting system

(also known in solid state physics textbooks as the free electron model or the electron

gas model) [16, 17]. This approach was developed by Paul Drude (1900) as a semi-classical

theory and further enhanced by Wolfgang Pauli (1928) and Arnold Sommerfeld (1933). The

electron gas has the following properties:

• The Hamiltonian consists of the kinetic term only, since all interactions in the system

are suppressed.

Ĥ = T̂ = −
∑
i

~2

2m
∇2
i (2.2)

Thus, taking the Fourier transform, the Schrödinger equation in momentum space for

this system in Cartesian coordinates is given by

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ψ~k(~x) = E~k Ψ~k(~x) (2.3)

• The electrons are confined into a three-dimensional box of side L and periodic boundary

conditions apply. In Cartesian coordinates, with ~x = (x, y, z),

Ψ(x+ L, y, z) = Ψ(x, y + L, z) = Ψ(x, y, z + L) = Ψ(x, y, z) (2.4)

• The wavefunction Ψ~k(~x) that satisfies the Schrödinger equation is a plane wave.

Ψ~k(~x) = ei
~k·~x (2.5)

• The energy spectrum is distributed equally along the three dimensions (equipartition).

E~k =
~2k2

2m
=

~2(k2
x + k2

y + k2
z)

2m
(2.6)

• The momentum components kx, ky, and kz are quantized in multiples of
2π

L
.

7

• The Fermi energy EF is the surface of a sphere in three-dimensional momentum space,

called the Fermi sphere, with radius

kF =

(
3π2N

L3

) 1
3

(2.7)

• The real-space "counterpart" of the Fermi momentum kF is called the Wigner-Seitz

radius rs, defined as the radius of the sphere that encloses exactly one electron,

measured in units of the Bohr radius aB. A higher electronic density corresponds

to a lower value of rs. The highest value for rs in the periodic table is for cesium (Cs)

with a value of 5.62aB.

Despite its rudimentary approach, the electron gas model was considered successful in

describing the electronic behavior of metals in the alkali metals (Li, Na, K, Rb, Cs) as well

as the noble metals (Ag, Au, Cu). These systems share one thing in common: the electron is

not bound strongly to the nucleus and can move relatively freely inside the solid. This also

explains why all of these metals are excellent electric conductors. It is, however, completely

at odds with the behavior of insulators and semiconductors, and the model cannot explain

important phenomena such as the magnetoresistance effect (which is used in magnetic data

storage) and the frequency dependence of the electrical conductivity (which is important in

radar technology, for instance) [18].

The jellium model

The first attempt at refining the electron gas model so it can be applied to solids is called the

jellium model [17]. In this model, the electric potential of the atomic nuclei are simplified

from a periodic potential into a homogeneous, positive background ("jelly").

Ĥ = T̂ + V̂e−e + V̂e−bg + V̂bg−bg (2.8)

where the electron-background interaction V̂e−b and the background self-interaction V̂b−b are

given by the following, respectively.

8

V̂e−bg = −e2

∫∫
d3x d3x′

n̂(~x) nb(~x′)

|~x− ~x′| (2.9)

V̂bg−bg = −e
2

2

∫∫
d3x d3x′

nb(~x) nb(~x′)

|~x− ~x′| (2.10)

where the uniform positive background nb(~x) is a constant with the value of
N

L3
.

Due to this interaction with the background, the electrons in the jellium model assume a

different mass from the elementary mass of an electron, called the effective mass m∗. The

energy spectrum still assumes its parabolic form as in the electron gas model, but with the

mass replaced by its effective mass.

E~k =
~2k2

2m∗
(2.11)

In addition, the positive background also shields the "bare" Coulomb interaction into

a Yukawa-like potential that decays at some distance. This is an important qualitative

effect because this screening effect in solids suppresses the infinite long-range nature of the

Coulomb potential.

The Kronig-Penney model

Another important theory that arose to try to explain the behavior of electrons in solids

is the one-dimensional (1-D) Kronig-Penney model (1931) [], which treats the atomic

ions more rigorously as a periodic lattice of finite square potential wells, but ignores the

electron-electron interaction.

Ĥ = T̂ + V̂p (2.12)

Here, the kinetic part T̂ is the same as in the electron gas model (Equation (2.2)), but

only in one dimension x, and the periodic potential is defined in the unit cell (a 1-D "box")

of side L = a+ b as follows:

V̂p =

−V0 −b < x < 0

0 0 < x < a

(2.13)

9

Due to the periodicity of the system, the solution ψ(x) to the Schrödinger equation

follows the Bloch theorem2 [19]:

ψ(x± na) = ψ(x) (2.14)

where n is any positive integer. Then ψ(x) will be of the form

ψ(x) = uk(x) eikx (2.15)

with uk(x) being the Bloch function defined within the periodic interval −b ≤ x ≤ a and

carrying momentum k.

Define the expressions β =

√
2m

~2
εk and γ =

√
2m

~2
(V0 − εk) to quantify the energy scales.

The Kronig-Penney model has an exact solution, but the interesting part is when the limit

b→ 0 (narrower potential well) and V0 →∞ (delta function-like potential), but keeping the

product γ2b finite.

lim
b→0
γ→∞

γ2ab

2
= P (2.16)

The solution for the energy spectrum εk is given as a transcendental equation in βa,

P

βa
sin(βa) + cos(βa) = cos(λa) (2.17)

The expression in the left-hand side is plotted in Figure 2.1. Notice that the right-hand

side is restricted to the range −1 ≤ cos(λa) ≤ +1 due to the property of the cosine function.

These regions are called accessible regions and are shaded in yellow in the figure. Likewise,

the unshaded regions can be termed forbidden regions. This simple result establishes the

following important point: due to the periodic potential of the atomic ions in the crystal, the

energy spectrum and hence the momentum k is restricted to certain accessible regions in the

momentum space. Further refinements on representing the atomic lattice more rigorously

led to the foundation of the band theory for semiconductors.

2Bloch theorem also holds in three dimensions, by appropriately substituting the position vector ~r and
the discrete momentum vector ~k in the first Brillouin zone. The exact expression will appear in a later
section as Equation (2.119).

10

−1

0

1

βa

P
βa sin(βa) + cos(βa)

-4π -3π -2π −π 0 π 2π 3π 4π

Figure 2.1: Solution of the Kronig-Penney model for electrons in a periodic potential lattice, plotted for the value of P = 3
2
π.

Accessible regions to in the energy spectrum are shaded yellow.

111111

The Hartree-Fock method

So far the theories described above improved the treatment of electrons in solids by

approximating the ionic lattice more rigorously, but haven’t touched on the difficult task

of approximating the electron-electron interaction. On this front, there are various ways to

approximate the effects, with varying degrees of success depending on the material system

being considered.

One of the most popular ways to deal with the electron-electron interaction is called

the Hartree-Fock approximation [20–24]. In second quantized form, the electron-electron

interaction can be written as the following.

V̂e−e =
1

2

∑
σσ′

∫∫
d3x d3x′ ψ̂†σ(~x)ψ̂†σ′(~x

′)
e2

|~x− ~x′| ψ̂σ′(~x′)ψ̂σ(~x) (2.18)

where ψ̂σ(~x) (ψ̂†σ(~x)) is the quantum field operator that removes (adds) an electron at location

~x with spin projection σ.

Picking a complete orthonormal set of basis orbitals φjσ(~x), the field operators can be

expanded in terms of the electron creation and annihilation operators for the local orbitals,

ψ̂σ(~x) =
∑
j

φjσ(~x) ĉjσ (2.19)

ψ̂†σ(~x) =
∑
j

φ∗jσ(~x) ĉ†jσ (2.20)

Plugging in, the expression for the electron-electron interaction becomes

V̂e−e =
1

2

∑
σσ′

∑
ij
i′j′

ĉ†i′σ ĉ
†
j′σ′ ĉjσ′ ĉiσ 〈i′σ, j′σ′| v̂ |iσ, jσ′〉 (2.21)

where

〈i′σ, j′σ′| v̂ |iσ, jσ′〉 =

∫∫
d3x d3x′ φ∗i′σ(~x) φ∗j′σ′(~x′)

e2

|~x− ~x′| φiσ(~x) φjσ′(~x′) (2.22)

12

This is where the Hartree-Fock approximation comes into play. The Hartree term

is when i = i′ and j = j′, and the Fock term is when i = j′ and j = i′. The latter case is

only possible when σ = σ′, due to the anticommutation relation of the electron creation and

annihilation operators,

[ĉiσ, ĉ
†
j,σ′]+ = δijδσσ′ (2.23)

The resulting expression is transformed from a product of two creation and two annihilation

operators into a product of two density operators. On the grounds of orbital overlaps in the

braket (Equation (2.22)), the contribution from the remaining combinations of {i, j, i′, j′}
are deemed too small and thus can be discarded. As a result, we have

V̂HF =
1

2

∑
σσ′

∑
ij

n̂iσn̂jσ 〈iσ, jσ′| v̂ |iσ, jσ′〉 (Hartree term)

− 1

2

∑
σ

∑
ij

n̂iσn̂jσ 〈iσ, jσ| v̂ |jσ, iσ〉 (Fock term) (2.24)

Notice the form of the brakets in each term: the Hartree term is the direct interaction

term such that the two electrons involved in the electron-electron interaction stay in orbitals

of the same spin projection, orbital index, and location,

〈iσ, jσ′| v̂ |iσ, jσ′〉 =

∫∫
d3x d3x′ φ∗iσ(~x) φ∗jσ′(~x′)

e2

|~x− ~x′| φiσ(~x) φjσ′(~x′)

=

∫∫
d3x d3x′ |φiσ(~x)|2 |φjσ′(~x′)|2 e2

|~x− ~x′| (2.25)

and the Fock term is the exchange interaction term such that two electrons that have the

same spin projection and location are exchanged from one orbital into another.

〈iσ, jσ| v̂ |jσ, iσ〉 =

∫∫
d3x d3x′ φ∗jσ(~x) φ∗iσ(~x′)

e2

|~x− ~x′| φiσ(~x) φjσ(~x′)

=

∫∫
d3x d3x′

(
φ∗jσ(~x) φiσ(~x)

)(
φ∗iσ(~x′) φjσ(~x′)

) e2

|~x− ~x′| (2.26)

The power of the Hartree-Fock approximation lies in its implementation – the Hartree-

Fock self-consistent field method. This method is based on the Rayleigh-Ritz variational

principle to minimize the total ground state energy of the many-electron system.

13

1. First, start with an initial guess for the orbitals (e.g. using hydrogen-like orbitals or

molecular orbitals, depending on system).

2. A correction to account for the core electrons in the atoms is then performed.

3. Next, compute the state of the many-electron system as a Slater determinant of the

orbitals, and solve the Schrödinger equation for each orbital to get the eigenenergies

and eigenfunctions (that is, the new orbitals).

4. After the new orbitals are obtained, compute the expectation values of the density

operators (which represent the charge distribution in the system). These expectation

values are subsequently used to compute the energy correction from the Hartree and

Fock terms.

5. Compute the new ground-state total energy.

6. Repeat steps 2–5 until the ground-state total energy is minimized and the final orbitals

becomes the same as the initial orbitals (thus achieving self-consistency).

Despite its age, the Hartree-Fock self-consistent field method remains in widespread

usage. It is especially popular with quantum chemists.

The Hubbard model

Another way to describe the electron-electron interaction in a solid is using what is called

the Hubbard model [25–27], which is in common use to describe transition metal oxide

compounds.

The Hubbard model is a general case of the tight binding model, where electrons in

the system are tightly bound to the atomic sites, instead of being able to freely circulate

in the solid as in the electron gas or jellium model. In the tight-binding model, electrons

are able to "hop" (through quantum mechanical tunneling) from one atomic site to another

due to the finite overlap between orbitals centered at neighboring atomic sites. In second

quantization form, the kinetic energy operator for the one-band Hubbard model (as well as

the one-band tight-binding model) can be written as follows:

14

T̂ = −
∑
i

∑
σ

εiσn̂iσ −
∑
〈i,j〉

∑
σ

tij ĉ
†
iσ ĉjσ (2.27)

where 〈i, j〉 denotes sum over neighboring atomic sites i and j, εiσ is the on-site atom-

dependent energy that quantifies each site (sometimes called the "chemical potential" in the

literature), and tij is the overlap parameter between the two orbitals centered at ~Ri and ~Rj,

respectively.

tij =
∑
σ

∫
d3r φ∗iσ(~r− ~Ri)

(
Vperiodic(~r)− Vatomic(~r)

)
φjσ(~r− ~Rj) (2.28)

Now, the electron-electron interaction takes the form of Equation (2.21), as before. The

main difference is that the braket in Equation (2.21) is now defined in terms of the orbitals

centered at the atomic sites:

〈i′σ, j′σ′| v̂ |iσ, jσ′〉 =

∫∫
d3r d3r′ φ∗i′σ(~r− ~Ri′) φ

∗
j′σ′(~r′− ~Rj′)

e2

|~r−~r′| φiσ(~r− ~Ri) φjσ′(~r′− ~Rj)

(2.29)

The essential simplification that defines the Hubbard model is that all terms other than

i = j = i = j′ are discarded because the orbital overlaps are too small. Now, since all four

wavefunctions are centered at ~Ri, as a consequence of Pauli exclusion principle, the σ′ spin

projection has to be opposite to σ spin projection, that is, σ′ = −σ. Let’s take σ to be

the "up" spin projection, for simplicity. The resulting braket becomes the definition of the

Hubbard U parameter.

U ≡ 〈i↑, i↓| v̂ |i↑, i↓〉

=

∫∫
d3r d3r′ |φi↑(~r− ~Ri)|2 |φi↓(~r′ − ~Ri)|2

e2

|~r−~r′| (2.30)

and the electron-electron interaction term in the Hubbard model is simplified to

V̂Hubbard = U
∑
i

n̂i↑n̂i↓ (2.31)

15

Writing the Hamiltonian together as a sum of the kinetic and potential terms, the

Hubbard model Hamiltonian reads

ĤHubbard = −
∑
i

∑
σ

εiσn̂iσ −
∑
〈i,j〉

∑
σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ (2.32)

Consider the single half-filled electronic band in the one-band tight-binding model, such

that the Fermi level is right in the middle of the band, and the system is a metal. Compared

to the tight-binding model, the effect of the Hubbard electron-electron interaction term is

that this originally single band gets split into two electronic bands, one below the Fermi

level (called the lower Hubbard band) and one above the Fermi level (called the upper

Hubbard band). The lower Hubbard band is completely filled, and the upper Hubbard

band is completely empty. Now, the Fermi level lies between bands, so the system is an

insulator. This particular kind of metal-to-insulator transition due to the on-site electron-

electron interaction is called the Mott-Hubbard transition3 [27, 29].

2.1.2 Hohenberg-Kohn theorems

Density functional theory (DFT) was originally developed as an ab initio (from first

principles) method of finding the ground state energy of a many-electron system in the

presence of an external potential V̂ext. In this context, "external" refers to anything that is

outside the many-electron system, such as ions in a solid. In their seminal paper in 1964

[30], Pierre Hohenberg and Walter Kohn formulated the two basic theorems of DFT, known

as the Hohenberg-Kohn theorems:

Theorem 2.1. (Hohenberg-Kohn I)

For a many-body system of electrons with the exact Hamiltonian

Ĥ = T̂ + V̂ext + V̂e−e (2.33)
3The Mott metal-to-insulator transition was first proposed by Sir Nevill Mott in 1949 [28]. John Hubbard

happened to be the first person to explain the phenomenon in a quantitative way in Ref. [27], hence the
term "Mott-Hubbard transition".

16

there exists a one-to-one mapping between the exact electronic density n(~x) and the

external potential V̂ext(~x).

n(~x)←→ V̂ext(~x) (2.34)

The external potential term in the Hamiltonian, V̂ext, is defined as any potential that

arises from outside the many-electron system. For instance, in solid state systems, it

represents the periodic electric potential from the atomic ions in the crystal lattice.

The first Hohenberg-Kohn theorem is important in that it establishes, for the first time,

that the mapping from the electronic density to the external potential is invertible. It is

common practice in quantum mechanics to calculate the electronic density from any potential

term in the Hamiltonian by solving Schrödinger’s equation for the wavefunction and then

integrating the position representation of the wavefunction in three dimensions. However, the

inverse – determining the external potential from the electronic density – was not established

prior to the publication of the Hohenberg-Kohn paper. The proof is given by reductio ad

absurdum. Suppose two different external potentials V̂ext and V̂ ′ext give the ground state

energies E and E ′, respectively. If they share the same density n(~x), then the expression

E ′ < E +

∫ (
V ′ext(~x)− Vext(~x)

)
n(~x) (2.35)

can only hold true when the two potentials differ by a constant value. In other words, the

electronic density n(~x) uniquely specifies the many-electron system, just as the

external potential uniquely specifies the Hamiltonian of the system.

Theorem 2.2. (Hohenberg-Kohn II)

Using the Rayleigh-Ritz variational principle, the exact electronic density n(~x) of the

system is the one that minimizes the total energy functional,

E[n] ≡ T [n] + Ve−e[n] +

∫
d3x n(~x) Vext(~x) (2.36)

that is, the density that satisfies

δ

δn(~x)

(
E[n]− µ

∫
d3x′ n(~x′)

)
= 0 (2.37)

17

with µ being a Lagrange multiplier that ensures that the number of electrons in the system

remains fixed.

The second Hohenberg-Kohn theorem establishes the procedure of finding the electronic

density that yields the correct ground state energy for the many-electron system, using

the Rayleigh-Ritz variational method to minimize the ground state energy. In the paper,

Hohenberg and Kohn applied this theorem for a hypothetical system where the electronic

density is assumed to be nearly uniform, that is, "it only deviates slightly from uniformity."

They also considered the case of a slowly-varying density where they performed a gradient

expansion for the energy functionals.

While these two theorems establish an exact determination of the electronic density

n(~x) from a given external potential V̂ext(~x) and vice versa, the difficulty in applying them

to electronic systems is in defining the exact form of the kinetic energy functional T [n] and

the electron-electron interaction energy functional Ve−e[n]. Both of these functionals are

required to be universal, that is, they have the same form for any system, such that Vext[n]

becomes the term that uniquely describes the system. This problem was rectified in the

next milestone of DFT, which came the following year (1965) with the publication of Walter

Kohn and Lu Jeu Sham’s paper [31].

2.1.3 The Kohn-Sham algorithm

Kohn and Sham’s paper (Ref. [31]) introduces the concept of using an auxiliary, non-

interacting many-body electronic system that has a well-defined Hamiltonian,

ĤKS = T̂s + V̂H + V̂ext + V̂xc (2.38)

and the system satisfies the time-independent Schrödinger’s equation, which is an eigenvalue

equation.

ĤKS φ
KS
jσ (~x) = εKS

jσ φKS
jσ (~x) (2.39)

The terms in the Hamiltonian are defined as follows in second quantization formalism:

18

• The non-interacting kinetic energy operator T̂s,

T̂s = −~2

2

∑
i

∑
σ

ψ̂†iσψ̂iσ (2.40)

• A well-defined electron-electron interaction V̂H, which is also known as the Hartree

term, in second-quantized form:

V̂H =
1

2

n̂(~x) n̂(~x′)

|~x− ~x′| (2.41)

• The external potential term V̂ext, which is defined to be identical to the Hohenberg-

Kohn definition

• The exchange-correlation potential V̂xc, which is defined as "the potential

representing all of the interactions and correlation effects of the interacting system"

(the mathematical description of this term will be given later in this section)

The Kohn-Sham Hamiltonian corresponds to the total ground state energy func-

tional, which is a sum of four functionals of the inhomogeneous electronic density n(~x),

that is,

E(0)[n] = Ts[n] + VH[n] + Vext[n] + Exc[n] (2.42)

The kinetic energy functional Ts[n] takes the form of

Ts[n] = − ~2

2m

∫
d3x

∑
σ

∑
j

φKS∗
jσ (~x) ∇2φKS

jσ (~x) (2.43)

while the Hartree potential energy functional VH[n] is given by

VH[n] =
1

2

∫∫
d3x d3x′

n(~x) n(~x′)

|~x− ~x′| (2.44)

the external potential energy functional Vext[n] is simply

Vext[n] =

∫
d3x n(~x) V̂ext(~x) (2.45)

19

and the exchange-correlation energy functional Exc[n], defined as "the exchange and

correlation energy of an interacting system with density n(~x)", takes the form of

Exc[n] ≡
(
T [n]− Ts[n]

)
+
(
Ve−e[n]− VH[n]

)
(2.46)

where T [n] and Ve−e[n] are the original kinetic energy and electron-electron interaction

potential energy functionals as defined by Hohenberg and Kohn.

The exchange-correlation potential functional Vxc[n](~x) is formally defined as the

first functional derivative of the exchange-correlation energy functional Exc[n] with respect

to the electronic density n(~x). This quantity is thus a functional of the density n while also

being a function of the position vector ~x.

Vxc[n](~x) ≡ δExc[n]

δn(~x)
(2.47)

In practice, this term is approximated in various ways, which will be explained further in

Section 2.1.4.

The density of this auxiliary non-interacting system can be computed using the following

relation.

n(~x) =
∑
σ

∑
j

fjσ |φKS
jσ (~x)|2 (2.48)

Here, fjσ is the occupancy for the j-th eigenstate with spin σ, which can only be 0

(unoccupied state) or 1 (occupied state), depending on whether it is above or below the Fermi

energy EF, and φKS
jσ (~x) is the position-space representation of the single-particle eigenfunction

of the Kohn-Sham eigenvalue, i.e., the Kohn-Sham orbital wavefunction,

φKS
jσ (~x) = 〈~x|ψKS

jσ 〉 (2.49)

If we reorganize VH[n] and Vext[n] into a single term, aptly named the Kohn-Sham

potential functional Vs[n](~x), and factor out the Kohn-Sham wavefunction (hence this

quantity depends on the position vector ~x), it can be shown that the eigenvalue equation

20

(2.39) can be re-written explicitly as a self-consistent equation involving the position-

dependent functionals of the electronic density (Vs[n](~x) and Vxc[n](~x)) with the Kohn-Sham

eigenfunction φKS
jσ (~x) (which determines the electronic density n(~x) through Equation (2.48)).

{
− ~2

2m
∇2 + Vs[n](~x) + Vxc[n](~x)

}
φKS
jσ (~x) = εKS

jσ φKS
jσ (~x) (2.50)

Then, regardless of the form of Vxc[n], the Kohn-Sham auxiliary system allows solving for

the electronic density n(~x) in a self-consistent process:

1. Start with a guess for the electronic density n(~x) (which can be approximated by

empirical atomic ionic radii data) and initialize the external potential functional

Vext[n](~x) based on the atomic positions, as well as the exchange-correlation functional

Vxc[n](~x) using the selected approximation.

2. Once the electronic density is known, solve the Schrödinger equation (2.50) with the

Hamiltonian corresponding to the auxiliary system for the new energies (eigenvalues)

and electronic wavefunctions (eigenfunctions)

3. Compute the new electronic density n(~x) from the eigenfunctions using Equation

(2.48).

4. Plug in the new electronic density to calculate the new values for the Vs[n] and Vxc[n]

functionals, and calculate the new value for the ground-state total energy functional

E(0)[n] using Equation (2.42).

5. Repeat steps 2 through 4 until the total energy functional converges.

It should be noted that in 1999 Stowasser and Hoffmann [32] remarked that Kohn-Sham

eigenvalues and orbitals can be used for more than just qualitative purposes, despite the

auxiliary nature of the system that is solved by the Kohn-Sham algorithm. For crystalline

solid-state material systems, the Kohn-Sham eigenfunctions will take the form of Bloch

functions that satisfy the Bloch theorem. Then, these Bloch functions in three-dimensional

real space produced by the Kohn-Sham self-consistent process can be used as a powerful

21

tool to extract important physics and chemistry from real material systems – "their number,

symmetry properties, and shape are just like those of the expected one-electron orbitals".

2.1.4 Exchange-correlation potential functionals

In the same paper, Kohn and Sham also introduced the first approximation for the exchange-

correlation energy functional, called the Local Density Approximation (LDA). In this

approximation, the exchange-correlation energy per electron εxc[n] is identical for all electrons

in the system and set to that of the homogeneous electron gas, ε(h)
xc (n).

Exc =

∫
d3x n(~x) εxc

[
n(~x)

]
=

∫
d3x n ε(h)

xc

(
n
)

(2.51)

Keep in mind that the exchange-correlation potential functional Exc[n] is connected

with the exchange-correlation potential functional Vxc[n](~x). Over time, better exchange-

correlation potential functionals become available. The following is a non-exhaustive list of

the more popular exchange-correlation potential functionals.

• Local Density Approximation (LDA): Perdew-Wang (1991), Perdew-Zunger (1994)

• Local Spin-polarized Density Approximation (LSDA): von Barth-Hedin (1972), Vosko-

Wilk-Nusair (1980), Perdew-Wang (1992)

• Generalized Gradient Approximation (GGA): Perdew-Burke-Ernzerhof (PBE, 1996)

and its variants (revPBE, 1998; PBEsol, 2008), Wu-Cohen (2006)

• Meta-GGA: Minnesota functionals (M06, 2006)

• Hybrid functionals: 3 parameter Becke + Lee-Yang-Parr (B3LYP, 1994), Hartree-Fock

+ Perdew-Burke-Ernzerhof (PBE0, 1999)

For this thesis, I have chosen to use the GGA-PBE exchange-correlation potential

functional, due to its widespread usage in the DFT community.

22

2.1.5 The DFT+U method

Calculating the properties of a real material system is not an easy task. Even the best

approximations for the exchange-correlation potential functional can yield incorrect results

for certain important physical properties, such as the band gap of a semiconducting or

insulating system. This failure has been seen to happen with commonly used exchange-

correlation potential functionals such as LDA, LSDA, and GGA. In particular, it has been

seen with material systems that are commonly described as Mott-Hubbard insulators [33].

The DFT+U approach combines the powerful machinery of DFT with the powerful

concept of the Hubbard screened on-site (U) and exchange (J) Coulomb interaction

parameters from the Hubbard model. This is done by defining two additional energy

functionals of the spin-dependent density matrix element nmm′σ. Here, m and m′ are the

magnetic quantum numbers for a particular electronic band character of the atom of interest

(e.g., for the 3d orbitals of a transition metal atom, the valid values form andm′ are between

-2 and 2), which serve as the row and column indices of the density matrix [nσ] for a given

spin projection σ = {↑, ↓}.
The first functional, EU [nσ], represents the effects of the Hubbard U parameter on the

system, and obviously takes in the the Hubbard U parameter as an input. It contains

screened interaction terms of the format 〈m,m′′| Ŵ |m′,m′′′〉, with Ŵ being the screened

Coulomb interaction for that particular electronic band character – in practice, these

quantities can be calculated as Slater integrals. The other one, Edc[nσ], is a correction to

avoid double counting certain Coulomb interaction terms introduced in the EU [nσ] functional

that are by principle already contained in the LDA/LSDA/GGA functional. This correction

term takes in both the Hubbard U and the exchange J parameters as input. The particular

form of this correction depends on the behavior of the material system being considered;

Ref. [34] provides two limiting forms called "around mean field" (AMF) and "fully-localized

limit" (FLL) that are commonly used in DFT+U calculations.

23

2.1.6 Choice of basis

The DFT algorithm is universal because it can be applied to electrons in atoms, molecules,

and solids. What changes between these systems is the appropriate choice of basis set to

represent the external potential and the behavior of the Kohn-Sham wavefunction.

In practice, the choice of basis set for the Hilbert space of the Kohn-Sham wavefunctions

determines the effectiveness and accuracy of the DFT calculation. The following list

summarizes the various choices of basis sets that have been implemented as DFT packages.

• Gaussian functions are computationally "nice" due to their analytical properties

(notably, orthogonality) such that certain computations can be implemented using

selection rules instead of numerical integration/differentiation. The Gaussian basis

set is popular with chemists and biologists because it is well suited for molecular

systems. However, it might not be able to capture the subtleties of a complex ion

or ligand system, and is not suitable for large material systems due to the available

representations of the exchange-correlation functional Vxc[n].

• Plane waves (PW) are a sensible choice for solids due to their inherent periodicity

(assuming perfect crystalline lattice with no defects) and convenient representation

as coefficients of a discrete Fourier series on a three-dimensional grid, which can

be efficiently computed using the Fast Fourier Transform (FFT) algorithm. The

disadvantages are requiring cut-off parameters to truncate the Fourier series and relying

on pseudopotentials – inexact approximations to the electric potential of the atomic

ions.

• Linear muffin-tin orbitals (LMTO) are named after the finite potential wells that are

used to represent the atomic "core" regions – the ion and the electrons in filled valence

shells. The name "muffin-tin" comes from visualization of the three-dimensional

potential due to the atomic core regions in real space, which look like the apparatus

used in baking muffins. In this approach, the extent of the atomic core regions are

parametrized by a quantity called the muffin-tin radius rMT, and both the potential

and the electronic wavefunction outside the core regions are taken to be zero.

24

• Augmented plane waves (APW) are a first step towards representing both the atomic

core region and the interstitial region – defined as the three-dimensional space outside

the atomic core regions – in a more rigorous way. The wavefunction is defined in a

piece-wise fashion separated by the muffin-tin radius rMT. The interstitial region is

represented by plane waves, hence the name "augmented" plane waves.

• The linearly-augmented plane wave (LAPW) basis set refines the basic idea of the

LMTO and APW approaches. The atomic core region is represented with a spherical

harmonic expansion with linear energy parameters, and the interstitial region is

represented with plane waves. The two regions are reconciled using boundary value

conditions at the muffin-tin radius rMT. It arguably provides the most accurate

representation of a wavefunction in real space, but is mathematically difficult to work

with and is very computationally expensive.

• Projector Augmented Wave (PAW) methods are computationally very fast because

they use vector projection methods, but this approach also relies on pseudopotentials.

This variety in basis set choice is one of the reasons why there are numerous software

packages that implement the Kohn-Sham DFT algorithm; each software package has its

own advantages and disadvantages, depending on the material system being studied and the

computational resources available to the user.

2.2 Time-Dependent Density Functional Theory (TD-

DFT)

As we have seen from the previous section, DFT is inherently a ground-state theory and

cannot be used for spectroscopy, because the potential term due to the probe in spectroscopy

(photons, electrons, neutrons, etc.) is either time-dependent (e.g., experiments with pulsed

lasers) or frequency-dependent (e.g. experiments with infrared/visible/ultraviolet light).

In 1984 Erich Runge and Ebenhard K. U. Gross published their seminal paper on Time-

Dependent Density Functional Theory (TD-DFT) [?], which extends DFT appropriately

for time-dependent external potentials.

25

2.2.1 Runge-Gross theorems

In TD-DFT, the Hamiltonian is defined such that the external potential term V̂ext is time-

dependent.

Ĥ(t) = T̂ + V̂e−e + V̂ext(t) (2.52)

Instead of the time-independent Schrödinger equation in "vanilla" DFT, one needs to solve

the time-dependent version,

i
∂ |Ψ(t)〉
∂t

= Ĥ(t) |Ψ(t)〉 (2.53)

The Runge-Gross paper lays out the four fundamental theorems of TD-DFT:

Theorem 2.3. (Runge-Gross I)

For a time-dependent single-particle external potential V̂ext(~x; t) that can be expanded into

a Taylor series around an initial time t = t0, there exists a one-to-one, invertible

mapping between the time-dependent electronic density n(~x; t) and the time-dependent

external potential such that the electronic density can be uniquely determined from

the external potential by solving the time-dependent Schrödinger equation with a fixed

many-particle initial state Ψ0 ≡ Ψ(~x; t = t0), and vice versa (up to an additive constant).

n(~x; t)←→ V̂ext(~x; t) (2.54)

Notice the similarities between the first Runge-Gross theorem and the first Hohenberg-

Kohn theorem. Both establish the one-to-one correspondence of the density and the

external potential. The proof is also similarly given by reductio ad absurdum with two

time-dependent potentials V̂ext(~x; t) and V̂ ′ext(~x; t) that differ by a purely time-dependent

function c(t), i.e., no position ~x dependence.

V̂ ′ext(~x; t)− V̂ext(~x; t) = c(t) (2.55)

26

As before, the density operator n̂(~x) in second-quantized form is defined as

n̂(~x) ≡
∑
σ

∑
i

ψ̂†iσ(~x) ψ̂iσ(~x) (2.56)

The new idea here is the time-dependent electronic density n(~x; t), defined as the

expectation value at time t of the density operator, n̂(~x),

n(~x; t) = 〈Ψ(t)| n̂(~x) |Ψ(t)〉 (2.57)

Introduce the particle-particle current operator ~̂j(~x) as follows,

~̂j(~x) =
1

2i

∑
i

∑
σ

((
~∇ψ̂†iσ(~x)

)
ψ̂iσ(~x)− ψ̂†iσ(~x)

(
~∇ψ̂iσ(~x)

))
(2.58)

and its expectation value at time t, called the time-dependent particle-particle current

density ~j(~x; t),
~j(~x; t) = 〈Ψ(t)|~̂j(~x) |Ψ(t)〉 (2.59)

Notice how the time dependence in both cases enters through the many-particle state |Ψ(t)〉,
which evolves in time from the initial state |Ψ(t0)〉 according to theHeisenberg equation

of motion,

i~
d

dt
〈Ψ(t)| Ô(t) |Ψ(t)〉 = 〈Ψ(t)|

(
i~
∂Ô(t)

∂t
+ [Ô(t), Ĥ(t)]−

)
|Ψ(t)〉 (2.60)

which always holds for any time-dependent operator Ô(t).

In addition, these two important time-dependent quantities n(~x; t) and~j(~x; t) are related

to each other through the continuity equation,

∂

∂t

(
n(~x; t)

)
= −~∇ ·

(
~j(~x; t)

)
(2.61)

The first Runge-Gross theorem holds for all orders in (t−t0) in the Taylor series expansion

of the external potential. A consequence is the application of TD-DFT is restricted to

external potentials that are analytical in time. TD-DFT can be used for cases where

27

"sudden switching" of the external potential happens, but not for cases where the potential

is adiabatically switched on at t = −∞, or when the time dependence of the external

potential takes the form of e−
C
tn with C and n being positive real numbers, or tp with p a

non-integer positive real number [?]).

Another consequence of the first Runge-Gross theorem is the many-particle state at time

t, Ψ(~x; t), is defined up to a phase factor,

Ψ′(~x; t) = e−iα(t)Ψ(~x; t) (2.62)

where the phase α(t) is defined such that

∂α(t)

∂t
= c(t) (2.63)

with c(t) being the purely time-dependent difference of the two time-dependent external

potentials as defined in Equation (2.55). This phase factor e−iα(t) will cancel out when

taking expectation values.

Theorem 2.4. (Runge-Gross II)

There exists a three-component density functional vector ~P[n](~x; t) which depends paramet-

rically on (~x; t) such that the exact particle and current densities can be determined using a

set of "hydrodynamical" equations:

∂n(~x; t)

∂t
= −~∇ ·~j(~x; t) (2.64)

∂~j(~x; t)

∂t
= ~P[n](~x; t) (2.65)

with initial conditions

n(~x; t = t0) = 〈Ψ0| n̂(~x) |Ψ0〉 (2.66)

~j(~x; t = t0) = 〈Ψ0|~̂j(~x) |Ψ0〉 (2.67)

28

The first "hydrodynamical" equation is none other than the continuity equation (2.61),

while the second one enables the calculation of the current density from the electronic density

n(~x; t) through the ~P[n](~x; t) functional. It is shown in the Runge-Gross paper that ~P[n](~x; t)

is related to the time evolution of the current density operator,

~P[n](~x; t) = −i~ 〈Ψ(t)| [~̂j(~x), Ĥ(t)]− |Ψ(t)〉 (2.68)

Theorem 2.5. (Runge-Gross III)

The action integral

S =

∫ tf

ti

dt 〈Ψ(t)|
(
i~
∂

∂t
− Ĥ(t)

)
|Ψ(t)〉 (2.69)

can be represented as a universal functional of the density, S[n]

This third Runge-Gross theorem provides the analog of the second Hohenberg-Kohn

theorem. However, it does not rely on the Rayleigh-Ritz variational principle; instead, it

uses the principle of stationary action: the solution of the time-dependent Schrödinger

equation provides a stationary point (which might not always be the minimum point) of the

action.

Theorem 2.6. (Runge-Gross IV)

The exact time-dependent density of the system n(~x; t) can be computed from single-

particle orbitals φiσ(~x; t) that satisfy the following single-particle time-dependent Schrödinger

equation, {
i~
∂

∂t
+

~2

2m
∇2
}
φjσ(~x; t) = Veff [n](~x; t) φjσ(~x; t) (2.70)

using the following relation,

n(~x; t) =
∑
j

∑
σ

fiσ |φjσ(~x; t)|2 (2.71)

29

where the effective one-particle potential functional veff [~x; t;n] is of the form

Veff [n](~x; t) = Vext(~x; t) +

∫
d3x′ n(~x; t) Ve−e(~x, ~x

′) n(~x′; t) +
δAxc[n]

δn(~x; t)
(2.72)

where Ve−e(~x, ~x
′) is the Coulomb potential, and the exchange-correlation action func-

tional Axc[n] is defined as

Axc[n] ≡
∫ tf

ti

dt 〈Ψ(t)| V̂e−e |Ψ(t)〉

− 1

2

∫ tf

ti

dt

∫
d3x

∫
d3x′ n(~x; t) ve−e(x,x

′) n(~x′; t)

+

∫ tf

ti

dt 〈Ψ(t)|
(
i~
∂

∂t
− T̂0(t)

)
|Ψ(t)〉

−
∫ tf

ti

dt 〈Ψ(t)|
(
i~
∂

∂t
− T̂ (t)

)
|Ψ(t)〉 (2.73)

with T̂0 being the kinetic energy operator for the non-interacting system, Equation (2.2), and

T̂ for the interacting system as defined in the Hamiltonian of the original system, Equation

(2.52).

Finally, the fourth Runge-Gross theorem provides the analog of the Kohn-Sham algorithm

for TD-DFT. This is more evident if we move the first term of the left-hand side to the right,

and move the right-hand term to the left, and multiply both sides by an overall factor of -1,

such that Equation (2.70) takes the following form:

{
− ~2

2m
∇2 + Veff [n](~x; t)

}
φjσ(~x; t) = i~

∂

∂t
φjσ(~x; t) (2.74)

Notice the structure of this effective potential as given in Equation (2.72). The second term

is very similar to the Hartree potential functional term (Equation (2.44)). Realizing that

the action is the integral of the Hamiltonian with respect to time, and that the third term

is a functional derivative with respect to the density, this simply provides the analog of

the exchange-correlation potential functional (Equation (2.47)) for time-dependent systems.

Therefore, just like the Kohn-Sham self-consistent equation (2.50), it can be shown that

Equation (2.70) can be rewritten using a single-particle time-dependent Kohn-Sham

30

potential functional Vs[n](~x; t) for an auxiliary system of time-dependent, non-interacting

electrons, just like in the original Kohn-Sham definition, and the right-hand term will yield

the time evolution of the single-particle eigenfunctions of the system, which is related to

the Hamiltonian (and thus the Kohn-Sham eigenenergies) through the Heisenberg equation

of motion, thus extending the original time-independent Kohn-Sham self-consistent equation

into systems with a time-dependent external potential.

{
− ~2

2
∇2 + Vs[n](~x; t) + Vxc[n](~x; t)

}
φjσ(~x; t) = i~

∂

∂t
φjσ(~x; t) (2.75)

2.2.2 The dynamical density-density response function

This section gives a brief derivation of the density-density response function within TD-DFT

as first published by Petersilka et al. (1996).

An important case of the time-dependent external potential V̂ext(~x; t) is when it is within

the limits of the linear response theory, that is, the system is initially in the ground

state at t < t0 and the external potential V̂ext has the form

V̂ext(~x; t) = V̂0(~x) + V̂1(~x; t− t0) (2.76)

The second term, V̂1, is a small perturbation compared to the static time-independent

potential V̂0 that is turned on at t = t0 to excite the system from the ground state, and

the time dependence of this perturbation is linear in t. Then, the time-dependent density

n(~x; t) can be written as a sum of two terms:

n(~x; t) = n0(~x) +

∫ ∞
0

dt′
∫

d3~x′ χ(~x, ~x′; t, t′) V1(~x′; t′) (2.77)

The first term is the ground-state density, i.e., the density of the unperturbed system, that

corresponds to the static potential V̂0. The second term contains the response function

χ(~x, ~x′; t, t′), which is a quantitative measure of how the density of the system at a given

position ~x and time t responds to the time-dependent perturbation V̂1 applied at position

~x′ and time t′. Notice how this second term has the form of a time-dependent functional

31

of V̂1, that is, V̂1 is integrated over space ~x′ and time t′; therefore, it is a map that computes

n1 from V̂1.

Using the first Runge-Gross theorem and the Taylor expansion of the density n(~x; t) with

respect to the external potential, we can rewrite the response function as the first functional

derivative of the time-dependent density with respect to the perturbing potential.

χ(~x, ~x′; t, t′) =
δn[Vext](~x; t)

δVext(~x′; t′)

∣∣∣∣
Vext=Vext[n0]

(2.78)

It is termed the density-density response function because using time-dependent perturbation

theory in the interaction picture, it is equivalent to the commutator of two density operators,

χ(~x, ~x′; t, t′) = −iθ(t− t′) 〈Ψ0| [n̂(~x; t), n̂(~x′; t′)]− |Ψ0〉 (2.79)

Now, instead of writing the external potential as a sum of the time-independent and time-

dependent parts, we can also write it as a sum of non-interacting and interacting terms.

The time-dependent Kohn-Sham potential, Vs(~x
′; t), corresponding to the time-dependent

external potential Vext(~x; t), can be written as

Vs(~x
′; t) = Vext(~x

′; t) + VH(~x′; t) + Vxc(~x
′; t) (2.80)

where the time-dependent Hartree potential VH(~x′; t) is defined as

VH(~x′; t) ≡
∫

d3x′
n̂(~x′; t)

|~x− ~x′| (2.81)

Now, the non-interacting Kohn-Sham response function can be defined as

χ(KS)(~x, ~x′; t, t′) ≡ δn[Vs](~x; t)

δVs(~x′; t′)

∣∣∣∣
Vs=Vs[n0]

(2.82)

that is, the density-density response function of non-interacting particles with unperturbed

electronic density n0.

32

Taking the Fourier transform with respect to time, it can be shown that the Kohn-Sham

response function can be written in terms of the Kohn-Sham orbital wavefunctions φKS
jσ (~x)

χ(KS)(~x, ~x′;ω) =
∑
σ

∑
j,j′

(fj′σ − fjσ)
φKS∗
j′σ (~x) φKS

jσ (~x) φKS∗
jσ (~x′)φKS

j′σ(~x′)

ω − (εKS
j′σ − εKS

jσ) + iη
(2.83)

As before, fjσ is the occupancy of the j-th orbital eigenfunction (can only be 0 or 1). The

difference (fj′σ − fjσ) ensures that one orbital has to be unoccupied, and the other has to

be occupied (otherwise, if both are occupied or both are unoccupied, the expression simply

gives 1− 1 = 0 or 0− 0 = 0); hence, this expression signifies an electronic transition from

an occupied orbital φKS
jσ (~x) into an unoccupied orbital φKS

j′σ(~x).

Furthermore, taking the Fourier transform with respect to space with the appropriate

periodic boundary conditions, and defining the momentum transfer ~q and the "umklapp"

vector ~Gkq such that
~k′ = ~k + ~q− ~Gkq (2.84)

where ~k and ~k′ are within the first Brillouin zone, and ~Gkq is a integer multiple of the

reciprocal lattice vectors
(
~b1, ~b2, ~b3

)
that returns the sum ~k + ~q into the first Brillouin

zone, it can be shown that the Kohn-Sham density response is a matrix in ~G space, and its

elements follow the following structure (Equation (18) in Ref. [35]):

χ
(KS)
~G~G′(~q;ω) =

1

NkΩBvK

∑
σ

1BZ∑
~k

∑
jj′

fj~kσ − fj,~k+~q,σ

ω + (εKS
j~kσ
− εKS

j′,~k+~q,σ
) + iη

×

× 〈ψKS
j~kσ
|ei(~G+~q)·~r|ψKS

j′,~k+~q,σ
〉 〈ψKS

j′,~k+~q,σ
|e−i(~G′+~q)·~r|ψKS

j~kσ
〉 (2.85)

Special consideration needs to be given to the brakets on the second line of Equation

(2.85), which are henceforth defined as matrix elements. Each matrix element is a

probability amplitude that signifies the transition of an electron with spin projection σ

from a single-particle state characterized by momentum ~~k and Kohn-Sham band index j

33

into another state with momentum ~(~k + ~q) and Kohn-Sham band index j′.

Mjj′

~kσ

(~G, ~q) ≡ 〈ψKS
j~kσ
|e−i(~G+~q)·~r|ψKS

j′,~k+~q,σ
〉 (2.86)

=
∑
σ

∫
d3r φKS∗

j~kσ
(~r) e−i(

~G+~q)·~r φKS
j′,~k+~q,σ

(~r) (2.87)

Note the following structure in Equation (2.85): when we take ~G = ~G′ (that is, the

diagonal elements of the χ(KS)
~G~G′ matrix), the two matrix elements reduce to a 2-norm (which

is guaranteed to be real), and this expression is complex only due to the convergence factor

(+iη). It has a pole at ω = εKS
j~kσ
− εKS

j′,~k+~q,σ
, that is, the energy difference of two Kohn-Sham

eigenenergies with band indices j′ and j, momenta ~k and (~k+~q), respectively, and the same

spin projection σ. The convergence factor (+iη) has a positive sign, signaling that this is

a retarded Green’s function such that t > t′, that is, the response of the system is taken

at time t after the Kohn-Sham potential Vs is applied at time t′. Taking the imaginary

part of the diagonal element of the Kohn-Sham response function gives rise to a sum over

delta functions of the energy difference (through the Lorentzian expansion form of the delta

function):

Im χ
(KS)
~G~G

(~q;ω) ∝
∑
σ

1BZ∑
~k

∑
jj′

δ(ω + εKS
j~kσ
− εKS

j′,~k+~q,σ
) (2.88)

Now, to calculate the dynamical density-density response function χ from the Kohn-Sham

response function χ(KS), we need to define the exchange-correlation kernel fxc as follows:

fxc(~x, ~x
′; t, t′) ≡ δVxc[n](~x; t)

δn(~x′; t′)
(2.89)

Just like Vxc, the exchange-correlation kernel fxc will need to be approximated. The Petersilka

et al. paper mentions two such approximations, called the adiabatic LDA approximation

and the optimized effective potential (OEP). In this thesis, I will employ an even coarser

approximation – the Random Phase Approximation (RPA), which simply sets fxc = 0.

34

It turns out that the expression for the density-density response function χ is related to

the Kohn-Sham response function χ(KS) through a Dyson-like integral equation,

χ(~r,~r′; t, t′) = χ(KS)(~r,~r′; t, t′)

+

∫∫∫∫
d3x d3x′ dτ dτ ′ χ(KS)(~r, ~x; t, τ) ×

×
(
δ(τ − τ ′)
|~x− ~x′| + fxc[n0](~x, ~x′; t, t′)

)
χ(~x′,~r′; τ ′, t′) (2.90)

Fortunately, after taking the Fourier transform with respect to both time and space, the

expression becomes a matrix equation in ~G space (Equation (17) in Ref. [35]).

χ~G~G′(~q;ω) = χ
(KS)
~G~G′(~q;ω) +

∑
~G1

~G2

χ
(KS)
~G~G1

(~q;ω)
(
V (~G1 + ~q) δ~G1

~G2
+ fxc

~G1
~G2

(~q;ω)
)
χ~G2

~G′(~q;ω)

(2.91)

with V (~q) being the Fourier transform of the Coulomb interaction,

V (~q) =
4πe2

|~q|2 (2.92)

Now, if we define another "umklapp" vector ~Gq that returns the momentum transfer ~q

into the first Brillouin zone, we can also compute the dynamical structure factor S(~q;ω)

through the fluctuation-dissipation theorem:

S(~q;ω) ≡ −2~ΩBvK Im χ~Gq
~Gq

(~q− ~Gq;ω) (2.93)

We can also compute the effective complex dielectric function εeff(~q;ω) as follows:

εeff(~q;ω) ≡ 1(
ε−1(~q− ~Gq;ω)

)
~Gq

~Gq

(2.94)

that is, the arithmetic inverse of the ~Gq-th diagonal element of the inverse dielectric function

matrix, which is defined in relation to the dynamical density-density response function matrix

35

χ~G~G′(~q;ω) as follows:

(
ε−1(~q;ω)

)
~G~G′

= δ~G~G′ +
∑
~G1

V~G~G1
(~q) χ~G1

~G′(~q;ω) (2.95)

with the Coulomb interaction matrix defined as a diagonal matrix,

V~G~G′(~q) = δ~G~G′V (~q) (2.96)

2.3 TD-DFT and spectroscopy experiments

As mentioned in the beginning of the previous section, one of the motivations of the

development of TD-DFT is the theoretical explanation of spectroscopy experiments. In

the following section I will try to summarize some important points regarding one of them:

the Non-resonant Inelastic X-ray Scattering (NIXS) spectroscopy experiment.

2.3.1 Non-resonant Inelastic X-ray Scattering (NIXS)

In 1971, Doniach et al. first proposed the experiment to probe solid state systems using

soft X-ray, which they originally called X-ray Raman4 Scattering [?], but would later be

more popularly known as X-ray Thomson Scattering or the Non-resonant Inelastic X-

ray Scattering (NIXS) spectroscopy experiment [?]. As more powerful X-ray sources

become available around the world in the form of synchrotrons and free-electron lasers, this

spectroscopy technique became more attractive because it allows probing a material sample

at room temperature without the need for high vacuum conditions.

NIXS is a photon-in, photon-out spectroscopy method using soft X-rays (∼ keV photon

energy). An X-ray photon comes in with initial energy ~ωin and momentum ~kin, interacts

with the solid-state material sample, and comes out with energy ~ωout and momentum ~kout.
4Raman spectroscopy, named after Indian physicist and Nobel laureate C.V. Raman, encompasses a wide

variety of spectroscopy techniques that rely on the energy shift of a photon (usually UV or visible light)
after interacting with a sample. It is commonly used in analytical chemistry to identify molecules due to the
correlation of the energy shift with the chemical environment of the active atom or ion.

36

Define the energy transfer ω as

~ω ≡ ~ωout − ~ωin (2.97)

and the momentum transfer ~q as

~q ≡ ~kout − ~kin (2.98)

Note how the momentum transfer is defined as a vector 5 equation, which means both the

direction and magnitude of the momentum transfer have to be considered.

Thomson scattering is the non-relativistic limit of Compton scattering [?]. The condition

for Thomson scattering is that the wavelength of the X-ray photon has to be much larger

than the Compton wavelength of electron, λ,

λ =
λ

2π
=

~
mec

= 2.42631024× 10−12 m (2.99)

Since wavelength is inversely proportional to photon energy,

Eγ =
hc

λ
(2.100)

this limit corresponds to the energy of the X-ray photon being much less than ∼512 keV6,

which makes perfect sense for soft X-rays (5-10 keV energy range7).

The electron-photon interaction Hamiltonian can be written in standard quantum

mechanics [?] as terms involving the electron momentum operator ~̂pi and the vector

potential operator of the photon ~̂Ai(~̂xi):

Ĥe−γ = −
(

e

mec

)∑
i

~̂pi · ~̂Ai(~̂xi) +

(
e2

2mec2

)∑
i

~̂A2
i (~̂xi) (2.101)

5In practice, the momentum transfer vector can be calculated from the scattering angle and the magnitude
of the final momentum as measured at the analyzer.

6This number is obtained by simply plugging in the value of the Compton wavelength for electron
(Equation 2.99) into Equation 2.100.

7Coincidentally, in this energy range, there is no X-ray absorption by core electrons, i.e. electrons far
below the valence level, which explains the "non-resonant" part of NIXS. This is in contrast to Resonance
Inelastic X-ray Scattering (RIXS), which is performed using higher energy x-rays.

37

The index i denotes the i-th electron in the many-electron system. Also, the Born-

Oppenheimer approximation is in effect here8, so we can focus only on the electronic degrees

of freedom.

In Thomson scattering, the dominant term is the second term – the ~̂A2 term9. To a

first approximation (the dipole approximation), the double-differential cross section d2σ
dΩ dω

is

proportional to the dynamical structure factor S(~q;ω) [?]:

d2σ

dΩ dω
=

(
dσ

dΩ

)
0

S(~q;ω)

= r2
0(~ein · ~eout)

2

(
ωout

ωin

)∑
f

| 〈f |
∑
j

ei~q·~rj |i〉 |2 δ(Ef − Ei − ω) (2.102)

Here, ~ein and ~eout are unit vectors denoting the direction of the electric polarization of

the incoming and outgoing X-ray photon (which is perpendicular to the direction of photon

propagation ~kin and ~kout)10; |i〉 and |f〉 are many-electron initial and final states with energies

Ei and Ef corresponding to an electronic transition due to the interaction with the photon;

j denotes the atomic species index in the sample; and r0 is the classical electron radius,

r0 =
1

4πε0

e2

mec2
= 2.81794033× 10−15 m (2.103)

Identifying the probe-dependent proportionality factor11 for the NIXS experiment as

(
dσ

dΩ

)
0

= r2
0(~ein · ~eout)

2

(
ωout

ωin

)
∼ 10−25 cm2 (2.104)

and realizing that the dynamical structure factor S(~q;ω) is related to the imaginary part of

the dynamical density-density response function χ(~q;ω) through the fluctuation-dissipation
8The Born-Oppenheimer approximation also means that the atomic ions are "frozen" in time with respect

to the electrons. It is technically possible to observe phonons with NIXS [?], but we will not discuss it here.
9In contrast, the ~̂p · ~̂A term dominates when the X-ray photon energy matches an atomic resonance, i.e.,

in RIXS [?].
10See Figure 1 in Ref. [?] for a geometrical diagram of these directions.
11The value assigned to Equation (2.104) mostly comes from r20, since the directional cosine (~ein ·~eout)2 =

cos2 θ is always between 0 and 1, and the ratio of the outgoing ωout to the incoming photon energy ωin will
also be close to 1.

38

theorem, Equation (2.93), it is possible to make a comparison between NIXS spectra

and Im χ(~q, ω) in absolute units.

2.4 The modern landscape of DFT

Over the course of some ∼60 years since the Hohenberg-Kohn and Kohn-Sham papers were

published, DFT has established itself as a valuable tool beyond the scope of physics. A

large portion of the userbase of DFT software packages are chemists, biologists, and even

medical professionals that use DFT to study their material system of choice – often molecular

systems. A particular numerical algorithm called the Car-Parrinello method [?] is used

in virtually all modern implementations of DFT for molecular systems. While it cannot be

strictly applied to crystalline solid state systems, this algorithm has heavily influenced the

design and implementation of modern DFT packages.

Despite the limitations12 of DFT and TD-DFT that we have discussed in the previous

sections, both are still extensively used in physics and materials science circles. It’s not

uncommon to see experimental papers in condensed matter physics that are validated

through comparison with results from DFT calculations. Some DFT-based codes are

massively parallel codes and are used to compute on supercomputers, including at the

Summit supercomputer at ORNL.

Currently we are in the third generation of DFT, which is marked by the existence of

orbital functionals: the kinetic and exchange energy functional can be represented as

exact functionals defined in terms of atomic-like orbitals.

Ts[n] = − ~2

2m

∑
σ

∑
i

∫
d3x φ∗iσ[n](~x) ∇2φiσ[n](~x) (2.105)

Ex[n] = −e
2

2

∑
σ

Nσ∑
ij

∫∫
d3x d3x′

φ∗iσ(~x) φ∗jσ(~x′) φjσ(~x) φiσ(~x′)

|~x− ~x′| (2.106)

12Of course, there is a small number of people that are dedicated to the cause of furthering the development
of DFT to address these limitations. For instance, the Perdew research group (Temple University) is
dedicated to fabricating better exchange-correlation functionals, and the Eguiluz research group at the
University of Tennessee is a group that tries to push the boundaries of TD-DFT in the direction of the
physics of transition metal electronic orbitals.

39

In this approach, only the correlation energy functional Ec[n] needs to be approximated, and

this approximation is designed to depend explicitly on the orbitals. Most of the popular DFT

software packages provide interfaces to modeling-based codes that compute these orbitals, for

instance, using Dynamical Mean Field Theory (DMFT), Dynamical Cluster Approximation

(DCA), or Density Matrix Renormalization Group (DMRG) solvers.

A notable case of the description of electronic states using the orbital picture is using

the method of Wannier function projections. This is what the Eguiluz research group at the

University of Tennessee specializes in, and will be described in more detail in Section 2.6.

Another popular approach to treat the Coulomb interaction in solids in a more rigorous

way relies on what is called the GW approximation [?], where the G corresponds to

the many-body Green’s function for the interacting many-electron system, and the W to

the screened Coulomb interaction that obeys a Dyson-like equation. Just like with orbital

functionals, a lot of the popular DFT software packages provide interfaces to codes that

compute the GW approximation.

Some well-established DFT software packages, like Wien2K [?] and Gaussian [?

], are licensed software that are sold for a fee. On the other hand, there also exist DFT

software packages that are fully open source and free to use, like Quantum ESPRESSO [?

], ABINIT [?], and Elk [?]. Each software package has its own strengths and weaknesses,

including aspects such as the userbase community (which might mean ease of use and the

availability of well-written tutorials for new users), the choice of basis functions in which the

Kohn-Sham DFT algorithm is implemented, and the quality of the code itself (which might

attract more users to use it, as well as developers that extend the code’s capabilities).

2.5 The Elk DFT software package

In this thesis, I develop and use code that is based on the Elk DFT software package,

which implements the DFT algorithm in the LAPW basis set. This section provides a brief

introduction to some of the important concepts specific to the Elk DFT implementation.

40

2.5.1 The Linearly-Augmented Plane Wave (LAPW) basis set

As mentioned briefly in Section 2.1.6, the Linearly-Augmented Plane Wave (LAPW) basis

set defines the position representation of the electronic wavefunction as a piecewise function

in two regions, called the muffin-tin region and the interstitial region,

φ(~r) =

∑
l,m

(
Almul(r) +Blmu̇l(r)

)
Y m
l (r̂) r ≤ rMT (muffin-tin)

1√
ΩBvK

∑
~G

c~Ge
i(~G+~k)·~r r ≥ rMT (interstitial)

(2.107)

where ul(r) is the radial solution to the Schrödinger equation,

(
− d2

dr2
+
l(l + 1)

r2
+ Vatomic(r)− El

)
r ul(r) = 0 (2.108)

and u̇l(r) is its derivative with respect to El, which is a solution to the following differential

equation, (
− d2

dr2
+
l(l + 1)

r2
+ Vatomic(r)− El

)
r u̇l(r) = r ul(r) (2.109)

In both Equations (2.108) and (2.109), El is a parameter called the linearization energy

(which explains the "linearly" part of the LAPW acronym), and rMT is the muffin-tin radius.

Alm, Blm, and c~G are expansion coefficients that are matched by boundary conditions at

r = rMT.

Notice the form of the piecewise representation of the electronic wavefunction in Equation

(2.107). The muffin-tin part is represented as a sum of spherical harmonics Y m
l , which is

similar to the form of the solution to the Schrödinger equation for hydrogenlike atoms in

standard quantum mechanics,

φnlm(~r) = Rnl(r) Y
m
l (r̂) (2.110)

while the interstitial part is represented as a sum of plane waves ei(~G+~k)·~r, where ~G is an

integer multiple of the reciprocal lattice vectors {~b1, ~b2, ~b3},

41

~G = i ~b1 + j ~b2 + k ~b3 (2.111)

with {i, j, k} all integers (can be positive or negative). A collection of ~G-vectors that share

the same magnitude is called a ~G-shell.

2.5.2 The discrete momentum space and the macrocrystal

The Born-von Karman periodic boundary condition for the crystal imposes one of the

following limits.

• The position vector ~r is restricted to the region within the unit cell volume Ωr as

defined by the three lattice vectors ~a1, ~a2, and ~a3,

Ωr = |~a1 · (~a2 × ~a3)| (2.112)

while the momentum vector ~k can take any value.

• Alternatively, the position vector ~r can take any value, while the momentum vector ~k

is restricted to the first Brillouin zone of volume Ωk as defined by the three reciprocal

lattice vectors ~b1, ~b2, and ~b3,

Ωk = |~b1 · (~b2 × ~b3)| = (2π)3

Ωr

(2.113)

Usually the second option is taken in condensed-matter physics, that is, limiting the

momentum vector to the first Brillouin zone, such that the crystal is infinite in real space.

The three-dimensional Fourier transform, originally defined as an indefinite integral,

F (~r) =

(
1√
2π

)3∫
d3k F (~k) ei

~k·~r (2.114)

now becomes a finite integral,

F (~r) =
1√
Ωk

∫
Ωk

d3k F (~k) ei
~k·~r (2.115)

42

where the bounds of the integral now only spans the first Brillouin zone instead of all

reciprocal space, and the normalizing prefactor is now the finite volume of the first Brillouin

zone, Ωk. The delta function in momentum space, δ(~k − ~q), which is the inverse Fourier

transform of unity, can be written as

Ωrδ(~k− ~q) =

∫
d3r e−i(

~k−~q)·~r (2.116)

Ideally, the momentum representation is continuous, and the crystal is defined as a perfect

infinite lattice. However, in practice, with numerical algorithms, it is a necessity to discretize

the values for the momenta from a continuum into a discrete ~k-mesh, which can then be

specified as an input parameter. This in turn truncates the infinite crystal into a finite

macrocrystal.

Consider the discrete ~k-mesh of size N = Nx ×Ny ×Nz. This means there are only Nx

possible values for kx-component within the interval − π
a1
≤ kx ≤ π

a1
, and they are spaced in

multiples of b1
Nx

= 2π
Nxa1

. The same idea goes with the ky- and kz-components. Thus, there

are only N possible values for the discrete momentum vector ~k.

With a discrete ~k-mesh, the previously continuous Fourier transform now becomes a

discrete Fourier transform,

F~r =
1√
N

1BZ∑
~k

F~k e
i~k·~r (2.117)

Notice how the normalizing prefactor is now simply N . The delta function in momentum

space now becomes a Kronecker delta, δ~k~q,

N δ~k~q =
∑
~r

e−i(
~k−~q)·~r (2.118)

Consider the case of ~k = ~q. The l.h.s. follows the definition of the Kronecker delta: δ~k~q = 1

for ~k = ~q. In the r.h.s, the exponential factor e−i(~k−~q)·~r reduces to e0 = 1, such that the

r.h.s. is a sum of ones. In this case, the only way of preserving the normalization factor N

on the l.h.s. is that there should be only N such terms in the r.h.s. However, the nature

of the expression as a Fourier transform is that each position vector ~r has to be different in

43

the series expansion. A way to achieve this is by exploiting Bloch’s theorem, which allows a

periodic function to repeat in each unit cell. This means having each position vector ~r in the

series expansion correspond to different unit cells. Thus, the sampling method of discretizing

the momentum effectively reduces the infinite lattice into the finite macrocrystal composed

of N = Nx ×Ny ×Nz unit cells in real space.

Therefore, to achieve a higher accuracy of the computation, it is usually desirable to use

a denser ~k-mesh (that is, a higher number for Nx, Ny, and Nz). However, a balance has

to be struck: using a denser ~k-mesh significantly increases the problem size by O(N3), and

thus the computation requires significantly more computational resources.

2.5.3 Electronic structure: band structure and density of states

The Kohn-Sham eigenvalue equation (2.39) is defined in real space. For solid-state systems,

the atoms are arranged in a periodic lattice, and thus the external potential term V̂ext

in the Kohn-Sham Hamiltonian is also periodic. To make use of this periodicity, DFT

implementations for solid-state systems solve the Kohn-Sham equation using Bloch’s

theorem. Just like in the 1-D case (Equation (2.15)), Bloch’s theorem defines that the

wavefunctions φn~k for a given band index n and momentum ~k repeat themselves in space

across different unit cells,

φn~k(~r + ~T) = φn~k(~r) φn~k(~r) = un~k(~r) ei
~k·~r (2.119)

where the position vector ~r is restricted to within the unit cell volume (Equation (2.112)),

the translation vector ~T is an integer multiple of the lattice vectors ~T = h~a1 + k ~a2 + l ~a3

(h, k, l are all integers), and un~k(~r) is the Bloch function. A consequence of this approach

is that now the Kohn-Sham energy eigenvalues are momentum-dependent, εKS
j~kσ

.

Put simply, the band structure is a plot of the Kohn-Sham energy eigenvalues εKS
j~kσ

with respect to momentum ~k. Usually the momentum values are picked to be in a path of

high symmetry points of the first Brillouin zone. For instance, with V2O3 in paramagnetic

44

metallic corundum phase (RHL1 lattice), the path is taken to be Γ–L–B1–Q–F–B–Z–Γ–X–

B1–Γ–F–P1–Z, which is a modified path from the one suggested in Figure 14 of Ref. [36] for

this crystal lattice.

Now, due to the property of the LAPW basis set, it is possible to assign the band character

(that is, the l and m value) for each band index j based on the muffin-tin expansion in terms

of the spherical harmonics Y m
l (Ω), Equation (2.107). This procedure is implemented in

the bandchar() and bandrlm() subroutines. It requires the local point symmetry (the

local Cartesian ~ex, ~ey, and ~ez unit vectors) to be defined properly for each atomic site, as

transform matrices13 for real spherical harmonics. The output can be post-processed using

the provided bndchr utility into data files ready for plotting. It is helpful to overlay this

plot over the band structure to highlight bands of a certain band character. Figures 5.2 and

5.3 in Chapter 5 exemplify such highlighted band structure plots.

The density of states (DOS) is a quantitative way to measure how the energy

eigenvalues are distributed with respect to energy. It is defined as a sum of delta functions

in energy:

DOS (ω) =
1

Nk

∑
σ

∑
j

1BZ∑
~k

δ(~ω − εj~kσ) (2.120)

Given the band character of each band index j, it is possible to perform a partial summation

in j (or no summation at all – just a single value of j) based on the band character, and this

will yield what is called the partial density of states (PDOS).

PDOSjσ (ω) =
1

Nk

1BZ∑
~k

δ(~ω − εj~kσ) (2.121)

In addition, by subtracting the sum of all the PDOS for all band characters from the total

DOS, it is possible to calculate the fraction of the DOS that lies in the interstitial part of

the LAPW expansion (since the PDOS is calculated based on the band character, which

pertains to the muffin tin part). The resulting quantity is simply called the interstitial

density of states (IDOS), and gives a measure of how much of the electrons in the system
13These transform matrices can be generated using the genlps utility, which takes in the orthonormal set

of three Cartesian unit vectors.

45

are itinerant (since the interstitial part of the LAPW basis is composed of plane waves).

IDOS (ω) = DOS (ω)−
∑
σ

∑
j

PDOSjσ (ω) (2.122)

This procedure to decompose the total DOS into the PDOS of each band character and the

IDOS is implemented in the dosrlm() subroutine, and a utility called pdos is provided to

post-process the output into data files ready for plotting.

I have also developed several Bash shell scripts to semi-automate the process of repeatedly

calling the bndchr and pdos utilities for different atomic indices and band characters.

2.6 Wannier function projection methods

Wannier functions are orbital-like electronic wavefunctions in real space that are localized

at atomic sites in a specific unit cell in the macrocrystal. Originally developed by Gregory

H. Wannier (1937) [37] to explain the electronic structure of simple crystalline insulators,

the Wannier function method has evolved into a powerful tool for understanding the local

physics of real material systems.

The single-band Wannier function wn(~r − ~T) of index n is defined as a discrete Fourier

transform of electronic wavefunctions φn~k(~r) = 〈~r|φn~k〉 over momenta ~k and translation

vector ~T for a specific band index n and momentum ~k.

wn(~r− ~T) = 〈~r|wn~T〉 ≡
1√
N

1BZ∑
~k

e−i
~k·~Tφn~k(~r) (2.123)

with N being the number of discrete momentum points in the first Brillouin zone (and thus,

by periodic boundary conditions, equal to the number of unit cells in the macrocrystal, as

discussed earlier in Section 2.5.2). This Wannier function wn(~r− ~T) is spatially centered at

a specific unit cell in the macrocrystal characterized by the translation vector ~T = h~a1 +

k ~a2 + l ~a3 with h, k, l all integers.

46

By design, Wannier functions are orthogonal,

〈wm~T|wn~T′〉 = δmn δ~T~T′ (2.124)

Proof. Using the closure relation in space, Î =
∫

d3r |~r〉 〈~r| (which is defined over the entire

macrocrystal), we can express for the inner product of two Wannier function as a spatial

integral,

〈wm~T|wn~T′〉 =

∫
d3r 〈wm~T|~r〉 〈~r|wn~T′〉

=

∫
d3r
(1√

N

1BZ∑
~k

ei
~k·~Tφ∗

m~k
(~r)
)(1√

N

1BZ∑
~q

e−i~q·
~T′
φn~q(~r)

)

=
1

N

1BZ∑
~k~q

ei
~k·~Te−i~q·

~T′
∫

d3rφ∗
m~k

(~r)φn~q(~r)

At this point, it is useful to evaluate the integral of two wavefunctions over the entire macro-

crystal,
∫

d3rφ∗
m~k

(~r)φn~q(~r). Due to Bloch theorem (Equation (2.119)), the wavefunction

φn~k(~r) repeats itself in space across different unit cells. Putting it to work,

∫
d3rφ∗

m~k
(~r)φn~q(~r) =

∫
d3rφ∗

m~k
(~r + ~T)φn~q(~r + ~T)

=

∫
d3r
(
u∗
m~k

(~r) e−i
~k·(~r+~T)

)(
un~q(~r) ei~q·(~r+~T)

)
Since the integrand involves periodic functions that repeats itself across different unit cells,

the integral can be split into a sum of contributions from each unit cell in the macrocrystal.

The different unit cells in the macrocrystal are each centered at the translation vector ~T,

∫
d3rφ∗

m~k
(~r)φn~q(~r) =

(∑
~T

∫
Ωr

)
d3r
(
u∗
m~k

(~r) e−i
~k·(~r+~T)

)(
un~q(~r) ei~q·(~r+~T)

)
=
∑
~T

e−i(
~k−~q)·~T

∫
Ωr

d3r e−i(
~k−~q)·~r u∗

m~k
(~r) un~q(~r)

=
(
N δ~k~q

)∫
Ωr

d3r e−i(
~k−~q)·~r u∗

m~k
(~r) un~k(~r)

47

Exploiting the Kronecker delta δ~k~q to get rid of the exponential in the integrand, we can

now use the orthogonality of Bloch functions,

∫
Ωr

d3ru∗
m~k

(~r)un~k(~r) = δmn (2.125)

which brings us to a surprisingly simple result of

∫
d3rφ∗

m~k
(~r)φn~q(~r) = N δ~k~q δmn (2.126)

Plugging back in,

〈wm~T|wn~T′〉 =
1

N

1BZ∑
~k~q

ei
~k·~Te−i~q·

~T′
∫

d3rφ∗
m~k

(~r)φn~q(~r)

=
1

N

1BZ∑
~k~q

ei
~k·~Te−i~q·

~T′
(
N δ~k~q δmn

)

=
1BZ∑
~k

ei
~k·(~T−~T′)δmn

= δ~T~T′ δmn

which is the desired final result. �

In the early days, Wannier functions are limited to simple materials where the Bloch

bands are isolated from one another in energy space. However, recent development made it

possible to construct a set of Wannier functions from multiple Bloch band indices. However,

there is one important caveat when multiple bands are involved: any orthogonal linear

combination of wavefunctions that satisfy Bloch’s theorem can be used to construct Wannier

functions. Formally, a set of Bloch states whose linear combinations form orthogonal sums

are linked by a unitary transformation in momentum space,

|φ̄n~k〉 =
∑
j

Ûjn(~k) |φj~k〉 (2.127)

48

Picking a certain way of constructing Wannier functions is equivalent to picking a gauge

that uniquely defines the unitary transformation for this set of Bloch states. This gauge

can be a condition chosen to "maximally localize", i.e., minimize the spread of the Wannier

functions (Marzari & Vanderbilt, 1997 [38]). An alternative way of defining the gauge is

using projection into trial orbitals that are based on a known atomic-like local basis set

{|ϕlo
ν 〉} (Anisimov et al., 2005 [39]).

The Anisimov single projection method defines the Wannier function of index n and

momentum k as projection onto a chosen trial orbital |ϕn〉,

|W̃n~k〉 ≡
N2∑
j=N1

|φj~k〉 〈φj~k|ϕn〉 (2.128)

where |φj~k〉 is the Bloch function with band index j and momentum ~k, |ϕn〉 is the trial

orbital, and the tilde indicates that these Wannier functions are orthogonal14 (as any Wannier

function is designed to be such), but not orthonormal15.

The corresponding Wannier function in real space, wn(~r − ~T), is given by the following

discrete Fourier transform,

w̃n(~r− ~T) = 〈~r|wn~T〉 ≡
1√
N

1BZ∑
~k

e−i
~k·~T 〈~r|W̃n~k〉 (2.129)

The trial orbital |ϕn〉 is chosen from an orthogonal set of atomic-like local basis set {|ϕlo
ν 〉}

with physical insight, such as considering the desired band character of the orbital, or its

location in energy in the band structure. For instance, in transition metal oxide systems,

the relevant physics is usually associated with orbitals with transition metal d-like or oxygen

p-like band character, and the "active" bands often lie not far from the Fermi level. This is
14The orthogonality of the Wannier functions comes from the inherent properties of the local basis set
{|ϕlo

n 〉}, which can be chosen as Linearized Muffin-Tin Orbitals (LMTO), Linearly-Augmented Plane Waves
(LAPW), or any atomic-like orbital basis set of interest. In particular, the Anisimov paper uses the LMTO
basis set.

15In general, the Anisimov method allows for projecting N Wannier functions out of N2 −N1 + 1 bands,
where N ≤ N2−N1+1, that is, not all bands within the band index interval N1 ≤ j ≤ N2 are involved in the
projection. The equal sign N = N2−N1 +1 is a necessary (but not sufficient) condition for an orthonormal
set of Wannier functions, which we will discuss later in this section.

49

reflected in ν being a "superindex" that takes into account such things as the atomic species

index and its orbital character.

In any case, the Bloch state |φj~k〉 with band index j and momentum value ~k can be

expressed as a sum of the different local orbitals,

|φj~k〉 =
∑
ν

c̃νj~k |ϕ̄lo
ν~k
〉 (2.130)

where the real space counterpart of the sum |ϕ̄lo
ν~k
〉 is given by a discrete Fourier transform

over the entire macrocrystal,

ϕ̄lo
ν~k

(~r) = 〈~r|ϕ̄lo
ν~k
〉 ≡ 1√

N

∑
~T

ei
~k·~Tϕν(~r− ~T) (2.131)

Notice how Equation (2.130) involves a sum involving projection coefficients c̃νj~k, which

are defined as inner products between the local orbital and the Bloch state that represent a

change of basis transformation,

c̃νj~k ≡ 〈ϕlo
ν |φj~k〉 (2.132)

The orthogonality of both the local basis set and the Bloch state ensures that inner

products are preserved across a change of basis transformation. Moreover, the complex

conjugate of such inner products is well-defined, such that

c̃∗
νj~k

= 〈ϕlo
ν |φj~k〉

∗
= 〈φj~k|ϕlo

ν 〉 (2.133)

After picking an appropriate trial orbital, Equation (2.128) can be rewritten in terms of

c̃∗
nj~k

, the complex conjugate of the projection coefficient (Equation (2.132)),

|W̃n~k〉 ≡
N2∑
j=N1

c̃∗
nj~k
|φj~k〉 (2.134)

which looks like a change of basis transformation between Bloch states and Wannier

functions.

c̃∗
nj~k

= 〈φj~k|W̃n~k〉 (2.135)

50

Now, if we plug in Equation (2.130) explicitly into (2.134), we can define the orthogonal

Wannier function using another set of projection coefficients b̃νn~k as follows,

|W̃n~k〉 =

N2∑
j=N1

∑
ν

c̃νj~k c̃
∗
nj~k
|ϕ̄lo
ν~k
〉 ≡

∑
ν

b̃νn~k |ϕ̄lo
ν~k
〉 (2.136)

that is,

b̃νn~k ≡ 〈ϕ̄lo
ν~k
|W̃n~k〉 =

N2∑
j=N1

c̃νj~k c̃
∗
nj~k

(2.137)

Next, to turn the orthogonal set of Wannier functions {|W̃n~k〉} into an orthonormal one

{|Wn~k〉}, an important restriction has to be imposed on the set: the Hilbert space that

is spanned by the chosen set of j Bloch states must be exactly the same as the Hilbert

space spanned by the produced set of n Wannier functions. This is formally equivalent

to orthonormalizing the set {c̃∗
νj~k
} into a unitary transformation matrix (Equation (2.127))

whose elements belong to the orthonormal set {c∗
νj~k
}, and carries the following consequences:

• The number of n Wannier functions that are projected must be equal to the number

of j band indices that are involved in the projection, that is, N = N2 −N1 + 1.

• The transformation matrix from Bloch functions to Wannier functions is a square,

invertible, unitary square matrix, that is, [Û]−1(~k) = [Û]†(~k) for a given momentum
~k, and the row and column indices of the matrix correspond to the Bloch state indices

j and Wannier function indices n.

With this restriction in place, the Löwdin orthonormalization procedure [40, 41] can be

used to orthonormalize the projection coefficients.

Define the overlap matrix [O](~k) as a square matrix whose row and column indices are

the Wannier function indices n and n′ for a given momentum value ~k. Its matrix elements

are the inner products of two orthogonal Wannier functions,

Onn′(~k) ≡ 〈W̃n~k|W̃n′~k〉 (2.138)

51

Expanding the twoWannier functions using Equation (2.134), and using the orthogonality

of the Bloch states (Equation (2.125)), the overlap matrix elements are given by

Onn′(~k) =

N2∑
j=N1

c̃nj~k c̃
∗
n′j~k

(2.139)

The elements of the inverse square root16 of the overlap matrix,

[S](~k) ≡ [O]−1/2(~k) (2.140)

is used to orthonormalize the Wannier function as follows,

|Wn~k〉 ≡
∑
n′

Snn′(~k) |W̃n′~k〉 (2.141)

The effect of the orthonormalization process on the projection coefficients can be seen if

we make the following comparisons with Equations (2.134) and (2.136), respectively.

|W̃n~k〉 =

N2∑
j=N1

c̃∗
nj~k
|φj~k〉 −→ |Wn~k〉 ≡

N2∑
j=N1

c∗
nj~k
|φj~k〉 (2.142)

|W̃n~k〉 =
∑
ν

b̃νn~k |ϕ̄lo
ν~k
〉 −→ |Wn~k〉 ≡

∑
ν

bνn~k |ϕ̄lo
ν~k
〉 (2.143)

that is,

c∗
nj~k
≡ 〈φj~k|Wn~k〉 =

∑
n′

Snn′(~k) c̃∗
n′j~k

(2.144)

and

bµν~k ≡ 〈ϕ̄lo
ν~k
|Wn~k〉 =

∑
n′

Snn′(~k)

N2∑
j=N1

c̃νj~k c̃
∗
n′j~k

(2.145)

Finally, the orthonormal Wannier function in real space, wn(~r − ~T), which is spatially

centered at the unit cell associated with the translation vector ~T, is then defined as a discrete

16The elements of [O](~k) are inner products, and thus it is a Hermitian matrix. The inverse square root of
a Hermitian matrix is well-defined and can be computed by first diagonalizing the matrix, [O] = [U][D][U]†,
where [D] is a diagonal matrix containing the eigenvalues and [U] contains the eigenvectors of [O]. Then,
perform the arithmetic square root on each eigenvalue in [D] to get [D]−1/2, and the inverse square root can
be obtained by simply performing the matrix product [U][D]−1/2[U]†.

52

Fourier transform of its momentum representation.

wn(~r− ~T) = 〈~r|w̃n~T〉 =
1√
N

1BZ∑
~k

e−i
~k·~T 〈~r|Wn~k〉 (2.146)

Consider the special case of a Wannier function that is spatially centered at the unit cell

at the origin, that is, ~T = 0. The spatial representation is given by

wn(~r) = 〈~r|w̃n0〉 =
1√
N

1BZ∑
~k

〈~r|Wn~k〉 (2.147)

Upon expanding |Wn~k〉 using Equation (2.143), and plugging the spatial representation given

in Equation (2.131), we have

wn(~r) =
1√
N

1BZ∑
~k

∑
ν

bνn~k 〈~r|ϕ̄lo
ν~k
〉

=
1

N

1BZ∑
~k

∑
ν~T

bνn~k e
i~k·~Tϕν(~r− ~T)

≡
∑
ν~T

w(n, ν, ~T)ϕν(~r− ~T) (2.148)

where we have defined the expansion coefficient of the Wannier function wn(~r) in terms of

the local orbitals ϕν(~r− ~T) as

w(n, ν, ~T) ≡ 1

N

1BZ∑
~k

ei
~k·~Tbνn~k (2.149)

The state-of-the-art Wannier function projection method developed in the Eguiluz

research group is based on the Anisimov scheme as described above, with the following

adjustments/improvements:

• The unitarity condition for the change of basis transformation from Bloch states to

Wannier functions is enforced.

53

• The local basis set is LAPW (Equation (2.107)), which is much more sophisticated

than LMTO.

• The trial orbital can be generalized into an orthonormal linear combination of local

orbitals. The linear combination can even be performed with orbitals of different band

characters to account for orbital hybridization that exists in the material system.

|ϕn〉 =
∑
ν

anν |ϕlo
ν 〉 (2.150)

• There is an implementation to "disentangle" band crossings in the band structure. This

is especially important with transition metal oxide systems where such band crossings

are rampant.

• Fine-grained control over the size of the Hilbert space is available, e.g. it is possible

to project only 3 Wannier functions using 3 d orbitals of t2g character, or a linear

combination of these orbitals, instead of having to project all 5 d orbitals as an

indivisible set.

• It is possible to consciously choose to construct Wannier functions that are spatially

more localized/atomic-like, or alternatively, more hybridized/spread out in space.

• Most importantly, the gauge is defined by picking the Bloch band index j through a

search loop that maximizes the magnitude of the projection coefficient c̃nj.

• Consequently, the energy spectrum of the Wannier function are guaranteed to coincide

with Bloch energy eigenvalues in the band structure, but not guaranteed to be

continuous in momentum space. This is due to the fact that the projection for each

momentum vector ~k is processed independently of one another.

54

2.7 The constrained Random Phase Approximation (c-

RPA) method

The constrained Random Phase Approximation (c-RPA) method can be used to estimate

the screened Coulomb interaction within a defined target space. The screening comes from

the Hilbert space outside the target space (called the "rest" space).

55

Chapter 3

Fundamentals II: Programming Graphics

Processing Units (GPUs)

The basic idea of accelerated computing is that the most compute-intensive parts of the

algorithm are computed using the accelerator instead of using the central processing unit

(CPU). In the case for the Summit supercomputer at Oak Ridge National Laboratory

(ORNL), the accelerator device is the graphics processing unit (GPU). This chapter lays

out some historical context of accelerated computing, and gives a brief description of the

potential and challenges of working with the hybrid CPU+GPU environment.

3.1 The Graphics Processing Unit (GPU)

Before the rise of the graphics processing unit (GPU), a dedicated device that processes

graphics data to a screen was simply called a display adapter. In 1981, IBM introduced

the Color Graphics Adapter (CGA), which soon became the de facto standard for display

adapters. It was capable of outputting only a maximum of 16 colors to a cathode-ray tube

(CRT) display. In 1987 IBM introduced the Video Graphics Array (VGA) standard, which

became immensely popular with consumers to the point that it was common to refer to a

display adapter as a "VGA card".

56

1994

"G
PU

"

2018

1s
t G

PU
: N

VI
DI

A
Ge

Fo
rc

e 2
56

1999 2001

1s
t m

ul
tic

or
e C

PU
: I

BM
 P

OW
ER

4

2005

Co
ns

um
er

 m
ul

tic
or

e C
PU

s:

2008

Pe
ta

sc
al

e:
 R

oa
dr

un
ne

r (
LL

NL
)

2007

NV
ID

IA
 C

UD
A

1.
0

2011

Ope
nC

L 1
.0

In
te

l P
en

tiu
m

 D
; A

M
D

At
hl

on
 64

 X
2

Ope
nA

CC
 1.

0

2012

In
te

l "
Kn

ig
ht

s C
or

ne
r"

 M
IC

Ti
ta

n
(O

RN
L)

2013

Ope
nM

P
4.

0 d
ev

ice
 o
ffl

oa
d

Su
m

m
it

(O
RN

L)

2016

AM
D

RO
Cm

1997

In
te

l M
M

X
in

st
ru

ct
io

n
se

t

2010

Ti
an

he
-1

A
(T

ia
nj

in
, C

hi
na

)

2021

Ti
an

he
-2

 (N
UD

T C
hi

na
)

Ex
as

ca
le

NV
ID

IA
 Te

sla
 G

PU

In
te

l "
Kn

ig
ht

s L
an

di
ng

" M
IC

Ope
nM

P
1.

0

1995

1s
t 3

D
ac

ce
le

ra
to

r:
S3

 V
iR

GE

Figure 3.1: A brief timeline of the rise of the graphics processing unit (GPU) and the development of accelerated high
performance computing.

575757

Figure 3.1 summarizes the rise of the GPU and its relevance to high performance

computing. In 1994 Sony coined the term "graphics processing unit" (GPU) when marketing

the PlayStation video game console [?]. Soon afterwards, the computer graphics industry

began what was called the "3D accelerator wars". The first standalone devices capable

of rendering three-dimensional (3-D) graphics data in real time – 3D accelerator devices –

arrived in the consumer market in 1995 with the release of the S3 Virtual Reality Graphics

Engine (ViRGE) [42]. Other popular hardware from this era are the 3dfx Voodoo and the

ATI 3D Rage.

The acronym "GPU" was popularized by NVIDIA in 1999 when the company released the

NVIDIA GeForce 256 [6] – the world’s first such device – defined as "a single-chip processor

with integrated transform, lighting, triangle setup/clipping, and rendering engines that is

capable of processing a minimum of 10 million polygons per second" [43]. Before, graphics

processing workload was partially performed by the CPU; the NVIDIA GeForce 256 was the

first device that was capable of performing all graphics-related functions on a single hardware

chip.

At around the same time, parallel programming also began to evolve as vector-level

parallelism became more commonplace in consumer-level hardware. Notable events were

the introduction of the Intel MMX instruction set in 1997 with the Intel Pentium MMX

[], followed by the Streaming SIMD Extensions (SSE) instruction set in 1999 with the Intel

Pentium III []. At around the same time, version 1.0 of the Open Multi-Processing (OpenMP)

specification was released for Fortran and C/C++ programming languages as a portable

programming model targeting the multithreaded CPU architecture [?].

On the hardware side, in the early 2000’s Moore’s law for the number of transistors

contained in a central processing unit (CPU) began to "slow down". CPU chip designers

were presented with the "power wall" problem – the heat dissipation of the CPU chip scales

linearly with its frequency, such that it was no longer practical to keep raising the clock speed

for performance. The solution to the problem was a major shift in computer history: the

advent of the multicore CPU and simultaneous multithreading (SMT) in consumer-

level hardware.

58

In 2001, IBM released the world’s first dual-core CPU – the IBM POWER4 for the

enterprise market [44]. Intel introduced its first "hyper-threading" CPU to the consumer

market with the release of the Intel Pentium 4 in 2002, and in 2005 both Intel and AMD

released their first dual-core CPUs for the consumer market – the Intel Pentium D [45] and

the AMD Athlon 64 X2 [?], respectively. Around this time, driven by the aforementioned

advances in hardware capabilities, software-level parallelism started to be regarded as an

important concept in software design.

Up until this time, the GPU was a device dedicated to processing graphics and video

data – whether two-dimensional or three-dimensional. This changed in 2007: the GPU

"revolution" began with the introduction of the NVIDIA Tesla line of GPU products for

general-purpose computation. Along with it, the NVIDIA Compute Unified Device

Architecture (CUDA) software development kit (SDK) was introduced for the first time

[46]. The next year (2008), the Khronos Group released version 1.0 of the Open Computing

Language (OpenCL) specification – the first accelerator programming model to be supported

by multiple GPU hardware vendors [47]. In 2011, the OpenACC version 1.0 specification was

released [?], and in 2013 the OpenMP version 4.0 specification became the first OpenMP

version to support accelerators [?].

3.2 Accelerators and High Performance Computing

Around the same time, the concept of using accelerator devices in high performance

computing (HPC) started to gain traction. These accelerator devices come in various names

and forms – IBM Cell co-processors, Intel Many Integrated Core (MIC) co-processors, the

NVIDIA GPU – but they all have one thing in common: they are massively parallel

devices capable of delivering performance at a lower power budget than the

CPU. In 2008 the Roadrunner supercomputer at the Los Alamos National Laboratory,

powered by AMD Opteron CPUs and IBM Cell co-processors, became the first accelerated

supercomputer and debuted at number 1 on the TOP500 supercomputer rankings. It was

also the first system to break the petaflop (1015 double precision floating-point operations

per second) barrier.

59

Table 3.1 summarizes the different systems that are at the top position of the TOP500 list

from 2008 to 2020, from Roadrunner (LANL) to Fugaku (RIKEN, Japan). Notice that half of

the systems in the table are accelerated systems. Notable entries are Tianhe-1A (2010), the

first No.1 GPU-accelerated system; Titan (2012) at Oak Ridge National Laboratory (ORNL);

Tianhe-2 (2013-15), the first No. 1 system with Intel MIC co-processors; and Summit (2018-

19) at ORNL. It is also interesting to note that even though TaihuLight (2016-17) is not

an accelerated system, the design of the custom-made Sunway CPUs borrows the idea of

utilizing "light" cores from accelerator hardware design [48], which will be further explained

in Section 3.3.1 below.

Accelerated computing, especially with GPUs, is here to stay. The first exascale machines,

scheduled to come online in late 2021 - early 2022, will also be GPU-accelerated systems.

Frontier (ORNL) will be powered by AMD CPUs and AMD GPUs, and Aurora (Argonne

National Laboratory) by Intel CPUs and Intel "Ponte Vecchio" GPUs.

3.3 GPU Programming 101

As accelerated supercomputing facilities become more common and more widely adapted for

scientific work, it is useful to understand the basic principles of using accelerator devices such

as GPUs. This section discusses the nature of the GPU hardware, the common paradigm of

programming a GPU (the three-step paradigm), and the different ways of using a GPU.

3.3.1 "Heavy" and "light" cores

Over time, the GPU has evolved from a device that was solely dedicated to process graphics

data into a device that can be used for general-purpose programming. However, it’s not truly

"general-purpose" – not all codes can perform well at the GPU with a major performance

boost. The GPU works best withmassively parallel algorithms due to its hardware design.

The hardware "cores"1 that make up a GPU device are different from the traditional

hardware cores that are present in a CPU chip. Figure 3.2 illustrates this point.
1The actual name for these "cores" varies by manufacturer, but let’s call it a "core" for simplicity. NVIDIA

prefers to call it a CUDA core, while AMD prefers to call it a stream processor (SP), and Intel simply calls
it an execution unit (EU).

60

Table 3.1: Systems ranked first in the TOP500 ranking of supercomputer facilities [1], from
2008 to 2020

Time System Location CPU Accelerator

06/2008–
06/2009 Roadrunner LANL

Los Alamos, NM, USA
AMD Opteron 2210
"Santa Rosa" 2-core

IBM PowerXCell 8i
9-core

(1 PPE + 8 SPE)

11/2009–
06/2010 Jaguar ORNL

Oak Ridge, TN, USA
AMD Opteron 2435
"Istanbul" 6-core

none

11/2010 Tianhe-1A Nat’l S’comp Ctr
Tianjin, China

Intel Xeon X5670
"Westmere-EP" 6-core

NVIDIA M2050
"Fermi"

06/2011–
11/2011 K Computer RIKEN

Kobe, Japan
Fujitsu SPARC64

VIIIfx 8-core
none

06/2012 Sequoia LLNL
Livermore, CA, USA

IBM BlueGene/Q
16-core

none

11/2012 Titan ORNL
Oak Ridge, TN, USA

AMD Opteron 6274
"Interlagos" 16-core

NVIDIA K20x
"Kepler"

06/2013–
11/2015 Tianhe-2 NUDT

Guangzhou, China
Intel Xeon E5-2692
"Ivy Bridge" 12-core

Intel Xeon Phi 31S1P
"Knights Corner" 57-core

06/2016–
11/2017 TaihuLight Nat’l S’comp Ctr

Wuxi, China

Sunway SW26010
260-core

(4 MPE + 256 CPE)

none

06/2018–
11/2019 Summit ORNL

Oak Ridge, TN, USA
2× IBM POWER9

42-core
6× NVIDIA V100

"Volta"
06/2020–
11/2020 Fugaku RIKEN

Kobe, Japan
Fujitsu ARM64
A64FX 48-core

none

61

GPUCPU

Control

ALU ALU

ALU ALU

Cache

DRAM VRAM

Figure 3.2: Comparison between the CPU core and the GPU "core". Adapted with
permission from ??

62

In a CPU device, each register is paired with an instruction unit, such that each CPU core

can independently execute different instructions from another. For instance, during a single

clock cycle CPU core 0 the arithmetic logical unit (ALU) executes a SUB assembly instruction

to subtract two numbers, and during the same clock cycle the CPU core 1 executes an ADD

instruction to add two numbers. This is not possible with a GPU "core", where multiple

ALUs share the same instruction unit, and is also the reason it is termed a "light"

core, as opposed to a "heavy" CPU core.

Specifically with NVIDIA GPUs, the smallest execution unit can be referred to as a

"thread". A group of threads that execute the same instruction on a given amount of data is

called a "warp". Threads can also be grouped logically into a "threadblock", and a collection

of threadblocks is called a "grid". When using an NVIDIA GPU, it is important to fill up the

CUDA cores with enough threads executing on them. This concept is termed occupancy. A

fully occupied GPU, where all hardware units are active at a given time, has 100% occupancy.

Maintaining a high occupancy is key to unlocking the performance boost when

utilizing a GPU for scientific computing.

3.3.2 The three-step paradigm

The accelerator device maintains its own distinct memory space, called the device memory,

which is typically separate from the system dynamic random access memory (DRAM) that

is accessible from the CPU, termed host memory. For the case of a GPU, this can be

in the form of Graphics DDR (GDDR) Memory or High-Bandwidth Memory (HBM) chips

embedded in the GPU unit. Regardless of type, let’s refer to it as the Video RAM (VRAM).

The GPU unit is connected to the rest of the system with a bus, which can be in the form of

standard PCI Express (PCIe) bus for consumer-grade and workstation GPUs, or high-speed

proprietary interconnect solutions such as the NVIDIA NVLink interconnect.

Regardless of the programming model of choice in interfacing with a GPU – or any

accelerator device in general – the process can be summarized into a three-step process2:
2Even when using the Unified Memory feature with NVIDIA GPUs, the three-step process is still

performed transparently using a paging mechanism. The CUDA runtime library performs this function
for the user. [?]

63

1. Send the input data to be processed from host memory to device memory through

the bus.

2. Perform computation with the input data on the device.

3. Send the resulting output data back from device memory to host memory

through the bus.

Figure 3.3 illustrates this paradigm.

Computation on the GPU is performed using a program unit called a kernel. The kernel

can take the form of a block between two compiler directives (when using OpenACC or

OpenMP target offload), or it can be a specially marked subroutine (Fortran) or function

(C/C++).

Steps one and three of the process account for the fact that data transfers between host

memory and device memory are NOT instantaneous and are limited by the bandwidth

of the bus. Thus, it is difficult to achieve a high arithmetic intensity – the ratio between

the number of floating-point operations to the amount of data access – when programming

a GPU; most of the time the kernels that execute on the accelerator device are memory-

bound instead of compute-bound. This is one of the major challenges of programming with

accelerators.

3.3.3 GPU programming models

There are numerous different ways to program code that runs on a GPU. These can be

divided into three broad categories: (1) Compiler directive-based approach, (2) Language

extension-based approach, and (3) Library-based approach.

Compiler directives are specially formatted statements that begin with a "sentinel"

(Fortran) or "pragma" (C/C++) that are treated as comments by compilers that don’t

support them, or when the corresponding compiler switch is turned off. Thus, using a

compiler directive-based GPU programming model opens up the possibility of having a

single, unified source code file for both the CPU-only implementation and the hybrid

CPU+GPU implementation. For directive-based approaches, at the time of writing there

are two leading programming models:

64

time

CPU

DRAM GPU1

2

GPU

CPU

DRAM GPU3

Transfer data to device.

Compute on device.

Transfer results to host.

CPU

DRAM

Figure 3.3: The three-step paradigm of programming a GPU.

65

• OpenACC [11] is a joint effort by Cray, AMD, ORNL, and NVIDIA to develop a

programming model for GPUs that is easy to use yet also powerful at the same time.

It uses the sentinel !$ACC for Fortran3 and the pragma statement #pragma acc for the

C programming language.

• OpenMP [?] was originally developed as a portable framework for CPU multithread-

ing as an alternative to low-level libraries such as the POSIX threads (pthreads)

library. Version 4.0 of the OpenMP specification introduces the target keyword,

which enables "offloading" certain code blocks for execution on the GPU. It uses the

sentinel !$OMP for Fortran4 and the pragma statement #pragma omp for the C and

C++ programming languages.

On the other hand, language extensions augment the original programming language

by adding new data types, new attributes/definitions, and new functions/methods. The

following is a non-exhaustive list of GPU computing paradigms that utilize language

extensions:

• NVIDIA CUDA is the oldest and most well-known GPU programming model. It is

based on the C++ programming language and is used to program NVIDIA GPUs.

Recently, NVIDIA also started to support Fortran in the form of CUDA Fortran.

• AMD HIP is also based on C++ and is used to program AMD GPUs, but also supports

execution on an NVIDIA GPU. There is a hipify tool that can be translate existing

CUDA C++ code into AMD HIP C++.

• Intel oneAPI is the most recent addition to the list. It is based on C++ and will

be used to program Intel GPUs, starting with the debut of the Intel "Ponte Vecchio"

discrete GPU at the Aurora supercomputer (LLNL).

• OpenCL is historically the first cross-platform set of specifications for extending the

C programming language, developed by the Khronos group.
3Fortran by default is NOT case-sensitive, i.e., a variable named VAR is the same as var or Var. Thus,

!$acc is also a valid OpenACC sentinel.
4Idem for the OpenMP sentinel !$omp.

66

Finally, there are also libraries for interfacing with the GPU. This is the "classical"

approach to using GPUs. Some libraries geared particularly towards graphics applications

are:

• OpenGL is a mature, low-level, cross-platform library written in C, geared towards

general-purpose graphical applications.

• Vulkan is a cross-platform low-level C library developed with newer hardware

capabilities (such as ray-tracing cores) in mind. It has been particularly important

for several GNU/Linux distributions.

• DirectX is a low-level library backed by Microsoft and is mainly used for developing

graphical applications for the Microsoft Windows operating systems.

• Simple DirectMedia Layer (SDL) is a popular high-level cross-platform C library that

provides a portable interface to platform-specific backends such as DirectX on Microsoft

Windows or Vulkan on GNU/Linux.

• Qt is a popular high-level cross-platform C++ library targeted towards rapid graphical

user interface (GUI) prototyping.

There are also emerging GPU computing libraries that are designed with scientific

computing and cross-platform portability in mind, two of which deserve a special mention:

• Kokkos [49?] is a templated C++ scientific computing library developed by Sandia

National Laboratory that provides an abstraction layer focusing on parallel memory

access patterns such as the general for loop, the reduction loop, and the task-graph

for use with directed acyclic graphs (DAGs).

• RAJA [?] is a templated C++ scientific computing library developed by Lawrence

Livermore National Laboratory (LLNL) focusing on fine-grained parallelism – the inner

loop concept.

Memeti et al. compared four leading GPU programming models: OpenCL, OpenACC,

OpenMP, and CUDA [50]. It is noteworthy to point out that three of the four programming

67

models (OpenCL, OpenACC, and OpenMP) are designed as portable (platform-independent)

programming models, whereas CUDA is only applicable for NVIDIA hardware. Of the

different aspects discussed in this article (programming productivity, performance, and

energy consumption), the most interesting results are that programming with OpenCL

requires the most effort compared to OpenACC or CUDA, and that performance across

the different programming models is mostly application dependent.

Li and Shih compared the performance of various benchmarks written in both OpenACC

and CUDA when executed on NVIDIA hardware [51]. They remark that the CUDA

implementation tends to outperform the OpenACC implementation. The OpenACC

implementation is more sensitive to data changes compared to optimized CUDA code,

but the reverse is true for unoptimized CUDA code. This is due to the different design

goals of CUDA and OpenACC: CUDA is specialized for NVIDIA hardware and exposes the

programmer to hardware details and features, while OpenACC is designed with portability

in mind at the expense of highly-tuned optimizations. However, they also remark that overall

the performance of OpenACC is comparable to that of CUDA, and thus "OpenACC can be

a good alternative to CUDA especially for beginners in high-level parallel programming."

In the first working note for Software for Linear Algebra Targeting Exascale (SLATE),

Abdelfattah et al. reviewed several key technologies in programming for hybrid accelerated

computing systems [2], including OpenMP 4.0/4.5, OpenACC, MPI, Kokkos, and RAJA.

I will simply quote the following table 3.2 from this work, which presents a high level

comparison between OpenACC and OpenMP.

Finally, Lopez et al. compared the two leading directive-based GPU programming

models OpenMP 4.0/4.5 and OpenACC [52]. They noted that OpenACC tends to be more

"descriptive" – the user specifies which loops are able to be parallelized safely and how to

handle the data transfers – while OpenMP tends to be more "prescriptive" – it’s up to the

compiler to turn the regions to be offloaded into parallel code. This makes it slightly harder to

write OpenMP target code that is "performance portable", i.e., able to deliver a comparable

performance across different architectures and accelerator hardwares. For instance, it might

be necessary for the programmer to manually specify the number of teams and threads with

68

Table 3.2: High level comparison of OpenACC and OpenMP. Quoted with permission from
Ref. [2].

OpenACC 2.5 OpenMP 4.0
No goal of general purpose Focused on general purpose parallelism
Focused on accelerator hardware Focused on multi core, acceleration optional
Performance portability possible Performance portability requires effort
Descriptive (functional) Prescriptive (procedural)
Interoperability available Interoperability still evolving

69

which to execute the target code on the accelerator device. They also noted that certain

kernels have characteristics that make it harder for the compiler to generate efficient code.

Overall, performance depends on both the programmer and the compiler support of the

chosen programming model; it is possible to outperform optimized native libraries (such as

cuBLAS on NVIDIA GPU or MKL on Intel MIC) with properly written code.

3.3.4 The OpenACC programming model

As explained briefly in Section 3.3.3, Open Accelerators (OpenACC) is a portable, compiler

directive-based GPU programming model. It follows a descriptive programming model: the

programmer identifies important loops in the source code that are parallelizable and puts

OpenACC directives on those parts. So far, I have identified the following advantages over

other GPU programming methods:

• OpenACC natively supports the Fortran programming language from its start (unlike

CUDA, where Fortran support is a recent addition, or OpenCL, which is strictly for

the C programming language).

• OpenACC is portable, i.e., the same source code can be compiled for execution on

NVIDIA GPUs, AMD GPUs, Intel MICs, or even multicore CPUs across three different

architectures (x86_64, ppc64le, aarch64).

• OpenACC is designed to be easy to use – just "sprinkle" directives into the code at

the proper locations!

• OpenACC provides a mechanism to manually transfer data to and from device memory

when finer-grained control over data transfers is needed.

• OpenACC is interoperable with OpenMP 4.0, CUDA C++, as well as interfaces to

optimized GPU libraries such as NVIDIA cuBLAS or cuFFT, by allowing device

pointer addresses to be exposed.

However, there are also some disadvantages when using OpenACC:

70

• OpenACC does not provide straightforward mechanisms to use some NVIDIA-specific

hardware features, such as shared memory5 and warp shuffles. To use these, interfaces

to CUDA C++ code are needed.

• OpenACC standards implementation in the GCC compiler collection lags behind the

PGI / NVIDIA HPC SDK compilers, and it’s not straightforward to install a GCC

version that supports GPU offloading.

• As of February 2021, AMD has yet to provide a Fortran compiler that natively

supports OpenACC on the AMD Graphics Core Next (GCN) architecture (instead,

AMD provides AOMP [53], which includes Flang/LLVM with support for OpenMP

4.0 target offload).

• It is highly unlikely that Intel will provide a compiler with OpenACC support, as Intel

is pushing for the adoption of the oneAPI programming model instead. There is also

some historical background on this decision [54].

When porting a code to use GPUs using OpenACC, keep in mind the following cycle:

profile, develop, and optimize.

• Profiling: only the most compute-intensive parts of the code should be ported to the

GPU, in order to offset the cost of data transfers between the host memory (DRAM)

and GPU memory (VRAM). For this thesis, I use the TAU [?] performance analysis

suite for profiling the CPU-only code, and both the NVIDIA profiler (nvprof) and the

NVIDIA NSight Systems performance analysis tools.

• Developing: annotate the code with OpenACC directives where needed, while

maintaining correct program behavior. If executing the program on NVIDIA hardware,

it is also useful to annotate the code with NVIDIA Tools Extensions (NVTX) markers,

that is, calls to subroutines/functions from the NVTX library.

• Optimizing: profile the code again, noting improvements in wall clock time

(speedup). In some cases, collecting a GPU trace might be useful to analyze which

kernels took the most time and how much data was transferred.
5Shared memory is used only for private variables when the gang clause is specified.

71

To illustrate the ease of use of OpenACC, the following is a modern Fortran6 code

implementing a double precision dot product (akin to DDOT in BLAS with both increments

set to 1) with OpenACC directives.

1 PROGRAM dot_product
2 IMPLICIT NONE
3

4 ! Precision constants
5 INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(14,100) ! 64-bit (double)
6

7 ! Vector dimension
8 INTEGER :: N
9

10 ! Loop index
11 INTEGER :: i
12

13 ! Vectors to take the dot product with
14 REAL(KIND=dp), DIMENSION(:), ALLOCATABLE :: vecA, vecB
15

16 ! Result and check value
17 REAL(KIND=dp) :: result, check
18

19 ! Tolerance for error checking
20 REAL(KIND=dp), PARAMETER :: tol = 10._dp**(-10)
21

22 ! Timing subroutine
23 INTRINSIC :: DATE_AND_TIME
24

25 ! Timing vars
26 INTEGER, DIMENSION(8) :: t0, t1, t2
27 REAL(KIND=dp) :: time_init, time_ddot
28

29 ! Read n from standard input
30 WRITE(*,*) ’Input vector length n:’
31 READ(*,*) n
32

33 ! Echo n to standard output
34 WRITE(*,*) ’Using n = ’, n
35

36 CALL DATE_AND_TIME(values=t0)
37

38 ! Allocate vectors on CPU
39 ALLOCATE(vecA(n))
40 ALLOCATE(vecB(n))
41

42 ! Allocate vectors and result variable on device (GPU)
43 !$ACC DATA CREATE(vecA, vecB, result)
44

45 ! Initialize vectors on device
46 !$ACC PARALLEL LOOP PRESENT(vecA, vecB) COPYIN(N)
47 DO i = 1, N
48 vecA(i) = REAL(i, KIND=dp)
49 vecB(i) = REAL(2*i, KIND=dp)
50 END DO ! i
51 !$ACC END PARALLEL LOOP
52

53 ! Initialize result variable
54 !$ACC KERNELS PRESENT(result)
55 result = 0._dp

6Here, I define "modern" Fortran as free-format Fortran 90/95 with additional features from newer
standards (Fortran 2003, 2008, 2013, and 2018), as opposed to "legacy" fixed-form FORTRAN 66 or 77.
Chapter 13 onwards in Reference [55] is a good introduction to these newer language features.

72

56 !$ACC END KERNELS
57

58 ! Barrier to ensure initialization completes
59 !$ACC WAIT
60

61 CALL DATE_AND_TIME(values=t1)
62

63 ! Perform dot product on device
64 !$ACC PARALLEL LOOP PRESENT(vecA, vecB, result) COPYIN(N) &
65 !$ACC REDUCTION(+:result)
66 DO i = 1, N
67 result = result + vecA(i) * vecB(i)
68 END DO ! i
69 !$ACC END PARALLEL LOOP
70

71 CALL DATE_AND_TIME(values=t2)
72

73 ! Fetch result from device
74 !$ACC UPDATE HOST(result)
75

76 ! Check value (using relative error) and print result to standard output
77 check = REAL(N, KIND=dp) * REAL(N+1, KIND=dp) * REAL(2*N+1, KIND=dp) &
78 / 3._dp
79 IF(ABS(result/check - 1) > tol) THEN
80 WRITE(*,*) ’Error! Result = ’, result, ’ when it should be ’, check
81 ELSE
82 WRITE(*,*) ’Success! Result = ’, result
83 END IF
84

85 ! Calculate and display timers
86 time_init = REAL(3600*t1(5) + 60*t1(6) + t1(7), KIND=dp) &
87 + 0.001_dp*REAL(t1(8), KIND=dp) &
88 - REAL(3600*t0(5) + 60*t0(6) + t0(7), KIND=dp) &
89 - 0.001_dp*REAL(t0(8), KIND=dp)
90 time_ddot = REAL(3600*t2(5) + 60*t2(6) + t2(7), KIND=dp) &
91 + 0.001_dp*REAL(t2(8), KIND=dp) &
92 - REAL(3600*t1(5) + 60*t1(6) + t1(7), KIND=dp) &
93 - 0.001_dp*REAL(t1(8), KIND=dp)
94 WRITE(*,’(A,F8.3,A)’) ’Initialization took ’, time_init, ’ seconds.’
95 WRITE(*,’(A,F8.3,A)’) ’Computation took ’, time_ddot, ’ seconds.’
96

97 ! Clean up
98 !$ACC END DATA
99 DEALLOCATE(vecA)

100 DEALLOCATE(vecB)
101

102 STOP
103 END PROGRAM dot_product

As mentioned in Section 3.3.3, the OpenACC directives begin with the sentinel !$ACC

and are only present in the code in lines 43, 46, 51, 54, 56, 59, 64–65, 69, 74, and 98. Let’s

dive into them one by one, by function. For modern Fortran, certain directives come in

pairs7, such as DATA and END DATA.

The most basic and arguably the most important OpenACC directive is the LOOP

directive, which identifies a loop that can be executed independently – each iteration of
7This is not the case with C, where blocks are scoped in braces, such that the specified OpenACC pragma

only applies to that block.

73

the loop operates on a different set of data8. In the sample code, there are two important

loops: the initialization loop (lines 47–50) to fill in the data for the two vectors |A〉 and |B〉,
and the main computation loop (lines 66-68) that sums over the product of the different

vector elements.

The PARALLEL directive (lines 46 and 64–65) informs the compiler of regions that should

be executed in parallel on the device, and the KERNELS directive (line 54) identifies a GPU

kernel region, i.e., code that can be executed on the device (not necessarily parallel). These

two directives can be combined together with the LOOP directive into a single directive,

PARALLEL LOOP and KERNELS LOOP, respectively. Some important clauses that can be added

to the two directives are:

• The PRIVATE clause, which declares variables that should contain distinct values across

different GPU threads. There also exists a variant of this clause called FIRSTPRIVATE

which will initialize the value of the variable to the value in host DRAM.

• The DEFAULT clause, which specifies the property of variables that are not explicitly

listed as PRIVATE.

• Data clauses: CREATE, COPY, COPYIN, COPYOUT, PRESENT.

– The CREATE clause allocates variables on the GPU without initializing it with any

value.

– The COPY clause allocates variables on the GPU, fills in the value from host

memory (DRAM) before the region executes, and copies the result from device

memory (VRAM) after the region finishes executing.

– The COPYIN clause (lines 46 and 64) allocates variables on the GPU, then fills in

the value from DRAM before the region executes.

– Conversely, the COPYOUT clause initializes variables on the GPU, then copies the

result of the calculation from VRAM after completion of the region.
8It is possible to put an OpenACC LOOP directive for a loop with data dependencies, but caution should

be exercised for this case. There is the SERIAL directive and the SEQ clause for such cases to guarantee
the consecutive order of execution of the iterations. Both should be used sparingly because it serializes the
execution – only one GPU thread executes the whole loop.

74

– The PRESENT clause (also lines 46 and 64) declares that the variables should

already be present on the device memory (VRAM) such that no copying is

performed, and will emit a runtime error when a variable in the list is not present

on the VRAM.

• The REDUCTION clause indicates that there is a reduction operation, such as summation,

product, or maximum value, that reduces a vector variable into a scalar variable9.

• The COLLAPSE clause merges nested loops into a single giant loop.

OpenACC provides three levels of parallelism called the gang, worker, and vector.

A gang is composed of multiple workers; each worker operates on several vectors. The

corresponding concepts within the CUDA programming model would be the threadblock

(for gang) and the thread (for vector)10. Usually the compiler can automatically assign the

optimal level of parallelism, but the programmer can specify the GANG, WORKER, and VECTOR

clauses to control it manually.

The DATA directive (line 43) declares a block to scope variables that should reside on the

device memory (VRAM). The example code uses the CREATE clause, which allocates VRAM

of the desired size for the variable. Notice the order of operations for array variables:

1. First, the array variable has to be allocated on the host DRAM (lines 39–40).

2. Next, the array variable is allocated on the device VRAM (line 43).

3. Once we’re done with the variable, it is deallocated on the device VRAM using the

END DATA directive (line 98).

4. Finally, it is deallocated on the host DRAM (lines 99-100).

Other clauses that can be used with this directive are COPYIN, COPYOUT, and PRESENT clauses.

It is also possible to perform operations only on array slices instead of the whole array.
9Generalized reduction operations from an N -dimensional array to a (N − 1)-dimensional array (e.g., a

matrix into a vector) is also supported starting with OpenACC version 2.7 specifications.
10Note that in the OpenACC implementation for NVIDIA GPUs, the worker is rarely used; a rule of

thumb is only to use the worker level of parallelism when the vector loop is not big enough to saturate the
GPU [43].

75

Furthermore, if the scoping of variables that must reside on device VRAM has to

span different program units (e.g., a subroutine that solely allocates memory and another

subroutine that solely deallocates), OpenACC provides the ENTER DATA and EXIT DATA

directives. The CREATE and COPYIN clauses can be used with the ENTER DATA directive;

the COPYOUT and DELETE directives can be used with the EXIT DATA directive. However, this

approach requires discipline on the programmer’s part to make sure that every variable that

is listed in the ENTER DATA directive is also listed in a matching EXIT DATA directive such

that no memory leaks are introduced into the code.

Next, the UPDATE directive (line 74) entails manual data movements to and from the

device. In the example code, the HOST clause is used, which means that the direction of data

transfer is from the device VRAM to the host DRAM. Alternatively, use the DEVICE clause

to indicate the transfer direction is from host DRAM to device VRAM.

Finally, the WAIT directive (line 59) is a synchronization barrier across the whole GPU

device.

To compile the code using the PGI compiler with OpenACC enabled, use the compiler

switch -ta=tesla; for the NVIDIA HPC SDK11 compiler, use -acc=gpu; for GCC, use

-fopenacc. If these compiler switches are omitted, then the compiler will treat the

OpenACC sentinels as regular comments and a CPU-only version of the executable

will be generated.

On BaseCamp12, the sample code is compiled using NVHPC version 20.11, with

the default optimization options, both without OpenACC (CPU-only version) and with

OpenACC (using NVIDIA "Pascal" GPU). Out of 10 trials with a vector dimension of N =

100,000,000, on average the CPU-only version took 482.3 ms for initialization and 307.5ms

for the dot product computation, while the OpenACC version took 86.2 ms for initialization

and 10.9 ms for the computation. This means a 28.2× speedup for the computation, which

is achieved just by adding 11 lines of OpenACC directives!

With the PGI and NVHPC compilers, it is helpful to see the compiler log for the

OpenACC code generation during the compilation process. This can be achieved using
11For brevity, I use the abbreviation NVHPC to refer to this compiler suite.
12BaseCamp is the nickname of my personal workstation used for debugging and development purposes for

the duration of this thesis. Appendix ?? details the hardware specifications and the software environment.

76

the compiler switch -Minfo=acc. Here is a snippet from the compile log for the sample

OpenACC code.

dot_product:
42, Generating create(result,vecb(:),veca(:)) [if not already present]
45, Generating present(vecb(:),veca(:))

Generating copyin(n) [if not already present]
Generating Tesla code
46, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

53, Generating present(result)
Scalar last value needed after loop for result at line 63,66,78,81,79
Accelerator serial kernel generated
Generating Tesla code

63, Generating present(result,vecb(:),veca(:))
Generating copyin(n) [if not already present]
Generating Tesla code
65, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

Generating reduction(+:result)
73, Generating update self(result)

Notice how the compiler automatically picks both the gang and vector parallelism level

for both parallel loops (lines 46 and 65) with each worker operating 128 vectors for both

cases, and how the gang is mapped to the threadblock and the vector to the thread.

3.3.5 GPU-optimized libraries

Just like CPU hardware manufacturers provide optimized math libraries for use with their

hardware, GPU hardware manufacturers also provide optimized math libraries that are

optimized for their specific hardware architecture. For linear algebra, NVIDIA provides

the cuBLAS, CUTLASS, and cuSPARSE libraries, which implement BLAS, LAPACK,

and sparse linear algebra, respectively, and for fast Fourier transform (FFT), NVIDIA

provides the cuFFT library. All four libraries are bundled within the CUDA toolkit.

Meanwhile, AMD provides rocBLAS, rocSOLVER, rocSPARSE, and rocFFT. Intel

provides oneMKL for their upcoming "Ponte Vecchio" GPUs.

In addition to manufacturer-supplied libraries, the Innovative Computing Laboratory

(ICL) at the University of Tennessee develops the Matrix Algebra on GPU and Multicore

Architectures (MAGMA) library, which provides interfaces to cuBLAS and cuSPARSE

(for NVIDIA GPUs); rocBLAS and rocSPARSE (for AMD GPUs); as well as its own

hand-tuned BLAS implementation (MAGMABLAS) written in CUDA C++ and HIP.

77

3.4 Multiple levels of parallelism

Message Parsing Interface (MPI) has been the de facto standard for parallelism in large

computer clusters, including supercomputers. In a nutshell, it is a programming model

based on independent processes running on different nodes in the computer cluster (MPI

ranks), and passing messages that contains data related to each rank’s computation of its

share of parallel work. Parallelization is performed manually, e.g., by dividing a loop from

N iterations in serial into N
number of ranks

in parallel.

When multicore processors started to gain mainstream acceptance, MPI implementations

have adapted to accommodate it by providing intra-node communication, and everything

was treated the same way it was before. Now a compute node can have multiple ranks,

where different ranks each hold its own memory space13. Starting from version 3.0, the MPI

standard officially acknowledges the prevalence of multithreading by defining four levels of

threading support within MPI.

However, with the advent of accelerated high performance computing, MPI is no longer

adequate by itself. Now it requires a hybrid approach which is commonly known as MPI+X,

where X is an additional programming paradigm, which can take the form of multithreading

for multicore CPUs, or an accelerator programming model to address the parallelism that

is inherent to accelerator devices, such as CUDA, OpenMP target offload, or OpenACC. In

this approach, MPI is used for coarse-grained parallelism, and the X is used for finer-grained

parallelism within the same compute node.

In a survey of MPI users across the world, Hori et al. identified MPI+OpenMP

as the most popular hybrid parallel programming paradigm, followed by MPI+CUDA,

MPI+Pthreads, and MPI+OpenACC [56]. Notice how two of these X programming models

relate to CPU multithreading (OpenMP and Pthreads), and the other two are accelerator

programming models (CUDA and OpenACC)14.

This is also the approach that I use in this thesis, by combining MPI with OpenMP (for

CPU multithreading) and OpenACC (for GPU computing).

13One implication of this approach is that some data are duplicated in memory in the same node.
14Technically OpenMP 4.0/4.5 target offload is also considered an accelerator programing model, but the

survey data does not distinguish between the older OpenMP standard with only CPU multithreading support
and OpenMP 4.0 or newer, which supports offloading to an accelerator device.

78

Chapter 4

Porting dynamical density response

computational platform to the hybrid

CPU+GPU environment

This chapter describes the technical implementation of the Eguiluz group dynamical density

response code – internally codenamed the Exciting-Plus code – and the porting process to

the hybrid CPU+GPU environment of the Summit supercomputer at Oak Ridge Leadership

Computing Facility (OLCF).

4.1 The dynamical density response algorithm

The following describes the technical implementation of the dynamical density response

algorithm in Exciting-Plus.

After reading the input parameters from the elk.in input file using the readinput()

subroutine, the code executes response() (task 800, for response calculation) or crpa()

(task 801, for c-RPA calculation).

Execution then enters into the loop for ~q vectors, which might be parallelized over MPI

for a larger number of ~q vectors (for response calculation) or for a denser ~q-mesh (for c-RPA

calculation, which is usually taken to be the same as the ~k-mesh).

79

4.1.1 Matrix element calculation

In the loop for ~q vectors (iteration index iq), both response and c-RPA calculations call the

mod_expigqr module subroutine genmegq() to compute the matrix elements (the brakets in

Equation (2.85)). The ~k-grid is always parallelized over MPI and ~q-grid is also parallelized

over MPI when the launch configuration is big enough (as in enough number of ranks to

create a 2-D Cartesian grid). This subroutine can be divided into 5 different parts:

1. Initialization of the various necessary matrices

2. Sending and receiving wavefunction data using getwfkq() subroutine

3. Computation of the matrix elements in Bloch basis (Equation (24) in Ref. [35]) using

genmegqblh() subroutine

4. When flags for Wannier projection are enabled, computation of the matrix elements in

Wannier basis (Equation (21) in Ref. [35]) using genmegqwan() subroutine

5. Summation over computed results for all ~k-vectors using MPI_Allreduce() (performed

through the mod_mpi_grid module subroutine mpi_grid_reduce())

Using the TAU performance system (Figure 4.1), I have confirmed the finding of our

JICS collaborators that the matrix element calculation in Bloch basis, as implemented in

the genmegqblh() subroutine, is the most time-consuming part of the computation. For the

particular test case of the c-RPA calculation on the NiO paramagnetic material system1, this

subroutine takes up 2,286 seconds out of a total wall clock time of 2,950 seconds, or ∼78%
of the total wall clock time.

Thus, for this thesis, I will only focus on the third step (matrix element in Bloch basis)

of the calculation, since it is the most time-consuming part for both the response and c-RPA

calculations.

1See Section 4.3.2 and Appendix B for details.

80

Figure 4.1: The statistics table as seen with ParaProf from TAU performance system for
a c-RPA calculation on nickel oxide (NiO) paramagnetic test case using the base CPU-only
version of the Exciting-Plus code. genmegqblh() subroutine is highlighted as the most
time consuming part of the code.

81

4.1.2 Matrix element calculation in Bloch basis

The following describes the implementation of the matrix element calculation in Bloch basis

〈ψKS
j~kσ
|e−i(~G+~q)·~r|ψKS

j,~k+~q,σ
〉 from the Kohn-Sham ground state eigenenergies and eigenfunctions,

as laid out in Algorithm 2 in Ref. [35].

Due to the properties of the LAPW basis set (Equation (2.107)), in general the

genmegqblh() subroutine can be divided into 3 main parts:

1. Computation of the muffin-tin part of the integral (Equations (27)–(30) in Ref. [35])

2. Computation of the interstitial part of the integral (Equations (31)–(34) in Ref. [35])

using fast Fourier transform (FFT)

3. Computation of the total integral (Equation (35) in Ref. [35]) using a call to matrix-

matrix multiplication subroutine ZGEMM from BLAS

Using a combination of the NVTX library and the NVIDIA Nsight Systems profiling

suite, I have also confirmed the findings of our JICS collaborators that the muffin-tin part

of the calculation is the most time-consuming part of this subroutine. The following

is the NVTX summary table from a profiling run using Nsight Systems for the test case of

c-RPA calculation on nickel oxide (NiO) paramagnetic (PM) material system.

Time(%) Total Time (ns) Instances Average Minimum Maximum Range
------- --------------- --------- ---------- -------- -------- --------------

96.8 2379998657190 35811 66459988.8 50661754 93313103 Muffin-tin
1.9 45784022733 35811 1278490.5 919269 2228769 Total integral
1.3 32921740383 35811 919319.2 706994 1855831 Interstitial

As seen in the NVTX summary table, for this particular test case of c-RPA on NiO,

the muffin-tin part of the calculation takes 96.8% of the time spent in the genmegqblh()

subroutine. Thus, I will be focusing on the muffin-tin part of the calculation as

implemented in the genmegqblh() subroutine throughout the GPU porting process.

The output of this subroutine is an array stored as the mod_expigqr module variable

megqblh.

82

4.1.3 Matrix element calculation in Wannier basis

The following describes the implementation of the matrix element calculation in Wannier

basis 〈wn~Tσ|e−i(
~G+~q)·~r|wn′~T′σ〉, which basically implements Equation (21) in Ref. [35].

The call to the genmegqwan() subroutine to fill in the mod_expigqr module variable

megqwan array is only performed for the following two cases:

1. It is always performed for a c-RPA calculation, because the target Hilbert space is

defined in Wannier basis.

2. When both the wannier and the wannier_chi0_chi flags are set to .TRUE. in the

elk.in input file for a response calculation.

This call is performed from inside genmegq() right after the call to genmegqblh() (since one

of the necessary ingredients is the matrix element in Bloch basis, as stored in the megqblh

array).

4.1.4 Dynamical response function in Bloch basis

After the matrix elements have been calculated using genmegqblh(), ...

4.2 About the code

Elk is an all-electron, full-potential2 implementation of the Kohn-Sham DFT algorithm

using the Linearly-Augmented Plane Wave (LAPW) basis set. It is developed by a team

led by John Kay Dewhurst (Karl-Franzens-Universität Graz, Austria); Sangeeta Sharma

(Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund

Berlin, Germany); Lars Nordström, Francesco Cricchio, and Fredrik Bultmark (Uppsala Uni-

versitet, Sweden); and Ebenhard K. U. Gross (Max-Planck-Institut für Mikrostrukturphysik,

Germany). It is developed as part of the EXCITING EU Research and Training Network,

and released as an open-source software package under the terms of the GNU General Public
2Here, "full potential" refers to the fact that the electron-electron interaction potential functional in the

code is not approximated using pseudopotentials.

83

License, version 3 (GPLv3). Elk version 1.0 was released in 2010. The code is fully written

in modern Fortran with strict adherence to the Fortran 90/95 standard.

In 2010, Anton Kozhevnikov (at that time a postdoctoral researcher in the Eguiluz

research group at the University of Tennessee) wrote the first implementation of dynamical

response function calculation as addons/extensions to the Elk/EXCITING3 codebase for

calculating the dynamical density response function and related physical properties. He also

parallelized important parts of the code with MPI for inter-node parallelism and OpenMP

for CPU multithreading within a single node. The MPI interface module uses some Python-

based generic programming (type templates). He also coded the constrained Random Phase

Approximation (c-RPA) algorithm for estimating the Hubbard U and J parameters.

After Anton Kozhevnikov completed his postdoctoral appointment at the University of

Tennessee and moved to the Swiss national supercomputing center (CSCS), the development

of the Exciting-Plus codebase is continued by (now Dr.) Robert van Wesep and Casey

Eichstaedt, both graduate students at the Eguiluz group.

It should be noted that throughout its lifetime, the Exciting-Plus code has always been

meant for computing the properties of real material systems and thus require supercomputers

for its computational scale. Computation for the data that is discussed in Ref. [35] was

performed at the Jaguar supercomputer at the Oak Ridge Leadership Computing Facility

(OLCF, which is part of ORNL). After the Jaguar supercomputer was superseded by the

Titan supercomputer, the Eguiluz group enlisted the help of Junqi Yin, Shane Sawyer,

and Mitch Horton (at that time, all three were affiliated with the Joint Institute for

Computational Sciences / JICS at UT and ORNL) to help port the Exciting-Plus code

to the emerging hybrid CPU+GPU architecture of the Titan supercomputer.

Finally, in the Spring 2017 semester, I joined the Eguiluz group as a graduate student,

and in Spring 2020 I started the porting process of Exciting-Plus to target the Summit

supercomputer, under the supervision of Eduardo D’Azevedo (ORNL).
3There are some historical reasons related to the split of the EXCITING codebase from the Elk codebase,

which I will not discuss here. Exciting-Plus is built on top of an old version of Elk (specifically, version
1.0.17 from April 2010), which is before the EXCITING fork took place.

84

4.3 Porting strategy

The previous attempt4 to port Exciting-Plus to the hybrid CPU+GPU environment by

our JICS collaborators consists of the following steps:

1. Profiling the CPU-only code on Titan (OLCF)

2. Identifying the major bottleneck of the code: the muffin-tin part of the calculation of

the matrix elements in Bloch basis inside the genmegqblh() subroutine

3. Converting Equation (30) in Ref. [35] into a batched ZGEMM call that is performed

using cuBLAS

While it works on both Titan and Summit (after some minor modifications), a careful

investigation of the code reveals the following major issue:

344 stat = cublasZgemmBatched(handle,CUBLAS_OP_N,CUBLAS_OP_N,lmmaxapw*nufrmax,&
345 &1,lmmaxapw*nufrmax,zone,d_gntuju,lmmaxapw*nufrmax,d_b1,&
346 &lmmaxapw*nufrmax,zzero,d_b2,lmmaxapw*nufrmax,batch_count)

Keeping in mind that ZGEMM implements a double-precision complex matrix-matrix

multiplication, notice that the matrix dimensions that are involved areM = K = lmmaxapw

× nufrmax and N = 1. That means, even though it is a ZGEMM call, in reality it is closer to

a double-precision complex matrix-vector multiplication (ZGEMV)!

Furthermore, at that time, NVIDIA didn’t provide a portable way to call cuBLAS from

Fortran code5, and thus a "glue" code in CUDA C++ (cublas_fortran.cu) that provides

this Fortran cuBLAS interface, along with interfaces to several important CUDA runtime

functions, had to be written. The compilation process of the hybrid CPU+GPU version was

also somewhat clunky:

1. First, the CPU-only code has to be compiled successfully using make.
4This version of the code can be viewed on Shane Sawyer’s GitHub: https://github.com/shedsaw/

exciting-plus-rgvw-mod/tree/cuda-titan
5The official Fortran interfaces to CUDA libraries (in the form of Fortran modules) are only available

with the PGI (and NVHPC) compilers; the recommended compiler on Titan is the Cray compiler wrapper.
Meanwhile, the default compiler on Summit is the IBM XL compilers; PGI compilers and (later) the NVIDIA
HPC SDK are also available.

85

https://github.com/shedsaw/exciting-plus-rgvw-mod/tree/cuda-titan
https://github.com/shedsaw/exciting-plus-rgvw-mod/tree/cuda-titan

2. Next, the CUDA and cuBLAS interfaces, as well as the cuBLAS version of the

genmegqblh() subroutine are compiled.

3. The resulting object file genmegqblh_cublas.o is pasted over the original CPU-only

object file genmegqblh.o.

4. The GPU-specific make.inc file, which defines the locations and list of GPU libraries

to link (notably, CUDA runtime and cuBLAS) is copied.

5. Finally, the executable was re-linked with the necessary GPU libraries by invoking

make one last time.

1 #Notes from Junqi’s initial implementation readme:
2

3 # Compile the necessary codes.
4 nvcc -c -g -G cublas_fortran.cu
5 ftn -cpp -c -g cublas_fortran_iso.f90
6 ftn -cpp -g -D_MPI_ -c -I/ccs/home/ssawyer1/exciting-plus-rgvw-mod/src/ \

genmegqblh_cublas.f90
7

8 # Move the appropriate files over
9 cp genmegqblh_cublas.o src/addons/expigqr/genmegqblh.o

10 cp cublas_fortran_iso.o cublas_fortran.o *.mod src/addons/expigqr/
11

12 # re-Make the binary.
13 cp make.inc.titan.intel.gpu make.inc
14 make

To rectify this problem, I have developed compile scripts specific to each computer system

using the Bash shell scripting language that will automatically load the needed libraries

(which vary by system, depending on the target hardware and library availability), and I

maintain a collection of make.inc files for each combination of system and compiler.

In addition, to speed up the compile time, I parallelized the main Makefile such that

only the Fortran modules are compiled in serial, while the rest of the code can be compiled

in parallel using make -j command line parameter.

To future-proof the GPU port for the upcoming Frontier supercomputer at OLCF, which

will use AMD hardware for both its CPUs and GPUs, and to minimize the amount of

interface "glue" code that has to be written, I decided to use a combination of the OpenACC

programming model (instead of CUDA C++, HIP C++, or CUDA Fortran), and the

MAGMA library for linear algebra on the GPU (instead of using cuBLAS or rocBLAS

86

directly). In addition, I also added some OpenMP code for CPU multithreading as a fallback

method for supercomputer systems that don’t utilize GPUs (for instance, the Cori-KNL

cluster at the National Energy Research Scientific Computing Center / NERSC, which the

Eguiluz group also has access to).

My first attempt at the GPU port was reverting the computation of Equation (29) in

Ref. [35] to a nested loop structure, and adding OpenACC directives where needed. I will

refer to this version as the "bare" OpenACC version, which resides in the openacc-summit

branch of my GitHub repository for Exciting-Plus6. This version is discussed in detail in

Section 4.5.1

Next, I converted the same equation into a batched ZGEMM call with number of columns

N > 1 (unlike the previous CUDA version) and use MAGMA to perform this operation

on the GPU. This version is implemented the true-zgemm branch7, and will be discussed in

detail in Section 4.5.2.

We (Casey Eichstaedt, Eduardo D’Azevedo, Adolfo Eguiluz, and myself) were fortunate

to be chosen to attend the 2020 OLCF GPU Hackathon [?], which led to the version that

is in the gntuju-sparse branch8 and will be detailed in Section 4.5.3.

4.3.1 The debug environment

To expedite the development of the Exciting-Plus code, I designed and built a personal

workstation, which I named "BaseCamp". The full hardware specifications and available

software on BaseCamp are listed in Appendix A.

I have also enabled continuous integration (CI) using GitHub Actions using a virtual

machine on BaseCamp (x86_64 architecture) and a NVIDIA Jetson Nano Developer kit (to

simulate non-x86_64 architectures).

After successful testing for correctness on BaseCamp with the smallest test system

(response calculation on NiO PM and AFM), small debugging jobs are then performed

on Summit.
6https://github.com/wyphan/exciting-plus-gpu/tree/openacc-summit
7https://github.com/wyphan/exciting-plus-gpu/tree/true-zgemm
8https://github.com/wyphan/exciting-plus-gpu/tree/gntuju-sparse

87

https://github.com/wyphan/exciting-plus-gpu/tree/openacc-summit
https://github.com/wyphan/exciting-plus-gpu/tree/true-zgemm
https://github.com/wyphan/exciting-plus-gpu/tree/gntuju-sparse

For the software environment, I use both the PGI compiler and NVIDIA HPC SDK,

depending on system and availability9.

There are two versions of compile lines for debugging in the make.inc files. The first one

is a regular debugging version with default optimizations left enabled.

CPP_OPTS += -DEBUG=1
F90_OPTS += -g -Minform=warn

The second one disables all optimizations (-O0) and enables extra checks.

CPP_OPTS += -DEBUG=3
F90_OPTS += -g -O0 -Minform=warn -Mbounds -traceback

For both cases, the additional debug clause is added to the OpenACC code generation

option (-ta=tesla:managed:debug or -ta=tesla:debug, depending on whether managed

memory is enabled or not), as well as the the OpenACC -acc=verystrict option to catch

OpenACC syntax errors.

4.3.2 Test cases

Six different test cases, each at different scales, were developed for testing the speedup of

the code before and after each phase of the GPU porting process. Two different types of

calculation are performed: the constrained RPA (c-RPA) calculation, and the dynamical

density-density response function calculation. There are four different material systems

in total. Table 4.1 summarizes the important parts of the parameter set and the launch

configurations on Summit for all six test cases. Full details can be found in Appendix B.

The first test system is nickel oxide (NiO) in both the paramagnetic cubic phase (for

c-RPA calculation) and the antiferromagnetic cubic phase (for response calculation). This

is the simplest, non-trivial material system with physically meaningful results.

The second test system is lanthanum cuprate (La2CuO4) in the paramagnetic tetragonal

phase (c-RPA calculation only) using the exact same parameters as the calculation in

Ref. [35] (except for the number of ω photon frequency points). For context, the original

9Both the PGI compilers and NVIDIA HPC SDK are available on Summit, but the latter is only officially
supported starting late July 2021. Thus, for the most part of the development, I have used PGI compilers
on Summit.

88

Table 4.1: Summary of physical and numerical parameters, as well as the launch
configuration for the 6 different test cases

Material system NiO La2CuO4 CaMnO3 Sr2CuO3

PM AFI PM AFI PM AFI
Calculation type c-RPA resp. c-RPA resp. c-RPA resp.

Physical parameters
of formula units 1 2 1 2 1 4
of atoms/unit cell 2 4 7 10 6 24
Spin-polarized calculation no yes no yes no yes
Exchange-correlation potential GGA-PBE LSDA GGA-PBE
Hubbard U parameter [eV] – – – 4 – 4.7
Hubbard J parameter [eV] – – – 1 – 0.9

Numerical parameters
of empty bands 20 1000 50 60
~k-mesh 8× 8× 8 6× 6× 6 8× 8× 8 7× 7× 5 16× 16× 4
of ~q-vectors 519 1 223 1 252 1
of ω values 1 1 1 151 1 100
of ~G-shells 10 30 50 40 24–75∗∗∗ 24
of ~G-vectors 137 409 449 1291 101–403∗∗∗ 85

Launch parameters
of compute nodes 6 1 48 16 8 16
of MPI ranks/node 42 6–42∗ 24/42∗∗ 42
of GPUs/node 6
of MPI ranks/GPU 7 1–7∗ 4∗∗ 7
of OpenMP threads/rank 4 4/28∗ 4

∗ For the OpenMP runs, 6 MPI ranks/node and 28 OpenMP threads/rank; for the OpenACC

runs, the number of ranks/GPU is varied from 1–7 ranks, with 4 threads/rank.
∗∗ 42 MPI ranks/node for the OpenMP runs, and 24 MPI ranks/node (= 4 MPI ranks/GPU)

for the OpenACC runs.
∗∗∗ The number of ~G-shells is varied according to the set {24, 42, 60, 75}. The corresponding
number of ~G-vectors are {101, 199, 303, 403}.

89

calculation in 2010 performed 1.3 PFLOP/s on the Jaguar supercomputer (OLCF), which

can be easily exceeded on Summit using only 48 compute nodes in the case when all six

GPUs and 42 available CPU cores are saturated.

The third test system is calcium manganite in the antiferromagnetic cubic10 phase,

CaMnO3 (response calculation only), and the fourth test system is strontium cuprate,

Sr2CuO3, in both the paramagnetic orthorhombic phase (c-RPA) and the antiferromagnetic

orthorhombic phase (response). Both of these material systems are systems that Mr.

Eichstaedt of the Eguiluz research group has been working on for his PhD dissertation,

which means he can provide me with converged ground states and reference values for both

the c-RPA and response calculation results.

To summarize, there are four different material systems (NiO, La2CuO4, CaMnO3, and

Sr2CuO3) that are used in six test cases: three for c-RPA calculation (NiO PM, La2CuO4 PM,

Sr2CuO3 PM) and three for response calculation (NiO AFM, CaMnO3 AFM, and Sr2CuO3

AFM).

4.4 The Summit supercomputer

The Summit supercomputer is designed using the "fat node" paradigm – each Summit

compute node is equipped with two 22-core IBM POWER9 CPUs and six NVIDIA "Volta"

V100 GPUs. An important fact is that the performance of the system mainly comes

from the NVIDIA GPUs, which each contribute ∼7 TFLOP/s, compared to the CPUs,

which each contribute only ∼500 GFLOP/s per CPU11. This means about ∼98% of the

performance on Summit comes from its GPUs.

The output from the CUDA sample program deviceQuery is listed below.

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla V100-SXM2-16GB"

10Note that this is using the idealized cubic lattice (that is, ignoring the slight distortion present in the
true crystal structure).

11This number is rounded from the theoretical maximum, using 8 Flop/s per core per instruction cycle,
21 usable cores (1 core is reserved for system processes), and 3.07 GHz base clock speed frequency [57].

90

CUDA Driver Version / Runtime Version 10.2 / 10.2
CUDA Capability Major/Minor version number: 7.0
Total amount of global memory: 16128 MBytes (16911433728 bytes)
(80) Multiprocessors, (64) CUDA Cores/MP: 5120 CUDA Cores
GPU Max Clock rate: 1530 MHz (1.53 GHz)
Memory Clock rate: 877 Mhz
Memory Bus Width: 4096-bit
L2 Cache Size: 6291456 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D
=(16384, 16384, 16384)

Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 4 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 4 / 4 / 0
Compute Mode:

< Exclusive Process (many threads in one process is able to use ::cudaSetDevice()
with this device) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.2, CUDA Runtime Version =
10.2, NumDevs = 1

Result = PASS

Note also that the system architecture code is not x86_64, due to the IBM POWER

processors; instead, it is powerpc64le (sometimes called ppc64le or ppc64el, depending on

the GNU/Linux distribution).

Each compute node comes with 512 GB of DDR4 system memory (DRAM) and a total

of 96 GB of HBM2 GPU device memory (VRAM) – that is, 16GB per GPU. Each CPU

is connected to three GPUs using the proprietary NVLink interface, and connected to the

other CPU using the proprietary IBM X-Bus interface.

In addition to the performance numbers, note the differences in memory bandwidth: the

VRAM has a bandwidth of ∼900 GB/s for global memory accesses on the GPU device,

compared to the CPU–DRAM connection with a bandwidth of ∼170 GB/s. Meanwhile, the

91

Figure 4.2: Summit node architecture, from the Summit User Guide [3].

92

bandwidth provided by the NVLink interface that connects the CPU with the GPU (and one

GPU to another) is limited to ∼50 GB/s. These bandwidth values mean that CPU-GPU

data transfers will be relatively expensive, but once transferred to the GPU, the data

can be accessed significantly faster by the GPU compared to memory accesses

from the CPU.

Each compute node is connected to other compute nodes using enhanced data rate (EDR)

InfiniBand network interface in a "fat tree" network topology.

The Summit system runs Red Hat Enterprise Linux (RHEL), version 7.6 ("Maipo").

Four compiler suites are available on the system: GCC, IBM XL, PGI, and LLVM. Of these

four, IBM XL compilers have support for OpenMP target offload, and PGI compilers have

support for OpenACC.

4.5 Technical details of the GPU porting process

This section details the process of porting the dynamical density response code into the

hybrid CPU+GPU environment on Summit, in chronological order, starting from the pure

OpenACC version, then the batched ZGEMM version, and finally the batched ZGEMM version

with packed matrices.

4.5.1 Part 1: Pure OpenACC implementation

After reverting the ZGEMM call in the CUDA version to the original nested loop structure, I

added OpenACC directives, where necessary, into the code, specifically in the genmegqblh()

subroutine that implements Algorithm 2 from Ref. [35] to compute the matrix elements in

Bloch basis. The following shows the full extent of additions/changes to the genmegqblh()

subroutine:

124 !$acc data copyin(wfsvmt1,sfacgq,gntuju) copyout(wftmp1mt)
125 !$acc kernels
126 !$acc loop gang collapse(2) private(ig,ias,ic,j1) private(b1,b2)
127 do ig=1,ngq(iq)
128 do ias=1,natmtot
129 ic = ias2ic(ias)
130

131 ! b1=dconjg(wfsvmt1(:,ias,ispn1,ist1)*sfacgq(ig,ias))
132 ! b2=zzero
133

93

134 nmt = lmmaxapw*nufrmax
135

136 !$acc loop vector private(j1)
137 do j1=1,nmt
138 b1(j1) = dconjg(wfsvmt1(j1,ias,ispn1,ist1) * sfacgq(ig,ias))
139 b2(j1) = zzero
140 enddo
141

142

143 !do j=1,ngntuju(ic,ig)
144 !b2(igntuju(2,j,ic,ig))=b2(igntuju(2,j,ic,ig))+&
145 ! &b1(igntuju(1,j,ic,ig))*gntuju(j,ic,ig)
146 !enddo
147

148 ! ---
149 ! rearrange loop order to encourage stride-1 access
150 ! performance of matrix-vector multiply limited by
151 ! access to gntuju(:,:,ic,ig)
152 ! ---
153

154 !$acc loop vector private(j)
155 do j = 1, nmt ! each row
156 b2(j) = SUM(gntuju(j,:,ic,ig) * b1(:))
157 end do
158

159 ! wftmp1((ias-1)*lmmaxapw*nufrmax+1:ias*lmmaxapw*nufrmax, ig)=b2(:)
160 !$acc loop independent vector private(j)
161 do j = 1, nmt
162 wftmp1mt(j , ias , ig) = b2(j)
163 enddo
164

165

166 ! TODO: convert to true ZGEMM
167 !call zgemm(’N’,’N’,lmmaxapw*nufrmax,1,lmmaxapw*nufrmax,&
168 ! &zone,gntuju(1,1,ic,ig),lmmaxapw*nufrmax,b1,lmmaxapw*nufrmax,&
169 ! &zzero,b2,lmmaxapw*nufrmax)
170 !wftmp1((ias-1)*lmmaxapw*nufrmax+1:ias*lmmaxapw*nufrmax,ig)=b2(:)
171

172 enddo !ig
173 enddo !ias
174 !$acc end kernels
175 !$acc end data
176

177 DO ig = 1, ngq(iq)
178 DO ias = 1, natmtot
179 wftmp1((ias-1)*nmt+1:ias*nmt, ig) = wftmp1mt(:, ias, ig)
180 END DO ! ias
181 END DO ! ig

Notice how I have used the the DATA directive (line 124) and its matching END DATA (line

175) to copy the three needed variables from host DRAM to device VRAM before execution

(COPYIN clause):

• wfsvmt1, containing the wavefunction coefficients uj~k(~r))

• sfacgq, containing the ei(~G+~q)·~rα prefactors

94

• gntuju, containing the product of Gaunt coefficients (the integral of three spherical

harmonics) and the radial integral
∫

dr r2 u(r) jl(|~G + ~q| r) u(r), with jl being the

spherical Bessel function of order l

as well as copying the resulting array wftmp1mt from device VRAM to host DRAM after the

computation completes (COPYOUT clause).

Next, the KERNELS LOOP directive on lines 125–126 is matched with END KERNELS at

line 174. This is a nested loop over ~G-vectors (loop index ig) and atoms (loop index ias)

that is merged together into one giant loop using the COLLAPSE clause. The collapsed loop

is parallelized at the GANG parallelism level. This means it is executed in parallel on the

GPU and is distributed such that each worker in the gang operates on a different ig and

ias combination. The PRIVATE clause informs the compiler of variables that holds different

values for different values of ig and ias.

125 !$acc kernels
126 !$acc loop gang collapse(2) private(ig,ias,ic,j1) private(b1,b2)
127 do ig=1,ngq(iq)
128 do ias=1,natmtot

The first inner loop at line 136–140 is converted into a OpenACC kernel to fill in the

variable b1 according to Equation (28) in Ref. [35], as well the b2 variable with zeroes. This

loop is also executed at the GPU device in parallel at the VECTOR parallelism level.

136 !$acc loop vector private(j1)
137 do j1=1,nmt
138 b1(j1) = dconjg(wfsvmt1(j1,ias,ispn1,ist1) * sfacgq(ig,ias))
139 b2(j1) = zzero
140 enddo

The second OpenACC kernel at lines 154–157 computes Equation (30) in Ref. [35] in

parallel (at the VECTOR level) using matrix-vector multiplication and stores the results into

the b2 variable. Notice how I have used the SUM intrinsic12 to perform the summation.

154 !$acc loop vector private(j)
155 do j = 1, nmt ! each row
156 b2(j) = SUM(gntuju(j,:,ic,ig) * b1(:))
157 end do

12Support of Fortran intrinsics vary by OpenACC compiler implementations. SUM happens to be supported
in PGI 20.4.

95

The final kernel OpenACC kernel at lines 160–163 collects the results from the b2 variable

into the wftmp1mt variable, which will be then transferred (COPYOUT clause in line 124) after

execution back to the host memory. The INDEPENDENT clause tells the compiler that even

though different threads access the same gntuju array, the accesses are guaranteed to be

independent of one another, and thus this loop over j is safe to parallelize at the VECTOR

parallelism level.

160 !$acc loop independent vector private(j)
161 do j = 1, nmt
162 wftmp1mt(j , ias , ig) = b2(j)
163 enddo

Finally, lines 177–181 (performed on the CPU) copies the results from wftmp1mt array

into wftmp1 matrix. The latter is involved in the final ZGEMM matrix-matrix multiply call that

computes the total integral on the CPU, [megqblh] =
∑

[wftmp2]T × [wftmp1] according

to Equation (35) in Ref. [35].

177 DO ig = 1, ngq(iq)
178 DO ias = 1, natmtot
179 wftmp1((ias-1)*nmt+1:ias*nmt, ig) = wftmp1mt(:, ias, ig)
180 END DO ! ias
181 END DO ! ig

The interstitial part (Equations (31)–(34) in Ref. [35]) and the total integral part of

the calculation remain untouched. The interstitial calculations are performed using the

zfftifc() FFT interface subroutine, which in turn uses a modified version of FFTPACK5;

the total integral calculation uses the ZGEMM subroutine from BLAS and is performed on

CPU.

4.5.2 Part 2: Batching the ZGEMM calls with MAGMA library

As briefly noted in Section 3.3.5, Matrix Algebra on GPU and Multicore Architectures

(MAGMA) is a software package that implements dense and sparse linear algebra, similar

to Basic Linear Algebra Subroutines (BLAS) and Linear Algebra Package (LAPACK), that

are suitable for hybrid CPU+GPU environments. This library is developed by the Innovative

Computing Laboratory at the University of Tennessee, Knoxville. At the time of writing,

four different implementations are provided:

96

• MAGMA for NVIDIA GPU devices, written in CUDA C++.

• hipMAGMA for AMD GPU devices, written in HIP C++.

• MAGMA MIC for Intel Xeon Phi accelerators.

• clMAGMA, written in OpenCL targeting older AMD GPU devices.

For this thesis, I use the CUDA C++ implementation of MAGMA, due to the fact

that Summit uses NVIDIA GPUs. In particular, I use the MAGMA BLAS subroutine

magmablas_zgemm_batched(), which implements a batched matrix-matrix multiplication

for the double complex data type. Figure 4.3 shows benchmark results performed on a single

compute node on Summit using all six GPUs using the provided tester and with default

parameter sets (M = N = K varying from 32 to 512 and batchCount = 300). Notice that

for very small N , MAGMA BLAS performs better than the optimized NVIDIA GPU library

cuBLAS, and vice versa for considerably larger N values.

Starting at this version of the code, there is a new module for GPU management and

interfacing called mod_gpu, and all GPU kernels related to the genmegqblh() subroutine

now live in another new module called mod_genmegqblh_gpu. The first kernel that fills in

the batch arrays is called genmegqblh_fillbatch(), the second kernel that launches the

batched ZGEMM call is called genmegqblh_batchzgemm(), and the third kernel that fills in

wftmp1mt is called genmegqblh_fillresult(). In addition, there is now a new OpenACC

kernel called genmegqblh_countbands() to replace the WHILE loop for j and j′ bands into

bounded DO loops13. The first WHILE loop for j bands,

242 ! index of the interband transitions
243 i=1
244 ! go through the interband transitions
245 do while (i.le.nmegqblh(ikloc))

is replaced by the following,

238 ! Start the bounded do loop for each band
239 DO j = 1, nj

13Conditionals (IF, SELECT CASE, WHILE) are known to be unfriendly to optimizing compilers.

97

0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
0

1

2

3

4

5

6

7

T
F

L
O

P
/s

MAGMA ZGEMM

cuBLAS ZGEMM

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Matrix size N

0

1

2

3

4

5

6

7

T
F

L
O

P
/s

MAGMA ZGEMM batched

cuBLAS ZGEMM batched

Figure 4.3: Performance of single and batched double-precision complex matrix-matrix
multiplication functions from MAGMA BLAS on a Summit compute node.

98

where nj is the number of j bands that are involved in the calculation and is computed by

the genmegqblh_countbands() kernel based on the contents of spinor_ud variable, which

stores the spin projections for the j and j′ bands. Meanwhile, the second WHILE loop for j′

bands,

352 n1=0
353 ! collect right |ket> states into matrix wftmp2
354 do while ((i+n1).le.nmegqblh(ikloc))
355 if (bmegqblh(1,i+n1,ikloc).ne.bmegqblh(1,i,ikloc)) exit
356 ist2=bmegqblh(2,i+n1,ikloc)
357 n1=n1+1

is replaced by

349 ! collect right |ket> states into matrix wftmp2
350

351 DO n1 = 1, ntran

where ntran is the number of j′ bands that are paired to each j band, which have been

computed in advance at getmeidx() subroutine from the contents of the bmegqblh array

(which holds the index table for j and j′ pairings).

Now the matrix-matrix multiplication [b2] = [gntuju] × [b1] is performed with M =

K = nmt = lmmaxapw × nufrmax (as before), but now N = nj instead of 1. Batching is

performed over ~G-vectors and atoms, i.e. batchCount = ngqiq × natmtot. The numerical

value for nj varies from ∼20 for NiO PM test system to ∼200 for Sr2CuO3 AFI test system.

Table 4.1 lists the values of these numerical parameters for the six different test cases.

The batched ZGEMM call is performed using MAGMA for systems with GPUs, such

as Summit. For computer systems with no GPU acceleration, I have also implemented

a fallback subroutine in mod_gpu module that uses OpenMP CPU multithreading, such

that the batched ZGEMM call is performed on CPU using multithreaded parallelism. In

this implementation, each OpenMP thread operates on a different batch index. The sole

requirement for this fallback mechanism is a threadsafe BLAS library.

Furthermore, for the interstitial part of the calculation, I have modernized the FFTW

interface present in the zfftifc() subroutine to use the Fortran 2003 interface (instead of the

old FORTRAN 77 interface), and reactivated this interface. Thus, starting from this version

forward, the FFTW library is used for FFT operations instead of the embedded FFTPACK5

library. Note that a drawback of the design of the zfftifc() interface subroutine is that

99

each call to the subroutine is assumed to be independent of one another. Thus, instead of

calculating a FFTW plan once at runtime and then reusing the plan for subsequent calls, at

the moment zfftifc() relies on the use of a default FFTW plan, such that the execution

of the FFT operations using FFTW are not optimized.

4.5.3 Part 3: Exploiting the sparsity patterns

During the hackathon, we profiled the Exciting-Plus code with all four test systems (NiO,

CaMnO3, La2CuO4, Sr2CuO3). We then identified that the gntuju matrices are highly

sparse due to the selection rules from the Gaunt coefficients, and that these matrices follow

a certain pattern. This pattern persists for all four different test systems.

The basic idea is to permute the non-zero columns and rows of gntuju into gntuju_packed

(Figure 4.4a) and adjust the filling in of b1 and wftmp1mt accordingly (Figure 4.4b and 4.4c).

This non-zero filtering is performed on the CPU inside gengntuju() subroutine and requires

a new input parameter packtol (set to 10−10 if the default value is not changed in the elk.in

input file).

Since the contents of the gntuju matrices vary for different atomic species and ~G-vectors,

the dimensions of the packed matrices also vary. To rectify this, I added code that searches

for the maximum value for the packed matrix dimensions, and rounds it up to the nearest

multiple of 3214, which is stored as npackdim variable. In practice, with the default numerical

parameter values of lmmaxapw = 8 and nufrmax = 3, the original matrix dimension is

(8 + 1)2 × 3 = 243. With the default tolerance of packtol = 10−10, the values for the

packed matrix dimensions are around ∼100. The rounded-up number for npackdim is then

128. That means the GPU memory usage for each gntuju matrix is reduced by
2432

1282
'3.6 times, or (1− 1282

2432
)× 100% ' 27.8% of the original memory usage.

Unfortunately, when it comes to batched ZGEMM performance on the GPU, reducing the

matrix size from 243 × 243 to 128 × 128 actually slightly reduces the performance (see the

upcoming Section for details). This can be explained by taking a closer look at Figure 4.3.

14The warp size for NVIDIA GPU is 32 – any VRAM read or write operations on the GPU are performed
using 32 threads at the same time.

100

(a) Packing the sparse [gntuju] matrix by permuting its rows and columns

= ×

(b) Matrix-matrix multiplication, [b2] = [gntuju] × [b1], before packing [gntuju] matrix

= ×

(c) Matrix-matrix multiplication, [b2] = [gntuju] × [b1], after packing [gntuju] matrix

Figure 4.4: Illustration of packing the [gntuju] matrix due to its sparsity pattern

101

At a matrix size of N = 256 (the closest multiple of 32 to 243 on the figure), MAGMA

BLAS performs at ∼5.5 TFLOP/s. However, at a matrix size of N = 128, MAGMA BLAS

performs slightly lower, at ∼5.2 TFLOP/s. This slighly lower performance is offset by the

amount of data that is transferred from host to device; the memory usage is significantly lower

for the gntuju matrices. Thus, whether this version performs better than the non-packed

implementation depends on the amount of time that is spent when transferring

the gntuju matrix data from host to device. Since the number of gntuju matrices is

the product of the number of atomic classes15 and the number of ~G-vectors, this version can

be expected to perform better than the unpacked version with larger material systems (more

non-equivalent atoms) and when the number of ~G-shells are bigger.

In addition, when filling in wftmp1 from wftmp1mt, the algorithm expects that the matrix

elements are in the original unpacked order. This unpacking is currently performed on CPU

using the BLAS level 1 subroutine ZCOPY. Also, as before, the interstitial and total integral

parts of the calculation are performed on CPU.

A lightweight timing and profiling interface based on the Fortran intrinsic SYSTEM_CLOCK

subroutine has been added to the code as mod_prof module. This is done to enable a quick

way to profile the code without using NVIDIA Nsight Systems or NVIDIA Nsight Compute,

which adds a considerable profiling overhead.

Finally, code to estimate GPU memory usage and GPU performance in FLOP/s have

also been added. Note that only two GPU kernels contribute nonzero FLOP counts: the

part in genmegqblh_fillbatch() that fills in the b1 matrix batches (Equation (28) in Ref.

[35]), and the batched ZGEMM call. The FLOP count formula for the batched ZGEMM call is

extracted from MAGMA source code and is given by

FLOPbatched ZGEMM = 8×M ×N ×K × batchCount (4.1)
15Atoms that are positionally equivalent (by symmetry) in the crystal belong to the same atomic class.

For instance, α-RuCl3 unit cell consists of 2 Ru atoms and 6 Cl atoms. The two Ru atoms are equivalent and
thus belong to the same atomic class, but the six Cl atoms are divided into two classes (four and two atoms
each). Once the ground state calculation converges, the information on the atomic classes are available as
EQATOMS.OUT.

102

with M , N , K being the matrix dimensions that are involved and batchCount the number

of batches to be executed. For this version of the code, M = K = npackdim, N =

nj, and batchCount = ngqiq × natmtot. Meanwhile, the FLOP count formula for

genmegqblh_fillbatch() is given by

FLOPfillbatch = 7× nj×
∑
α~G

nmt(α, ~G) (4.2)

where nmt is the unrounded packed gntuju matrix dimension, α is the atomic species index,

and the prefactor 7 comes from the total of 1 FLOP for complex conjugate and 6 FLOP for

complex scalar multiplication.

4.6 Performance of the GPU port on Summit

Figure 4.5a shows the wall clock timings and the speedup for the six different test cases, using

the original CPU-only code (in blue) and the three different hybrid CPU+GPU code versions

– the pure OpenACC implementation (in red), the ZGEMM version using OpenACC+MAGMA

(in purple) and its OpenMP fallback implementation (in orange), and the version with

gntuju matrix packing using OpenACC+MAGMA (in brown) and its OpenMP fallback

implementation (in green).

The code is compiled with the following options:

• For all four versions, the code was compiled using the PGI compiler suite, version 20.4.

• The BLAS and LAPACK implementation in use is singlethreaded IBM ESSL version

6.1.0-2, and Reference LAPACK version 3.8.0 is used to provide the LAPACK

subroutines that are not available in IBM ESSL.

• For code versions that use the FFTW library, version 3.3.8 with OpenMP enabled is

used.

• For certain I/O functions in all four versions, HDF5 library version 1.10.4 is used.

103

NiO PM La2CuO4 PM
(1 rank/GPU)

Sr2CuO3 PM

(24 ~G-shells)

0:00:00

1:00:00

2:00:00

W
a
ll

cl
o
ck

ti
m

e
(h

h
:m

m
:s

s)

0:46:51

2:09:00

0:41:15

2.
75
×

3
.4

1
×

2.
68
×

3.
36
×

3.
98
×

3.
16
×1.

96
×

1
.8

1
×

2.
12
×

4.
3
×

3.
6
2
×

3.
63
×

3.
83
×

3
.2

7
×

3.
37
×

Base CPU-only

OpenMP ZGEMM

OpenMP ZGEMM packed

Pure OpenACC

OpenACC ZGEMM

OpenACC ZGEMM packed

(a) c-RPA test cases

CPU-only
(1 rank)

1 rank 2 ranks 3 ranks 4 ranks 5 ranks 6 ranks 7 ranks
0:00:00

1:00:00

2:00:00

W
a
ll

cl
o
ck

ti
m

e
(h

h
:m

m
:s

s)

2:09:00

1.
81
×

3
.2
×

6.
08
×

7.
82
×

8.
62
×

9.
47
×

9.
58
×

3.
62
×

5.
79
×

10
.1

4
×

12
.6

7
×

3.
27
×

5.
58
×

8.
2
1
×

11
.1
×

12
.2

3
×

12
.3

2
×

12
.2

9
×

Base CPU-only

Pure OpenACC

OpenACC ZGEMM

OpenACC ZGEMM packed

(b) c-RPA on La2CuO4 paramagnetic system, varying number of ranks per GPU

Figure 4.5: Wall clock time and speed-up for each of the six test cases, performed using
all four code versions with OpenMP (CPU only) and OpenACC (CPU+GPU)

104

• For code versions that use the MAGMA library, the CUDA C++ implementation,

version 2.5.4, built from source against CUDA toolkit version 10.2.89 is in use.

• Since the code uses #ifdefs, all Fortran source files are fed to the C preprocessor

(-Mpreprocess) before compilation.

• Unless specified otherwise, the compile lines in the appropriate make.inc file for each

code version enables compiler optimizations that are equivalent to the -O2 level:

F90_OPTS += -gopt -O -Mlre -Mvect=simd -Mflushz -Mcache_align -Mnoinline \
-Minform=warn

• For profiling with Nsight Systems, the NVTX library is linked and the following compile

lines are used instead:

CPP_OPTS += -D_USE_NVTX_ -I${OLCF_CUDA_ROOT}/include
F90_OPTS += -Minstrument -Mprof=ccff -O -Mlre -Mflushz -Mcache_align -Mnoinline \

-Minform=warn
NVTX_LIB = -L${OLCF_CUDA_ROOT}/lib64 -lnvToolsExt

• Automatic loop unrolling (-Munroll) is enabled only for the base CPU-only version

(master branch on GitHub) and the pure OpenACC version (openacc-summit branch).

It is disabled for the OpenACC+MAGMA versions (true-zgemm and gntuju-sparse

branches) because the PGI compiler incorrectly unrolls the nj loop in the matrix

element calculation in Bloch basis as implemented in the genmegqblh() subroutine.

• CPU multithreading with OpenMP (-mp) is always enabled.

• Managed memory (-ta=tesla:managed) is enabled only for the pure OpenACC

implementation, and disabled (-ta=tesla) for the OpenACC+MAGMA versions16.

• When not debugging, the additional option for OpenACC automatic loop paralleliza-

tion (-acc=autopar) is enabled.
16With the pure OpenACC implementation, for some reason the code performs slower when managed

memory is disabled, which is rare since usually what happens is the other way around – it is common
knowledge that a 10-15% performance hit is expected from enabling managed memory on NVIDIA GPUs.
This suggests that the host ↔ device memory transfers might need to be optimized for this code version.

105

• The wall clock timings are manually computed by comparing the start and end times

printed from the LSF job script using the standard built-in Linux utility date. The

start marker in the LSF output file is

[date] Launching [executable] with 6 resource sets per node (3 per socket)
Each resource set contains X ranks, X threads, X GPU

and the end marker is

[date] Done

• The speed-up for each code version is always computed against the base CPU-only

version.

4.6.1 The c-RPA calculation on NiO paramagnetic test case

Nickel oxide (NiO) is a simple binary transition metal oxide system containing only two

atoms per unit cell (one nickel, one oxygen) that are arranged in a face-centered cubic

(FCC) crystal structure. For the paramagnetic phase, there is only one formula unit per

unit cell; in contrast, for the antiferromagnetic phase, the unit cell needs to be doubled such

that there are two formula units per unit cell.

The numerical parameters (20 empty bands, 8 × 8 × 8 ~k-mesh, 10 ~G-shells = 137 ~G-

vectors) are carefully chosen such that the test case is "cheap" enough to finish executing

under an hour using 6 Summit nodes, even for the CPU-only calculation – the exact timing

is 46 minutes and 51 seconds. In fact, this test case serves as the c-RPA benchmark that is

executed on Summit to validate most code changes, after initial testing on BaseCamp.

OpenMP CPU multithreading is enabled with 4 OpenMP threads per rank to fully utilize

the CPU cores available in each Summit node. The fallback OpenMP implementation takes

17 minutes 3 seconds (2.75× speed-up) for the non-packed ZGEMM version, and 13 minutes

57 seconds (3.36×) for the packed ZGEMM version.

Since it is a relatively "cheap" calculation, NVIDIA Multi-Process Service (MPS) is

enabled to try to increase GPU utilization, with 7 MPI ranks sharing each GPU in each

node, for a total of 42 MPI ranks/node.

106

The pure OpenACC implementation takes 23 minutes and 57 seconds, for a 1.96× speed-

up. This is slower than both OpenACC+MAGMA versions, at 10 minutes and 54 seconds

(4.3× speed-up) for the non-packed ZGEMM version and 12 minutes 14 seconds (3.83×) for

the packed ZGEMM version.

The following is the NVTX summary table captured when profiling the pure OpenACC

version with Nsight Systems.

The values for the matrix dimensions that are involved in the batched ZGEMM call

in genmegqblh() subroutine are M = K = 243 (non-packed) or 128 (packed), N varies

between 22–25, and the batch size is 2× 137 = 274. Taking the maximum value of N = 25,

the MAGMA tester reports only 3.74 TFLOP/s for the set of values corresponding to the

non-packed version, and only 3.28 TFLOP/s for the packed version.

The following is the NVTX summary table captured when profiling the non-packed

OpenACC+MAGMA version with Nsight Systems.

Time(%) Total Time (ns) Instances Average Minimum Maximum StdDev Style Range
------- --------------- --------- ---------- ------- -------- --------- ------- --------------

62.5 96773386147 35811 2702336.9 2285969 4377235 489144.0 PushPop Interstitial
26.6 41133591778 35811 1148630.1 862099 2602795 249218.5 PushPop Total integral
10.2 15716828284 1557 10094302.0 5668840 10856222 796438.6 PushPop Muffin-tin
0.8 1200596374 1557 771095.9 356249 56514223 1432376.1 PushPop Countbands

4.6.2 The c-RPA calculation on La2CuO4 test case

As briefly mentioned earlier in Section 4.3.2, this c-RPA test case is an almost exact copy

of the test case in the Gordon-Bell-winning paper (Ref. [35]), except for the number of ω

photon frequency points, which is set to a single frequency point at ω = 0 eV – that is, we’re

computing the static Hubbard U parameter.

The La2CuO4 system considered for this test case is in the orthorhombic crystal structure

[58], which is a slight distortion from the ideal tetragonal stacked perovskite (K2NiF4)

structure. There are 7 atoms per unit cell (2 lanthanum, 1 copper, 4 oxygen), but only

4 atomic classes. The two lanthanum atoms are geometrically equivalent and thus are in the

same atomic class, the copper atom is its own class, and the 4 oxygen atoms form 2 classes

of 2 oxygen atoms each.

107

The base CPU-only version was executed using 48 Summit nodes with 6 MPI ranks

per node and took 2 hours and 9 minutes. The fallback OpenMP implementations

are executed with 28 OpenMP threads/rank to maximize CPU usage, and clocked at

37 minutes 50 seconds (3.41× speed-up) for the non-packed version and 32 minutes 27

seconds (3.98×) for the packed version. The GPU-enabled version clocked at 1 hour 11

minutes 28 seconds (1.81×) for the pure OpenACC version, 35 minutes 40 seconds (3.62×)
for the non-packed OpenACC+MAGMA version, 39 minutes 27 seconds (3.27×) for the

packed OpenACC+MAGMA version. Notice the computing power of the GPU: both the

OpenACC+MAGMA versions were executed using only 1 MPI rank/GPU, but perform

comparably to the fallback OpenMP versions which saturate the CPU with 28 OpenMP

threads per MPI rank! However, this is not yet the fully unleashed power of Summit’s V100

GPUs. The matrix dimensions are M = K = 243 (non-packed) or 128 (packed), N = 51,

and the batch size is 7 × 449 = 3143. For this set of values, the MAGMA tester reports

4.16 TFLOP/s and 4.28 TFLOP/s, respectively; these are roughly half of the maximum

theoretical performance per GPU of 7.8 TFLOP/s.

We can use NVIDIA GPU Multi-Process Service (MPS) to share each GPU with multiple

MPI ranks. To explore the limits of using NVIDIA MPS to saturate the GPU, the jobs are

executed on 48 Summit nodes with varying number of MPI ranks that share the same

GPU, from 1 to 7 ranks per GPU. Figure 4.5b shows the results of this experiment. Note

that no data points were obtained for the non-packed OpenACC+MAGMA version for 5-

7 ranks/GPU, because the corresponding jobs crashed with an out-of-memory error from

the GPU. This is a limitation of the current implementation due to executing the batched

ZGEMM operation for all 7 atoms and 449 ~G-vectors all at once, which requires ∼4 GiB of

device memory per rank. The packed version, with its memory usage optimizations due to

packing, was able to execute with 7 ranks per GPU, but the speed-up gained by increasing

the number of ranks per GPU is no longer significant for >6 ranks/GPU, which might signal a

full GPU utilization (100% occupancy) at 6 ranks/GPU. The optimal speed-up is 12.67×
for 4 ranks/GPU with the non-packed OpenACC+MAGMA version.

108

Chapter 5

The dynamical response function of

vanadium sesquioxide

This chapter briefly describes the vanadium sesquioxide (V2O3) material system, as well as

the ground state properties, such as the band structure and density of states (DOS), and

the response function obtained from calculations using the Exciting-Plus code.

5.1 The crystal structure of vanadium sesquioxide

Vanadium sesquioxide V2O3 is a well-studied solid state material system with a metal-

insulator transition at a temperature around 170 K [59]. This metal-insulator transition

is widely regarded as a Mott-Hubbard transition [60–62], and it is also accompanied with

a structural phase transition [63] from rhombohedral crystal structure (space group 167,

R3̄c:H) to a monoclinic crystal structure (space group 15, C2c:b3 or I12/a1), along with a

magnetic phase transition from paramagnetic to antiferromagnetic with a Neél temperature

of ∼ 180 K [64]. Additional phases can also be accessed by doping with Cr, Ni, or Ti

[59, 65, 66], but we will not consider these phases in this thesis. Figure 5.1a shows the phase

diagram for V2O3; pure V2O3 with no doping is marked with a dashed line. For simplicity,

since all three transitions (Mott-Hubbard, structural, magnetic) happen almost at the same

temperature range, let’s treat them as a single phase transition: the high-temperature phase

109

(a) Phase diagram of V2O3.
Reprinted with permission from Ref. [59].

(b) Two unit cells of V2O3 for the para-
magnetic metallic rhombohedral phase
(T = room temperature)

(c) One unit cell of V2O3 for the antiferromagnetic
insulating monoclinic phase (T = 15 K)

Figure 5.1: The phase diagram and crystal structure of V2O3. The face-sharing VO8

octahedra involved in the V–V bond are shaded in light green. Yellow arrows denote the
relative magnetic moment directions.

110

is rhombohedral paramagnetic metallic (PM) and the low-temperature phase is monoclinic

antiferromagnetic insulating (AFI).

Figure 5.1b and 5.1c show the crystal structure for the PM and AFI phases, respectively.

The PM phase crystal structure is also commonly referred to as the corundum (Al2O3)

structure. Each vanadium atom is coordinated with eight oxygen atoms that form a VO8

octahedron. There are two pairs of two such octahedra that share an octahedron face – these

face-sharing octahedra represent a V–V bond. In the PM phase, both of the V–V bond

are parallel with the z-axis (as well as the ~c lattice vector), but not in the AFI phase, where

the V–V bond is slightly tilted due to the monoclinic distortion. Lattice parameters for the

PM phase are taken from Ref. [65] (assuming a perfect hexagonal prism), and for the AFI

phase, from Ref. [66]. The unit cell for the AFI phase contains 4 formula units of V2O3 in

order to produce the correct magnetic structure.

In both phases, the octahedra are slightly distorted such that the chemical environment

of each V atom is in a trigonal symmetry (point group C3v) [67]. This trigonal crystal field

splits the energy levels of the otherwise degenerate five 3d electronic orbitals of V3+ into

three distinct levels: one A1g orbital, two eπg orbitals, and two eσg orbitals. The three distinct

energy levels will be further discussed in Section 5.2 and 5.3, and they play an important

role for downfolding into Wannier functions (Section ??).

5.2 The ground state of vanadium sesquioxide

For the paramagnetic metallic (PM) phase, the ground state of V2O3 has been calculated

with the Perdew-Burke-Ernzerhof variant of the Generalized Gradient Approximation (GGA-

PBE) exchange-correlation potential [68]. The high symmetry points for the band structure

plot were automatically identified using the AFLOW software suite [36, 69]. As expected,

the band structure of V2O3 in the PM phase (Figure 5.2) shows that it is a metal, i.e., the

Fermi level is in the middle of an electronic band. The density of state (DOS) is also nonzero

at the Fermi level, which further reinforces this fact.

111

V2O3, rhombohedral, paramagnetic, GGA-PBE, no Hubbard U, 8×8×8 k-mesh, 10 G-shells, 50 empty states

EF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Γ L B1 Q F B Z Γ X B1 Γ F P1 Z

-8

-6

-4

-2

 0

 2

 4
E
n
e
rg

y
 [

H
a
]

E
n
e
rg

y
 [

e
V

]

all

EF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

E
n
e
rg

y
 [

H
a
]

EF = 0.316 Ha

Spin up
Spin down

V s
V p

V d
O s

O p
Total

Interstitial

Figure 5.2: Band structure and density of states for V2O3 in the paramagnetic metallic (PM) phase.

112112112

V2O3, monoclinic, antiferromagnetic, GGA-PBE + UV 3d = 3 eV, JV 3d = 0.272 eV, 8×8×8 k-mesh, 50 empty states

EF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Γ Y H C E M1 A X H1 | M D Z | Y D

-8

-6

-4

-2

 0

 2

 4
E
n
e
rg

y
 [

H
a
]

E
n
e
rg

y
 [

e
V

]

up dn

EF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

E
n
e
rg

y
 [

H
a
]

EF = 0.314 Ha

Spin up
Spin down

V s
V p

V d
O s

O p
Total

Interstitial

Figure 5.3: Band structure and density of states for V2O3 in the antiferromagnetic insulating (AFI) phase.

113113113

As explained in Section 2.5.3, the Exciting-Plus code has the ability to resolve the

band characters of the various bands in the electronic structure of the ground state and

correlate them with the different atoms based on the muffin-tin expansion of the LAPW

basis set. Band indices 41–60, indicated in blue in the figure, correspond to the d orbitals of

the V atoms. Band indices 23–40, which is the electronic band just below the Fermi level, is

dominated by the p orbitals of the O atoms, marked red in the figure.

For the antiferromagnetic insulating (AFI) phase, the magnetic moment arrangement

follows the one given in Ref. [70], which needs doubling of the non-magnetic unit cell. Also,

DFT incorrectly predicts V2O3 to be a metal in the monoclinic phase, and thus to get

the correct electronic structure, we need to use the DFT+U approach. Figure 5.3 shows the

band structure and the DOS of the AFI phase that is obtained with the GGA-PBE exchange-

correlation potential and the following values for the Hubbard U and J parameters: U = 3 eV

and J = 0.27 eV. As expected for an insulator, the band structure shows that the Fermi

level lies between bands, and the density of states is exactly zero at the Fermi level. An

interesting feature for this phase is that ...

5.3 Bloch functions in vanadium sesquioxide

Figure 5.4 shows the Bloch function plots ujk(~r) of V2O3 in the PM phase for a momentum

value of ~k = 0 (that is, at the Γ point in the first Brillouin zone) and for band indices

j = 41 − 45. The Bloch function for band index j = 41 corresponds to the A1g "orbital"

(which looks like the dz2 orbital) centered at each of the four V atoms; the plots for band

indices j = 42−45 illustrate the eπg and eσg "orbitals" centered at the different V atoms, which

are linear combinations of the the remaining four 3d orbitals1. Also, note how the plots for

band index j = 42 − 45 each can contain two different "orbitals" centered at different V

atoms. This is due to the double degeneracy of the eg orbitals.

1The exact form of the linear combinations are given in Ref. [67]

114

(a) j = 41 (b) j = 42

(c) j = 43 (d) j = 44

(e) j = 45

Figure 5.4: 3-D contour plots of the Bloch function of V2O3 in non-magnetic, metallic
(NM) phase at Γ point in the first Brillouin zone for band indices j = 41− 45.

115

5.4 The dynamical density-density response function of

vanadium sesquioxide in the complete Hilbert space

Figure 5.5 displays the imaginary part of the Kohn-Sham density-density response function

χ(KS)(~q, ω) and the dynamical density-density response function χ(~q, ω) for 5 selected

momentum transfer vectors ~q in the [001] crystallographic direction. The first one (|~q1| =

0.673 Å) is in the first Brillouin zone; the second one (|~q2| = 2.187 Å) is in the second

Brillouin zone; the third (|~q3| = 3.365 Å) and fourth (|~q4| = 3.702 Å) are in the third

Brillouin zone, and the last one (|~q5| = 5.216 Å) is in the fourth Brillouin zone.

The structure of Equation 2.88 – summation of delta functions – allows us to restrict

the summation over certain band indices for the Kohn-Sham response function χ(KS)(~q, ω)

calculation to certain bands. Thus, the structure of χ(KS)(~q, ω) can be analyzed for electronic

excitations that involve only the 3d orbitals of the V atoms (by restricting the {j, j′}
summation to only band indices 41–60), as well as electronic excitations that involve charge

transfer between the O 2p orbitals and the V 3d orbitals (by summing over only band indices

23–60 and subtracting the data from the previous calculation). Results from this analysis

are marked in green and cyan dotted lines in Figure 5.5. Note how the low energy region

(up to ∼4 eV) is dominated by d–d excitations.

Note that the same analysis cannot be performed with the dynamical density-density

response function χ(~q, ω), because it contains additional ingredients such as the Coulomb

interaction matrix V~G~G′(~q), which has to be screened appropriately, as in the c-RPA

calculation. Also, if I want to analyze the d–d electronic excitations even further (e.g. which

peaks correspond to A1g–A1g excitation, etc.), the Wannier function machinery is needed

to project the electronic bands into appropriate localized orbitals appropriate for the V 3d

bands in the trigonal crystal field.

116

V2O3, non-magnetic metallic rhombohedral phase, GGA-PBE, no Hubbard U ,
8× 8× 8 ~k-mesh, ~q in [001] direction, 50 ~G-shells (405 ~G-vectors), η = 0.1 eV

0 2 4 6 8 10 12

0

20

40

60

[e
V
−

1
n

m
−

3
]

−Im χKS(~q, ω)

|~q| = 0.673 Å

d–d

p–d

0 2 4 6 8 10 12
0

1

2

[e
V
−

1
n

m
−

3
]

−Im χ(~q, ω)

|~q| = 0.673 Å

0 2 4 6 8 10 12

0

20

40

[e
V
−

1
n

m
−

3
]

|~q| = 2.187 Å

d–d

p–d

0 2 4 6 8 10 12
0

2

4

6

8

[e
V
−

1
n

m
−

3
]

|~q| = 2.187 Å

0 2 4 6 8 10 12

0

5

10

15

[e
V
−

1
n

m
−

3
]

|~q| = 3.365 Å

d–d

p–d

0 2 4 6 8 10 12
0

1

2

3

4

[e
V
−

1
n

m
−

3
]

|~q| = 3.365 Å

0 2 4 6 8 10 12

0

5

10

15

[e
V
−

1
n

m
−

3
]

|~q| = 3.702 Å

d–d

p–d

0 2 4 6 8 10 12
0

1

2

3

4

[e
V
−

1
n

m
−

3
]

|~q| = 3.702 Å

0 2 4 6 8 10 12

Energy, ω [eV]

0

2

4

6

[e
V
−

1
n

m
−

3
]

|~q| = 5.216 Å

d–d

p–d

0 2 4 6 8 10 12

Energy, ω [eV]

0

2

4

[e
V
−

1
n

m
−

3
]

|~q| = 5.216 Å

Figure 5.5: The imaginary part of the Kohn-Sham density-density response function
χ(KS)(~q, ω) and the dynamical density-density response function χ(~q, ω) for V2O3 in the
PM phase.

117

Chapter 6

Conclusions

6.1 Suggestions

With regards to the implementation of the code for the hybrid CPU+GPU environment, I

suggest the following improvements that can be made:

• Optimize the data transfer for the pure OpenACC version

• Implement a blocking algorithm for the batching of the matrix-matrix multiplication

in the "muffin-tin" part of the matrix element calculation. Currently there is only

a single batch, such that bigger calculations are restricted by the amount of GPU

memory (VRAM) available.

• Port more parts of the code for the GPU. The path of least resistance would be the

"total integral" part of the matrix element calculation, since it is already in the form

of matrix-matrix multiplication (ZGEMM).

With regards to the physics of V2O3:

• Perform a Wannier projection for both phases (PM and AFI).

• Calculate the response function using the Wannier basis.

• Estimate the Hubbard U needed for the AFI phase by running a c-RPA calculation on

the PM phase.

118

Bibliography

119

[1] TOP500. Top #1 systems | TOP500. https://top500.org/resources/top-systems/.

Retrieved on February 23, 2021. x, 61

[2] Ahmad Abdelfattah, Hartwig Anzt, Aurelien Bouteiller, Anthony Danalis, Jack

Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire

Tomov, Stephen Wood, Panruo Wu, Ichitaro Yamazaki, and Asim YarKhan. SLATE

working note 1: Roadmap for the development of a linear algebra library for exascale

computing: SLATE: Software for linear algebra targeting exascale. techreport ICL-UT-

17-02, Innovative Computing Laboratory, University of Tennessee, June 2017. revision

04-2018. x, 68, 69

[3] Oak Ridge Leadership Computing Facility. Summit user guide – OLCF user

documentation. https://docs.olcf.ornl.gov/systems/summit_user_guide.html.

xi, 92

[4] Peter J. Denning. Computing is a natural science. Commun. ACM, 50(7):13–18, July

2007. 1

[5] Oak Ridge Leadership Computing Facility. Summit – Oak Ridge Leadership Computing

Facility. https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/.

Retrieved on February 11, 2021. 1

[6] NVIDIA. GeForce 256 – the world’s first GPU. https://web.archive.org/

web/20031003011052/http://www.nvidia.com/page/geforce256.html. Retrieved

through the Internet Archive on February 11, 2021. 1, 58

[7] Oak Ridge Leadership Computing Facility. Titan – Oak Ridge Leadership Computing

Facility. https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/.

Retrieved on February 11, 2021. 1

[8] Katie Elyce Jones. Farewell, Titan. https://www.olcf.ornl.gov/2019/06/28/

farewell-titan/, June 2019. 1

120

https://top500.org/resources/top-systems/
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://web.archive.org/web/20031003011052/http://www.nvidia.com/page/geforce256.html
https://web.archive.org/web/20031003011052/http://www.nvidia.com/page/geforce256.html
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/2019/06/28/farewell-titan/
https://www.olcf.ornl.gov/2019/06/28/farewell-titan/

[9] Oak Ridge Leadership Computing Facility. Summit user guide – OLCF user

documentation. https://docs.olcf.ornl.gov/systems/summit_user_guide.html#

summit-nodes. 1

[10] Oak Ridge Leadership Computing Facility. Frontier. https://www.olcf.ornl.gov/

frontier/. Retrieved on February 11, 2021. 2

[11] OpenACC. About OpenACC | OpenACC. https://www.openacc.org/about. 2, 66

[12] Innovative Computing Laboratory. Matrix algebra on GPU and multicore architectures.

http://icl.utk.edu/magma/. 2, 131

[13] Federico Iori, Fanny Rodolakis, Matteo Gatti, Lucia Reining, M. Upton, Y. Shvyd’ko,

Jean-Pascal Rueff, and Marino Marsi. Low-energy excitations in strongly correlated

materials: A theoretical and experimental study of the dynamic structure factor in

V2O3. Phys. Rev. B, 86:205132, November 2012. 2

[14] Simo Huotari. Private communication. 3

[15] Casey Eichstaedt. In preparation. 3

[16] Charles Kittel. Free Electron Fermi Gas, chapter 6, pages 131–159. John Wiley & Sons,

eighth edition edition, 2005. 7

[17] Gabriele Giuliani and Giovanni Vignale. Introduction to the Electron Liquid, chapter 1,

pages 1–68. Cambridge University Press, 2005. 7, 8

[18] Neil W. Ashcroft and N. David Mermin. Failures of the Free Electron Model, chapter 3,

pages 57–62. Harcourt, 1976. 8

[19] Felix Bloch. über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für

Physik, 52(7-8):555–600, July 1929. 10

[20] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part I.

theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society,

24(1):89–110, 1928. 12

121

https://docs.olcf.ornl.gov/systems/summit_user_guide.html##summit-nodes
https://docs.olcf.ornl.gov/systems/summit_user_guide.html##summit-nodes
https://www.olcf.ornl.gov/frontier/
https://www.olcf.ornl.gov/frontier/
https://www.openacc.org/about
http://icl.utk.edu/magma/

[21] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part II.

some results and discussion. Mathematical Proceedings of the Cambridge Philosophical

Society, 24(1):111–132, 1928.

[22] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part

III. term values and intensities in series in optical spectra. Mathematical Proceedings of

the Cambridge Philosophical Society, 24(3):426–437, 1928.

[23] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part

IV. further results relating to terms of the optical spectrum. Mathematical Proceedings

of the Cambridge Philosophical Society, 25(3):310–314, 1929.

[24] V. Fock. Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems.

Zeitschrift für Physik, 61(1):126–148, 1930. (in German). 12

[25] J. Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal

Society of London. Series A. Mathematical and Physical Sciences, 276(1365):238–257,

November 1963. 14

[26] J. Hubbard. Electron correlations in narrow energy bands II. the degenerate band

case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical

Sciences, 277(1369):237–259, January 1964.

[27] J. Hubbard. Electron correlations in narrow energy bands III. an improved solution.

Proceedings of the Royal Society of London. Series A. Mathematical and Physical

Sciences, 281(1386):401–419, September 1964. 14, 16

[28] N. F. Mott. The basis of the electron theory of metals, with special reference to the

transition metals. Proceedings of the Physical Society. Section A, 62(7):416–422, July

1949. 16

[29] N. F. Mott. The transition to the metallic state. Philosophical Magazine, 6(62):287–309,

feb 1961. 16

122

[30] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871,

Nov 1964. 16

[31] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation

effects. Phys. Rev., 140:A1133–A1138, Nov 1965. 18

[32] Ralf Stowasser and Roald Hoffmann. What do the kohn-sham orbitals and eigenvalues

mean? J. Am. Chem. Soc., 121(14):3414–3420, April 1999. 21

[33] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory and strong

interactions: Orbital ordering in mott-hubbard insulators. Phys. Rev. B, 52:R5467–

R5470, Aug 1995. 23

[34] A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein. Correlated metals and

the LDA + u method. Phys. Rev. B, 67:153106, April 2003. 23

[35] A. Kozhevnikov, A. G. Eguiluz, and T. C. Schulthess. Toward first principles electronic

structure simulations of excited states and strong correlations in nano- and materials

science. In SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis, pages 1–10, Nov 2010.

33, 35, 80, 82, 83, 84, 85, 87, 88, 93, 95, 96, 102, 107

[36] Wahyu Setyawan and Stefano Curtarolo. High-throughput electronic band structure

calculations: Challenges and tools. Computational Materials Science, 49(2):299–312,

2010. 45, 111

[37] Gregory H. Wannier. The structure of electronic excitation levels in insulating crystals.

Physical Review, 52(3):191–197, August 1937. 46

[38] Nicola Marzari and David Vanderbilt. Maximally localized generalized wannier functions

for composite energy bands. Phys. Rev. B, 56:12847–12865, Nov 1997. 49

[39] V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina,

J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller,

123

I. Leonov, X. Ren, and D. Vollhardt. Full orbital calculation scheme for materials

with strongly correlated electrons. Phys. Rev. B, 71:125119, Mar 2005. 49

[40] Per-Olov Löwdin. On the non-orthogonality problem connected with the use of atomic

wave functions in the theory of molecules and crystals. The Journal of Chemical Physics,

18(3):365–375, 1950. 51

[41] Per-Olov Löwdin. On the nonorthogonality problem. In Per-Olov Löwdin, editor,

Advances in Quantum Chemistry, volume 5, pages 185–199. Elsevier, 1970. 51

[42] Jon Peddie. Famous graphics chips: S3 ViRGE | IEEE computer society. https://www.

computer.org/publications/tech-news/chasing-pixels/s3-virge. Retrieved on

February 23, 2021. 58

[43] Robbie Searles. Private communication. 58, 75

[44] IBM. POWER4: The first multi-core, 1-GHz processor. https://www.ibm.com/ibm/

history/ibm100/us/en/icons/power4/. Retrieved on February 23, 2021. 59

[45] Intel. Dual core era begins, PC makers start selling intel-based PCs. https://www.

intel.com/pressroom/archive/releases/2005/20050418comp.htm, 2005. Retrieved

on February 23, 2021. 59

[46] NVIDIA. CUDA toolkit archive | NVIDIA developer. https://developer.nvidia.

com/cuda-toolkit-archive. Retrieved on February 23, 2021. 59

[47] The Khronos Group. The khronos group releases OpenCL 1.0 specifi-

cation. https://www.khronos.org/news/press/the_khronos_group_releases_

opencl_1.0_specification, 2009. 59

[48] Jack Dongarra. Report on the Sunway TaihuLight system. Technical Report UT-EECS-

16-742, 2016-06 2016. 60

[49] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling

manycore performance portability through polymorphic memory access patterns.

124

https://www.computer.org/publications/tech-news/chasing-pixels/s3-virge
https://www.computer.org/publications/tech-news/chasing-pixels/s3-virge
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://www.intel.com/pressroom/archive/releases/2005/20050418comp.htm
https://www.intel.com/pressroom/archive/releases/2005/20050418comp.htm
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
https://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification

Journal of Parallel and Distributed Computing, 74(12):3202 – 3216, 2014. Domain-

Specific Languages and High-Level Frameworks for High-Performance Computing. 67

[50] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler.

Benchmarking opencl, openacc, openmp, and cuda: Programming productivity,

performance, and energy consumption. In Proceedings of the 2017 Workshop on Adaptive

Resource Management and Scheduling for Cloud Computing, ARMS-CC ’17, page 1–6,

New York, NY, USA, 2017. Association for Computing Machinery. 67

[51] Xuechao Li and Po-Chou Shih. An early performance comparison of CUDA and

OpenACC. MATEC Web of Conferences, 208:05002, 2018. 68

[52] M. Graham Lopez, Wayne Joubert, Verónica Vergara Larrea, Oscar Hernandez,

Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Evaluation of directive-based

performance portable programming models. International Journal of High Performance

Computing and Networking, 14(2):165–182, July 2019. 68

[53] AMD. ROCm-Developer-Tools/aomp: AOMP is an open source Clang/LLVM based

compiler with added support for the OpenMP® API on Radeon™ GPUs. https:

//github.com/ROCm-Developer-Tools/aomp. 71, 130

[54] Michael Wolfe. Burying the OpenMP versus OpenACC hatchet. https://www.

nextplatform.com/2019/01/16/burying-the-openmp-versus-openacc-hatchet/,

January 2019. 71

[55] Michael Metcalf, John Reid, and Malcolm Cohen. Modern Fortran Explained:

Incorporating Fortran 2018. Oxford University Press, fifth edition, 2018. 72

[56] Atsushi Hori, Emmanuel Jeannot, George Bosilca, Takahiro Ogura, Balasz Gerofi, Jie

Yin, and Yutaka Ishikawa. An international survey on MPI users. Submitted to

Parallel Computing. Preprint available at https://github.com/bosilca/MPIsurvey/

blob/master/TeX/PARCO/Submission/MPI-Survey.pdf. 78

[57] Brian Smith. Private communication. 90

125

https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCm-Developer-Tools/aomp
https://www.nextplatform.com/2019/01/16/burying-the-openmp-versus-openacc-hatchet/
https://www.nextplatform.com/2019/01/16/burying-the-openmp-versus-openacc-hatchet/
https://github.com/bosilca/MPIsurvey/blob/master/TeX/PARCO/Submission/MPI-Survey.pdf
https://github.com/bosilca/MPIsurvey/blob/master/TeX/PARCO/Submission/MPI-Survey.pdf

[58] J.M. Longo and P.M. Raccah. The structure of La2CuO4 and LaSrVO4. Journal of

Solid State Chemistry, 6(4):526–531, 1973. 107

[59] D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice. Metal-

insulator transitions in pure and doped V2O3. Phys. Rev. B, 7:1920–1931, Mar 1973.

109, 110

[60] D. B. McWhan, T. M. Rice, and J. P. Remeika. Mott transition in Cr-doped V2O3.

Phys. Rev. Lett., 23:1384–1387, Dec 1969. 109

[61] David Adler. Mechanisms for metal-nonmental transitions in transition-metal oxides

and sulfides. Reviews of Modern Physics, 40(4):714–736, October 1968.

[62] Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura. Metal-insulator transitions.

Reviews of Modern Physics, 70(4):1039–1263, October 1998. 109

[63] P. D. Dernier and M. Marezio. Crystal structure of the low-temperature

antiferromagnetic phase of V2O3. Phys. Rev. B, 2:3771–3776, Nov 1970. 109

[64] R. Shiina, F. Mila, F.-C. Zhang, and T. M. Rice. Atomic spin, molecular orbitals, and

anomalous antiferromagnetism in insulating V2O3. Phys. Rev. B, 63(14):144422, March

2001. 109

[65] P.D. Dernier. The crystal structure of V2O3 and (V0.962Cr0.038)2O3 near the metal-

insulator transition. J. Phys. Chem. Solids, 31(11):2569–2575, 1970. 109, 111

[66] Patrick Rozier, Alicja Ratuszna, and Jean Galy. Comparative structural and electrical

studies of V2O3 and V2–xNixO3 (0 < x < 0.75) solid solution. Z. Anorg. Allg. Chem.,

628(5):1236, June 2002. 109, 111

[67] Arata Tanaka. Electronic structure and phase transition in v2o3: Importance of 3d

spin-orbit interaction and lattice distortion. Journal of the Physical Society of Japan,

71(4):1091–1107, April 2002. 111, 114

[68] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient

approximation made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996. 111

126

[69] David Hicks, Corey Oses, Eric Gossett, Geena Gomez, Richard H. Taylor, Cormac

Toher, Michael J. Mehl, Ohad Levy, and Stefano Curtarolo. AFLOW-SYM: platform

for the complete, automatic and self-consistent symmetry analysis of crystals. Acta

Cryst. A, 74(3):184–203, May 2018. 111

[70] S. Yu. Ezhov, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky. Orbital occupation,

local spin, and exchange interactions in V2O3. Phys. Rev. Lett., 83:4136–4139, November

1999. 114

127

Appendices

128

A The BaseCamp workstation

BaseCamp is a personal workstation that I designed and built for development purposes

during the duration of this thesis. This appendix contains the hardware specifications and

the software environment of BaseCamp.

A.1 Hardware specifications

Item Qty Description
Motherboard 1 Asus ROG Strix B450-F Gaming, AM4 socket

CPU 1 AMD Ryzen 5 "Matisse" 3600X
6 cores @ 3.8 GHz with 2-way SMT, 95 W TDP

DRAM 2 OLOy 16 GB DDR4-3200 CL16

GPU

1
ZOTAC GeForce GTX 1060, 6 GB GDDR5X
NVIDIA GP104 "Pascal", compute capability 6.1
10 SMs, 1280 CUDA cores @ 1506 MHz, 120 W TDP

1
Gigabyte Radeon RX Vega 64 Gaming OC, 8 GB HBM2
AMD "Vega10" XT (gfx900)
64 CUs, 4096 SPs @ 1276 MHz, 295 W TDP

Storage 1 Team MS30, 256 GB, M.2-2280 SSD
2 Seagate Constellation ES.3, 3 TB, 3.5" 7200 RPM HDD

ODD 1 TSSTcorp TS-H493B rev. D200 CD-RW/DVD drive
Power supply 1 EVGA G1+ 650 W, 80+ Gold, fully modular ATX power supply

Case 1 Corsair 110R ATX Mid Tower case

Input devices 1 Dell KB212-B keyboard
1 Logitech M325 wireless mouse

A.2 Output from lscpu

A.3 Output from lstopo -p

A.4 Software environment

BaseCamp runs Ubuntu GNU/Linux [?], version 20.04 LTS (focal, x86_64), with Linux

kernel version 5.8 (the system is constantly updated, so the kernel minor version changes over

time) and the default GNOME desktop environment. The following compilers are installed

in the system:

• GCC, version 9.3.0, installed from default Ubuntu repositories.

129

• PGI [?], version 19.10, community edition, downloaded from PGI/NVIDIA website.

The free license expired in October 2020.

• NVIDIA HPC SDK [?], versions 20.5 (pre-release), 20.7, 20.9, and 20.11, downloaded

from NVIDIA website.

• AOCC [?], versions 2.2.0 (LLVM 10.0) and 2.3.0 (LLVM 11.0), downloaded from

AMD website.

• AOMP [53], version 11.12-0 (LLVM 11.0), downloaded from official AMD ROCm

developers GitHub.

• Python, version 3.8.5, installed from default Ubuntu repositories.

• Lua, version 5.3.5, built from source.

• Tcl/Tk, version 8.6.9, installed from default Ubuntu repositories.

• OpenJDK, versions 8 update 282 and 11.0.10, installed from default Ubuntu reposito-

ries.

The Lmod environment module system [?], version 8.2.10, is used to manage software

on the workstation. When possible, software is built from sources for each compiler, except

when to do so would be redundant (for instance, both PGI compiler and NVIDIA HPC

SDK already came with CUDA-aware OpenMPI bundled with them) or too complicated

(for instance, with VisIt from LLNL).

For GPU computing, CUDA toolkit versions 11.1 and 11.2 are installed via NVIDIA’s

official deb package repositories, and ROCm versions 3.9.1 and 3.10.0 are installed via AMD’s

official deb package repositories.

For MPI, the following packages are made available:

• OpenMPI [?], versions 4.0.3, 4.0.4, and 4.0.5, built from source against UCX [?

] version 1.8.1 for CUDA support. For PGI and NVIDIA compilers, the bundled

OpenMPI is used instead.

• MPICH [?], version 3.3.2

130

For linear algebra, the following packages are made available:

• Reference BLAS and LAPACK [?], version 3.9.0, built from source.

• OpenBLAS [?], versions 0.3.9, 0.3.10, and 0.3.13, built from source.

• MAGMA [12], versions 2.5.3 and 2.5.4, and hipMAGMA version 2.0.0, built from

source.

• Intel MKL [?], version 2020 Update 2 (non-commercial edition), downloaded from

Intel website.

• AMD AOCL [?], version 2.2.0, downloaded from AMD website.

For fast Fourier transform, the following packages are made available:

• FFTW [?], version 3.3.8, built from source.

• HeFFTe [?], version 1.0.1, built from source.

For dealing with HDF5 files, the HDF5 library version 1.12.0 is built from source against

LibAEC [?] version 1.0.4 (built from source) for SZIP compression and ZLib version 1.2.11

(installed from default Ubuntu repositories) for GZip and deflate compression.

For data visualization, the following packages are made available:

• XCrySDen [?], version 1.6.2, installed from default Ubuntu repositories.

• VESTA [?], version 3.5.2, downloaded from the official website.

• Gnuplot [?], version 5.2 patchlevel 8, installed from default Ubuntu repositories.

• Matplotlib [?], version 3.2.1, installed using pip.

• MATLAB [?], version R2020b, installed using the network license from University of

Tennessee.

• VisIt [?], versions 3.1.2 and 3.1.4, downloaded from LLNL website.

For remote debugging on Summit, Arm Forge [?] versions 19.1.4, 20.0.3, and 20.1 are

installed.

131

A.5 Output from NVIDIA CUDA example deviceQuery

A.6 Output from AMD rocminfo

132

B Test systems for the Exciting-Plus code development

B.1 c-RPA calculation on nickel oxide (NiO)

B.2 c-RPA calculation on lanthanum cuprate (La2CuO4)

B.3 Response calculation on strontium cuprate (Sr2CuO3)

133

Vita

Wileam Yonatan Phan is a native of Jakarta, Indonesia. He completed his undergraduate

training with a Bachelor of Science in physics at Universitas Indonesia, and continued with

graduate studies at the University of Tennessee, Knoxville. His research interests include

high-performance scientific computing and its application to materials science and condensed

matter physics. After graduation, he will begin his new position as a Scientific Computing

Software Engineer at Lawrence Berkeley National Laboratory.

134

	Accelerating Dynamical Density Response Code on Summit and Its Application for Computing the Density Response Function of Vanadium Sesquioxide
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Scope
	1.2 Organization

	2 Fundamentals I: Time-Dependent Density Functional Theory (TD-DFT)
	2.1 A brief introduction to Density Functional Theory (DFT)
	2.1.1 Early attempts to solve the many-electron problem
	2.1.2 Hohenberg-Kohn theorems
	2.1.3 The Kohn-Sham algorithm
	2.1.4 Exchange-correlation potential functionals
	2.1.5 The DFT+U method
	2.1.6 Choice of basis

	2.2 Time-Dependent Density Functional Theory (TD-DFT)
	2.2.1 Runge-Gross theorems
	2.2.2 The dynamical density-density response function

	2.3 TD-DFT and spectroscopy experiments
	2.3.1 Non-resonant Inelastic X-ray Scattering (NIXS)

	2.4 The modern landscape of DFT
	2.5 The Elk DFT software package
	2.5.1 The Linearly-Augmented Plane Wave (LAPW) basis set
	2.5.2 The discrete momentum space and the macrocrystal
	2.5.3 Electronic structure: band structure and density of states

	2.6 Wannier function projection methods
	2.7 The constrained Random Phase Approximation (c-RPA) method

	3 Fundamentals II: Programming Graphics Processing Units (GPUs)
	3.1 The Graphics Processing Unit (GPU)
	3.2 Accelerators and High Performance Computing
	3.3 GPU Programming 101
	3.3.1 "Heavy" and "light" cores
	3.3.2 The three-step paradigm
	3.3.3 GPU programming models
	3.3.4 The OpenACC programming model
	3.3.5 GPU-optimized libraries

	3.4 Multiple levels of parallelism

	4 Porting dynamical density response computational platform to the hybrid CPU+GPU environment
	4.1 The dynamical density response algorithm
	4.1.1 Matrix element calculation
	4.1.2 Matrix element calculation in Bloch basis
	4.1.3 Matrix element calculation in Wannier basis
	4.1.4 Dynamical response function in Bloch basis

	4.2 About the code
	4.3 Porting strategy
	4.3.1 The debug environment
	4.3.2 Test cases

	4.4 The Summit supercomputer
	4.5 Technical details of the GPU porting process
	4.5.1 Part 1: Pure OpenACC implementation
	4.5.2 Part 2: Batching the ZGEMM calls with MAGMA library
	4.5.3 Part 3: Exploiting the sparsity patterns

	4.6 Performance of the GPU port on Summit
	4.6.1 The c-RPA calculation on NiO paramagnetic test case
	4.6.2 The c-RPA calculation on La2CuO4 test case

	5 The dynamical response function of vanadium sesquioxide
	5.1 The crystal structure of vanadium sesquioxide
	5.2 The ground state of vanadium sesquioxide
	5.3 Bloch functions in vanadium sesquioxide
	5.4 The dynamical density-density response function of vanadium sesquioxide in the complete Hilbert space

	6 Conclusions
	6.1 Suggestions

	Bibliography
	Appendices
	A The BaseCamp workstation
	A.1 Hardware specifications
	A.2 Output from lscpu
	A.3 Output from lstopo -p
	A.4 Software environment
	A.5 Output from NVIDIA CUDA example deviceQuery
	A.6 Output from AMD rocminfo

	B Test systems for the Exciting-Plus code development
	B.1 c-RPA calculation on nickel oxide (NiO)
	B.2 c-RPA calculation on lanthanum cuprate (La2CuO4)
	B.3 Response calculation on strontium cuprate (Sr2CuO3)

	Vita

