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ABSTRACT 
 

Humans are altering natural systems around the globe in myriad ways. For plant species, 
such anthropogenic changes have resulted in increasingly fragmented populations, 
desynchronized interactions with mutualists, and shifted geographic ranges, among other effects. 
However, despite numerous examples of human impacts on plant populations, the consequences 
of these changes on plant reproduction remain poorly understood. In my thesis, I investigate the 
impacts of two forms of anthropogenic change–habitat disturbance and climate warming–on 
plant reproduction and fitness. I take two distinct approaches to address questions posed at local 
and regional scales.  

In Chapter I, I ask how inbreeding depression varies across the life cycle of the critically 
imperiled California endemic species, Collinsia corymbosa (Plantaginaceae). I show that, 
consistent with other primarily outcrossing species, inbreeding depression in C. corymbosa is 
most pronounced late in life history, specifically during the female reproductive phase of the life 
cycle. Inbred plants demonstrated significantly lower rates of autonomous autogamy (δ [delta] = 
0.448) and flower production (δ [delta] = 0.225), limiting the ability of this species to set seed in 
the absence of pollinators.  

In Chapter II, I ask whether flowering and fruiting dates have advanced for 14 spring-
flowering plant species in the Blue Ridge and Ridge & Valley ecoregions of eastern Tennessee 
over the past century. Additionally, I investigate how phenological sensitivity to spring 
temperature varies between ecoregions. Utilizing phenological observations sourced from 1000+ 
digitized herbarium specimens, I show that the sensitivity of flowering phenology to spring 
temperature at the community level varies between the Ridge & Valley and Blue Ridge (2.7 and 
1.3 days earlier per degree Celsius warming, respectively). Further, I show that, while the 
flowering phenology of the majority of species investigated is sensitive to spring temperature in 
both ecoregions, flowering and fruiting dates have not significantly advanced in recent decades. 
  Overall, I found variation in plant reproductive responses to anthropogenic change at the 
maternal family, population, species, community, and regional levels. Together, my research 
demonstrates that assessing reproduction and fitness at these multiple scales provides nuanced 
insights into the adaptive capacity and ultimate persistence of species in the Anthropocene. 
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Abstract 

Inbreeding depression, the reduction in fitness of selfed progeny relative to outcrossed 
progeny, is one of the primary drivers of plant mating system evolution and can be influenced by 
a number of factors including population size, outcrossing rates, and inter-annual variability in 
pollinator visitation. Endemic species, which have limited geographic distributions, specialized 
habitat preferences, and can maintain small population sizes, are especially at risk for reduced 
genetic diversity and subsequent inbreeding depression when their habitats are disturbed or 
fragmented. Evaluating the timing and magnitude of inbreeding depression in rare and endemic 
species is critical to understanding the fitness consequences of reduced genetic diversity and the 
ultimate capacity of these species to adapt in response to disturbance and climate change. In this 
study, I ask how the magnitude of inbreeding depression varies across the life cycle of the 
critically imperiled California endemic plant Collinsia corymbosa Herder (Round-Headed 
Chinese Houses; Plantaginaceae), a species whose only confirmed extant population is currently 
threatened by disturbance. To quantify inbreeding depression across the life cycle, I compared 
seedling, vegetative, female reproductive, and male reproductive traits between inbred and 
outbred plants generated using a hand pollination experiment in the greenhouse. I show that 
inbred plants set significantly fewer fruits autonomously, produce fewer flowers, and have lower 
total biomass than outbred plants. Inbreeding depression in this primarily outcrossing species (tm 
= 0.79 ± 0.1 SE) was most pronounced in the female reproductive phase of the life cycle, with 
inbred plants demonstrating significantly lower rates of autonomous autogamy (δ = 0.448) and 
flower production (δ = 0.225). My results highlight that, because endemic species can vary in the 
timing and magnitude of inbreeding depression across the life cycle, understanding in which life 
stages inbreeding depression is most strongly manifested can help to direct conservation efforts 
for these species where they are needed most. Due to the reduced capacity for autonomous 
autogamy in inbred C. corymbosa plants, future work assessing the influence of disturbance on 
pollinator visitation within this species’ only confirmed extant population will be critical for its 
persistence.  

Introduction 

The mating systems of species play critical roles in their response to local ecological and 
environmental conditions. Mating system determines not only how genetically variable offspring 
are, but also a species’ ability to set seed in the absence of pollinators or mates (e.g., Kalisz et al. 
2004, Moeller 2006, Eckert et al. 2010). Despite the fact that inbreeding depression (ID), the 
reduction in fitness of selfed progeny relative to outcrossed progeny, is expected to generally 
disfavor selfing (Lande and Schemske 1985), nearly half of the plant species quantified for 
outcrossing rates display mixed mating systems, where individuals produce both outcrossed and 
selfed progeny (Goodwillie et al. 2005, Vogler and Kalisz 2001). Although ID has long been 
known to negatively affect progeny fitness (e.g., Darwin 1876, Charlesworth and Charlesworth 
1987, Husband and Schemske 1996, Keller and Waller 2002, Armbruster and Reed 2005), 
selfing may be maintained in mixed-mating species when the negative fitness consequences of 
ID for maternal plants are offset by reproductive assurance in the case of insufficient outcross 
pollen receipt (Lloyd 1992, Kalisz et al. 2004, Moeller 2006). Thus, the particular mating system 
of a plant population (i.e. selfing, mixed mating, or outcrossing) depends on historical mating 
patterns that influence the expression of ID as well as the ecological conditions experienced by 
that population. 
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Quantifying the magnitude of ID in a plant population can, in part, help to understand 
how its mating system may continue to evolve in the future. Classical theory predicts that a 
population will maintain outcrossing if ID > 0.5 due to reduced fitness of selfed progeny or 
evolve toward selfing when ID < 0.5 due to the automatic transmission advantage of self-
fertilization (Lande and Schemske 1985; Charlesworth and Charlesworth 1987). Further, the 
timing of the expression of ID during an individual’s lifespan provides more useful insight into 
the population’s mating system history than the magnitude for any one trait alone. In their meta-
analysis, Angeloni et al. (2011) found that the magnitude of ID does not differ between self-
compatible and self-incompatible species, but that the difference in the magnitude of ID among 
life history stages was significant in self-compatible species and non-significant in self-
incompatible species. Their results also aligned with those of other studies finding that the 
majority of ID is expressed in later life stages (i.e., growth and flower production) for primarily 
selfing species while primarily outcrossing species express the majority of ID either early (i.e., 
seed production) or late (Husband and Schemske 1996, Winn et al. 2011). This is likely due to 
strong selection against mutations at early life stages that are purged in highly selfing species but 
are maintained with some level of outcrossing (Husband and Schemske 1996). Additionally, 
selfing taxa are thought to efficiently purge deleterious recessive alleles over time (Husband and 
Schemske 1996, Barrett and Charlesworth 1991, but see Winn et al. 2011), although substantial 
ID may be maintained in selfing taxa if recessive mutations are only mildly deleterious and 
therefore subject to drift and fixation (Husband and Schemske 1996, Keller and Waller 2002, 
Lohr & Haag 2015). Thus, if a population experiences changes in the environment (e.g., habitat 
fragmentation) that affect the amount of inbreeding within a population, the timing of the 
resulting change in ID within a plant’s life cycle could have different demographic consequences 
for the population depending on its mating system.  

To assess the magnitude of ID within plant populations, researchers typically compare 
the mean fitness of individuals that experienced different degrees of inbreeding in nature or have 
been artificially inbred through experimental crosses in controlled conditions. The results of such 
studies have shown that ID affects a multitude of individual plant traits, including reduced fruit 
(Kephart et al. 1999, Borba et al. 2001) and seed set (Schemske 1983, Kephart et al. 1999, 
Severns 2003, Glaettli and Goudet 2006), lower germination and growth rates, and overall 
reproductive success (e.g. Wolfe 1993, Mayer et al. 1996, Kephart et al. 1999, Galloway and 
Etterson 2007, Collin et al. 2009) of inbred relative to outcrossed progeny. However, given that 
the timing of the expression of ID may depend on a population’s mating system (Kalisz 1989, 
Husband and Schemske 1996, Winn et al. 2011), accurate estimation of ID requires fitness 
measurements across an entire plant’s lifespan.  

Importantly, while most ID studies have demonstrated low female reproductive success 
of inbred progeny (e.g. Kalisz 1989, Jóhannsson et al. 1998, Kephart et al. 1999, Hayes et al. 
2005, Galloway and Etterson 2007, Mena-Ali et al. 2008), far fewer studies have quantified ID 
for male fitness traits in plants (reviewed in Losdat et al. 2014). Male fitness is an important 
component of total reproductive success because pollen traits can significantly affect the number 
of seeds sired by an individual (Snow and Spira 1991, Jóhannsson et al. 1998, Melser et al. 
1999). Further, a substantial portion of a plant’s genome is expressed in pollen grains (Mulcahy 
et al. 1996), and if deleterious mutations are present in the genome, total plant fitness could be 
reduced even if ID in female traits is relatively low (Mulcahy 1979) because low fruit or seed set 
may be due to low pollen fitness. In the few species tested for ID in male traits, inbreeding 
decreased male fitness through pollen quantity (Carr and Dudash 1995, Hayes et al. 2005), 
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pollen viability (Mayer et al. 1996, Dudash et al. 1997), and pollen tube growth (Snow and Spira 
1991, Aizen et al. 1990, Jóhannsson et al. 1998, Melser et al. 1999, Hayes et al. 2005, but see 
Pélabon et al. 2016 for a discussion of the role of pollen competition in selection). Therefore, to 
accurately assess the consequences of ID on reproductive success across the life cycle, male 
fitness needs to be taken into account.  

Endemic plant species may be especially sensitive to environmental disturbances that can 
increase ID and as such are valuable systems in which to investigate ID. Endemic species by 
definition have limited geographic distributions, specialized habitat preferences (Kruckeberg and 
Rabinowitz 1985), and can maintain small population sizes (Magurran and Dornelas 2010, Mace 
et al. 2010, Butchart et al. 2010). Further, many endemic taxa are species of increasing 
conservation concern and often occur in “biodiversity hotspots,” areas of both high endemism 
and high vulnerability to disturbance (Myers et al. 2000). Habitats of endemic species commonly 
face encroachment associated with human disturbance and development (Cincotta et al. 2000), 
resulting in habitat loss (Wilcove et al. 1998, Brooks et al. 2002, Dirnböck et al. 2011) and 
habitat fragmentation that leads to reduced population sizes (Fischer and Stöcklin 1997, Wilcove 
et al. 1998) that can drive coincident changes in pollinator visitation rates (Spigler 2009). In 
addition, altered environmental conditions driven by global climate change (Loarie et al. 2009, 
Hughes et al. 2003, Thomas et al. 2004, Malcom et al. 2006) can further destabilize endemic 
populations. Together, these factors call into question how the mating systems of endemic plant 
species are shaped by ID (Spigler et al. 2010, Spigler et al. 2017) and how they may change in 
the future in the face of anthropogenic threats. 

ID may be commonly expressed in endemic plant populations due to their limited size 
and isolation (Karron 1987, Paschke et al. 2002). Further, ID in small or highly fragmented 
endemic populations may increase due to higher rates of mating with relatives (i.e., biparental 
inbreeding, Ellstrand and Elam 1993), increased heterospecific pollen transfer, a decline in 
pollinator visitation to small populations that drives increased selfing (Spigler et al. 2010, Knight 
et al. 2005, Spigler 2018), or combinations of these forces. Likewise, genetic variation may 
already be reduced in populations of rare or endemic species due to either drift and founder 
effects, or strong directional selection toward phenotypes best fit to a limited number of habitats 
(Karron 1987, Aguilar et al. 2008). Because of the demographic (Cosset et al. 2019, Leimu et al. 
2010) and genetic (Jump & Peñuelas 2006, Keller & Largiader 2003, Aguilar et al. 2008) 
impacts of habitat changes associated with human disturbance, the timing and magnitude of ID is 
likely to influence the long-term persistence of many endemic plant populations. Further, ID 
itself may feedback on the expression of the mating system and be environment-dependent 
(Cheptou & Donohue 2010, Cheptou & Schoen 2002). Thus, given the complex interplay among 
a species’ mating system, ID, and drift, understanding the mating system and the magnitude of 
ID in populations of endemic species is crucial for their conservation in the face of 
anthropogenic threats.  
 Here I present results from a study of ID in the California endemic Collinsia corymbosa 
(Plantaginaceae). I investigate the effects of mating system and ID on plant traits across the life 
cycle including measures of both male and female fitness by comparing offspring derived from 
both self and outcross pollinations. Specifically, for the narrow endemic C. corymbosa I ask:  
 

1) What is the degree of selfing in the wild? 
2) To what extent does inbreeding depression manifest across seedling, vegetative, and 

both female and male reproductive life stages?   
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3) Does inbreeding depression affect the ability of this species to produce offspring 
through selfing?  

 
I predict that C. corymbosa’s fitness will be critically influenced by the interplay of the mating 
system, inbreeding depression, and the fitness differences of pollen produced by selfed or 
outcross pollination events. 

Methods 

Study system 

Collinsia corymbosa Herder (Round-Headed Chinese Houses; Plantaginaceae), is a 
winter annual that is a narrow endemic native to the California coast (Fig. 1.1 in Appendix I). 
The California Department of Fish and Game assigns C. corymbosa the S1 “Critically Imperiled” 
ranking at the state level on its Special Plants, Bryophytes, and Lichens List, and it is rare or 
endangered in California (California Natural Diversity Database 2020). Additionally, as of 2016, 
this species is known from only 11 populations in five counties in California, and is presumed 
extirpated from San Francisco County (California Native Plant Society 2020). Confirmed extant 
populations have a highly restricted distribution: they occur only on coastal dunes with the 
majority of recent (<20 years) observations occurring in a single location (B. Baldwin, personal 
communication; Fig. 1.2).  

Flowers of C. corymbosa are arranged in a compact inflorescence (Fig. 1.1 inset) and 
flowering at the study site, dunes north of Mill Creek, Mendocino County, CA, occurs from 
April to June. The bilaterally symmetrical flowers are large compared to those of other species in 
the genus Collinsia (14-22 mm; Randle et al. 2009), borne in whorls with 5 to 20 simultaneously 
open flowers, and are primarily visited by bees (S. Kalisz, pers. obs.). Each flower can produce 
up to 12 seeds (S. Kalisz, unpublished data). Like other members of the genus Collinsia, the 
flowers of C. corymbosa are hermaphroditic, self-compatible, and protandrous, but are capable 
of high rates autonomous fruit set in the absence of pollinators (83% of C. corymbosa flowers set 
fruit autonomously in a growth chamber experiment; Kalisz et al. 2012).  
 Seeds were collected in individual coin envelopes from 29 naturally-pollinated 
individuals from two large adjacent areas occupied by C. corymbosa on dunes north of Mill 
Creek, Mendocino County, CA in the spring of 2004. Seeds were transported to the lab and 
stored at room temperature. In November 2006, seeds were planted in Sunshine germination 
mix™, maintained in growth chambers under 18°C/1°C, 10-h light/14-h dark day/night 
conditions in a Percival chamber, and the soil was kept uniformly moist to induce germination. 
After the first true leaves developed (early 2007), all individuals were transplanted to 2 ½” pots 
containing Fafard™ potting mix and placed in the greenhouse. A subset of plants from 18 of the 
29 maternal families were harvested to estimate the mating system of the population. The 
remaining plants grew to flowering and were used in the experiments described below.  

Mating system estimation 

 Aboveground tissue was harvested from 5-10 seedlings/family for 18 seed families and 
stored individually at -80 °C. To extract DNA, samples were individually placed in liquid 
nitrogen, ground, and processed using the CTAB DNA extraction protocol adapted from Doyle 
& Doyle (1987). Progeny were genotyped using four fluorescently tagged microsatellite markers 
developed for Collinsia verna (A131, A134, B116, B105) following the published protocols 
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(Dunn et al. 2005). Multiplex fragment analyses (Applied Biosystem 3730) and allele calling 
(Genemapper software, Applied Biosystems, Carlsbad, CA, USA) were used to determine the 
multi-locus genotypes of each individual progeny. 
 To calculate the average outcrossing rate of the population, multi-locus genotype data 
were analyzed with the maximum-likelihood program MLTR (Ritland 1990) with Newton-
Raphson iteration. Confidence intervals (95%) were calculated as the interval from the 2.5- to 
97.5- percentile of the distribution of 1000 replicate bootstrap estimates of the multi-locus 
outcrossing rate estimates (tm), with the progeny (family) array as the unit of resampling.  

Seedling and vegetative traits 

One individual from each of the 29 maternal families grown in the growth chamber as 
described above was used to produce selfed and outcrossed progeny for inclusion in the ID 
experiment. On each of these plants, flowers on the second flowering whorl or higher were 
assigned to self or outcross treatments, marked with color coding fabric paint, and emasculated. 
After 5-6 days (to ensure stigmatic receptivity), hand pollinations of the emasculated flowers 
were then performed with either self-pollen (taken from another flower of the same plant) or 
outcross-pollen (a mixture of pollen taken from flowers of 4-5 other plants). The resulting fruits 
and seeds were then collected when mature. Hereafter, I refer to a “maternal family” as the seeds 
and the resulting plants of a single individual included in this crossing program.  

Seeds from each fruit per maternal family were counted and individually weighed, and in 
2007, seeds were planted and maintained to germination in a Percival chamber as described 
above. Two to eight selfed (average = 3.9) and two to eight outcrossed progeny (average = 4.1) 
were randomly chosen from each maternal family for inclusion in the study. In total, 23 of the 29 
maternal families had sufficient progeny to be included in the study. To estimate inbreeding 
depression in early life stages, germination dates were scored three times each week after 
planting. These resulting seedlings were transplanted into 2 ½” pots containing Fafard ™ potting 
mix and transferred to the greenhouse for the remainder of the study.   
 To assess developmental instability predicted to accompany inbreeding (Kalisz 1989, 
Sherry and Lord 1996, Clarke 1995), trichome density and leaf asymmetry were measured on a 
single, most recently fully expanded leaf from the third vegetative whorl of each plant. For each 
leaf collected, the total number of trichomes was counted across the upper surface and a 
photograph of the leaf was taken using the Optimus imaging program. Total leaf area and leaf 
area to the left or right of the midrib were then calculated from this image. Trichome density was 
calculated as the number of trichomes on the upper leaf surface divided by total leaf area, and 
leaf asymmetry as the absolute value of the difference between the leaf area to the left vs. right 
of the midrib. At the conclusion of the experiment, plants were collected, dried, and weighed in 
order to measure total above ground biomass. 

Floral traits 

To estimate ID in floral traits, plants were scored weekly for the appearance of flower 
buds and counted the total number of flowers produced by each plant. To estimate autonomous 
fruit set per plant, 10 flowers along the main stem of each plant were scored for fruit set as a 
binary trait (1 = fruit, 0 = no fruit) starting at the 4th floral whorl. Because plants were grown in a 
pollinator-free greenhouse, any seeds produced were considered to be the product of autonomous 
selfing. Of the 10 fruits scored for fruit set, mature fruits were collected and the number of seeds 
per fruit were counted. I used the average seeds per fruit from these 10 flowers as an estimate of 
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average autonomous seed set per fruit for each individual. I then calculated total autonomous 
seed set per individual as: (average autonomous seed set per fruit * total flower production).  

Male fitness: Pollen germination and pollen tube growth 

To estimate the effect of ID and flower age on the male fitness metric of pollen 
germinability, percent pollen germination was quantified from selfed and outcrossed progeny 
using 20 outcross and 18 selfed plants randomly chosen from the study group. From each plant, 
one newly dehisced anther and one old anther (>7 days old) that was fully dehisced and whose 
pollen had fallen into the keel of the flower were collected. Pollen from each anther was then 
spread across Petri plates containing BKM growth medium (Kearns and Inouye 1993) and 
incubated at 22°C. Percent pollen germination was recorded for each individual 15-, 30-, and 
120-minutes post-spread by assessing 50-100 pollen grains along a continuous transect across the 
middle of the plate under a light microscope. Each pollen grain on the transect was scored as 
‘germinated’ (having a discernible pollen tube) or ‘not germinated’ (no pollen tube), and plates 
were returned to the incubator between sampling points. Percent pollen germinated was 
calculated as: (# pollen grains with pollen tubes)/(total # pollen grains assessed). 

To quantify the effects of ID, flower age, and maternal and paternal cross type on pollen 
tube growth, hand-pollinations were performed using pollen from selfed and outcrossed plants 
and pollen tube growth in the style was measured. Because rates of callose plug formation are 
correlated with pollen tube growth rate (Snow and Spira 1991) and can differ between self and 
outcrossed pollinations (Lush and Clarke 1997, Tupy 1959), inter-callose plug (ICP) distances 
between sequential callose plugs were measured as a proxy for pollen tube growth rate. First, at 
least two flowers on each of 46 plants (24 outcross, 22 selfed) were emasculated to prevent 
autonomous self-fertilization. When the stigmas of these pollen recipient ‘maternal’ plants were 
mature, they were then pollinated with pollen from one of four pollen cross types: (1) self-pollen 
from a recently opened flower, (2) outcross-pollen from a recently opened flower, (3) self-pollen 
an older flower (>7 days old), (4) outcross-pollen from an older flower.  Outcross-pollen was 
collected from one of 40 pollen donor ‘paternal’ plants (20 outcross, 20 selfed) while self-pollen 
was collected from flowers of the same plant (103 hand-pollinations total). Four hours after each 
hand pollination, styles were collected and fixed in 70% ethanol. Styles were then digested in 
1M NaOH for two hours, placed on microscope slides with 0.5% aniline blue, squashed, and 
examined under a UV light microscope. The first four ICP distances from the stigma end of the 
style were measured for each pollen tube to calculate an average ICP distance, and the minimum 
and maximum ICP distance was recorded for each maternal plant and cross type. 

Data analysis 

I performed all statistical analyses in R (R Core Team 2019). To analyze the effects of ID 
on plant traits across the seedling, vegetative, flowering, and late life stages of the C. corymbosa 
life cycle, I compared the performance of selfed and outcrossed plants using mixed effects 
models with family as a random effect and cross type as a fixed effect. The significance of cross 
type in explaining fitness differences between selfed and outcrossed plants at all life stages 
(except for initial seed mass) was analyzed using ANCOVA with initial seed mass as a covariate. 
I checked all variables for ANCOVA assumptions before including them in my analyses and 
transformed them where appropriate. For variables with non-normal error structures, I utilized 
generalized linear mixed effects models using the lme4 package (Bates et al. 2014). When 
analyzing days to germination, days to flowering, and number of flowers, I used a Poisson error 
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structure with a log link function. I modeled autonomous fruiting ability as a binomial variable 
where 1 represented the condition that a plant set at least one fruit out of ten, and 0 represented 
the condition that a plant set zero fruits out of ten. Then, I subset the data to include only plants 
that set at least one seed out of ten fruits to model fruit set, autonomous seed set and estimated 
total autonomous seed production as normally distributed random variables. To test for the 
presence of family-level variation in inbreeding depression in individual plant traits (‘VIFLID’, 
Kelly 2005), I took a model comparison approach by performing X2 tests on reduced and full 
models where reduced models included maternal family as a random intercept effect and full 
models included family as a random intercept effect and cross type as a random slope effect. To 
summarize the magnitude of ID across the life cycle, I calculated ID as δ = 1-(Ws/Wo) where (Ws 
= fitness of selfed individual, Wo = fitness of outcrossed individual). Due to differential survival, 
not all traits were measured on all plants, so I constructed and analyzed separate models for each 
plant trait. 
  To analyze the effects of ID on the male fitness trait of pollen germination, I used a split-
plot ANOVA with pollen age and time as within-subject factors and cross type as a between-
subject factor. I treated time as a factor with three levels: 15-, 30-, and 120-minutes. Post-hoc 
tests were performed to compare pollen germination of selfed and outcrossed plants at each time 
point and pollen germination at each time point within each cross type with Bonferroni 
adjustment for multiple comparisons. For the male fitness trait of pollen growth measured as ICP 
distance with time, I log-transformed ICP data and analyzed it as a normally distributed random 
variable as described above with both maternal and paternal family as random effects. Pearson 
Product-Moment Correlations were calculated between pollen traits and floral traits using the 
cor.test function. 

Results 

Mating system estimation 

The outcrossing rate (tm) determined from multi-locus genotype data was 0.79 ± 0.1 SE, 
indicating that for the sampled year, this C. corymbosa population primarily set seed via 
outcrossing, and lies at the upper border between mixed mating species and highly outcrossing 
(Goodwillie et al. 2005; Winn et al. 2011).  

Inbreeding depression in plant traits across the life cycle 

Seeds produced from self-pollination of plants raised from field-collected seeds had 
significantly lower mass than those produced from outcross pollination (F1,30.3 = 4.19, p = 0.05). 
Model comparison revealed family-level variation in this trait; the model that allowed both the 
slope and intercept to vary by family explained more variation in the data than the model that 
allowed the intercept alone to vary (X2 = 79.8, df = 1, p = 2.2 x 10-16; Table 1.1). Germination 
rate was low overall (16% on average) regardless of cross type or seed mass. Cross type had no 
effect on the seedling trait of germination success or any of the three vegetative traits of trichome 
density, leaf area, or leaf asymmetry (Table 1.2). Selfed plants had significantly lower total 
biomass than outcrossed plants at the end of the experiment (F1,179.4 = 7.87, p =0.006; Table 1.2). 
Selfed plants produced significantly fewer flowers (X2 = 27.75, df = 1, p = 3.59 x 10-7) and had 
lower autonomous fruiting ability (X2 = 13.74, df = 1, p = 2.10 x 10-4) than outcrossed plants.  
For the plants that did set fruit, however, there was no significant difference in autonomous seed 
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set, fruit set, or estimated total autonomous seed production between selfed and outcrossed plants 
(Table 1.2).  

Maternal cross type had a significant effect on pollen germination (F = 10.10, p = 2.00 x 
10-3; Table 1.3); however, post-hoc tests with Bonferroni adjustment for multiple comparisons 
revealed that pollen germination was not significantly different between selfed and outcrossed 
plants at any time point at the significance level of p = 0.006. Percent pollen germination 
increased similarly with time (F = 117.22,211, p =5.83 x 10-35; Fig. 1.3) and with younger pollen 
(pollen that was < 7 days old; F = 6.241,211, p = 0.013; Table 1.3) for both selfed plants and 
outcrossed plants. On average, germination of new pollen was 8.6% greater than germination of 
old pollen (means = 51.5% ± 2.36 SE for new pollen and 42.9% ± 2.77 for old pollen). For ICP 
distances of pollen on plant stigmas after hand pollinations, neither maternal cross type, paternal 
cross type, nor pollination cross type had a significant effect on any ICP distance metric 
(average, minimum or maximum), but paternal cross type did have a marginally significant 
effect on minimum ICP distance (F1,95.5 = 3.47, p = 0.07; Table 1.3), with self-pollen growing 
more rapidly than outcrossed pollen. I found no significant correlations between male fitness 
metrics of pollen germination and ICP distance and seed or fruit set. However, correlation 
analysis was limited due to the large number of plants that failed to set any fruits (Fig. 1.4), and 
the fact that I did not measure male fitness traits on all plants, reducing my sample size and my 
power to detect correlations between male fitness and female reproductive success. 

Overall, the magnitude of ID was greatest in autonomous fruiting ability (δ = 0.448) and 
flower production (δ = 0.225), resulting in selfed plants setting significantly fewer fruits (and 
therefore fewer seeds per plant) and having lower estimated total autonomous seed set overall. 
ID was lowest in seedling and vegetative traits (-0.003 > δ > 0.210 for seedling and vegetative 
traits together) and greatest in female reproductive traits (-0.027 > δ > 0.448; Fig. 1.5). Although 
selfed seeds were significantly lighter than outcrossed seeds, the magnitude of the difference 
between selfed and outcrossed plants for initial seed mass was much smaller than that for later 
life traits (see Fig. 1.6). 

Discussion 
The population of Collinsia corymbosa investigated is primarily outcrossing and varied 

in both the timing and the magnitude of inbreeding depression (ID) across the life cycle. My 
results support those of past studies (Husband and Schemske 1996, Angeloni et al. 2011) that 
find the greatest magnitude of ID in mixed mating and primarily outcrossing species to be 
expressed in seed/fruit production and reproductive effort (number of flowers). However, despite 
the fact that C. corymbosa is capable of autogamy, and has been found in a past study to be an 
efficient autonomous selfer based on fruit set (0.83 ± 0.01 SE, Kalisz et al. 2012), I found that 
both outcrossed and inbred plants in my study expressed extremely low autonomous fruit set 
(outcrossed plants = 0.14 ± 0.02 SE, selfed plants = 0.08 ± 0.01 SE). This disparity between 
studies may relate to differences in growth conditions and which fruits were sampled. Kalisz et. 
al. (2012) grew flowering plants in a growth chamber and limited fruit collection to the third, 
fourth and fifth floral whorls on the main stem of the plant, while plants in this study were grown 
to flowering in a greenhouse and 10 fruits were randomly selected above the fourth floral whorl. 
Since flowers on the upper flowering whorls of Collinsia species often fail to set seed putatively 
due to resource limitation, this difference in the location of the fruits sampled could contribute to 
the differences in results between studies. Further, my study has a greater sample size than that 
used in Kalisz et al. 2012 (233 plants measured for autonomous fruit set in this study compared 
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to 8 in Kalisz et al. 2012). Regardless of this disparity, my results demonstrate that inbreeding 
clearly reduced the ability of plants to produce offspring through autonomous selfing. Although 
autonomous seed set did not differ between selfed and outcrossed plants when they did set fruit, 
and selfed and outcrossed seeds did not differ in their germination rates, inbreeding significantly 
reduced the likelihood that a plant would set at least one fruit out of the ten measured. Further, 
inefficient selfing based on fruit set was not offset by high flower production; selfed plants also 
produced 23% fewer flowers on average than outcrossed plants. Together, these two factors 
acted synergistically to greatly reduce the total estimated autonomous seed set of selfed plants; 
this trait demonstrated the greatest ID among all traits (δ = 0.568).  

If C. corymbosa plants in the wild also express poor selfing ability, it may help explain 
this species’ relatively high outcrossing rate in the field (t = 0.79 ± 0.1 SE). The outcrossing rate 
of this species is on the lower end of functionally outcrossing (t > 0.8, Goodwillie et al. 2005) 
but is on the high end for the genus; most Collinsia species fall within the range of outcrossing 
rates that defines mixed mating (0.2 < tm < 0.8; Kalisz et al. 2012). Given the poor selfing ability 
of C. corymbosa plants found in this study, the outcrossing rate observed in this population could 
reflect higher abortion rates of selfed fruits and seeds if maternal plants preferentially provision 
outcrossed progeny or low effectiveness of self-fertilization. Additionally, the outcrossing rate 
estimated here is greater than that estimated for seeds collected in a different year from the same 
C. corymbosa population (tm = 0.6, Kalisz et al. 2012), indicating that this population may 
experience annual fluctuations in pollinator availability or visitation rates. All Collinsia species 
are capable of autonomous self-pollination when the style elongates and places the stigma in the 
vicinity of dehisced anther sacs at the front of the keel petal (developmental protandry; Kalisz et 
al. 2012, Kalisz et al. 1999). Thus, the outcrossing rate of C. corymbosa in my study likely 
reflects the outcross pollen deposition by pollinators before self-pollination was achieved.  

In contrast to the result that ID decreased female fitness through reduced autonomous 
autogamy, the result that ID in male fitness traits was less pronounced was surprising. Pollen 
tube growth rates did not differ among cross types. I anticipated lower pollen performance of 
selfed plants given that the majority of ID studies including male fitness traits have shown 
reduced pollen performance with inbreeding (reviewed in Losdat et al. 2014). However, while ID 
in pollen tube growth is expected under conditions of pollen competition, directional selection 
for traits that enhance pollen competition may not be strong in populations that typically 
experience pollen limitation of seed production (Mulcahy & Mulcahy 1987). Although I did not 
measure pollen limitation of C. corymbosa in the field, pollen limitation is widespread in natural 
plant populations (Knight et al. 2005) and likely contributes to the maintenance of selfing in 
mixed mating species such as C. corymbosa (Baker 1955, Stebbins 1974, Ashman et al. 2004). 
Further, while the population examined in this study was relatively large (~1300 plants), it is an 
isolated population. Because fragmentation (Cunningham 2000, Eckert et al. 2010) is predicted 
to decrease pollinator visitation and therefore increase inbreeding for mixed-mating plants 
(Spigler et al. 2010), it is likely that the total fitness of individuals in this population is more 
strongly limited by outcross pollen receipt than by the competitive ability of pollen. Thus, male 
traits influencing pollen competition may be less important to overall fitness than traits that 
influence pollinator attraction in C. corymbosa.  

Pollen quantity and quality may be more important than pollen competition in 
populations where seed production is typically limited by outcross pollen receipt because 
conspecific pollen grains on the stigma are lower than the number of available ovules per flower. 
Therefore, faster growing pollen tubes would not increase fitness when pollen competition is 
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absent. Surprisingly, while I found that pollen from selfed plants had greater germinability 
overall at each time point, and the difference between selfed and outcrossed plants decreased 
with time until 120 minutes when germination was approximately equal. It is unclear why selfed 
plants may have higher pollen germination rates, and there are no studies to my knowledge 
showing a similar pattern. However, in a study that compared germinability of pollen produced 
over the floral lifespan in a primarily selfing and primarily outcrossing Collinsia sister species 
pair, Malagon et al. (2019) found that the selfing species’ pollen germinability declined only 
slightly with age (17%) compared to the dramatic decline in germinability of the outcrossing 
species’ pollen (88%). Because outcrossing species allocate more resources to larger, showier, 
and often more numerous flowers than primarily selfing species (Goodwillie et al. 2010), the 
male fitness of these outcrossing species may be more resource-limited than that of selfing 
species. Although Malagon et al. (2019) compared two species with different mating systems 
and my study compared inbred and outbred plants of the same species, resource allocation to 
male and female reproduction could play a role in the performance of more highly inbred 
individuals within a single year. The selfed plants in my study produced significantly fewer 
flowers than outcrossed plants, so it is possible that they allocated more reproductive resources 
to male traits, resulting in greater pollen germinability. Additional studies that disentangle the 
interplay of mating system, pollen limitation, and inbreeding depression in resource allocation to 
male and female function are needed.  

The mating system of C. corymbosa and the resulting expression of ID across the life 
cycle may play a role in limiting its distribution. Species that are efficient at autonomous selfing 
are thought to be better adapted for colonizing new habitats because they possess the ability to 
set seed in the absence of conspecific mates (Baker 1955, Stebbins 1957, Grossenbacher et al. 
2014; but see Pannell et al. 2015). This pattern holds true in the genus Collinsia: smaller-
flowered species that are more effective autonomous selfers occupy larger ranges and more 
abiotic niches than their larger-flowered, primarily outcrossing sister species (Randle et al. 2009; 
Grant and Kalisz 2019). This pattern is also seen for the more selfing sister species of C. 
corymbosa, C. barstiifolia, which occupies a significantly larger range and habitat types than C. 
corymbosa (Randle et al. 2009; Grant and Kalisz 2019).  However, given the extremely limited 
distribution of C. corymbosa compared to all other Collinsia species, factors other than mating 
system are likely at play. The range of C. corymbosa is likely limited by habitat specialization: 
extant C. corymbosa populations are restricted to coastal dunes. Thus, colonization in this 
species may be limited by its primarily outcrossing mating system, limited seed dispersal, and 
the narrow range of suitable habitats that it can establish and grow to flowering in post-dispersal.  

Conclusion 

 My study points to negative effects of ID in this narrow endemic annual species, C. 
corymbosa.  Decreased pollinator service in the wild will likely result in significant ID in C. 
corymbosa. The historic range of C. corymbosa has been reduced by human development to few 
remaining populations, and it is current locations, on dunes along beaches of the Pacific Ocean, 
are threatened by foot traffic (California Native Plant Society 2020). The further reduction of 
already small population sizes could increase ID because mildly deleterious alleles are more 
likely to drift to fixation in smaller populations (Barrett and Kohn 1991). Further, because the 
genetic diversity of a population influences its ability to evolve in response to changing 
environments (Knight et al. 2018), inbreeding in this population could reduce its capacity to 
adapt in response to disturbance and climate change in the future. Although small populations 
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tend to express lower magnitude ID than large populations (Angeloni et al. 2011) and may be 
more efficient at purging strongly deleterious alleles, large, primarily outcrossing populations 
that experience recent reductions in size may experience severe reductions in mean fitness 
overall despite low inbreeding depression due to increased genetic load (Lohr & Haag 2015). 
Given the low autonomous fruit set in this species even in outcrossed individuals, pollinator 
service will be important for this species’ persistence. If pollination services decline in the future, 
the maintenance of genetic diversity within populations could be crucial to the ability of C. 
corymbosa to persist via evolution toward more efficient selfing. If this species cannot 
effectively compensate for reduced outcrossing (Eckert et al. 2010) because of low overall 
autonomous selfing ability, as suggested by my results, then this population is likely to decline. 
Further studies that take population history (e.g. annual size fluctuations) into account when 
evaluating the relationship between mating system and the expression of ID across the life cycle 
will be crucial for understanding how other endemic species with few extant populations may be 
most effectively conserved in the future.  
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APPENDIX I 

 
Table 1.1 Results of model comparisons between full and reduced models for the effects of cross 
type on seedling, vegetative and reproductive traits of Collinsia corymbosa. Full models had 
cross type as a random slope effect and family as a random intercept effect, while reduced 
models had family as a random intercept effect only. Seed mass was included as a covariate in all 
models. 
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Table 1.2 Split-plot analysis of variance for the effects of maternal cross type, pollen age, and time on pollen germination and analysis 
of covariance for the effects of pollination cross type, maternal and parental cross type, and pollen age on male fitness traits of 
Collinsia corymbosa. Pollen age and time were treated as within-subjects factors and cross type was treated as a between-subjects 
factor, and time was a factor with three levels: 15, 30, and 120 minutes. Pollination cross type = pollen from the maternal plant (self-
pollination) or from another individual (outcross pollination), maternal/paternal cross type = whether the maternal/paternal plant was 
the product of a self- or outcross-pollination, and pollen age = pollen came from a newly opened flower or an older flower (open for 
>7 days).  
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Table 1.3 Analysis of covariance for effects of cross type on seedling, vegetative and 
reproductive traits of Collinsia corymbosa with initial seed mass as a covariate. Autonomous 
fruiting ability was modeled as a binary variable where 1 represents the condition that a plant set 
at least one fruit out of ten randomly sampled fruits, and 0 represents the condition that a plant 
set zero fruits out of ten. Fruit set, autonomous seed set, and estimated total autonomous seed 
production were modeled for plants that set at least one fruit out of ten randomly sampled fruits.  
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Figure 1.1 Coastal California dune habitat of Collinsia corymbosa from which seeds were 
collected at dunes north of Mill Creek, Mendocino County, CA. Inset: C. corymbosa grown in 
greenhouse.   
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Figure 1.2 Observations of Collinsia corymbosa a) across its entire range, b) in and surrounding 
dunes north of Mill Creek, Mendocino County, CA and c) in and surrounding the San Francisco 
Bay area, San Francisco County, CA. Observation records were obtained from research-grade 
iNaturalist observations (iNaturalist 2020) and the University of California, Berkeley Jepson 
Herbarium (UC). 
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Figure 1.3 Effect of time and cross type on pollen germination rates for pollen from new flowers 
in selfed and outcrossed Collinsia corymbosa plants. Older pollen similarly decreased 
germination rates for both selfed and outcrossed plants (not pictured). Boxes with different 
letters are significantly different from one another at the Bonferroni-adjusted significance level 
of p < 0.006.  
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Figure 1.4 Distribution of autonomous fruit set (proportion of fruits set out of ten) of selfed and 
outcrossed Collinsia corymbosa plants. 
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Figure 1.5 Inbreeding depression (ID) across the life cycle of Collinsia corymbosa. For each 
plant trait measured at a given life stage, inbreeding depression was calculated as δ = 1-
(Ws/Wo), where Ws = mean fitness of selfed plants and Wo = mean fitness of outcrossed plants.  
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Figure 1.6 Effect of cross type (selfed or outcrossed) on Collinsia corymbosa seedling fitness components of a) initial seed mass, b) 
percent germination, and c) days to germination; vegetative fitness components d) trichome density, e) leaf area and f) leaf 
asymmetry; female reproductive fitness components g) days to first flower, h) number of flowers, i) autonomous fruit set (10 
randomly sampled fruits), j) autonomous fruit set of plants that set at least one fruit out of the ten sampled, k) autonomous seed set of 
plants that set at least one fruit out of the ten sampled, l) total estimated autonomous seed production (number of flowers x seed 
set/fruit) for plants that made at least one fruit out of the ten sampled; and late life fitness component m) total biomass. Asterisks 
represent a significant difference between selfed and outcrossed individuals for a given fitness component (p < 0.05). Error bars 
represent mean ± SE.  
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CHAPTER II: SHIFTS IN SPRING PHENOLOGY IN RESPONSE TO SPRING 
TEMPERATURE IN EASTERN TENNESSEE 
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Abstract 
Phenology is a key trait that can determine survival and reproduction, and thus is crucial 

to the ultimate fitness of organisms. Shifts in plant phenology in response to rising temperatures 
are one of the clearest indicators of the effects of recent climatic change. In North America, 
many species in the New England region are currently flowering earlier in the year relative to 
historical flowering dates in response to rising spring temperatures. However, comparatively 
fewer studies have examined phenological shifts in the Southeastern United States, a hotspot of 
biodiversity in North America. Further, the few existing studies of phenology in the Southeastern 
US do not account for ecoregional variation, a potentially important predictor in an area 
characterized by great variation in abiotic conditions over relatively small geographic areas 
throughout the lower Appalachians. Here, I use 10000+ digitized herbarium records along with 
associated location-specific temperature data to characterize how the phenologies of 14 common 
spring-flowering plant species in Eastern Tennessee, a hotspot of biodiversity in the Southeastern 
US, have responded to warming temperatures over the past century. My results illustrate that, at 
the community level, plants in different ecoregions differ in their sensitivity to temperature, with 
plants in the Ridge & Valley ecoregion flowering 2.7 days earlier per degree Celsius warming 
compared to 1.3 days for plants in the Blue Ridge ecoregion. Additionally, I found that the 
timing of early flowering at the community level is especially sensitive to spring temperature in 
both ecoregions. Finally, I show that the majority of spring-flowering species in both ecoregions 
demonstrated phenological sensitivity of flowering to spring temperature, indicating that in 
warmer years, the majority of species flowered earlier. Despite the demonstrated sensitivity of 
communities and species to spring temperature, I did not find support for significant shifts in 
community flowering within eastern Tennessee in recent decades, likely due to increases in mean 
annual temperature in the southeast being driven primarily by warming summer (rather than 
spring) temperatures. These results highlight the importance of including ecoregion as a 
predictor in phenological models to capture potential variation in temperature sensitivity among 
populations, and suggest that even small increases in temperature can have dramatic effects on 
species’ and communities’ phenologies in response to climate in the Southeast.  

Introduction 
One of the best demonstrated effects of recent climate change are shifts in phenology in 

response to warming temperatures (Parmesan 2006, Jones and Daehler 2017, Davis et al. 2015). 
Because the timing of developmental events in spring-flowering plant species is highly sensitive 
to environmental conditions, these species are excellent indicators of climate change (Polgar & 
Primack 2011) and have been the focus of several phenological studies (reviewed in Willis et al. 
2017). In the understory of temperate forests, spring-flowering plants are adapted to a seasonal 
climate that includes cyclical fluctuations in temperature and light availability after canopy 
closure. As a consequence, phenological shifts in these species have the potential to affect plant 
fitness by altering carbon gain (Heberling et al. 2019), synchrony with pollinators (Kudo and 
Cooper 2019, Forrest 2015), and the length of the growing season (Meineke et al. 2021).  

Long-term observational datasets are considered the “gold standard” of phenological data 
(Davis et al. 2015) and have been valuable resources for studying phenological trends. Studies 
utilizing such data sets have revealed patterns in phenological events that are easy to measure 
and have a history of long-term observation, such as earlier first flowering dates (Piao et al. 
2018) and woody plant spring bud break and leaf-out (Panchen et al. 2014) in response to 
warming temperatures. However, such studies require long-term monitoring efforts and are often 
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limited in taxonomic or temporal scope (Wolkovich et al. 2014, Park et al. 2018). Herbarium 
collections have become increasingly popular tools for conducting phenological research over 
the past decade because they include location-specific historical data that allow for the 
exploration of long-term trends resulting from climate change (Jones and Daehler 
2018). Herbarium specimens provide a snapshot of a species at a given date and place and hold a 
wealth of information including morphology, the presence of reproductive structures, herbivory, 
and other traits that cannot be captured with observational data alone. Further, flowering dates 
estimated from herbarium records are shown to reflect field observations, substantially increase 
sampling range, and alleviate sampling bias in climatic space when comparing historic and 
contemporary observational data across climatic conditions (Davis et al. 2015). 

Much of the phenological research in North America utilizing herbarium specimens has 
taken place in cooler environments above 38º latitude, primarily in New England (Bertin 2015, 
Davis et al. 2015, Willis et al. 2010, Primack et al. 2004, Calinger et al. 2013, Gallinat et al. 
2018). These studies show significant advances in flowering phenology over the past century in 
response to rising temperatures, with the strongest shifts typically occurring in spring flowering 
species. In contrast, long-term phenological trends in the southeastern US, a hotspot of 
biodiversity in North America, remain poorly understood. One study in West Virginia shows that 
the spring ephemerals Erythronium americanum and Dentaria laciniata have advanced their 
spring flowering by 0.91 days per decade over the past century (Petrauski et al. 2019); however, 
this study is limited in that it examined the phenological responses of only two species. Another 
study analyzing over 19,000 records of spring-, summer- and autumn-flowering species in South 
Carolina revealed that the earliest flowering species are the most sensitive to increasing March 
temperatures, but that there have been no long-term advances in spring flowering nor spring 
temperature over the past century (Park and Schwartz 2015). Thus, more work is needed to 
understand the importance of spring temperature in driving plant phenology in plant 
communities of the southeastern US. 

One often-overlooked factor that may potentially influence variation in phenological 
response across broad geographical areas is the ecoregion from which observations are recorded. 
An ecoregion is an area of relative homogeneity in abiotic and biotic factors, including soils, 
vegetation, climate, geology, and physiography (Griffith et al. 1997). Ecoregions are defined by 
a hierarchical system that divides North America into increasingly narrow regions based on these 
shared features. By ignoring ecoregions, phenological studies could be missing potential 
information on how sensitivity varies within plant communities and individual species across 
relatively small geographic areas because climatic change is not geographically uniform.  

In this study, I focus on two distinct ecoregions. The easternmost portion of Tennessee is 
comprised of two ecoregions, the Blue Ridge and the Ridge & Valley, that have different 
geological formations and experience different climates. The Ridge & Valley (elevation 152–
1311 m; annual rainfall 1350 mm; average winter and summer temperatures 2 and 25 °C, 
respectively; Hart et al. 2008) is characterized by a series of parallel, even-crested ridges and 
valleys of primarily limestone. The climate is classified as mesothermal with short, mild winters 
and long, hot summers (Hart et al. 2008). In contrast, The Blue Ridge (elevation 600–1600 m; 
annual rainfall 1600 mm; average winter and summer temperatures 0.56 and 22 °C, respectively) 
is characterized by steep slopes and narrow valleys with and montane mesic forests dominated 
by oak–hickory communities (Surasinghe and Baldwin 2014).  
 
In this study, I address the following questions: 
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1) Are spring-flowering species in eastern Tennessee presently flowering earlier than 

they did in the prior half of the 20th century? 
2) How phenologically sensitive are spring-flowering species and communities to spring 

temperature in eastern Tennessee? 
3) Does ecoregion explain variation in community- and species-level responses to spring 

temperature? 

Methods 

Study species 
I chose to focus on spring-flowering plant species because they are known to be 

particularly sensitive to spring temperature when compared to later flowering species (Fitter and 
Fitter 2002, Park and Schwartz 2015) and are therefore excellent indicators of climate change 
(Polgar et al. 2011). To be included in this study, each spring-flowering species had to meet the 
following criteria: (i) there were at least 50 unique observations available with county-level 
locality information, (ii) date information included the year, month, and day of collection, (iii) 
reproductive structures were easily identifiable and distinguishable from one another, and (iv) 
the number of observations was >14 in both the Blue Ridge and Ridge & Valley Ecoregions. 
These criteria led me to select a group of fourteen species that span 11 plant families and flower 
across the range of the spring growing season (Table 2.1).    

To obtain specimen data, I made use of digitized herbarium specimens drawn from three 
sources: 1) The Southeast Regional Network of Expertise and Collections (SERNEC), 2) The 
University of Tennessee Herbarium (TENN), and 3) The Great Smoky Mountains National Park 
Herbarium (GSMNP). SERNEC is a consortium of over 233 southeastern herbaria that offers an 
extensive digitized collection of specimens spanning over 200 years of observations for public 
download on-line (www.sernecportal.org). Because herbarium specimen locality information is 
organized by county, I selected 16 counties in eastern Tennessee from which to source herbarium 
specimens within the Blue Ridge and Ridge & Valley regions for this study (Fig. 2.1 in 
Appendix II). Counties were chosen such that the sample area within each ecoregion was 
approximately equal. To obtain specimen records from SERNEC, I submit a query for each 
species in the list of counties chosen. Because four of the seven counties selected at the 
easternmost border of Tennessee are nearly equally split between the Blue Ridge and Ridge & 
Valley ecoregions (Blount, Monroe, Sevier and Cocke; see Fig. 2.1), I obtained specific locality 
descriptions (e.g. mountain peaks, trail heads, cities, etc.) for specimens in those counties when 
available and used the GeoLocate web application (www.geo-locate.org) to determine from 
which region they were collected. If a specimen was located in one of those four counties and did 
not have specific locality information, it was removed from the data set.  

Although studies including elevation as a covariate in phenology models often use the 
mean elevation of a county (e.g. Park et al. 2019), this metric would not be realistic in my study 
because elevations within counties split between the Blue Ridge and Ridge & Valley can differ 
by >1500m (e.g., city of Sevierville ≈ 275m, Clingman’s Dome ≈ 2025m). Additionally, the 
majority of herbarium specimens in this study (especially ones from the earlier half of the 19th 
century) did not have locality information specific enough to determine a latitude and longitude 
from which to derive elevation data. Thus, I was not able to include elevation as a covariate in 
this study.  
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After removing duplicate, mis-labeled, non-reproductive, or damaged specimens that 
were unable to be scored, the final data set from SERNEC comprised 1249 specimens. The 
majority of observations in this study are sourced from SERNEC (85%). To increase my sample 
size, I also obtained a number of digitized specimens from the Great Smoky Mountains National 
Park Herbarium (4% of observations) and from a collection of previously undigitized specimens 
from the University of Tennessee Herbarium that were digitized for this project (15% of 
observations). In total, the final data set contained 1483 unique observations spanning 141 years.  

Phenological data collection 
The majority of phenological studies using digitized herbarium specimens use one of two 

approaches to categorizing reproductive phenology: (1) a binary approach, where a score of 1 or 
0 indicates either the presence or absence of flowers on a specimen (e.g. Park and Schwartz 
2015, Bertin 2015), or (2) a “relative” approach, where a specimen is considered flowering if a 
given proportion of flowers are open (typically 50% but up to 75%; e.g. Davis et al., 2015, 
Primack et al. 2004, Park et al. 2019). While these approaches are sufficient at capturing general 
phenological trends across broad spatial scales, finer-scale scoring methods that assign a 
phenophase based on the relative number of buds, flowers, and fruits present on a specimen 
enable more precise estimates of phenological trends (Pearson 2018). Thus, I defined five 
“scores” that categorized specimens into phenophases based on the relative proportion of 
reproductive structures present on a given specimen:  
 

0: No reproductive structures present  
1: Early flowering (less than 50% of reproductive structures are open flowers, fruits 

absent) 
2: Peak flowering (greater than 50% of reproductive structures are open flowers, fruits 

absent or present) 
3: Late flowering (less than 50% of reproductive structures are open flowers, fruits 

present) 
4: Fruiting (only fruits present) 

 
To assign phenophases to digitized specimen images, I trained ten undergraduate students 

working for the University of Tennessee Herbarium to recognize the reproductive structures of 
each individual species. Students determined the phenophase of individual specimens by 
counting the total number of reproductive structures (buds, flowers, and fruits) present on a 
specimen, then assigning a score 0-4 based on the relative number of each reproductive structure. 
In order to ensure consistency in scoring among students, I created reference sheets that included 
photos of reproductive structures on digitized herbarium specimens for each species. I then held 
a one-hour training session detailing our scoring methodology, and had each student score ten 
random specimens for which I had previously categorized the phenophase. If there were any 
discrepancies in our categorizations, the student and I met to discuss the proper scoring 
technique, and they re-scored ten different random specimens until we agreed on the proper 
categorization. A study by Willis et al. (2017) utilizing crowd sourcing (Amazon’s Mechanical 
Turk service) to hire anonymous workers with no previous botanical experience to score the 
phenological stage of herbarium specimens showed that, with proper training, non-experts 
produce the same data quality as expert botanists. Thus, I am confident that the phenological 
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scores assigned by trained herbarium students reflect the true phenophases of the herbarium 
specimens in this study.  

Climate data 
  While spring flowering phenology in temperate regions can be influenced by several 
abiotic factors, including spring temperature (Primack et al. 2004, Miller-Rushing and Primack 
2008), snowmelt (Inouye 2008), and precipitation (Matthews and Mazer 2016), short-term 
records of flowering phenology in the southeastern United States imply that flowering phenology 
in this region is more closely related to temperature than to precipitation (Abu-Asab et al. 2001, 
Funderburk and Skeen 1976). Thus, I chose to use spring temperature (March-May) as the 
primary environmental predictor of spring phenology in this study.  

Mean monthly temperatures for each county across the year range of the data set were 
obtained from NOAA’s Global Historical Climatology Network (http:// ncdc.noaa.gov/ghcnm/). 
For counties split between the Ridge & Valley and Blue Ridge, I selected weather stations 
located within each ecoregion, and calculated mean spring temperatures separately by ecoregion. 
Because data were not available for all years in all counties, specimens that were collected in a 
year for which there were no climate data available were removed from the data set. In total, the 
final working data set contained 1077 unique observations. 

Data analysis 
To test for changes in flowering and fruiting phenophases over time, I regressed the year 

of observation of a given phenophase against the day of the year that it was observed. I then used 
a Welch’s t-test, which is robust to unequal variances and sample sizes (Ruxton 2006), to 
determine if there was a difference between historical (pre-1970) and recent (1970 and later) 
flowering or fruiting dates for each species. The year 1970 was chosen as the dividing year for 
historical and recent observations because climate data suggest that global surface temperatures 
began to steadily increase around 1970 (Pachauri et al. 2014) and this year has been used as the 
cut-off between historical and recent phenophase observations in several herbarium-based 
phenology studies (e.g., Petrauski et al. 2019, Bertin 2015, Abu-Asab et al. 2001). Thus, using 
the year 1970 to divide historical and recent observations allows me to compare a time frame 
with a cooler climate and low inter-annual variation to a more recent time frame where average 
temperatures were increasing and higher on average (Bertin 2015). 

I estimated phenological sensitivity to spring temperature (mean temperature over March, 
April and May) by regressing spring temperature in the county and ecoregion from which a 
specimen was collected against the Julian day of year of a phenophase. To characterize 
community-level phenological sensitivity, I binned data for all species together and used 
ecoregion and spring temperature as fixed effects and the year of observation and species as 
random effects. Although it would have been ideal to allow the random slope of each species to 
vary in response to spring temperature, I did not have enough statistical power to do so. Thus, to 
estimate variation in phenological sensitivity among species, I ran separate models to obtain 
slope estimates for the linear relationships between spring temperature and the Julian day of year 
of a phenophase for each individual species in each ecoregion.  
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Results 

Shifts in phenology over time 
 Focal species showed varied phenological patterns and sensitivity to climate both at the 
community level and within species among the Ridge & Valley and Blue Ridge ecoregions. 
Mean flower dates of individual species calculated across all years of observation ranged from 
late March (e.g., Hepatica acutiloba DC. (Sharplobe Hepatica; Ranunculaceae), Sanguinaria 
canadensis L. (Bloodroot; Papaveraceae)) to early May (e.g., Maianthemum racemosum (L.) 
Link (False Solomon’s Seal; Ruscaceae), Polygonatum biflorum Walt. Ell. (True Solomon’s 
Seal; Ruscaceae)). The earliest and latest flowering species showed the least amount of variation 
in mean flowering date among ecoregions, with April-blooming plants flowering earlier in the 
Ridge & Valley than the Blue Ridge on average (Fig. 2.2). Across the full temporal range of 
observations, plants in the Ridge & Valley flowered 6.03 days earlier on average than plants in 
the Blue Ridge region (Welch’s-t test; t1040.7 = 5.5, p < 0.001). When divided into historical and 
recent time frames, plants in the Ridge & Valley flowered 2.16 days earlier post-1970 than they 
did pre-1970, although this difference was not significant (Welch’s t- test; t264.2 = 1.21 p = 0.25, 
95% CI: -1.53, 5.85). Plants in the Blue Ridge region showed little change in flowering 
phenology between historical and recent time frames (Fig. 2.3).  

Phenological sensitivity to temperature 
At the community level, both spring temperature and ecoregion had significant impacts 

on flowering phenology (Table 2.1). For every degree Celsius increase in temperature, spring 
flowering advanced 1.3 days on average across both ecoregions (95% CI: -2.13, -0.41) when 
analyzing all stages with flowers present together (stages 1-3). Results of models run separately 
for each ecoregion revealed that plants in the Ridge & Valley ecoregion showed a greater 
sensitivity to spring temperature, with flowering dates advancing by 2.7 days/ºC on average 
(95% CI: -4.13, -1.24) compared to 1. days/ºC (95% CI: -2.61, -0.02) in the Blue Ridge. When 
analyzing early and peak flowering phenophases separately in each region, early spring 
flowering was more sensitive to spring temperature than peak flowering in both ecoregions, with 
plants in the Blue Ridge showing greater sensitivity to spring temperature (-6.01 days/ºC , 95% 
CI: -9.11, -2.89) than those in the Ridge & Valley (-2.29 days/ºC, 95% CI: -4.80, -0.14). 
However, peak flowering was more sensitive to spring temperature in the Ridge & Valley (-1.73 
days/ºC, 95% CI: - 3.17, -0.33) than in the Blue Ridge (-0.95 days/ºC, 95% CI: -2.40, 0.43; Fig. 
2.3). Fruiting was not significantly impacted by spring temperature in either ecoregion.  
At the species level, sensitivity to temperature varied within species among ecoregions as well. 
In the Ridge & Valley, the confidence intervals for the slope of the line relating spring 
temperature to flowering date was negative (indicating advances in flowering phenology) and did 
not overlap zero for three of fourteen species (Geranium maculatum L. (Wild Geranium; 
Geraniaceae), Dentaria diphylla Michx. (Crinkleroot; Brassicaceae), and Thalictrum 
thalictroides (L.) Eames & B. Boivin (Rue Anemone; Ranunculaceae). In the Blue Ridge, the 
confidence intervals for all species overlapped zero (Fig. 2.4; although see upper confidence 
limits for G. maculatum and D. diphylla).  
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Discussion 
These results demonstrate that, although spring-flowering species in eastern Tennessee 

exhibit variation in the magnitudes of their phenological sensitivity to spring temperature (i.e., 
they flower earlier in warmer springs), mean flowering dates have not advanced over the past 
century for most species tested. These results are consistent with those of another study in the 
southeastern US that pooled data from >1700 species in South Carolina across the entire 
flowering season of spring to autumn (Park and Schwartz 2015). This pattern is likely explained 
by the fact that, although average annual temperature has been steadily increasing in the study 
region since the latter half of the 20th century (Fig. 2.6), spring temperature has not changed 
substantially in the southeastern US over the 20th century as a whole (Costanza et al. 2016). The 
most appreciable changes in temperature in this region have occurred during the summer (+2ºC 
since 1980, Costanza et al. 2016), a time of year that is not expected to affect spring flowering. 
In contrast, Petrauski et al. (2019) found that flowering for early spring species Erythronium 
americanum Ker-Gawl (Dogtooth Violet; Liliaceae) and Dentaria laciniata in West Virginia 
have advanced 0.91 days/decade since 1904. While I did not find evidence of significant shifts in 
flowering for any individual species, Dentaria diphylla, a species in the same genus as D. 
laciniata, was one of three species in the Ridge & Valley region whose mean flowering date had 
a significant negative response to spring temperature (i.e. flowered earlier in warmer springs). 
These results make sense in light of the fact that the two Dentaria species and E. americanum are 
among some of the earliest plants to flower in the spring and have relatively short flowering 
periods (“spring ephemerals”). Other studies have found that the earliest flowering species often 
have the strongest responses to spring temperature (Park and Schwartz 2015), and the results of 
this study show that early flowering is more sensitive to temperature than peak flowering or 
fruiting (Fig. 2.4). 

Although I did not find evidence of significant advances in flowering date during the 
latter half of the 20th century, the result that spring-flowering species showed advances in 
flowering of around 2.5 days/ºC on average in response to warming spring temperatures supports 
those of other studies in the southeast (Park and Schwartz 2015, Petrauski et al. 2019) and 
elsewhere (Bertin 2015, Park et al. 2019, Primack et al. 2004, Panchen et al. 2012). Further, 
individual sensitivities were variable among species on average (Fig. 2.5), suggesting that future 
phenological responses to continued climatic change will be heterogeneous within communities. 
Although my ability to estimate the sensitivity of individual species was limited by my sample 
sizes, my results show that the flowering phenology of the spring-flowering community in both 
the Blue Ridge and Ridge & Valley were sensitive to spring temperature. However, individuals 
in the Ridge & Valley appear to show a trend toward greater sensitivity to spring temperature 
and flowering earlier in recent decades, which could reflect the fact that phenological sensitivity 
is “riskier” in the Blue Ridge due to greater inter-annual climate variability (Park et al. 2018). In 
the higher elevation Blue Ridge ecoregion, temperatures tend to be lower (Fig 2.6) and the 
growing season tends to be shorter, so being highly sensitive to temperature in this ecoregion 
may present greater risk of frost damage, mismatch with mutualists, and other negative fitness 
consequences than it does to individuals than in the lower-elevation Ridge & Valley.  

Variation in phenological shifts and sensitivity to temperature can be further complicated 
by intraspecific variation. Indeed, I found that at the species level, individuals in the Ridge & 
Valley are showing stronger responses to spring temperature than those in the Blue Ridge. 
Although mean flowering date was not significantly different among historical and recent time 
periods for either region, species in the Ridge & Valley exhibit a trend toward earlier flowering 
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in recent decades whereas species in the Blue Ridge do not. Similarly, none of the species 
examined in the Blue Ridge had phenological sensitivities significantly different from zero, but 
three species in the Ridge & Valley showed significant advances in flowering with increasing 
spring temperature. The individual species-level estimates of phenological sensitivity presented 
in this study, while limited by sample size, are lesser in magnitude compared to those of species 
in northeastern spring-flowering plant communities (Willis et al. 2010, Primack et al. 2004). 
These results make sense given that spring warming in the southeast has not been as dramatic as 
that in the northeast; however, species still demonstrate phenological sensitivity to temperature, 
indicating the potential for species to be able to adapt to continued climate warming in the future.  

Differential responses to climate change across relatively small geographic areas (i.e. 
within a single county located in two ecoregions) could result in changes to the structure and 
composition of plant communities, potentially altering gene flow and interactions between plant 
and animal species such as pollinators or seed dispersers (i.e., phenological mismatch; Miller-
Rushing et al. 2010). For example, individuals with greater sensitivities to temperature have been 
found to be at greater risk of herbivory than less sensitive species (Meineke et al. 2021), and 
plants with greater sensitivity to snowmelt date than that of the emergence of their pollinators 
have been found to have reduced seed set in years where snowmelt occurred early (Kudo and 
Cooper 2019). Thus, the result that the same communities in the Ridge & Valley and Blue Ridge 
demonstrate different levels of sensitivity to spring temperature and show different magnitudes 
of phenological shifts in response to climate over the past century imply that the fitness 
consequences of continued climatic change on plant species will be heterogeneous not only 
within communities, but across the landscape as well. 

 

Conclusion 
The fitness consequences of high phenological sensitivity are complex. In the short term, 

dynamic phenological tracking of climate via high sensitivity to spring temperature could be 
potentially risky in cooler and less predictable environments because it puts species at risk of 
being exposed to freezing temperatures if they flower too early (Park et al. 2019). However, in 
the long-term, the ability of species’ phenologies to track changes in temperature may be 
necessary for their persistence in light of continued climate warming. Willis et al. (2008) used 
historical records of the phenology and abundance of 473 spring wildflowers in Massachusetts to 
assess the relationship between phenological sensitivity to temperature and change in abundance. 
The authors found that the species that whose flowering times did not effectively track seasonal 
temperature have greatly declined in abundance over the past 100 years. Given that the majority 
of species in my study did not show strong sensitivity of flowering phenology to temperature 
(particularly in the Blue Ridge), species in eastern Tennessee may be at risk for decline or even 
local extirpation if they are not able to adjust their flowering times in response to predicted, long-
term temperature change. This is especially concerning given that the Blue Ridge ecoregion is a 
center of biodiversity in the eastern United States and contains the greatest floristic diversity in 
the entire state (US Environmental Protection Agency 1997). My study highlights the importance 
of considering ecoregion as a predictor in phenological studies, because it allows researchers to 
account for differences in local abiotic conditions across even relatively small geographical areas 
that may explain inter- and intraspecific variation in phenological trends across time. 
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APPENDIX II 
 
Table 2.1 Number of specimens in each ecoregion and observation time span of focal species. RV = number of specimens in Ridge & 
Valley ecoregion, BR = number of specimens in Blue Ridge ecoregion. 

 

 

Code Species Common name Family Date range BR RV 
DENDIP Dentaria diphylla Michx. Crinkleroot Brassicaceae 1923-2014 44 40 
DENLAC Dentaria laciniata Muhl. Ex Willd. Cutleaf Toothwort Brassicaceae 1933-2019 26 47 
ERYAME Erythronium americanum Ker-Gawl. Dogtooth Violet Liliaceae 1925-2010 19 37 
GERMAC Geranium maculatum L. Wild Geranium Geraniaceae 1934-2012 48 37 
HEPACU Hepatica acutiloba DC. Sharplobe Hepatica Ranunculaceae 1934-2019 36 14 
MAIRAC Maianthemum racemosum (L.) Link. False Solomon's Seal Ruscaceae 1931-2019 33 42 
PODPEL Podophyllum peltatum L. Mayapple Berberidaceae 1925-2015 32 36 
POLBIF Polygonatum biflorum (Walt.) Ell. True Solomon's Seal Ruscaceae 1925-2012 40 36 
SANCAN Sanguinaria canadensis L. Bloodroot Papaveraceae 1919-2019 39 30 
THATHA Thalictrum thalictroides (L.) Eames & B. Boivin Rue Anemone Ranunculaceae 1925-2003 41 36 
TIACOR Tiarella cordifolia L. Allegheny Foamflower Saxifragaceae 1925-2016 79 52 
TRILUT Trillium luteum (Muhl.) Harbison Yellow Trillium Melanthiaceae 1914-2015 40 40 
UVUGRA Uvularia grandiflora Sm. Largeflower Bellwort Colchicaceae 1925-2019 9 27 
VIOSOR Viola sororia Willd. Common Blue Violet Violaceae 1928-2017 79 38 
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Table 2.2 Results of mixed-effects models analyzing the relationship between spring 
temperature, ecoregion, and Julian day of flowering. Full models were analyzed using pooled 
data from both ecoregions, and Ridge & Valley and Blue Ridge models were analyzed using data 
from each respective ecoregion. 

 

Phenological stage Ecoregion X2 df p 

All flowering stages 
(flowers present) 

Both ecoregions       
       Avg. spring temperature 8.4 1 3.6 x 10-3 
       Ecoregion 7.4 1 6.7 x 10-3 
       Avg. spring temperature * ecoregion   N.S. 
 
Ridge & Valley       
       Avg. spring temperature 14.3 1 1.5 x 10-4 
 
Blue Ridge       
       Avg. spring temperature 4.2 1 0.04 

     

Early flowering 
(>50% of 
reproductive 
structures are open 
flowers, fruits 
absent) 

Both ecoregions       
       Avg. spring temperature 16.0 1 6.3 x 10-5 
       Ecoregion 0.1 1 0.74 
       Avg. spring temperature * ecoregion 4.1 1 0.04 
 
Ridge & Valley       
       Avg. spring temperature 3.5 1 0.06 
 
Blue Ridge       
       Avg. spring temperature 14.9 1 1.1 x 10-4 

     

Peak flowering (> 
50% of reproductive 
structures are open 
flowers, fruits absent 
or present 

Both ecoregions       
       Avg. spring temperature 2.7 1 0.1 
       Ecoregion 9.1 1 2.5 x 10-3 
       Avg. spring temperature * ecoregion   N.S. 
 
Ridge & Valley       
       Avg. spring temperature 6.0 1 0.01 
 
Blue Ridge       
       Avg. spring temperature 1.9 1 0.17 
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Figure 2.1 Map of ecoregions within eastern Tennessee counties. Red stars indicate counties 
chosen for inclusion in this study. Ecoregion map adapted from USGS Level IV TN Ecoregions 
Map (https://store.usgs.gov/assets/MOD/StoreFiles/Ecoregion/21632_tn_front.pdf).  
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Figure 2.2 Mean flowering dates for focal species in the Blue Ridge and Ridge & Valley 
ecoregions. Flowering dates were calculated across all years of observation for each species. 
Points represent means and 95% confidence intervals.  

March April                                                May
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Figure 2.3 Changes in mean flowering times between historical and recent time periods in the 
Blue Ridge and Ridge & Valley ecoregions. Each point represents the mean and 95% confidence 
interval for flowering time in a given region and time period. 
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Figure 2.4 Variation in sensitivity of different phenophases to spring temperature in the Blue 
Ridge and Ridge & Valley ecoregions. Points represent means and 95% confidence intervals. 
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Figure 2.5 Variation in sensitivity of flowering to spring temperature (days advanced/ºC) within 
species among the Blue Ridge and Ridge & Valley ecoregions. Points represent means and 95% 
confidence intervals. Asterisks indicate species whose confidence intervals for their estimate of 
phenological sensitivity do not overlap zero. See Table 2.1 for species codes. 
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Figure 2.6 Changes in a) mean spring temperature and b) mean annual temperature in the Blue 
Ridge and Ridge & Valley Ecoregions over the past century. Dotted lines indicate the division 
between historical and recent time periods (year 1970) used in analyses of phenological shifts 
over the past century. 

a)
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