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Abstract

Parameterized nonconvex regression is a difficult problem for any optimization solver

packages, often resulting in approximations and linearizations of the problem in

order to be able to arrive a solution, if the problem is even solvable at all. These

changes to the initial problem are largely dependent upon having appropriate domain

knowledge and still often times result in a sizable gap between the achieved solution

and the best true solution. We propose a novel method of decomposing the global

problem into small, overlapping windows. Thus, the independent windows are now

solvable. Subsequently, we offer a novel, sequential method of parameter cardinality

and parameter value agreement in order to stitch the windows back together to

arrive at the solution to the initial global problem. While this method is problem

agnostic, we demonstrate the successful results of its application to the nuclear data

analysis problem of properly characterizing the resonances of the capture cross section

for Copper-63. By being able to solve the 100 resonance problem, this method

demonstrates it can solve up to the thousands of possible resonances an isotope can

have within a single spin group.
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Chapter 1

Introduction and Background

This chapter will serve as a general outline of how global and nonconvex optimizations

problems are solved, while nuancing the advantages and disadvantages of these

different approaches. By giving this background, it helps demonstrate a partial

explanation for why this algorithms cannot handle such large, nonconvex optimization

formulations such as the one posed by the nuclear resonance problem. Additionally,

the motivation behind why the nuclear resonance characterization problem is an

important is highlighted, as solving this problem has great implications throughout

its field. Lastly, the chapter concludes with a brief high level overview of how BARON

operates, which was the selected mathematical optimization software for this project.

1.1 Optimization Background

The general nonlinear programming problem currently has no effective methods for

being solved [3]. Problems spanning hundreds of variables can be intractable, while

even simplistic problems with tens of variables can be difficult. Thus, methods

for solving the general nonlinear programming problem take on many varying

approaches, each involving their own compromises. However, the difficulty not only

steeply increases for nonlinear problems, but is even more apparent for nonconvex
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problems, as “in fact the great watershed in optimization isn’t between linearity and

nonlinearity, but convexity and nonconvexity” [4].

What makes nonconvex optimization challenging is potentially having many local

minima, the potential existence of saddle points and very flat regions, and having

widely varying curvature. Thus, this class of problems is NP-hard [5]. When having

close initialization and favorable geometry, local convergence to a local minima via

iterative methods, such as gradient descent, can be proven, but often times these

stronger properties (such as the strict saddle property) for local convergence cannot

be shown [6, 7]. Multistart implementations of iterative methods can help get around

the close initialization issues, but at the expensive of a much greater runtime and not

much to be gained about the true global solution. Methods for solving nonconvex

problems like a stochastic gradient descent can easily end up finding a saddle point,

local maximum, or region of general flatness. Therefore, these techniques require

more advanced analysis and methods to even demonstrate that a solution is a truly

a local minima and that is when these methods even converge to a solution, which is

rarely guaranteed for a nonconvex function [8].

There are two more general methods for solving nonconvex problems. The first

being convex relaxation, where in simplest form the objective function is convexififed

by its convex envelope, and the constraints are relaxed with their convex hull [9].

However, even these problems can be computationally intractable, hence requiring

even further hierarchical relaxations. Once a solvable convex problem is reached,

one must use convex analytic mathematics to demonstrate the solution is global

solution to the original problem, which is not a simple task. This methodology is

the typical go-to for sparse vector and low-rank matrices problems of structure signal

recovery [10]. One of the major shortcomings of convex relaxation is its computational

burden, as the resulting formulation is often times a generic semi-definite program.

Furthermore, while convex relaxation is convenient due to it building upon the

nice mechanics of convex analysis, it also do not ensure correctness to the original

nonconvex problem, whether that be the tractability of the relaxed problem or in how
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close the relaxed solution is to the true global solution. For instance, in nonneagtive

low-rank approximation, convex relaxations are not efficient and in sparse PCA, these

relaxations are tractable but are shown to be suboptimal in their solutions [11, 12].

The second approach is the transforming the optimization space, such as with the

always concave Lagrangian dual problem [7]. Other transformations include solving

the trust-region subproblem or approximating the MAX-CUT problem [13, 14]. The

major issue with these types of approaches is that they are highly problem-specific

and involves subsequent local refinements.

Being able to solve nonconvex problems is important and interesting, and is

not just a small niche of optimization problems. However, due to the details

already examined, these problems greatly range in difficulty. For example, Principal

Component Analysis (PCA), finding the dominant eigenvalue-eigenvector pair of

a positive semidefinite symmetric matrix, is nonconvex. However, the convex

methods of gradient descent (standard, stochastic, momentum, variance reduction,

etc) all work in solving PCA and explicit convergence rates can be demonstrated.

But nonconvex problems can get much harder, for instance with the mathematics

behind deep neural networks, where proving convergence is almost always impossible.

Therefore, this class of problems can be hard to generalize methods for, but is an

important class to be able to solve even with its list of possible things that can go

wrong of converging to a bad local minimum, saddle point, or region of low gradient

magnitude, or large curvature causes diverging steps.

Often times, methods for solving these types of problems result in a search for

a solution that is only locally optimal, which is usually faster and more widely

applicable, however are sensitive to the initial guess of the solution, sensitive to

algorithm parameters, and little information is known about the gap between the

local and global solutions [3]. Being able to solve global optimization problems

is an important group of problems that range from safety verification of nuclear

systems to protein structure predictions to radio signal propagation [15, 16, 17].

Various methods such as Broyden’s method, inexact Newton methods, and tensor
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methods can be implemented to solve nonlinear problems, but must be done locally

and are not guaranteed to converge [18, 19]. On the other hand, attempting to

perform global optimization is at the cost of efficiency, with worst-case complexity

growing exponentially with problem size [3]. Typically global optimization methods

necessitate computing lower bounds on the optimal value, either via replacing

nonconvex constraints with convex, looser constraints or by solving the Largrangian

dual problem [20].

The main classes of global optimization methods are deterministic methods and

stochastic methods. Two of the most successful deterministic methods are cutting

plane algorithms and branch & bound methods. Cutting plane algorithms focus

upon approximating the feasible region by a finite set of closed half spaces and

solve that sequence using linear programs [21]. The downsides of these methods are

numerical instability, requiring a high number of cuts to make solid progress towards

the solution, as well as a lot of work needing to be performed to determine optimal

cuts. Branch & bound attempts to avoid complete enumeration of the solution space

by solving a relaxed version of the problem, branching on a variable creating two

nodes, and obtaining relative upper and lower bounds of the nodes. Many questions

arise in the best implementation of branch & bound such as which node to process

first, which variable to choose for branching, and how often to run heuristics to help

find a good solution [22]. The cutting plane algorithms can be combined with branch

& bound to be an improved method called branch and cut. While stochastic methods

include direct Monte-Carlo sampling and parallel tempering and rely upon random

simulations in order to find the solution [23]. These deterministic and stochastic

global optimization methods also do not include various types of heuristics such as ant

colony optimization (a probabilistic technique for finding good paths through graphs),

simulated annealing (a metaheuristic for approximating global optimization in a large

search space), or graduated optimization (solving a greatly simplified problem, and

progressively transforming that problem until it is equivalent to the original problem)

[24, 25, 26].
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It is important to note that while this method is for curve fitting, a method

choosing to denoise the data was not desirable. The example of the nuclear data

resonance analysis problem exemplifies this concern as many of the resonances widths

are very small and can be overlapping with one another, often times a small resonance

being located on the tails of a large resonance. Thus, most denoising methods would

lose the details of the little resonance and would show it being absorbed by the

larger resonance. Typical regularization methods such as Tikhonov regularization

or lasso regularization were avoided, as the parameters in these problems have

physical meaning to them and the goal is not to necessarily keep them small, but

keep them close to their true underlying values and distributions [27, 28]. On that

note, future work may look at adding maximum likelihood penalties to the objective

function, in particularly for problems where all of the parameters have their well-

known distributions, but that currently has not been needed to obtain quality results,

therefore is not worth the extra computational burden as the objective function will

already be cumbersome due to its nonconvex nature [29].

We are proposing a “fast” method that can achieve a global solution to a

nonconvex problem without providing an initial guess or rely on proper local

initializations, without having to approximate or relax the objective function or

constraints, and letting the model determine the appropriate number of parameters.

While still having a few hyperparameters to select, this method should be applicable

to a whole class of nonconvex problems. The implementation will be demonstrated

upon the results of its application to nuclear data analysis.

1.2 Nuclear Resonance Background

The current practice for resonance evaluation is laborious and time consuming as

it involves substantial man-hours to evaluate experimental data and is reliant on

specific expert judgement. Additionally, these processes are susceptible to errors and

have limited reliable reproducibility. Modern AI/ML capabilities hold the potential
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for faster, more reproducible, and more reliable evaluation of nuclear data. These

methods would reduce the workload of the human workforce allowing focus on high

expertise-high impact tasks, improve the information archiving and preservation, and

enable more detailed analyses of cross section uncertainty. Given the number of

prospective benefits, now is the time to leverage AI/ML for nuclear data evaluation,

and this project is a significant development toward that objective.

The United States Department of Energy (DOE) Office of Nuclear Physics

understands the opportunities associated with the application of AI/ML methods

to the nuclear data pipeline. The Nuclear Data Interagency Working Group

Funding Opportunity Announcement states, “Of particular interest are applications

of artificial intelligence and machine learning to the nuclear data pipeline challenges”

[30]. This view is strongly supported by the community of scientists working in

nuclear data research. In the Proceedings of the Workshop for Applied Nuclear Data

(WANDA) it is explicitly stated that, “The fast spread and impact of machine learning

and artificial intelligence models to diverse areas of physical sciences indicate their

tremendous potential to address critical issues and potential bottlenecks in the nuclear

data pipeline” [31]. Introduction of AI/ML methods into the nuclear data pipeline

will accelerate the access of the end users to the new nuclear data evaluations and the

impact that new evaluations will have on predictive modeling and simulations related

to the DOE mission. The current timeline is between two and five years from initial

funding of the project to final evaluation of the experimental data.

Accurate and reliable nuclear data is fundamental to nuclear physics and nuclear

astrophysics research. At low incident neutron energies, roughly below one MeV

for most nuclides, the nuclear level density above the neutron separation energy is

small and the interaction proceeds through individual levels that can be separated

experimentally. It is vitally important to carefully determine the characteristics of

these individual resonances for successful calculation of the neutron reaction cross

sections. In turn, the cross sections are the absolute-fundamental input data for

predictive modeling and simulation in nuclear power systems with a thermal neutron
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spectrum, where neutrons slow down through the resonance region and individual

resonances can be identified in the flux depressions at those energies. Furthermore,

detailed knowledge of the resonance region is important for associated fuel cycle

operations, national security and non-proliferation applications, shielding studies,

materials analysis, medical radioisotope production, diagnosis and radiotherapy.

In the period of 1950s to 1980s, nuclear data experienced a rapid expansion and

many experiments were performed to measure precisely these resonance properties.

Since then, computational modeling and simulation of nuclear systems has had its

own period of rapid expansion. The resolution of the detailed behavior of the systems,

which can currently be modeled on a computer, has grown several orders of magnitude

since the 1980s. Nuclear data evaluators now find themselves back in a scenario where

the predictive power of radiation transport codes is limited by the input nuclear

data. In turn, this has economic, safety, and security limits on the applications

relying on modeling and simulation. For example, safeguards and homeland security

applications rely on hybrid methods of radiation detection and computational

solutions of the inverse radiation transport problem [32]. Computational modeling

limited by nuclear data can limit the ability to detect special nuclear materials of

interest [33].

There are three shortcomings with the nuclear data evaluations carried out during

that initial, fruitful period. First, the nuclear data was measured and evaluated to

the precision compatible with the computational modeling capabilities of the day

which has now become a limiting factor. Second, the nuclear data evaluations relied

heavily on expert judgement and were scarcely documented which makes it difficult,

often impossible, to go back and make targeted adjustments or corrections to the

evaluations without completely restarting the evaluation process. Lastly, uncertainty

estimates on the evaluated cross section were typically not done due to the lack

of computational capability at the time to propagate such uncertainty through the

calculations. Some crude estimates of this uncertainty data have been put in after

the fact. The availability of reliable uncertainty information for evaluated nuclear
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data is crucial to understanding the predictive power of computational modeling and

simulation.

Since the 1980 nuclear data evaluation has remained an active field with major

new nuclear data library releases in 1990 (ENDF/B-VI), 2006 (ENDF/B-VII), 2011

(ENDF/B-VII.1), and 2018 (ENDF/B-VIII.0). For the major nuclides of interest,

almost no nuclear data evaluations remain from before 1980 in the US Evaluated

Nuclear Data File [34]. A major, international collaborative effort was recently

completed to update the nuclear data evaluations of the six major isotopes, 1H, 16O,

56Fe, 235U, 238U, 239Pu [35]. There are also currently three international collaborations

lead by the International Atomic Energy Agency (IAEA) taking place to update the

evaluations for the light-, medium-, and heavy-weight isotopes [36]. The INDEN

and CIELO are highlighted here as international collaboration efforts which show a

continued interest in the development of nuclear data evaluation. Many national-level

and individual nuclear data evaluation projects are also on-going. Recent years, have

seen a rapid expansion in thermal neutron scattering law evaluations, fission product

yield, and decay data. The development of fission theory and microscopic models in

an ever-on-going effort of interest to both the applied nuclear science community as

well as fundamental physics. On the other hand, the physical model in the resonance

region has not changed basically since it was described in 1958 in the seminal paper

by Lane and Thomas [37]. Some interest remains in the description of the physics

governing the resonance region, but is mainly limited to the mathematics of R-Matrix

theory [38, 39, 40]. With respect to this project, this is good, because unlike the high-

energy region, in the resonance region, the R-Matrix theory of nuclear reactions is

not considered to be susceptible to model defects.

Even though there is not much progress in the physics governing the resonance

region, resonance evaluations continue to be updated in-line with other nuclear

data regions. Resonance evaluations were part of the new evaluation the CIELO

project and are currently part of all three groups of the INDEN project. Resonance

evaluations take a long time. There are three main reasons. First, compiling
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the historical and new experimental data is time consuming. In this process, the

resonance evaluator must make sure to provide compile as complete of a representation

of the experiment as possible; carefully understanding the measurement details

and associated uncertainties. Recent efforts on trying to understand and quantify

uncertainty in experimental measurements have revealed this to be a monumental task

[41]. Collecting this information is valuable not only for accurate evaluation of the

resonance parameters, but it is also important to properly estimate the uncertainty in

the evaluation. The process is further muddled by the incompleteness of information

about the experiment [42].

Secondly, R-Matrix theory can only predict the cross sections if all of the

resonances have been correctly identified. Currently, resonance identification is done

manually by expert nuclear data evaluators. This is a laborious, time-consuming

process that is far from perfect. The fact that resonance evaluators cannot correctly

identify all of the resonances is well documented. See for example, [43, 44], that

show plots of missing resonances from the evaluation and a imbalance between the

number of resonances and the distribution of their properties among the different spin

groups. Currently, the feedback on missing resonances is manually introduced by the

evaluator through an iterative process of; identify and classify resonances, evaluate

statistical distribution of resonance properties, adjust the spin group assignments, and

repeat. On the other hand, getting the spin group assignment correct is important

for the evaluation of the average resonance properties and the strength function

which informs the unresolved resonance region and the high energy region evaluations.

Furthermore, missing small resonances leads to a drop in background of the capture

cross section which can only be compensated by including an artificial, pointwise

background cross section, which violates the unitarity of the R-Matrix physics.

Lastly, the covariance evaluation. In the resonance region, it is well-documented

that a systematic evaluation of the uncertainty on the evaluated cross section is

unreliably low. This is explicitly addressed explicitly in Section IV.E.6. in the User’s

Manual of the world’s most popular resonance evaluation code, SAMMY [45]
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“uncertainties for evaluated cross sections reproduced by propagating the

resonance parameter covariance matrix have historically been regarded

as ’too small.’ In fact, cross section uncertainties based solely on the

resonance parameter covariance matrix are indeed too small.”

The fact that a systematic propagation of uncertainty through the SAMMY

evaluation code leads to cross section uncertainties which are “too small,” ends up as

additional work for the resonance evaluator to search for a non-systematic, artisanal,

way to make the estimated uncertainty not “too small.” Traditionally, resonance

region evaluators have had to artificially inflate the uncertainty estimates to manually

account for this.

Uncertainty in nuclear data has large, though yet unquantified impact on nuclear

engineering applications using evaluated nuclear data. Nuclear data uncertainty

can be systematically propagated as uncertainty on the prediction of computational

simulations. For some applications, nuclear data can be the dominating source of

uncertainty. In the particular example of the design of next generation nuclear

reactors, nuclear data uncertainty has been demonstrated to result in over 100%

uncertainty on the magnitude of reactivity feedback coefficients [46]. This means that

there is so much uncertainty in the nuclear data that for a particular reactor design,

it is not possible to predict whether a certain feedback coefficient will be positive

or negative. Reactor companies are then forced to design-in additional engineering

safety margins to account for this uncertainty. While, uncertainty in nuclear data

will not prevent new reactors from being constructed, the uncertainty will impact the

economic efficiency of those reactors through the design choices that can be made

based on predictive modeling.

With the rapid raise of AI/ML research in the last decade, AI and ML algorithms

have begun making their first appearances in the nuclear data pipeline. Starting with

the experimental data side of the pipeline, AI/ML algorithms are being proposed as

natural language processing of archived publications of experimental measurements.
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Furthermore, there is currently an international effort to make the EXFOR and other

online experimental nuclear databases machine-readable [47]. In the evaluation-step

of the nuclear data pipeline, AI/ML applications are currently being explored to

aid with computationally intensive nuclear physics calculations, such as microscopic

fission theory [48]. In validation, classification and outlier detection algorithms are

being proposed to identify nuclear data which needs improvement [49]. AI algorithms

have been proposed to help in the design of optimized critical experiments for targeted

nuclear data validation. To the best knowledge of the author, there have not been

any efforts to automate the labor-intensive, manual process of resonance evaluation.

Initial efforts of application of AI/ML techniques in the resonance region by Brown are

noted [50], however, these efforts are not aimed at automating resonance evaluation

based on experimental data.

1.3 Optimization Solver BARON

The optimization problems presented in this work were implemented via the

Branch and Reduce Optimization Navigator (BARON), a software produced by The

Optimization Firm [51, 52]. BARON is a branch & bound nonlinear, mixed integer

global optimization solver. First, a short overview of some of the preprocessing

methods will be given. The first part of the preprocessing is a feasibility based

range reduction, also known as a “Poor Man’s Linear Program”. The following

explanation goes with Figure 1.1. The solid outer box represents the initial domain

of the node, where the solid inner box represents the reduced domain by considering

each of the constraints individually. The dotted boundary represents solving for the

limits on each coordinate with all constraints active. Lastly, the shaded region is the

true feasible region. Additionally, contained in this preprocessing is lower bounding.

The lower bounding algorithms are fairly complex but involve recursive arithmetic

relaxation, product disaggregation relaxation, using convex/concave envelopes, and

11



Figure 1.1: A diagram helping to explain the Poor Man’s LP [2].
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recursive sums and products relaxations [53]. After the lower bound is created, a

linear approximation is formed in order to increase computational speed.

When allowing BARON to perform branching, BARON uses a rectangular

subdivision scheme, resulting in a single variable being chosen for each branching. The

variable that contributes the most to the relaxation gap is the variable that is chosen

to branch upon. In the lower bounding step, copious amounts of additional variables

can be introduced, so the variable selection for the branching is a non trivial process.

For BARON’s point selection in branching, on occasion the branching happens at the

midpoint of the variable range, but otherwise is at the solution of the lower bounding

problem. Lastly, for node selection, default BARON implementation is a composite

value based on lower bound, violation (sum of violations of all variables), and order

of creation [2].

BARON is a branch-and-reduce algorithm due to the range reduction techniques

it employs, such as the feasibility-based range reduction of the “Poor Man’s Linear

Program” and various complex optimality-based range reduction methods [54]. In

implementing branch & bound routines, enhancing the performance of the bounding

procedure at each node of the search tree is achieved via stressing range reduction.

During both the pre-processing and post-processing steps, the search space and reduce

the relaxation gap is contracted by applying these tests to each subproblem of the

search tree [54]. A majority of the reduction tests are duality based and are utilized

when the relaxation is convex and solved by an algorithm that provides both the dual

and primal solution of the relaxed problem [54].

1.4 Contributions

This section highlights the contributions of this work, both to industrial engineering

(IE) and nuclear engineering (NE). The goal on the IE side is not to propose a new

mechanic of how to solve an optimization formulation, such as improvements upon

branch and bound or a new, improved iteration method for nonconvex problems.
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However, the result is a way to change the problem formulation to take an intractable

problem and now make it tractable. More specifically, break these intractable

problems down in small, overlapping windows, where the independent windows are

tractable and then stitching these solutions together to arrive at a global solution.

Thus, the key novelties are the window decomposition into small, overlapping windows

as well as the window stitching enforced through the cardinality agreement and

parameter agreement routines. This procedure is problem agnostic, but the class

of problem it is focused upon solving are nonconvex regression problems with large

number of parameters (and ultimately choosing how many parameters) and problems

that require a dense amount of the nonconvex function evaluations across the problem

space. Furthermore, the results of this work are exemplified in its additional

contributions to the NE field by offering a fast, reproducible, and automated process

for nuclear data evaluation, where previously the problems in that field had to be

solved by meticulous work by hand by expert evaluators. By being able to solve the

100 resonance problem for a single spin group, this model can solve for any number

of resonances in a spin group.
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Chapter 2

Methods

2.1 Data Generation

One of the nice advantages of the nuclear data problem is that the training set of

data is “infinite” as we are able to generate as many synthetic experimental sets

given the specific experimental conditions as are needed and compare our results to

the true parameters and cross section. This large training size allows the building up

of the fitting statistics and bias of the model’s fit before having to evaluate the real

experimental data. Synthetic data is required for the training as the real experimental

data is limited to around three to ten data sets depending on the experiment.

For a given nuclear reaction, we have the target nucleus with mass A and angular

momentum I, while the incoming particle has angular momentum i. Lastly, the spin

statistical factor gJα for total angular momentum J is

gJα =
2J + 1

(2i+ 1)(2I + 1)
. (2.1)

The value of J affects the size of the resonance while the value of ` affects the

shape of the resonance, where the resonance are the “jumps” in the cross section data.

The cross section values represent the probability of a given nuclear reaction taking

place as a function of the kinetic energy of the incident neutron. The kinetic energy
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dependent functions of the wave number kα(E) and a relation to the center-of-mass

momentum ρ(E) are

kα(E) =

√
2Mn

~
A

A+ 1

√
E

ρ(E) = kα(E)ac,

(2.2)

where Mn is the mass of a neutron, ~ is Planck’s constant, and ac is the scattering

radius. The hard-sphere penetrability (penetration factor) P (E) and the level shift

factor S(E) are also dependent upon the orbital angular momentum as given in Table

2.1. The average reduced neutron amplitude < γ2
n,`=0 > is derived from that orbital

angular momentum’s strength function S0 to be

< γ2
n,`=0 >=

√
4~ < S`=0 >< D`=0 > (A+ 1)

Aac(2J + 1)
√

2mn

, (2.3)

where ~ is Planck’s constant, < S`=0 > and < D`=0 > are the average strength

function and average level spacing for the given value of ` = 0, mn is the mass of a

neutron, A is the atomic mass of the target nucleus, ac is the scattering radius, and

J is the total angular momentum.

A given cross section can be parameterized using the Single-Level Breit Wigner

(SLBW) formalism, which is an approximation to the Reich Moore (RM) formalism.

The SLBW approximation removes the complex variable dependency that is found

in the intermediate variables of the RM formalism, which is required as most solvers

cannot handle optimization over the not ordered field of the complex plane. In using

this approximation, the cross section is examined as a summation of independent

resonances, thus ignoring channel interference. Other possible approximations include

the multilevel Breit-Wigner or the Adler-Adler approximations, but first the SLBW

formalism is used as it is the simplest approximation to see if a more intricate

approximation is required [55, 56]. Thus, the cross section can be expressed as
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Table 2.1: The kinetic energy dependent functions of the hard-sphere penetrability
P (E) and the level shift factor S(E) given as a function of the orbital angular
momentum `.

` P`(E) S`(E)
0 ρ(E) 0

1 ρ(E)3

ρ(E)2+1
−1

1+ρ(E)2

` ρ(E)2P`−1(E)

(`−S(E)`−1)2+P 2
`−1(E)

ρ2(E)(`−S`−1)

(`−S`−1)2+P (E)2`−1
− `
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σ(E,Eλ,Γγ, γ
2
n) =

πgJα
kα(E)2

# of Resonances∑
j=1

2P (E)γ2
nj

Γγj

(E − Eλj)2 +
(

2P (E)γ2nj+Γγj

2

)2 , (2.4)

where kα(E) is defined in (2.2), P (E) is defined in Table 2.1, and gJα is defined in

(2.1). The three parameters for each resonance are the resonance energy Eλ that

represents the kinetic energy location of that resonance, as well as the two partial

widths of the capture width Γγ and the squared reduced neutron amplitude γ2
n. The

total width at half maximum of the resonance is Γγ + 2P (E)γ2
n. For a given isotope

and spin group of that isotope, there is a well-known average neutron width, average

capture width, and average kinetic energy difference between consecutive resonances

(level spacing). The average level spacing < D > follows the Wigner-Distribution,

p(D) =
π

2

(
D

< D >

)2

exp

(
−π
(

D

2 < D >

)2
)
, (2.5)

where D is the distance between two given resonances [57]. The two partial widths

Γn(E) (where Γn(E) = 2P (E)γ2
n) and Γγ follow the Porter-Thomas distribution for

x = Γ
<Γ>

,

p(x) =
ν

2G(ν
2
)

(νx
2

) ν
2
−1

exp

(
−νx

2

)
, (2.6)

where G is the Gamma function and ν is the degrees of freedom, which for the neutron

width ν = 1 and for the capture width ν =∞ [58]. An example of a true cross section

curve generated using the SLBW formalism and randomly sampled RM parameters

from their distributions is shown in Figure 2.1.

Lastly, we need to know the kinetic energy density of the incident neutrons, or

how many electron volts separate each of the experimental data points. This value

was arbitrarily chosen to be one data point every five electron volts. With all of this

experimental parameters in hand and the distributions in (2.5) and (2.6), a synthetic
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Figure 2.1: An example figure of a true cross section plot with five resonances being
randomly sampled from their parameter’s distributions.
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true cross section curve can be generated. Again, this synthetic true cross section

will closely resemble that of a true cross section of a reaction.

Due to the variety of experimental considerations such as Doppler broadening,

resolution broadening, detector efficiency, and uniformity of the sample, the resultant

cross section contains a varying level of noise [59]. The data generation simulates this

noise using the following transformation

σexperiment = N(aσtrue + b,
√
aσtrue + b)

std(σexperiment) =

√
aσtrue + b

a
,

(2.7)

where a and b are chosen parameters to control the magnitude of the noise, N(x, y)

represents the normal distribution with mean x and standard deviation y, and σ

is the cross section value. Figure 2.2 demonstrates the same underlying true cross

section, with the difference in the plots being the amount of noise for a different set

of values for a and b. Modeling the noise as normal is an approximation for the

Poisson noise that is present in the experiment, however the normal distribution is a

good approximation of the Poisson distribution with parameter λ for high values of λ

and later parts of the methods will require an assumption of the noise being normally

distributed. However, one of the disadvantages in this choice of noise model is that

it will allow for negative cross section data points to be generated. Again, the cross

section is the probability of a specific nuclear reaction taking place, so physically the

cross section cannot be zero. However, the presented methodology is invariant to an

additive translation of the background, which would take the data away from zero.

2.2 Independent Window Decomposition

Instead of attempting to solve for all of the resonances at once, the problem is

decomposed into small, independent, and overlapping windows. Attempting to

achieve the global optima by solving the problem as a whole is too difficult of a
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Figure 2.2: An example demonstrating how the values of a and b affect the noise
present in the data. The true cross section value is the same for these two noise
realizations with five resonance being present. Note this is a unique random sampling
of the resonances and not the same resonances as Figure 2.1.
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problem to solve, thus why such an approach is needed. This decomposition takes

what would be a difficult, if not impossible, optimization formulation to solve and now

proposes many quick problems to solve. Thus, the neutron’s kinetic energy region is

divided into M equal sized overlapping segments: [0,m1], [m1 − ε,m2], . . . , [mM−1 −

ε,mM ], where ε is the amount of overlap. By having the overlapping region between

consecutive windows, it helps control for overfitting in a singular window, as the

windows will later be forced to agree upon their solutions, as well as helping account

for the local interactions present on either side of the overlapping region. The single

window optimization formulation is

min
m∑
j=1

σexpj −
πgJα

kα(Ej)2

K∑
k=1

2P (Ej)γ
2
nk

Γγk

(Ej − Eλk)2 +
(

2P (Ej)γ2nk
+Γγk

2

)2


2

(2.8a)

s.t. L1zk ≤ γ2
nk
≤ U1zk, k = 1, . . . , K

(2.8b)

L2zk ≤ Γγk ≤ U2zk, k = 1, . . . , K

(2.8c)

L3zk ≤ Eλk ≤ U3zk, k = 1, . . . , K

(2.8d)

Eλk ≤ Eλk+1
, k = 1, . . . , K − 1

(2.8e)

for a window of m kinetic energy points measuring the experimental data points of

(Ej, σexpj). The values of L and U represent the minimum and maximum allowable

values for each of the parameters. For the two partial widths, these values are found

via the Porter-Thomas Distribution in (2.6) [58]. For the resonance energy, the

minimum and maximum kinetic energy values of the window are used. The first

three constraints of (2.8b),(2.8c), and (2.8d) are semi-continuous variable constraints

implemented via the binary variable zk which is 1 if that resonance is present or 0

if it is absent. Semi-continuous variables disallows the model from overfitting the

windows by attempting to fit to noise with width values that are either too small
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or too large compared to the distributions. The last constraint (2.8e) simply orders

the resonance energies of the resonances found in the window, thus preventing the

model from finding multiple solutions with the same objective function value due to

permutations on the order of the resonances. Lastly, the value of K represents the

number of resonances allowed to be in the window. Since this number is unknown,

we provide the upper bound based upon the Wigner Distribution in (2.5) and allow

the model to “zero out” resonances if there are too many [57]. Currently the window

size is chosen to allow for the maximum window size will allowing for the problem to

still be solvable and be solvable in a reasonable amount of time.

2.3 Cardinality Agreement

After each of the individual windows are solved, the results must be forced to agree

in order to stitch the windows back together to achieve the best global solution to

the overall problem. First, the windows must agree on the number of parameters

used to fit each of the overlapping regions, which for the nuclear resonance problem,

means the windows must agree on the number of resonances found in the overlap.

Therefore, the individual window problem is resolved but now with a new objective

function that is penalizing the squared error of the fit based upon the disagreement

in the cardinality of the parameters in the overlap. The constraints remain the same

as found in (2.8). The objective function for left window becomes

min
m∑
j=1

σexpj −
πgJα

kα(Ej)2

KL∑
k=1

2P (Ej)γ
2
nk

Γγk

(Ej − Eλk)2 +
(

2P (Ej)γ2nk
+Γγk

2

)2


2

+ α(|zOverlapLeft
| −max(zOverlapLeft

, zOverlapRight
))2,

(2.9)
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while the objective function for the right window becomes

min
m∑
j=1

σexpj −
πgJα

kα(Ej)2

KR∑
k=1

2P (Ej)γ
2
nk

Γγk

(Ej − Eλk)2 +
(

2P (Ej)γ2nk
+Γγk

2

)2


2

+ α(|zOverlapRight
| −max(zOverlapRight

, zOverlapRight
))2,

(2.10)

where

KL =

 |zLeft|, if |zOverlapRight
| < |zOverlapLeft

|

min(|zLeft|+ (|zOverlapRight
| − |zOverlapLeft

|, K), otherwise

and

KR =

 |zRight|, if |zOverlapRight
| > |zOverlapLeft

|

min(|zRight|+ (|zOverlapLeft
| − |zOverlapRight

|, K), otherwise,

and K is the maximum allowable number of resonances in a window from (2.8).

The calculation of KR and KL is allowing for the maximum number of parameters in

the overlap from each of the two windows to be the same, and BARON to determine

if any of those then need to be “zeroed out”. For the nuclear resonance problem, it

is preferred that the data be overfit with too many parameters rather than underfit,

thus the choice of the max function in (2.9) and (2.10), however this choice can be

changed to the min function if it is better for a problem to be underfit. The penalty

term α starts at a small value, but is dependent upon the amount of noise in the

experiment and the window size, as a larger window requires a larger initial α and

doubles on each iteration until the two windows agree on the number of parameters or

a maximum number of iterations is reached. Additionally, the model is only allowed

to update the RM values found for the resonances inside of the overlapping region

(or zero out extra resonances in the overlap). The values of the RM parameters for
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resonances found in the window from the independent window solve, but outside of

that given overlapping region are not allowed to be changed at this step. Currently,

a simple α updating routine is implemented, where α starts off at a very small value

and doubles on every iteration until convergence of the cardinality is reached.

2.4 Parameter Value Agreement

Now that the windows agree on the number of parameters present to fit the data,

they must agree on the values of those parameters. The objective function of the

squared error of the predicted fit is now penalized based upon the disagreement in the

variable values. Again, the constraints remain the same as the independent window

formulation. Thus, the new objective function for the left window will be

min
m∑
j=1

σexpj −
πgJα

kα(Ej)2

KL∑
k=1

2P (Ej)γ
2
nk

Γγk

(Ej − Eλk)2 +
(

2P (Ej)γ2nk
+Γγk

2

)2


2

+ β

∥∥∥∥∥~θOverlapLeft
− ~̄θOverlap

~̄θOverlap

∥∥∥∥∥
2

2

,

(2.11)

and the new objective for the right window is

min
m∑
j=1

σexpj −
πgJα

kα(Ej)2

KR∑
k=1

2P (Ej)γ
2
nk

Γγk

(Ej − Eλk)2 +
(

2P (Ej)γ2nk
+Γγk

2

)2


2

+ β

∥∥∥∥∥∥
~θOverlapRight

− ~̄θOverlap

~̄θOverlap

∥∥∥∥∥∥
2

2

,

(2.12)

where KL and KR are the number of resonances found in the windows from the

output of the cardinality agreement routine, β is the disagreement penalty term,

~θOverlapLeft
is a vector of the parameter values found in the overlap from the left

window, ~θOverlapRight
is a vector of the parameter values found in the overlap from the
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right window, ~̄θOverlap = 1/2(~θOverlapLeft
+~θOverlapRight

), and ‖·‖2 represents the Euclidean

norm. The norm is taken of the relative error of each of the parameters to help account

for the disparity in the magnitudes of the variables. For instance, in the nuclear

data problem, the parameter’s magnitudes can range from millielectron volts up to

megaelectron volts. Currently, a simple β updating routine is implemented, where β

starts off at a very small value and doubles on every iteration until convergence of

the parameter’s value is reached with maximum disagreement of a single parameter

being one percent.

2.5 Uncertainty Estimation

Now that each window has agreed on the number and average values for each of the

parameters, an uncertainty estimate needs to be provided. The result of the squared

error regression will provide an estimate on the average RM parameters. However,

since this is an experiments measurement with the cross sections data points having

their respective uncertainties, these values cannot be known exactly. Thus, the model

not only will provide an estimate for the average RM parameters, but provide this

uncertainty on the parameters the reflect the experimental uncertainty. Additionally,

an uncertainty on the predicted RM parameters and thus the predicted cross section

needs to be provided for future calculations that utilized the cross section such as with

reactor safety and criticality. This estimation is performed via quantile regression,

which will minimize the median absolute deviation between our predicted cross section

and the provided experimental data. The quantile regression formulation is
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min

β∑
`=1

ρτ

 gJαπ

kα(E`)2std(σexp`)

 Ω∑
j=1

2P (E`)γ
2
nj

Γγj

(E` − Eλj)2 +
(

2P (E)γ2nj+Γγj

2

)2

− σexp`




s.t. γ2
nj
∈ {N1,M1}

Γγj ∈ {N2,M2}

Eλj ∈ {N3,M3},

Eλj ≤ Eλj+1
j ∈ {1, . . . ,Ω− 1}

(2.13)

where kα(E) is defined in (2.2), P (E) is defined in Table 2.1, gJα is defined in (2.1),

Ω is the number of resonances in the window determined by the fit in as the output

from the agreement routines, and (E`, σexp`) are the β experimental data points. The

check function ρτ (u) is defined as

ρτ (u) = τ max(u, 0) + (1− τ) max(−u, 0) (2.14)

for the τth quantile. For instance, if 10% of the errors are positive and 90% of the

errors are negative, then the output would be the median of the 90th percentile.

Quantile regression allows various quantile’s medians to be provided for each of the

RM parameters for each resonance, which then can be converted to the variances for

each of those RM parameters and results in the desired covariance matrix. Adding

the weighted term of the standard deviation of the experimental data helps deal with

the nonlinearities present. Note that this model has to be run for each required τ

value for each of the windows.

2.6 Bayesian Update

Upon completion of solving the optimization formulations for the average RM

parameter values and uncertainties, Bayes’ method, which is sometimes called

“generalized least squares” is implemented. This method is an example of how domain

27



knowledge for a problem can be added as an additional part of the process in order to

improve the accuracy of the overall fitting routine. There are three basic assumptions

made, the prior joint pdf is a joint normal, the likelihood function is a joint normal,

and the true value is a linear function of the parameters. Therefore, the posterior

joint pdf is also a joint normal. Let P = {Pk} for k = 1 to K to be the set of all

parameters of the theoretical model to be considered with the respective covariance

matrix being M . This version of Bayes’ Equations is

M ′ = (M−1 +GtV −1G)−1

P ′ = P +M ′GtV −1(D − T ),
(2.15)

where D is the vector of experimental data points (length L) with V being the

covariance matrix of the experimental data [45]. The “sensitivity matrix” G is

composed of the partial derivatives of Tn with respect to the parameters Pk, evaluated

at P = P̄ :

Gn,k =
∂Tn
∂Pk

∣∣∣∣
P=P̄

for

 n = 1 to L

k = 1 to K
. (2.16)

Thus, G has a dimension of L × K, as T is a vector of the L data points and P is

a vector of the K Reich-Moore parameters. Note that in the case that the prior

covariance matrix M is infinite on the diagonal, then this version of the Bayes’

Equations become the least-squares equations. The Bayesian Update results in

the updated predictions for the mean values of the RM parameters P ′ with their

corresponding updated covariance matrix M ′. Performing the Bayesian update is

unique enough from the above optimization formulations, as it is performed on all

the resonances at once, and not window by window, hence focusing on the global fit

of the problem and not numerous local fits.
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Chapter 3

Results and Discussion

3.1 Implementation of the Model

The solver for this work was BARON, which a short background on how BARON

works is provided in Chapter 1. BARON was implemented in MATLAB via the

MATLAB-BARON interface found at https//minlp.com/matlab-baron-interface.

The software was run on a Yoga 260 Laptop (ThinkPad)-Type 20FE, which has an

Intel(R) Core(TM) i7-6500U CPU @2.50 GHz 2.69 GHz processor and 15.4 GB of

usable RAM. The processor is an ultra low voltage dual-core system on a chip (SoC)

based on the Skylake architecture that implements hyper-threading of the two CPU

cores at 2.5-3.1 GHz.

3.2 Specific Isotope and Angular Momentums

While this method can be used for characterizing the nuclear resonances for any

isotope, the numerical experiments presented focus upon 63Cu. This isotope was

chosen as it is more simple to model in terms of the types of reactions that are present,

as the total cross section here is only comprised of elastic and capture reactions. In

this work, the cross section that is being represented is actually only the capture

cross section. However, 63Cu also presents a unique challenge as it has two ` = 0
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spin groups, which is not common. Lastly, the research group has readily available

access to the true experimental measurements for 63Cu, as this work will compare its

performance to real experimental data in future developments.

Table 3.1 gives the nuclear parameters to match an instance of a 63Cu experimental

that are used for the presented numerical results that would be used in Equation 2.2.

Additionally, Table 3.1 shows these average parameter values for 63Cu, which has an

average level spacing of 722 eV, an average capture width of 0.500 eV, and a derived

average squared reduced neutron amplitude of 152.8079 eV for the s-wave spin group

(equation for derivation in Equation 2.3) [1]. For now, we choose J = 1 and the

current work only focuses upon the the orbital angular momentum ` = 0, which is the

s-wave spin group. This selection is a subset of the spins for 63Cu, which is identified

to have ` = 0 with J ∈ {1, 2} as well as ` = 1 with J ∈ {0, 1, 2, 3}. Hence, by replacing

the values in Table 3.1 with the values for any isotope, given reaction, and correct

value of ` (as well as choosing the right functional forms of penetration factor and level

shift factor in Table 2.1 based upon `), a complete set of synthetic training data can

be generated. For the given parameters in Table 3.1 for this experiment of 63Cu, this

window size was allowing for a maximum of five resonances per window, which was

choosing a value of twice the average level spacing in terms of the neutron’s kinetic

energy per window. The window overlap was selected to be one-half the window size,

to allow for each of the experimental data points to be covered by two consecutive

windows.

3.3 Case Study Demonstrations

This section walks through the methodology of the project by demonstrating the data

generation, the average value and quantile regression working on a single window, and

the window stitching working for two windows. The goal with showcasing these small

examples is that it is much easier to visually see what is happening when only having

a few resonances present.
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Table 3.1: Nuclear and experimental parameters for a specific 63Cu target. The

constants of ac of 6.7 fermi expressed as 10−12 cm and
√

2Mn

~ in units of 10−12 cm
√
eV
−1

are given for convenience. The average values are from Mughabghab [1].

A I i l ac

√
2Mn

~ < D`=0 > < γ2
n,`=0 > < Γγ,`=0 >

62.929599 1.5 0.5 0 0.67 0.002197 722 eV 152.8079 eV 0.5 eV
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3.3.1 Single Window Solutions

The merit of the single window problem in both achieving the proper number

of resonances, proper predicted average parameter values, and that the quantile

regression for uncertainty quantification works will be demonstrated. There are two

presented example of solving the single window problem, a one resonance example

and a three resonance example. These examples also give an idea of the variance

of each RM parameter in their samplings from their distributions in Equations

2.5 and 2.6, The single resonance problem has parameters of Eλ = 12.626 keV,

γ2
n = 307.101 eV, and Γγ = 0.547 eV. While the three resonance problem has

parameters of Eλ ∈ {11.664, 12.182, 12.544} keV, γ2
n ∈ {399.839, 443.780, 101.438}

eV, and Γγ ∈ {0.550, 0.513, 0.479} eV. After generating the true cross sections that

are seen in red in Figure 3.1, the noise model generates the blue experimental data

in Figure 3.1 by allowing a = 50 and b = 1 for Equation 2.7. The errors bar shown

are ±1 standard deviations.

First, the single window optimization formulation in Equation 2.8 calculates the

predicted average value for the RM parameterization that will generate the predicted

average values for the cross sections. Remember, the formulation allows for up to 5

resonances to be fit in the data, but in both these cases, the model correctly identifies

only 1 and 3 resonances, respectfully, and “zeros” out the RM parameters for those

extra allowed resonances. Figure 3.2 demonstrates the fit from the squared error fit.

In both cases the squared error of the predicted cross section fit is better than that

of the true cross section fit with 0.357 versus 0.376 for the single resonance example

and 0.809 versus 0.885 for the three resonance example. The slight decrease in the

squared error fit is characteristic of the proposed method when the true cross section

in the window is fit well.

The relative `1 norm weighted by the number of kinetic energy points is given as∥∥∥ σ̂−σtrueσtrue

∥∥∥
1

|σtrue|
, (3.1)
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Figure 3.1: The top figure shows the true versus experimental cross section for
RM parameters of Eλ = 12.626 keV, γ2

n = 307.101 eV, and Γγ = 0.547 eV. The
bottom figure shows the same for three resonances with Eλ ∈ {11.664, 12.182, 12.544}
keV, γ2

n ∈ {399.839, 443.780, 101.438} eV, and Γγ ∈ {0.550, 0.513, 0.479} eV, The
experimental data was generated with noise model parameters of a = 50 and b = 1
for both data sets.
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Figure 3.2: In both plots in this figure, the predicted cross section as a result of the
single window optimization is in red, while the experimental data is in blue. Note that
in both cases the squared error of the predicted cross section fit is better than that
of the true cross section fit with 0.357 versus 0.376 for the single resonance example
and 0.809 versus 0.885 for the three resonance example.
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where σ̂ is the predicted cross section from the model, σtrue is the true cross section,

|σtrue| is the number of data points, and ‖·‖1 is the L1 norm. This metric evaluated

to 0.157 for the single resonance example and 0.058 for the three resonance example

(the three resonance example has a larger kinetic energy span as well). Now that the

average predicted values for the RM parameters (and thus the cross section) have

been determined, as the model is measuring the experimental values that contain

their own uncertainty, the model must be able to provide an appropriate uncertainty

on its predicted values as well. Thus, the quantile regression and Bayesian update

routines are run to generate this uncertainty on the predicted cross section. Figure

3.3 demonstrates how by varying the τ value, the degree to which the cross section is

being under predicted versus overpredicted is changing. For instance, how a higher

value of τ results in more overpredicted cross section data points. The key takeaway

from the quantile regression is that the minimum squared error of the various τ ’s fit

of the data occurs at τ = 0.5, which the solution for τ = 0.5 should be similar to the

solution from squared error fit. Then as the τ value is either increased or decreased

from τ = 0.5, the squared error is a non-decreasing function. Additionally, it can

be seen visually in Figure 3.3 how varying the τ results in the desired uncertainty

envelope especially when examining the base of the resonance and the peak of the

resonance. Further implications of the quantile regression results will be examined

below in “Uncertainty Quantification” section.

3.3.2 Window Stitching Solutions

The previous subsection gave two illustrative examples demonstrating the data

generation process and the single window optimization problem working for predicting

the correct number of parameters for the window, a quality estimate of the

parameter’s average values, and a proper uncertainty estimate on each parameter.

This subsection gives an example of demonstrating the window cardinality agreement

routine in action. An example of the parameter value agreement is not given as most
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Figure 3.3: The output of quantile regression for both the single and triple resonance
example. The key things to note is not to try to make out the colors of the various
τ ’s on the graph, but notice how they form an uncertainty envelope on at the base of
the resonance and at the peak. The other key aspect is the squared error values take
a minimum at the τ = 0.5 as expected.
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of these value agreements resulted in very minimal changes to the predicted values,

and so these examples are not as visual and noteworthy as the cardinality agreement.

For these two windows, on the initial solve, the first window found three resonances

at 2.3790, 3.1423, and 3.1573 keV while the second window identified zero resonances

in its window. The overlapping region here would be from 2.7398 keV to 3.4598

keV, so the first window identified two resonances in the overlap while the second

window identified none. The interesting part about this example is that both windows

are wrong about the overlap. The true resonances covering the span of these two

windows have energies of 2.3790 keV and 3.3157 keV. Therefore, there is only one

true resonance in the overlap, so the first window overpredicted by saying there were

two resonances and the second underpredicted by saying there were none. After one

iteration of the cardinality agreement routine, the two windows agreed on there only

being a single resonance in the overlapping region. Now the first window correctly

only had resonances at 2.3790 keV and 3.1573 keV while the second window had its

resonance at 3.1573 keV. Note that how the two windows exactly matched on the

values for that resonance simply by making them agree on the number of resonances.

Another observation about this example is that the cardinality agreement routine

resulted in the squared error fit of both of the windows decreasing. The squared error

of the first window decreased from 6.943 to 5.813 (while now having two instead of

three resonances), and the second window decreased from 240.474 to 0.495. Figure

3.4 and 3.5 illustrates visually how the results for the two windows change as a before

and after of the one iteration of the cardinality agreement for this overlapping region

for the left and right windows, respectfully.

3.4 Resonance Ladder Performance

Across ten unique samplings of the 50 resonance problem, attempting to solve for

all 50 resonances in a single optimization formulation resulted in BARON erroring

out due to “insufficient memory for data structures” after approximately 20 minutes
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Figure 3.4: The example of showing how the left window’s number of resonances
in the overlapping regions changes from overpredicting with two resonances to being
correct with one resonance. This window initially tried to fit two resonances to the
rightmost resonance in this window. As a result of the cardinality agreement, the
squared error for this window went down from 6.943 to 5.813. The black vertical
lines represent the resonance energies of the predicted resonances.
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Figure 3.5: The example of showing how the right window’s number of resonances in
the overlapping regions changes from underpredicting with zero resonances to being
correct with one resonance. As a result of the cardinality agreement, the squared error
for this window went down from 240.474 to 0.495. The black vertical lines represent
the resonance energies of the predicted resonances.
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in all ten cases. Thus, producing no solution or even estimate of a solution to this

problem. However, below it will be demonstrated how the windowed approach can

solve the 100 resonance problem on the order of hours and arrive at a good solution.

First, note the unique structure of the independent small windows. The 100 resonance

problem is composed of approximately 100 windows (due to the choice in window size

and overlap), therefore the 100 resonance problem is not the ability to solve for that

group of 100 resonances, but the ability of the algorithm to solve 100 unique windows

and combine those solutions together. Thus, the 100 window problem is the same as

5 realizations of the 20 window problem, or 10 realizations of the 10 window problem,

and so on in terms of the RM parameter sampling. Remember, the RM parameters

are sampled independently from their distributions in Equations 2.5 and 2.6, so these

100 windows are 100 unique windows. However, solving the 100 resonance problem

is actually a more illustrative demonstration of the results of this method compared

to say 10 realizations of the 10 window problem or 5 realizations of the 20 window

problem. It is more illustrative because the 100 resonance ladder covers a much

larger kinetic energy range, which is important as shape of the resonance also has an

dependence on the kinetic energy of the incident neutron. Therefore, a larger kinetic

energy range gives the model a larger range of resonance sizes it has to be able to fit

over.

Solving for a ladder of any number of resonances is solely dependent on how well

the single window problem can be solved. Note that if the single window problem can

be solved really well, then there will no longer be a need to have overlapping windows

as all of the overlapping regions will already agree. However, an iterative approach

will be still be needed to handle the possible effects of one window on the next (as

the windows are solved initially as though they were independent even though they

are not), such as having the tails of resonance in one window run over into the next

window.

This argument is further exemplified in Figure 3.6, where the squared errors

for the true versus experimental cross section (in blue) and the predicted versus
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Figure 3.6: The squared error expressed as a function of neutron’s kinetic energy in
the resonance ladder. Each of these errors were calculated pointwise, so every point
represents five electron volts. Each of the two plots are across unique 100 resonance
ladders.
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experimental cross section (in red) are shown. As the experimental data is composed

of incident neutron kinetic energies every five electron volts, these metrics are

calculated pointwise with each index representing that five electron volt spacing.

For the first 100 resonance ladder, the predicted squared error starts off much lower

than the true squared error, then has two distinct points where the predicted squared

error has significant increases in value. But other than those two jumps, the predicted

squared error appears to climb at the same rate as the true squared error, thus

demonstrating the ability of the model to correctly identify the true cross section.

Similarly, for the second 100 resonance ladder, there are two distinct jumps in the

predicted squared error, otherwise the predicted and true squared error again appear

to increase at the same rate. Those squared error jumps occur as the model did not

identify a handful of very small resonances-resonances that are composed of only a

singular data point. Due to the nature of the resonance formalism, these very narrow

widths also are very tall, thus having a large contribution to the squared error if

missed. However, it is not ideal for the model to necessarily fit to these one point

resonances as that one point could easily be an experimental error or anomaly in the

data collection when examining real data, so fitting these singular points needs to be

performed by the expert evaluator who can better determine the holistic picture of

the data set.

Now, Figure 3.7 would not be available for real experimental data, but demon-

strates a very similar behavior where the ability of the model to characterize the true

cross section is constant across a majority of the resonance ladder except for a few

key places where there is a big jump in this error. This behavior demonstrates

that only a few places in the predicted cross section curve need the attention of the

nuclear evaluator in order to drastically decrease the fit on the true cross section.

As a specific example of BARON handling these windowed problems well, Figure

3.8 demonstrates the ability to correctly identify both true resonances present in the

experimental data set, even though to the human evaluator this small window would

be very difficult to properly characterize. Thus, this is a prime example of BARON
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Figure 3.7: The weighted L1 norm expressed as a function of neutron’s kinetic
energy in the resonance ladder. Each of these errors were calculated pointwise, so
every point represents five electron volts. Each of the two plots are across unique 100
resonance ladders.
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Figure 3.8: An example of resonance cluster where the experimental data has little
apparent structure, yet the formulation was correctly able to identify both resonances
present. The black vertical lines represent the resonance energy of the identified
resonances.
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being able to handle the one extreme case of resonance clusters close together when

the resonances are small (the other extreme being properly characterizing big, isolated

resonances, which would be easy to do by an evaluator and BARON does well with

too). This figure also gives a visual example of the difficulty of resonance clusters

as the resonances bleed into one another, thus making it harder to characterize their

widths.

3.5 Uncertainty Quantification

As the model is predicting the RM parameterization of the cross section via

experimental measurements, there are subsequent uncertainties with the model’s

predicted parameter values. Thus, in predicting these values, an appropriate

uncertainty needs to be calculated for them. The squared error fit of the independent

windows solution gives the prediction of the average value of the cross section, and

goal of the quantile regression calculations is to provide an experimentally appropriate

error envelope around this average predicted value. Figure 3.9 shows the relationship

between the chosen value of τ and the amount of cross section data points that are

overpredicted for the experimental cross section (in red) and the true cross section

(in blue).

Upon visual inspection of the figure, both sets of data points have an apparent

functional form to them. Upon further investigation, the true cross section

overprediction curve was determined to follow the logistic function, which is the

cumulative distribution function (CDF) of the logistic distribution with the form

f(x;µ, s) =
1

1 + exp (−(x−µ)
s

)
=

1

2
+

1

2
tanh

(
x− µ

2s

)
, (3.2)

where x is the random variable, µ is the mean, and s is a scale parameter proportional

to the standard deviation. This fit for the single resonance example has a mean of

µ = 0.5272 and scaling parameter of s = 0.01018, with the corresponding fitting
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Figure 3.9: The effect of varying τ with the amount of true cross section data points
overpredicted. The logistic CDF was fit to the single resonance curve with µ = 0.5272
and s = 0.01018 and to the three resonance curve with µ = 0.5128 and s = 0.03325.
The adjusted R2 was above 0.99 for both fits.
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statistics of R2 = 0.9996 and root mean squared error of 0.0104. While the three

resonance example has a mean of µ = 0.5128 and scaling parameter of s = 0.03325,

with the corresponding fitting statistics of R2 = 0.9985 and root mean squared error

of 0.0186. Therefore, it is evident that the quantile regression results on providing the

uncertainty on the true cross section values follow a well known and well characterized

probability distribution. The probability density function for the logistic distribution

is

f(x;µ, s) =
exp

(
−(x−µ)

s

)
s
(

1 + exp
(
−(x−µ)

s

))2 =
1

4s
sech2

(x− µ
2s

)
, (3.3)

again where x is the random variable, µ is the mean, and s is a scale parameter

proportional to the standard deviation. The scale factor s relates to the variance

as Var = s2π3

3
. The connection of this result to quantile regression can be made

as the inverse cumulative distribution function of the logistic distribution is the

quantile function, which is a generalization of the logit function. The logistic

distribution closely resembles the normal distribution in the shape of the distribution,

but has higher kurtosis (heavier tails) and is a special case of the Tukey lambda

distribution. The logistic distribution appears in many applications ranging from

the direct machine learning application of logistic regression (modeling categorical

dependent variables) to in physics where the logistic probability density function has

the same functional form as the derivative of the Fermi function [60].

Ultimately determining the functional form of the ratio of overpredictions of

the experimental cross section is not important, as the model is concerned with

determining an estimate and uncertainty on the true underlying cross section. It is

worthwhile to note that the true cross section uncertainty can be characterized well,

even though the optimization formulation is fitting to the experimental data points.

Having the logistic curve fit that data as it does, enable the nuclear data evaluator

to not need to calculate the quantile regression procedure for all of the presented τ

values (which all have to be run independently, being computational expensive), but

allows him/her to achieve the entire functional fit by simply running a two values of
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τ (need two values to find the two unknowns of the CDF: the mean µ and scaling

parameter s) and then selecting what size uncertainty envelope he/she ultimately

wants. Again, the key takeaway from the quantile regression results is that a well

known probability distribution is established to characterize the uncertainty on the

true cross section, which this characterization happens by only being able to see the

experimental data.
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Chapter 4

Conclusions and Recommendations

4.1 Future Model Improvements

While the model has appeared to work well, there are a few key directions for future

work to improve the methodology to obtain even better results.

4.1.1 Penalty Function

The model’s solution to optimization problem is greatly affected by the shape of the

penalty function. Transformations such as a positive number scaling of the penalty

function does not affect the solution, since this simply scales the objective function

[3]. Currently, the quadratic penalty function φ(u) = u2 is implemented, which yields

the Euclidean norm approximation. One issue with the quadratic penalty function is

that it gives a heavy weighting to large residuals, making it sensitive to outliers in the

data. For example, when comparing the L1-norm and L2-norm, for small residuals

u, φ1(u) � φ2(u) and for large residuals φ1(u) � φ2(u). Therefore, the residual

distribution for the L1 approximation will have more very small and zero residuals,

while the L2 approximation will have less large residuals. This residual distribution

difference is demonstrated in Figure 4.1 for a penalty function of φ(u) = ‖u‖p. There

is little incentive for the L2 penalty to drive small residuals even smaller.
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Figure 4.1: The residual distribution difference when comparing the L1

approximation to the L2 approximation for the penalty function of φ(u) = ‖u‖p.
The p = 1 residual distribution has more zero and very small residuals while having
many more relatively large residuals, while the p = 2 has less large valued residuals
and many modest valued residuals. Figure is from Boyd [3].
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This behavior of the penalty function’s effect on the solution to the optimization

problem is especially important for the nuclear resonance evaluation, as the model

is having to fit noisy, experimental data with the goal of extracting the underlying

true cross section. Thus, in evaluating the fits of presented by BARON, there is

this similar trend of having few large residuals, but then having a large number of

“modest” residuals. It is evident that the L2 penalty function is doing a good job of

getting a close solution to the true cross section, but there is still room to improve

upon that solution, and that improvement being limited not by the noise in the data

or by the formulation, but by the drawbacks in the L2 objective. For instance, take

a resonance that is composed of ten data points. If one of those ten points is an

outlier compared to the other nine in its representation of the true cross section, the

current formulation is going to give a high weighting to not allowing that outlier’s

residual to be large and subsequently have a slightly worse fit on the other nine points,

and thus the performance of measuring the true underlying cross section is slightly

decreased. There are two proposed procedures for improving these solutions, one

being take the L2 solution as the starting point for a new optimization problem, and

only allow the RM parameters to be slightly changed from that solution, but now

use a different penalty function that penalizes the small residuals more in hopes that

the new penalty shifts more of the small residuals towards zero and by bounding the

RM parameters around the L2 solution, that will disallow any large residuals from

forming. The downside to this method is now a new optimization problem has to be

solved for each of the windows, which is computationally expensive. However, this

problem may be able to be accounted for in the initial solve by slightly modifying the

penalty function by using penalty function approximation, such as

φ(u) =

u
2 |u| ≤M

M2 |u| > M.

(4.1)

Penalty function approximation preserves the Euclidean norm for residual values that

are less than M , however it places a set weight upon residuals larger than M , thus
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ignoring these large residuals. Note that this penalty function is not convex, however

the formulation is already dealing with a nonconvex optimization problem. But there

are other choices for a penalty function to help with outliers, while keeping the penalty

function convex would be robust penalty functions. The least sensitive ones are those

for where φ(u) grows linearly such as the L1 approximation or using the robust least

squares (Huber penalty function) of

φhub(u) =

u
2 |u| ≤M

M(2|u| −M) |u| > M,

(4.2)

which acts like least-squares for small residuals and then like an L1 for large residuals

[3]. The convex function closest to the outlier penalty function is the Huber penalty

function [3]. Note that the simple case of only using the L2 penalty function gave

a good solution to the resonance fitting problem, and future work can refine this

penalty function to improve even more upon the solution.

4.1.2 Window Size

Currently, the model has a static window size, which for this experimental data

was twice the average level spacing. This value was determined heuristically to be

the best maximum window size as it would allow for up to five resonances to be

present in a window, and any more resonances being allowed saw a drastic decrease

in the tractability of the problem. However, not all windows are created the same

in the resonance ladder. Some windows had a single, large resonance isolated by

itself while other windows had “resonance clusters” being present where there were

multiple resonances located within a small kinetic energy range and thus causing

direct interference with one another. These examples are to show that the complexity

of each window is far from being constant. Figure 4.2 demonstrates that although the

level spacing stays constant throughout the resonance ladder, the total widths of the

resonances increase as the kinetic energy of the incident neutron increases (a direct

52



Figure 4.2: The effects of increasing incident neutron’s kinetic energy of the
resonance ladder has on the true total widths and the true level spacing of the
resonances in that ladder. The level spacing stays constant while the true total
widths increase, as the kinetic energy of the resonance increases.

53



effect of the penetrability factor), thus the resonance clusters become more prevalent

as the neutron’s kinetic energy increases.

Due to the differing complexity of these windows, BARON is able to obtain a

similar squared error fit in both windows (comparing the predicted to true cross

section), but that result does not have a similar error when comparing the fit to the

true underlying cross section. That disparity is due to a good fit (having a lot of

small residuals, but not a lot of very small or zero residuals) gets the solution close in

the complex window, but to fully characterize that underlying true cross section, the

residuals need to be very small. On the other hand, having very small residuals is not

required in the single isolated resonance window, as those small residuals are good

enough to characterize that easily identifiable resonance. Thus, the requirements for

obtaining a high quality characterization of the true cross section can vary greatly

from window to window. So one solution is modifying the penalty functions based

upon this complexity as previously mentioned or have a dynamic window size selection

routine. The dynamic window size would allow the model to have a very large window

when they are few resonances and/or clearly isolated resonances, and then have

a much smaller window when dealing with the complex resonance clusters. This

dynamic window size should decrease the overall runtime of the method as it should

create less windows as a whole as a large number of windows right now have one or

two resonances so a majority of those could be collapsed into a single window, and

having less windows and windows with better solutions will require less iterations of

the stitching routines on the back end of the algorithm.

On a similar note to dealing with resonance clusters, this is a problem with manual

nuclear data evaluation as well. Eventually the resolved resonance region will reach

an incident neutron kinetic energy where the cross section fluctuations and resonances

still exist but are no longer able to be resolved due to experimental resolution. Thus,

that is an important future question to answer in how this model’s resolved resonance

region compares to that of manual evaluation. As if the neutron’s kinetic energy where
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the unresolved region starts for this model is less than that of an evaluator, this

method still has utility as the evaluator can use it for the model’s resolved region, get

a good starting guess for those resonances, and finish out the rest of the calculations

by hand. Or the model’s unresolved region could start at a higher kinetic energy

of the incident neutron, and thus be able to give a more accurate characterization

of the cross section as a whole and and thus improve the nuclear understanding of

these cross sections. Currently, estimates are formed in the unresolved resonance

region based upon average RM values found in the resolved region and propagating

those into the unresolved region by effective cross sections from probability tables as

a consideration of self-shielding effects or via Monte Carlo methods [61, 62].

4.2 Nuclear Resonance Limitations

While the focus of this work is upon the methodology of being able to transform large,

nonconvex, intractable problems, into small, tractable ones, there are a few points of

the specific points of its application to the nuclear resonance problem that should be

delineated.

4.2.1 Accuracy of Synthetic Data

The first is that this application hinges upon being able to generate a large training

set of synthetic experimental data to build the fitting statistics of the model before

its application to real experimental data (again a benefit as real experimental data

sets for a given reaction are very limited in size). The key concern here is what if

the real experimental data is not accurately modeled by the synthetic data. Then

all of these fitting statistics that have been built up for a given experiment would

be useless. This question is being answered by a fellow student in the NE research

group, where he is demonstrating that the entire set of real experimental data is a

subset of the synthetic experimental data. If his work is successful in not being able
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to demonstrate that a real experimental data set is distinguishable from a group of

synthetic data sets, then this problem is no longer a concern. However, if he can

demonstrate there is a distinguishable difference that ultimately cannot be accounted

for in fixing the synthetic data generation, then this project’s methodology will have

to be slightly shifted in only being able to train upon real experimental data sets,

and will lose its ability to generate the fitting statistics, but will still (in theory) be

able to fit the real data sets well.

4.2.2 Missing and Extra Resonances

The other key limitation is the problem of dealing with extra or missing resonances

generated from BARON’s fitting of the experimental data. While the goal of the

project is to best extract the true underlying cross section, and not necessarily

perfectly find every resonance, by being able to remove extra resonances or go back

and find missing ones, this could potentially increase how well we are able to calculate

the true cross section. However, the benefit of having the synthetic training data is

that there is the ability to characterize what types of resonances fall into the two

categories of being missed or extra. For instance, nearly all of the missed resonances

fall below a “minimum detectable limit”. This minimum detectable limit was taken

to be half the distance between the kinetic energy points of the incident neutron, so

a resonance of this width would only be accounted for by a single data point. By

demonstrating the majority of missed resonances fall into this category, the model

can be trusted to a higher degree by the nuclear evaluator as an evaluator is unlikely

to identify a single data point spike as a resonance either, and would likely call it

an anomaly in the experiment or a mistake in the data record. On a similar note,

almost all of the extra resonances are in the resonance cluster areas, where the model

could fit the cluster decently well, but adding an extra resonance made that cluster’s

fit even better. Again, the nuclear evaluator can then see this behavior, update the
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values for the RM parameters for the resonances that should be in that cluster and

delete any erroneous resonances that were added.

It is worth noting the current optimization formulation does not incorporate the

probability distributions, which easily could have been introduced to the objective

function. However, this incorporation was not performed in order to try to fit with

the simplest objective function first to see if a more intricate one was required and

because the work for the missing and extra resonances is a direct implementation of

the Wigner and Porter-Thomas distributions. The work by this student is using the

distributions to calculate the probability of each found resonance actually being an

extra resonance and calculating what are the most likely regions where a resonance

was missed. His algorithm will then be added to the end of the routines presented in

this work, and will inform BARON of where to attempt to add or remove a resonance

and see how that ultimately affects the fit. These two algorithms will be back and

forth in their iterations until an improved fit is no longer achieved.

4.3 Final Remarks

An additional benefit of having the synthetic training data is the ability to compare

the predicted RM parameters and cross section to the true values. However, with real

data, this is obviously not possible. One of the key remaining questions is how good

actually are this method’s good fits. All of these metrics are comparing the model’s

output to the true values, such as finding 95 resonances when they are 100 resonances

present, or comparing the model’s squared error to the true squared error. However,

what truly matters in terms of performance, is how these metrics compare to how

well a nuclear evaluator would characterize their parameterization of the same data

set. With that, currently the model is being demonstrated with 100 resonances and

a single spin group. Within the next year, the model will move to handling multiple

spin groups, those the functional forms of the equations change (see Table 2.1 as

well as the resonance cluster issue being more prevalent, as well as incorporating

57



the missing/extra resonance identification algorithm. Once multiple spin groups are

able to be handled, then the model can evaluate real experimental data and have its

results compared to that of ENDF (human evaluators), which being able to have that

comparison is approximately one to two years away.

Lastly, as a reminder the method itself is problem agnostic. It is intended

to be applied to a whole class of parameterized curve fitting problems that deal

with objective functions that are nonconvex and require a high number of function

evaluations, and even allows the model to choose how many parameters to include

in the parameterization. A fairly good global solution is able to be achieved by only

supplying a minimum and maximum allowable values on those fitting parameters, and

using some iteration to determine the optimal window size and window overlap for a

particular problem. There was no initial solutions given to the solution, the method

was shown to be fast, and the final global solution was close to the true underlying

value. This method is not perfect in its current form, with several possible methods

of improvement noted, but it is able to take a hard, intractable optimization problem

and give its user a high quality approximation of the best global solution.
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