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Abstract

Harvest plays an important role in management decisions, from fisheries to pest control.

Discrete models enable us to explore the importance of timing of management decisions

including the order of events of particular actions. We derive novel mechanistic models

featuring explicit within season harvest timing and level. Our models feature explicit

discrete density independent birth pulses, continuous density dependent mortality, and

density independent harvest level at a within season harvest time. We explore optimization

of within-season harvest level and timing through optimal control of these population models.

With a fixed harvest level, harvest timing is taken as the control. Then with fixed timing,

the harvest level is implemented as the control. Finally, both harvest timing and level are

used as controls. We maximize an objective functional which includes management goals

of maximizing yield, maximizing stock, and minimizing costs associated with both harvest

intensity and harvest timing.

The 2014-2016 West African outbreak of Ebola Virus Disease (EVD) was the largest

and most deadly to date. Contact tracing, following up those who may have been infected

through contact with an infected individual to prevent secondary spread, plays a vital role

in controlling such outbreaks. However, there were many complications and challenges to

contact tracing efforts during the 2014-2016 outbreak. We present a system of ordinary

differential equations to model contact tracing in Sierra Leone during the outbreak. Using

data on cumulative cases and deaths we estimate most of the parameters in our model. We

include the novel features of counting the total number of people being traced and tying this

directly to the number of tracers doing this work. We explore the role contact tracing played

in eventually ending the outbreak and examine the potential impact of improved contact

tracing on the death toll.
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Chapter 1

Introduction

Discrete and continuous models have been used successfully to represent a variety of biological

systems. In this dissertation, we explore two types of applications: harvesting actions in a

population model and contact tracing in an epidemiological model. In the discrete context

we explore the theoretical question of when during a season is the best time to harvest. In

the continuous context we develop a model of contact tracing in Sierra Leone during the

2014-2016 Ebola epidemic.

In discrete models, the order of events is important [9]. As a simple example, suppose

we have two events in a population model: growth and harvest. Suppose the population

is growing at 10% each time step and there is a harvest removing 10 individuals each time

step. The current population plus the growth may be represented by the equation

G(x) = x+ 0.1x, (1.1)

and the harvest may be represented by

H(x) = x− 10. (1.2)

We begin with a population of 100 individuals.

1



We represent the population at time t as Nt. If growth occurs before harvest then the

equation for the population size at the next census will be

Nt+1 = H(G(Nt)) = 1.1Nt − 10. (1.3)

With an initial population of N0 = 100, the number of individuals after growth will be 110,

10 individuals will be harvested, and the population size at the next census will be N1 = 100.

Indeed the population will remain at 100 for as many time steps as these conditions hold.

If harvest occurs before growth then the equation for the population size at the next

generation will be

Nt+1 = G(H(Nt)) = 1.1(Nt − 10). (1.4)

With an initial condition of N0 = 100, then 10 individuals will be harvested and then growth

will occur as 1.1 ∗ 90 = 99. The population size at the next census will be 99 individuals.

Indeed, the population will continue to decrease with each additional time step.

In the growth-then-harvest case, a harvest of 10 individuals each time step is sustainable.

But in the harvest-then-growth case a harvest of 10 individuals will eventually deplete the

stock. The order of events is also important in the optimal control of discrete models for a

variety of applications [9].

1.1 Summary of our investigation of two models

Harvest timing is an important management decision. A poorly timed harvest could result

in stock depletion, pest resurgence, or population destabilization due to a population’s age

structure, or the order of other events such as birth. For many populations, the most

appropriate models are discrete in time. In this dissertation we will develop two discrete

mechanistic models of harvest timing. These models are built with hybrid freatures, discrete

time expressions in the census time steps and continuous time dynamics within the seasons.

Hybrid models may occur when some events happen quickly in time (like a discrete effect)

and others happen over time. Both of our models will include density independent birth and

density independent harvest, but they will differ in the exact nature of density dependent

2



mortality included. In both models the order of events will be continuous mortality for

a portion of the season, then instantaneous harvest, then continuous mortality for the

remainder of the season, and finally a birth pulse immediately before the census at the

end of the season. If harvest timing occurs at the beginning of the season the order of

events will be harvest, then continuous mortality for the entirety of the season, and finally

the birth pulse. Our first model will have continuous per-capita mortality proportional to

population size. This will give rise to a Beverton-Holt-like model [7]. Our second model

will have continuous per-capita mortality proportional to the initial population size. This

will give rise to a Ricker-type model [66]. After this careful derivation, we will examine

the equilibria and stability of our models assuming fixed harvest timing and fixed harvest

intensity. Then we will compare them with a model of harvest timing from the literature [74].

Finally, we will perform optimal control of harvest timing and harvest intensity in order to

discover what conditions might give rise to a mid-season harvest and what conditions might

give rise to a harvest at the beginning of the season. For our first model we will explore

control of harvest timing with fixed harvest intensity, then control of harvest intensity with

fixed harvest timing, and finally control of both harvest intensity and harvest timing. For

our second model we will explore only control of both harvest intensity and harvest timing.

For both models we will optimize an objective functional which includes maximizing stock,

maximizing yield, and minimizing costs. These investigations are done numerically with

optimization tools discussed in section 1.2.

Next we turn to a continuous model, using a system of ordinary differential equations

(ODEs) to represent contact tracing in a novel way. In this system of ODEs the order

of events does not matter since all events (such as transmission, transitions to other

compartments, recovery, and deaths) occur simultaneously. The 2014-2016 West African

Ebola outbreak was the deadliest in history. One of the important interventions which

led to the ending of the epidemic was contact tracing. Contact tracing involves following

people who have come into contact with a person infected with Ebola. If a contact develops

symptoms, they are then isolated and tested. The goal is to prevent secondary transmission.

We will develop a novel model of contact tracing during this outbreak, based on data for

Sierra Leone. For our model of contact tracing, we will build upon an SEIR (Susceptible,
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Exposed, Infectious, Recovered) model. We will add compartments for traced individuals,

hospitalized individuals, and dead bodies that are unsafely buried. The novel features of our

model are: keeping track of all individuals traced (not just those who eventually develop

symptoms) and keeping track of the number of tracers doing contact tracing work. We

will perform stability analysis of our model. Then we will parameterize our model against

data from the Sierra Leone Ministry of Health [1, 2] that is publicly available. Finally, we

will explore how contact tracing impacted the course of the epidemic, how much worse the

epidemic might have been in the absence of contact tracing, and how contact tracing might

lead to more rapid containment of future epidemics.

1.2 Numerical methods

For our optimization scheme to find the maximum of our objective functional with respect

to the control of harvest timing and harvest intensity, we use MATLAB functions fmincon

and multistart. Our objective functional includes terms with the goals of maintaining stock,

maximizing yield, and minimizing costs. Because fmincon is a local minimizer, we use

multistart to search our parameter space for the global minimum. The function multistart

picks a given number of start points and then runs the chosen optimizer (in this case

fmincon) from each of those start points. Then multistart organizes the outputs (from

fmincon) according to size order of the value each returns from the objective functional

one is optimizing. Thus multistart in conjunction with a local optimizer can provide better

coverage of parameter space and make it more likely that one will find the global optimum

rather than just a local optimum.

When we parameterize our Ebola model, we use MATLAB functions fmincon, multistart,

and ode45. The function ode45 is a nonstiff, medium order solver, and there was no evidence

in this work for the need of a stiff solver. We will use data from the Sierra Leone Ministry of

Health detailing the cumulative confirmed cases and cumulative confirmed deaths over the

course of the epidemic to parameterize our model [1, 2]. We will be estimating the following

parameters:

� β1: the rate of infection from contact between Susceptibles and Infecteds
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� β2: the rate of infection from contact between Susceptibles and Dead bodies

� γ: the rate of hospitalization for Infecteds

� κ1: the number of contacts per hospitalized infected individual

� κ2: the number of contacts per funeral

� r: the rate of hospitalization for traced individuals

� p: the proportion of tracing effort not devoted to hospitalization

� ν: the death rate for untreated individuals

� µ: the death rate for treated individuals

� φ1: the recovery rate for untreated individuals

� φ2: the recovery rate for treated individuals

� F (0): the initial number of Susceptibles being traced

� E(0): the initial number of Exposed individuals

� EF (0): the initial number of Exposed being traced

� I(0): the initial number of Infectious individuals

� D(0): the initial number of Dead bodies.

Other parameters take on values from the data and from the literature. We minimize the

quantity

J =
504∑
i=77

(CasesEstimated(i)− CasesData(i))
2

(CasesData(i))2
+

(DeathsEstimated(i)−DeathsData(i))
2

(DeathsData(i))2
, (1.5)

where the time frame for our data is 77 to 504 days from the beginning of the outbreak.

In addition to using this fitting technique and to better match the data, we allowed some

parameters to change values later in the outbreak due to changes in behavior and treatment.
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After parameterizing our model, we explore the impact of contact tracing by examining

cumulative cases and cumulative deaths projections for different numbers of contact tracer

workers and and by looking at how total deaths depend on parameters κ1 and κ2.
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Chapter 2

Optimal control of harvest timing in a

discrete model

2.1 Background

In discrete population models, the effect of the timing of harvest is important for

management. To investigate harvest timing, we give the background on two classic discrete

time models before we present our two mechanistic models.

2.1.1 Beverton-Holt model

The classic Beverton-Holt model [7] was developed by Beverton and Holt as they studied

fisheries. They benefited from data collected during and immediately after WWII, data

which contradicted many existing theories about fisheries and revealed new and unexpected

properties. In their book they consider many different fish life cycles and explore how these

different species’ biologies might impact fishing. For example, do the young fish occupy a

different location than the mature fish or not? Though Beverton and Holt wrote about age-

dependent mortality in the same book, their simplest model has no age classes. They also

consider “exploited” populations of fish in this book, that is to say populations undergoing
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harvest. Of the many models in their book, the model of interest here may be written as

xt+1 =
bxt

1 + βxt
(2.1)

where xt is the number of individuals in the population at time t and b, β are positive

constants. The parameter b can be interpreted as a per-capita birth rate and β as a per-

capita death rate. To understand β as the per-capita death rate see [28]. We are interested in

non-negative solutions xt for (2.1) because only those solutions could represent time series for

a population. The right-hand-side bears a resemblance to a Holling Type II functional form

[40, 41], such as the Michaelis-Menten equation [60]. Holling Type II functional response

indicates that at low densities the population will have a faster growth rate and at higher

densities the population will have a slower growth rate. We will review the equilibria and

stability of model (2.1).

First let’s solve the equilibrium equation. If this were an ordinary differential equation

(ODE), we’d set the right-hand-side equal to zero and solve for x. This would mean we

assumed the change in x with respect to time is equal to zero. For a difference equation

such as (2.1), assuming the state variable x doesn’t change over time means that we set

xt+1 = xt = x∗ where x∗ denotes an equilibrium state. Assuming 1+βx∗ 6= 0 the equilibrium

equation for (2.1) is

x∗ =
bx∗

1 + βx∗

x∗ + β(x∗)2 = bx∗

β(x∗)2 + (1− b)x∗ = 0

x∗ (βx∗ + 1− b) = 0.

Therefore the equilibria are

x∗0 = 0 (2.2)

and

x∗1 =
b− 1

β
. (2.3)
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For b ≤ 1, we have x∗1 ≤ 0. We use equation (2.1) to model a population size and population

values below zero are not biologically relevant. For 0 < b ≤ 1 the only equilibrium that is

not negative is the extinction equilibrium x∗0. But for b > 1 we have two distinct equilibria,

x∗0 and x∗1.

Next we need to determine the stability of the two equilibria we’ve found. First some

definitions.

Definition 2.1 (Stable Equilibrium). We say that an equilibrium x∗ is Lyapunov stable if

for any C1 > 0 there is δ > 0 and a t0 > 0 such that if |x0 − x∗| < δ then |xt − x∗| < C1 for

all t > t0.

Definition 2.2 (Asymptotically Stable Equilibrium). We say that the equilibrium x∗ is

locally asymptotically stable if it is stable and there exists some ρ > 0 such that if |x0−x∗| < ρ

then lim
t→∞
|xt − x∗| = 0.

We use the following theorem from [48].

Theorem 2.3 (Stability Criteria). Suppose the difference equation xt+1 = f(xt) has an

equilibrium x∗ and that f is continuously differentiable. Then x∗ is asymptotically stable if

|f ′(x∗)| < 1 and unstable if |f ′(x∗)| > 1.

In our case, with f(x) = bx
1+βx

,

f ′(x) =
b (1 + βx)− bx (β)

(1 + βx)2

=
b+ bβx− bβx

(1 + βx)2

=
b

(1 + βx)2
.

At the trivial equilibrium x∗0 we have f ′(x∗0) = b. Therefore x∗0 is asymptotically stable if

b < 1. And x∗0 is unstable if b > 1. The stability of x∗1 is determined by
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f ′(x∗1) =
b(

1 + β b−1
β

)2
=

b

(1 + b− 1)2

=
1

b
.

Therefore x∗1 is asymptotically stable if b > 1. And x∗0 is unstable if b < 1. This bifurcation

that occurs at b = 1 is called a transcritical bifurcation. Biologically we interpret this to mean

that if b < 1 the population will go extinct as seen in Figure 2.1, but if b > 1, the population

will persist and will asymptotically approach a stable level of population size, b−1
β

. If b > 1

and the population begins below the positive equilibrium, it will monotonically increase

toward the equilibrium because f ′ > 0. If b > 1 and the population begins above the positive

equilibrium, the population will monotonically decrease toward the equilibrium. Figure 2.2

illustrates the two cases of monotonically increasing and monotonically decreasing to the

equilibrium. In this case the parameters were b = 5 and β = 4, which yields an equilibrium

of x∗1 = 1. The blue cobweb shows the case for an initial condition of x0 = 1.5 and the black

cobweb shows an initial condition of x0 = 0.5. For the lower initial condition, the states

monotonically increase to 1 and for the higher initial condition the states monotonically

decrease to 1.

2.1.2 Ricker model

Another classic difference equation model was developed by Ricker [66]. Ricker’s work, like

that of Beverton and Holt, was strongly influenced by fisheries data. In particular, Ricker was

interested in damped oscillations in stock and how removal of adult fish might paradoxically

increase reproductive rates. The Ricker model is

xt+1 = xte
r(1−xt

k
) (2.4)
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x∗1

x∗0
b

1

x∗

Figure 2.1: The transcritical bifurcation for the Beverton-Holt model is graphed above.
The dashed lines indicate unstable equilibria and the solid lines indicate asymptotically
stable equilibria.

Figure 2.2: A cobweb diagram of the Beverton-Holt model for b = 1, β = 4 with x0 = 0.5
in black and x0 = 1.5 in blue.
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where r, k are constants and k > 0. The parameter r is the birth parameter. If r > 0 then

the population is increasing in size and if r < 0 then the population is decreasing in size.

The parameter k is called the carrying capacity because it sets the maximum equilibrium

population size as we will see in the exploration of equilibria and their stability below. The

right hand side of this equation is f(xt) = xte
r(1−xt

k
). To find expressions for the equilibria

we set f(x) = x.

x =xer(1−
x
k
)

0 =x(er(1−
x
k
) − 1).

So one equilibrium is

x∗0 = 0.

The other equilibrium is given by the expression

0 =er(1−
x
k
) − 1

1 =er(1−
x
k
)

0 =r(1− x

k
)

x

k
=1

x∗1 =k.

To examine stability, we need to find f ′(x),

f ′(x) =er(1−
x
k
) − r

k
xer(1−

x
k
)

=er(1−
x
k
)(1− rx

k
).

Hence

f ′(x∗0) = er

12



and x∗0 is asymptotically stable for

r < 0.

Further, x∗0 is unstable for

r > 0.

Now let’s examine the stability condition for x∗1 = k,

f ′(x∗1) = 1− r.

Therefore x∗1 = k is asymptotically stable for

0 < r < 2

and unstable otherwise. Figure 2.3 shows a bifurcation diagram of the Ricker model for

k = 1. At r = 2 the Ricker model undergoes a period doubling bifurcation which gives

rise to stable 2-cycles. As r continues to grow the Ricker model undergoes further period

doubling bifurcations, giving rise to 4-cycles, then 8-cycles and eventually exhibiting chaos.

For some larger values of r, the Ricker model again exhibits periodicity, but for others it

exhibits chaos [59]. Unlike with the Beverton-Holt model above, the Ricker model does not

always monotonically approach the positive equilibrium from every initial condition when

0 < r < 2. Figure 2.4 illustrates an example where the state overshoots the equilibrium and

then has damped oscillations toward the equilibrium.

2.1.3 Order of events

In difference equation models the order of events can greatly affect outcomes. The importance

of order of events to the model design process will be illustrated in this section.

Suppose we are studying a population that has two primary events: growth and harvest.

Let’s take the Beverton-Holt model (2.1) as our growth function:

G(x) =
bx

1 + βx
. (2.5)

13



Figure 2.3: A bifurcation diagram for the Ricker model with k = 1.

Figure 2.4: A cobweb diagram of the Ricker model for r = 1.5, k = 1 with x0 = 0.5 in blue
and f(x) in black.
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And let’s use a linear harvest equation, representing proportional harvest of a population:

H(x) = (1− γ)x (2.6)

with 0 < γ < 1. The yield for this harvest equation is

Y (x) = γx.

Case 1:

If growth occurs before harvest, then the population equation will be

Nt+1 = H(G(Nt)) = (1− γ)
bNt

1 + βNt

. (2.7)

Here the yield will be

Yt = γ
bNt

1 + βNt

. (2.8)

The equilibrium equation for model (2.7) is

N =H(G(N))

N =(1− γ)
bN

1 + βN

N + βN2 =(1− γ)bN

βN2 + (1− (1− γ)b)N =0

N(βN + 1− (1− γ)b) =0.

The two equilibria then are

N∗0 = 0

and

N∗1 =
(1− γ)b− 1

β
,
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which is biologically feasible for (1 − γ)b > 1. To determine stability conditions for these

equilibria, we compute

d

dN
H(G(N)) =

(1− γ)b(1 + β)N − (1− γ)bNβ

(1 + βN)2

=
(1− γ)b+ (1− γ)bβN − (1− γ)bβN

(1 + βN)2

=
(1− γ)b

(1 + βN)2
.

Therefore N∗0 = 0 will be asymptotically stable if

(1− γ)b < 1

and unstable if

(1− γ)b > 1.

Similar to the Beverton-Holt equation (2.1), the extinction equilibrium will be unstable if

birth is sufficiently large. However in this case b must be larger than for model (2.1) in order

to overcome the drain of harvesting. The equilibrium N∗1 = (1−γ)b−1
β

will be asymptotically

stable if

(1− γ)b

(1 + β (1−γ)b−1
β

)2
<1

(1− γ)b

(1 + (1− γ)b− 1)2
<1

(1− γ)b

((1− γ)b)2
<1

1

(1− γ)b
<1

1 <(1− γ)b

(1− γ)b >1

and unstable if

(1− γ)b < 1
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but in that case, N1 is not biologically feasible. Therefore if birth is large enough to overcome

the burden of harvest, the population will have an asymptotically stable positive equilibrium.

Case 2:

If harvest occurs before growth, then the population equation will be

Nt+1 = G(H(Nt)) =
b(1− γ)Nt

1 + β(1− γ)Nt

. (2.9)

In this case, the yield will be

Yt = γNt. (2.10)

The equilibrium equation for this order of events is

N = G(H(N)) =
b(1− γ)N

1 + β(1− γ)N

N + β(1− γ)N2 =b(1− γ)N

(1− b(1− γ))N + β(1− γ)N2 =0

N(1− b(1− γ) + β(1− γ)N) =0

Yielding two equilibria:

N∗0 = 0

and

N∗1 =
b(1− γ)− 1

β(1− γ)

for b(1− γ) > 1. Note that this N∗1 is different from that for the other order of events.

To determine the stability conditions for these equilibria we compute

d

dN
G(H(N)) =

b(1− γ)(1 + β(1− γ)N)− b(1− γ)Nβ(1− γ)

(1 + β(1− γ)N)2

=
b(1− γ) + b(1− γ)2βN − b(1− γ)2βN

(1 + β(1− γ)N)2

=
b(1− γ)

(1 + β(1− γ)N)2
.
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The equilibrium N∗0 = 0 then is asymptotically stable when

b(1− γ) < 1

and unstable when

b(1− γ) > 1.

These conditions are identical as for the other order of events case. The positive equilibrium

N∗1 = b(1−γ)−1
β(1−γ) will be asymptotically stable when

b(1− γ)

(1 + β(1− γ) b(1−γ)−1
β(1−γ) )2

<1

b(1− γ)

(1 + b(1− γ)− 1)2
<1

b(1− γ)

(b(1− γ))2
<1

1

b(1− γ)
<1

b(1− γ) >1

and unstable when

b(1− γ) < 1

which is not biologically feasible.

For both cases of the order of events, stability hinges on the quantity b(1− γ), and N∗0 ,

the extinction equilibrium, is asymptotically stable when this quantity is smaller than 1

and unstable when this quantity is larger than 1. For both cases, when b(1 − γ) > 1 the

positive equilibrium is asymptotically stable and when b(1− γ) < 1 the positive equilibrium

is unstable. However, the positive equilibrium in each case has a different expression. For

further details on these issues see [32].
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Intuitively, the yield where growth has occurred first ought to be larger than the yield

where growth occurred after harvest. Let’s examine the conditions under which this holds.

γ
bNt

1 + βNt

>γNt

bNt

1 + βNt

>Nt

bNt >Nt + βN2
t

(b− 1)Nt − βN2
t >0

Nt(b− 1− βNt) >0.

In order to harvest at all we must have Nt > 0, so this leaves

b− 1− βNt >0

b− 1 >βNt

b− 1

β
>Nt.

Here we see there is some playoff between the birth parameter b and the mortality parameter

β. Note that b must be sufficiently large relative to the size of β and the population size Nt

for the order of events harvesting-after-growth to produce the larger yield.

Suppose b(1 − γ) > 1 and therefore the positive equilibrium for each order of events

case is asymptotically stable. For Case 1 this means N∗1 = b(1−γ)−1
β

is asymptotically stable,

giving a yield of

Y =
γb b(1−γ)−1

β

1 + β b(1−γ)−1
β

=
γb b(1−γ)−1

β

1 + b(1− γ)− 1

=
γb b(1−γ)−1

β

b(1− γ)

=γb
b(1− γ)− 1

β

1

b(1− γ)
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=
b(1− γ)− 1

β

γ

1− γ

=
γ(b(1− γ)− 1)

β(1− γ)
.

For Case 2 this means N∗1 = b(1−γ)−1
β(1−γ) is asymptotically stable, giving a yield of

Y =γ
b(1− γ)− 1

β(1− γ)

which is identical to the equilibrium yield for Case 1 above. However, the equilibrium values

will only be reached asymptotically. In general, for almost any population value Nt, the

yields for Case 1 and for Case 2 will be different.

In this simple example, the two order of events cases produce different equilibrium

population levels and different yields. Therefore it is important to take care with order

of events when building a discrete model to describe a population. The order of events is

important in a wide variety of situations [88].

2.2 Motivation

The timing of harvest is a crucial management decision whether harvesting for profit, pest

control, or with some other goal in mind [54]. Timing of harvest may need to take into

account seasonal variations in mortality, which could have a profound effect on population

stability [49, 87]. Harvesting can be performed at a particular instant, or over a particular

period of time, or continuously [12, 47]. Harvesting can be used to stabilize fluctuating

populations, with the goal of either preventing extinction or resolving a pest outbreak [37, 71].

Or harvesting may destabilize populations [8, 18].

Some authors have explored the role that order of events plays in the decision of when to

harvest [47, 58]. Depending on the order of events, extra mortality due to harvesting may be

either additive or compensatory [45]. There may be hydra effects, where increased mortality

due to harvest paradoxically increases the population size [39, 55]. An event may impact

per capita vital rates during the next event [65]. One must be careful when developing

a model, particularly with density-dependent mortality, to avoid underestimating mortality
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Table 2.1: The two limit cases of Seno’s model correspond to the two order-of-events
options.

Order of events Harvest time Seno’s model
Harvest Reproduction θt = 0 Nt+1 = g((1− γ)Nt)(1− γ)Nt

Reproduction Harvest θt = 1 Nt+1 = (1− γ)g(Nt)Nt

and overestimating sustainable yield [47]. Harvest timing may have spatial effects too [34, 56].

When modeling some populations it is important to consider multiple life stages, which can

give rise to very different dynamics [68]. It may be best, for example, to harvest adults

shortly after a yearly breeding cycle to maximize yield and give juveniles a higher chance of

survival [80]. There are many important decisions to make when building a model of harvest

timing on a population.

We are interested in the precise timing of a harvest within a season. The only discrete

model explicitly describing harvest at some time θ ∈ [0, 1] within a season (that is between

time t and t+ 1) was given by Seno’s model [74, 75]:

Nt+1 = θ(1− γ)Ntg (Nt) + (1− θ)(1− γ)Ntg ((1− γ)Nt) . (2.11)

Here γ ∈ [0, 1] is the proportion of the population harvested and g(x) the per-capita

growth function for the population in absence of harvest. This heuristic model is a convex

combination of the two order-of-events cases: harvest-then-reproduce and reproduce-then-

harvest. The models for these two cases are given in Table 2.1. The Seno model makes the

assumptions

1. Harvest is instantaneous (or very brief relative to length of the entire season)

2. A proportion γ of the population is harvested at time θ

3. The harvest time θ is constant

4. To apply the model in a specific case, the population must meet the assumptions for

the chosen per-capita growth function g(x).

5. The season has unit length (or is scaled to unit length).
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Though the time of harvest and the proportion of harvest are known, the yield is

unknown, a topic on which Seno makes no comment. We know what the population is

at time t and time t + 1, but the population at any intermediate time is unknown. One

might speculate that the yield could be approximated by a convex combination of the yields

for the two order of events cases given in Table 2.1. That is, the yield might be proportional

to

θtγNtg (Nt) + (1− θt)γNt.

But this would only be an approximation. It is also unclear when reproduction occurs. One

term assumes reproduction occurs before harvest, while the other describes reproduction

occurring after harvest. To improve clarity on these processes we will formulate mechanistic

models [28] with the advantages of explicit order of events and, vitally, known yield. Our

method can be adapted to a specific population’s dynamics and the nature of the available

data.

In addition to deriving two new mechanistic models, we will also investigate the effect of

controlling the time of harvest, denoted θt, to achieve a desired goal. Such management goals

might include maximizing profit, maximizing population size for conservation, or minimizing

population size of a pest. Techniques of optimal control theory and optimization for discrete

models will be used [9, 14, 76]. Then we will investigate controlling harvest intensity γt,

allowing γ to vary depending on time. Finally, we will investigate optimal control of both

θt and γt. Control of harvest timing in discrete models is a novel application of optimal

control. This work is in collaboration with Suzanne Lenhart (University of Tennessee),

Daniel Franco (Universidad Nacional de Educación a Distancia, Spain), and Frank Hilker

(Osnabrück University, Germany).

2.3 First mechanistic model

For our first mechanistic model, we consider a population with initial size N0 for the times

t = 1, . . . , T . We assume the season has unit length. The population at each discrete time

t is given by Nt. The effects of the biological mechanisms between time t and t + 1 will be

represented in our model. The population between t and t + 1 is represented by n(τ) for
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τ

Figure 2.5: Timeline illustrating the variables Nt and n(τ).

Table 2.2: The population undergoes the above processes at the above times, where
θt ∈ [0, 1].

Time Process
(t, t+ θt) continuous mortality
t+ θt instantaneous harvest
(t+ θt, t+ 1) continuous mortality
t+ 1− birth pulse
t+ 1+ census

τ ∈ [0, 1]. Figure 2.5 illustrates the relationships between N , n, t, and τ . The population

undergoes three events: density-dependent mortality during the season, proportional harvest

at the time θt within the season, and density-independent birth immediately before the

census. We chose birth as the last event because we believe it is more logistically feasible to

take a census immediately following a birth pulse than to take a census immediately before a

birth pulse. Table 2.2 shows the time(s) at which each of the processes occur. By season we

mean a time period which makes sense for a given population. For example, in studying deer

it might be reasonable for a time step to take one year. However, in studying an organism

with shorter generation time or longer generation time a time step might take two weeks or

several years.

We assume per-capita within-season mortality is proportional to the population size.

That is,
1

n

dn

dτ
= −βn,

which gives

dn

dτ
= −βn2 (2.12)

n(0+) = Nt (2.13)
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where β > 0. Let’s solve (2.12) on a generic interval (a, τ) where a is the initial time, τ the

current time, and a < τ .

−n′

n2
= β∫ τ

a

−n′(s)
n2(s)

ds =

∫ τ

a

βds

1

n(τ)
− 1

n(a)
= βτ − βa

1

n(τ)
=

1

n(a)
+ βτ − βa

1

n(τ)
=

1 + n(a) (βτ − βa)

n(a)

n(τ) =
n(a)

1 + n(a)β (τ − a)

By setting a = 0+, with the initial condition (2.13), the population for τ ∈ (0+, θ−t ) is given

by

n(τ) =
Nt

1 +Ntβτ
.

Therefore, the population just before harvest, at τ = θ−t , is

n(θ−t ) =
Nt

1 +Ntβθt
.

Since a proportion γ of the population is harvested, the yield is

Yt =
γNt

1 +Ntβθt
. (2.14)

After the instantaneous harvest, within-season mortality dynamics continue according to

(2.12) with the new initial condition

n(θ+t ) =
(1− γ)Nt

1 +Ntβθt
.
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Using the solution to (2.12) with a = θ+t we find that the population size for τ ∈ (θ+t , 1
−) is

n(τ) =

(1−γ)Nt

1+Ntβθt

1 +
(

(1−γ)Nt

1+Ntβθt

)
β(τ − θt)

=
(1− γ)Nt

1 +Ntβθt + (1− γ)Ntβ(τ − θt)

=
(1− γ)Nt

1 +Ntβ (θt + (1− γ)(τ − θt))

=
(1− γ)Nt

1 +Ntβ (θt + τ − θt − γτ + γθt)

=
(1− γ)Nt

1 +Ntβ (τ − γ(τ − θt))
.

The population just before the birth pulse, at τ = 1−, is

n(1−) =
(1− γ)Nt

1 +Ntβ (1− γ(1− θt))
.

The birth pulse occurs at τ = 1+ and the population at the next census is

Nt+1 =
b(1− γ)Nt

1 +Ntβ (1− γ(1− θt))
(2.15)

where b > 1
1−γ is the per-capita growth rate. We must have b > 1

1−γ because otherwise the

population would only be able to decrease from N0 to extinction. This is an extension of the

requirement for the Beverton-Holt model (2.1) that b > 1. Here the corresponding term is

b(1− γ), so we must have

b(1− γ) >1

b >
1

1− γ
.

Note that

0 ≤ 1− θt ≤ 1

0 ≤ γ(1− θt) ≤ 1

0 ≤ 1− γ(1− θt) ≤ 1.

Therefore, the denominator is positive.
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Figure 2.6: This figure illustrates the processes occurring between the discrete time steps of
our model using the parameters β = 4, b = 5, N0 = 1, T = 5, γ = .02, C1 = 0.1, A = 1, B = 1.

Equation (2.15) represents the iterative formula for our mechanistic model. Though the

underlying process of mortality is continuous, we can represent the population dynamics

by the discrete expression given by equation (2.15). In modeling some populations such a

discrete-continuous hybrid method is quite useful [38]. Figure 2.6 illustrates the processes

that are occurring between each time step of the discrete model. This figure shows the

population size at each instant between the initial population census (t = 0) and the next

census (t = 1) and continues partway into the next time step until the second harvest,

which occurs at time θ1. Continuous density-dependent mortality causes the population

to decrease between times 0 and θ0. At time θ0 = .3229 the first harvest occurs and the

population size drops discontinuously. From time θ0 until time 1 the population undergoes

continuous density-dependent mortality. At time 1 birth occurs, causing a discontinuous

increase in population. Finally, between time 1 and 1 + θ1 = 1.3244 the population once

again undergoes continuous density-dependent mortality.
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2.3.1 Some observations about our model

Our model makes the following assumptions:

1. The season has unit length.

2. The population undergoes continuous, density-dependent mortality.

3. Harvest is instantaneous.

4. Harvest is density-independent.

5. Birth is density-independent.

6. Census occurs immediately following birth.

To understand how the timing of harvest affects the population and yield, note that the

next generation size of our model is a decreasing function of θt

∂Nt+1

∂θt
=

−(1− γ)γβbN2
t

(1 + β(1− γ(1− θt))Nt)2
. (2.16)

This means that harvesting at θt = 0 will result in the highest next-generation size, while

harvesting any time later in the season will result in a diminished next-generation size.

Therefore, if we were to only consider the management goal of maximizing next-generation

population size we would always harvest at θt = 0.

The yield is also a decreasing function of harvest timing

∂Yt
∂θt

=
−γβN2

t

(1 + βθtNt)2
. (2.17)

Therefore, in order to maximize yield we would choose to harvest at the beginning of the

season, θt = 0. Any later season harvest would result in a lower yield. Oddly, this means

that the two goals of maximizing next-generation population size and maximizing yield can

both be achieved by harvesting at θt = 0.

The limit cases of (2.15) are

Nt+1 =
(1− γ)bNt

1 + β(1− γ)Nt

(2.18)
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for θt ≡ 0 and

Nt+1 =
(1− γ)bNt

1 + βNt

(2.19)

for θt ≡ 1.

Equations (2.18) and (2.19) consist of three functions composed in a different order. The

three functions are the mortality function

fβ(x) =
x

1 + βx
,

the harvest function

fγ(x) = (1− γ)x,

and the birth function

fb(x) = bx.

The order in which these functions are composed tells us the order of events for each equation.

Equation (2.19) could be written as

fb (fγ (fβ (Nt)))

or it could be written as

fγ (fb (fβ (Nt))) .

This means that equation (2.19) does not distinguish the order between the events of

harvesting and birth, since they are both assumed to be density-independent and in this

case occur one after the other. Birth may occur before harvest or harvest may occur before

birth, and the expression would be the same. Mortality must have occurred first. Since the

order of birth and harvest would affect yield, it is important that we remain consistent with

our assumption that birth occurs last in the season during the remainder of our analysis.

The order of events for expression (2.19), then, is mortality, then harvest, and then birth.

We chose to have birth occur last, and therefore directly before the census, because we think

it’s more practical to observe births in the population and then perform the census rather

than to attempt to census the population “immediately” before birth occurs.
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Now consider the order of events in equation (2.18). This expression could be written as

fb (fβ (fγ (Nt))) .

The order of events is first harvest, then mortality, and finally birth.

Let’s compare the limit cases of our model (that is with θ values at only 0 or only 1)

with the model itself to gather further understanding of its dynamics. Observe that

0 ≤ θt ≤ 1

−1 ≤ −θt ≤ 0

0 ≤ 1− θt ≤ 1

0 ≥ −γ(1− θt) ≥ −γ

1 ≥ 1− γ(1− θt) ≥ 1− γ

Nt ≥ (1− γ(1− θt))Nt ≥ (1− γ)Nt

βNt ≥ β (1− γ(1− θt))Nt ≥ β(1− γ)Nt

1 + βNt ≥ 1 + β (1− γ(1− θt))Nt ≥ 1 + β(1− γ)Nt

1

1 + βNt

≤ 1

1 + β (1− γ(1− θt))Nt

≤ 1

1 + β(1− γ)Nt

(2.20)

(1− γ)bNt

1 + βNt

≤ (1− γ)bNt

1 + β (1− γ(1− θt))Nt

≤ (1− γ)bNt

1 + β(1− γ)Nt

. (2.21)

In other words, Nt+1(θt ≡ 1) ≤ Nt+1(0 < θt < 1) ≤ Nt+1(θt ≡ 0). Therefore harvesting at

θt = 1 will result in the lowest next-generation size, harvesting at some intermediate value

of 0 < θt < 1 will provide an intermediate next-generation size, and harvesting at θt = 0

will generate the largest next-generation population size. This matches the conclusions we

drew from the fact that ∂Nt+1

∂θt
< 0. We can take convex combinations of these two limit case

terms to form the corresponding Seno model, which we will examine in a later section.

If we set the harvest timing equal to a constant, we can find equilibria for our model.

Let θt = θ, a constant, for all t. Let’s call the right-hand side of equation (2.15)

f(x) =
b(1− γ)x

1 + xβ(1− γ(1− θ))
.
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The equilibrium equation for (2.15) then is

N =f(N)

N =
b(1− γ)N

1 +Nβ(1− γ(1− θ))

N (1 +Nβ(1− γ(1− θ))) =b(1− γ)N

N
(

1− b(1− γ) +Nβ(1− γ(1− θ))
)

=0.

One equilibrium is

N∗0 = 0 (2.22)

and the other is

N∗1 =
b(1− γ)− 1

β(1− γ(1− θ))
. (2.23)

Recall that this denominator is positive. This is similar to the classic Beverton-Holt model

explored in section 2.1.1, where one equilibrium was x∗0 = 0 and the other was x∗1 = b−1
β

. The

second equilibrium, N∗1 , only exists when b > 1
1−γ . Since 0 < γ < 1, our birth rate b must be

larger in order for this equilibrium to exist than for the equilibrium x∗1 to exist, which only

requires b > 1.

To examine the stability of these equilibria we take the derivative of the right-hand side

of (2.15):

Nt+1 = f(Nt) =
b(1− γ)Nt

1 +Ntβ(1− γ(1− θt))
.

This derivative is

f ′(Nt) =
b(1− γ)

(1 + βNt(1− γ(1− θt)))2
. (2.24)

Evaluating this equation at Nt = N∗0 = 0 yields

f ′(0) = b(1− γ). (2.25)

The equilibrium N∗0 is stable for

0 ≤ b(1− γ) < 1 (2.26)
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and unstable for

b(1− γ) > 1. (2.27)

We don’t consider b(1− γ) < 0 because this case is not biologically relevant. Evaluating the

derivative (2.24) at Nt = N∗1 from equation (2.23) gives the expression

f ′(N∗1 ) =
b(1− γ)(

1 + β
(

b(1−γ)−1
β(1−γ(1−θ))

)
(1− γ(1− θ))

)2
=

b(1− γ)

(1 + b(1− γ)− 1)2

=
1

b(1− γ)
.

The equilibrium N∗1 = b(1−γ)−1
β(1−γ(1−θ)) is asymptotically stable for

b(1− γ) > 1 (2.28)

and unstable for

b(1− γ) < 1. (2.29)

For b(1−γ) = 1, Theorem 2.3 does not apply. This is where N∗1 = 0 = N∗0 and the exchange

of stability occurs.

2.3.2 Order of events comparison

We decided to census immediately following the birth pulse because it seems more realistic

to notice births and then census than to somehow census “immediately” before births occur.

But what if we build our model with the other order of events? That order of events would

be birth-mortality-harvest-mortality-census. Let’s derive the model for this alternative order

of events and compare it with our model.

The solution of the ODE in this case is still

n(τ) =
n(a)

1 + n(a)β(τ − a)
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with initial condition n(a) at some time a < τ . If birth occurs first, then our initial condition

is

n(0+) = bNt. (2.30)

Using this initial condition we can solve to find the population size at time τ = θ−, which is

immediately before harvest. This population size is

n(θ−) =
bNt

1 + bNtβθ
. (2.31)

Since we harvest a proportion γ of the population, our yield will be

Yt =
γbNt

1 + bNtβθ
, (2.32)

and the remaining population is

n(θ+) =
(1− γ)bNt

1 + bNtβθ
. (2.33)

Using n(θ+) as our new initial condition we can solve for the population size at census which

occurs at time τ = 1:

n(1) =

b(1−γ)Nt

1+bNtβθ

1 + b(1−γ)Nt

1+bNtβθ
β(1− θ)

=
b(1− γ)Nt

1 + bβθNt + b(1− γ)β(1− θ)Nt

=
b(1− γ)Nt

1 + bβNt(θ + 1− θ − γ + γθ)
.

Thus, the population at census is

Nt+1 =
(1− γ)bNt

1 + bβNt(1− γ(1− θ))
. (2.34)
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Now let’s compare the yield and next-generation population size for this order of events

with our model.

1 <b

1 + bNtβθ <b+ bNtβθ

1

1 + bNtβθ
>

1

b+ bNtβθ
γbNt

1 + bNtβθ
>

γbNt

b+ bNtβθ
γbNt

1 + bNtβθ
>

γNt

1 +Ntβθ
.

Therefore, the yield for birth first (equation (2.32)) would be greater than the yield for birth

last (equation (2.14)). Next let’s compare the next-generation population size.

b >1

bβNt(1− γ(1− θ)) >βNt(1− γ(1− θ))

1 + bβNt(1− γ(1− θ)) >1 + βNt(1− γ(1− θ))
1

1 + bβNt(1− γ(1− θ))
<

1

1 + βNt(1− γ(1− θ))
(1− γ)bNt

1 + bβNt(1− γ(1− θ))
<

(1− γ)bNt

1 + βNt(1− γ(1− θ))
.

Therefore, the next-generation population size for our model (2.15) is larger than the next-

generation size for the alternative order of events model (2.34).

2.3.3 Comparison with the Seno model

Recall that the Seno model, given by equation (2.35), is a convex combination of harvesting

at the beginning and at the end of the season using a without-harvest growth function.

The Seno model which compares with our mechanistic model (2.15) has the without harvest

per-capita growth function g(x) = b
1+βNt

. This yields the corresponding model:

Nt+1 = θt(1− γ)Nt
b

1 + βNt

+ (1− θt)(1− γ)Nt
b

1 + β(1− γ)Nt

. (2.35)
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Note that equation (2.35) is equal to our model for θt = 0 and for θt = 1. To compare our

mechanistic model (2.15) with (2.35), consider the function

f(x) =
1

1 + βx
. (2.36)

Its first derivative is

f ′(x) = −β(1 + βx)−2

and its second derivative is

f ′′(x) = 2β2(1 + βx)−3 > 0.

The function f in (2.36) is convex. Thus we may apply Jensen’s inequality [69] to get

f(θtNt + (1− θt)(1− γ)Nt) ≤ θtf(Nt) + (1− θt)f((1− γ)Nt)

1

1 + β (θtNt + (1− θt)(1− γ)Nt)
≤ θt

1

1 + βNt

+ (1− θt)
1

1 + β(1− γ)Nt

1

1 + βNt (θt + 1− γ − θt + γθt)
≤ θt

1

1 + βNt

+ (1− θt)
1

1 + β(1− γ)Nt

1

1 + βNt (1− γ(1− θt))
≤ θt

1

1 + βNt

+ (1− θt)
1

1 + β(1− γ)Nt

.

Multiplying on both sides by the non-negative quantity (1− γ)bNt yields

(1− γ)bNt

1 + βNt (1− γ(1− θt))
≤ θt

(1− γ)bNt

1 + βNt

+ (1− θt)
(1− γ)bNt

1 + β(1− γ)Nt

. (2.37)

Therefore the next generation size of our mechanistic model is less than or equal to the next

generation size of the Seno model (2.35).

Numerical simulations indicate that for a reasonable range of parameters the values of Nt

from our model, (2.15), do not much differ from Seno’s model, (2.35). Appendix A contains

estimates of the relative and absolute differences between the two models. Unfortunately,

none of those estimates are insightful. We explored the relative difference between the two

models numerically. We built an LHS matrix with 10,000 possible parameter sets. An

LHS (Latin Hypercube Sampling) matrix divides the distribution of each parameter into, in

this case 10,000, areas of equal probability. One sample is taken from each of these areas,
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and they are randomly combined with samples of other variables to generate 10,000 possible

parameter vectors. We chose the ranges T ∈ [5, 15], N0 ∈ [0.5, 10], θ ∈ [10−4, 1], γ ∈ [10−4, 1],

b ∈ [.01, 1000], and β ∈ [.01, 1000]. By θ here we mean a constant, that is, θt = θ for each

t. Whereas in our optimal control work, θt varies at each time step. We assumed each

parameter was uniformly distributed on these ranges. To compare the time series outputs

of the two models, we used
T∑
t=1

(St −Nt)
2

St2
(2.38)

to measure the differences, where St indicates a value in the time series given by Seno’s

model and Nt a value in the time series given by our model. The resulting 10,000 values we

obtained from computing (2.38) for each set of parameters in the LHS matrix are shown as

a histogram in Figure 2.7a. Notice that the relative differences for all of the parameter sets

are very small, with the overwhelming majority of the values at the left end of the histogram

(that is, virtually identical to zero). We conclude that though Seno’s model (2.35) and

our model (2.15) look like they would act on θt rather differently, in practice this doesn’t

seem to be the case. Both models are based on many of the same mechanistic assumptions.

Indeed, Seno’s model may be thought of as some sort of first order approximation of our

model in terms of θt. Since the two models do not differ notably in output (even for much

larger N0 than the range above) but our model has an explicit yield and greater biological

interpretability, we will perform optimal control analysis on our model alone.

2.4 Optimal control of harvest intensity and timing

For our model (2.15) we consider possible components which a management goal might

have and some simple ways of incorporating them into our objective functional. We do

not consider optimal control of the Seno model because yield is unknown and is often

an important factor in management decisions. Since the two models give such similar

outputs, we use our mechanistic model for optimal control and interpretation. For a specific

application, the objective functional might be quite different from what we consider here.
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Figure 2.7: The upper graph shows the whole histogram of relative differences between our
model and the Seno model. The lower graph zooms in on the left end of the histogram. The
maximum value is 0.0328, the mean is 3.2179e− 4, and the variance is 3.1222e− 6.
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We analyze (2.15) for our choices of objective functionals under various parameter choices

and provide some numerical results.

Managers might try to maximize population size, either the weighted sum of population

size at each time step,
T∑
t=1

AtNt (2.39)

where At are weights for t < T , while keeping AT nonzero for conservation at the final

time, where Nt is given by (2.15). In some applications (such as for fisheries), At = 0 for

t < T . Note that we will use the notation A to mean the vector (A1, A2, . . . , AT ). Alternately

managers may want to maximize yield, perhaps in order to maximize revenue,

T−1∑
t=0

BtYt (2.40)

where Bt is revenue per unit and Yt denotes the yield at time t. Note that Yt is a function

of Nt given by (2.14). We will see in our results some interplay between AT and B. The

population N0 is given, but the yield between t = 0 and t = 1 is dependent on the control

time θ0, thus the indices on the sums in (2.39) and (2.40) start at different times. Managers

may also want to minimize cost in some way. The objective functional we wish to maximize

as a function of harvest timing is given by

J(θ, γ) = ATNT +
T−1∑
t=0

(AtNt +BtYt − C(θt, γt)) (2.41)

where T is the final time, θ = (θ0, . . . , θT−1), γ = (γ0, . . . , γT−1), and C(x, y) is a continuous

cost function. We assume At, Bt ≥ 0. There can be an interplay in balancing the three parts

of this objective functional. Note that units of the At, Bt and C are adjusted so that the

terms in J are in units of dollars. The cost of harvesting may vary depending on the time

of the year, due to ease of harvest or labor seasonality.

Define the control set

U = {(θ, γ) = (θ0, θ1, . . . , θT−1, γ0, γ1, . . . , γT−1)|θt, γt ∈ [0, 1]∀t ∈ {0, 1, . . . , T − 1}}. (2.42)
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We seek to find (θ∗, γ∗) ∈ U such that

J(θ∗, γ∗) = sup
(θ,γ)∈U

J(θ, γ). (2.43)

Because C, Nt+1, and Yt are continuous functions, J is a continuous real-valued function

of θ and of γ, on the compact set U = [0, 1]2T . Therefore J achieves a maximum in U . Call

this maximum (θ∗, γ∗) and let (θn, γn) be a sequence in U converging to (θ∗, γ∗). Let Nn be

a sequence of time series {N0, N
n
1 , . . . , N

n
T } ∈ X = [0,∞)T+1 where each term is defined by

the difference equation (2.15) evaluated at the corresponding (θn, γn). That is,

Nn
t+1 =

b(1− γn)Nn
t

1 + βNn
t (1− γn(1− θnt ))

.

Let f be the right-hand side of the above equation. We have f continuous in (θn, γn) and

Nn. Now I will show that f is uniformly bounded. Equation (2.21) gives

(1− γ)bNn
t

1 + βNn
t

≤ f(Nn
t ) ≤ (1− γ)bNn

t

1 + β(1− γ)Nn
t

.

Since the denominator on the right-hand side is greater than 1 we have

f(Nn
t ) ≤ (1− γ)bNn

t .

Iteratively we have

f(Nn
t ) ≤(1− γ)b

(
(1− γ)bNn

t−1
)

≤(1− γ)b
(
(1− γ)b

(
(1− γ)bNn

t−2
))

...

≤(1− γ)t+1bt+1N0.
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Thus Nn
t is uniformly bounded by (1 − γ)T bTN0. Therefore there exists a convergent

subsequence of (θn, γn) and Nn so that

N∗t+1 =f(N∗t , θ
∗
t , γ

∗)

=
b(1− γ∗)N∗t

1 + βN∗t (1− γ∗(1− θ∗t ))
.

We call N∗ the optimal state corresponding to that optimal control (θ∗, γ∗). Therefore, we

have the following theorem.

Theorem 2.4 (Existence of an optimal control). There exists an optimal control (θ∗, γ∗) ∈ U

such that J(θ∗, γ∗) = sup
(θ,γ)∈U

J(θ, γ).

2.4.1 Optimal control of harvest timing only

We will now present numerical results and explain the optimization technique for controlling

the harvest timing only. Several baseline parameter scenarios and some variations will be

illustrated with a range of dynamics. We will perform optimal control of θ and keep γ fixed.

We consider the quadratic cost function for the cost of harvest to be

C(x) = C1(x̂− x)2 (2.44)

where x̂ ∈ [0, 1] and x̂ would correspond to the portion of the season when it is easiest or

costs the least to harvest. This could be because of labor seasonality, because of target

species behavior such as migration or seasonal aggregation, or other reasons. If x̂ = 0, it

would be least costly to harvest at the beginning of the season and most costly to harvest at

the end of the season. This cost, in this case, is monotonically increasing during the season.

Or, if x̂ = 1 where it would be least costly to harvest at the end of the season, with cost

decreasing throughout the season.

For our analysis we consider x̂ = 1
2
. This cost with x̂ = 1

2
decreases during the first half

of the season and increases during the second half of the season. Results for x̂ ∈ (0, 1) not

equal to 1
2

are qualitatively similar.
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Our objective functional for control of θ = (θ0, . . . , θT−1) only, then, is

J1(θ) = ATNT +
T−1∑
t=0

(
AtNt +BtYt − C1

(
1

2
− θt

)2
)
. (2.45)

We will illustrate here why we do not use optimal control theory for a discrete time

system [76]. If we did, then equation (2.15) is our state equation, equation (2.45) is our

objective functional, and we use them to form a Hamiltonian. In this case the Hamiltonian

is

Ht = AtNt +Bt
γNt

1 +Ntβθt
− C1(x̂− θt)2 + λt+1

b(1− γ)Nt

1 +Ntβ (1− γ(1− θt))
(2.46)

which holds for t = 0, . . . , T − 1. The adjoints, λt, are defined by the solutions of the

backwards difference equations

λt =
∂Ht

∂Nt

(2.47)

λT =AT . (2.48)

For each time t ∈ {0, . . . , T −1} we maximize the Hamiltonian with respect to θt to produce

an optimal control θ∗, λt+1, and N∗t where N∗t is the optimal state corresponding to that

optimal control θ∗.

For this Hamiltonian the adjoint equations are

λt =λt+1
(1− γ)b

(1 + βNt(1− γ(1− θt)))2
+ At +Bt

γ

(1 + βθtNt)2
(2.49)

λT =AT . (2.50)

We assume that AT ≥ 0. Since every term on the RHS of (2.49) is positive except potentially

λt+1, and λT ≥ 0, we conclude that λt > 0 for all t ∈ 1, . . . , T − 1. λt are the marginal

variations of J1 with respect to the state, Nt. We have

∂Ht

∂θt
= −Bt

γβN2
t

(1 + βNtθt)2
+ 2C1(x̂− θt)− λt+1

(1− γ)γbβN2
t

(1 + βNt(1− γ(1− θt)))2

40



and

∂2Ht

∂θ2t
= 2B

γβ2N3
t

(1 + βNt(1− γ(1− θt)))3
− 2C1 + 2λt+1

(1− γ)bγ2β2N3
t

(1 + βNt(1− γ(1− θt)))3
. (2.51)

The only term in the second derivative equation which isn’t positive is −2C1, since we’ve

established that λt+1 ≥ 0. Therefore Ht will be concave only when C1 is sufficiently large.

However, an optimal control may still exist even when Ht is not concave.

In some cases one can solve for a characterization of the optimal control in terms of the

states Nt, the adjoints λt by setting ∂Ht

∂θt
= 0 and solving the resulting equation for θt [50, 76].

If we attempt this here, the resulting expression is

λt+1(1− γ)γbβN2
t

(1 + βNt(1− γ(1− θt)))2
=2C1(x̂− θt)−Bt

γβN2
t

(1 + βNtθt)2

λt+1(1− γ)γbβN2
t (1 + βNtθt)

2 =2C1(x̂− θt) (1 + βNtθt)
2 (1 + βNt(1− γ(1− θt)))2

−BtγβN
2
t (1 + βNt(1− γ(1− θt)))2 .

This is quintic in θt (see the C1 term). We can’t solve for θt explicitly.

Since we can’t solve for the characterization of the optimal control explicitly, we use

the MATLAB function fmincon with multistart to optimize the objective functional (2.45)

directly. To check our results we wrote a brute force approximation code. This code

composes all vectors of length T made up of permutations with repetition from the set

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Each of these vectors represents a possible control

vector θ. We take each vector and compute the associated state and yield, then use those

to compute the associated value of the objective functional. We use a logic loop to select

the θ vector which gives the maximum of the values obtained from the objective functional.

This vector is not precisely an optimal control, but an approximation of that optimal control

for the given parameters. We can then compare the θ vector chosen by the brute force

method with that chosen as optimal control by the direct optimization program. The direct

optimization performed well under this comparison test with the brute force method.

We consider maximization of the objective functional (2.45). The term AtNt indicates

a desire to conserve the stock from which we are harvesting. One can think of it as a
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way of making sure the stock doesn’t become depleted, perhaps a way of balancing profit

with sustainability. Notice that the term AtNt is maximized when θt = 0 for all t because

∂Nt+1

∂θt
< 0. The yield or profit term,

BtγNt

1 + βNtθt
,

is also maximized at θt = 0 because the derivative of the yield with respect to θt is negative

as shown in equation (2.17). Therefore it is only the cost term −C1(x̂ − θt)2 which might

not be maximized at θt = 0. The combination of these terms might have nonzero optimal θt

as long as some terms are not maximized at θt = 0. Our goal is to find some parameter sets

which generate nonzero optimal controls. For this reason, we do not consider the parameter

choice x̂ = 0. Instead we focus on x̂ = 0.5. Results for other choices of x̂ away from 0 and 1

are qualitatively similar.

Now we are beginning to show some numerical results. We now describe our notation

for the displayed results and for the comparisons with beginning- and end-of-season harvest.

Each time series graph in the figures below shows the optimal control in black squares and

the optimal state in blue circles. Each of the controls is graphed on the x-axis with its

position on the x-axis marking the timing of the harvest. For example, if the harvest is set

for θ ≡ 0, then the controls will appear at t = 0, 1, . . . , T − 1 but if the controls are set for

θ ≡ 0.5 then the markers for the controls will appear at t = 0.5, 1.5, . . . , T − 0.5. The value

for the objective functional at the optimal θ is given in the captions, labeled J1(θ
∗). For

comparison, the values of the objective functional for θ ≡ 0 and θ ≡ 1 are also given, we have

chosen the notation J1(0) and J1(1) where 0 = (0, . . . , 0) ∈ RT and 1 = (1, . . . , 1) ∈ RT . All

the results below are for the vectors A = 1 and B = 1. During these numerical results there

was no evidence of nonuniqueness of optimal controls.

Table 2.3 contains the first set of baseline parameters for optimal control of θ only. Figure

2.8 shows the states and yields for the baseline parameters from Table 2.3 without optimal

control. Table 2.4 records the variations on the baseline parameters from Table 2.3 that we

explored. Other variations were also explored but did not produce interesting results and

have been omitted.
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Table 2.3: First set of baseline parameters for controlling harvest timing only.

Parameter Value
T 5
C1 0.1
γ 0.2
β 4
b 5
N0 1
A 1
B 1

(a) State for θ ≡ 0 (b) State for θ ≡ 1

(c) Yield for θ ≡ 0 (d) Yield for θ ≡ 1

Figure 2.8: Baseline states and yields under parameter choices from Table 2.3.
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Table 2.4: Summary of optimal harvest timing results for variations on the baseline
parameters from Table 2.3. The parameters column only lists those which differ from
baseline.

Figure Parameters J1(θ
∗) J1(θ∗)−J1(0)

J1(θ∗)

2.9 baseline 6.54 0
2.10a γ = 0.02 5.97 0.004
2.10b γ = 0.9 3.01 0.011
2.11 C1 = 1 5.64 0.04
2.12 C1 = 1, AT = 100, At = 0 for t < T 93.56 0.001
2.13 C1 = 1, N0 = 10 16.75 0.008

Figure 2.9: This graph was generated with the parameter choices in Table 2.3. The optimal
control is θ∗ = 0. The values of the objective functional were J1(θ

∗) = 6.54 = J1(0), while
J1(1) = 4.88.
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As a baseline case we consider the parameter choices in Table 2.3. The optimal control

under these conditions is shown in Figure 2.9. With these choices of b and β, the without-

harvest positive equilibrium would be N∗1 = 1. This equilibrium would be asymptotically

stable since 1
b

= 1
5
< 1. With harvest timing fixed at θ ≡ 0 or θ ≡ 1, population and yield

would be as in Figure 2.8. For the parameter choices in Table 2.3, there is no reasonable

value of C1 or β which provides a nonzero θ∗.

Next we explored keeping the same parameters as in Table 2.3 except for changing γ = 0.2

to first a small value of γ (Figure 2.10a) and then a large value of γ (Figure 2.10b). Both of

these values of γ offer nonzero optimal control results, though neither has values for J1(θ
∗)

that differ substantially from J1(0). For the case of very low γ (γ = 0.02), the value for

J1(1) = 5.78 is also very close to the optimal value of J1(θ
∗) = 5.97. These two values differ

only by 3%, suggesting that it matters little when harvest occurs at such a low harvest effort.

However for Figure 2.10b with a very high value of γ = 0.9 the value for J1(1) = 1.33 is 56%

smaller than J1(θ
∗) = 3.01, so the choice of harvest timing matters more here. These results

indicate that there may be some sort of playoff between θ and γ.

In Figure 2.10b there is a vicious cycle: the high value of γ puts increased pressure on the

population, leading to lower population size. Then harvesting later increases the pressure

on the population even more. In contrast, in Figure 2.10a there is very little pressure on the

population because γ is very low. The population size doesn’t change much at all. Therefore,

harvesting midseason can increase the pressure on a population or it may not.

In Figure 2.11 the parameter choices are the same as those from Table 2.3 except for a

value of C1 = 1, an order of magnitude greater than the baseline value for C1. Notice that

this lowers the population size, because harvesting earliest is best for maintaining population

size, and shifts the harvest time closer to the middle of the season. Since we have chosen

x̂ = 0.5 the middle of the season is when harvest costs are minimized. The optimal harvest

times with this high value for C1 are slightly earlier than the middle of the season. The

objective functional values are J1(θ
∗) = 5.64, J1(0) = 5.41, and J1(1) = 3.76. J1(0) is only

4% smaller than J1(θ
∗), but J1(1) is 33% smaller than J1(θ

∗). This result shouldn’t be

surprising since the cost term is the only term pushing harvest later in the season. When

the weight on that term increases, minimizing costs becomes relatively more important.
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(a) γ = .02

(b) γ = 0.9

Figure 2.10: The graphs above were generated with parameters the same as in Table 2.3
except for the given values of γ. The values of the objective functional for the top graph are
J1(θ

∗) = 5.97, J1(0) = 5.95, and J1(1) = 5.78. The values of the objective functional for the
bottom graph are J1(θ

∗) = 3.01, J1(0) = 2.98, and J1(1) = 1.33.
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Figure 2.11: The graph above was generated with the same parameters as in Table 2.3
except for C1 = 1. The values of the objective functional were J1(θ

∗) = 5.64, J1(0) = 5.41,
and J1(1) = 3.76.

In Figure 2.12 the parameter choices are the same as in Figure 2.11 but instead of At = 1

for all t, with AT = 100 and At = 0 for t < T . In this case, the first two harvests are

mid-season and the final three harvests are at the beginning of the season, allowing the final

population to be as large as possible.

In Figure 2.13 the parameter choices from Table 2.3 are the same except for N0 = 10

instead of N0 = 1 and C1 = 1 instead of C1 = 0.1. Notice that initially it is best to harvest

earliest in the season and take advantage of the population surplus. The initial population

size of 10 is far above the without-harvest equilibrium value of 1. The population would

decrease to 1 on its own within a few time steps in the absence of harvest. With harvest

at θ ≡ 0, as seen in Figure 2.8, the initial population of 10 is still much higher than the

pseudo-equilibrium population of just below .94. After this aggressive initial harvesting,

however, the population size drops down quickly and it becomes best to harvest closer to the

middle of the season. This is because the smaller harvest reduces the benefits gained from

yield and population maintenance and therefore the relative importance of minimizing costs
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Figure 2.12: The graph above was generated with the same parameters as in Table 2.3
except for C1 = 1 and AT = 100. The values of the objective functional were J1(θ

∗) = 93.56,
J1(0) = 93.46, and J1(1) = 73.96.

increases. However, because the earlier contributions to the objective functional are large,

there is only 0.8% difference between J1(θ
∗) = 16.75 and J1(0) = 16.61.

Figure 2.14 shows time series for the state and yield for the second baseline parameter

choices from Table 2.5 with either θ ≡ 0 or θ ≡ 1. With these values for b and β the

without-harvest equilibrium would be N∗1 = 50 and this equilibrium would be asymptotically

stable since 1
b

= 1
6
< 1. Note that these second baseline parameters include lower density-

dependent mortality and somewhat higher birth rate, so the equilibrium is larger than for

the first baseline parameters and the population is faster-growing. Table 2.6 records the

variations on baseline parameters from Table 2.5 that we explored. The highest numbers

in the fourth column reflect the parameter combinations for which harvest timing not being

equal to 0 was most important. The smallest numbers reflect cases where harvest timing of

0 was very close to optimal.

Figure 2.15, generated using the set of parameters in Table 2.5, illustrates a second

baseline case. The initial condition is much smaller than 50, therefore even with harvest
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Figure 2.13: The graph above was generated with the same parameters as in Table 2.3
except for C1 = 1 and N0 = 10. The values of the objective functional were J1(θ

∗) = 16.75,
J1(0) = 16.61, and J1(1) = 12.99.

Table 2.5: Second set of baseline parameters for controlling harvest timing only.

Parameter Value
T 10
C1 0.1
γ 0.2
β 0.1
b 6
N0 30
A 1
B 1
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(a) State for θ ≡ 0

(b) State for θ ≡ 1

(c) Yield for θ ≡ 0

(d) Yield for θ ≡ 1

Figure 2.14: Second baseline states and yields under parameter choices from Table 2.5.

50



Table 2.6: Summary of results for controlling harvest timing only with variations on the
baseline parameters from Table 2.5. The parameters column only lists those which differ
from baseline.

Figure Parameters J1(θ
∗) J1(θ∗)−J1(0)

J1(θ∗)

2.15 second baseline 588.29 0
2.16a γ = 0.0001 523.89 0.0004
2.16b γ = 0.9 115.27 0.0004
2.17 C1 = 100 479.14 0.29
2.18 C1 = 100, CT = 100, Ct = 0 for t < T 4719.8 0.03

Figure 2.15: The graph above was generated using the set of parameters in Table 2.5 (note
that with these choices of β and b, 50 is the without-harvest equilibrium). The values of the
objective functional were J1(θ

∗) = 588.29 = J1(0), while J1(1) = 422.93.
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the population increases. It appears to approach some sort of equilibrium. The value for

J1(θ
∗) = 588.29 is identical to that of J1(0) because θ∗ ≡ 0. J1(1) = 422.93 is 28% smaller.

Under moderate harvesting intensity, it remains best to harvest early. This strategy results

in a reliably large harvest and allows the population size to remain relatively large (over 45,

close to the without-harvest equilibrium).

In Figure 2.16a the parameters are the same as in Table 2.5 except for γ = .0001 much

smaller the baseline value of γ = 0.2. This tiny rate of harvest produces such a small

yield that controlling costs becomes relatively much more important. To minimize cost,

optimal harvest time approaches the middle of the season. The objective functional values

are J1(θ
∗) = 523.89, J1(0) = 523.69, and J1(1) = 523.61. J1(0) is only .04% smaller than

J1(θ
∗) and J1(1) is only .05% smaller than J1(θ

∗).

In Figure 2.16b the parameters are the same as in Figure 2.15 except for γ = 0.9,

much larger than the baseline value of γ = 0.2. Under this immense harvest pressure, the

population size drops rapidly. By time step 7 the population size is small enough that

revenue becomes relatively less important than minimizing cost. In the last three time

steps harvest timing drifts closer and closer to the middle of the season. At a value of

J1(θ
∗) = 115.27, J1(θ∗) is only .04% larger than J1(0) = 115.22. However, J1(θ

∗) is 56%

larger than J1(1) = 51.01. This indicates that while harvest timing is important at high

harvest intensity, for these parameters there is little to be gained by deviating from harvesting

at the beginning of the season.

Figure 2.17 used the same parameters as Table 2.5 except for large C1 = 100, increased

from C1 = 0.1. This high weight on the cost shifted importance away from maximizing

revenue and conserving stock toward minimizing cost. As a result, optimal harvest timing

was in the middle of the season. J1(0) = 338.54 was 29% smaller than J1(θ
∗) = 479.14.

And J1(1) = 173.18 was 64% smaller than J1(θ
∗). Under these conditions the cost saved by

harvesting at the optimal time outweighs the revenue lost by not harvesting at the beginning

of the season.

Figure 2.18 was generated with the same parameters as in Table 2.5 except for C1 = 100

(increased from C1 = 0.1), AT = 100, and At = 0 for t < T (changed from At = 1 for all t).

Until about time step 6 both optimal control and optimal state are the same as in Figure
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(a) γ = .0001

(b) γ = 0.9

Figure 2.16: The graphs above were generated with parameters the same as in Table 2.5
except for the two given values of γ. The values of the objective functional for the top
graph are J1(θ

∗) = 523.89, J1(0) = 523.69, and J1(1) = 523.61. The values of the objective
functional for the bottom graph are J1(θ

∗) = 115.27, J1(0) = 115.22, and J1(1) = 51.01.
Compare the top with Figure 2.10a and the bottom with Figure 2.10b.
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Figure 2.17: The graph above was generated with the same parameters as in Table 2.5
except for C1 = 100. The values of the objective functional were J1(θ

∗) = 479.14, J1(0) =
338.54, and J1(1) = 173.18. Compare with Figure 2.11.

Figure 2.18: The graph above was generated with the same parameters as in Table 2.5
except for C1 = 100 and AT = 100. The values of the objective functional were J1(θ

∗) =
4719.8, J1(0) = 4590.2, and J1(1) = 3565.7. Compare with Figure 2.17.
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2.17. After that, harvest timing moves earlier, causing population to grow until the last step

so that the final population will be as high as possible.

Let’s compare the results for variations on the first set of baseline parameters from Table

2.3 with those for the second set of baseline parameters from Table 2.5. Compare Figure 2.15

with Figure 2.9 to note that though the population size is different, population values appear

to be approaching an equilibrium and harvest timing remains 0. Compare Figure 2.16a with

Figure 2.10a. For the larger population size, we have taken a smaller value of γ to illustrate

the effect of small γ because of scaling. In both figures, though, low harvest intensity leads

to mid-season harvest timing. Notice also that the larger population in Figure 2.16b means

that it takes longer for the high harvest level to deplete the population to the point where

harvest timing moves to the middle of the season than it does in Figure 2.10b. But in both

cases once stock becomes depleted it is best to harvest mid-season. It takes a higher value

of C1 (that is a higher cost) in Figure 2.17 to move harvest times to midseason than it does

in Figure 2.11, but in both cases high costs shift importance away from maximizing revenue

toward minimizing costs. Therefore, results are qualitatively similar for the two baseline sets

of parameters explored here. Indeed, results are qualitatively similar for much of parameter

space. In general, it seems best to harvest early for most parameter combinations. However,

when yield is low (due to low harvest intensity or low stock) or when costs related to harvest

timing are high it is best to harvest mid-season.

Looking at the objective functional (2.41) term by term we see that only the cost term

might not be optimized at a control of θ ≡ 0. The terms ATNT and AtNt are maximized

at θ ≡ 0 because
∂Nt+1

∂θt
< 0. The term BtYt is maximized at θ ≡ 0 because

∂Yt
∂θt

< 0. If

x̂ 6= 0 the cost term is the only term not optimized at θ ≡ 0. It is odd that the goals of

both conservation and maximal yield are optimized for the same value of θ. This does not

match ecological intuitions. Our model describes very simple population dynamics. Perhaps

for those species which fit the assumptions of our model, the two goals are not in conflict.

One oddity of our model, for example, is that if θ ≡ 0 then harvest happens immediately

after birth. This would mean that the species must mature over a very short time relative to

the length of the season, because otherwise we would be harvesting juveniles. And, if there

were surviving adults from the previous season, the profit for harvesting a juvenile would
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Figure 2.19: The y-axis displays J(θ∗)−J(0)
J(θ∗)

for each value of γ. Other parameters were as
in Table 2.5.

be the same as the profit for harvesting an adult, since we do not differentiate between the

two classes. These assumptions do not hold true for many species where harvest timing is

an important consideration. We would not wish to harvest immature fish, for example. But

there might be species where harvesting young individuals is more attractive, for example as

a matter of taste. We will expand our consideration to more complicated models in future

work. Next, though, we consider the case where ecological or economic constraints fix the

harvest timing to a mid-season time.

To explore the playoff between γ and θ∗, we ran our direct optimization code on 1000

values of γ uniformly distributed on [0, 1] with other parameters as in Table 2.5. Figure 2.19

shows the relative difference in the values of the optimal objective functional from that for

θ ≡ 0, that is J(θ∗)−J(0)
J(θ∗)

. Figure 2.20 shows how the maximum value of the vector θ∗ varies

over the range of γ for these parameters. Figure 2.21 shows time on one axis, γ on another,

and the height is determined by the components of the corresponding θ∗. In general, optimal

θt values for earlier time steps are lower than those for later time steps. For small or large
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Figure 2.20: The largest component of each vector θ∗ is displayed on the y-axis. Parameters
other than γ were as in Table 2.5.

Figure 2.21: Parameters other than γ were as in Table 2.5.
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values of γ, θ∗ is nonzero. For intermediate values of γ, approximately from γ = .15 to

γ = .74, θ∗ ≡ 0.

2.4.2 Optimal control of harvest intensity only

We now consider controlling harvest intensity γ instead of harvest timing θ. We will consider

two cases for the timing of harvest: θ ≡ 0 and θ ≡ 0.5. In both cases we seek to maximize

the objective functional

J2(γ) = ATNT +
T−1∑
t=0

(
AtNt +BtYt − C2γt − C3γ

2
t

)
(2.52)

where ATNT represents our desire to conserve the population,

BtYt =
BtγtNt

1 + βNtθt

corresponds with our goal of maximizing profit, and C2γt + C3γ
2
t represents the nonlinear

cost of harvesting. Note that in the yield,

Nt

1 + βNtθt

is the size of the population at θt, the time of harvest. With nonzero At for t < T all

parameter sets we triend resulted in γ∗ ≡ 0, so we removed that term. Thus, our objective

functional becomes

J2(γ) = ATNT +
T−1∑
t=0

(
BtYt − C2γt − C3γ

2
t

)
. (2.53)

As in section 2.4.1 we use a direct optimization of the objective functional using MATLAB

functions fmincon and multistart.

For each of the figures below the top graph shows the optimal states and the bottom graph

shows the optimal controls. For θ ≡ 0.5 the state and control are in blue circles and for θ ≡ 0

the state and optimal control are in green triangles. In the legends, by “Optimal State0” we

mean the state associated with the control θ ≡ 0 and by “Optimal Gamma0” we mean the

optimal control γ∗ associated with θ ≡ 0. The optimal state and optimal control associated
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Table 2.7: Baseline parameters for controlling harvest intensity only.

Parameter Value
T 10
β 0.1
b 6
N0 30
C2 0.2
C3 0.2
A 1
B 1

Table 2.8: Summary of results for optimal control of harvest intensity only. In the
parameters column only variations from the baseline are listed.

Figure Parameters J2(γ
∗), θ ≡ 0 J2(γ

∗), θ ≡ 0.5 Relative Difference
2.22 baseline 191.9627 96.90 0.50
2.23 A = 0 169.7516 63.43 0.63
2.24 N0 = 10 171.2708 91.68 0.46
2.25 N0 = 10, C2 = C3 = 5 120.12 64.2132 0.47
2.26 N0 = 10, b = 1.2 9.6661 7.19 0.26
2.27 N0 = 10, b = 20 731.9510 277.68 0.62

with θ ≡ 0.5 are listed in the legends as “Optimal State” and “Optimal Control.” Each

caption lists the objective functional value for θ ≡ 0 and the objective functional value for

θ ≡ 0.5. The baseline parameter values for each of these figures is given in Table 2.7. For

these parameters the without-harvest equilibrium is 50. Table 2.8 shows the variations on

the baseline parameters that we explored.

Figure 2.22 was generated using the parameter values from Table 2.7. We see that the

optimal controls and optimal states for θ ≡ 0.5 and for θ ≡ 0 have the same trends but

different values. In Figure 2.22a population sizes for both the θ ≡ 0.5 and θ ≡ 0 drop down

initially until settling at a relatively steady value for time steps 2 through 8. After step 8,

population size grows rapidly until the final time, T = 10. In Figure 2.22b, the optimal

control for both θ ≡ 0.5 and for θ ≡ 0 stays relatively steady for times t = 0 through t = 7.

Then the optimal controls drop to much lower values for the last two time steps. The optimal
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state for θ ≡ 0.5 tends to be smaller and so does the optimal control. Because of the weight

placed on population size at the final time, both populations are harvested more lightly as

time draws to a close allowing the populations to rebound to a higher value. For θ ≡ 0.5

the objective function value is J2(γ
∗) = 96.90 and for θ ≡ 0 the objective function value is

J2(γ
∗) = 191.96, a percent difference of 50%. With these parameter values there is great

advantage to harvesting early. Note that for θ ≡ 0.5 the values for Nt are lower than than

those for θ ≡ 0, as are the values of γ∗t .

Figure 2.23 shows a case where all other parameters are held equal to Table 2.7 but the

weight on final population size is A = 0 instead ofA = 1. The values of the states and controls

are similar to 2.22 with an early small decline in population and then a steady population

and a steady level of harvest until near the end of the time interval. Since no weight is

given to having a population conserved, harvest intensity rises and the populations crash.

The values of the objective functional are J2(γ
∗) = 169.75 for θ ≡ 0 and J2(γ

∗) = 63.43 for

θ ≡ 0.5, a percent difference of 63%. Again, harvesting early is highly advantageous.

Figure 2.24 has the same parameters as Table 2.7 except for N0 = 10, decreased from

the baseline value of N0 = 30. Here the initial optimal controls are lower, allowing the

population to reach a greater size before harvesting at intensities very close to those in figure

2.22. Like figure 2.22, they demonstrate a decrease in optimal harvest intensity at later times

to allow for population rebound. The values of the objective functional are J2(γ
∗) = 171.27

for θ ≡ 0 and J2(γ
∗) = 91.68 for θ ≡ 0.5, a percent difference of 46%.

Figure 2.25 has the same values for all parameters as Table 2.7 except with higher C2 =

C3 = 5 (changed from 0.2). These high costs cause a much greater decrease in harvest for

θ ≡ 0 than for θ ≡ 0.5. Optimal states are higher under these higher harvest costs. The

values of the objective functional are J2(γ
∗) = 120.12 for θ ≡ 0 and J2(γ

∗) = 64.21 for

θ ≡ 0.5, a percent difference of 47%. Other cases of larger values for C2 and C3 are not

shown here, but increasing to C2 = C3 = 20 causes harvest to become too costly to harvest

at all, while increasing C2 = C3 = 2 is insufficient to show any change from the baseline

case.

Figure 2.26 has the same parameter values as Table 2.7 except for b = 1.2 (decreased

from b = 6) and N0 = 10 (decreased from N0 = 30). With these parameter values the
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Figure 2.22: The graphs above were generated with parameters from Table 2.7. The labels
without subscript refer to the case with θ ≡ 0.5 and the labels with subscript 0 refer to
the case with θ ≡ 0. The values of the objective functional are J2(γ

∗) = 191.96 for θ ≡ 0
and J2(γ

∗) = 96.90 for θ ≡ 0.5. For these parameter values the without-harvest equilibrium
would be 50.
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Figure 2.23: The graphs above were generated with parameters from Table 2.7 except
for A = 0. The values of the objective functional are J2(γ

∗) = 169.75 for θ ≡ 0 and
J2(γ

∗) = 63.43 for θ ≡ 0.5.
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Figure 2.24: The graphs above were generated with parameters from Table 2.7 except
for N0 = 10. The values of the objective functional are J2(γ

∗) = 171.27 for θ ≡ 0 and
J2(γ

∗) = 91.68 for θ ≡ 0.5.
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Figure 2.25: The graphs above were generated with parameters from Table 2.7 except for
N0 = 10 and C2 = C3 = 5. The values of the objective functional are J2(γ

∗) = 120.12 for
θ ≡ 0 and J2(γ

∗) = 64.21 for θ ≡ 0.5.
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without-harvest equilibrium is 2. Here the population has very little growth, and it is best

to have high harvest effort early on. The population crashes because of the low growth and

then it is best not to harvest at all. The values of the objective functional are J2(γ
∗) = 9.67

for θ ≡ 0 and J2(γ
∗) = 7.19 for θ ≡ 0.5, a percent difference of 26% (the lowest difference we

observed). Increasing the death rate parameter, β, has a similar effect, causing high early

harvest, a population crash, and then no harvest at all.

Figure 2.27 has the same parameter values as Table 2.7 except for b = 20 (increased

from b = 6). With these parameter values the without-harvest equilibrium is 190. Here

the population growth is very strong and harvesting intensity is higher. The values of the

objective functional are J2(γ
∗) = 731.95 for θ ≡ 0 and J2(γ

∗) = 277.68 for θ ≡ 0.5, a percent

difference of 62%. Decreasing the death rate parameter, β, has a similar effect.

For every parameter combination we tried, it was always better to harvest early rather

than mid-season. In some cases harvest intensity was optimal at very high levels, and in

some cases it was optimal at much lower levels, but the general trends in optimal state and in

optimal harvest intensity were similar for θ ≡ 0 and for θ ≡ 0.5. In each case early harvest

intensity was high or low to bring the population to a pseudo-equilibrium where harvest

intensity could be maintained at a strong level for intermediate time steps. Then harvest

intensity dropped low to allow the population to grow toward the final time if a positive

weight was given to final population size. But with zero weight given to final population

size, harvest intensity ramped up to increase the final yields.

2.4.3 Optimal control of harvest intensity and harvest timing

Let’s investigate the control of both harvest timing θ and harvest intensity γ. We consider

the objective functional to be maximized

J3(θ, γ) = ATNT +
T−1∑
t=0

(
AtNt +BtYt − C1(

1

2
− θt)2 − C2γt − C3γ

2
t

)
(2.54)

where C2γt + C3γ
2
t represents the nonlinear cost of harvest, and C1(

1
2
− θt)2 represents the

cost associated with the timing of the harvest. As in section 2.4.1 we wish to conserve

the population (AtNt) and gain revenue from the yield (BtYt). Once again we use direct
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Figure 2.26: The graphs above were generated with parameters from Table 2.7 except for
b = 1.2 and N0 = 10. The values of the objective functional are J2(γ

∗) = 9.67 for θ ≡ 0 and
J2(γ

∗) = 7.19 for θ ≡ 0.5.
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Figure 2.27: The graphs above were generated with parameters from Table 2.7 except
for increasing b to 20 and setting N0 = 10. The values of the objective functional are
J2(γ

∗) = 731.95 for θ ≡ 0 and J2(γ
∗) = 277.68 for θ ≡ 0.5. Notice the ratio between the two

values for J2(γ
∗) is much larger in this case.
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Table 2.9: Baseline parameters for controlling both harvest intensity and harvest timing.
Note that many of these are the same as those from the second baseline case for control of
harvest timing only. The only differences are the inclusion of values for C2 and C3, which
were not part of the objective functional for control of harvest timing only.

Parameter Value
T 10
β 0.1
b 6
N0 30
C1 0.1
C2 0.2
C3 0.2
A 1
B 1

Table 2.10: Summary of results for controlling both harvest intensity and harvest timing.
The parameters column lists only those which differ from the baseline case, which is listed
in Table 2.9.

Figures Parameters J3(θ
∗, γ∗) J3(θ∗,γ∗)−J3(0,γ∗)

J3(θ∗,γ∗)

2.28 baseline 596.00 0
2.29 b = 1.2 53.03 0.004
2.30 b = 2, C1 = 1, A = 0 42.00 0.024
2.31 b = 2, C1 = 1 120.82 0.017
2.32 C1 = 50 512.79 0.15

optimization of the objective functional (2.54). In each pair of graphs below the top graph

shows the state in blue circles and the harvest timing in black squares while the bottom

graph shows the harvest intensity, γt, in pink diamonds.

In addition to performing optimal control on the baseline set of parameters listed in Table

2.9, we will also try the variations on these baselines listed in Table 2.10.

Our set of baseline parameters for these simulations is listed in Table 2.9. With these

parameter values the without-harvest equilibrium is 50. For this combination of parameters,

used to generate Figure 2.28, it is best to harvest always at the beginning of the season,

meaning θ∗ ≡ 0. Harvest intensity begins below 0.2 in the first step, allowing the population
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Figure 2.28: The graphs for optimal control of γ and θ above were generated with
parameters from Table 2.9. The values of the objective functional are J3(θ

∗, γ∗) = 596.00 =
J3(0, γ

∗) and J3(1, γ
∗) = 282.31.
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to reach a higher level. Once the population reaches this level harvesting can be maintained

at an intensity of above 0.4 without a drop in population. Harvest intensity is higher during

the final harvest (above 0.6) because the final population size is not weighted higher than

intermediate population sizes, so it is best to get a higher final yield. The values of the

objective functional are J3(θ
∗, γ∗) = 596.00 = J3(0, γ

∗) and J3(1, γ
∗) = 282.31. Harvesting

at the beginning of the season gives a 53% higher objective functional value than harvesting

at the end of the season.

Figure 2.29 was generated with the same parameters as in Table 2.9 except for a smaller

value of b = 1.2 (decreased from b = 6). With these parameter values the without-harvest

equilibrium is 2. Under these circumstances harvest intensity starts high (above 0.7) because

the initial population is well above what the environment can sustain, and this high harvest

is taken at the beginning of the season. Then harvest intensity drops to near 0 and harvest

timing shifts to midseason to keep the population level and minimize the cost of harvesting.

The final harvest has a higher intensity again and the final harvest timing is at the beginning

of the season, causing the final population size to drop lower. The values of the objective

functional are J3(θ
∗, γ∗) = 53.03, J3(0, γ

∗) = 52.83 and J3(1, γ
∗) = 26.24. J3(θ

∗, γ∗) differs

from J3(0, γ
∗) by only 0.4%. Qualitatively similar results occur for changing β to be larger

instead of changing b to be smaller. That is, for a larger β, intensity is high in early time

steps and the last time step with very low intensity in intermediate time steps. For the

first few time steps and the last, harvest timing is at the beginning of the seasons and for

intermediate time steps harvest timing is during the middle of the season.

In Figure 2.30 we keep the parameters from Table 2.9 except for b = 2 and C1 = 1,

meaning birth has decreased from baseline of b = 6 and cost associated with timing has

increased from baseline of C1 = 0.1. This produces cycles of harvest timing and harvest

intensity combinations. Harvest intensity is very high (about 0.9 in the first cycle and about

0.5 in the remaining cycles) for one time step and then very low (close to 0) for one step. On

the step with the high intensity, harvest timing is at the beginning of the season. Then for

the low-harvest step harvest timing is at mid-season. This produces cycles in the population

where the population drops low, then recovers over the low-harvest mid-season step and then

drops low again. In this case, the cycle in harvest intensity seems to be the most crucial
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Figure 2.29: The graphs for optimal control of γ and θ above were generated with
parameters from Table 2.9 except for b = 1.2. The values of the objective functional are
J3(θ

∗, γ∗) = 53.03, J3(0, γ
∗) = 52.83 and J3(1, γ

∗) = 26.24.
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Figure 2.30: The graphs for optimal control of γ and θ above were generated with
parameters from Table 2.9 except for b = 2, C1 = 1 and A = 0. The values of the objective
functional are J3(θ

∗, γ∗) = 42.00, J3(0, γ
∗) = 41.00 and J3(1, γ

∗) = 10.71.
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part of the maximization process. The objective functional values for combining exclusively

beginning-of-season harvest timing with the same cycle of harvest intensity is similar to

that for the cyclic harvest timing. In other words J3(θ
∗, γ∗) differs from J3(0, γ

∗) by only

2.4%. The values of the objective functional are J3(θ
∗, γ∗) = 42.00, J3(0, γ

∗) = 41.00 and

J3(1, γ
∗) = 10.71.

Figure 2.31 shows the optimal control results for the same paramters as in Figure 2.30

except for A = 1 rather than A = 0. Figure 2.31 shows that without setting A = 0, we do

not get cycles.

Figure 2.32 was generated with parameters from Table 2.9 except for C1 = 50 (increased

from C1 = 0.1). For some seasons it is best to harvest hardly at all (intensity close to 0)

with mid-season harvest while for other seasons it is best to harvest early in the season with

high intensity (about 0.6).

Some of the conclusions from control of harvest timing only seem to also hold when both

harvest timing and harvest intensity are controlled. For example, lower yield seems to go

along with harvest timings closer to mid-season. However, we observe novel behavior as well.

In particular, sometimes there are cycles of both harvest intensity and harvest timing. These

cycles seem to occur when emphasis is taken away from population conservation and shifted

toward revenue maximization and cost minimization.

2.5 Second mechanistic model

Many different mechanistic models could be derived using the same process with different

assumptions about each process. Here we’ll derive another mechanistic model using the same

setup with a different nonlinearity in the mortality process. Instead of the ODE (2.12), for

the within season dynamics we’ll use

dn

dτ
= −µNtn(τ) (2.55)

n(0+) = Nt (2.56)
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Figure 2.31: The graphs for optimal control of γ and θ in the first model above were
generated with parameters from Table 2.9 except for b = 2 and C1 = 1. The values of the
objective functional are J3(θ

∗, γ∗) = 120.82, J3(0, γ
∗) = 118.82 and J3(1, γ

∗) = 86.88.
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Figure 2.32: The graphs for optimal control of γ and θ in the first model above were
generated with parameters from Table 2.9 except for C1 = 50. The values of the objective
functional are J3(θ

∗, γ∗) = 512.79, J3(0, γ
∗) = 437.79 and J3(1, γ

∗) = 228.76.
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where µ > 0. See Kokko and Lindström for an biological explination of this mortality rate

related to food reserves for overwintering [47]. Here the per capita death rate is proportional

to the Nt, the population size at the beginning of the season, whereas in equation (2.12) the

per capita death rate was proportional to the current population size n(τ). First we solve

ODE (2.55) on the generic interval (a, τ) with constant a < τ .

n′ + µNtn = 0∫ τ

a

eµNts (n′(s) + µNtn(s)) ds = 0

eµNtτn(τ)− eµNtan(a) = 0

eµNtτn(τ) = eµNtan(a)

n(τ) = n(a)e−µNt(τ−a),

which we call the general solution of our within season mortality dynamics (2.55). Setting

a = 0+ using the initial condition (2.56) gives us the following expression for the population

size on (0+, τ) for τ ≤ θ−t

n(τ) = Nte
−µNtτ .

The population size just before harvest, at τ = θ−t , is

n(θ−t ) = Nte
−µNtθ

−
t .

The yield, then, is

Yt = γNte
−µNtθt . (2.57)

The remaining population after harvest is the new initial condition for the rest of the within

season dynamics:

n(θ+t ) = (1− γ)Nte
−µNtθt .
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We again use ODE (2.55) and our general solution and letting a = θ+t gives us the population

size on the interval (θ+t , τ) for τ ≤ 1−

n(τ) = (1− γ)Nte
−µNtθte−µNt(τ−θt)

= (1− γ)Nte
−µNt(τ−θt+θt)

= (1− γ)Nte
−µNtτ .

Therefore, the population just before birth is described by

n(1−) = (1− γ)Nte
−µNt .

After birth the next census yields a population size of

Nt+1 = b(1− γ)Nte
−µNt (2.58)

with b > 0. Though yield (2.57) depends on the harvest timing θt, the population size (2.58)

is independent of harvest timing.

2.5.1 Observations about our second model

The next generation size does not depend on harvest timing. This does not match ecological

intuition. Yield decreases as a function of harvest timing:

∂Yt
∂θt

= −µγN2
t e
−µNtθt . (2.59)

The order of events for this model is mortality, then harvest, and finally birth.

The equilibrium equation for this model (holding γt constant) is

N = f(N) =b(1− γ)Ne−µN

0 =(b(1− γ)− 1)Ne−µN ,
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which gives only the trivial equilibrium

N∗0 = 0.

Its stability is determined by

d

dN
f(N) =b(1− γ)e−µN − µb(1− γ)Ne−µN

=b(1− γ)(1− µN)e−µN .

So N∗0 = 0 is asymptotically stable for

b(1− γ) < 1

and unstable for

b(1− γ) > 1.

This is similar to the stability of the extinction equilibrium for the Ricker model, where the

birth rate r > 0 makes extinction unstable. To compare to our birth rate, which is not in

the exponent, notice that r > 0 is equivalent to er > 1. So we might express the stability

for the extinction equilibrium for the Ricker model by x∗0 is asymptotically stable if er < 1

and unstable if er > 1. This parallels the stability conditions on N∗0 .

2.5.2 Alternative order of events comparison

As we did with our first model, let’s compare our second model with the alternative order of

events case birth-mortality-harvest-mortality-census. The solution of the ODE in this case

is still

n(τ) = n(a)e−µNt(τ−a) (2.60)

where n(a) is the initial condition for some time a < τ . Taking birth first, our initial

condition is

n(0+) = bNt. (2.61)
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With this initial condition we can solve for the population size just before harvest, at time

τ = θ−. The population just before harvest is then

n(θ−) = bNte
−µNtθ. (2.62)

We harvest a proportion γ of the population, so the yield is

Yt = γbNte
−µNtθ. (2.63)

This yield is larger than for the other order of events because the other order of events didn’t

have the b in the yield and b > 1. The remaining population size is

n(θ+) = (1− γ)bNte
−µNtθ. (2.64)

Taking this as our new initial condition, we can solve for the population size at census (time

τ = 1):

Nt+1 = (1− γ)bNte
−µNt (2.65)

which is identical to the equation for the other order of events.

2.5.3 Comparison with the Seno model

The corresponding Seno model has per-capita growth function

g(x) = be−µx.

This choice of growth function in the Seno model yields

Nt+1 = θt(1− γ)bNte
−µNt + (1− θt)(1− γ)bNte

−(1−γ)µNt (2.66)
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which does depend on θt. However, as discussed above, we can only approximate the yield

for any Seno equation. The limit case θt = 0 for Seno model (2.66) is

Nt+1 = (1− γ)bNte
−(1−γ)µNt . (2.67)

This doesn’t match our mechanistic model (2.58). However, the limit case for Seno for θt = 1

is

Nt+1 = (1− γ)bNte
−µNt , (2.68)

which is identical to our model (2.58). Our model (2.58) matches one of the limit cases for

Seno’s corresponding model. We might conclude that this mechanistic model is actually less

general than the corresponding Seno model. Or we might conclude that the Seno model for

this case adds unnecessary complexity for the biological situation. For insights into this Seno

model see [33].

As we did with our first mechanistic model, we compared this second model to the

corresponding Seno model over a large area of parameter space. We built an LHS matrix with

10,000 possible parameter sets. We chose the ranges T ∈ [5, 15], N0 ∈ [0.5, 10], θ ∈ [10−4, 1],

γ ∈ [10−4, 1], b ∈ [.01, 10], and µ ∈ [.01, 10]. The resulting histogram is shown in Figure

2.33a. Our second model differs more from the Seno-Ricker model than does our first model

from the Seno-Beverton-Holt model. But for most of the parameter space explored the

differences are still quite small.

2.5.4 Optimal control of harvest timing and harvest intensity in

our second model

We perform optimal control of both γ and θ using an objective functional similar to (2.54)

with our model (2.58) determining the state values and the corresponding yield (2.57). Our

objective functional, then, is

J4(θ, γ) = ANT +
T−1∑
t=0

(
BtγNte

−µNtθt − C1(
1

2
− θt)2 − C2γt − C3γ

2
t

)
. (2.69)
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Figure 2.33: The upper graph shows the whole histogram of relative differences between
our second model and the corresponding Seno model. The lower graph zooms in on the right
end of the histogram. The maximum value is 0.5854, the mean is 0.0039, and the variance
is 6.6552e− 4.
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Table 2.11: First set of baseline parameters for optimal control of both harvest timing and
harvest intensity of our second mechanistic model.

Parameter Value
T 10
µ 0.1
b 6
N0 30
C1 0.1
C2 0.2
C3 0.2
A 1
B 1

We again use direct optimization of the objective functional with fmincon and multistart in

MATLAB. The proof for existence of the optimal control is similar to that given in section

2.4.

Table 2.11 contains the first set of baseline parameters that we used for control of the

second model. They are the same as the set of baseline parameters used in controlling both

harvest timing and harvest intensity for our first model. Figure 2.34 shows states and yields

for those parameters without optimal control. In Figure 2.34 notice that the states remain

the same regardless of the change in θ from 0 to 1, but the yields vary dramatically. Table

2.12 shows the variations on baseline parameters that we explored. The last column shows

the relative difference between the optimal-timing-optimal-intensity pair and pairing optimal

intensity with beginning-of-season harvest instead. This illustrates the relative importance,

or lack, of optimal timing.

Figure 2.35 was generated using the baseline parameters found in Table 2.11. The first

harvest is early and heavy (about 0.7 intensity), followed by two mid-season harvests with

intensity close to 0. After these initial harvests, the harvest timing-intensity pair settles

into a cycle alternating high-intensity (above 0.4) early harvests with low intensity (close

to 0) mid-season harvests. The final harvest has intensity close to 1 and the population

is almost depleted by this last effort. The cycle in harvest intensity seems to be more

important to maximizing the objective functional than does the cycle in harvest timing,

because J4(θ
∗, γ∗) = 227.18 only differs from J4(0, γ

∗) = 227.06 by 0.06%.
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(a) State for θ ≡ 0 (b) State for θ ≡ 1

(c) Yield for θ ≡ 0 (d) Yield for θ ≡ 1

Figure 2.34: Baseline states and yields using parameters from Table 2.11 with our second
model.

Table 2.12: Summary of the results of optimal control of both harvest intensity and harvest
timing in our second model for variations on the baseline parameters from Table 2.11. The
parameters column lists only variations from the baseline.

Figures Parameters J4(θ
∗, γ∗) J4(θ∗,γ∗)−J4(0,γ∗)

J4(θ∗,γ∗)

2.35 baseline 227.18 0.0006
2.36 At = 0 for t < T 105.75 0.0014
2.37 N0 = 10 211.30 0.0006
2.38 N0 = 10, T = 11 229.27 0.0007
2.39 b = 1.2 60.59 0.0037
2.40 b = 2, C1 = 1 99.44 0.02
2.41 A = 0 83.79 0.0018
2.42 A = 0, C1 = 10 73.89 0.20
2.43 A = 0, N0 = 10 71.78 0.0017
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Figure 2.35: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11. The values of the objective functional are
J4(θ

∗, γ∗) = 227.18, J4(0, γ
∗) = 227.06 and J4(1, γ

∗) = 162.22.
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Figure 2.36: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for At = 0 for t < T . The values of the
objective functional are J4(θ

∗, γ∗) = 105.75, J4(0, γ
∗) = 105.60 and J4(1, γ

∗) = 28.57.
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Figure 2.36 was generated with parameters as in Table 2.11 except for At = 0 for t < T

(altered from At = 1 for all t). This takes the emphasis off of intermediate population

conservation but leaves importance on final population conservation. Under these conditions

the initial harvest is high intensity (about 0.9) and early followed by two harvests near 0

intensity and mid-season. After this there are alternating high-intensity early-season harvests

and very low intensity mid-season harvests. These cycles are not as steady as the cycles

observed in Figure 2.35, but the high-intensity years have higher intensity. The second

from last harvest is very high intensity (close to 0.9), followed by two very low intensity

harvests (close to 0) allowing the population to recover from this particularly intense harvest

in time for the final population to be high again. As with Figure 2.35, it is the pattern in

intensity that matters more than the pattern in timing because J4(θ
∗, γ∗) = 105.75 differs

from J4(0, γ
∗) = 105.60 by only .14%.

Figure 2.37 was generated with parameters as in Table 2.11 except for N0 = 10 (increased

from N0 = 30). Figure 2.38 was generated with these same parameter choices but with

T = 11 lengthening the time period from T = 10. We wanted to see whether the cycle would

continue, or whether it would break and result in a final high-intensity harvest. In both sets

of figures there are cycles of low intensity (near 0) mid-season harvest followed by higher

intensity (above 0.4) early-season harvest. However, they each end on a different part of

the cycle. Figure 2.37 has a very high intensity (near 1) final harvest while Figure 2.38 has

a very low intensity final harvest. As a result, in Figure 2.37a the final population is near

extinction while the final population in Figure 2.38a is at the usual high point in the cycle.

For Figure 2.37 the objective functional values are J4(θ
∗, γ∗) = 211.30, J4(0, γ

∗) = 211.18 and

J4(1, γ
∗) = 157.43. For Figure 2.38 the objective functional values are J4(θ

∗, γ∗) = 229.27,

J4(0, γ
∗) = 229.12 and J4(1, γ

∗) = 185.46. In both cases harvest intensity patterns again

prove more important than harvest timing patterns with J4(θ
∗, γ∗) differing from J4(0, γ

∗)

by 0.06% and by 0.07% respectively.

Figure 2.39 was generated with parameters as in Table 2.11 except for b = 1.2 (decreased

from b = 6). With this low of a birth rate, the initial population size is above what is

sustainable. The first harvest is heavy (intensity above 0.8) and early, taking advantage of

the surplus population. All other harvests are very low intensity (near 0) and mid-season.
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Figure 2.37: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for N0 = 10. The values of the objective
functional are J4(θ

∗, γ∗) = 211.30, J4(0, γ
∗) = 211.18 and J4(1, γ

∗) = 157.43.
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Figure 2.38: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for N0 = 10 and T = 11. The values of
the objective functional are J4(θ

∗, γ∗) = 229.27, J4(0, γ
∗) = 229.12 and J4(1, γ

∗) = 185.46.
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Figure 2.39: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for b = 1.2. The values of the objective
functional are J4(θ

∗, γ∗) = 60.59, J4(0, γ
∗) = 60.37 and J4(1, γ

∗) = 35.82.
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The population exhibits some small recovery by the final time step, but is still far below its

initial value. The objective functional values are J4(θ
∗, γ∗) = 60.59, J4(0, γ

∗) = 60.37 and

J4(1, γ
∗) = 35.82 with J4(θ

∗, γ∗) differing from J4(0, γ
∗) by only 0.37%.

Figure 2.49 was generated with parameters as in Table 2.11 except for b = 2 (increased

from b = 6) and increasing C1 from 0.1 to 1. With the birth rate still low, the initial harvest

is high intensity at above 0.6 but not as high intensity as the initial harvest in Figures 2.39a

and 2.39b. As in Figure 2.39 the remaining harvests have intensity close to 0 and timing

mid-season, but this time the population recovers much more than it did in Figure 2.39. The

objective functional values are J4(θ
∗, γ∗) = 99.44, J4(0, γ

∗) = 97.19 and J4(1, γ
∗) = 78.33.

The difference between J4(θ
∗, γ∗) and J4(0, γ

∗) is 2%, showing that harvest timing is more

important here since the cost associated with harvesting away from mid-season is higher.

Figure 2.41 was generated with the parameters from Table 2.11 except for At = 0 for all

t (changed from At = 1 for all t). In this case there is a cycle with one high intensity early

season harvest followed by two very low intensity mid-season harvests. The high intensity

harvests are all greater than 0.8, with the final harvest having intensity close to 1 causing the

population to near extinction. The values for the objective functional are J4(θ
∗, γ∗) = 83.79,

J4(0, γ
∗) = 83.64 and J4(1, γ

∗) = 6.60, with J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 0.18%.

Figure 2.42 was generated with the same parameters as Figure 2.41, but with a higher

cost associated with harvest timing increased from C1 = 0.1 to C1 = 10. They exhibit a very

similar cycle to Figure 2.41, but in the final time step the harvest intensity is near 1 and the

population crashes. The objective functional values are J4(θ
∗, γ∗) = 73.89, J4(0, γ

∗) = 58.89

and J4(1, γ
∗) = −18.15, with a 20% difference between J4(θ

∗, γ∗) and J4(0, γ
∗). The negative

value for J3(1, γ
∗) is due to relatively low yield and high cost of harvest timing.

Figure 2.43 was generated with parameters as in Table 2.11 except for A = 0 (instead

of A = 1) and N0 = 10 (instead of N0 = 30). Under these conditions harvest intensity

switches between high and very low and harvest timing switches between early and mid-

season. The high intensity harvests vary from above 0.6 at the lowest to nearly 1 at the

highest, which happens in the final harvest. The objective functional values are J4(θ
∗, γ∗) =

71.78, J4(0, γ
∗) = 71.66 and J4(1, γ

∗) = 9.29, with J4(θ
∗, γ∗) differing from J4(0, γ

∗) by only

0.17%.
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Figure 2.40: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for b = 2 and C1 = 1. The values of the
objective functional are J4(θ

∗, γ∗) = 99.44, J4(0, γ
∗) = 97.19 and J4(1, γ

∗) = 78.33.
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Figure 2.41: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for A = 0. The values of the objective
functional are J4(θ

∗, γ∗) = 83.79, J4(0, γ
∗) = 83.64 and J4(1, γ

∗) = 6.60.
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Figure 2.42: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for A = 0 and C1 = 10. The values of
the objective functional are J4(θ

∗, γ∗) = 73.89, J4(0, γ
∗) = 58.89 and J4(1, γ

∗) = −18.15.
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Figure 2.43: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for A = 0 and N0 = 10. The values of
the objective functional are J4(θ

∗, γ∗) = 71.78, J4(0, γ
∗) = 71.66 and J4(1, γ

∗) = 9.29.
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Table 2.13: Second set of baseline parameters for controlling harvest timing and intensity
in our second model.

Parameter Value
T 10
µ 1
b 5
N0 1
C1 0.1
C2 0.2
C3 0.2
A 1
B 1

With the parameters in Table 2.11 we see cycles in the population caused by cycles in

harvest intensity and in harvest timing (though the patterns in harvest intensity seem to

be more important than those in harvest timing). These cycles occur for parameter values

where the population would not normally experience cycles, as seen in Figure 2.34. Several

variations on parameters cause cycles as well, including in Figure 2.41a where the population

appears to be in an approximate 3-cycle and in Figure 2.43a where the population appears to

be in an approximate 4-cycle (though more time would be needed to establish this pattern

for certain). These results emphasize the dramatic impacts which harvest can have on

populations, including in some cases causing near extinction.

Table 2.13 lists the second set of baseline parameters when controlling both harvest

intensity and harvest timing. These parameters have a higher baseline mortality rate,

meaning that there will generally be less population available for harvest. Therefore,

harvest timing will be more important. Figure 2.44 shows the states and yields for these

baseline parameters without optimal control. Table 2.14 lists the variations on the baseline

parameters that we explored.

Figure 2.45 was generated with parameters as in Table 2.13. During the first several

seasons a cycle of high-intensity early season harvest followed by very low intensity mid-

season harvest seems to develop. Then suddenly there are two very low intensity seasons in
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(a) State for θ ≡ 0 (b) State for θ ≡ 1

(c) Yield for θ ≡ 0 (d) Yield for θ ≡ 1

Figure 2.44: Baseline states and yields for the parameters listed in Table 2.13 in our second
model.

Table 2.14: Summary of objective functional results for varying parameters from the second
set of baseline parameters in Table 2.13 for our second model. The parameters column lists
only variations from the second baseline.

Figures Parameters J4(θ
∗, γ∗) J4(θ∗,γ∗)−J4(0,γ∗)

J4(θ∗,γ∗)

2.45 second baseline 17.58 0.009
2.46 At = 0 for t < T 5.48 0.03
2.47 N0 = 0.5 16.95 0.009
2.48 N0 = 0.5, T = 11 18.60 0.008
?? b = 1.2 3.63 0.07
2.50 b = 4 14.93 0.015
2.51 b = 10, C1 = 1 28.28 0.04
2.52 A = 0 4.58 0.04
2.53 A = 0, C1 = 10 1.58 14.2757
2.54 A = 0, N0 = 0.5 4.43 0.03
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Figure 2.45: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13. The values of the objective functional are
J4(θ

∗, γ∗) = 17.58, J4(0, γ
∗) = 17.43 and J4(1, γ

∗) = 15.61.
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a row, which are followed by cycles again. The objective functional values are J4(θ
∗, γ∗) =

17.58, J4(0, γ
∗) = 17.43 and J4(1, γ

∗) = 15.61, with J4(θ
∗, γ∗) differing from J4(0, γ

∗) by only

0.9%.

Figure 2.46 was generated with parameters as in Table 2.13 except with At = 0 for t < T

(instead of At = 1 for all t). When we made a similar change to the first baseline parameters

(generating Figure 2.36) we saw some disruption of the cycles from the baseline parameter

scenario. Here the cycles are replaced by different cycles. One high-intensity (above 0.8)

early season year is followed by two very low intensity mid-season years. The values of the

objective functional are J4(θ
∗, γ∗) = 5.48, J4(0, γ

∗) = 5.30 and J4(1, γ
∗) = 1.37. Again,

J4(θ
∗, γ∗) and J4(0, γ

∗) are very similar, this time with a difference of 3%

In Figure 2.47 we used the parameters from Table 2.13 except for N0 = 0.5 (decreased

from N0 = 1). These results can be compared with those of Figure 2.37, where the initial

condition was reduced from the first set of baseline parameters. In both cases there are

cycles of high harvest intensity early in the season then very low harvest intensity mid-

season. However, in this case there is a delay of one season before the cycles begin, which

allows the population to grow above 1.5 before harvest begins. This is probably because

our initial condition is even lower than before. The high-intensity numbers are above 0.3.

Contrary to Figure 2.37, our final harvest is not of high intensity and does not bring the

population close to extinction. The reason for this is unclear. The objective functional values

are J4(θ
∗, γ∗) = 16.95, J4(0, γ

∗) = 16.80 and J4(1, γ
∗) = 14.87, with J4(θ

∗, γ∗) and J4(0, γ
∗)

differing by 0.9%.

Figure 2.48 investigated whether adding a time step to those allotted in Figure 2.47

would cause a final very high intensity harvest bringing the population to extinction. We

wanted to explore whether the cycle would continue its trajectory, or whether the cycle would

break and the final harvest would be of unexpected intensity. They were generated using

the parameters in Table 2.13 except for N0 = 0.5 and T = 11. These parameters produced

a cycle as expected, with similar intensities to Figure 2.47, but the final harvest was very

low intensity (close to 0) rather than very high intensity. We can compare these results to

those of Figure 2.38, where the final time was also extended to 11. In both cases the final
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Figure 2.46: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except with At = 0 for t < T . The values of the
objective functional are J4(θ

∗, γ∗) = 5.48, J4(0, γ
∗) = 5.30 and J4(1, γ

∗) = 1.37.
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Figure 2.47: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except for N0 = 0.5. The values of the objective
functional are J4(θ

∗, γ∗) = 16.95, J4(0, γ
∗) = 16.80 and J4(1, γ

∗) = 14.87.
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Figure 2.48: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except for N0 = 0.5 and T = 11. The values of
the objective functional are J4(θ

∗, γ∗) = 18.60, J4(0, γ
∗) = 18.45 and J4(1, γ

∗) = 16.12.
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harvest was very low intensity. Here the objective functional values were J4(θ
∗, γ∗) = 18.60,

J4(0, γ
∗) = 18.45 and J4(1, γ

∗) = 16.12 with J4(θ
∗, γ∗) and J4(0, γ

∗) differing by only 0.8%.

Figure ?? was generated with parameters as in Table 2.13 except for b = 1.2 (decreased

from b = 5). They can be compared to Figure 2.39 which also had such a low birth rate.

However in this case it is best not to harvest at all, as all harvest intensities are on the

order of 10−8. Whereas in Figure 2.39 it was best to harvest heavily during the first time

step and then have very low harvest intensity. The difference between these two cases is

the higher mortality rate in the second set of baseline parameters as compared with the

mortality rate from the first set of baseline parameters. With such low harvest intensities,

the harvest timings are all mid-season. The objective functional values were J4(θ
∗, γ∗) = 3.63,

J4(0, γ
∗) = 3.38 and J4(1, γ

∗) = 3.38 with J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 7%.

Other values of b lower than b = 5 from Table 2.13 generated similarly small harvest

intensities until we took b to be as large as 4 in Figure 2.50. There seems to be some

threshold below which birth is too low to allow for harvesting the population. Once we

are above this threshold, we do not immediately see cycles but instead only one harvest of

moderate intensity with all other harvests very close to 0 intensity. In this case it is the

next-to-last harvest which exhibits intensity away from 0, but this intensity is only about

0.17, nothing near as high as the initial intensity seen in Figures 2.39a and 2.39b. Here the

objective functional values were J4(θ
∗, γ∗) = 14.93, J4(0, γ

∗) = 14.70 and J4(1, γ
∗) = 14.53,

with J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 1.5%.

We may raise birth even higher, as in Figure 2.51 which was generated with parameters

as in Table 2.13 except for b = 10 (increased from b = 5) and increased C1 from 0.1 to 1.

Here we see cycles similar to those we saw with our first model when cost due to harvest

timing was high. While the controls seem to exhibit the by now familiar cycle of alternating

high intensity (above 0.5) early harvest with very low intensity mid-season harvest, this

appears to cause the state to enter something resembling a 4-cycle. The final harvest is close

to 1, causing the population to crash toward extinction. The objective functional values

are J4(θ
∗, γ∗) = 28.28, J4(0, γ

∗) = 27.03 and J4(1, γ
∗) = 17.07, with J4(θ

∗, γ∗) and J4(0, γ
∗)

differing by 4%.
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Figure 2.49: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except for b = 1.2. The values of the objective
functional are J4(θ

∗, γ∗) = 3.63, J4(0, γ
∗) = 3.38 and J4(1, γ

∗) = 3.38.
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Figure 2.50: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except for b = 4. The values of the objective
functional are J4(θ

∗, γ∗) = 14.93, J4(0, γ
∗) = 14.70 and J4(1, γ

∗) = 14.53.
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Figure 2.51: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except for b = 10 and C1 = 1. The values of the
objective functional are J4(θ

∗, γ∗) = 28.28, J4(0, γ
∗) = 27.03 and J4(1, γ

∗) = 17.07.
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Figure 2.52: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except with A = 0. The values of the objective
functional are J4(θ

∗, γ∗) = 4.58, J4(0, γ
∗) = 4.43 and J4(1, γ

∗) = −0.49.

106



Figure 2.52 was generated with parameters as in Table 2.13 except with A = 0 (instead of

A = 1) and can be compared with Figure 2.41. Here, however, no cycle establishes itself. The

high intensity harvests vary from about 0.6 to close to 1. As in Figure 2.41, the final harvest

nearly wipes out the population. The objective functional values are J4(θ
∗, γ∗) = 4.58,

J4(0, γ
∗) = 4.43 and J4(1, γ

∗) = −0.49, with J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 4%.

Figure 2.53 was generated with the same parameters as Figure 2.52 except for a high

cost associated with harvest timing C1 = 10 (increased from the baseline of C1 = 0.1). In

this case there are growing oscillations in harvest intensity and harvest timing is strictly

mid-season. The objective functional values here are J4(θ
∗, γ∗) = 1.58, J4(0, γ

∗) = −21.04

and J4(1, γ
∗) = −24.79, with a 1428% difference between J4(θ

∗, γ∗) and J4(0, γ
∗).

Figure 2.54 was generated with parameters as in Table 2.13 except with A = 0 (instead

of A = 1) and N0 = 0.5 (instead of N0 = 1) and can be compared with Figure 2.43. In

both cases the final harvest has intensity of about 1 leading to a population crash. However

here, as with Figure 2.52, no cycle seems to be best and the harvest intensity has non-cyclic

alternating behavior. The objective functional values are J4(θ
∗, γ∗) = 4.43, J4(0, γ

∗) = 4.28

and J4(1, γ
∗) = −0.47 with J4(θ

∗, γ∗) and J4(0, γ
∗) differing by 3%.

Next, we considered what would happen if we ran optimal control of harvest timing and

intensity on our second model for longer time periods. For many combinations of parameters,

larger values of T produced the same patterns as T = 10. However, this was not always the

case.

The graphs on the bottom of Figure 2.55 were generated with the same set of parameters

as those on the top except for longer T = 20. Oddly, the increase in time shifts the optimal

controls from a rough 3-cycle to a rough 2-cycle. The cycles in the longer time period have

lower peaks than those in the shorter time period. The objective functional values for the

figures on the right were J4(θ
∗, γ∗) = 147.70, J4(0, γ

∗) = 147.45 and J4(1, γ
∗) = 17.84 with

J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 0.17%.

In Figure 2.56, the controls on the top with shorter time exhibit a rough 2-cycle while

the controls on the bottom with longer time T = 20 exhibit a rough 3-cycle for most of the

time period. The controls on the bottom have a break in this cycle at time steps 7 through
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Figure 2.53: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except with A = 0 and C1 = 10. The values of
the objective functional are J4(θ

∗, γ∗) = 1.58, J4(0, γ
∗) = −21.04 and J4(1, γ

∗) = −24.79.
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Figure 2.54: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.13 except with A = 0 and N0 = 0.5. The values of
the objective functional are J4(θ

∗, γ∗) = 4.43, J4(0, γ
∗) = 4.28 and J4(1, γ

∗) = −0.47.
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(a) T = 10

(b) T = 10

(c) T = 20

(d) T = 20

Figure 2.55: The parameters that generated the figures above were from Table 2.11 except
for At = 0 for all t. The figures on the top are the same as Figure 2.41 for our second
model. The objective functional values for the figures on the bottom with T = 20 were
J4(θ

∗, γ∗) = 147.70, J4(0, γ
∗) = 147.45 and J4(1, γ

∗) = 17.84.
110



(a) T = 10

(b) T = 10

(c) T = 20

(d) T = 20

Figure 2.56: The parameters that generated the figures above were from Table 2.11 except
for At = 0 for all t and C1 = 10. The figures on the left are the same as Figure 2.43 for our
second model. The objective functional values for the figures on the right with T = 20 were
J4(θ

∗, γ∗) = 127.06, J4(0, γ
∗) = 97.06 and J4(1, γ

∗) = −35.63.
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Figure 2.57: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except for At = 0 for all t, C1 = 10, and
T = 40. The values of the objective functional are J4(θ

∗, γ∗) = 229.08, J4(0, γ
∗) = 169.13

and J4(1, γ
∗) = −69.71.

9. The objective functional values for the figures on the bottom were J4(θ
∗, γ∗) = 127.06,

J4(0, γ
∗) = 97.06 and J4(1, γ

∗) = −35.63 with J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 24%.

Figure 2.57 shows the dynamics for the same parameters as in Figure 2.56 except with

longer T = 40. The optimal control in Figure 2.57b does not exhibit an unbroken pattern,

but rather exhibits more breaks from pattern than those seen in Figure 2.56.

Figure 2.58 has roughly the same optimal controls for the first 9 time steps. However, in

the longer time graphs on the bottom we see that by step 15 the pattern breaks down. In

this case rather than a different pattern for the whole time, as in the two previous figures,
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(a) T = 10

(b) T = 10

(c) T = 20

(d) T = 20

Figure 2.58: The parameters that generated the figures above were from Table 2.13 except
for At = 0 for all t < T . The figures on the top are the same as Figure 2.46 for our second
model. The objective functional values for the figures on the bottom with T = 20 were
J4(θ

∗, γ∗) = 9.46, J4(0, γ
∗) = 9.16 and J4(1, γ

∗) = 1.10.
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there was instead a different pattern later in time. The objective functional values for the

figures on the bottom were J4(θ
∗, γ∗) = 9.46, J4(0, γ

∗) = 9.16 and J4(1, γ
∗) = 1.10 with

J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 3%.

In Figure 2.59, the controls in the top graphs do not appear to establish any pattern.

But the controls in the bottom graphs with longer time establish a rough 3-cycle. The

objective functional values for the figures on the bottom with T = 20 were J4(θ
∗, γ∗) = 8.64,

J4(0, γ
∗) = 8.34 and J4(1, γ

∗) = −0.88 with J4(θ
∗, γ∗) and J4(0, γ

∗) differing by 3%.

Figure 2.60 again has controls on the top that don’t seem to establish a pattern. But

on the bottom with time increased, in this case to T = 30, a pattern establishes for about

the first half of the time steps. Then the pattern gradually breaks down, until the final

harvest when a high-intensity early-season harvest crashes the population. The objective

functional values for the figures on the bottom were J4(θ
∗, γ∗) = 12.47, J4(0, γ

∗) = 12.07 and

J4(1, γ
∗) = −1.02 with J4(θ

∗, γ∗) and J4(0, γ
∗) differing by 3%.

From these examples we see with longer T that a pattern may continue or may not. The

lengthening of T may have unexpected effects.

2.6 Optimal control of harvest intensity and timing in

both models with discount factor

Suppose we take a new objective functional

J5(θ, γ) = ATNT +
T−1∑
t=0

(
δt
(
AtNt +BtYt − C1(

1

2
− θt)2 − C2γt − C3γ

2
t

))
(2.70)

where δ is a discount factor, Nt and Yt refer to the state and yield for either the first or

second mechanistic model. A discount factor ensures that funds obtained earlier are worth

more due to being able to invest them.

Figure 2.61 shows optimal control of the first model and was generated with the same

parameters as Figure 2.31 except with the discount factor of δ = 0.95. Note that the high-

intensity final harvest seen in Figure 2.31 is absent here because of the discount factor. The

objective functional values for J5(θ
∗, γ∗) = 99.81 and J5(0, γ

∗) = 98.05 differ by only 1.8%.
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(a) T = 10

(b) T = 10

(c) T = 20

(d) T = 20

Figure 2.59: The parameters that generated the figures above were from Table 2.13 except
for At = 0 for all t. The figures on the top are the same as Figure 2.52 for our second
model. The objective functional values for the figures on the bottom with T = 20 were
J4(θ

∗, γ∗) = 8.64, J4(0, γ
∗) = 8.34 and J4(1, γ

∗) = −0.88.
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(a) T = 10

(b) T = 10

(c) T = 30

(d) T = 30

Figure 2.60: The parameters that generated the figures above were from Table 2.13 except
for At = 0 for all t and N0 = 0.5. The figures on the top are the same as Figure 2.54 for our
second model. The objective functional values for the figures on the bottom with T = 30
were J4(θ

∗, γ∗) = 12.47, J4(0, γ
∗) = 12.07 and J4(1, γ

∗) = −1.02.
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Figure 2.61: The graphs for optimal control and discounting in our first model of γ and
θ above were generated with parameters as in Table 2.9 except for b = 2, C1 = 1 and
δ = 0.95. The values of the objective functional are J5(θ

∗, γ∗) = 99.81, J5(0, γ
∗) = 98.05 and

J5(1, γ
∗) = 70.96.
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Figure 2.62: The graphs for optimal control in our second model of γ and θ above were
generated with parameters as in Table 2.11 except with δ = 0.95. The values of the objective
functional are J5(θ

∗, γ∗) = 188.65, J5(0, γ
∗) = 188.55 and J5(1, γ

∗) = 148.25.
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Figure 2.62 shows optimal control and discounting of the second model and was generated

with the same parameters as Figure 2.35 except with the discount factor of δ = 0.95. The

high-intensity final harvest seen in Figure 2.35 is absent in Figure 2.62 because of the discount

factor. The objective functional values J5(θ
∗, γ∗) = 188.65 and J5(0, γ

∗) = 188.55 differ by

a mere 0.05%.

The graphs on the top half of Figure 2.63 were generated from the same parameters as

those in Figure 2.62 except for δ = 0.9 instead of δ = 0.95. For the smaller value of δ,

the first harvest is of higher intensity while the remaining harvests are of roughly the same

intensity of those with larger δ. The objective functional values for the graphs on the top half

of Figure 2.63 J5(θ
∗, γ∗) = 161.15 and J5(0, γ

∗) = 161.07 differ by 0.05%. The graphs on the

bottom half of Figure 2.63 were generated with the same parameters as those on the top half

except for longer T = 20. With this longer value for T , the first harvest is of much higher

intensity and there is another high intensity harvest at t = 15. The objective functional

values for the bottom of Figure 2.63 J5(θ
∗, γ∗) = 208.28 and J5(0, γ

∗) = 208.16 differ by

.06%. Though the harvests on the bottom of Figure 2.63 were generally more high intensity

than those on the top, because of the discount factor the value of J does not increase by

much. Indeed, though the length of time doubles, the value J5(θ
∗, γ∗) = 208.28 from the

right is only 23% larger than the value J5(θ
∗, γ∗) = 161.15 from the left.

The inclusion of a discount factor in the objective functional causes changes in the optimal

controls, but those changes are difficult to predict.

2.7 Conclusions

We are interested in the order of events in models of harvest timing. We carefully built two

mechanistic models with the order of events mortality-harvest-mortality-birth. Mortality was

density dependent and continuous, while birth and harvest were both density independent

and discrete in time. The census always took place directly after birth because we thought

it more reasonable to notice births in a population and then trigger the census rather than

to census somehow immediately before birth. We performed optimal control of the discrete

models of harvest timing we developed, a novel application of the theory.
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(a) T = 10

(b) T = 10

(c) T = 20

(d) T = 20

Figure 2.63: The parameters that generated the figures of optimal control and discounting
of θ and γ of the second model above were from Table 2.11 except with δ = 0.9. The
objective functional values for the figures on the top were J5(θ

∗, γ∗) = 161.15, J5(0, γ
∗) =

161.07 and J5(1, γ
∗) = 125.47, and for the figures on the bottom were J5(θ

∗, γ∗) = 208.28,
J5(0, γ

∗) = 208.16 and J5(1, γ
∗) = 157.74.
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We compared our models with the Seno model, the only discrete time model of explicit

within-season harvest timing in the literature. We found surprisingly little difference between

our first mechanistic model and the corresponding Seno model. Though the Seno model

always predicts larger next-generation size than our model, for large areas of parameter

space they provide virtually identical time series. Despite this similarity in outputs, our

model offers the benefit of known order of events and, critically, known yield. Our second

mechanistic model was identical to one of the limit cases for the corresponding Seno model.

However, the difference between our second model and Seno’s corresponding model was

nonetheless small over large areas of parameter space.

In general, whether controlling only harvest timing or both harvest timing and harvest

intensity, mid-season harvest occurs when yield is low, intensity is low, or when cost

associated with harvest timing is high. Low yield might result from low intensity harvesting,

or from depletion of stock due to high intensity harvesting, or as an intermediate step (or

two) in a cycle between a high intensity and high yield season.

When only controlling harvest intensity, we did not find any circumstances under which

harvesting mid-season was preferable to harvesting at the beginning of the season. This is

because all the terms in the objective functional are either maximized at θ ≡ 0 or do not

depend on θ at all. The lowest difference between the mid-season option and the beginning-

of-season option came when yield was low due to low birth.

When exploring control of both harvest timing and intensity for our first model, we found

fewer variations in our results than when exploring the second mechanistic model. In all of the

situations explored in controlling both intensity and timing for our first mechanistic model,

the final harvest had much higher intensity than intermediate harvests. This was due to the

importance placed on yield, because even placing importance on stock conservation resulted

in high intensity final harvest. When no importance was placed on stock conservation, the

final harvest depleted the stock. We observed cycles in two cases, both with high cost placed

on harvest timing (see Figures 2.30 and 2.32). We do not know an intuitive reason for these

cycles.

For our second mechanistic model we observe a broader variety in results, including some

interesting cycles. The prominence of cycles among these optimal control results likely is
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related to our choice of a Ricker-type mortality term. Since the Ricker model is known

to exhibit cycles, we expected that cycles would be a possibility. Indeed, for the baseline

parameter cases, we observed cycles that were not present without optimal control (compare

Figure 2.35 with Figure 2.34 and Figure 2.45 with Figure 2.44).

In many situations, control of harvest intensity seems to be much more important than

control of harvest timing. Indeed, only with higher cost associated with harvest timing does

Jx(0, γ
∗) differ significantly from Jx(θ

∗, γ∗).

When time is increased, several types of things may happen. The pattern of the optimal

controls might not change at all. The pattern might completely switch to a different one.

The pattern may initially be the same, but then break down. A pattern may establish where

before there was none. In general, over longer time periods the timing of harvest seems to

be relatively more important, as seen in the increased relative difference between J4(0, γ
∗)

and J4(θ
∗, γ∗).

In future we plan to develop more mechanistic models and explore optimal control of both

harvest timing and intensity for those models. We did some investigation of discounting

without arriving at any conclusions and in future we will investigate discounting further.

We plan to consider additionally investigating minimum viable population size. We will

develop more mechanistic models using different types of processes for mortality, birth, or

both. We will consider age-structured populations and spatially structured populations. In

particular, we will explore models where the population is divided into two classes: Juveniles

and Adults. We also plan to select a specific population for which we can access data, build

a mechanistic model specifically designed to fit the ecology of that population, and perform

optimal control.
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Chapter 3

Contact tracing in Ebola

3.1 Introduction

In March 2014, the most deadly outbreak to date of Ebola virus disease (EVD), a hemorrhagic

fever, began in Guinea and rapidly spread to Liberia, Nigeria, Senegal, and Sierra Leone [35].

In October 2014, the World Health Organization (WHO) Ebola Response Team estimated an

overall case fatality rate of 70.8% and basic reproduction numbers (<0) of 1.71 for Guinea,

1.83 for Libera and 1.38 for Sierra Leone [6]. Concern that Ebola might spread globally

via airline travel led to recommendations for health assessments at airports in the affected

countries [10]. A review and meta-analysis of 31 reports found that the main methods

of spread were direct contact with an infected individual and contact with deceased loved

ones during traditional funeral practices [11]. In the 2014-2016 outbreak in Sierra Leone,

among individuals confirmed to have EVD, 47.9% reported that they had had contact with

someone suspected of having EVD and 25.5% reported having attended a funeral [24]. These

transmission pathways are further indicated as important by mathematical models [25] and

by statistical models [77]. Ebola can survive on some surfaces for up to 192 hours unless

they are properly disinfected [19]. This might be one of the reasons why so many health

care workers became infected [73]. Ebola outbreaks most likely initiate due to contact

between humans and fruit bats [31, 62]. Outcomes for individuals who contracted EVD

during the outbreak varied based on location, time of infection, and whether the individual

was hospitalized [36].
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Contact tracing, sometimes called partner notification, is often used in the fight against

HIV spread [20, 42, 43]. Contact tracing for Ebola is quite different, though, because it

doesn’t focus on sexual partners but rather on people who have been in some kind of

close contact with the infected or deceased individual. The goal of contact tracing is to

identify secondary infections and to isolate them in order to stop disease transmission.

Contact tracing plays a vital role in controlling sexually transmitted diseases and emerging

diseases [26, 46]. Throughout the outbreak, the Centers for Disease Control and Prevention’s

Morbidity and Mortality Weekly Report detailed the progress of the disease as well as some

information about contact tracing efforts. “An Ebola contact was defined as a person who

had a known exposure to a confirmed, probable, or suspected case. Contacts were actively

monitored for 21 days after the date of last exposure” [15]. All contacts being traced were

instructed to remain isolated from the general population. If a contact showed symptoms of

EVD, they were moved to a suspected case isolation ward and tested. If the test was positive,

that individual was moved to the confirmed case ward. If the test was negative the individual

was sent home to be traced for another 21 days. Some individuals spread the disease to many

more contacts than others, and these individuals are known as superspreaders [27]. In Liberia

infected individuals from impoverished backgrounds reported more contacts on average than

infected individuals from high SES backgrounds [29].

Many mathematical models of the 2014-2016 West African outbreak have been developed

using various data sources. Using data from Ghana, Agusto et al. built a system of ordinary

differential equations (ODEs) incorporating three control measures: educating the public of

the danger posed by participating in traditional funeral practices, changing shift lengths for

health care workers, and limiting visitation hours at hospitals [3]. Ajelli et al. produced

an agent based model using data from Guinea [4]. They concluded that contact tracing in

Guinea had a strong negative correlation with the time series of cases. Dénes and Gumel used

a system of ODEs to model quarantine of suspected infectious individuals as a control for the

West African epidemic and found that quarantine alone was insufficient to end the epidemic

[21]. Ivorra et al. developed a compartmental ODE model of the spread of Ebola between

countries [44]. One ODE model focused specifically on Montserrado, Liberia concluded that

allocating many more hospital beds earlier in the epidemic and increased contact tracing
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could have dramatically reduced the caseload [52]. Some patients with EVD exhibit different

symptoms or severity of symptoms than others. Ponce et al. built a system of ODEs with

separate compartments for severely ill patients to account for some of this variation [63].

They concluded that the most important control methods were contact tracing and isolation

of individuals with EVD. Rachah and Torres developed two ODE models, an SIR model

and an SEIR model, of EVD transmission and performed optimal control analysis of both

models using educational campaigns, immunization, and isolation as controls [64]. Salem and

Smith? developed an SEIR model with an additional compartment for infectious deceased

and concluded that the best targets for interventional strategies are transmission probability

and contact rate with infectious individuals [70]. Fang et al. developed a spatiotemporal

Poisson model of transmission in Sierra Leone [30], and they found that population density

and proximity to Ebola treatment centers were associated with Ebola transmission.

Browne et al. built two models using data from Sierra Leone and Guinea [13, 84]. In

their SEIR model [13], they incorporated contact tracing by building separate compartments

for Exposed individuals being traced and Infectious individuals being traced. Their model

neglected spread within hospitals and spread from contact with deceased individuals. They

found that increasing the fraction of cases reported and increasing the fraction of reported

contacts that were traced could bring <0 below 1. They also provided weekly point estimates

for the effective reproduction number for Guinea and Sierra Leone. In this work, we will use

a similar, but more mechanistic approach of counting persons being traced and accounting

for the workload of the contact tracers.

Rivers et al. [67] built an SEIR model of the epidemic in Sierra Leone and Liberia while

it was ongoing and before it had reached a peak. They concluded that improved contact

tracing could have a large impact on number of cases but that even when combined with

two other interventions contact tracing was insufficient to bring the epidemic to an end. The

identified the duration of a traditional funeral in Sierra Leone as 4.5 days and the length of

the incubation period as 10 days, values which we use in our model.

In Sierra Leone, “Initial case investigation and contact tracing were hindered by delayed

reporting and under-reporting of symptomatic individuals from the community” [78]. Indeed,

in some cases it was determined that individuals had lied when questioned about contacts and
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funeral practices. According to personal communication from Michael Washington (Centers

for Disease Control) [83], there were limitations on the number of contact tracing workers

and the number of contacts per tracer per day. The number of contacts a contact tracer

could trace per day was based on the area type. In an urban area a tracer could trace about

15 individuals per day, while in a rural area a tracer could trace 10 individuals per day. In

January 2015 there were 1200 contact tracers in Western Area, Sierra Leone. According

to [85], “It can take as many as ten staff to monitor the contacts of just a single case.”

In neighboring Liberia, “[S]everal challenges were encountered. These included difficulty

locating contacts, difficulty with contacts completing 21 days of monitoring and unwillingness

of symptomatic contacts to attend an Ebola Treatment Unit (ETU) be tested for Ebola

among others” [86]. Other challenges faced by contact tracers in Liberia included contacts

hiding from tracers, people failing to identify all contacts or lying about their own exposure,

resistance to in-home isolation, and difficulties finding contact tracers. Many of the same

problems were encountered in Sierra Leone. A study by Swanson et al. found that contact

tracing in Liberia was performed for 26.7% of cases and only identified 3.6% of new cases [79],

suggesting plenty of room for improvement. Chowell and Nishiura [17] illustrated the insights

for disease management that can come from modeling connected with Ebola epidemiological

data and discussed the need for understanding the effectiveness of contact tracing.

Olu et al. analyzed contact tracing interview data in the western area districts of Sierra

Leone [61], and noted that “Challenges associated with effective contact tracing included

lack of community trust, concealing of exposure information, political interference with

recruitment of tracers, inadequate training of contact tracers, and incomplete EVD case

and contact database.” Contacts being traced were supposed to be provided with basic

needs, such as food and water, but this often did not occur. Some contacts chose to

disappear because of the stigma of being listed as a contact, with “The overall mean number

of contacts per patient recorded in this outbreak (8.5 contacts per patient) falls short of

what was obtained in similar settings.” Olu et al. “identified provision of incorrect personal

identity, lack of community trust in EVD prevention and control interventions (resulting in

community resistance), and withholding of vital information on potential contacts and their

health status as the challenges responsible for” the trend of missed contacts.
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Our goal is to represent the contact tracing process carefully mechanistically to illustrate

the management of this process. Our model uses a novel feature, which is explicitly counting

the people being traced and connecting the total persons traced with the workload of

contact tracer workers. We will focus our model on Sierra Leone, for which we have data

from the Sierra Leone Ministry of Health [1, 2]. These data include cumulative confirmed

cases and cumulative confirmed deaths as reported online during the outbreak in the daily

situation report. We will design a system of ODEs explicitly incorporating contact tracing,

fit this model to our data, and see what insights we might gain from this mechanistic

approach. This work is in collaboration with Suzanne Lenhart (University of Tennessee),

Christina Edholm (Scripps College), Benjamin Levy (Fitchburg State University), Michael

Washington (Centers for Disease Control), Bradford R. Greening (Centers for Disease

Control), Jane White (University of Bath, UK), Edward Lungu (Botswana International

University of Science & Technology, Botswana), Obias Chimbola (Botswana International

University of Science & Technology, Botswana), Moatlhodi Kgosimore (Botswana University

of Agriculture and Natural Sciences, Botswana), and Faraimunashe Chirove (University of

Johannesburg, South Africa), M. Helen Machingauta (Botswana International University of

Science & Technology, Botswana).

3.2 Model

We begin as in Ebola models [13, 61, 67, 72, 84] using a system of ODEs, which follow an

SEIR approach. In addition to the Susceptible, Exposed, Infected, and Recovered classes,

Ebola models typically include dead bodies (D) as a class because they are a significant

source of infection due to traditional funeral practices such as hugging and kissing the body

of a deceased loved one. We also include a Hospitalized (H) class, in which individuals

are assumed to be isolated and not contribute to infection, and if they die their bodies are

assumed to be disposed of safely. We place no upper limit on the size of class H, which

does not reflect the situation during the outbreak where insufficient beds and staffing were

a major limiting factor in controlling the outbreak [57].
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Figure 3.1: Flow diagram of our model

Our investigation of contact tracing begins with adding two new classes of individuals

being traced. Since exposure is a hidden trait, individuals being traced are either susceptible

or exposed. We created a class called F (for friends and family) of susceptible individuals

who are being traced and a second class, EF , for individuals being traced who are exposed.

The coefficient f in Figure 3.1 is a function depending on E,F, and I which shows a transition

into the F and E classes and contributes to the movement from I to H. Two events can

lead to initiation of contact tracing: either a funeral is observed or an individual enters the

hospital. The friends and family connected to the individuals involved in either of these two

events will be contacted each day for 21 days by a contact tracer. We assume that individuals

in the F class being traced will follow isolation guidelines to prevent them from becoming

exposed. Individuals in EF are moved to the hospital when they present symptoms. Also,

we may consider contact tracers spend some effort on moving people from I to H, see the

coefficient f on that term in the diagram in Figure 3.1. There is a limited number of contact

tracers, and each contact tracer is able to trace a limited number of individuals at a time.

To account for this, we place a threshold on the total number of contacts that can be traced

at a time. Part of the work done by contact tracers is moving individuals to the hospital,

and the remaining effort is dedicated to visiting contacts who haven’t (yet) displayed any

symptoms of Ebola. Our model with eight compartments is below.
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S ′ = −β1SI − β2SD − f
S

N
+ θF (3.1)

F ′ = f
S

N
− θF (3.2)

E ′ = β1SI + β2SD − qf
E

N
− αE (3.3)

E ′F = qf
E

N
− rEF (3.4)

I ′ = αE − f I
N
− γI − φ1I − νI (3.5)

H ′ = rEF + f
I

N
+ γI − φ2H − µH (3.6)

R′ = φ1I + φ2H (3.7)

D′ = νI − ωD (3.8)

where N = S + E + I and f is a function of F , EF , and I which gives the rate of finding

new contacts.

f =

κ1γI + κ2νI ifF + EF < 15 ∗ 1200 ∗ p

0 else

(3.9)

where 1 − p is the proportion of the total contact tracing effort available dedicated to

hospitalizing individuals identified as symptomatic. Note that the two events (movement

into H and funerals) can be seen in the function f with the rates γI and νI. In the cutoff

for f , the number 15 is how many contacts on average one contact tracer can trace and

the number 1200 is the number of contact tracers that were employed in the Western Area,

Sierra Leone (containing the capital city of Freetown) during the 2014-2016 epidemic [83].

The units of f are persons per day. The units of each compartment are individuals. The

units and interpretation of each parameter are listed in Table 3.1. Note that we do not

account for births or for deaths from any other cause than Ebola.

People can move from Susceptible to Exposed by coming into contact with a member

of the Infectious class (term β1SI) or by coming into contact with an infectious dead body

(term β2DS). People who are being traced move from Susceptible to F or from Exposed

to EF by coming into contact with a person who has just been hospitalized or attending
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Table 3.1: The parameters in our model with their interpretations and units.

Parameter Interpretation Units
β1 transmission from interactions between I and S per person per time
β2 transmission from interactions between D and S per person per time
θ reciprocal of the number of days a person is traced per time
α reciprocal of the length of the exposed period per time
r rate of hospitalization for traced individuals per time
γ rate of hospitalization for untraced individuals per time
φ1 recovery rate for untreated per time
φ2 recovery rate for treated per time
ν death rate for untreated per time
µ death rate for treated per time
ω rate at which dead bodies become non-infectious per time
κ1 contacts recruited from hospitalization of one person unitless
κ2 contacts recruited from funeral of one person unitless
q contacts were more likely to have been exposed unitless

a funeral for somebody who has just died of Ebola (term f S
N

= (κ1γI + κ2νI) S
N

). This

term is scaled by N because the persons moving in tracing are moved proportionally to the

ratio of persons in their current class. For example, a person being traced from S moves to

F at a rate proportional to S
N

= S
S+E+I

. A person is more likely to be in EF while being

traced than to be in S because of the contact they had with either an infected person or a

dead body. To account for this, we multiply the term f E
N

by a number q. People who have

completed their time being traced and haven’t developed symptoms move back into S (term

θF ). Once a person has been in the Exposed class for an average of 10 days, they move to

the Infectious class (term αE). A person in the class EF is moved to the hospital once they

develop symptoms (term rEF ). If somebody being traced shows symptoms the first time

they are contacted, they are immediately moved to the hospital (term f I
N

). Some Infectious

people decide to go to the hospital on their own (term γI). Some Infectious people manage

to survive Ebola and move to R (term φ1I) but others die of the disease and we assume they

are not safely buried and contribute to the class D (term νI). Some Hospitalized individuals

will recover (term φ2H) but others will die and be safely buried (term µH). We assume that

the death and recovery rates for Hospitalized individuals are different from those who are
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not hospitalized because they receive treatment. After some time has passed, an unsafely

buried dead body is no longer able to infect people (with decay term ωD).

3.3 Stability analysis

We will derive the basic reproductive number <0 using the Next Generation Method [22, 23,

81, 82]. Here we perform analysis of the two parts of f separately. First we assume that

contact tracing has been turned off, which means the threshold has been reached. However,

it would also make sense for contact tracing not to be started yet at the very beginning of

an epidemic, because it takes some time to mobilize the contact tracers. Then we explore

the case where contact tracing is turned on. This might happen at the beginning of an

epidemic if contact tracers are mobilized in anticipation of an epidemic spreading from a

nearby country.

3.3.1 Tracing level above cutoff

Now we will calculate <0 when the threshold has been reached and no more contacts can be

traced, f = 0. The system of equations becomes

S ′ = −β1SI − β2SD + θF

F ′ = −θF

E ′ = β1SI + β2SD − αE

E ′F = −rEF

I ′ = αE − γI − φ1I − νI

H ′ = rEF + γI − φ2H − µH

R′ = φ1I + φ2H

D′ = νI − ωD

where N = S + E + I.

131



To find the equilibria of the system above, we solve

0 = −β1SI − β2SD + θF (3.10)

0 = −θF (3.11)

0 = β1SI + β2SD − αE (3.12)

0 = −rEF (3.13)

0 = αE − γI − φ1I − νI (3.14)

0 = rEF + γI − φ2H − µH (3.15)

0 = φ1I + φ2H (3.16)

0 = νI − ωD. (3.17)

First notice that equation (3.13) implies that EF = 0 and equation (3.11) implies F = 0.

Substituting F = 0 into equation (3.10) and adding equation (3.10) to equation (3.12)

gives E = 0. Substituting E = 0 into equation (3.14) gives I = 0. Taking I = 0 and

substituting into equations (3.16) and (3.17) gives H = 0 and D = 0. Since E = I = 0 and

N = S+E+I, we conclude that S = S∗ = N(0). The disease free equilibrium of this system

is (S∗, 0, 0, 0, 0, 0, R∗, 0), where S∗ ≥ 0 and R∗ ≥ 0, where R∗ is a constant. However for

computation of <0 we must assume a completely susceptible population, so we will assume

R∗ = 0.

We compute the Next Generation Matrix for this system. The diseased classes are E,

EF , I, H, and D, and the system for “infecteds” becomes



E

EF

I

H

D



′

= F − V

where
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F =



β1SI + β2SD

0

0

0

0


, V =



αE

rEF

(φ1 + ν + γ)I − αE

(φ2 + µ)H − rEF − γI

ωD − νI


,

where F represents the new infections and V represents the other transitions.

Let’s check to make sure we meet the assumptions required for the Next Generation

Method as described on page 161 in [82].

1. There is no immigration into the diseased classes. There are no transitions in V when

there are no individuals in the diseased classes.

2. F ≥ 0 when the numbers in all classes are non-negative.

3. Each row of V is non-positive when the corresponding compartment is empty. (Row

3 is negative with I = 0, for example.)

4.
∑5

i=1 Vi = φ1I + (φ2 + µ)H + ωD ≥ 0 when all the classes are non-negative.

5. The disease free equilibrium (which is considered here) is asymptotically stable in the

system without the equations from the diseased classes and E = EF = I = H = D = 0.

(Proof below.) Note that uniqueness is not required [5, 81].

Suppose we have any initial condition with E = EF = I = H = D = 0, that is

(S(0), F (0), E(0), EF (0), I(0), H(0), R(0), D(0)) = (S0, F0, 0, 0, 0, 0, R0, 0) (3.18)

for any non-negative S0, F0, R0. Note that all inflows into compartments E,EF , I,H, and

D will be 0. Therefore these classes will not grow. The remaining three classes will be
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represented by the ODEs

S ′ = θF

F ′ = −θF

R′ = 0.

Therefore the system will asymptotically approach the equilibrium point (S0+F0, 0, 0, 0, 0, 0, R0, 0)

and we take R0 = 0 here.

Now that we have met the required assumptions, we can compute <0 using the Next

Generation Method. The Jacobian matrices corresponding to F and V are

F =



0 0 β1S
∗ 0 β2S

∗

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

V =



α 0 0 0 0

0 r 0 0 0

−α 0 φ1 + ν + γ 0 0

0 −r −γ φ2 + µ 0

0 0 −ν 0 ω


.

We can compute

V −1 =



1

α
0 0 0 0

0
1

r
0 0 0

1

φ1 + ν + γ
0

1

φ1 + ν + γ
0 0

γ

(φ1 + ν + γ)(φ2 + µ)

1

φ2 + µ

γ

(φ1 + ν + γ)(φ2 + µ)

1

φ2 + µ
0

ν

ω(φ1 + ν + γ)
0

ν

ω(φ1 + ν + γ)
0

1

ω


,
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and

FV −1 =



β1S
∗

φ1 + ν + γ
+

νβ2S
∗

ω(φ1 + ν + γ)
0

β1S
∗

φ1 + ν + γ
+

νβ2S
∗

ω(φ1 + ν + γ)
0

β2S
∗

ω

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

The spectral radius of this matrix is

<0 =
β1S

∗

φ1 + ν + γ
+

νβ2S
∗

ω(φ1 + ν + γ)
. (3.19)

The first term describes the number of new infections that we expect per individual from

the I class, and the second term describes the number of new infections that we expect per

body in the D class.

3.3.2 Tracing level below cutoff

We expect that near the disease free equilibrium, the number of infections will be small

but nonzero. An alternate analysis of the DFE should come from nonzero f . With f =

κ1γI + κ2νI, the system of equations is

S ′ = −β1SI − β2SD − (κ1γI + κ2νI)
S

N
+ θF

F ′ = (κ1γI + κ2νI)
S

N
− θF

E ′ = β1SI + β2SD − q(κ1γI + κ2νI)
E

N
− αE

E ′F = q(κ1γI + κ2νI)
E

N
− rEF

I ′ = αE − (κ1γI + κ2νI)
I

N
− γI − φ1I − νI

H ′ = rEF + (κ1γI + κ2νI)
I

N
+ γI − φ2H − µH

R′ = φ1I + φ2H
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D′ = νI − ωD.

The equilibrium equations are

0 = −β1SI − β2SD − (κ1γI + κ2νI)
S

N
+ θF (3.20)

0 = (κ1γI + κ2νI)
S

N
− θF (3.21)

0 = β1SI + β2SD − q(κ1γI + κ2νI)
E

N
− αE (3.22)

0 = q(κ1γI + κ2νI)
E

N
− rEF (3.23)

0 = αE − (κ1γI + κ2νI)
I

N
− γI − φ1I − νI (3.24)

0 = rEF + (κ1γI + κ2νI)
I

N
+ γI − φ2H − µH (3.25)

0 = φ1I + φ2H (3.26)

0 = νI − ωD. (3.27)

Now equation (3.26) implies

φ1I = −φ2H. (3.28)

Giving I = H = 0. From equation (3.27), we get D = 0. Since I = 0, equation (3.21)

gives F = 0 and equation (3.24) gives E = 0. Since I = H = 0, equation (3.25) gives

EF = 0. Since E = I = 0, we conclude that S = S∗ = N(0). We have the same DFE

as above: (S∗, 0, 0, 0, 0, 0, R∗, 0). But once again we take R∗ = 0 for computation of the

Next Generation Matrix. The diseased classes here are as above: E, EF , I, H, and D. The

corresponding F and V vectors are

F =



β1SI + β2SD

0

0

0

0


, V =



αE + q(κ1γI + κ2νI) E
S+I+E

rEF − q(κ1γI + κ2νI) E
S+I+E

(φ1 + ν + γ)I + (κ1γI + κ2νI) I
S+I+E

− αE

(φ2 + µ)H − rEF − γI − (κ1γ+κ2ν)I2

S+I+E

ωD − νI


.
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Once again we check the assumptions required to use the Next Generation Matrix method

as described in [82].

1. There is no immigration into the diseased classes. There are no transitions in V when

there are no individuals in the diseased classes.

2. F ≥ 0 when the numbers in all classes are non-negative.

3. Each row of V is non-positive when the corresponding compartment is empty. (For

example, when I = 0 the third row is −αE.)

4.
∑5

i=1 Vi = φ1I + (φ2 + µ)H + ωD ≥ 0 when all the classes are non-negative.

5. The disease free system has an asymptotically stable equilibrium. (Proof same as in

previous section.)

So we may compute

DF =



0 0 β1S 0 β2S

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

DV =



α +
q(κ1γ + κ2ν)I(S + I)

(S + I + E)2
0

q(κ1γ + κ2ν)E(S + E)

(S + I + E)2
0 0

−q(κ1γ + κ2ν)I(S + I)

(S + I + E)2
r −q(κ1γ + κ2ν)E(S + E)

(S + I + E)2
0 0

−α− (κ1γ + κ2ν)I2

(S + I + E)2
0 A 0 0

(κ1γ + κ2ν)I2

(S + I + E)2
−r B φ2 + µ 0

0 0 −ν 0 ω


,
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where

A =φ1 + ν + γ +
(κ1γ + κ2ν)(2I(S + E) + I2)

(S + I + E)2
,

B =− γ − (κ1γ + κ2ν)(2I(S + E) + I2)

(S + I + E)2
.

When we evaluate S = S∗ and E = I = 0, we get the matrices F and V identical to

those in the first section. Thus the basic reproductive number remains the same as equation

(3.19). We may conclude that f does not influence <0 in this model. The reason for this

computationally is the products generated by the function f . When we take the derivative

of IS
N

or IE
N

or I2

N
, there is always a remaining term which must then be evaluated as 0. For

example,

∂

∂S

(
IS

N

)
=
∂

∂S

(
IS

S + E + I

)
=
I(S + E + I)− IS(1)

(S + E + I)2

=
I(E + I)

(S + E + I)2
.

Thus, when this term is evaluated at E∗ = I∗ = 0, the whole term is 0. From a less

computational and more biological perspective, the reason why f does not impact <0 is that

at the beginning of an epidemic contact tracing is not able to have much of an impact on

the spread of the disease. Later in an epidemic, contact tracing becomes very important.

3.4 Parameter estimation

Our data are taken from the Sierra Leone Ministry of Health daily situation reports,

published on their website during the epidemic. We accessed these old web sites via the

Wayback Machine. Situation reports were available beginning at Day 77 with the final

day being Day 504, but not every intermediate day had a report. There were 343 total

reports available for us to use. Each report contained a table with cumulative suspected,

probable, and confirmed cases and deaths. We chose to use confirmed cases and deaths for
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our parameter estimation. The other information available on each report varied. Sometimes

there was a table about contact tracing, a table with information about hospitalizations, a

table with information about illness within health care workers, and sometimes other tables.

There was one report we chose to exclude because it listed more confirmed deaths than

subsequent reports, making our total number of data points 342.

We chose some parameters from the literature and estimated others using our data. We

took the incubation period to be 10 days, meaning α = 0.1 per day, and the decay rate for

dead bodies to be ω = 1/4.5 per day [67]. The number of days a contact was traced was

1
θ

= 21 days, taken from multiple sources [15, 61, 72]. Our data indicated that the initial

condition for the H class was H(0) = 94 individuals. We assumed the initial condition for

the recovered class was R(0) = 0 individuals, and that the initial condition for S was roughly

equivalent to the population of Sierra Leone at the time, S(0) = 6, 348, 350 people.

We estimated the following parameters:

� β1: the rate of infection from contact between Susceptibles and Infecteds (per person

per day)

� β2: the rate of infection from contact between Susceptibles and Dead bodies (per person

per day)

� γ: the rate of hospitalization for Infecteds (per day)

� κ1: the number of contacts per hospitalized infected individual (unitless)

� κ2: the number of contacts per funeral (unitless)

� r: the rate of hospitalization for traced individuals (per day)

� p: the proportion of tracing effort not devoted to hospitalization (unitless)

� ν: the death rate for untreated individuals (per day)

� µ: the death rate for treated individuals (per day)

� φ1: the recovery rate for untreated individuals (per day)
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� φ2: the recovery rate for treated individuals (per day)

� F (0): the initial number of Susceptibles being traced (individuals)

� E(0): the initial number of Exposed (individuals)

� EF (0): the initial number of Exposed being traced (individuals)

� I(0): the initial number of Infectious (individuals)

� D(0): the initial number of Dead bodies (individuals).

Later the parameter q was added and taken to be 100 (unitless). Until the final attempt

q = 1.

We estimated the above parameters using fmincon and multistart in MATLAB with

ode45 as our solver. Parameter upper and lower bounds were based on ranges of parameters

from the literature [61, 67] and from our data. We used papers [61, 67] for some ranges

because they rely on data from Sierra Leone. For example, the upper bound for F0 was

taken as 2500 because our data indicated that in early days this was roughly the number

of contacts being traced. To estimate our cumulative simulated cases, we summed over the

entries into the H class, assuming that cases for people in the community were unconfirmed.

To estimate our cumulative simulated deaths, we summed over the deaths from H and I

together. The data to be compared with simulation results are cumulative confirmed cases

and cumulative confirmed deaths. We minimized the following

J =
504∑
i=77

(CasesEstimated(i)− CasesData(i))
2

(CasesData(i))2
+

(DeathsEstimated(i)−DeathsData(i))
2

(DeathsData(i))2
. (3.29)

Our data began at day 77 and ended at day 504 with 342 total data points each for cases and

deaths. Note that this does not include every day between day 77 and day 504. The missing

data are for days when the Ministry of Health situation report was unavailable. The data

from one day, when cumulative deaths were higher than for following days, were excluded.

You can see that some days do not have data by the gaps in the red dots in our figures on

the following pages.
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We tried several ways of fitting the data. First, we estimated all the parameters listed

above, holding them all constant throughout the epidemic. This resulted in poor simulations

of the data. The J values were too high (about 0.20) and the simulated epidemic curves

did not flatten at the end, indicating the epidemic would have kept going. Second, we chose

five parameters that seemed to vary during the epidemic according to the literature and

allowed those five parameters to switch from one value to a second value in the middle of

the epidemic. This resulted in a much better simulations of the data (with J values of

about 0.09), but some of the compartments were still unrealistic. We wanted not only to

approximate the data well but to also have realistic curves for each of the compartments in

our model. Third we tried running the code for more starting points in multistart. This

resulted in an even better simulation of the data and gave use reasonable curves for each

of the compartments as well. However, some of the compartments showed corners in their

graphs where the five parameters changed discontinuously. Next, we changed the parameters

to vary continuously. This resulted in a less tight match between our simulations and the

data, but more realistic curves for the compartments. However, the value we had estimated

for r was far too small. In order to achieve a good simulation of the data with reasonable

compartments, we modified the model by inserting the parameter q. Then we reestimated

the paramters using the varying approach for five of the parameters. This resulted in good

simulations of the data with reasonable compartments. The details of each of these steps

are described below, with accompanying figures.

3.4.1 First attempt: all parameters constant

We began by estimating all parameters listed above as fixed for the duration of the epidemic.

This yielded disappointing results, since our simulated curves for cumulative cases and

cumulative deaths continued increasing strongly even after the data had flattened out. One

example of such a problematic fit is shown in Figure 3.2 and has a J value of 0.1963. In

this figure you can also see the data point we later excluded. This data point is the one

which has more confirmed deaths than in following days. We were, however, able to find

good estimates for a handful of parameters, which are listed in Table 3.2. These parameters
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Table 3.2: Parameter values from our first attempt which we kept for the second attempt.

Parameter Value
β2 early 6.53e−7

µ 0.013
φ1 0.016
φ2 0.021

Figure 3.2: First attempt match to the data of cumulative cases and cumulative deaths
with all parameters constant. The value of J is 0.1963.

had similar values for all of the best runs, so we kept these parameter values from this first

method and left the rest to be fitted by our second approach.

3.4.2 Second attempt: allowing five parameters to have two values

In order to achieve a simulated fit of the data which would include a flattening of the

cumulative cases and cumulative deaths curves, rather than simulations which indicated the

epidemic wouldn’t have ended, we decided to allow some parameters (specifically β1, β2, γ, κ1,

and κ2) to vary over the course of the epidemic. We chose these parameters because we knew
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that people’s behavior changed during the epidemic. The literature supports our decision to

allow β1, β2, γ, κ1 and κ2 to change over the course of the epidemic. Senga et al. [72] analyzed

data on probable and confirmed cases of EVD and their contacts in Kenema district, Sierra

Leone taken from the national database. They found that the number of contacts per case

increased over time. The low number of contacts per case reported early in the epidemic was

much lower than those reported in other countries, which they concluded meant that the

contact listings were incomplete. Olu et al. found that during the months of June 2014 to

November 2014 the average number of contacts per case was 9 and that during the months

of December 2014 to May 2015 the average number of contacts per case increased to 16

[61]. Lokuge et al. reported that later in the epidemic people were more likely to come

to the hospital of their own volition, less likely to report funeral contact, and that contact

tracing increased in efficacy [57]. These findings from the literature indicate it is reasonable

to conclude that values for β1, β2, γ, κ1 and κ2 changed during the course of the epidemic

due to changes in behavior and level of education in the population about EVD.

At first, we varied these five parameters discontinuously. For each of those five

parameters, we estimated one value for days 77 through 175 and another value for days

176 through 504. All other parameters were estimated on days 77 through 175 of the data

and we used those same values for days 176 through 504. With this parameter fitting scheme,

we achieved a much better match of our simulations to the data. We chose to change the

parameters at day 175 because the flattening of the data curves occurred after day 175.

Figure 3.3 shows in blue the curves for our estimated cumulative cases and cumulative

deaths and in red dots shows the data. Figure 3.4 shows the estimated dynamics of classes

F and EF on top and the sum of both on bottom and then Figure 3.5 shows estimated

dynamics of classes S,E, I,H,R and D. Note that the flow back into S occurs not from

waning immunity but from contacts completing their tracing period. Classes E,EF , I and

D show a lack of differentiability at the switch from one parameter set to the other. The

parameter values associated with these plots are listed in Table 3.3. The values estimated

by multistart with fmincon for EF (0) and for I(0) were unrealistic because they caused a

large drop at the very beginning, so we gradually changed these parameters until the initial

values fit better with the curves for those two classes.
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Figure 3.3: In this second attempt, the value of the objective was 0.0944. These simulations
were generated using the parameters in Table 3.3.

Our simulations in Figure 3.3 match the data much more closely than those achieved

in the previous estimation scheme shown in Figure 3.2. In particular, J has improved

from 0.1963 to 0.944, an improvement of 52%. However, our simulations underestimate the

cumulative number of cases between about days 100 and 200 and overestimate the cumulative

number of cases from about day 300 onward. Our simulations also underestimate cumulative

deaths data from about the beginning to day 175 and then overestimate the cumulative

deaths data from about day 175 to day 200 and again from about day 250 to day 300.

The plateau of contacts being traced in Figure 3.4 between about days 180 and 250

aligns with reports that the contact tracing system was overwhelmed as the number of

contacts needing tracing dramatically increased. The number of contacts being traced at

this maximum, approximately 16, 000, roughly matches the higher values of contacts being

traced reported in the Ministry of Health situation reports. However, EF is unrealistically

close to 0 throughout the epidemic. This does not match the success of contact tracing

shown in the literature [61]. In Figures 3.4 and 3.5, note that the peaks in E,EF , I, and D

occur at the time of the switch, day 175 but that the peak in hospitalized individuals occurs
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Figure 3.4: From the second attempt, simulated dynamics of Class F in the upper left,
class EF in the upper right, and their sum on the bottom. These classes correspond to the
parameters from Table 3.3 and the data fits from Figure 3.3. Note that the size of class EF
is unrealistically small.

closer to day 200. The delay in the peak of H matches expectations that the peak in E

would occur earlier, and then as people who had been exposed earlier developed symptoms

and came to the hospital, this would cause a later peak in H.

The values of the parameters listed in Table 3.3 are not the only set of parameters that

give a good fit for our data. Indeed, these are not the best choice because they cause such a

low size for the EF class, as you can see in Figure 3.4. This low size is not reflective of the

success contact tracing achieved in locating exposed individuals during the outbreak.

3.4.3 Third attempt: more runs

We ran our code again with the same bounds and a larger number of multistart points (500

increased from 100) and found a set of parameters which produced an even better match

between our simulations and the data and also had a more reasonable class EF . These results

are in Figures 3.6, 3.7, and 3.8. The parameters for these simulations are in Table 3.4.

145



Figure 3.5: From the second attempt, the simulated graphs above correspond to the
parameters from Table 3.3 and the data fits from Figure 3.3. Note that the scales are
all different.

Table 3.3: In the second attempt, values for estimated parameters corresponding with
Figures 3.3,3.4, and 3.5.

Parameter Value Parameter Value
β1 early 8.77e−8 r 0.67
β1 late 1.10e−7 p 0.91
β2 early 6.53e−7 ν 0.021
β2 late 1.01e−8 µ 0.013
γ early 0.75 φ1 0.016
γ late 0.89 φ2 0.021
κ1 early 10 F (0) 1087
κ1 late 36.90 E(0) 160
κ2 early 11.82 EF (0) 0
κ2 late 35.61 I(0) 20

D(0) 1
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Figure 3.6: Simulations and corresponding data from the third attempt. The value of the
objective for this was J = 0.0502. This simulation was generated using the parameters from
Table 3.4.

In Figure 3.6, the blue estimation curve is much closer to the red data than in Figure

3.3. In particular, J improved from 0.0944 to 0.0502, an improvement of 47%. However,

starting sometime after day 200, our simulation overestimates cumulative case data and

underestimates cumulative death data.

Figure 3.7 contains a much more realistic curve for EF than does Figure 3.4. Here we can

see that though the number of contacts who were exposed is a small proportion of the overall

number of contacts being traced, it still represents a large number of people. Stopping those

people from spreading the disease further would definitely help end the epidemic. In Figure

3.8 we see that E, I and D still have corners at the transition between the early and late

values for the five parameters being varied.
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Figure 3.7: From the third attempt, dynamics of class F in the upper left, class EF in the
upper right, and their sum on the bottom. These classes correspond to the parameters from
Table 3.4 and the data simulations from Figure 3.6.

Figure 3.8: From the third attempt, the graphs above correspond to the parameters from
Table 3.4 and the data simulations from Figure 3.6. Note that the scales are all different.
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Table 3.4: From the third attempt, values for estimated parameters corresponding with
Figures 3.6, 3.7, and 3.8, with five parameters having early and late values.

Parameter Value Parameter Value
β1 early 6.68e−8 r 0.001
β1 late 3.94e−8 p 0.90
β2 early 6.53e−7 ν 0.011
β2 late 9.95e−7 µ 0.013
γ early 0.49 φ1 0.016
γ late 0.89 φ2 0.021
κ1 early 10 F (0) 1031
κ1 late 24.95 E(0) 37
κ2 early 45.8 EF (0) 670
κ2 late 25.89 I(0) 63

D(0) 8

3.4.4 Fourth attempt: smoothing the transition between five

parameters

The dynamics of the classes E, I, and D in Figure 3.8 show sharp corners at the transition

between parameter sets. To ameliorate this, we smoothed the transition using piecewise

functions such as the one below for each of the parameters.

β1(t) =


6.68e−8 t < 160

6.68e−8(1− t−160
30

) + 3.94e−8
(
t−160
30

)
160 ≤ t ≤ 190

3.94e−8 t > 190.

(3.30)

The resulting simulations with data comparisons and classes are found in Figures 3.9, 3.10,

and 3.11. Chowell et al. [16] built a system of ODEs representing Ebola outbreaks in Congo

and Uganda and used a smooth transition between two transmission rates due to control

interventions (like education and contact tracing followed by quarantine).

As a result of the smoothed transitions for the 5 varying parameters, and changing the

initial conditions for E(0) = 100 and I(0) = 20, the value for J improved slightly from

0.0502 to 0.492.
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Figure 3.9: From the fourth attempt, simulation results with data using smoothed
transitions in the 5 varying parameters. The value of the objective for this simulation was
J = 0.0492. Note the later days in the simulation are an underestimate of the cumulative
deaths data.

Figure 3.10: From the fourth attempt, dynamics of class F in the upper left, class EF in
the upper right, and their sum on the bottom. These classes correspond to the parameters
from Table 3.4 and the data fits from Figure 3.9.
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Figure 3.11: From the fourth attempt, the graphs above correspond to the parameters
from Table 3.4 and the data fits from Figure 3.9. Note that the scales are all different.

Figure 3.10 is not very different from Figure 3.7, despite the change to continuously

varying the five parameters. In Figure 3.11 we see the peaks of E, I and D are much

smoother than those from Figure 3.8. Note that in Figure 3.11 we again see the peak in H

delayed from the peaks in E, I and D.

3.4.5 Final attempt: more realistic transition from EF to H

Though we were satisfied with how the fourth attempt simulations matched the data, there

was a problem with the parameter bounds for r, the transition rate from EF to H. Once

we began to interpret our parameter values, this became quite clear. With the value of

r = 0.001 from Table 3.4, this would mean that a person would spend an average of 1000

days in EF before transitioning to H. In other words, they would take 1000 days to develop

symptoms, and would be traced for 1000 days before being taken to the hospital. Contacts

were only followed for 21 days, so this is impossible. To build a more realistic lower bound

for r to use in multistart, we used 0.04, which is approximately 1
21

.
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Figure 3.12: For the final attempt, simulation results with smoothed transitions in the 5
varying parameters and data. The value of the objective for this simulation was J = 0.0426.

However, with higher values for r we were unable to generate reasonable sizes for

compartment EF . We decided to modify the model by adding a multiplier, q, in front

of the f E
N

term. We tried several values and found that a value of q = 100 generated

reasonable sizes for compartment EF . This multiplier indicates that people who were being

traced had had contact with somebody who was infectious or with a dead body, so they were

more likely to have been exposed to Ebola than a member of the population who hadn’t had

such contact. These changes resulted in the simulations shown in Figures 3.12, 3.13, and

3.14 which were generated using the parameters found in Table 3.5.

In Figure 3.12 the value of the objective for this simulation was J = 0.0426.

Figure 3.13 shows how many cases total were identified as part of the contact tracing

effort. Near the end of the outbreak this number reaches about 1100, which represents more
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Figure 3.13: For the final attempt, the dynamics of class F in the upper left, class EF in
the upper right, their sum on the bottom left, and the integral of those leaving EF to be
hospitalized on the bottom right. These classes correspond to the parameters from Table
3.5 and the data simulations from Figure 3.12.

than a tenth of all confirmed cases. This demonstrates the importance of successful contact

tracing. The peak of contact tracing numbers corresponds to the slowing of the increase in

cumulative cases, around day 200. This indicates that contact tracing efforts contributed to

ending the epidemic.

In Figure 3.14, the peak in E occurs at day 164, the peak in H about two weeks later

on day 176, the peak in I about two weeks after that on day 192, and then the peak in

D on day 197. It is not surprising that the peak in E precedes the other peaks, but it is

surprising that the peak in D is the last peak to occur. This indicates that there may have

been unsafely buried bodies later in the epidemic, but that fewer people were catching Ebola

from funeral interactions despite this increase in funerals.

In Table 3.5, there is no difference between β1 early and β1 late. However, β2 changes from

an early value of 1 ∗ 10−6 to a much lower later value of 1 ∗ 10−7. These parameter values

indicate that while the rate of transmission from interactions between S and I remained
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Figure 3.14: For the final attempt, the graphs above correspond to the parameters from
Table 3.5 and the data simulations from Figure 3.12. Note that the scales are all different.

Table 3.5: For the final attempt, values for estimated parameters corresponding with
Figures 3.12, 3.13, and 3.14, with five parameters having early and late values.

Parameter Value Parameter Value
β1 early 1e−9 r 0.056
β1 late 1e−9 p 0.90
β2 early 1e−6 ν 0.024
β2 late 1e−7 µ 0.010
γ early 0.23 φ1 0.020
γ late 0.062 φ2 0.028
κ1 early 29.7 F (0) 2451
κ1 late 44.9 E(0) 32
κ2 early 44.6 EF (0) 125
κ2 late 16.6 I(0) 72

D(0) 6
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about the same throughout the epidemic, the rate of transmission from D to S decreased

dramatically as people became more educated about Ebola. Oddly, γ = 0.23 decreases to a

later value of γ = 0.062, which does not agree with accounts from the literature that people

were more likely to come to the hospital once they developed symptoms later in the epidemic

than they were earlier in the epidemic. The value of κ1 = 29.7 early increases to κ1 = 44.9

late, corresponding to reports from the literature that people were more likely to report

more complete lists of contacts later in the epidemic. However, κ2 = 44.6 early decreased

to κ2 = 16.6 late, adding to the conclusion that people were less likely to attend traditional

funerals later in the epidemic. The changes in these parameters during the outbreak might be

caused by a combination of factors including educating the public about Ebola [51], increases

in available beds at Ebola Treatment Centers, and more effective implementation of contact

tracing.

The value of r = 0.056 means that contacts who were infected took an average of 18

days to show symptoms. This value for r is probably still unrealistically small, as it should

likely be closer to α = 0.1. The parameter ν was slightly larger than µ, since those who

were treated had slightly lower chance of dying from Ebola. Similarly, φ2 was larger than φ1

because those who were treated were more likely to recover from the disease.

3.5 Importance of contact tracing

Figure 3.15 shows potential trajectories for epidemics with different numbers of contact tracer

workers available, either more or fewer than were actually available during the epidemic. We

varied the number of these workers from 0 to 2000, and note that 1200 is the corresponding

number in our model. Without contact tracing at all, the highest blue curve, there would

have been thousands more cases and deaths. Even a much smaller work force than existed

would have made a dramatic improvement on the trajectory of the epidemic from what would

have happened without contact tracing. Once the number of contact tracers reaches about

1000, each increase in the number of workers has much less dramatic effects. More tracers

still would have been better, but the difference in trajectories is much less dramatic than

the difference between 0 tracers and 200 tracers.
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Figure 3.15: Effect of varying the number of contact tracers available from 0 to 2000, with
1200 as the corresponding number in our model.

Figure 3.16: Effect of varying contact tracing parameters κ1 and κ2 on the total number
of deaths by day 504 of the epidemic.
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The number of person traced from each hospitalization (κ1) and the number from each

funeral (κ2), were estimated as κ1 = 29.7 early, κ1 = 44.9 late, κ2 = 44.6 early, and κ2 = 16.6

late in our model. We vary those numbers from 5 to 50 to see the effect on the epidemic. If

we hold each of the contact tracing parameters κ1 and κ2 constant at the values in Figure

3.16, the heat map shows the total number of deaths by day 504 of the outbreak. Increasing

each of the two parameters reduces the total number of deaths, but κ1 has a much more

dramatic effect than κ2. This seems to indicate that more deaths resulted from people having

contact with infected individuals than resulted from people having contact with dead bodies.

3.6 Conclusions

Better understanding of the mechanisms of contact tracing is important for disease

management. Our model is novel in its inclusion of explicit contact tracing of both

Susceptible and Exposed individuals as well as including the limitation on the number

of total contact tracers available for the work. We counted the total number of people

being traced and tracked the length of time they were being traced. Li et al. analyzed 37

compartmental models of Ebola [53] and they identified models which explicitly included

classes of hospitalized individuals and of funerals as more useful to management decisions,

because they explicitly included targeted interventions. For this reason, we explicitly

included contact tracing in our model, including the logistical limitations resulting from

limited numbers of contact tracers, because contact tracing is another targeted intervention.

We found that better matching of the simulations with the data was possible when we

allowed five parameters to change over the course of the epidemic: β1, β2, γ, κ1 and κ2.

These parameters are the per capita rate of transmission from the Infectious compartment

to the Susceptible compartment, the per capita rate of transmission from the Dead body

compartment to the Susceptible compartment, the rate of transition from the Infectious

compartment to the Hospital compartment, the number of contacts per person generated

from a hospitalized case, and the number of contacts per person generated from a funeral.

These parameters changed during the outbreak because more hospitals were available as

the outbreak went on, people became more educated about the disease, and contact tracing
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became more effective. This work illustrates the value of changing parameters due to known

behavior changes.

Early in the epidemic people were less likely to report as many contacts as they did later

in the epidemic, as demonstrated by the increase from κ1 = 10.16 early to κ1 = 25.87 late.

Later in the epidemic people were less likely to attend traditional funerals, as seen in the

decrease from κ2 = 50.00 early to κ2 = 21.71 late. The transmission parameter β1 remained

unchanged, while β2 decreased from 1e−6 early to 1.02e−7 late.

There was a period when the contact tracing infrastructure was overwhelmed by cases,

as seen in the plateaus in Figures 3.14. More contact tracers available to work would

have prevented this plateau, but the number of contact tracers available was sufficient to

prevent many more cases and deaths from occurring. More contact tracers could also ..., as

seen in Figure ??. Increasing either κ1 or κ2 would have decreased the number of deaths

that occurred, but κ1 had a stronger effect than κ2. Overall this work makes a strong

contribution to understanding the effects of contact tracing and changes in behavior on

disease management.

In future we plan to further explore the role of contact tracing in epidemics. We plan

to build a model with a more realistic form to the function f which represents how contact

tracing capacity grows in response to an epidemic. We will also explore the role contact

tracing plays in outbreaks of other diseases, including diseases with a latent period such as

CoViD-19. The mechanisms of contact tracing proceedures for other disease might be quite

different and require the development of disease-specific models.
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A Estimates of difference between Seno model and our

first mechanistic model

We discovered numerically that the difference in time series for the Seno model and for

our first mechanistic model are very small for any reasonable choice of parameters. In this

appendix we attempt to estimate that difference algebraically without much success.

First, we examine the absolute difference between Seno’s model and our model. We

attempt to estimate an upper bound on the RHS of Seno’s model (2.35) minus the RHS of

our model (2.15) (from (2.37) we know this quantity is positive)

θt
(1− γ)bNt

1 + βNt

+ (1− θt)
(1− γ)bNt

1 + β(1− γ)Nt

− (1− γ)bNt

1 + βNt (1− γ(1− θt))
. (31)

Let’s get a common denominator of

(1 + βNt) (1 + β(1− γ)Nt) (1 + βNt (1− γ(1− θt))) . (32)

Factoring out the common term in the numerator, (1 − γ)bNt, the numerator of the first

term will give

θt (1 + β(1− γ)Nt) (1 + βNt (1− γ(1− θt)))

=θt (1 + βNt − βγNt) (1 + βNt − βγNt + βγθtNt)

=θt
(
1 + 2βNt − 2βγNt + β2N2

t − 2β2γN2
t + β2γ2N2

t + βγθtNt + β2γθtN
2
t − β2γ2θtN

2
t

)
=θt + 2βθtNt − 2βγθtNt + β2θtN

2
t − 2β2γθtN

2
t + β2γ2θtN

2
t

+ βγθ2tNt + β2γθ2tN
2
t − β2γ2θ2tN

2
t . (33)
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Similarly, for the second term,

(1− θt) (1 + βNt) (1 + βNt − βγNt + βγθtNt)

= (1− θt)
(
1 + 2βNt + β2N2

t − βγNt − β2γN2
t + βγθtNt + β2γθtN

2
t

)
=1 + 2βNt + β2N2

t − βγNt − β2γN2
t + 2βγθtNt + 2β2γθtN

2
t − θt

− 2βθtNt − β2θtN
2
t − βγθ2tNt − β2γθ2tN

2
t . (34)

And for the third term:

− 1 (1 + βNt) (1 + βNt − βγNt)

=− 1
(
1 + 2βNt + β2N2

t − βγNt − β2γN2
t

)
=− 1− 2βNt − β2N2

t + βγNt + β2γNt. (35)

Note that terms in (35) cancel with the first 5 terms of (34). Also, the remaining terms of

(34) cancel with terms in (33) leaving only the 6th and final term of (33). So adding the

terms in (33), (34), and (35) yields

β2γ2θtN
2
t − β2γ2θ2tN

2
t

=β2γ2θtN
2
t (1− θt) . (36)

So, multiplying the terms in (36) by the common term (1− γ)bNt and dividing by the terms

in (32) gives us a single fraction

(1− γ)bβ2γ2θt (1− θt)N3
t

(1 + βNt) (1 + β(1− γ)Nt) (1 + βNt (1− γ(1− θt)))
(37)

which is equal to the difference in (31). Therefore (31) is less than or equal to

(1− γ)bβ2γ2θt (1− θt)N3
t . (38)

Let

u = (1− γ)γ2.
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Then

u′ = 2γ − 3γ2

and

u′′ = 2− 6γ.

So setting u′ = 0 yields two critical points: γ = 0 and γ = 2
3
. Since u′′(0) > 0, γ = 0 is

a local minimum. But u′′(2
3
) < 0 so this is a local maximum. Which implies γ = 2

3
is a

maximum of u on the interval γ ∈ [0, 1]. Therefore

(1− γ)γ2 ≤
(

1− 2

3

)
22

32
=

22

33
. (39)

Similarly, let

v = (1− θt)θt.

Then

v′ = 1− 2θt

and

v′′ = −2.

Setting v′ = 0 yields θt = 1
2
. Since v′′ < 0, this is the global maximum of θt. So we have

(1− θt)θt ≤
1

22
. (40)

Since our population is undergoing harvest and has no hydra effect, Nt is bounded above by

the without-harvest equilibrium. (A hydra effect occurs when harvesting results in higher

population levels than would occur in the absence of harvesting.) Without harvest, we have

the Beverton-Holt equation

Nt+1 =
bNt

1 + βNt

which has equilibrium N∗ = b−1
β

. So, as long as N0 ≤ b−1
β

,

Nt ≤
b− 1

β
(41)
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for all t. Using inequalities (39), (40), and (41), as long as N0 ≤ b−1
β

, we have the expression

in (38) less than or equal to

22

33
bβ2 1

22

(b− 1)3

β3

=
b(b− 1)3

27β
. (42)

This bound is not helpful, so we attempt an alternative approach. For this alternative

approach we will use (2.20), which is

1

1 + βNt

≤ 1

1 + β (1− γ(1− θt))Nt

≤ 1

1 + β(1− γ)Nt

(43)

We then estimate the expression (37) (coming from the difference (31)) using (43) to see

that (31) is less than or equal to

(1− γ)γ2bβ2(1− θ)θN3
t

(1 + β(1− γ)Nt)
3

<
(1− γ)γ2bβ2(1− θ)θN3

t

β3(1− γ)3N3
t

=
γ2b(1− θ)θ
β(1− γ)2

≤ b

4β(1− γ)2
(44)

so long as Nt 6= 0, γ 6= 1.

As another approach to estimating the difference (31), we might apply (43) initially to

get

θt
(1− γ)bNt

1 + βNt

+ (1− θt)
(1− γ)bNt

1 + β(1− γ)Nt

− (1− γ)bNt

1 + βNt (1− γ(1− θt))

≤ θt(1− γ)bNt

1 + β(1− γ)Nt

+
(1− θt)(1− γ)bNt

1 + β(1− γ)Nt

− (1− γ)bNt

1 + β(1− γ(1− θt))Nt

=
(1− γ)bNt

1 + β(1− γ)Nt

− (1− γ)bNt

1 + β(1− γ(1− θt))Nt

. (45)
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Combining the fractions in (45) and then using (43) yields

(1− γ)bNt

(
1 + β(1− γ(1− θt))Nt − (1 + β(1− γ)Nt)

(1 + β(1− γ)Nt) (1 + β(1− γ(1− θt))Nt)

)
=(1− γ)bNt

(
1 + βNt − βγNt + βγθtNt − 1− βNt + βγNt

(1 + β(1− γ)Nt) (1 + β(1− γ(1− θt))Nt)

)
=

(1− γ)bβγθtN
2
t

(1 + β(1− γ)Nt) (1 + β(1− γ(1− θt))Nt)

≤ (1− γ)γbβθtN
2
t

(1 + β(1− γ)Nt)2
.

This can be estimated in two ways, since both

1

(1 + β(1− γ)Nt)
2 <

1

β2(1− γ)2N2
t

(46)

so long as Nt 6= 0 and γ 6= 1 and

1

(1 + β(1− γ)Nt)
2 ≤ 1. (47)

The first estimate gives the difference in (45) being less than

(1− γ)γbβθtN
2
t

β2(1− γ)2N2
t

≤ b

(1− γ)β
. (48)

The second estimate together with inequality (41) gives our difference coming from (45) less

than or equal to

(1− γ)γbβθtN
2
t

≤1

4
bβ

(
b− 1

β

)2

=
b(b− 1)2

4β
. (49)

These estimates are summarized in Table 6. Since the function 1
1−γ on the domain

γ ∈ [0, 1] has the range [1,∞), as does the function 1
(1−γ)2 , the bottom two estimates might
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Table 6: We obtained the upper estimates above for the difference of the RHS of Seno’s
and the RHS of our first mechanistic model (31), which require the listed assumptions.

Estimate Assumptions
b

(1−γ)β Nt 6= 0 and γ 6= 1
b

4(1−γ)2β Nt 6= 0 and γ 6= 1
b(b−1)2

4β
N0 ≤ b−1

β
b(b−1)3
27β

N0 ≤ b−1
β

be preferred. However none of these estimates imply that the difference between the RHS

of Seno and the RHS of our first mechanistic model (31) is very small for large parts of

parameter space. For this reason we did numerical estimates of the difference (31).

In order for the population to be stable enough to harvest, we expect b > β. We have

explored several ways of estimating the difference (31) and they each result in some kind of

ratio between b and β. This might seem to imply that for some combinations of b and β,

(2.15) and (2.35) aren’t close together. But though the difference between the two models

might get larger for b � β, our simulations indicate that the relative distance between the

two models does not get large. To explore this, we’ll take (31) and divide it by the RHS of

the smaller of the two models (2.15), to stay conservative in our estimate. Note that both

expressions (31) and (2.15) are nonnegative, so we have

θt
(1−γ)bNt

1+βNt
+ (1− θt) (1−γ)bNt

1+β(1−γ)Nt
− (1−γ)bNt

1+βNt(1−γ(1−θt))
b(1−γ)Nt

1+βNt(1−γ(1−θt))

=

(
θt

(1− γ)bNt

1 + βNt

+ (1− θt)
(1− γ)bNt

1 + β(1− γ)Nt

− (1− γ)bNt

1 + βNt (1− γ(1− θt))

)
∗ 1 + βNt (1− γ(1− θt))

b(1− γ)Nt

=
θt (1 + βNt (1− γ(1− θt)))

1 + βNt

+
(1− θt) (1 + βNt (1− γ(1− θt)))

1 + β(1− γ)Nt

− 1. (50)

We observed earlier that
1

1 + βNt

≤ 1

1 + β(1− γ)Nt
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and

1 + β (1− γ(1− θt))Nt ≤ 1 + βNt.

So the expression in (50) is less than or equal to

θt (1 + βNt)

1 + βNt

+
(1− θt) (1 + βNt)

1 + β(1− γ)Nt

− 1

≤ θt (1 + βNt)

1 + β(1− γ)Nt

+
(1− θt) (1 + βNt)

1 + β(1− γ)Nt

− 1

=
1 + βNt

1 + β(1− γ)Nt

− 1

=
1

1 + β(1− γ)Nt

+
βNt

1 + β(1− γ)Nt

− 1

≤1

1
+

βNt

β(1− γ)Nt

− 1

=
1

1− γ
(51)

so long as Nt 6= 0 and γ 6= 1. This bound is not helpful, since on the domain γ ∈ [0, 1] it has

range [1,∞). We need to explore some other estimates of (50). Starting from a term in the

middle of the inequalities above, we have (50) less than or equal to

1 + βNt

1 + β(1− γ)Nt

− 1

=
1 + βNt − 1− βNt + βγNt

1 + β(1− γ)Nt

=
βγNt

1 + β(1− γ)Nt

(52)

≤βγNt

≤βγ(b− 1)

β

=γ(b− 1) (53)
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assuming that N0 ≤ b−1
β

. Alternatively, the expression in (52) is less than or equal to

βγNt

β(1− γ)Nt

=
γ

1− γ
(54)

assuming that γ 6= 1 and Nt 6= 0. However, for the domain γ ∈ [0, 1] the quotient (54) has

range [0,∞).

Starting over from expression (50) and combining the terms into one fraction with a

common denominator, we get

θt (1 + βNt (1− γ(1− θt)))
1 + βNt

+
(1− θt) (1 + βNt (1− γ(1− θt)))

1 + β(1− γ)Nt

− 1

=
β2γ2θt(1− θt)N2

t

(1 + βNt) (1 + β(1− γ)Nt)
. (55)

Using (43), we see that the quotient (55) is less than or equal to

β2γ2θt(1− θt)N2
t

(1 + β(1− γ)Nt)
2 (56)

≤β
2γ2θt(1− θt)N2

t

β2(1− γ)2N2
t

=
γ2θ(1− θ)
(1− γ)2

≤ γ2

(1− γ)2
. (57)

This estimate is also useless since for γ ∈ [0, 1] its range is [0,∞). For low values of γ it will

be small, but for values of γ approaching 1 it will be huge.

These estimates are summarized in Table 7. These estimates are for the RHS of Seno

minus the RHS of our first mechanistic model divided by the RHS of our first mechanistic

model. The estimates in Table 6 were for the absolute difference between the RHS of Seno and

the RHS of our first mechanistic model, without division. Neither approach yielded estimates

that reflect how small the differences between Seno and our first mechanistic model actually
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Table 7: We obtained the relative estimates above for expression (50), which is the RHS
of Seno minus the RHS of our first mechanistic model divided by the RHS of our first
mechanistic model. The estimates require the listed assumptions.

Estimate Assumptions
1

1−γ Nt 6= 0 and γ 6= 1
γ

1−γ Nt 6= 0 and γ 6= 1(
γ

1−γ

)2
Nt 6= 0 and γ 6= 1

γ(b− 1) N0 ≤ b−1
β

are in large portions of parameter space, as shown by our numerical investigation. We did

not obtain better estimates by dividing the difference (31) by (2.35) instead of (2.15).
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B Data from the Sierra Leone Ministry of Health

situation reports
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Date Day Cumulative Cases Cumulative Deaths 

12-Aug-14 77 717 264 

13-Aug-14 78 733 273 

14-Aug-14 79 747 280 

15-Aug-14 80 757 287 

16-Aug-14 81 775 297 

17-Aug-14 82 778 305 

18-Aug-14 83 783 312 

19-Aug-14 84 804 320 

20-Aug-14 85 813 322 

21-Aug-14 86 823 329 

22-Aug-14 87 881 333 

23-Aug-14 88 904 336 

24-Aug-14 89 935 341 

25-Aug-14 90 955 355 

26-Aug-14 91 961 363 

27-Aug-14 92 988 372 

28-Aug-14 93 1018 377 

29-Aug-14 94 1033 383 

30-Aug-14 95 1077 387 

31-Aug-14 96 1106 388 

1-Sep-14 97 1115 396 

2-Sep-14 98 1146 399 

3-Sep-14 99 1174 404 

5-Sep-14 101 1234 413 

6-Sep-14 102 1276 426 

7-Sep-14 103 1287 428 

8-Sep-14 104 1305 433 

9-Sep-14 105 1341 436 

10-Sep-14 106 1367 445 

11-Sep-14 107 1401 450 

12-Sep-14 108 1432 459 

13-Sep-14 109 1464 463 

14-Sep-14 110 1513 468 

15-Sep-14 111 1542 474 

16-Sep-14 112 1571 483 

17-Sep-14 113 1585 489 

18-Sep-14 114 1618 495 

19-Sep-14 115 1640 497 



20-Sep-14 116 1696 501 

21-Sep-14 117 1745 502 

22-Sep-14 118 1775 506 

23-Sep-14 119 1816 509 

24-Sep-14 120 1885 509 

25-Sep-14 121 1920 513 

26-Sep-14 122 1944 513 

27-Sep-14 123 2000 518 

28-Sep-14 124 2090 522 

29-Sep-14 125 2155 527 

30-Sep-14 126 2184 550 

1-Oct-14 127 2212 532 

3-Oct-14 129 2276 538 

4-Oct-14 130 2411 678 

5-Oct-14 131 2459 699 

6-Oct-14 132 2504 703 

7-Oct-14 133 2585 708 

8-Oct-14 134 2593 713 

10-Oct-14 136 2698 904 

11-Oct-14 137 2792 921 

12-Oct-14 138 2849 926 

13-Oct-14 139 2894 931 

14-Oct-14 140 2977 932 

15-Oct-14 141 3003 943 

16-Oct-14 142 3058 947 

17-Oct-14 143 3097 954 

18-Oct-14 144 3154 973 

19-Oct-14 145 3223 986 

20-Oct-14 146 3295 997 

21-Oct-14 147 3345 1001 

22-Oct-14 148 3389 1008 

23-Oct-14 149 3449 1012 

24-Oct-14 150 3490 1026 

25-Oct-14 151 3560 1037 

26-Oct-14 152 3622 1044 

27-Oct-14 153 3713 1049 

28-Oct-14 154 3760 1057 

30-Oct-14 156 3841 1064 

31-Oct-14 157 3936 1070 



1-Nov-14 158 3996 1077 

2-Nov-14 159 4057 1085 

6-Nov-14 163 4232 1114 

7-Nov-14 164 4277 1126 

8-Nov-14 165 4433 1133 

10-Nov-14 167 4617 1149 

12-Nov-14 169 4744 1169 

13-Nov-14 170 4828 1180 

14-Nov-14 171 4913 1196 

15-Nov-14 172 4967 1206 

16-Nov-14 173 5056 1223 

17-Nov-14 174 5109 1233 

18-Nov-14 175 5152 1240 

19-Nov-14 176 5210 1249 

20-Nov-14 177 5304 1282 

21-Nov-14 178 5355 1303 

22-Nov-14 179 5402 1333 

23-Nov-14 180 5441 1364 

24-Nov-14 181 5524 1397 

25-Nov-14 182 5595 1429 

26-Nov-14 183 5683 1464 

27-Nov-14 184 5767 1481 

28-Nov-14 185 5831 1496 

29-Nov-14 186 5906 1522 

30-Nov-14 187 5978 1549 

1-Dec-14 188 6039 1575 

2-Dec-14 189 6132 1601 

4-Dec-14 191 6238 1648 

5-Dec-14 192 6292 1669 

6-Dec-14 193 6317 1708 

7-Dec-14 194 6375 1734 

8-Dec-14 195 6420 1786 

9-Dec-14 196 6457 1823 

10-Dec-14 197 6497 1865 

11-Dec-14 198 6557 1910 

12-Dec-14 199 6592 1952 

13-Dec-14 200 6638 1999 

14-Dec-14 201 6702 2051 

15-Dec-14 202 6757 2076 



16-Dec-14 203 6808 2095 

17-Dec-14 204 6856 2111 

18-Dec-14 205 6903 2136 

19-Dec-14 206 6932 2163 

20-Dec-14 207 6975 2190 

21-Dec-14 208 7017 2216 

22-Dec-14 209 7075 2235 

23-Dec-14 210 7130 2273 

24-Dec-14 211 7160 2289 

25-Dec-14 212 7220 2319 

26-Dec-14 213 7275 2345 

27-Dec-14 214 7326 2366 

28-Dec-14 215 7354 2392 

29-Dec-14 216 7419 2410 

30-Dec-14 217 7458 2435 

31-Dec-14 218 7476 2461 

1-Jan-15 219 7505 2501 

2-Jan-15 220 7542 2524 

3-Jan-15 221 7572 2550 

4-Jan-15 222 7606 2578 

5-Jan-15 223 7641 2607 

6-Jan-15 224 7665 2612 

7-Jan-15 225 7696 2630 

8-Jan-15 226 7718 2650 

9-Jan-15 227 7749 2663 

10-Jan-15 228 7777 2684 

11-Jan-15 229 7797 2697 

12-Jan-15 230 7816 2702 

13-Jan-15 231 7839 2718 

14-Jan-15 232 7855 2732 

15-Jan-15 233 7861 2742 

16-Jan-15 234 7885 2760 

17-Jan-15 235 7897 2767 

18-Jan-15 236 7917 2780 

19-Jan-15 237 7923 2788 

20-Jan-15 238 7935 2794 

21-Jan-15 239 7944 2802 

22-Jan-15 240 7958 2814 

23-Jan-15 241 7966 2822 



24-Jan-15 242 7977 2830 

25-Jan-15 243 7982 2834 

26-Jan-15 244 7991 2842 

27-Jan-15 245 8003 2851 

28-Jan-15 246 8015 2859 

29-Jan-15 247 8033 2873 

31-Jan-15 249 8056 2909 

1-Feb-15 250 8073 2911 

2-Feb-15 251 8077 2921 

3-Feb-15 252 8098 2936 

4-Feb-15 253 8111 2949 

5-Feb-15 254 8117 2950 

6-Feb-15 255 8124 2959 

7-Feb-15 256 8136 2971 

8-Feb-15 257 8149 2978 

10-Feb-15 259 8169 2998 

11-Feb-15 260 8183 3009 

12-Feb-15 261 8193 3018 

13-Feb-15 262 8208 3030 

14-Feb-15 263 8213 3036 

15-Feb-15 264 8226 3043 

16-Feb-15 265 8230 3050 

17-Feb-15 266 8237 3058 

18-Feb-15 267 8239 3063 

19-Feb-15 268 8244 3066 

20-Feb-15 269 8260 3079 

21-Feb-15 270 8275 3088 

22-Feb-15 271 8289 3095 

23-Feb-15 272 8301 3103 

24-Feb-15 273 8308 3113 

25-Feb-15 274 8320 3124 

27-Feb-15 276 8349 3151 

28-Feb-15 277 8353 3164 

1-Mar-15 278 8370 3180 

2-Mar-15 279 8374 3188 

3-Mar-15 280 8383 3199 

4-Mar-15 281 8389 3210 

5-Mar-15 282 8398 3222 

7-Mar-15 284 8416 3245 



8-Mar-15 285 8428 3263 

9-Mar-15 286 8444 3279 

10-Mar-15 287 8463 3289 

11-Mar-15 288 8469 3297 

12-Mar-15 289 8472 3303 

13-Mar-15 290 8476 3312 

15-Mar-15 292 8487 3325 

16-Mar-15 293 8501 3327 

17-Mar-15 294 8502 3336 

19-Mar-15 296 8508 3360 

20-Mar-15 297 8515 3370 

21-Mar-15 298 8518 3376 

22-Mar-15 299 8520 3381 

23-Mar-15 300 8528 3393 

24-Mar-15 301 8529 3398 

25-Mar-15 302 8532 3407 

26-Mar-15 303 8535 3413 

27-Mar-15 304 8539 3421 

29-Mar-15 306 8545 3433 

31-Mar-15 308 8547 3444 

1-Apr-15 309 8549 3448 

2-Apr-15 310 8549 3454 

3-Apr-15 311 8551 3459 

4-Apr-15 312 8555 3461 

5-Apr-15 313 8555 3466 

6-Apr-15 314 8558 3472 

7-Apr-15 315 8558 3475 

8-Apr-15 316 8559 3476 

9-Apr-15 317 8560 3481 

10-Apr-15 318 8560 3488 

11-Apr-15 319 8561 3490 

12-Apr-15 320 8563 3491 

13-Apr-15 321 8565 3496 

14-Apr-15 322 8566 3499 

15-Apr-15 323 8569 3499 

16-Apr-15 324 8571 3503 

17-Apr-15 325 8572 3506 

18-Apr-15 326 8573 3508 

19-Apr-15 327 8573 3511 



20-Apr-15 328 8580 3516 

21-Apr-15 329 8581 3519 

22-Apr-15 330 8584 3520 

23-Apr-15 331 8585 3526 

24-Apr-15 332 8585 3526 

25-Apr-15 333 8585 3529 

26-Apr-15 334 8586 3533 

27-Apr-15 335 8587 3534 

29-Apr-15 337 8590 3535 

30-Apr-15 338 8591 3535 

2-May-15 340 8592 3536 

3-May-15 341 8595 3537 

4-May-15 342 8597 3538 

5-May-15 343 8597 3538 

6-May-15 344 8597 3538 

7-May-15 345 8597 3538 

8-May-15 346 8597 3538 

9-May-15 347 8597 3538 

10-May-15 348 8597 3538 

12-May-15 350 8597 3538 

13-May-15 351 8598 3538 

15-May-15 353 8601 3539 

17-May-15 355 8605 3541 

18-May-15 356 8606 3541 

19-May-15 357 8607 3541 

20-May-15 358 8608 3541 

21-May-15 359 8608 3542 

22-May-15 360 8608 3542 

23-May-15 361 8608 3542 

24-May-15 362 8608 3542 

25-May-15 363 8608 3543 

26-May-15 364 8611 3545 

27-May-15 365 8614 3545 

28-May-15 366 8616 3545 

29-May-15 367 8617 3545 

30-May-15 368 8618 3545 

31-May-15 369 8619 3546 

1-Jun-15 370 8620 3546 

2-Jun-15 371 8623 3546 



3-Jun-15 372 8624 3546 

4-Jun-15 373 8626 3546 

5-Jun-15 374 8628 3547 

6-Jun-15 375 8630 3547 

8-Jun-15 377 8636 3549 

11-Jun-15 380 8647 3551 

1-Jul-15 400 8671 3569 

3-Jul-15 402 8672 3572 

4-Jul-15 403 8673 3574 

5-Jul-15 404 8674 3574 

6-Jul-15 405 8674 3574 

7-Jul-15 406 8675 3575 

9-Jul-15 408 8679 3575 

10-Jul-15 409 8686 3578 

11-Jul-15 410 8687 3580 

12-Jul-15 411 8688 3581 

13-Jul-15 412 8688 3582 

15-Jul-15 414 8690 3582 

16-Jul-15 415 8690 3582 

17-Jul-15 416 8691 3582 

18-Jul-15 417 8692 3583 

19-Jul-15 418 8692 3583 

20-Jul-15 419 8694 3583 

21-Jul-15 420 8694 3583 

23-Jul-15 422 8694 3583 

24-Jul-15 423 8695 3584 

25-Jul-15 424 8695 3585 

27-Jul-15 426 8695 3585 

29-Jul-15 428 8695 3585 

31-Jul-15 430 8694 3585 

1-Aug-15 431 8695 3585 

2-Aug-15 432 8695 3585 

3-Aug-15 433 8695 3585 

4-Aug-15 434 8696 3585 

5-Aug-15 435 8696 3585 

7-Aug-15 437 8697 3585 

9-Aug-15 439 8697 3585 

11-Aug-15 441 8697 3585 

12-Aug-15 442 8697 3586 



13-Aug-15 443 8697 3586 

14-Aug-15 444 8697 3586 

15-Aug-15 445 8697 3586 

16-Aug-15 446 8697 3586 

17-Aug-15 447 8697 3586 

18-Aug-15 448 8697 3586 

19-Aug-15 449 8697 3586 

20-Aug-15 450 8697 3586 

23-Aug-15 453 8697 3586 

24-Aug-15 454 8697 3586 

25-Aug-15 455 8697 3586 

26-Aug-15 456 8697 3586 

27-Aug-15 457 8697 3586 

31-Aug-15 461 8698 3587 

2-Sep-15 463 8698 3587 

3-Sep-15 464 8698 3587 

7-Sep-15 468 8702 3587 

12-Sep-15 473 8703 3587 

13-Sep-15 474 8704 3587 

16-Sep-15 477 8704 3589 

17-Sep-15 478 8704 3589 

19-Sep-15 480 8704 3589 

20-Sep-15 481 8704 3589 

21-Sep-15 482 8704 3589 

25-Sep-15 486 8704 3589 

26-Sep-15 487 8704 3589 

29-Sep-15 490 8704 3589 

4-Oct-15 495 8704 3589 

5-Oct-15 496 8704 3589 

6-Oct-15 497 8704 3589 

13-Oct-15 504 8704 3589 
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