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Abstract

Effective field theories(EFTs) are powerful tools to study nuclear systems that display
separation of scales. In this dissertation, we present halo EFT results for the (S-delayed
proton emission from '!Be, and pionless EFT results for three-nucleon systems.

Halo nuclei are simply described by a tightly bound core and loosely bound valence
nucleons. Using the halo EFT, we calculate the rate of the rare decay 'Be, which is a
well-known halo nucleus, into ®Be + p + ¢~ + .. We assume a shallow 1/2% resonance in
the "Be—p system with an energy consistent with a recent experiment by Ayyad et al. and
obtain a branching ratio and a resonance width of this decay. Our calculation shows that
the experimental branching ratio and resonance parameters of Ayyad et al. are consistent
with each other. Thus, no exotic mechanism (such as beyond the standard model physics)
is needed to explain the experimental decay rate.

Electric dipole moments (EDMs) of nucleons receive negligible contributions from the
CKM mechanism and are thus, extremely sensitive probes of CP-violation beyond the
Standard Model. Using the pionless EFT, we calculate the EDMs of three-nucleon systems at
leading order. Neglecting the Coulomb interaction, we consider the triton and *He, and also
investigate them in the Wigner-SU(4) symmetric limit. We also calculate the electric dipole
form factor and find numerically that the momentum dependence of the electric dipole form
factor in the Wigner limit is, up to an overall constant (and numerical accuracy), the same
as the momentum dependence of the charge form factor. At last, under the same framework,
charge form factors with Coulomb interactions are considered both perturbatively and non-
perturbatively to NLO. The third Zemach moment of *He is evaluated and compared to

experimental results.
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Chapter 1

Introduction

Our world displays interesting physics emerges at all different scales. On the other hand,
the richness of physical phenomena enhances the complexity of discovering principles of
nature. To be more specific, it is a tedious and almost impossible task if one wants to
calculate observables of low-energy nuclear systems starting with Quantum Chromodynamics
(QCD). Effective field theory (EFT) frameworks are widely used in modern theoretical
nuclear physics studies. EFTs are quantum field theories apply to specific momenta scales
with carefully selected degrees of freedoms, and can make calculations concise and with
controllable error. In general, this dissertation is an application of short-range EFTs to
low-energy nuclear systems.

In this work, we investigate two different but related systems, one neutron halo nuclei
and three-nucleon bound states.

Halo nuclei are a set of exotic nuclei with a tightly bound core and loosely bound valence
nucleons. Thus, halo nuclei can be considered as effective few-body systems. ''Be is a one
neutron halo consists of a 1Be core and a valence neutron. A neutron can decay into a
proton and emits an electron and neutrino through g-decay. The weak decay of the valence
neutron of 'Be is studied within the halo EFT framework for in this thesis. The neutron
lifetime puzzle has bothered people for decades [159]. 'Be is a perfect natural laboratory
to verify possible theories. The success of halo EFT eliminates the necessity of an unknown

dark decay mode proposed by Fornal and Grinstein [48] to explain this puzzle.



In the Standard Model (SM), the breaking of fundamental discrete symmetries of charge
conjugation C', charge conjugation and parity C'P is a necessary condition for the dynamical
generation of a matter-antimatter asymmetry in the Universe [129]. All observed C'P
violation (CPV) in the kaon and B meson systems can be explained by the Cabibbo-
Kobayashi-Maskawa (CKM) mechanism. CPV in the SM fails to generate the observed
matter-antimatter asymmetry of the Universe by several orders of magnitude [52, 54, 53, 75].
Electric dipole moments (EDMs) of leptons, nucleons, atomic and molecular systems receive
negligible contributions from the CKM mechanism. The existence of non-zero EDM from
light nuclei are thus, extremely sensitive probes of CPV beyond the SM. 3H and *He are
typical three-nucleon systems. Here, using the pionless EFT framework on three-nucleon
systems, theoretical scattering amplitudes can be directly related to corresponding non-zero
EDM measurements. In addition, we can also describe *He’s properties including Coulomb
interactions within the pionless EFT framework.

This thesis is organized as follows: Firstly, in Chapter 2, we explain the ideas of effective
field theories. The pionless EFT and halo EFT, which are essential for this dissertation,
are introduced specifically. Renormalization and the dimer formalism of both EFTs are
discussed as well as the phenomenology of halo nuclei. In Chapter 3, halo EFT is applied to
"Be to study the beta-delayed proton emission from 'Be. We report the branching ratio of
the decay into the continuum with a resonance in the final state 'B. Recent experiment [9]
confirmed the work. In Chapter 4, the three-nucleon systems, *H and 3He, are investigated
at leading order in pionless effective field theory. We calculate the electric dipole moments
together with electric dipole form factors without Coulomb interactions. In Chapter 5,
we study the three-body system of *He with the pionless EFT including the Coulomb
interactions between protons. The non-perturbative vertex function and charge form factors
with Coulomb interactions are studied both analytically and numerically. In addition, the
third Zemach moment of 3He is calculated. In the Appendices, we include more details about
the special functions, hadronic currents of halo beta decay, and one and two body electric

dipole form factor diagrams.



Chapter 2

Effective Field Theory

Low energy effective field theories (EFT) are applied to few-body nuclear systems in this
dissertation. It is essential to introduce EFT first before we present the progress we made.
The majority of this section providing background knowledge about EFT. First, we explain
the concept of effective theory and effective field theory. Then we illustrate the benefits and
necessity of why we need EFTs in theoretical nuclear physics. We then discuss the basic
ideas about constructing an EFT with the example of the gravitational potential of a particle
moving close to Earth’s surface. We then review the low-energy nucleon-nucleon scattering
covered in basic quantum mechanics as well as the effective range expansion. Finally, we
describe the pionless effective field theory, which is considered as the cornerstone of this

dissertation, in detail.

2.1 Effective Field Theories in a Nutshell

2.1.1 What is an Effective Field Theory?

In science, almost all of the currently known theories are effective theories. An effective
theory should always be “effective” within its range of application. We will consider theory
to be effective if it satisfies two requirements. First, it should have the ability to explain
existing experiments and predict results within specific errors. Second, it should be relatively

easy to use and straightforward. The first requirement is obvious. The second requirement



guarantees that even in a future, where we have an “ultimate” theory, people will still prefer
to use effective theories in the range of application. A straightforward example is that
people’s photos on ID cards do not have extremely high resolutions, but already enough to
prove identity, even though we can provide photos with much higher resolution nowadays.

In physics, in order to probe short-distance phenomena, we need large momenta, which
is due to the Compton wavelength. One can also try to measure something very precisely
by increasing energy levels. For example, the resolution of an optical microscope is limited
by the natural light wavelength, which has an energy level of a few electron volts, which is
usually good enough for medical and biology studies. To get molecule-to-atom-level details,
we need to use electron microscopes, which have an energy level up to 40 keV, which is the
energy scale usually needed typically in material physics. In particle physics, we accelerate
protons from GeV to TeV to study the structure and properties of elementary particles.

On the other hand, at a low energy scale, we could have predictive and concise theories
without considering all the details about short-distance physics. One example is Newtonian
mechanics, which works well in daily life without considering any relativistic or quantum
effects. Now we say that an effective field theory (EFT) is a quantum field theory that
includes the appropriate degrees of freedom to describe physical phenomena occurring at a
chosen length scale or energy scale while ignoring substructure and degrees of freedom at
shorter distances. All currently know quantum field theories are EFTs [80].

Before we dive into more details, we give additional references materials for references.
General introductions of effective field theories by Polchinski [112], Howard Georgi [55], and
David Kaplan [80] are classic and heuristic. Matthew Schwartz’s textbook on quantum field
theories is in the perspective of EFTs [135]. Weinberg also provides rich information about
EFTs in his textbook [158]. For low-energy EFTs and few-body applications, Hammer,
Konig, and Platter provide valuable reviews [63, 109].

2.1.2 Why EFT in Nuclear Physics?

Studying nuclei with a phenomenological nucleon-nucleon potential has been very successful,
which I will refer to as the traditional approach in nuclear physics. By firstly constructing an

NN-potential and use it to fit the NN-scattering phase shift data, one can tune the necessary

4



parameters and use the potential to predict and explain nuclear observables. Weinberg first
suggested that effective field theories can describe nuclei and nuclear matter equally or even
better [156, 157]. He stated that the chiral effective Lagrangian contains two parts. First,
the nucleon-pion couplings represent long-distance nuclear interactions. While short-range
physics is included through contact interactions. In this work, we will not discuss details
of chiral EFTs. What we learned from the example above is that just like using a nuclear
potential, EFT coupling constants can be fit to reproduce experimental data and then to
predict and explain future experiments.

Since both ways are solid, why do we have to use EFTs? There are several benefits of
using EFT in nuclear physics. First of all, using an EFT gives us a more natural framework.
The effective Lagrangian and relative Feynman diagrams depict the long and short-range
physics clearer than a potential can do. Second, in an EFT, it is easy to identify the error
and estimate the level of accuracy. Last, it is more straightforward and convenient to consider
relativistic effects, dynamical processes in an EFT framework than a potential model. So far,
numerous progress has been made on effective field theories, which are considered modern

approaches in nuclear physics.

2.1.3 How to Construct an EFT?

To describe the physics at some momentum scale m, we do not need to know the detailed
dynamics of what is going on at momentum scales A > m, which is considered a key principle
of EFT.

The most crucial requirement to construct an EFT is the identification of at least two
separated scales. The ratio of these two scales is used to construct a small expansion
parameter. In the most simple case, we need one low scale, Q, and a high scale, My;.
Q associated with the typical momentum of the physical system that we want to describe.
Myp,;, which is also called the breakdown scales, associated with the physics that our EFT
does not need to resolve.

The basic steps to describe a physical system using EFT are as follows.

e Step 1: Determine relevant degrees of freedom, i.e., what fields will be used.



e Step 2: Consider the symmetries of the system, i.e., determine the structures of

interactions.

e Step 3: Consider the expansion parameters and find a leading-order description, i.e.,

a power counting.

There are, in general, two directions, top-down and bottom-up, of constructing effective
field theories. We prefer the top-down approach when high energy theory is understood, but
we find it is easier to construct a more straightforward theory at low energy. For example,
we do not need to include quarks to calculate hydrogen energy levels. We want to make
the bottom-up approach when the underlying theory is unknown or non-perturbative. The
Standard Model is such an example of a bottom-up approach.

To illustrate the ideas above to everyone, now we look at an elementary problem. Suppose
we have a particle of mass m moving close to Earth’s surface. Now let us construct an effective

theory for it:

e Step 1: Determine the degrees of freedom. Degrees of freedom are coordinates of

tangent space (z,y, z), whose origin is on the ground.

e Step 2: Symmetries of the system. The interaction, the gravitational potential V|
is invariant under translations along x and y and rotations around z. As for space
inversion, V' is even for z,y, odd for z. Thus we determine V = V/(z) contains all
powers of z. Be aware that the breakdown scale is the Earth’s radius, R, which is

much larger than |z|.

e Step 3: Power counting. Since V(z) = > °  ¢,2" all terms should be equal in size
at the breakdown scale. We conclude ¢;R' ~ ¢,R". Since ¢, ~ ¢;R"!, we say
cn2™ ~ c12(z/R)"'. Thus we have a power counting and V(z) = > 07 jc12(z/R)" 1.
If it is really close to the surface so that z is much smaller than R, we could ignore

most of the terms in V'(z).

Matching: The potential we’ve got have roughly no difference from what we learn in

__ GMm
R+z

middle school, AV = —mgz. Consider a relatively more precise theory, V(z) =



whose Taylor expansion is just the EFT we have above. We just need to match our EFT
to this theory to get constants to all orders. And we got ¢, = n!lGMm(—1/R)""! ¢y =
—GMm/R.

2.2 A Brief Review of Nucleon-Nucleon Scattering

Low energy nucleon-nucleon (NN) scattering typically refers to neutron-neutron(n-n),
neutron-proton(n-p) and proton-proton(p-p) scattering. Here we will neglect electromagnetic
interactions, spin structures, and the mass difference between proton and neutron. Consider

a short-range nucleon-nucleon potential, Vyy, the Hamiltonian of such a system is

2 2

pi D
H = 1% 2.2.1
IMy + My VNN (2.2.1)

where particle 1 and 2 are labeled. It is more intuitive to work in the center-of-mass

frame. The Hamiltonian becomes

P2 k?
+

H =
2M,;  2Mp

where total mass M, = 2My, reduced mass Mg = My /2, P = p1+p2, and k = (p1—p2)/2.
Now the two-body problem is reduced to an effective one-body problem. Through out this
dissertation, we will use a very similar principle to solve nuclear systems with a so-called
dimer formalism. We notice that the NN potential depends only on the center-of-mass
variables. From now on, our discussion is limited only in the center-of-mass frame. In
quantum mechanics, we describe the scattering process with an incoming plane wave and

an outgoing scattered wave. In an elastic scattering process, we describe the incoming and

outgoing relative momenta as k, with energy £ = % Then the asymptotic form of the
wave function is
B o eikr
) 0 (0.0 ) | 223)

where 6 = arccos (ki ko) is the scattering angle. The scattering amplitude f(k, 0, ¢) carries

out all the physical information, and directly related to scattering differential cross section,



which is a physical observable, by

do

o 0.6) = 11(k,0,0)F (224)

Notice that we have ignored the spin-structures, the scattering amplitude f(k,6,¢) —

f(k,0) is independent of ¢. We can expand the wave function in spherical coordinates,

= i a ulq(f) Py(cosb) , (2.2.5)
1=0

where the radial function u;(r) satisfies the radial Schrodinger equation,

dr? 72

2 !
du (W ) oMV — k2> w(r) =0 . (2.2.6)

The scattering amplitude f can be decoupled into partial waves with a central potential,

i 21+ 1) fi(k)Py(cos ). (2.2.7)

=0

With the help of asymptotic form of plane wave expansion of the incoming wave,

-1 I+1_,—ikr ikr
ek Z (20 + 1) Bcosg) =D e (2.2.8)

7—+00 2ikr ’
we can give asymptotic wave function with distinct incoming and outgoing spherical waves,

(_ 1)l+16—ikr + Sl (k)eikr
2ikr ’

w () — (2n) 3/22 (20 + 1) P(cos )

r—00
=0

(2.2.9)

where the partial wave S-matrix is related to the phase shifts d,(k) and scattering amplitude

f@(k) bY?
Si(k) = 1+ 2ikfy(k) = ¥ ®) (2.2.10)

It is very common to write the partial wave scattering amplitude f, as,

1

filk) = oo 5i(F) — ik (2.2.11)
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The term, k2“*! cot 6;(k), has a power series expansion in k2. For £ = 0, the expansion is
given,

1 1
k cot (50(]{?) = —a— + §T0k2 + e (2212)
0

where qg is the S-wave scattering length, and ry is the S-wave effective range. Eq. (2.2.12)
is the so-called effective range expansion(ERE). One can find a more general expression
of higher partial waves [80]. In this thesis, we will only focus on S-wave scattering. The
scattering length is one of the most fundamental parameters in low-energy scattering. For
example, in the 2-body sector, the universal properties depend only on the scattering length
[24]. Tt represents the radial intercept of the slope of the radial wave function at the outer
asymptotic region. In a more classic point of view, the scattering length can be viewed as
the actual size of one particle in a scattering process. In fact, it is related to the mean
square separation by (r?) = ﬁ Scattering length always plays a crucial role in our effective
theories.

The effective range expansion for hard-sphere scattering with radius R is ay = R, 1o =
2R /3 [130]. More generally, while g ~ R, if ag ~ R, it is called “natural” scattering length. If
lag| > R, it is called “unnatural” scattering length. The latter one contains more interesting
physics. Furthermore, it is relevant for a realistic NN scattering process. These two terms are
mentioned here in advance since we will meet them again later. There are many discussions
in graduate quantum mechanics textbooks about the natural and unnatural scattering length
[130]. In short, with a positive scattering length, a > 0, we will have a shallow bound state.
In S-wave, the binding energy is related to scattering length by B = ﬁ If a < 0, we will
have a virtual bound state.

Here we should note that the effective range expansion initially shows us that, at
low energies, the structure of a short-range potential can not be revealed. From the
perspective of effective field theory, the low-energy theory is determined by a few low-energy
constants(LECs) containing limited high-energy features that affect low-energy physics. Such
an effective field theory which reproduces the ERE and consistently extend it to include the
coupling to external probes is called pionless effective field theory, which we will dive deeper

into in the next section.



2.3 Pionless Effective Field Theory

At low momentum below the pion mass, M,, one can use the so-called pionless effective
field theory (#EFT) [84, 83]. It is a systematic generalization of the effective range
expansion(ERE) with nonperturbative nature in a quantum field theoretical framework.
Pionless EFT consists only of non-relativistic nucleons and contact interactions. Let
us first look at a system consist of identical bosonic, spin-less, non-relativistic particles
with short-range contact interactions. The breakdown scale is Mp,; and the nucleon mass is

denoted as My. The Lagrangian density of such a system with contact interactions is [65]

&

csz@+Y)¢——ww@ Gmw@f+§yw@%~~. (2.3.1)

By doing naive dimension analysis, we find the dimensions of the coupling constants

1 1 1

Cy ~ Co~m ———— Dy~ —
O MyMy P MM T My ML

(2.3.2)

Here, we will keep the first term as a leading order theory, including exclusively two-body

force. Now we are left with a leading order contact interaction in our Lagrangian density,

L=¢ (i@t ) ¢ — — (¢T¢) (2.3.3)

which can be used to describe the two-body scattering problem. Notice that the operators are
Galilean invariant, which implies that the Lagrangian density form remains invariant under
boosting. Eq. (2.3.3) is already very close to the form of Lagrangian density of pionless EFT.
We will take this equation and discuss it further.

The EFT expansion needs a class of diagrams to sum over, which gives the scattering
amplitude iA to the desired order in a p/A expansion, where p is the relative momentum of
each nucleon in the center of the mass frame. This process is described schematically in Fig.

2.1. The scattering amplitude is related to the S-matrix by

10



Mnyp
=1 . 2.3.4
S +1 o A (2.3.4)

Recall what we just reviewed previously, in quantum mechanics, the S-wave amplitude

A is expressed in terms of phase shift dy by,

B A7 1
My kcotdy — ik

A (2.3.5)

As we have discussed, at low energies, we can perform the so-called effective range
expansion. At least, ERE results should be reproduced with our effective field theory. Then
in our EFT framework, it will be more intuitive also to include electromagnetic and weak
interactions.

Let us firstly try to do a Taylor expansion of A in Eq. (2.3.5) in powers of p,

? —47ma

A e

[1 —iap + (% —a®)p* + O(p* /A% | (2.3.6)

where a and ry are known as the scattering length and effective range. A is the hard cutoff,
which is of the order or larger than the breakdown scale. This expansion is valid conditionally.
Since effective ranges are generally at the order of inverse cutoff, our only problem is the
scattering length, which can take on any value. In the next section, we will see the analysis
with so-called “natural” and “unnatural” scattering lengths , and a new necessary strategy

of renormalization for pionless EFT.

2.3.1 Renormalizing Pionless EFT

Let us look at Fig. 2.1 and consider the summation of all diagrams on the right-hand side.
To computer loops, one then encounters renormalization. That is what we are going to
cover in this section. One needs to realize that this equation of diagrams is the graphical
Dyson equation. In our case, due to the fact that each particle can consider the contact
interaction as an external short-range potential, the Dyson equation and the Lippmann-

Schwinger equation are the same.

11



The sum of diagrams can be expressed as a geometric series and we obtain,

1
A = : (2.3.7)
— & +Z(E,A)
where Z(E, A) is the one loop integral,
I(E, ) /A g = mA o = (2.3.8)
= =——+ —V-mE —ic. 3.
’ 2P E -2 4ie o2 | Ax

Here we’ve regulated the loop with a hard cutoff A. It is convenient to rearrange the equation

in the following form

1 4 1
A(k) = MyA - Myk ’
o e i My ()

where
1 1 MyA
The O is related to real physical observable, scattering length, by
— dma
= —. 2.3.10
o= I (23.10)
Put above Cy back to the amplitude, we just get the quantum mechanics result,
A 1
A(k) = . 2.3.11

Thus, we adjust the bare coupling constant to eliminate the cutoff dependence [158]. This
is because we have high momentum loop contribution that incorrectly goes into our theory.
This shows how we can renormalize the theory.

However, this is not the full story. For example, all the analysis above is based on the
fact that the expansion in Eq. (2.3.6) is valid and able to converges up to momenta p ~ A,
which requires 1/|a| ~ A is the so-called “natural” scattering length. Let us firstly consider
natural scattering length only, and we need to determine a useful subtraction scheme. The

minimal subtraction (MS) is suitable for this case. The loop integral is now evaluated by

12



12 [ s (e )

(- 3—DY\ (w/2*"
— D-3)/2
= — MN(—MNE — ZE)( )/ I ( 5 ) (47T)(D_1)/2 N (2312)

where g is the renormalization scale. It clear that there is no pole as we take the D — 4

limit. We can evaluate the equation above with no problem. The result under MS gives

VS = (M) V-ME —ie = —i (%) p. (2.3.13)

Am 4

In this way, we can reproduce the relation in Eq. (2.3.10). So we have successfully written
down an effective field theory that can reproduce ERE results.

The analysis above is useful but not realistic. In the real world, low-energy nucleon-
nucleon scattering processes have unnaturally large scattering lengths. The spin-singlet
(1Sp) channel of NN-scattering has a scattering length of ag = —23.7fm ~ 1/(8MeV), which
is way much larger than the inverse pion mass. In such case, the expansion in Eq. (2.3.6)
fails. The related scattering lengths are considered as “unnatural”. This problem was first
addressed and solved by Kaplan, Savage and Wise [83, 84] with the so-called power divergence
subtraction(PDS) scheme. For a unnatural scattering length, instead of the previously shown

expansion, one needs to expand in powers of p/A while retaining ap to all orders,

A L ro/2 (ro/2)* 4 (ri/2A%)
M (1/a + ip) +(1/a+z'p)p +(1/a+ip)2 Wat ) +...0 . (2314)

A=

In order to reproduce the scattering results emerge from the expansion above, PDS
scheme subtracts also poles in lower dimensions, in addition to the 1/(D — 4) poles in MS.
The loop integral in Eq. (2.3.12) has a pole in D = 3, which can be removed by including
an additional counterterm,

6T = (2.3.15)

_47T(D —3)
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Adding MS results together, we get the

M
IPDS _ TMS | s7 — _ (4_7]:) (1 +ip) . (2.3.16)

More analysis and details can be found in [83, 84, 80]. Now with PDS scheme, our
scattering amplitude is now,
—C

_ 2.3.17
A [1+ M (u+ip)] (2317

and coupling constant is p dependent,

Colpt) = % (ﬁ) | (2.3.18)

One can check that this meets the needs for the renormalization group equation. Now
we are able to use such an effective field theory without worrying about legitimacy. The
benefit of our previous efforts is that we can include electromagnetic and weak interaction

systematically, as we will see later in this dissertation.

2.3.2 Dimer Field Formalism

In classical mechanics, a three-body problem could have only some special solutions. There
is no general closed-form solution for such problems. A quantum three-body problem is
always hard to resolve, too. However, for a bound state, we can simplify this system with
the help of auxiliary fields representing few-body bound states.

Kaplan, Savage, and Wise [84] introduced the so-called dimer field to represent the two-
body bound state. Bedaque, Hammer and van Kolck [17] were the first to consider the
three-body system using this formalism. We will use auxiliary fields like the dimer field in
all projects. It is important to take a look at it.

Under the view of dimer fields, the Dyson equation of a bounded two-body state is
graphically express as in Fig. 2.2. The so called dressed propagator is equal to the sum of

all possible loop diagrams.
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Consider the bosonic system with three-body contact force,
0 92 2 g3 3
ot 2 — Z ()" = Z (t 2.3.1
L ¢<z +mV)¢ 4(¢¢) 36(¢¢) , (2.3.19)

where 1 is the non-relativistic bosonic field. By using the dimeron formalism, we can rewrite

the Lagrangian density as,

0 1 g2 g2 2 > 93
— o i L 2 2t g — 22 dTa)? 1 _ IS gt dapT 239
L w(28t+2mV)¢+4dd 4(dw +Yd 36ddw¢, (2.3.20)
where d represents the dimeron field. If we consider the equation of motion relative to dr,

we will have

d—y*— Zayty =0,
992

2
=d= v

= 2.3.21
T i (2321

Now we get the relations between dimer fields and mono fields in the case of boson. Put this

back to the Lagrangian to eliminate d we have

_ot (2L ) _e (@)
L=1 (Zaﬁzva 0 AT (2.3.22)

If we expand the interacting term, we will restore our original Lagrangian. This shows the
equivalence of dimer field formalism and traditional quantum field theory.

With such a dimer field, a two-body problem was translated into a quasi-single-body
problem. Furthermore, we could still use our known two-body observable, g, to predict
three-body behavior. We need to know one more three-body observable, binding energy, for
example, to get all the coefficients needs to know at this level. Then we could reduce the

three-body problem to a two-body problem.
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2.4 Halo Nuclei and Halo Effective Field Theory

The physics of halo nuclei is very exciting and suitable for short-range EFT. One can apply
so-called halo EFT, which is correlated to pionless EFT, to such systems. In this section,
we will first introduce the phenomenology of halo nuclei. Then we will introduce halo-eft

briefly.

2.4.1 Halo Nuclei

Halo nuclei are simply described by a tightly bound core and loosely bound valence nucleons
(69, 79, 119, 146]. The valence nucleons are considered as “halos”. The term “halo” was
first applied to such nuclei by Hansen and Jonson in 1987 [68]. Halo nuclei are usually found
at the neutron-proton drip line since they represent the strong force’s range limit. The first
halo nucleus, "Li, was discovered at Lawrence Berkeley Laboratory’s Bevalac in 1985 [147].
The halo is consists of no more than two valence nucleons, mostly neutron. Thus we will
refer a specific halo nucleus to one (or two)-neutron(or proton) halo nucleus. This “halo”
gives halo nuclei several unique properties compared to other isotopes.

Halo nuclei have much larger radii than that predicted by the liquid drop model. This
gives most of the halo nuclei a very good separation of scales, which makes us will not be
surprised that the shell model and mean-field approaches break down and indicate us to
apply effective field theory.

Halo nuclei have very short lifetimes. Due to the small separation energy, the valence
nucleon can easily get out of the potential barrier because of quantum effects. Most of the
halo nucleus will only expect a half time of a few milliseconds. For example, 'Li has a
half-life of 8.75 ms [100]. Because of the short lifetimes, halo nuclei are difficult to study in
the laboratory.

In Fig. 2.3, we show some currently known halo nuclei. As we discussed above, halo nuclei
are mostly close to the drip line. There are more neutron halos than proton halos, which is
due to the Coulomb barrier. This dissertation will focus on only one-neutron halo nucleus
and the halo EFT relative to it. 'Be is the leading character among all halo nuclei in this

work. In Fig. 2.4 we illustrate the structure of ''Be, which has a valence neutron and a core
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Figure 2.1: Diagrammatic representation of a two-body scattering amplitude, which can
be expressed as a sum of diagrams including the Cj vertex contribution.

Figure 2.2: Dyson equation with auxiliary dimer fields representing two-body bound states.
The thick double line is the dressed dimer propagator while the thin double line represents
the bare dimer propagator. Single solid lines are single nucleon propagators.

2Na |#Na | *?Na | *Na | **Na |?*Na |**Na [?’Na | **Na | *’Na | *Na | *Na | **Na

Ne | *Ne | *Ne | 2Ne |2'Ne | #Ne | 2’Ne |2Ne |*Ne | **Ne | ’Ne | “"Ne| 2Ne | “Ne| *'Ne

F 18 19p 20p ap 2p 23p up 3P 2%p 2p g

130 |10 |10 |0 |0 |0 | vo |20 |20 |220 | B0 | 20

12N 13N uN 3N 16N N 18N 19y 20N 2N 2N BN

s¢ |wc |uc [g g | ¢ 160 e | e 200 2
L wg |up |2 (1B |[upg|ispg g
'Be ‘Be | 'Be 'Be

SLi | ’Li | *Li | °Li

‘He ‘He

Figure 2.3: Confirmed and suggested halo nuclei. Neutron halo nuclei are shown by green
square and candidates of neutron halo are shown by light green. Orange squares show the
proton halos. This figure is taken from Ref. [148].
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consists of four protons and six neutrons. It has two shallow bound states. J” = 1/2" is the
s-wave ground state, which has one-neutron separation energy of 500 keV. The first excited
state, JI' = 1/27 is p-wave with a one-neutron separation energy of 180 keV [5]. Notice
that the first excitation of the core of 1°B is 3.4 MeV [4], which displays a large separation
of scales implies a short-range EFT. Apply the short-range EFT to halo systems was firstly
carried out on the one-neutron halo, °He [19, 13]. Now we are able to take a look at the halo

EFT approach in the next section.

2.4.2 Lagrangian of Halo EFT

We apply the Halo EFT to the 'Be system. We will first introduce the Lagrangian
density in the one-neutron halo in S-wave and P-wave bound states. Then we carry out
the renormalization in the case of both states. This work will focus only on one-neutron halo
nucleus, a two-body system consisting of a core field and valence neutron field. We will take
advantage of the auxiliary dimer fields mentioned previously. Thus, the Lagrangian density

L of Halo EFT at leading order can be written as

L="Lo+ Lo + Lo, . (2.4.1)

The free Lagrangian of the core and neutron, Ly, is given by

2 2
Lo=cl <i8t+ v >c+nT (z’@t—l— v )n (2.4.2)
2me, 2m,,

where ¢ and n are core and neutron field, respectively. m. and m,, are the masses of core and
neutron. The part of the Lagrangian that describes the S-wave core and neutron interaction,

L., reads
2

2M,.

L, = ai {770 (i@t + ) + AO} s — qo [CTTLTO'S + H.c.] ) (2.4.3)

where o, is the spinor field and M, is the total mass of neutron and core. We describe

P-wave interactions with £,  given by
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i : v < b s
Lp, =ml|m|i0+ M. + AT — g1 [(c i na> s C(li)(%a) + H.C.} , (2.4.4)
where 7, is the p-wave field dimer field. ? = mp [mc*% = mn_le] is the Galilean-

invariant derivative. The coefficient C”°

in(ta 18 @ Clebsch-Gordan coefficient coupling
K3 ja

the neutron spin and the core-neutron relative angular momentum to the total angular

momentum of the dimer field. 7y, n; are either plus or minus signs.

2.4.3 Renormalization of the Core-Neutron System

The renormalization of the low-energy constants in the S- and P-wave the sector has been
discussed in detail in Ref. [67]. Here we will briefly summarize the relevant results to
define the notation we will use throughout this work. Let us firstly look at the s-wave
renormalization.

The spinor field o is used to express the 1/2% state. The corresponding bare dimer

propagator is given by

1

Balb) = R o — 92 @M + i

(2.4.5)

Due to the non-perturbative nature of the interaction, we need to re-sum the self-energy

diagrams to all orders. We therefore obtain the dressed propagator

Dy(p) = By(p) + B+ (p)%s(p) Do (p)
1

= . , 2.4.6
Ro+ ol — P2 M) T 6 — 5 (7) (240)
where p = (po, p) and X(p) is the LO irreducible core-neutron self-energy given by
ng(2) . P’
Yo(p) =— 5 | 2mp | po — M. +p (2.4.7)
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Figure 2.4: A schematic diagram of 'Be, which is known as a one-neutron halo nucleus.
Red and blue balls represent proton and neutron, respectively.

Figure 2.5: Diagrammatatic form of the Dyson equation. The thick black line denotes
the dressed S-wave halo propagator, the grey line denotes the bare halo propagator and the
thin solid and dashed line denote the neutron and core propagator, resepctively.
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It is evaluated in the power divergence subtraction (PDS) scheme [82] where p is the
corresponding renormalization scale.

The full two-body scattering amplitude in the S-wave channel reads
— ity = (—igo)(iDy(E,0))(—igy) = —igiDs(E,0) . (2.4.8)

This yields the two-body t-matrix

2T 2m 1 [/ 27 !

o .

to:—|:( 2A0+,u>+—( 5 2)p2+zp} (2.4.9)
mg mrg; 2 \m%ngp

Matching the expression above to the effective range expansion allows us to relate the low-

energy constants to the effective range parameters by

= A 2.4.10

CLO ngg + K, ( )
21mno

ro = — m%gg . (2.4.11)

In the vicinity of the pole, the dressed propagator can be written as

27 1 1
Dy (p) = +
®) m%,98 1 — rovo po — P?/(2M,.e) + By

R, (p) , (2.4.12)

where By is the binding energy of the S-wave state and R, (p) denotes the regular part. The
Z-tactor required to calculate physical observables is given by the residue of the full dimer

propagator and can be read off Eq. (2.4.12)

271")/0 1
Ly = (1 —70v)

m%gs

2T

mrIo

with 7 being the binding momentum of the S-wave state.
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Now we look at the p-wave renormalization. The dressed P-wave dimer propagator is

given by
D,.(p) = ! (2.4.14)
T A il — P/ @My +ie = T(p) | h
where the p-wave self-energy 3. (p) in the PDS scheme reads
2 2
MRy, Yy . p 3
Y. (p) = — p ~ 2 - ° 2.4.15
() = =5 2m= (po 2Mm> Z\/ e (po 2Mm) ol (2:4.15)
Inserting this self-energy in Eq. (2.4.14) yields
67T 6T 3my 3 ]
D, = A )+ ( + - )p2 + ng} . 2.4.16
mrg} Kng% 1) mhat 2" (2410

We match the resulting P-wave t-matrix to the scattering amplitude expressed in terms

of the effective range parameters

6 k-K
t =g’k - k'D, = —— - : (2.4.17)
mg1/a; — 5r1p? + ip3
and hence achieve the following matching conditions for the coupling constants
1
a =, (2.4.18)
€=y
MRIY
(67”71 +3 ) (2.4.19)
mygt

Since the amplitude has a pole at p = 17, with v being the binding momentum of the
P-wave state, we can relate the scattering volume a; to the P-wave effective momentum 7,
via

1

1
—+mn+=0. (2.4.20)
aq 2
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In the vicinity of the pole, the dressed propagator can be expressed as

61 1 1
D, = ——" = + R.(p) , (2.4.21)
mprgy 71 + 371 Po — IMoe + Bl

where R, (p) denotes the regular part.
The wave function renormalization constant of the P-wave state Z. can be read off from

Eq. (2.4.21)
6 1

A .
mZRQ% r1+ 3

(2.4.22)

The conclusions above will be directly applied to the following chapter, in which we will

discuss the beta delayed proton emission from 'Be.
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Figure 2.6: Diagrammatic representation of the Dyson equation for the dressed P-wave
halo propagator. The thick (thin) double line denotes the dressed (bare) P-wave halo
propagator.
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Chapter 3

3-delayed proton emission from 11Be

This chapter is mainly based on the manuscript [46] with more details included. In this
chapter, we calculate the rate of the rare decay ' Be into 1°Be+p-+e~ 41, using Halo effective
field theory, thereby describing the process of beta-delayed proton emission. We assume
a shallow 1/27 resonance in the Be—p system with an energy consistent with a recent

experiment by Ayyad et al. and obtain b, = 4.9f§:8(exp.)f§:g(theo.) x 1079 for the branching

ratio of this decay, predicting a resonance width of I'r = (9.0%53(exp.) "33 (theo.)) keV.
Our calculation shows that the experimental branching ratio and resonance parameters of
Ayyad et al. are consistent with each other. Moreover, we analyze the general impact of
a resonance on the branching ratio and demonstrate that a wide range of combinations of
resonance energies and widths can reproduce branching ratios of the correct order. Thus,

no exotic mechanism (such as beyond the standard model physics) is needed to explain the

experimental decay rate.

3.1 Introduction

The emergence of the halo degrees of freedom is a fascinating aspect of nuclei away from
the valley of stability. It can be considered a consequence of the quantum tunneling of halo
neutrons out of the core potential to the classically forbidden region. The halo nucleons in
the core potential spend most of their time in the classically forbidden region outside of the

range of the core potential. This is analog to the tunnel effect. But since the halo nucleons
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are bound to the core, they always have to come back into the core potential. This separation
of scales can be used to treat these systems using an effective field theory (EFT) approach
called Halo EFT [20, 18, 64]. Common to all EFTs is that observables are described in a
systematic low-energy expansion and that the accuracy of a calculation can be systematically
improved. Halo EFT has been applied to a number of observables, including electromagnetic
capture reactions and photodissociation processes [67, 123, 126, 166, 72, 116, 167].

Here we will consider, for the first time, the weak decay of the valence neutron of the
halo nucleus 'Be into the continuum, 'Be — *Be + p + e~ + 7, within Halo EFT.

First experimental results for this rare decay mode were presented in Refs. [23, 120].
Riisager et al. [121] measured a surprisingly large branching ratio for this decay process,
b, = 8.3(9) x 107, which could only be understood in their Woods-Saxon model analysis if
the decay proceeds through a new single-particle resonance in ''B. Their measured branching
ratio is also more than two orders of magnitude larger than the cluster model prediction by
Baye and Tursunov [11]. This led Pfiitzner and Riisager [108] to suggest that [-delayed
proton emission in '!'Be is also a possible pathway to detect a dark matter decay mode as
proposed by Fornal and Grinstein [48]. More recently, this branching ratio was remeasured
by Ayyad et al. [9] as b, = 1.3(3) x 1075, similar in size to the previous measurement.
They also presented new evidence for a low-lying resonance in ''B with resonance energy
Er = 0.196(20) MeV and width I'p = 12(5) keV. Using these parameters, the authors
calculated the decay rate in a Woods-Saxon model assuming a pure Gamow-Teller transition.
They obtained b, = 8 x 107, which has the correct order of magnitude but is only consistent
within a factor of two with their experimental result. The work by Ayyad et al. was criticized
in a recent comment by Fynbo et al. [50]. A new experiment by Riisager et al. [122] gives
an upper limit of b, < 2.2 x 107% for the branching ratio but some questions remain due
to inconsistencies between different measurements. In conclusion, the branching ratio for
(-delayed proton emission in 'Be remains an important unsolved problem.

The ground state of ''Be is a well-understood S-wave halo nucleus. From the ratio of
the one-neutron separation energy of 'Be and the excitation energy of the 1°Be core, one
can extract the expansion parameter for a description with the core and valence neutron as

effective degrees of freedom, Reore/ Rhalo = 0.4 [67]. Here Reore and Ry, are the length scales
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of the core and halo, respectively. In principle, both the °Be core and the halo neutron can
-decay. Since the half-life of the neutron (77, = 10 min) is much shorter than the half-life
of the core (T} = 10° a), it is safe to assume that for S-delayed proton emission it is always
the halo neutron that decays in the halo picture. Therefore, one would naively expect the

nucleus to emit this proton due to the repulsive Coulomb interaction:

"Be — "Be+p+e + 7. (3.1.1)

This process, called S-delayed proton emission, has well-defined experimental signatures.
However, it is also known that short-distance mechanisms such as the decay into excited
states of !B (that are beyond the halo interpretation) dominate the total 3-decay rate of
Be [118, 85].

Halo EFT offers a new perspective on -delayed proton emission from '!Be by providing
a value for the decay rate with a robust uncertainty estimate. It uses the appropriate degrees
of freedom and parametrizes the decay observables in terms of a few measurable parameters.
Thus, it is perfectly suited for the theoretical description of low-energy processes such as
p-delayed proton emission from halo nuclei. Kong and Ravndal [88] used these ideas to
successfully describe the inverse process of pp-fusion into a deuteron and leptons. In contrast
to the previous calculation in Ref. [11], we will use new experimental input parameters
and put additional emphasis on the uncertainties associated with using effective degrees of
freedom. The halo neutron can $-decay through both the Gamow-Teller and Fermi operators.
The Fermi operator can only connect states in the same isospin multiplet. If all neutrons
in 1'Be contribute to the S-decay, this implies that the final state must have T'= 3/2 for
a Fermi transition. No such states are currently known in "'B within the 3-decay window.
However, due to the halo character of ''Be we expect that only the halo neutron decays,
such that the final state has no definite isospin. Thus, we will keep our analysis general and
consider both the scenarios of Gamow-Teller and Fermi decay as well a pure Gamow-Teller
decay in the following. Specifically, we will show that based on the measured branching
ratio, a low-lying resonance is the likely reason for the large partial decay rate, confirming

the suggestion of Ref. [121]. Furthermore, in ''B, we explore the impact of the resonance
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energy and width on the decay rate and show that the recent results for the resonance
energy and width of a low-lying resonance are consistent with the experimentally measured
branching ratio.

In order to keep our presentation self-contained, we start by summarizing the concepts
of Halo EFT for S-wave halo nuclei. We discuss the calculation of decay rates with and
without resonant final state interactions and then display our results. Note that these are
EFTs for two different scenarios. Formally, we perform calculations up to corrections of
order Reore/Rpalo in both scenarios but because of the different physics assumptions these

cannot be directly compared. We conclude with a summary.

3.2 Theoretical Foundations

The Halo EFT Lagrangian £ for ''Be as well as the low-lying resonance in !B up to next-
to-leading order can be written as £ = Lo + Lg, where L is the free Lagrangian of the °Be

core, neutron and proton

2 2
,COZCT(iat+V )c—i—nT(zat—l— v )TL
2mc 2mn

\V&
+pf <z’8t + )p ,
2m

P

(3.2.1)

with ¢, n and p the core, neutron and proton fields, respectively. The masses of core, neutron
and proton are denoted by m, = 9327.548 MeV, m,, = 939.565 MeV and m,, = 938.272 MeV.

The S-wave core-neutron as well as core-proton interaction are described by L4, which reads

V2
,Cd = d};e |:77 (z@ﬂ— Wi ) ‘|‘A:| dBe

. \V& ~
d, {n (z@t + szc) i A} i (3.2.2)

—q [cTanBe + H.C.] —q [chTdB + H.c.] ,

where dp, and dg are spinor fields, with spin indices suppressed, that represent the J© = 1/2%F
ground state of 'Be and the J¥ = 1/2% low-lying resonance in 'B, respectively, while

M, = my, +m, and M,. = m, + m..
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The renormalization of the low-energy constants for 'Be has been discussed in Ref. [67].
Here, we will briefly summarize the relevant results to define our notation. Due to the
non-perturbative nature of the interaction, we need to resum the self-energy diagrams to all
orders. After matching the low-energy constants for ''Be appearing in Eq. (3.2.2) to the

effective range expansion, we obtain the full two-body T-matrix

or [1 -
To(E) = = | = — rompE — /—2mpE —ic| . (3.2.3)

mpgr [ Qo

where mp is the reduced mass, and ag, ry are the S-wave °Be—n scattering length and
effective range, respectively. The residue at the bound state pole of Eq. (3.2.3) is required
to calculate physical observables, Z = 2;—}; /(1= ro70) , with yg = (1 — /1 — 2re/ag)/ro =
V2mzS,, the binding momentum of the S-wave halo state, and S,, the one-neutron separation
energy of the halo nucleus.

In order to investigate S3-delayed proton emission from 'Be, we include the weak
interaction current allowing transitions of a neutron into a proton, electron and antineutrino
which corresponds to the hadronic one-body current. Moreover, we have to consider hadronic
two-body currents that appear in the dimer formalism once the effective range is included.

The corresponding Lagrangian is given by

Loenr = —G—\/gl‘i ((J*)1b + (J+)2b) , (3.2.4)
where 1" = u,9*(1 — +°)v, and (J:[)lb = (V) = A}) +i(V} — A2) denote the leptonic and
hadronic one-body currents, respectively. Here the hadronic one-body current is decomposed
into vector and axial-vector contributions. At leading order, the contributions to this current
are Vi = NTZUN, A¢ = gaNTZ 0}, N, where |ga| ~ 1.27 is the ratio of the axial-vector to
vector coupling constants [145]. Terms with more derivatives and/or more fields (many-
body currents) will appear at higher orders. The first and second term give the conventional
Fermi and Gamow-Teller operators, respectively. Including resonant core-proton final state

interactions, we have to take into account the two-body current arising here from the auxiliary

field formalism with no unknown constants. It is also decomposed into vector and axial-vector
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contributions and reads

—dl, dpe =0,
=4 " 8 (3.2.5)

gadiyopdse p=k=123.

There is also an unknown contribution usually denoted as L;4 that normally appears at
the same order. However, in the case with Coulomb interaction, this piece is suppressed by
(Reore/ Rhalo)l/ % compared to the two-body current in Eq. (3.2.5)." Therefore, it contributes
only at NNLO allowing us to make predictions up to NLO. Note that our power counting
including resonant final state interactions implies a suppression of ( Reore/ Rhalo)l/ ? going from

order to order instead of Reore/ Rnalo @s in the case without resonant final state interactions.

3.3 Weak Matrix Element and Decay Rate

We ignore recoil effects in the 5-decay and take both the Gamow-Teller and Fermi transitions
into account. After lepton sums, spin averaging, and partial phase space integration, we

obtain the decay rate

[ Ppe [ Ipy d’pe &py, 200\ TA(D)2(27) 46 _ .
*= | o | om0 TR (p“‘ Zp)

G2(1 + 343
_ F(47r5 94) /dp/dpeprﬁ(Eo _E—E)?Cn.) [APIE O(Ey— E— E.), (3.3.1)

where A is the reduced hadronic amplitude for Gamow-Teller and Fermi transitions whose
operator coefficients have been factored out and © is the Heaviside step function. Moreover,
p is the relative momentum of the outgoing proton and core, while E = p?/(2mp) is their
kinetic energy. Furthermore, £y = Am — S,,, where Am = 1.29 MeV is the mass difference
between neutron and proton, and E, = \/m is the energy of the electron with m, =
0.511 MeV denoting the electron mass.

!The scaling of roc ~ 1/k¢ leads to the suppression of the counterterm contribution Lq 4.
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The Sommerfeld factor of the electron is given by

27N,

C*(0) = Camm 1) - (3.3.2)

where 1. = aZZ.E. /|pe| with @ >~ 1/137 is the fine structure constant. We use Z = Z,, in
order to ensure that we reproduce the free neutron decay width in the limit of a vanishing
one-neutron separation energy of 'Be. This means that the electron is only interacting with
the outgoing proton. We assume this to be a good approximation since the °Be core is far
away from the decaying valence neutron due to the small one-neutron separation energy. If
a pure Gamow-Teller transition is considered, the factor 1 + 3g% is replaced by 3¢%. This

results in a reduction of the decay rate by 17 %.

3.4 Beta-strength Sum Rule

The so-called Fermi and Gamow-Teller sum rules (also collectively known as beta-strength
sum rule) count the number of weak charges that can decay in the initial state. We will
require that this beta-strength sum rule is fulfilled exactly at each order within our EFT
power counting. The beta-strenghts are related to the comparative half-life of a decay, the

so-called ft value given by

B

ft=—5—55—,
Br + ¢4 Bar

(3.4.1)
where B = 273 1n2/(m3G%) is the -decay constant. In this chapter, we will use the value
B = 6144.2 s [107, 70]. With Bar = 3Bg, we find

B 1
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The inverse ft value is directly related to the transition matrix element M of 'Be into

0Be + p,
1 1 ——=
ﬁ - E |/\/l|2
s (3.4.3)
- ET/dEmR\/QmRE |A(p)|*.

For a transition into the continuum, the sum rule is exactly fulfilled when integrating the

differential beta-strengths

dBrp 1

= 2

TS mery/2mgE |A(p)[?, (3.4.4)
dBgr . dBy

T _3dE , (3.4.5)

over the whole continuum leading to the sum rules Br = 1 and Bgt = 3. In the halo picture,
we therefore expect beta-strengths Br and Bgr to be at most 1 and 3, respectively, when
integrating over the available )-window. At LO where the full non-perturbative solution for
a zero-range interaction is used in the incoming as well as outgoing channel, the sum rule
is always satisfied. At NLO where range corrections are included, the sum rule puts strong
constraints on the ranges in the incoming and outgoing channels such that only certain

combinations are allowed.

3.5 Hadronic Current without Resonant Final State
Interactions

The amplitude for the charge changing weak transition of a two-body system is illustrated
as diagram (a) of Fig. 3.1. It was first calculated in pionless EFT by Kong and Ravndal [88].

The details are provided in B.3. The corresponding hadronic current can be written as [127]

a . i 2
AL (p) = —igVZC (ny)e™™ pg%ﬁ;ge%p aretan(ipl/o), (3.5.1)
0

where oq is the Coulomb phase and C?(7,) is the Sommerfeld factor from Eq. (3.3.2). In the

10Be — p system, the Sommerfeld parameter is 7, = aZ,Z.mg/|p| = kc/|p|, with Z, = 1
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and Z. = 4. The amplitude above is in S-wave, which is the case of 1'Be ground state. For

a detailed P-wave calculation, see Appendix B.4.

3.6 Hadronic Current with Resonant Final State In-
teractions

The current (3.5.1) includes only the final state interaction from the exchange of Coulomb
photons. We now consider resonant final state interactions whose signature is a low-lying
resonance in the °Be — p channel up to NLO. These contributions are shown as diagrams (b)
and (c¢) of Fig. 3.1. Diagram (c) contributes only at NLO to the amplitude. It arises from
a two-body current (with known coupling strength) that appears as a result of the energy-
dependent interactions used in the initial state (see Eq. (3.2.2)) and the final state (see
Ref. [71]). The thin double line together with the shaded ellipses that represent Coulomb
Green’s functions as depicted in diagram (b) essentially combine to the strong scattering
amplitude T¢g given either in Eq. (3.6.1) or (3.6.7) [71, 88].

The degrees of freedom in Halo EFT are the emitted outgoing proton and °Be. Our
treatment of the resonance follows Ref. [71]. The corresponding strong scattering amplitude

modified by Coulomb corrections is [71]

—47r/mR

g — ﬁ) (P* — k%) + 9o — 4k H (1)

Teg = ( : (3.6.1)

where H(n,) = Re[y(1 +1in,)] — Inn, + ﬁCz(np) , with the digamma function ¢(z). The

parameters in Eq. (3.6.1) are directly related to the complex pole momentum k* = kg — ik;y:

1 o 10\ K
L (e L \FR 3.6.2
&g (TO 3/'60) 2 ’ ( )
ok 1 1
r§ = _1C + (3.6.3)

" kpky e2mke/kn — 1 " 3k’
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where af and r§ are the Coulomb-modified scattering length and effective range, respectively.
Within our power counting, the parameters k¢, kg, k; as well as 7y scale as 1/ Ry, implying
that both Coulomb-modified scattering parameters ag and 'r’g scale as Rpalo-

The diagrams (b) and (c) of Fig. 3.1 lead to

AL = —igV/ Zam3C (n,) e I Tes | (3.6.4)
AL = —igV/ Zam%C (n,)e' (@) Tes (3.6.5)

with the complex-valued integral
I / (62110)13 CQ(nq)i;ir:;an/w) - ;2 . (56

The total amplitude A is the sum of the amplitudes with and without resonance A =
AL + AL, + ALY
At LO, the Coulomb-modified effective range in the 1°Be — p system is zero and the

amplitude reduces to

T 2 1
T mg —1/a§ — 2kcH(np)

(3.6.7)

To keep the main body be concise and clean, more details about the calculations in this

section are given in Appendix B.5.

3.7 Results without Resonant Final State Interactions

We consider two scenarios: beta-delayed proton emission with and without resonant final
state interactions from a low-lying resonance in '*B. We start with the first scenario and use
the one-neutron separation energy of "Be S,, = 0.5016 MeV [85]. In Fig. 3.2, we plot the
differential decay rate dI'/dE as a function of the kinetic energy F of the outgoing hadrons.
The solid line gives the result obtained by Baye and Tursunov [11]. The dash-dotted line
shows the EFT result with an uncertainty band obtained by adding an uncertainty of order

Reore/ Rhalo =~ 40 % from higher order corrections where we use the smallest value of Ry
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Figure 3.1: (a): Feynman diagram for the weak decay of a one-neutron halo nucleus into
the corresponding core and a proton with Coulomb final state interactions only. (b) + (¢):
Contributions of resonant final state interactions. The thin double line in the middle denotes
the dressed *Be—p propagator. The shaded ellipse denotes the Coulomb Green’s function.

104~ - - - - -
— Baye and Tursunov Ref. [18] :
10—5- —— EFT: ry =0 fm, no fsi /\‘ 4
[ EFT: rg = 2.7 fm, r§’ = 1.5 fm //,I \
— _ 6 i \ ]
|> 10
<]
= 1077 :
|
= —8L i
m 10
=<
. 107% 3
=]
10-10} ]
10-11L /i . . . !
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Figure 3.2: Differential decay rate dI'/dE for S-delayed proton emission from 'Be as a
function of the final-state particle energy E. The dash-dotted line shows our EFT result
without resonant final state interactions while the solid line gives the result obtained by
Baye and Tursunov [11]. The dashed line shows the EFT result including a resonance
at Fgr = 0.196 MeV in the outgoing channel at NLO. The colored bands give the EFT
uncertainty.
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given by 1/~¢ while we estimate R, by the effective range ry as a conservative estimate.
The remaining curve includes resonant final state interactions and will be discussed below.

For the branching ratio, we obtain b, = I'/Tia1 = (1.31 £ 0.51) x 10~® where the EFT
uncertainty is again estimated to be of the order of 40 %. Correspondingly, we obtain for the
decay rate I' = (6.64+2.6) x 1071% s71. Baye and Tursunov [11] obtain T' = 1.5x107? s~ which
differs by a factor of 2.3 from our result. We note, however, that they used a Woods-Saxon
potential with Coulomb interactions tuned to reproduce ''B properties in the final state.

Both theoretical results are significantly smaller than the experimental results reported in

Refs. [23, 120, 121, 9].

3.8 Results with Resonant Final State Interactions

We now discuss the second scenario including final state interactions. In Fig. 3.3, we show
the possible resonance parameter combinations that fulfill the beta-strength sum rule. The
dash-dotted line is the result at LO where the effective range in the incoming channel as
well as the Coulomb-modified effective range in the outgoing channel are zero. At NLO,
we use 79 = 2.7 fm determined in Ref. [67] from the measured B(E1) strength for Coulomb
dissociation of "' Be. The one-neutron separation energy as well as the effective range of 1'Be
determine the Coulomb-modified effective range in the outgoing channel to be r§ = 1.5 fm.
The sum rule is then satisfied to very good approximation for a wide range of Coulomb-
modified scattering lengths in the outgoing channel. The square shows the experimentally
measured resonance parameter combinations given in Ref. [9]. We note that the value of r§’
is determined independently from the experimental resonance parameters. Our NLO curve
depicted as the dashed line corresponding to r§ = 1.5 fm exhibits combinations of Er and
I'r that are in agreement with this measurement as indicated by the overlap of the square
and the curve.

In Fig. 3.4, we show the results for the decay rate as a function of the resonance energy at
NLO while using the corresponding resonance width that satisfies the sum rule as shown in
Fig. 3.3. The black line represents the decay rate obtained moving along the NLO curve in

Fig. 3.3 while the red shaded envelope gives the theoretical uncertainty estimated from the
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Figure 3.3: Possible resonance parameter combinations fulfilling the sum rule. The dash-
dotted line shows the combinations for ry = 0 fm at LO corresponding to 7§ = 0 fm while the
dashed line shows the combinations for 7o = 2.7 fm at NLO corresponding to r§ = 1.5 fm.
The green bands show the resonance parameters given in Ref. [9].
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counterterm contribution in the axial current scaling with Reore/Rualo & 40 %. The green
bands show the experimentally measured branching ratio and resonance energy of Ref. [9].
The horizontal blue dashed line denotes the result of the model calculation carried out in
Ref. [9] whereas the horizontal blue dash-dotted line gives the upper bound of Ref. [122].
Comparing our results with Ref. [122], we find that resonance energies Er > 0.214 MeV give
results compatible with this upper bound. The corresponding resonance widths can be read
off in Fig. 3.3. When comparing our results with Ref. [9], we find that the low-lying resonance
measured in Ref. [9] with Er = 0.196(20) MeV and width I'r = 12(5) keV is consistent with
their experimentally measured branching ratio as indicated by the overlap of the square
and the red shaded band. According to Fig. 3.3, we determine the width corresponding to
the resonance energy Er = 0.196(20) MeV as T = (9.0745(exp.) 753 (theo.)) keV, which
agrees well with the experimental value. At LO, the resonance width scales as k% /mg
whereas at NLO this value is enhanced by a factor of 1/(1 — 3ker§). This enhancement
for Coulomb halos is well known [125, 94, 133]. Using Er = 0.196(20) MeV, we calculate
the logarithm of the comparative half-life log(ft) = 3.0 with Bgr = 2.88 and Br = 0.96
for a decay including both Gamow-Teller and Fermi transitions and log(ft) = 3.1 with
Bar = 2.88 for a pure Gamow-Teller transition. The latter result can be compared to
log(ft) = 4.8(4) calculated by Ayyad et al. [9] which was obtained using a pure Gamow-
Teller transition as well, but is significantly larger than our result. This large log(ft) value
was also criticized in the comment by Fynbo et al. [50]. Ayyad et al. corrected the value to
log(ft) = 2.8(4) in their recent erratum [9]. This new value is now in good agreement with
our result. Using the half-life for ''Be given in Ref. [85] we convert the Halo EFT result
for Ex = 0.196(20) MeV and I'r = (9.0%35(exp.) 53 (theo.)) keV into the final result for the
branching ratio b, = 4.955(exp.) 32 (theo.) x 1075, The corresponding differential decay

rate is shown by the dashed line in Fig. 3.2.
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3.9 Numerical Implementation

The calculation is relatively straightforward. In the case without final state interactions,
one take the only Eq. (3.5.1). Including final state interactions, one should notice that beta-
strength sum rule is taken as an input. We integrate Eq. (3.4.4) from zero to infinity and
adjust r§’ to get Bp = 1. As a result, the choices of resonance parameters are not arbitrary,
as illustrated in Fig. 3.3. The complex-valued integral of Eq. (3.6.6) is evaluated separately
for the principal value part and the imaginary part. Then the norm is used in calculating

the squared amplitude. Constant parameters used in the calculation are given in Table. 3.1.

3.10 Conclusion

In this chapter, we considered S-delayed proton emission from 'Be. We compared the
scenario with no strong final state interactions with the scenario of a resonant enhancement
in the final 1°Be—p channel up to NLO. In the case of no strong final state interactions,
we obtained results that are in qualitative agreement with Baye and Tursunov with
remaining small differences that can be explained by the different treatment of the final
state channel. Including a low-lying resonance with the energy measured in Ref. [9] results
in a resonance width and partial decay rate in agreement with this experiment. Thus, our
model-independent calculation supports the experimental finding of a low-lying resonance.?
Furthermore, we have explored the sensitivity of the partial decay rate to the resonance
energy and decay width and found that this problem is fine tuned, i.e. only certain
combinations of width and resonance energy can reproduce the partial decay rate. In contrast
to the model calculation in Ref. [9], we included both, Fermi and Gamow-Teller transitions.
However, if a pure Gamow-Teller decay is considered, their partial decay rate can also be
reproduced with slightly smaller resonance parameters. Thus, our result implies that 'Be
is not a good laboratory to detect dark neutron decays since no exotic mechanism is needed
to explain the partial decay rate.

The uncertainties are largely determined by higher order contributions of the EFT

expansion. The next contribution within our power counting that we did not include is

2See Ref. [103] for another recent theoretical calculation in support of this resonance.
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Figure 3.4: Partial decay rate as a function of the resonance energy at NLO using the
corresponding resonance width in accordance with the sum rule (see Fig 3.3). Explanation
of curves and bands is given in inset.

Table 3.1: Summary of parameters used in numerical implementation of $-delayed proton
emission from ''Be.

Constants used in this chapter
Name Symbol Value
HBe core mass Me 9327.548 MeV
Neutron mass My 939.565 MeV
Proton mass my, 938.272 MeV
Electron mass Me 0.511 MeV
Axial-vector coupling constant |gal 1.27
[-decay constant B 6144.2 s
fine structure constant o) 1/137
"Be one-neutron separation en- || S, 0.5016 MeV
ergy
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a counterterm contribution in the axial current scaling with Reore/Rpalo- Uncertainties of
the S-wave input parameter (the one-neutron separation energy) do not impact the total
uncertainty significantly. Therefore, we estimate the uncertainty in the final decay rate to be
approximately Recore/Rhalo =~ 40 %. Experimental data with higher precision could be used
to constrain the '“Be—n and °Be—p interactions. It will be interesting to test whether the
inclusion of this resonance changes the Halo EFT predictions for deuteron induced neutron

transfer reactions off "' Be which were investigated in Ref. [134].
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Chapter 4

Electric Dipole Moments of
Three-nucleon Systems in the

Pionless Effective Field Theory

This chapter is another application of short-range EFTs. It is mainly based on the
manuscript [165] with more details included. In pionless effective field theory, we calculate
the electric dipole moments (EDMs) of three-nucleon systems at leading order. The one-
body contributions that arise from permanent proton and neutron EDMs and the two-body
contributions that arise from CP-odd nucleon-nucleon interactions are taken into account.
Neglecting the Coulomb interaction, we consider the triton and 3He, and also investigate
them in the Wigner-SU(4) symmetric limit. We also calculate the electric dipole form factor
and find numerically that the momentum dependence of the electric dipole form factor in
the Wigner limit is, up to an overall constant (and numerical accuracy), the same as the
momentum dependence of the charge form factor. Finally, we study the cutoff dependence

of these observables and find that they are properly renormalized.

4.1 Introduction

The breaking of the discrete symmetries of charge conjugation C' and charge conjugation

and parity C'P is a necessary condition for the dynamical generation of a matter-antimatter

42



asymmetry in the Universe [129]. In the Standard Model (SM) of particle physics, C is
maximally broken by the different gauge interactions of left- and right-handed quarks and
leptons. The breaking of C'P is much more subtle. In the SM with three generations
of quarks, C'P is broken by the phase of the Cabibbo-Kobayashi-Maskawa (CKM) mixing
matrix [87] and by the QCD 6 term [143, 142]. While all observed C'P violation (CPV)
in the kaon and B meson systems can be explained by the CKM mechanism, CPV in the
SM fails to generate the observed matter-antimatter asymmetry of the Universe by several
orders of magnitude [52, 54, 53, 75]. Baryogenesis thus requires the existence of new sources
of CPV.

Electric dipole moments (EDMs) of leptons, nucleons, atomic and molecular systems
receive negligible contributions from the CKM mechanism [115, 136, 164, 163] and are thus
extremely sensitive probes of CPV beyond the SM (BSM). Currently, the best limits are on
the electron EDM, |d.| < 1.1-107% ¢ fm (90% C.L.), deduced from experiments with ThO
and HfF molecules [7, 29], on the neutron EDM, |d,| < 1.8-107'3 e fm (90% C.L.) [1], and
on the EDM of " Hg, |disopy| < 6.2-1077 e fm [57]. Constraints on the diamagnetic atoms
129X e and ?*Ra are presently weaker [22, 128], but, particularly in the case of ***Ra, they
are expected to improve by several orders of magnitude in the coming years [22]. These
bounds can be naively converted into new physics scales in the range of 10 — 100 TeV,
making EDM experiments extremely competitive with direct searches at the Large Hadron
Collider (LHC). For this reason, there exists an extensive experimental program with the
goal of improving existing bounds by one or two orders of magnitude and to search for
EDMs in new systems. In particular, there are proposals to measure the EDMs of charged
particles, including muons, protons and light nuclei, in dedicated storage ring experiments
[104, 117, 3, 144]. These experiments might reach a sensitivity of 107! ¢ fm, comparable
with the next generation of neutron EDM experiments, and they provide a much more direct
connection with the microscopic sources of CPV compared to EDMs of diamagnetic atoms,
whose interpretation is affected by the large nuclear theory uncertainties in the calculations
of nuclear Schiff moments [10, 47]. Thus, the measurement of the EDMs of the proton and
light nuclei might play a crucial role not only for the discovery of BSM physics, but also in
disentangling different high-energy mechanisms of CPV [37, 42, 25].
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A description of EDM observables that employs nuclear degrees of freedom is therefore
clearly needed for the interpretation of experimental data. Chiral effective field theory is
particularly useful in this endeavor since it can relate measured EDMs to their underlying
sources, such as the QCD f-term or CPV operators from BSM physics. In Weinberg’s
power counting, the EDMs are for several BSM mechanisms dominated by pion-range CPV
interactions [37, 25], whose strength is related by chiral symmetry to nucleon masses and
mass splittings [32, 98, 37, 25, 138, 38]. The CPV pion-nucleon couplings appearing at leading
order (LO) can thus be extracted from existing lattice QCD calculations in the case of the
QCD f-term [40], or require relatively simple lattice QCD input in the case of BSM operators
[38]. Over the last years significant efforts have been made to improve the description of
EDMs in chiral EFT, with the derivation of the chiral Lagrangian at next-to-next-to-leading
order (N?LO) from the QCD #-term and dimension-six sources of CPV [98, 39, 27], and of
the N?LO time-reversal (T') breaking potential [95, 26, 56, 35]. These developments made it
possible to carry out chiral effective theory calculations of EDMs of light nuclei [25, 56, 139]
which have complemented hybrid calculations using phenomenological nuclear potentials in
conjunction with CPV potential derived in the effective theory [140, 37, 162, 163]. For recent
reviews of EDMs of light nuclei see Refs. [47, 161, 35].

Such calculations, which employ a complete effective field theory approach to calculate
the wave function of the nuclear bound state and for the construction of the nuclear current,
promise to provide reliable uncertainty estimates and a path to the reduction of those
quantified uncertainties. We however stress that, even in chiral EFT, a systematic connection
between nuclear EDMs and their microscopic quark-level sources beyond LO requires the
determination of CPV nucleon-nucleon couplings, and thus lattice QCD simulations in two-
or three-nucleon systems. In addition, it was recently shown in Ref. [36] that long-standing
issues with the renormalization of singular chiral EFT potentials [81, 102] demand the
inclusion of LO CPV short-range nucleon-nucleon couplings whenever the CPV pion-nucleon
interactions act in the 'Sy—3 P, channel. While this has no consequence for the EDM of the
deuteron, it significantly affects the chiral EFT uncertainties in the three-nucleon system

[36).

44



The so-called pionless EFT, EFT(j) [66], is an alternative EF'T approach to light nuclei.
It is an expansion in the ratio of the range of the nuclear interaction R and the two-nucleon
scattering length @ and has been shown to be a working, order-by-order renormalizable
framework for two-, three- and four-nucleon system [82, 15, 14, 110]. The low-energy
constants of this EFT can be related directly to scattering and bound state observables in few-
nucleon systems and pionless EFT predictions are thereby inherently tied to a small number
of these nuclear observables. The dependence of observables on the chosen regulators is also
well-understood and indicates that the inherent uncertainties of the low-energy expansion
are under control. This EFT can be applied to any system that displays a large scattering
length a and has therefore also found applications in atomic and particle physics.

Here we will use pionless EFT to calculate the EDM and the electric dipole form
factor (EDFF) of the three-nucleon systems at leading order. This has several benefits:
We can easily study the dependence of the EDFF on two- and three-nucleon observables.
Furthermore, a non-zero EDM measurement can be directly related to a corresponding
scattering amplitude using pionless EFT. We can thus retain predictive power by matching
these amplitudes to chiral EFT, at least in those channels in which the CPV pion-exchange
leads to regulator-independent results, or, even more promisingly, by taking advantage
of the significant progress in lattice QCD calculations of few-nucleon matrix elements
[101, 30, 74, 33], which can be directly related to the corresponding pionless EFT ones.

We will also calculate the EDFF in the so-called Wigner limit in which the two-nucleon
spin-singlet and -triplet interactions are identical. This limit has been used for many decades
to obtain a conceptual understanding of the three-nucleon system [49] and the unitary limit
(a special case of the Wigner limit) has also recently been proposed as a starting point for
a novel EFT description of light nuclei [91].

Finally, we will also study the regulator-dependence of the observables considered in our
EFT framework. Strong regulator dependence in observables is the first signature of missing
counterterms that have to be included in an EFT for it to become predictive. Our analysis
will demonstrate that our framework is fully renormalized and has thereby has predictive

power with the uncertainty deduced from the truncation error of the EFT.
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This chapter is organized as follows. In Sec. 4.2, we summarize the theoretical building
blocks and define the CPV interactions used in the calculation. The calculation of the EDFF
is conveniently performed by introducing a trimer field, following Ref. [61, 149, 151]. We
give the integral equation for the CP-even trimer-nucleon-dimer vertex function in Sec. 4.2.1,
and derive the integral equations in the presence of CPV interactions in Sec. 4.3. In Sec. 4.4,
we give the schematic diagrammatic expressions of the three-nucleon EDFF, leaving the
detailed expressions to appendices E and F. In Sec. 4.5, we discuss the numerical results,

and we conclude in Sec. 4.6.

4.2 Theoretical Building Blocks

The leading order CP-even effective Lagrangian in EFT(j) for the three-nucleon system
is [16]

t L+ V2 t i t 7T poi
L =N (i +ed + N+ Agtlts + Aysts, + e [tiN PtN+H.c.}

2 2My

+ s [SLNTP;N-FH.C.] + QYT + [wti/}TaiNti + H.c. } — [wsv,bTTaNsa + H.c. } , (4.2.1)

where the auxiliary dimer fields ¢; and s, represent the 3S; and 'S, dibaryon field,
respectively. The trimer field ¢ represents the three-nucleon field with total angular
momentum 1/2. A three-nucleon force appears at LO because it was shown [16, 14, 15]
to be necessary for the renormalization of three-body observables.

[he operators P, and P,
Ai 1 2 7 2 Aa 1 2_2 _a
.Pt oco'T?, P = —0°7T°T, (422)

V8 VA

project on the spin-triplet, isospin-singlet and spin-singlet, isospin-triplet channels, respec-

tively. For the coefficients in Eq. (4.2.1) we choose the conventions

vi=yi=a— AN=m—p A= g (4.2.3)
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where v; >~ 45.7 MeV denotes the binding momentum of the deuteron, and v; ~ —7.9 MeV
is the 1S virtual-state momentum. The renormalization scale yu is introduced through the
use of the so-called power divergence subtraction scheme in the two-nucleon sector [82].

Using a matching calculation to a theory without trimer fields it can be shown that
ws = wy [149]. These parameters are functions of the ultraviolet cutoff in the three-nucleon
Schrodinger equation. They are determined by adjusting them (at a given cutoff) to a
three-nucleon observable such as a binding energy, e.g. B(*H) = —8.48 MeV.

The dressed spin-triplet and spin-singlet dibaryon propagators are calculated by summing
over an infinite number of loop diagrams. At LO, they are given by

iDX(py, p) = = ! - . (4.2.4)
Vts — \/z — Mypo — i€

The renormalization of the deuteron wave function at LO is given by the residue about the
deuteron pole,

780 = 2 (4.2.5)

CPV from BSM physics can be systematically classified in the framework of the Standard
Model Effective Field Theory (SMEFT) [28, 59], where the SM is complemented by the most
general set of higher-dimensional operators, expressed in terms of SM fields and invariant
under the SM gauge group. The most important CPV operators arise at canonical dimension-
six, and are suppressed by two powers of v/Ax, where Ay is the BSM physics scale and
v = 246 GeV is the Higgs vacuum expectation value. For EDM studies, heavy SM degrees of
freedom can be integrated out, by matching the SMEFT onto an SU(3). X U(1)ey invariant
EFT [78, 77, 43]. Focusing on two light quark flavors and on operators that are induced
by SMEFT operators at tree level, the dimension-six CPV Lagrangian relevant for light
nuclear EDMs includes one dimension-four operator, the QCD 6 term, and nine dimension-
six operators, the gluon chromo-electric dipole moment, the v and d quark electric and
chromo-electric dipole moments, and four four-fermion operators. The operator set can be

easily extended to include strange quarks [78, 77, 43, 96].
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At low-energy, these operators manifest in CP-violating interactions between nucleons
and photons. In the single nucleon sector, the most important CPV operators are the

neutron and proton EDMs,

1 1—
Ly, = —eN' (dp 273 +d, 2“) (S"0” — SYv*) NF,,
1 1—
= eNt (dp 273 +d, 273) o-EN, (4.2.6)

where v* = (1,0) and S* = (0,0/2) in the nucleon rest frame, and E denotes the electric field.
For all quark-level sources of CPV one expects d,, ~ d,, [115, 41], but the calculation of the
exact dependence of d, ,, on CPV quark-level couplings requires non-perturbative techniques.
The momentum dependence of the nucleon EDFF was computed in Refs. [73, 41]. Since the
typical scale of the momentum variation is ¢ ~ m,, we ignore it in this chapter.

For the QCD #-term, the neutron EDM can be estimated by the size of the long-range
pion loop [32, 99, 73, 105, 41, 97, 137, 40]

dn(0) ~2-107°f e fm, (4.2.7)

in good agreement with the naive expectation d,, = O(m2/A3 ), where A, = 2rF; is the
chiral perturbation theory breakdown scale, with F, ~ 92 MeV the pion decay constant.
Progress in lattice QCD calculations will soon allow a theoretical error to be attached to the
estimate in Eq. (4.2.7) [76, 2, 21, 141, 86, 45]. The nucleon EDM induced by dimension-six
operators has been estimated using QCD sum rules [113, 114, 115, 62] or chiral techniques
(39, 137, 31]. With the exception of the contribution of the quark EDM, which is determined
by the nucleon tensor charges [60, 8], these estimates have large uncertainties.

In EFT(5), the leading two-nucleon operators resulting in a non-zero EDM are given by

oW w
Pr \/g \/g

i % GZNtUQTQTbG . ?N> (Cl(g)o—?’Po&ab + Cl(;l_apoi83ab + 01(?9)0_3% (5ab - 35”351)3)) :

0351_1]31 (t;rNtangvi]\g + 0351_3p1i5ilm <tINtO'2T2T3?mO'lN)

(4.2.8)
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These operators were constructed in Refs. [95, 153, 35]. All operators mediate transitions
between S and P waves, as denoted by the name of the coefficients. The operators Csg, _1p,

0 . . . . 1 . . . .
and C’I(S)r3 p, are isospin invariant, Csg,_sp, and Cl( S) break isospin by one unit, while

0—3P

c? is an isotensor operator. The couplings Csg, _1p,, Csg _sp, and Cl(g)o_g, Py have

1So—3Py 1

! and are independent of the renormalization scale p. Ref. [95] provides

dimension of mass™
a naive-dimensional-analysis estimate of the size of these coefficients in terms of quark-level
couplings. Going beyond dimensional analysis requires first principle calculations of CPV
matrix elements.

In this chapter we will thus express the EDMs of *H and *He in terms of d,, d, and of

the five couplings in Eq. (4.2.8), and discuss the minimal set of observables that is necessary

to disentangle them.

4.2.1 The three-nucleon bound state vertex function

We will calculate the EDFF by integrating over three-particle irreducible diagrams that
contain a single insertion of a CPV operator. Following the formalism defined in Refs.
[149, 151], we define a diagram to be three-particle irreducible when it cannot be separated
by cutting at a trimer field vertex. The resulting form factor diagrams contain necessarily
infinite sums of nucleon-deuteron rescattering diagrams that are given by vertex functions
that result from an integral equation, and pieces that include the photon coupling to a single
nucleon line.

The LO vertex function G(F, p) for a three-nucleon system in the center-of-mass frame
with binding energy E and relative momentum p between outgoing nucleon and dimer is

given by the integral equation shown diagrammatically in Fig. 4.1 and given explicitly by
G(E,p) =1+Kq,p,E) ®,G(E,q) . (4.2.9)

We define the short-hand notation

G(E,q) =D (E - %q) G(E,q) (4.2.10)
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where

2 D (E— i,q> 0
D <E _ Q_,q> N 2My ) : (4.2.11)
2My 0 Dy <E - 2X4N’q>

and the inhomogeneous term in this integral equation is

~ 1
1= : (4.2.12)
-1
The convolution operator ®, is defined as
A qg
Alg) ®q B(q) = / daz 5 A(9)B(a) , (4.2.13)
0

where A is a hard momentum-space cutoff. Observables will be A-independent for large
cutoffs.

The homogeneous term is defined by

—1 3
KZ(Q)]% E) = Rﬁ(‘]apa E) 3 1 y (4214)

where the function R, is defined as

(4.2.15)

27 2492 — MyE —ie
Ré(qapaE):%Qf (q P al ) )

qp

and @), are functions proportionial to Legendre function of the second kind but differ from

their conventional definition by a phase of (—1)¢,

Qela) = %/_1 aP‘T(‘ide : (4.2.16)
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8

Figure 4.1: Diagrammatic representation of the LO three-body CP-even vertex function.
The (dashed) double line denotes a dressed spin-singlet (spin-triplet) dibaryon propagator.

Figure 4.2: 7 vertex function. A blue square denotes the P vertex function, while a
black square an insertion of the operators in Eq. (4.2.8). Remaining notation as in Fig. 4.1.
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4.3 The T-odd vertex function

A three-particle irreducible diagram can contain repeated nucleon-dimer scattering between
a nucleon-photon vertex and an insertion of a two-nucleon CP-odd vertex. We include these
diagrams through two integral equations that generate a vertex function that contains a
single insertion of the CP-odd two-nucleon interaction. The diagrammatic expression for
these vertex functions is shown in Fig. 4.2.

The T-odd vertices convert the spin 1/2, isospin 1/2 trimer field ¢ into a nucleon-dimer
with three possible spin/isospin quantum numbers: spin and isospin 1/2, spin 1/2 and isospin
3/2, as well as spin 3/2 and isospin 1/2. The latter does not contribute to the three-nucleon
EDM at leading order, since the LO electromagnetic interaction does not change spin and
the overlap of the spin 3/2 T-odd function with the triton or helion vanishes. The integral
equations for the isospin 1/2 component, T%, and the isospin 3/2 component, ’T%, of the

spin-1/2 T-odd vertex functions are given by

1 ~

(o - k)T%(E, k) = (o - k) {RQT(E, k,q) ®q T%(E, q) +R

(B.k.q) ®, G(F. q>} s

=

; 3 ~ 3
(- K) (0% + ) TH(E, k) = (0 - K) (6™ + T*7){ RL(E. k. q) @, T (E.q)
+ RH(E.k,q)8,G(E,q)} . (4.32)
where we show explicitly the spin/isospin structure of the vertex functions, and, similarly to

the CP-even case, we introduced the shorthand notation for the product of a vertex function

and a dressed dibaryon propagator

13 2
T (E.q)=D(E——q) T*3(E.q) . (4.3.3)
2My
The kernels of the homogeneous terms are
1 q —1 3 3 q 0 0
3 -1 0 2
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The inhomogeneous terms are driven by the T-odd operators in Eq. (4.2.8). The isospin
1/2 vertex functions receive contributions from both isoscalar and isovector operators in

Eq. (4.2.8),

—1 q 1 2 2 4
+ —R1<E, k, q) 0351,1131 + =7 0351,3131

R:(E.k,q) = | Ro(E.k,q) p :
-2 0 -1 0

02} ¢ 0 -1 (0 2 3.
+ R0<E7 k7Q) 11 - ERI(Ea kaQ) 9 1 <CISOSPO - 57— CISof3P0 .

(4.3.5)

The isospin 3/2 component is induced by the isotensor operator 01(?0_3 p, and by the

isovector operators yielding

4

BBk = [2Ro(Bko+{RER]| |3

0351—3131

e e [P ) e kg [0 )] (e L, —snc®
3 0 » Ky, g 1 5 k 1 » K, g 9 4 1S5—3Py T3 1650—3Py ) *

(4.3.6)

4.3.1 Integral equations in the SU(4) limit

Nuclear interactions exhibit an approximate SU(4) spin-isospin (Wigner) symmetry, which
would be exact in the limit [160, 155] of equal spin-triplet and singlet scattering lengths.
SU(4) breaking is parameterized by the difference 74 — 7,, and the expansion around the
Wigner limit converges very well [155]. We will study the electric dipole form factor of the

three-nucleon system in the SU(4) limit, and provide the relevant formulae in this section.
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In the SU(4) limit, Dy = D, = Dgy) and from Eq. (4.2.9) one can see that (jt = —gNs.

We can introduce the combinations

1
Gi = B (G F Gs), (4.3.7)

so that G_ vanishes in the SU(4) limit.
The structure of the T-odd vertex functions simplifies significantly in the SU(4) limit.
It can be shown that both the isospin 1/2 and isospin 3/2 components are proportional to

a single function Tgy 4y, which satisfies the integral equation

Tsuw(E, k) = —Rsuw(E, k,q) @ G (E,q) + Q%Rl(E, k,q) ®, 7~§U(4)(E, q), (4.3.8)

Rsuw(E,k,q) = 2Ro(E. k,q) + %Rl(E, k,q). (4.3.9)

In terms of 7§U(4), we can write

D=

1 1 3 0 3
;‘U(4) (E7 k) - 1 7TSU(4)(E7 k) ) TgU(4)(E7 k) = 1 71,5‘2(](4) (E, k) ) (4310)

where
(0) 27° a

7TS§U(4)(E7 k?) = |:0150_3P0 + Csslflpl + ?(0351,3131 — Cls)o_gpo)] 7T9U(4)(E, k‘) s (4.3.11)

3
2

3 2
SU(4) (E> k) = |: - §(20351—3P1 + Of;l_3p0) + 27—301(?0_3]30:| 7T9U(4) (E, k,‘) . (4312)

4.4 Three-nucleon form factors

The EDFF of a three-nucleon system can be obtained from the matrix element of the zero-
component of the electromagnetic current J° in the presence of CP violation. Neglecting

recoil corrections, we can write the matrix element of J° as

(', | )°|p, B) = Fc(q*)das + [0 - dl 5 Fp(q?), (4.4.1)
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where o and 3 are spin indices of the in- and outgoing three-nucleon state, q = p — p’ is the
momentum injected by the current, and ¢ = |q|. F denotes the charge form factor and Fp
the electric dipole form factor, which vanishes in the absence of CP-violation. We will write

the EDFF in terms of two components,
Fn(¢*) = Fi(¢*) + Fu(q?). (4.4.2)

F1 denotes the EDFF generated by the T-odd component of the electromagnetic current,
which is dominated by one-nucleon operators, namely the neutron and proton EDMs in
Egs. (4.2.6). CPV interactions can in addition generate a CP-odd component in the three-
nucleon wavefunction, which is dominated by the two-body operators in Eq. (4.2.8). We
denote the ensuing EDFF by Fi.

The diagrams contributing to F; are shown in Fig. 4.3, where the black square denotes
an insertion of the nucleon EDM, defined in Eq. (4.2.6). We therefore write the F as the

sum of the three terms
F(q*) = ) + FP(¢*) + () (4.4.3)

corresponding to the three diagrams shown in Fig. 4.3. We give explicit expressions for the
diagrams in Appendix E. From the expression in Appendix E and the charge form factor in
Refs. [149, 151], which we also report in Appendix E, it can be seen that in the SU(4) limit,
the one-body contribution to the triton and 3He EDFFs is identical to Fo(q?), weighted by

the proton or neutron EDM,
SU(4 SU (4
A2 H) 2 4 Fod), R He) 2 4, Fo(?). (4.4.4)

We will see that the results at the physical values of v, and 7; deviate from this expectation
by a few percent.

The second class of contributions arises from the two-nucleon operators given in
Eq. (4.2.8). In Fig. 4.4 we show the EDFF topologies that include a CP-odd two-nucleon

operator. Diagrams (a), (b) and (c¢) include the T-odd vertex functions defined in Section 4.3.
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(a) (b) (c)

Figure 4.3: Diagrams contributing to the one-body component of the EDFF, defined in
Eq. (4.4.3). Here, the double line can denote a spin-triplet or singlet dimer. The black square
denotes an insertion of the nucleon EDM, defined in Eq. (4.2.6).

e e
@E@z

Figure 4.4: Diagrams for the three-nucleon EDM form factor at LO that involve a CP-odd
two-nucleon interaction.
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Diagram (d) and (e) include the CP-even G vertex functions, with an additional insertion
of the T-odd nucleon-dimer operators. For simplicity, we only show one topology. The
complete set of diagrams also includes the insertions of the T-odd operators to the right of
the photon-nucleon vertex.

We write the sum of contributions to the EDFF that include two-body CP-odd

interactions as
Fu(g®) = FI?(QQ) + FP () + FI?(QQ) + FP(¢°) + Fi (4% , (4.4.5)

where the superscript indicates the corresponding diagram in Fig. 4.4. We give explicit
expressions for the individual diagrams in Appendix F.
In the SU(4) limit, the two-body diagrams also undergo a noticeable simplification, and

they become proportional to a single combination of T-odd coefficients,

SU(4)

FH(q2a3 H) FSU(4) (qQ) <C3S1—1P1 + 01(05)0_3]30 - 201(?9)0_3]30 - 20351—3131) ) (446)
SU(4)

FH(q2>3 He) B— —FSU(4)<(]2) <C351—1P1 + CYl(g’)o—?)Po B 201(?0—33) + 2C’351—3131> (447)

where F’SU(4)(q2) is a universal function that depends on ¢, on the scattering length in the
Wigner limit and the three-body binding energy. In particular, the three-nucleon EDM

. oy . . 1
becomes insensitive to the isospin-1 01(5)0_3 p, operator.

4.5 Results

We have calculated the numerical coefficients multiplying the low-energy constants that
appear in a decomposition of the CP-odd form factor as a function of ¢?. In the absence
of the Coulomb interaction, we take the binding energy of *H and 3He to be equal, i.e.
B(*H) = B(*He). We estimate the numerical uncertainty of the results presented below to
be 1 % or lower. The theoretical uncertainty of our results is determined by the expansion

parameter of the pionless EFT which is vy,p; &~ 0.4, where p; is the effective range in the
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triplet channel. The theoretical uncertainties of our results are therefore clearly larger than
the numerical ones.

The EDFF results obtained for H are shown in Fig. 4.6. In Table. 4.1 we show the cutoff
dependence of the dipole moment contributions arising from the different EF'T operators.
Furthermore, we observe that cutoffs larger than 1.5 GeV are needed to obtain numerically
converged results. This convergence behavior is shown for the EDMs in Fig. 4.5.

At small ¢%, we will expand the charge form factor as

Fo(d®) = Z (1 — %2<r§> + %(rﬁ)qu...) : (4.5.1)

where 72 is the charge squared radius and r* the 4" Zeemach moment, Z denotes the total
charge of the nucleus considered and we omitted a label to denote the specific nucleus. We

define a similar expansion for the one- and two-body EDFF,

2

Fi(¢*,C) = di(0) (1 - %(rii(C)) + %(rii(C’)}q‘l +.. ) : (4.5.2)

where 1 = LLII. C = d,, for the one-body term, while it denotes one of the nucleon-
dimer T-odd operators in Eq. (4.2.8) for the two-body contribution. In the SU(4) limit, all
the dependence on couplings factorizes into the universal function FSU(4)(q2) and a linear
combination of low-energy constants, as shown in Eqs. (4.4.6) and (G.1). The square radius
of the EDFF is particularly important since it determines the nuclear Schiff moment, and
thus the EDMs of the atomic *H and 3He species [132]. More precisely, the Schiff moment

is proportional to the difference of the charge and dipole radii [34]

d;(C)

Si(C) = === ({ra(C)) = {r2)) (4.5.3)

where again ¢ denotes either the one- (I) or two-body (II) contribution.
The three-nucleon charge form factor in EFT(#) has already been computed in Refs.
[111, 149, 151], including next-to-leading order (NLO) and next-to-next-to-leading order

58



(N2LO) corrections. At LO, and neglecting Coulomb interactions, one finds
(r’(®*H)) = 1.28 fm* , (r}(*He)) = 1.56 fm* . (4.5.4)

These results are in agreement with those in Refs. [149, 151]. We will use the charge form
factor as a point of comparison for the momentum dependence of the EDFF. In the SU(4)

limit,
(r’(*H)) = (r?(*He)) = 1.32 fm. (4.5.5)
The neutron and proton EDMs contributions to the *H and *He EDM are given by
di*H) = 0.99d, +9.7-107°d,, di(*He) = 0.99d,, +9.7-107%d,.  (4.5.6)

The EDM only deviates by 1% from the expectation in the Wigner limit. These results can
be compared with chiral EFT calculations of Ref. [37, 25, 56]. These calculations include
subleading effects in the strong potential, and thus in the three-nucleon wavefunctions, and
typically find the d, (d,) contribution to *H (*He) EDM to be roughly 10% smaller than
Eq. (4.5.6). In Ref. [139], a hybrid approach was used to calculate the EDMs of the three-
nucleon system. The current operators were taken from both pionless and pionfull effective
field theory but the wave function was evaluated using a model potential. The results for the
single-nucleon EDM contributions are roughly of the size found in the chiral EF'T calculations
and therefore smaller than our results. However, the size of the deviation depends on the
specific model used in the calculations of Ref. [139].

The dominant momentum dependence of the EDFF is encoded by the dipole square

radius, which we find to be

(ri(°H,d,)) = —18.3fm? (r(°H,d,)) = 1.28 fm?®, (4.5.7)

(ri1(°*He,d,)) = 1.28fm? (r7 1(°*He,d,)) = —18.3 fm”, (4.5.8)
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Figure 4.5: Cutoff dependence of the 3H EDM two-nucleon contributions.

Table 4.1: Coefficients of the 3H EDM low-energy constants for different values of the cutoff
A.
AGeV) | dy  di Chsap Cagsp CL0 o, CH o, CF) 4,
10 0.982 0.008 -0.358 0.708 -0.297 -0.038 0.481
30 0.988 0.010 -0.356 0.706 -0.295 -0.037 0.479
80 0.990 0.010 -0.358 0.708 -0.297 -0.038 0.481
600 0.991 0.010 -0.359 0.708 -0.298 -0.038 0.481
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Figure 4.6: The EDFF contributions arising from five different two-nucleon CP-odd
operators as a function of ¢2.
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The square radii agree very well with the triton charge radius. This has consequences for
the Schiff moment, and thus the EDMs of atomic *He and *H. We see that in the case of
*H, the one-body Schiff moment vanishes at LO in EFT(#), Si(*H, d,) = 0. The one-body

Schiff moment of 3He is small, but non-vanishing,

d

Si(*He, d,) = g" (0.28) fm?. (4.5.9)

We adopt the same expansion as Eq. (4.5.2) for the function Fsy4)(¢?) and obtain for
the two-body form factor in the SU(4) limit

dsyy = —0.332,  (ri)suw = 1.32fm* (4.5.10)

where we used the average of spin-singlet and triplet binding momentum and the triton
binding energy in our calculation. In this limit, the momentum dependence of the form
factor seems to be dictated by the charge form factor, and we find that, to very good

approximation, B
Fsuw(g®)
Fe(q®)

For q between 0 and 500 MeV, this ratio deviates from a constant at the per mille level. At

= constant. (4.5.11)

the physical value of the scattering lengths, the 3H and *He EDMs from the two-body form

factor Fy; are given by

i (*H) —0.358Chg, _1p, + 0.707Chg, _ap, — 0.297C1Y

~0.0368C) sp + 04800 . p (4.5.12)

du(*He) = 0.358Csg,_1p, +0.707Chs, _ap, +0.207CY 4,

(M 2)
~0.0375C1y) o, — 0.480C1% (4.5.13)

Py

where, as our central value, we took the EDFF at A = 60 GeV. As already remarked,
the numerical accuracy is a the percent level, and smaller than the LO EFT(#) theoretical
uncertainty. The EDFF square radii induced by the CPV operators in Eq. (4.2.8) are given
in Table .4.2.
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We notice that, in the absence of the Coulomb interaction, the EDMs of *H and *He
follow simple isospin relations. In particular, the isoscalar and isotensor operators give rise
to an isovector EDM, while the isovector operators to an isoscalar three-nucleon EDM. These
patterns can be understood by noticing that only the isovector piece of the CP-even one-body
electromagnetic current J° contributes to Fip [93, 140, 37].

We observe that the EDM induced by the isoscalar operators Csg, _1p

1

and Cl(g)oJ
and by the isospin-1 operator Csg, _sp, deviate from the SU(4) limit by about 10%. The

Py

EDM from the operators that connect the 3S; to 'P; and 3P, waves increases (in absolute

value) by 10%, while the EDM from C’l(g)o_g decreases by the same amount. We also

Po
note that the isotensor operator CI(?OJ p, Shows a larger, 30% variation, from the Wigner
limit. Furthermore, we find that, with the exception of 01(15)0_3 Py’ all operators induce matrix
elements of O(1), as naively expected. The contribution of Cl(}s,)()_g p, 18 suppressed by roughly
a factor of ten. It is interesting to note that in the case of 3H, the momentum dependence
of the form factor induced by Csg,_1p,, Csg,_sp, and C’l(g)rg p, cannot be distinguished from
the charged form factor within error. This leads to S; being compatible with zero, implying
that for these operators the Schiff moment vanishes at L.LO in pionless EFT. Cl(?o_g p, Induces
a non-zero, but small Schiff moment. Specifically, in the case of 3He, all operators induce a
non-zero Schiff moment, but also in this case we expect subleading corrections in EFT(j) to
be important.

Finally, a comparison with the pionless two-nucleon operator coefficients of the hybrid
calculations of Ref. [139] is problematic for a variety of reasons: the hybrid results vary
based on the choice of potentials to calculate the wave functions. In addition, a different
short-distance regulator is used for the CP-odd two-nucleon operators in these calculations.
While we have shown that the results presented in this chapter are regulator independent,
the pionless results of the hybrid calculation of Ref. [139] are only given for a single value (the
pion mass) of the corresponding regulator. Changing this value from the pion mass to the
7 mass changes some of the results by factors of close to 10. While the CP-odd two-nucleon
operators are regulator-dependent in both approaches, the nuclear wave functions in the

hybrid approach lack the necessary regulator dependence to compensate for these changes.
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It is therefore unclear which values of each of the employed short-distance regulators should

be chosen for a comparison.

4.6 Summary

In this chapter, we have shown that EFT(#) is an efficient framework that facilitates a
straightforward calculation of the EDMs and their corresponding form factors of three-
nucleon systems. We focused on the *H and *He systems at leading order in the pionless
EFT expansion and neglected Coulomb effects in the 3He system. At this order, the only
(CP-even) parameters that enter our calculation are the deuteron binding energy, the two-
nucleon spin-singlet scattering length, and the three-body binding energy of the state under
consideration. Allowing for CP-odd interactions in the few-nucleon sectors leads to a total
of 7 parameters, where two of them are the neutron and proton EDM and 5 arise from
short-distance physics in the two-nucleon system.

The deuteron and the isoscalar combination of the H and *He EDMs are mostly sensitive
to the isovector coupling Csg, sp, (see App. D for a derivation of the EDFF and resulting
EDM in pionless EFT). These two observables are thus largely degenerate, and, neglecting
the one-body piece, our calculation finds

d(*H) + d(*He)
2d(2H)

= 0.71. (4.6.1)

For comparison, the chiral EFT calculation of Ref. [56] finds the ratio to be between 0.77 and
0.80, for both the isovector pion-nucleon coupling g; and for the linear combination A3z — Ay,

which corresponds to Csg, _sp,. The isovector combination d(*H)—d(*He) probes the isoscalar

(0)

1 Sy—3P, and the isotensor Cl(?o—?’ Py’ which are particularly important for

couplings Csg, _1p,, C
the QCD @ term. In chiral EFT, this linear combination cannot be expressed only in terms
of pion-nucleon CPV couplings, but requires short-range nucleon-nucleon operators at LO
[36].

Specializing to the QCD #-term, we combine Eqs. (4.5.6) and (4.5.13) to obtain

daHe(Q) = d, + 0.358 0351_1131 + 0.297 0150_3130 . (4.6.2)
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We can then use Eq. (??) to write the above result in terms of the dimensionless couplings

csg,—1p, and cﬁ?o_g p, With size of order one
~ (2.0 F10ess, 1p + 8.6 c§‘20_3P0> 103G efm . (4.6.3)

From Eq. (4.6.2) we see that the *He EDM can receive a dominant two-body contribution,
but of course more precise statements require a first principle determination of the LECs.

Our approach does not facilitate an as direct identification of the sources of possible
non-zero EDMs in light nuclei as chiral EFT does. However, it offers order-by-order
renormalizability, a clear understanding of the dependence of observables on the employed
ultraviolet regulator and exhibits the dependence of observables on simple measurable two-
and three-body observables such as the effective range parameters. At NLO, the effective
ranges in the singlet and triplet channels contribute to this correction will be of the order
vpr & 0.4 where p; is the triplet effective range. It will be very interesting to study the
contributions to the EDFF at NLO. Such an NLO calculation of the CP-odd properties of
the three-nucleon system will require the construction of NLO vertex functions to include the
effects of NLO relevant two-body operators. We furthermore anticipate, based on results for
similar parity-violating interactions in three-nucleon systems [152], that at NLO a CP-odd
three-nucleon force will be required whose coefficient will have to be fixed with a CP-odd
three-nucleon observable.

We note that Coulomb corrections can be included in EFT(5) and are expected to give
an approximately 10 % correction for *He [90] and are thereby smaller than the expected
size of NLO range corrections.

Finally, we are optimistic that our EFT(f)calculation can be directly connected to QCD
using lattice calculations, given recent results obtained with lattice QCD for electroweak
matrix elements [131, 33] of two-nucleon system and the possibility to carry out this

calculation in a finite volume [92].
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Table 4.2: Square radii of the two-body EDFF induced by the CPV operators in Eq.
(4.2.8), computed at A = 60 GeV. The Cf?@_;; P squared radii have a numerical error of
approximately 10 % since the corresponding dipole moments are relatively small. The other
radii have few-percent numerical uncertainties, which we do not show.

1.31 1.30 1.24 1.48 1.19

(rauC’H))  (fm?)
1.90 1.50 1.83 4.58 1.19

H C’3517113'1 0351*3131 Cl(g)o—3Po Cl(kls’)of3Po CI(E)O*SPO
(rgu(°He)) (fm?)
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Chapter 5

‘He with Coulomb Interactions in the

Pionless Effective Field Theory

5.1 Introduction

Three-body systems have been widely studied in the pionless EFT. One benefit of pionless
EFT is that it is straightforward to study the impact of the Coulomb interactions [6, 89, 154].
Continuing previous chapter’s work, here we provide both the analytical and numerical
results of studying *He in the pionless EFT framework with the Coulomb interaction included
nonperturbatively at leading order (LO). The method we use is an extension of the previous
chapter. We decouple the isospin triplet dimer into np and pp channels explicitly. The
np-channel dimer is not modified by Coulomb interactions. Coulomb-photon exchanges
inside the pp-channel are resumed to all orders to get the dressed pp-dimer. Since Coulomb
interaction does not couple to isospin eigenstates, we do not project three-body bound states
onto isospin doublet and quartet channel separately. Instead, three-body isospin doublet and
quartet channels are included by picking up correct isospin indices. We calculate the charge
form factors of 3He with coulomb contributions. Moments of *He, like charge radius and
the third Zemach moment, are evaluated. We also studied the cutoff dependence of our
observables.

This chapter will provide rich details of the calculation, which are important due to the

complexity of the diagrams. In Sec. 5.2, we will give the theoretical foundations of this
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work. We will only cover the content that is not mentioned in the previous chapter. Then
in Sec. 5.3, we will derive the *He bound state vertex function with Coulomb contributions.
In Sec. 5.3, the calculation of all form factor diagrams with Coulomb, contributions are
discussed. The third Zemach moment is introduced later and we demonstrate our results in

the end.

5.2 Effective Lagrangian

We use a very similar formalism to the one we have used in the EDM chapter, yet still
different. To make this chapter self-contained, the effective Lagrangian for the 3He system

in pionless EFT can be written as
ﬁ == £2 —|— £3 —|— ‘Cphoton 5 (521)

where L, denotes the two-body Lagrangian density, and L3 denotes the three-body
Lagrangian density.

The two-body Lagrangian, Lo, up to NLO is given by

2 2My

62 2
At — Cot <7180 + + ,y_t>

1 =2
EQINT<iao+€A0 +T3+ v >N

+tf ti + s}

AMy — My

62 72
As - S . —= a
co (z@o—i- e + MN)] s

+ [thTﬁgtN + H.c.} 4y [sENTPAN ¥ Hel, (5.2.2)

where the auxiliary dimer fields ¢; and s, represent the 3S; and 'S, dibaryon field,
respectively. For the coefficients, v;, y,, A;, and A, we choose the same conventions as
in Eq. (4.2.1). Again, v, ~ 45.7 MeV denotes the binding momentum of the deuteron, and

vs >~ —7.9 MeV is the 1S; virtual-state momentum. ¢y, and cy, are given by

My
25

M
cor = (Z —1) =2, cos = (Z, — 1)

, 5.2.3
2y ( )
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where Z, = 1.6908 and Z, = 0.9015 are the residues about the deuteron and the virtual 'S,
state poles, respectively [149].

The operators Py, and Py are spin-triplet and spin singlet two-body projectors, defined
by

. 1 A A 1
Py = —=a%d't?, P = —=o’r’7", (5.2.4)

V8 V38
Since in this chapter, we need to distinguish the nn, np, and pp channels of the spin-singlet
dimers, it is useful also to write down the two-body projectors and spin-singlet dimer in the

spherical basis, given by,

ng:\%(ipgs_]?;s) ) Spp:\/Lg(i'S?_Sl) )
PQT;p = P235 9 Snp = 83, (525)
Py = %(ins +Py),  Spn = \%(2192 + s1) .

One can prove the validity by noticing the fact,

1

Loy 3 1 -2
> 0 = ——= (7" i) spp + T80y + —=(T = iT) 5 5.2.6
- \/5( ) pp P \/5( ) ( )
More about the two-body projectors can be found in Appendix C.

The spin-triplet, spin-singlet-np, and spin-singlet-pp dibaryon propagators up to NLO

are respectively given by,

69



, i Z,—1 P2 .
iDy¢(po, p) = I + t7 <%+ p——MNpo—ZE) )

B vl AT 4 ,
NLO
(5.2.7)
i Z,—1 P2
'-DS 9 - 1 s - M —1 y
7 (pop) 7_\/1)_2_]\/[ — + 2. (V-l— 1 NDo 26)
s 1 NPo — 1€ [ LO g
NLO
(5.2.8)
. 1 T g Mnpo
ZDpp(po,p) = ~ . < . = )
1/ac + aMyho(in) \L{; 2 1/ac + aMyhg(in)
NLO
with
~ . 1 .
ho(in) = ¢ (in) + i log(in) , (5.2.9)
and
M
in et} (5.2.10)

B 2\/p2/4 — Mypo — i€
re = 2.794 fm is the Coulomb modified effective range [[cite]]. In LO calculation, only the
LO part of the dimer propagators will be included.

For the three-body systems, in the doublet channel, Bedaque, Hammer, and van Kolck
[12] found that a three-body force is required at the leading order. The Lagrangian for this
three-body force up to LO is

£y =M 1 51 @) - 81 2)] [ BN s BN 21D

Here, ¢, § represent spin-triplet and spin-singlet dimer field, respectively. A three-nucleon
force appears at LO because it was shown [16, 14, 15] to be necessary for the renormalization

of three-body observables. The three-body force Lagrangian in Eq. (5.2.11), can be rewritten
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with a trimer auxiliary field, ¢, with total angular momentum 1/2; as follows

L3 = Q) + (wiot [Py Nt; — weot) [PY]TNsp, — weotp[PaF] Ny, + hec) , (5.2.12)
where s, = \%(2192 —s51), Pi¥ = \%\%(zﬁ'z — 1), P3P = \%7'3, and Py, = \/ngi, Py = \%T“.
The spin-singlet channel is split into np and pp channel explicitly. Here the nn channel
has zero contribution in the case of 3He. Using a matching calculation to a theory without
trimer fields, one can show that ws = w;. The LO three-body force H(A) is related to other
parameters by ,

H(A) _ (%0)2 (wso)2 _ WioWso

A2 470 4xQ | 4xQ (5-2.13)

More details can be found in [149].
The pure photon contributions is described in Lopoton, Which is given in [65]. Here we
only need to know the Coulomb photon propagator, given by

1

iACoulomb(’C) - m )

(5.2.14)

where k is the three-momentum of the photon. A is a photon mass to regulate infrared

divergences.

5.3 3He Vertex Function

We follow Konig’s pd-scattering work [89]. We use this work’s scattering equations for the
bound state regime to construct the integral equations for the 3He vertex functions. The LO
vertex function C(E,p) for *He with Coulomb interaction in the center-of-mass frame with
binding energy I and relative momentum p between outgoing nucleon and dimer is given

by the integral equation shown diagrammatically in Fig. 5.1 and given explicitly by

C(B7p) = TC + <Ks(Bapa k)Mks + Kc(Bapa k)Mkc

+ Ktl(Bap? k)Mktl + KtQ(Bapv k)Mkt2 + Kb<Bap7 k)Mkb> ®k 5(37 k)a (531>
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g

Figure 5.1: Diagrammatic representation of the LO three-body (*He) coulomb vertex
function. The double line denotes a dressed spin-triplet dibaryon propagator. The dashed
double line (with dot) denotes a dressed spin-singlet np (pp) channel dibaryon propagator.
The wavy lines represent Coulomb photon propagators.
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where the three-component 3He vertex function is defined by

Ct(‘Bap)
C(B,p)=|c,(B,p | (5.3.2)
Cpp(B, p)

Ci(B,p) | Cup(B,p) / Cpp(B,p) is the vertex function for a *He bound state goes into
a nucleon and spin-triplet / spin-singlet-np / spin-singlet-pp dibaryon. The short-hand
notation, C(B, k), is defined as

~ k2
B.k)=Dc(E——— k)c(B 3.
C(B, k) C( QMN,k)C( ) (5.3.3)
where
Dy (B = 3. k) 0 0
K :
. _ kK
De (E "y MN,k:) - 0 D, (B - s-.k) 0
0 0 Dy (B = 5k k)
(5.3.4)

Io=|-2|. (5.3.5)

The convolution operator ®; is defined the same as in the EDM calculation [[ref eq]]. The

constant matrices in the homogeneous terms are obtained by two-body projections and
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picking iso-spin indices appropriately, with

-1 V3 =6 2.0 0
M= +vV3 1 V2| . Me=|020],
-6 V2 0 000

0 0 0 00 —V6 -1 V3 0
My = — 0 0 0|, Muyos=—10 0 +vV2| , Muw=—[V3 1 0
/6 V2 0 00 0 0 0 0

(5.3.6)

The additional —1 in front of each matrix in the second row is not from spin/isospin indices
projection. It is taken from the kernel functions so that kernels can be easily compared
with previous literature, for example, see [89]. More details are in Appendix C. One should
notice that, we do not explicitly project isospin onto three-body doublet or quartet channels.
However, we project spin onto three-body doublet channels since the Coulomb interaction

only touches isospin. The kernel functions in the homogeneous terms represent contributions
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from different diagrams in Fig. 5.1, given by,

21 k*+p? —mB
K.(B,p k) =22, (2 —™Mm2 ) 5.3.7
(Bop k) =an (=) (5.37)
K.(B.p. k) _aMy2n arctan —2A?l;§7,k) B arctan —ZA?EZ,k)
C 7p7 - k‘p k . p k' + p
1 k 2 k—p)? +4A0%(B,p, k
+——— | (ExP +1n( p +aA(Bp.k) | | (5.3.8)
4A(B, p, k) k—p (k +p)? +4A%(B,p, k)
Mn2 2k
Ky (B,p, k) = Nt arctan® +p
kp\/?)p —4MNB 3])2 —4MNB
2
— arctan® kop (5.3.9)
/302 — 4Mn B
Mn2 2 k
Ky (B,p k) = i ] arctan® ( Pt >
kpv/3k* — AMyB V3k? —4MyB
— arctan? ( 2k ) (5.3.10)
V3k? —4MyB

1 1
|k — p| k? + p? + kpx — My B

+1
Ky(B,p, k) :onNﬂ/ dx
-1

( k? — kpx ) 2k? — p? — kpx
X |arctan + arctan
|k—p|\/3k2—4MNB |k:—p|«/3p2—4MNB

(5.3.11)
where,
1, a+1
=1 312
Qo(a) Sln—, (5.3.12)
A(B,p, k) = /3k2 — AMyB + \/3p*> — 4AMyB . (5.3.13)

Ky (B,p, k), K.(B,p, k), K1(B,p, k), Kio(B,p, k) , Ky(B,p, k) denote the kernels of the
homogeneous terms demonstrated in (a), (b), (c¢), (d) and (e) of Fig. 5.2, respectively. k and
p are the relative momenta of between the dimer and nucleon in the inner loop and final
state. x is the cosine of the angle between k and p. « is the fine structure constant. For
all terms above, we have taken the photon mass to be zero. One can also leaves the photon

mass small but non-zero, which is numerically unimportant but leads to more complicated
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(a) (b)

“IEC
(c) (d) (e)

Figure 5.2: Partial diagrams contribute to the homogeneous terms of the *He vertex
function. The double solid line here represents either deuteron dimer propagator or a spin-
singlet np dimer propagator to avoid verbosity. The dashed double line with dot denotes a
spin-singlet pp dimer propagator. The wavy lines represent Coulomb photon propagators.
The (c) and (d) are mostly called “triangular” diagrams in the literatures, while (e) is called
the “box” diagram. The kernels of diagram (a) to (e) are denoted as K, K., K1, Ko and
K, respectively.
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expressions. For numerical convenience, we also project the vertex function onto S-wave. In

addition, we have already used the on-shell nucleon energy, which is defined as,

E 1 K
po=———(——p)?, (5.3.14)

where F/ and K are the total energy and momentum of the three-body bound state. Before
we show the derivation of the kernel functions later in this section, let us first take a look at

the wavefunction renormalization.

5.3.1 Wavefunction Renormalization

As one can find, the inhomogeneous terms in the vertex function above is just a constant
vector. We have normalized the vertex function to not include the three-body coupling
constant, w, and thus the vertex function C(B, p) is not the “physical” vertex function. The

“physical” vertex function is given by

T'(B,p) = \/ZycC(B,p) . (5.3.15)

To get the Z factor used in this work, let us first look at the dressed trimer field, which
is given by,

= é + éz’zg(E)zAgg(E) , (5.3.16)

Az (E)
where YE(F) is the trimmer-irreducible self-energy, represented by the sum of diagrams in
Fig. 5.3. LE(E) is evaluated by

dq i

SP(E) = ' ILiDo(E /wC(B
L C( ) /(2ﬂ)4sz_qo_ﬁ 2 4 e ct C( +q0>q)lw ( aQ)

— —iw* It ©,C(B,q) . (5.3.17)
The Z factor is the residue about the *He pole,

d 1\

E=B

7



//::“"-\ /i.:“‘-\
- -2 - B,
7 N 2 N
+ v + v

Figure 5.3: The self-energy is represented by the sum of three diagrams. The solid, dashed
and dashed-dot double lines represents the spin-triplet, spin-singlet-np, and spin-singlet-pp
dimer propagators, respectively.
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In order to keep consistency with other literatures [149, 150], we use the numerically

equivalent form given in the follows,

(5.3.19)

where 3¢ (F) is defined by
So(E) = —nIk ®,C(E,q) . (5.3.20)

In previous papers [6, 89, 154], they have more complicated expressions of vertex functions
compare to what we present in this chapter. We found that those are numerically equivalent.
In order to alleviate pains for future readers, we will provide more details of each piece in

the following sections.

Conventions for the vertex function calculation In order to not be verbose, we
explain the convent ions for calculating following kernel functions. k denotes the relative
momentum of the dimer and the nucleon that connects to the *He vertex inside the loop. p is
the relative momentum of the outgoing final state. I, if exists, denotes the loop momentum
in between. kg, po, and [y are the corresponding timelike components of 4-momenta. K
is the momentum of the center of mass of the system and the total energy is denoted as
EF =B+ %, in which B is the *He binding energy. A typical value of K is —q/2, which
is the momentum of the incoming side bound state in Breit frame. The final state is always
projected onto S-wave by default. The on-shell energy is given above in Eq. (5.3.14). For a
non-boosting vertex function, we always need this on-shell condition. A nucleon propagator
with energy pg and momentum p is denoted as,
?

Po — m 2+ e

(5.3.21)

5.3.2 The “Ks” diagram

K (B,p, k) denotes the kernel of Fig. 5.2 (a), which has no Coulomb photon but a single
nucleon exchange. The four momenta of the dimer and the nucleon propagator associate

with the 3He propagator are (%E + ko, k+ %K) and (%E — ko, —k + %K), respectively. The
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exchanged nucleon propagator has a four momentum given by (%E + ko + po, k+p+ %K ).
From dimer-NN vertices, we receive (iy)? with y? = A‘;—’;. Notice that, in order to follow the
conventions from the previous literatures, we also include the (1/4/8)? from the two-body
projectors. From contractions, a —4 must be included as the symmetry factor. Thus, we
give the expression below,

d*k 1 1

1
pT oSN (G E = ko, —k + S K)iSx(5 E+ko+po,k+p+3K)

2
M, iDc(E + ko.k + §K) iC(B,k), (5.3.22)

2
iHS(B7K7p07p7k) = %/ (

where M, is a constant matrix defined in Eq. (5.3.6). Picking the pole at kg = £ — -1— (& —

k)%, we have a (—2mi) from integrating over ko, and get

k2
— 2_ —
H.(B,K,po,p, k /27T2k M,,Do(B QMN,k:)C(B,k)

1 1 K 1 1 !
- E———(——k?—-—(k K 5.3.23
X 2/_1 dCOSQ{ 2MN( 3 k) 2MN< +p+3 )* + po , )

where 6 is the angle between k and p. We get,
H5<B7 Kap07p7 k) = MksKS<Ba K7p05p7 k) ®k é<Ba k) ) (5324)

where K (B, K, po, p, k) is

or K +p*—My(EB+po+ z=p° — 3K - p)
KS(B7Kap07p7 k) = _QO( & k’p My

). (5.3.25)
The expression above is for general cases, which does not necessarily use an on-shell py.
Taking on-shell py in Eq. (5.3.14), we have,

k2+p —MNB
kp

Ky(B,p k) = —Qo( ). (5.3.26)
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5.3.3 The “Kc” diagram

K.(B,p, k) denotes the kernel of Fig. 5.2 (b), which has a Coulomb photon propagator
that connects one nucleon of the inner loop and another nucleon associate with the trimer
field. The four momenta of the dimer and the nucleon propagator associate with the He
propagator are (£E + ko, k + 2K) and (5F — ko, —k + 3 K), respectively. The Coulomb
photon propagator carries momentum (k — p). The three nucleon propagators of the inner
loop have four momenta (—/y, £), (%E +ko+ by, k+ L€+ 2K') and (2E+p0 +ly, p+L+ gK').

From dimer-NN vertices, we receive (iy)? with y?> = 2. Notice that, in order to follow
the conventions from the previous literature, we also 1nclude the (1/4/8)? from the two-body
projectors. From contractions, a +4 must be included as the symmetry factor. In addition,
we have a factor —e? due to the photon exchange. To avoid complexity, we insert the on-
shell py in the very beginning. Later in this section, we will discuss how to boost the vertex

functions. We give the expression for the homogeneous contribution below,

. —y? d*k 2 2.
Z%C(B,p, k) = T(Z@) (27T)4Mkc ZDc(gE -+ k’o, k -+ gK) ZC(B, k)

' .
ZSN( E — ko, —k+ - K) !

K e e Bp k), (5:327)

where Q.(B, p, k) represent the inner loop integration, given by

QC(B,p,k):/(;ii iSn (o, £)

2 2
3 K)iSx (> E+po+lo,p+e+2K). (5.3.28)

zSN(3E+k0+£0,k:+£+ 3

Picking the pole at kg = £ — —N(K — k)2, and {y = —ﬁﬁ + i€, we have a factor of

(—2mi)? from integrating over ko and £y, we get

+1

An? _
il dcos M. C(B, k)
—1

—k2

272

H.(B,p, k) = Q.(B,p, k), (5.3.29)

1
(k—p)*+ A2

where cos @ is the cosine value between the k and p. The Q.(B,p, k) is reduced to
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d3l 2

2 2 2
Q.(B,p,k) = | —=SN(zFE +ko+ b,k +€+ -K)Sy(zFE L, L+ -K) .
(B,p. k) /(%)3 N(FE +ko+ ok + €+ SK)Sn(ZE +po + lo,p + £+ SK)
(5.3.30)
Using the Feynman parameterization technique from Ref. [106], namely,
1 1 1 L
— = / dufud + (1 —u)B] > = / du [07+ A 7, (5.3.31)
where
2
A= —MN/SN( E+Fky+ by, k+ £+ 3K)
2
B:—MN/SN( E+p0+€0,p+£+3 )
1 2K
=0+ (k:u—l——+p(1—u)) :
2 3
1
A, = 1 (=4BM + k*(—(u — 4))u + 2kpcos O(u — 1)u — p*(u — 1)(u+3)) .
Notice that,
9 M2 1 1
du [P+ AT = —N/ dul? . (5.3.32)
8t Jo
This integration can be done analytically, leave,
H.(B,p, k) = M. K.(B,p, k) @4 C(B, k) , (5.3.33)
where,
+1 1
KC(B,]?, ]{Z) = OéMN27T /_1 dCOSGm
1 k—
X ——— arctan |k~ pl . (5.3.34)
|k — p| V3kZ —4MyB + \/3p® — 4MyB

A finite but small A provides better numerical stability without affecting the accuracy. If

one could handle the numerics very well taken A — 0, then it will be more efficient to use
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the expression in Eq. (5.3.7), in which the angular integration is analytical done by setting

a zero photon mass.

5.3.4 The triangle diagrams, “Kt1” and “Kt2”

K1 (B, p, k) and Ky2(B, p, k) denote the kernels of Fig. 5.2 (¢) and (d), which has a Coulomb
photon propagator connects two nucleons associate with the pp-dimer propagator. Due to
the fact that Ky (B, p, k) and Kio(B, p, k) are very similar to each other, we will only show
the derivation of Ky (B, p, k) to avoid the repetition.

Consider now only the K (B,p, k), the four-momenta of the dimer and the nucleon
propagator associate with the 3He propagator are (%E—i—kzo, k-+ %K) and (%E— ko, —k+ %K),
respectively. The Coulomb photon propagator carries a momentum of I — k. The two
nucleon propagators associate with the pp-dimer have four-momenta of (%E —Vly, —€+ %K ),
and (%E +po+ by, p+ £ + %K ). The other nucleon propagator has a four-momentum of
(3E +po+ko,p+k+iK).

Similar to K., from dimer-NN vertices, we receive a factor (iy)* with y* = 77Z-. We also
include the (1/4/8)? from the two-body projectors, as well as a —4 symmetry factor and a

—e2. pg is on-shell by default. We give the expression below,

, v d*k , 2 2 ,
Z?’Ltl(B,]), ]{3) = 5(26) W<—Mkﬂ) ZDC(gE + ]{50, k + §K) ZC(B, k)

1 1 1 1
ZSN(gE — k(], —k + gK)ZSN(gE + po + ]C(),p +k+ gK)Qtl(B,p, ]{3) , (5335)

where My, is a constant matrix, defined in Eq. (5.3.6). The additional —1 is not physical
but a trick to have a positive form of kernel function. The function Q4 (B, p, k) represent

the inner loop integration, given by

d*¢ )
Qﬂ(Bapv k) - / (27’(’)4 (E . k)2 + )\2

1 1 1 1
iSN(gE — Ly, —L+ gK)iSN(gE +po+Llo,p+ L+ §K) . (5.3.36)
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Picking the pole at kg = £ — ﬁ(g —k)? +ie, and by = £ — m<5 — £)? + i€, we get

+1
Hu(B,p, k) = —oz47r2/ﬁk:2/ dcosO My C(B,k)

1
x k? 4+ p? + kpcost — My B

Qtl(B7p7 k) ) (5337)

where cos @ is the cosine value between the k and p. The Q4 (B, p, k) is reduced to

i 1 1 1
. B lop+L+-K) . 3.
f(B.p.k) /(27r)3(£—k)2+A25N(3 Trotlop bt oK) (5:3.38)

We use the Feynman parametrization in K, calculation and set photon mass to be zero,

and get
Hi(B,p, k) = My K (B, p, k) 4 C(B, k) | (5.3.39)
where,
+1 1
Ku(B,p,k) = aMNQW/_l d0059k2 TR T kpeosd — MnB

1
X —— n .
12k + p| /3p2 — 4MyB

Previous literature keep the form including non-zero photon mass. We tested both cases
and found it is numerically legal to use such a form. Moreover, one could solve the angular
integral analytically and get the expression in Eq. (5.3.7).

For future reference, consider now only the Ky»(B, p, k). The four-momenta of the dimer
and the nucleon propagator associate with the *He propagator are (%E + ko, k + %K ) and
(%E — ko, —k + %K ), respectively. The Coulomb photon propagator carries a momentum
of (I — p). The two nucleon propagators associate with the pp-dimer have four-momenta of
(%E — by, —£ + %K), and (%E +ko+lo, k+ £+ %K) The other nucleon propagator has a
four-momentum of (%E +po+ ko,p+ k + %K ). The rest of the calculation is identical to
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Ktl (B7p7 k)a giVGIl

+1 1

Kio(B.p. k) = aMny?2 dcos@
2(B,p.k) =« NW/_1 €08 k? 4+ p* + kpcosf — My B

12p + K|
arctan

1
X . (5.3.41
12p + K| V3k? —4MyB ( )

5.3.5 The box diagram “Kb”

Ky(B, p, k) denotes the kernel of Fig. 5.2 (e), which has a exchange nucleon propagator and a
Coulomb photon propagator connects the other two nucleon propagators. However, due to its
complicated structure, one may have difficulties using only Feynman parameterization. The
four momenta of the dimer and the nucleon propagator associate with the *He propagator are
(%E + ko, k + %K) and (%E — ko, —k+ %K), respectively. The Coulomb photon propagator
carries a momentum of £. The exchange nucleon propagator have a four momentum of
(%E +ko—Lly+po,k+L+p+ %K) The other two nucleon propagator connects both a
dimer and the Coulomb propagator have four momenta of (5 E — ko + (o, —k — £+ 3 K), and
(3E — po + Lo, —p — £+ 3 K), respectively.

Similar to K., from dimer-NN vertices, we receive a factor (iy)? with y* = ]\j—z. We also
include the (1/4/8)? from the two-body projectors, as well as a —4 symmetry factor and a
(ie)?. po is on-shell by default. We give the expression below,

, T d*k _ 2 2 .
Hy(B.p. k) = 2 (ie) /(%)4(—1\/[%) iDo(SE + ko b+ SK) iC(B,K)

1 1
X iSN(gE — ko, —k + §K> X (—iS%(B,p. k) . (5.3.42)

where My, is a constant matrix, defined in Eq. (5.3.6). The additional —1 is not physical

but a trick to have a positive form of kernel function. The —i€),(B, p, k) represent the inner
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loop integration, given by

) d*v 1 1
—ZQb(B,p,k):/( )4£2+/\2ZSN(3E+/€0—€0+p0,k+£+p+3K)
1 1 1
ZSN<3E ko + o, —k — €+ SK)ZSN(?)E —po+Lo,—p— L+ §K) . (5.343)
Picking the pole at ky = ——ﬁ(%—k)%—ie, and lo = £ +4po+ko— ( +k+p+L£)*+ie,
we get
a47r , [T -
Hy(B,p, k) = ﬁk dcosO My, C(B, k)W (B, p, k) , (5.3.44)
-1

where cos @ is the cosine value between the k and p. The (B, p, k) is reduced to

Bl
Qb(Bal%k):/Wm
1 1 1
X SN(3E —ko+bo,~k — £+ K )SN(3E po+lo,—p— £+ K) . (5345)

One can still try to use Feynman parametrization with

1 1 1—u 5
— =2 A B+(1—u— . 3.4
150 /0 du/o dv[uA+vB+ (1 —u—v)C| (5.3.46)

However, here using such Feynman parameters will lead to extremely complicated expressions
if one tries to get an simple and clean analytical results. Instead, we will only partially use
Feynman parameters for two nucleon propagators and then take the advantage of Fourier

transform. To simplify this expression further, consider

1

1B —/01 du [uA+(1—u)B]_2—/01 du [0? + A7 (5.3.47)
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with

A:—MN/SN(lE po+ Lo, —p — £+:1))K)

B:—MN/SN(gE ko + Lo, — k—£+%K),
E':£+%((2—u)k+(1+u)p)

Ay :i (—4BMy + k*(—(u — 4))u + 2kpcos 0(u — 1)u — p* (u* 4+ 2u — 3)) .

Notice we could make use the following Fourier transform formulae,

(62 4 a2)—1 _ /d?’rem*ﬁe_“r :
2 2 3 zf'ri —ar
(f +a ) /d re 87rae

By setting photon mass to be zero, we have,

d3€ 3 il 1 f\/ BT 3 il-r 1
o(B,p, k du d’rie” "N —— Vo] dPree” T ——
87r\/A 47rr2

/ \/_ )""Ab'

The integration over u can be done analytically, and gives,

M2 o1 1
A |k — p| k? + kpcos@ + p?> — BMy

Qb(B7p7 k) -

2k? — kpcos — p? . ( 2p% — kpcosf — k? >
X | tan™ + tan .
\/3p?> —4BMy|k — p| V3k? —4BMy|k — p|

(5.3.48)

(5.3.49)

(5.3.50)

(5.3.51)

Having a finite photon mass is not a problem, but numerically unnecessary for the box

diagram. One thus has,

%b(Bupa k) = Mkab(B7p7 k) Rk 5<B7 k) )

87

(5.3.52)



where,

41
1 1

Ky(B,p, k) = aM dcosd

(B, k) =« Nﬂ/_l cos |k — p| k2 + kpcos@ + p2 — BMy

2 2 2 1.2
x | tan™! 2k — kpcosb —p + tan™? ( 2p” — kpcost — k ) . (5.3.53)
V/3p?> —4BMy|k — p| V3k? —4BMy|k — p|
5.3.6 Off-shell Vertex Functions Kernels

In the calculation above, we have only considered the case with only on-shell nucleon energy
in Eq. (5.3.14), which is exactly what we need most of the time. However, later in this
chapter, we would have to take off-shell nucleon energy. It is straightforward to define B ,
which includes the binding energy and the energy shift from the three-body binding energy.
With off-shell nucleon energy, the vertex kernel functions can be done in similar ways from
previous sections, but may not be able to have as compact form as we have in Eq, [[cite eq]].

To sum up, the *He vertex function with off-shell nucleon is given by,

C(B7 éap) = IC + (MksKs(B7 EaP? k) + Mchc<Ba §7p7 k)

+ My Ko (B, B, p, k) + My K (B, B,p, k) + My Iy (B, B,p. k) ) @ C(B, k), (5.3.54)

where
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~ 2
Ky(B,B,p, k) :k—;Qo ( (5.3.55)

k2+p2—m§
kp ’
~ +1 1
K.B,B,p, k) =aMy2 dcos——+——
(5,5 ) o [ et g

1 k—
arctan ’ p\

>< —
k= pl V3EE = 4MyB 4 \/3p? — 4AMyB

+1
~ 1
Ku (B, B,p, k) :aMN27T/ dcost =
-1 k%2 + p? + kpcosf — MyB

1 12k + p|
arctan

>< —_—
2k + | \/3p2 — AMy B

+1
~ 1
Ky»(B, B, p, k) :CYMNQW/ dcosf —
-1 k% 4+ p? + kpcos — MyB
1 12p + K|
X — a ,
2p + K V3kZ — 4MxB
_ +1 1 1
Ky(B, B,p, k) :OéMNT('/ dcos® [ du =
-1 0o  Mn(1—u)(B— B)— BMy + p?+ pqcos + ¢>

X [4MN(1 —u)(B — B) —4BMy — p* (u2 + 2u — 3)

: (5.3.56)

(5.3.57)

(5.3.58)

— 2pqu(1 — u) cos @ + ¢*(4 — u)u} . (5.3.59)

[

One should notice that, choosing B=2RB , we are able to restore the on-shell expressions in
the previous sections. In K(B, B , D, k), we keep the integral over u, the Feynman parameter.
Due to the fact that Feynman parameters can be applied in varies ways, the expression of
Ky(B, B ., k) above is not the only correct one. However, all legit expressions are expected

to have the same numerical values.
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(a) (b) (c)

(d) (e)

:

(f) (2)

é é f.’ff@
(i)

(h) 6)

Figure 5.4: Diagrams contributing to the 3He charge form factor. Blue circles represent the
3He vertex function with full Coulomb interactions. Wavy lines are Coulomb photons. The
double line denotes either spin-triplet or spin-singlet dimers. Solid ellipse in (j) represent
Coulomb bubbles. The complex conjugate diagrams of (d), (e), (f) and (g), which are not
displayed here for simplicity, also contributing to the charge form factors. (a), (b) and (c)
are also the full diagrams contribute to charge form factors without Coulomb, but with no
Coulomb vertex functions.

-
-

R
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5.4  Calculations of Charge Form Factor Diagrams

We will write the charge form factors of *He in terms of the sum of a few diagrams,

Fsne(q*) = Fipe(¢®) + Fifie(¢°) + Fiie(®)

+ FRN Q) + Fii2() + FE(q%) + Fafe™(6%) + Fan(d®) + FyiP(6®) . (5.4.1)

where Fih.(¢?), F5.(¢?) and F$;.(q?) corresponding to diagram (a), (b) and (c) of Fig. 5.4,
respectively. FEH(q?), FE2(q?) , FB3(¢?) and FE®(¢?) represent contributions respectively
from Fig. 5.4 (d), (e), (f) and (g) together with their own complex conjugate. We only display
one topology here for simplicity. F$; (¢%) is the sum of diagrams (h) and (i) of Fig. 5.4, while
F5 (%) corresponds to diagram (j).

Here I provide details for calculating charge form factor diagrams. Conventions of

calculations are provided here. It is used for all form factor diagram calculations.

Conventions for the form factor calculation Form factor diagrams calculations are
performed in the Breit frame. Initial and final momenta of the 3He are K and P. The
external Coulomb photon inject no energy to the system but a momentum of ¢ = P — K.

The total energy of 3He in the Breit frame is given by £ = B — where B is the 3He

12
a4

binding energy.

5.4.1 Diagram A

Diagram A is shown in panel (a) of Fig. 5.4. It has the simplest structure among all diagrams
but is the most difficult one to calculate. The two pole structure inside the loop forces us to
boost the vertex functions. The four-momentum of the dimer, the nucleon on the left, and
the nucleon on the right are (3E+ ko, k+2K), (3E —ko, —l+3K), (3 E— ko, —l+ 3K +q),
respectively. Thus, diagram A is given by,

d*k ~ 2 2 , ~
Fi (@) = ch/ (QW)4ZC(B,B, k:)ch(gEJrko,kJrgK)Mg‘}{ezC(B,B,p)

1 1 1 1
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where p = \/ k2 — %k‘qm + §q2 is the relative momentum of the final He propagator. x = I%(j

represents the cosine value of the angle between k and g. The constant matrix, Mz, is

given by
1 00
Mg.={o 1 0] . (5.4.3)
000
There are two poles at,
ki lp_ 1 (— k:+1K)2+' (5.4.4)
=—F - — - i€ 4.
3 My 3 ’
kS g 1( k+1K¥k)2+’ (5.4.5)
=—F - — - 1€ . 4.
37 My g T

Notice that ki is on-shell for the initial vertex function but off-shell for the final. k§ is the
other way around. Remind reader that on-shell nucleon energy is Eq. (5.3.14). Define the
quantity, AFE, represents the difference between two poles, by,

! —(—k- q+1q) (5.4.6)

AE =k —ky = T 2

The expression of boosted vertex function is discussed at Eq. (5.3.54). At k¢ and k3, Fii(¢%)
and Fy¥ (¢°) are given separately by,
Al 2 [T A k?
F =7 L d— C(B,B+AE.p)M3, D(B— ——,k)C(B,k
3He 1ﬁC'/v / x2k’Q$—§q ( + p) 3He ( 2MN’ ) ( ’ )7
(5.4.7)

+1
FAO -7 2 -
3He wC/ k / dx2 kq:r . _q
]{32
x C(B,p)Mi . D(B — AE —

2My

k)C(B,B — AE. k), (5.4.8)
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with p and x defined previously in this subsection. In numerical implementation, it is

always better to combine the two parts together to avoid numerical singularities, we get

A 1
3He PpC / 2 kq q

2
X (C(Bv B+ AEap)M?éIeD(B - k—v ]{T)C(B, k)
2My
2
—C(B,p)M4 . D(B — AE — % k)C(B, B — AFE, k)) . (5.4.9)
N

One should notice that, we do not take k — k + %q, like in Sec. 4.4, to make the time

reversal symmetry of the expressions.

5.4.2 Diagram B

Diagram B is shown in panel (b) of Fig. 5.4. The four-momenta of the dimer and the
nucleon propagator associate with the 3He initial propagator are (%E + ko, k + %K ) and
(%E — ko, —k + %K ), respectively. While for the dimer and the nucleon associate with the
final *He state, the four-momenta are (2 E+po, p+3P) and (5 E—po, —p+: P), respectively.
The other two nucleon propagators have four-momenta of (%E +ko+po, k+p+ %K — %P)
and (%E + ko + po,k +p+ %K — %P + %q) From dimer-NN vertices, we received (iy)?
with 3% = 1\44_7;« We also include the (1/4/8)? from the two-body projectors, as well as a —4

symmetry factor. Fi5.(¢%) is thus, given by,

2 4 4
Y d*k d*p _ 2 2
Fg{e(qz) = (E)ch/ (271')4 / (27T)4ZC<B7P)ZDC(§E +Po, P+ gP)Migle

2 2 1 1
xiDc(3E+k:0,k+3K)zC(B kz)zSN( E — ko, —k+ - )ZSN( E —py,—p+ - P)

3 3
) 1 2 1 2 1 1
(5.4.10)

where the constant matrix ME,, is
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0 0 =6

Mi.=| 0o 0 V2. (5.4.11)
-6 V2 0
Picking the pole at kg = = — ﬁ(% —k)? +1ie,and py = £ — ﬁ(% —p)? + i€, we get

- +1 +1
FS.(¢%) = Zw/%z 22pC(BpM3Ef{e Bk/ dx/ dy/ d¢< )

2
{kQ +p* + kpz — gqu.r — 3Py + 9q2 - MNB]

2 1 1 -
X [/8 + 0%+ kpz + Shar + opay + 50° - MNB} , (54.12)

where z = k - q,y=p-q,and z = k - p are the cosines of the angle between k and q, p and
q and k and p, respectively. z is expressed by z, y and ¢ as

z=ay+V1—12/1—y?cosé . (5.4.13)

5.4.3 Diagram C

Diagram C is shown in panel (c) of Fig. 5.4. The four-momenta of the dimer propagators
associate with the *He initial and final state are (3E+ko,k+3K) and (2E+ko, k+2K +q),
respectively. The nucleon propagator connects both vertex function carries a four-momentum
of (%E — ko, —k + %K ). Three nucleon propagator in the inner loop have four-momenta of
(RE+ko+lo,k+2K+4£), (3E+ko+ Lo, k+ 2K +£+q), and (—ly, —£). With a symmetry
factor 4+4, and (iy/v/8)? from dimer-NN vertices, we give the expression for F$;.(¢%), by,

9 y? dk . 2 2 o
Fie(q7) = (—5)ch mlc(Bap)lDC(gE + ko, k + gK +q) My,

1

2 2
X iDC(3E+kO,k+ 3K)w(B k:)zSN( E— ko, —k+ 3K)F§He(3 ¢, k,p), (5.4.14)
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where p = \/k:2 2k -q+ 56 T$u.(B,q,k, p) represent the inner loop,

c d*?
F3He<B7Q7kap) = (2 ) ZSN( go,-f)

. 2 2 2
X zSN(§E + ko + lo, k + 3K + E)ZSN(BE + ko + Lo, k + 3K +€+4q). (5.4.15)
The constant matrix M, is
2 00

Mg. =10 2 0f . (5.4.16)
000

We stress that ( f) from the two-body projectors are not included in the constant matrix.

Picking up the pole at ko = £ — ﬁ(% —k)? + ie, and {y = —mfz + i€, we get
~ M
Pl = Zue [ 505 / PMGEBR) DY
_ 2q

-1
X arctan {q <\/3k’2 —4AMyB + +/3p* — 4MNB> } , (5.4.17)

where p = \/ k? 4+ %k -q+ %q2 is the relative momentum of the final state. x is the cosine of
the angle between k and g. The inner loop is evaluated with the Feynman parameterization
very similar to K.. I attach the inner loop result here for future readers checking their partial

results,

2

My -1
TS, (B, q.k,p) = %arctan{ (V3K = 4MyB + /35 — 4MyB) } . (54.18)

5.4.4 Diagram B-tri 1

The first set of “triangular” B diagrams are partially shown in panel (d) of Fig. 5.4. Full
set of F5i1(¢?) includes both Fig. 5.4 (d) and its complex conjugation.
The four-momenta of the dimer and the nucleon propagator associate with the *He initial

propagator are (%E +ko, k+ %K ) and ( %E — ko, —k+ %K ), respectively. While for the dimer
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and the nucleon associate with the final He state, the four-momenta are (§E+p0, p—l—%P) and
(%E —po, —P+ %P), respectively. The nucleon propagator which is outside of the triangular
loop has a four-momentum of (%E + ko +po,k+p+ %K — %P) The other three nucleon
propagators inside the triangular loop have four-momenta of (%E +po—~Xo, —E+p+§K — %P),
(%E + ly, £ + %K) and (%E + ly, £ + %K + q). The Coulomb photon propagator carries a
momentum of k + £.

From dimer-NN vertices, we received (iy)® with y* = ;7. We also include the (1/+/8)?
from the two-body projectors, as well as a —4 symmetry factor. Notice that, due to the
symmetry of the diagram’s structure, Fig. 5.4 (d) numerically has the same value with its
own complex conjugation. Here we only demonstrate one diagram’s derivation for concision.

TFHi(¢?) is thus, given by,

1 2 dik dip . 2 2
_Fgfe}(qz) = (y_>Z¢C/( /( 4ZC<B7p)ZDC(_E+p07p+ _P>(_1>M3§‘ﬁ

2 2 2m)4 27) 3 3
, 2 2 .. | 1. .., 1 1
X ZDc(gE + ko, k+ gK)ZC(B, k)ZSN(gE — ko, —k + gK)ZSN(gE — Po, —P + §P)

1 2 1

X ZSN(gE + kO + Do, k +p+ gK - gP)ZI‘i%BI-tI(le(Ba q, k7p) ) (5419)

where the constant matrix ME{! is
0 0 0

Mggl=[o o of. (5.4.20)

V6 =2 0

MBE includes an additional minus sign from the rest part. Notice that, one should carefully
use the M in numerical calculation. Use the Mf}fg without being carefully checked the
order of initial and final state vertex function will lead to numerical mistakes. il'3 (B, ¢, k, p)

represent the results from the triangular loop, given by

TB (B, g, k )—/ e s it tipt ik LP)
t 3He 7q7 7p - (27T)4 (k+£)2—|—)\22 N 3 p() 0 p 3 3
1 1 1 1
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Picking the pole at kg = £ — M(% — k)2 +ie, pp = £ - 2 (2 — p)? +ie, and

bo=2 +py— QMN (p — £ — 3q)* + ic for all three loops, we get

a3/ ol 1 1
3B g,k :/ Sn(=E+1y, £
3He( g, 7p> (271')3 (k +£)2 + )\2 N(3 + 05 + = 3

1

K)Si(; :

(5.4.22)

Recall in Sec. 5.3.5 we use Feynman parametrization for the two nucleon propagators and

then fourier transform for the remaining integration. Put everything together we have,

1
SERNE) = Zuc [ 50 [ SEe (B pMEE B
+1 +1 1 9 1 -1
x/ dx/ dy/ do |k* + p® + kpz — —kqr — =pqy + =¢° — My B
. 1 0 3 3 9

L —aM 1
X / du a4 N <3p2 — 2pquy + §q2u(4 —3u) — 4BMN>
0
4k 2 2 4> -1
« (k Fhpe ot hque - 0 e PG AT BMN)  (5.4.23)

where u is a Feynman parameter. Due to different ways applying Feynman parameters, the
expression can have different equivalent forms. x, y, and z are defined the same as in diagram
B. In numerical implementation, do not forget to multiply a 2 to include also contribution

from the complex conjugate diagram. For reference, from the inner loop we get,

N

! 1
I5L(B, ¢, k,p) = aMy / du (3p2 — 2pquy + §un(zL — 3u) — 4BMN)
0

Ak 2 2 4g? !
><(k2+kpz+kqux—%+p2—%—%—l—%—BMN) . (5.4.24)

5.4.5 Diagram B-tri 2

The second set of “triangular” B diagrams are partially shown in panel (e) of Fig. 5.4. Full

set of F52(¢?) includes both Fig. 5.4 (e) and its complex conjugation. F5i2(q?) is relatively
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easy due to the fact that using Feynman parameters can already leave a good analytical
result. The four-momenta of the dimer and the nucleon propagator associate with the 3He
initial propagator are (%E + ko, k + %K) and (%E — ko, —k + %K), respectively. While
for the dimer and the nucleon associate with the final 3He state, the four-momenta are
(%E +po, P+ %P) and (%E — Do, —P+ %P), respectively. The two nucleon propagators which
are outside of the triangular loop has four-momenta of ( %E +ko+po, k+p+ %K — %P), and
(%E +ko+po, k+p+ %K — %P%—q). The other two nucleon propagators inside the triangular
loop have four-momenta of (3E 4 po+ lo,€+p+ 2K — 3P+ q) and (35 — {y, —£ + 31 K).
The Coulomb photon propagator carries a momentum of —k + £.

Again, from dimer-NN vertices, we received (iy)? with y? = Z\%\z' We also include the
(1/4/8)? from the two-body projectors, as well as a —4 symmetry factor. Notice that, due
to the symmetry of the diagram’s structure, Fig. 5.4 (f) numerically has the same value

with its own complex conjugation. Here we only demonstrate one diagram’s derivation for

Lo LB 2y -
concision. 542 (q°) is thus, given by,

L B, o y? / d*k / d'p . 2 2 B2
2 3He (q ) ( 2 ) pC (2 )4 (2 )4Z ( 7p)2 0(3 p07 3 )( ) 3He

2 p 1 1 1 1
X iDo(GE + ko, k + SK)iC(B.k)iSy (5 B — ko, —k + 3 K)iSy (5 E —po.—p + 5 P)

3 3 3
1 2 1
XlSN(gE—f-k’o—f—po,k"‘p‘f'gK—gP)
1 2 1 d*t —ie?
iSy(=E + k k SK--P
><zSN(3 thkotpok+p+g 3 +q)/(27r)4(—k+£)2+)\2

1 2 1 1 1

where the constant matrix MEZ!? is

MEz=o o of. (5.4.26)
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The inner loop can be done very similar to what we have in Sec[[cite kc]], use Feynman

parametrization, one easily get,

dp o~
ngg — Zye / —k2 / %pQC(B, MB2¢(B, k)

/de/ﬂdy/%dgb/ du—

1 1 -
X {kz +p® + kpz + gk‘qm + 3Pqy + §q2 — MNB]

2 1 -
{kQ—l—p —l—kpz—gk:qx—gpqy—l—gq — MyB

N

1 2 1 1,5\
4+ -p® +k -k = ~¢
><< +4p+ pz+3qx+3pqy+9q

k2 + 192 4 kpz + 2kgr + L 4+ Lg2
X arctan\/ b D2 T 3200 T 3P9Y T 54 (5.4.27)

Z%Pz — BMy
x, y, and z are defined the same as in diagram B. In numerical implementation, do not

forget to multiply a 2 to include also contribution from the complex conjugate diagram.

5.4.6 Diagram B-tri 3

The third set of “triangular” B diagrams are partially shown in (f) of Fig. 5.4. Full set
of FEB(¢%) includes both Fig. 5.4 (f) and its complex conjugation. F5i3(¢?) is alike to
FFil(g%), we will not provide too much details here. The four-momenta of the dimer and
the nucleon propagator associate with the 3He initial propagator are (%E + ko, k+ %K ) and
(%E —ky, —k:+%K ), respectively. While for the dimer and the nucleon associate with the final
*He state, the four-momenta are (£E + pg,p + 2P) and (3E — po, —p + 3 P), respectively.
The nucleon propagator which is outside of the triangular loop has a four-momentum of
(%E +ko+po, k+p+ %K — %P) The other three nucleon propagators inside the triangular
loop have four-momenta of (3 E+po+Lo, £+p+3K —:P), (: E+po+Ly, £+p+3:K—:P+q)
and (%E — Ly, —L+ %K) The Coulomb photon propagator carries a momentum of —k + £.

Again, from dimer-NN vertices, we received (iy)? with y* = J@—”. We also include the

N

(1/4/8)? from the two-body projectors, as well as a —4 symmetry factor. Notice that, due to

the symmetry of the diagram’s structure, Fig. 5.4 (f) numerically has the same value with its

own complex conjugation. Here we only demonstrate one diagram’s derivation for concision.
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TFH3(g?) is thus, given by,

SER = (e [ S8 [ S icBpiDeE + pop+ S P)-1ME!
g die ’ v ot ) @) 3T PTy e

2 2
XZDC(3E+/€07"’+3 )iC(B, k)iSn(5 E+/€0+po7k+p+3K—§P)

1 1 1 1
X iSn(3E — ko, k:+3K)zSN( E —po,—p+ 3 P)

d*¢ —je2 2 1
E K—-P
x/( e +Xzzsm +po+€o,£+p+3 -P)

1 2 1 1

where the constant matrix MEZf is

0 0 0
MEZ=[o o of- (5.4.29)
V6 —v2 0

We do the same analysis like in diagram Btl, where Feynman parameterization and

Fourier transform are performed, leaving,

1 ~
SERNE) = Zuc [ 55 [ SEe (B nMEE(B Y

/de/ﬂdy/ d¢/ du—

1
X (—4BMN + 3p® — 2pquy + §q2u(4 — 3u)>

2 1 -
{kQ +p* + kpz — gkqx— gpqy—i- 9q - MNB}

N[

1 1 2\
X (—BMN + k* + kpz + §kq<2 —3u)z +p* + gpq(l —3u)y + %) . (5.4.30)

where u is a Feynman parameter. Due to different ways applying Feynman parameters, the
expression can have different equivalent forms. x, y, and z are defined the same as in diagram

B. In numerical implementation, do not forget to multiply a 2 to include also contribution
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from the complex conjugate diagram. For reference, from the inner loop we get,

1 1 _%
Die(B, ¢,k p) = OéMzzv/ du (—4BMN +3p” — 2pquy + 2q"u(4 - 3u))
0

1 1 2\
X (—BMN + k* + kpz + gkq(2 — 3u)r + p* + gpq(l —3u)y + %) . (5.4.31)

5.4.7 Diagram B-box

Diagram B-box is partially shown in panel (g) of Fig. 5.4. Full set of FZP(¢?) includes
both Fig. 5.4 (f) and the one with external photon connects to the nucleon field at the
top. The four-momenta of the dimer and the nucleon propagator associate with the 3He
initial propagator are (%E + ko, k + %K) and (%E — ko, —k + %K), respectively. While
for the dimer and the nucleon associate with the final 3He state, the four-momenta are
(%E +po, P+ %P) and (%E — Do, —P+ %P), respectively. There are four nucleon propagators
in the loop with four-momenta of (%E +ly—po,—p— L€+ %q), (%E +/ly—ko,—k —£€— %q),
(%E + by — ko,—k — £ + %q), and (%E +ko+po— Lo,k +p+L— %q) The Coulomb
photon propagator carries a momentum of +£. From dimer-NN vertices, we received (iy)?
with y* = §7-. We also include the (1/ V/8)? from the two-body projectors, as well as a —4
symmetry factor. Like previous calculation, we only loop at one specific diagram in this set.

$Fi.(¢?) is thus, given by,

2 4 4
Bb, on Y d*k d*p . , 2 2 Bb
Fi(q®) = (E)ZwC/ (2t / <2W)4ZC(B7P)ZDC(§E+I?0,P+ §P>(_1)M3He

2 2
, 1 1 .. 1 1
X ’LSN<§E — ko, —k + gK)ZSN(gE — Do, —P + §P)

x T80 (B,q.k,p) (5.4.32)
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where the constant matrix MEZ? is

I V30
ME =1_-v3 -1 of. (5.4.33)
0 0 0

8% (B, q,k, p) represent the results from the inner loop, given by

d*v 1 1 1
Ffﬁe(Baq,kap):/(Q ) ’LSN( E+{ly—po, —p — £+ )ZSN( E+ 4y — ko, —k — K—EQ)
. 1 5) 1 —ie?
XZSN(gE—FEo—k‘o,—k—«e—F )ZSN( E+k‘0+p0—€0,k+p+ﬁ——q)£2+)\2 .
(5.4.34)
We pick the poles at ky = £ — ﬁ(% — k)2 +ie, po = £ — ﬁ(% — p)? + i€, and
ly=% + ko + po — (k +p+£€— ) + i€ for all three loops. We get,
1
SER) = Zue [ 5ok [ BB pMEEB. )
—OéMN +1 +1 2T lu SCL +Q2
/ dx/ dy/ d(b/ du/ v Q2 —|—a2) , (5.4.35)
where,

1 1
a’* = —BMy + ZkQ (—v* —2u(v+1) —v* =20 +3) + ékrpz(u—i—v —1)(u+v)

1 1
—ékqa:(u—%)(u+v—1)+36p (—9u”® — 18uv + 36u — 9v* + 36v)

1 1
+ —pqy (6u® — 6uv — 24u — 120* 4+ 120) + —

% 36 (—u2 + duv + 4u — 40* + 41)) , (5.4.36)
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and

1 1
Q* = %kz (9u® + 18uv + 18u + 9v* + 180 + 9) — §kpz(u +v—2)(u+v+1)

1 1
+ Ekqm(u +u+1)(u—2v—-2)+ %]ﬂ (9u® + 18uv — 36u + 9v* — 36V + 36)

1 1
— gpqy(u —20-2)(u+v—2)+ %(f (u® — 4uv — du +40° + 8v +4) . (5.4.37)

u and v are Feynman parameters defined in Eq. (5.3.46). Due to the different ways of
applying Feynman parameters, one could expect several equivalent expressions. Here we use
the Feynman parametrization on the three remaining nucleon fields of the inner loop. Then

we perform a Fourier transform with the equation below,

-3 1 l-r 1 —ar 1
(?+a%) " = Z—l/d?’ree —— <a —i—r) : (5.4.38)

All other notations, x, y, z and ¢ retain the same definition as in diagram B.

5.4.8 Diagram C-spectators

F§2.(¢?) is represented by the sum of panel (h) and (i) of Fig. 5.4. The four-momenta of the
dimer and the nucleon propagator associate with the *He initial propagator are (%E + ko, k+
%K ) and (%E — ko, —k + %K ), respectively. While for the dimer and the nucleon associate
with the final *He state, the four-momenta are (3 E+po, p+5K +q) and (: E—po, —p+3 K),
respectively. The Coulomb photon propagator carries a momentum of (k — p). The inner
loop of Fig. 5.4 (h) and (i) are labeled by 'S (B, q, k,p) and T'5iz (B, q, k, p), respectively.

Like the diagram C, a +4 symmetry factor and (iy/+/8)? are included. The full expression

is simply,
2 d*k d*p 2 2

FC () = (=L z / / iC(B.p)iDo(=E K + q)MSs

3He(q ) ( 2 ) »C (271’)4 (27r)4lc( D )Z 0(3 + Do, P+ 3 + q) 3He

X iD (EE + ko K+ 21{)@(2(3 k)iz’S (EE — ko, —k + 1K)

3 »*T3 "k —p2+ a2 N3 0 3
) 1 1 C's C's

X ZSN(gE — Po, —P + gK) (ZFgHé(Bv q, kap) + ZF??Hz(B7 q, k7p)> ) (5439>
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where p' = |p+ %q| is the relative momentum of the final vertex function, and the constant
matrix is given by
200
Mg =102 0f . (5.4.40)
000
I$H(B, g, k,p) and T$52(B, g, k,p) denotes the inner loop of Fig. 5.4 (h) and (i), given

separately by

d*¢ 2
iFgcﬁl(B,q,k,p)z/(4 E SiSn(— Ko,—ﬂ)zSN( E+ko+£o,kz+£+3 )
2 2 2

and

d*¢ 5
F§§2<B,q,k,p)=/(4 B 55N (= bo, —£)iSx (> E+ko+€o,k+£+3 )

2 2
X SN (SE +po +lo.p + £+ SK)iSn(g E+po+€o,p+£+3K+q)- (5.4.42)
Picking up poles at £, = —% +ic, kg = :E — ﬁ(—k + 1K)? +ic, and py = 3 E —

ﬁ(—p + s K)? + ie, we get,

+1
FS: (¢ Zw/dk /dp 2/ dx/ dy/ d¢ C(B,p)MS:C(B, k)

—aM? 1-u 3
ﬁCsl 2 QCSQ 3 44
76 (k — +A2/ du/ ( AT ) (5.4.43)

where A®! and A®*? are defined by

1

ACsl — _<_ 12BMy — 3K*(u+v — 4)(u + v) — 6p(u +v — 1)(q(u + 1)y

12
—kz(u+v)) +6kqr(u(u+v—1)+v) = 3p*(u+v—1)(u+v+3) +¢*(u(2 — 3u) + 1)> ,

(5.4.44)
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and
1
AC? = Tz ( —12BMy — 3k*(u+v — 1)(u+v + 3) + 6k(u+ v — 1)(pz(u + v) + quz)
—3p*(u+v—4)(u+v) — 6pquy(u +v — 2) + ¢*u(4 — 3u)> . (5.4.45)

To get this result, we use Feynman parametrization for the inner loop with u and v denoted

as Feynman parameters. Since there are three propagators,

5.4.9 Diagram C-pp

Diagram Cpp is shown in panel (j) of Fig. 5.4. The four-momenta of the dimer propagators

associate with the *He initial and final state are (3E+ko, k+2K) and (3E+ko, k+32K +q),

respectively. The nucleon propagator connects both vertex function carries a four-momentum

of (3E — ko, —k + 1K). With a symmetry factor +4, and (iy/v/8)? from dimer-NN vertices,

we give the expression for F<;P(¢?), by,

FOPP (%) = —y—2 ﬁ j ; 2 2 Cpp
) = () Zue [ GiCB DD E + bk SK +a) M

« z‘DC(gE ko K+ gK)z‘C(B, k)z’SN(%E B %K)(_rgf;fe(B, k), (5.4.46)

where p = \/k2 + %k: -q+ %q? The constant matrix M, is

000
M =100 of . (5.4.47)
0 0 4

—F3CI§§ (B, q, k) represent the inner loop integral. The inner loop is actually alike to a LO

two-body charge form factor diagram. Define following quantities,

2 2 1
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The benefit of defining those quantities is to keep symmetric forms of the equations. While
the two nucleon propagators connects to the initial dimer have four-momenta of (—kg, —k;)
and (E" + ko, k' — %q + k1). The two nucleon propagators connects to the final dimer have
four-momenta of (—ksg, —k3) and (E’ + k3o, k' + %q + k3). The three nucleon propagators
in the middle loop have four-momenta of (—ka, —k2), (E' + koo, k' — 3q + k2), and (E' +
koo, k' + %q + k5). Define the two nucleon propagator,

1 -1
iSon(E,p) = (E - —p*+ z'e) . (5.4.49)
My

We can write down the expression for the inner loop,

d*ky d*ksy d*ks
— TS (B =
3He( 7q7k) /(27‘(’)4/<27T)4/(27T>4

X 1SN (—kio, —k1)iSn(—kao, —k2)iSn(—ks0, —k3)

) 1 . 1 1 1 1 . 1
X ZSN<E/+k’30, k/—i‘ §q+k3)sz(k5+§k’+1q, k2+§k’+1q, Exb)ZSN(E/+k20, k'+§q+k2)

1 1 1 1 1 1
X 1Sy (E'+ ks, k,—§Q+k2)iXa(k2+§k,—an kiﬁ*ékl—z% E, . )iSn(E'+ko, k,—gfﬁ‘kl) ;

(5.4.50)

where y is the momentum-space Coulomb four-point function in the center of mass frame,

related by the full Coulomb Green’s function G¢(FE) by,

More about the full Coulomb Green’s function can be found in Appendix A.4. E,, and E,,
are defined by

1 q
E,=F——(k - 2)? 5.4.52
Xa 4MN( 2) ’ ( )
1 q
E, =F — —(k+ ). 4.
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2
Picking up the pole at kjy = _2]]\€4_1N + i€, koo =

find
/ / 1 1 ! 1
SN(E' + ko, k' = 5+ k1) =Son (By, ki + 5 (K = 54))
1 1 1
SN(E/ + kgo, K — §q + kg) —)SgN(EXa, k2 + §<k/ - §q)) )

1 1
S (E, + kg(),k + 2q—|— kg) _>82N(Exbak3 + = (k/ 2 )) ,

1 1
SN(E" + ko, k' + 2q+k:2) —San(Ey,, ko + = (k’ 54 q) -
Fggﬁ’(B, q, k) can be reduced to

LSi(B, ¢, k) = / (ﬁg / (C;rk; / (C;T]?

1 1 1 1
XSzN(Exbak3+ (k/ ))Xb(k3+ k’+ q,k2+ k'+ 19 Ey,)San(Ey,, ko + (k'+ =q))

2 2
1 1 1 1
XSQN(EXG, k2+ (k ——q>>Xa<k2+ k —Zq,kl—i- k 4 Xa)SQN(EXw k1+§(k —5(])) s
(5.4.54)
Notice that here we have removed the —1 in front of Fgﬁg (B, q, k). Define,
K, =k + (K — Lq), K = ks 4 Sk + Lq) (5.4.55)
L™ 2 D) 2% o

We get

A3k A3k d*k!
FCpp B _ 1 2 / 3
3He( g5 k) / (271')3 / (27‘(’)3 (271’)

< (K ICo(B ks + 5 (K + S ks + S (K — ZalCo(B IR | (5.4.56)

where Eq. (5.4.51) is used to reduce the expression. Using the equation,

s [ Bk B
/d r/ oy RN = (01 (5.4.57)
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where ( | and ( | are used to represent the momentum space and coordinate space,

respectively. We find,

MR k) — [ OIG(B Ik + 50 + S0k + 0 — JalGe(B)0)

(5.4.58)

Similarly, we have

PB.R) = [ dre 201G (B )(r1Ge( B, )
= 47r/drr2j0 (%) Go(Ey,;0,7)Ge(Ey,;r,0) . (5.4.59)
Notice that the Coulomb Green’s functions have one end at zero separation, only the S-wave

part of these will contribute. Here we will take only S-wave from the partial wave expansion

of the Coulomb Green’s function, given by

W (2vr)

M ke ¢ /2

GO(E;0,r) = — =811+ 29 / , (5.4.60)
27 ¥ r
where
Y =\ —QMRE =V —MNE (5461)
M

ke =7 ZsMror = TNO‘ . (5.4.62)
Mp, is reduced mass. In this case, Mp = 2”. 7y and Zy are charge number of particles.

« is the fine structure constant. W k. | /2 ,(2797) is the Whittaker-W function defined in
,\/ )
Appendix. A.5.
Back to the F(q%), we get,

+1 2 _
FSP (%) Zw/—/&/ dx —c ) MSPC(B, k)

/drr ]0( )GC(EXb,O r)Go(Ey,;7,0) . (5.4.63)
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The coordinate space integral receive its major contribution from the low r range. The
integrand decreases and gets close to zero rapidly due to the Whittaker-W function, which
is proportional to e™?". If one integrates from 0 to +oco or to a large hard cutoff, there will
be huge errors. On the contrary, if one puts too many mesh points at a super small r range,
python may not be able to give correct results. Only with carefully selected parameters or

with Mathematica can one get stable and reliable numerical results.

5.5 The Third Zemach Moment and Numerical Imple-
mentation

The third Zemach moment is a quantity that is relevant for the calculation of the lamb shift.
It is defined by [44]
¢’ (R)

[Fg () =1+ —3 | (5.5.1)

) 48 [ dq
R =2 [ U
< E>(2) T Jo g

where Fg(q?) is the electric form factor. (R%) is a numerical value from fitting form
factor data. At ¢> — 0, Fr(¢®) can be expanded by

1 1
Fp () =1- 5 (Bh) ¢ + 5 (Ri)a' + .. (5.5.2)

We calculate the third Zemach moments numerically by separating the integration region

into 3 parts,

48| [T dg ¢ (R2
<R%>(2) . [/O 1 (ngpansion(qz) -1 + %

T q*

q2 dq q2 R2 +o00 dq q2 2
+ / 4 (F;%terpolation(QQ) -1+ —<3 E> —+ / — [ -1+ %
a 4 .

4
1 2 q

, (5.5.3)

where ¢; is a small value up to a few hundred MeV. ¢, is a value smaller than the cutoff but

large enough to ensure Fg(q3) — 0.
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At very small ¢, the q% can cause numerical problems. Taking the expansion of Fg(q?)

gives,

1 RQ 2 R4
Fopansion(@) = 1= 5 (Rp) ¢ + << 3’é> + <6g>> ¢t +O(q). (5.5.4)

The first two terms in the expansion are canceled with the other terms in the integrand,

1<F2 (qz)_Hq%R@):<<R%E>2+<R;§>)+O(q2). (555)

leave

q4 expansion 3 36 60

However, the expansion fails at larger ¢ > ¢;. In this case, instead, we use interpolated

function, F? (¢?). Since we have used hard cutoff for our numerical implementation

interpolation
of form factors, we are not able to get meaningful data as ¢ — oo. Notice that, at ¢ > ¢o,

Fr(¢?) < 1, we could ignore F(q¢?) terms and are able to integrate ¢ from ¢, to +o0.

5.6 Results

The charge form factor results of *H and 3He as functions of ¢, in the absence of Coulomb
interactions at leading order, are shown in Fig. 5.5. The hard cutoff we use is at 20 GeV.
Leading order charge form factor results of 3He with and without Coulomb interactions
as functions of ¢ are shown in Fig. 5.6. The hard cutoff is also 20 GeV. The result without
Coulomb is evaluated at triton binding energy, while with Coulomb we take the *He binding
energy. We observe the Coulomb interaction has obvious effects to *He charge form factors.
At small ¢, we are able to expand the charge form factor like in Eq. (4.5.1). By fitting

the data, at LO, for *H without Coulomb interactions, one finds
(r’(*H, ¢, LO)) = 1.28 fm®, (r*(*H, ¢, LO)) = 5.80 fm* , (5.6.1)

where ¢' denotes without Coulomb interactions. For *He without Coulomb interactions, one
finds,
(r’(*He, ¢', LO)) = 1.57 fm?, (r*(*He, ¢', LO)) = 9.05 fm* . (5.6.2)
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Figure 5.5: Leading order results, in the absence of Coulomb interactions, of the charge
form factors of *H and 3He as functions of q.
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Figure 5.6: Leading order results of the charge form factors of *He with and without
Coulomb interactions as functions of g. The charge form factor without Coulomb is evaluated
at triton binding energy.
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By adding Coulomb interactions at leading order, we have
(r’(*He, C, LO)) = 1.66 fm?, (r*(*He, C, LO)) = 10.87 fm* . (5.6.3)

The third Zemach moment is defined in Eq. (5.5.1). We find third Zemach moments with

and without Coulomb interactions at LO are
(RL(*He, ¢, LO)) 2 = 8.34 fm®, (R%(*He, C, LO)) (2 = 9.91 fm® . (5.6.4)

We will work NLO in the future work.
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A Special Functions

Most of the special functions involved in this dissertation are related to the Coulomb related
problems. For more information, David Gaspard’s paper is a good reference about the regular
and irregular Coulomb functions [51]. Emil Ryberg also has valuable discussions about the

Coulomb wave functions [124].

A.1 Coulomb wave function

The Coulomb wave function is a solution of the Coulomb wave equation. They are used to
describe the behavior of charged particles in a Coulomb potential. It is a special case of the
confluent hypergeometric function of the first kind.

The partial wave expansion of the Coulomb wavefunction in the coordinate space is given

by

() = %Z(% L 1)ite Ry, p)Pu(p - 1) (A1)

Here, we define that p = pr, and n = k¢ /p, where the Coulomb momentum is defined by
ko = Z1ZyaMp. The « is the fine structure constant. The o = arg['(¢ + 1 + in). The Z;
and Z, are the charge numbers of the relative point-like particles. For example, the hydrogen
atom would expect an overall Z; 7, = —1. The nucleus of B, with a tightly bound °Be
core and a halo proton, would expect a Z;Z5 = 4. Fy(n, p) is the Coulomb function of the
first kind discussed in Sec. A.2.

Note that,
. L+ 1+ 1)
= re+1 == A2
For convenience, here we provide s- and p-wave Coulomb wave functions,
po(r) = Cpe’™e P M(1 —in, 2, 2ip) , (A-3)
WS (r) = ipCy(1)e'™ e M(2 — in, 4, 2ip) P(p - T) . (A.4)
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The Gamow-Sommerfeld factors are defined in Sec. A.S8.

A.2 The Coulomb function of the first kind

The Coulomb function of the first kind, also known as the regular Coulomb function, Fy(n, p),

is given by,

Ey(n, p) = Ae(n) My 141/2(2tp)

(A.5)

where M;;, 141/2(2ip) is the Whittaker-M function defined in Eq. (A.18). The A(n) is defined

by,

Ag(n) = T'(+1+1n) o= N/2=i(E+1)m/2
2I(2¢ + 2) '

Note that,

IT(0+1+1in)| = VT + 14+ + 1 —in)
Define the Gamow-Sommerfeld factor C,, = e~™/2|['(1 + in)|, we have,

2 27

noog2m 1

which is proved in Sec. A.8

Fy(n, p) is sometimes also defined in the following form,
Fy(n,p) = Co(n)p™eFP M0+ 1 +in, 20 + 2, F2ip) .
The choice of signs is immaterial. In the paper, we will go with
Fy(n, p) = Ce(n)p"™ e P M (€41 — in, 2 + 2,2ip) ,

for consistency.

Cy(n) is the normalization coefficient, defined as,

131

(A.8)

(A.9)



’F<€ +1+ Z'77)|2£e—7rr]/2 )

Celn) = T(20 +2)

(A.10)

One can easily show that these two expressions of Fy(n, p) are equivalent.

A.3 The Coulomb function of the second kind

The Coulomb function of the second kind, also known as the irregular Coulomb wave

function, G;(n, p), is given by

Gi(n, p) = iFi(n, p) + Bi(n)Win,e41/2(2ip) (A.11)

where W, 111/2(2ip) is the Whittaker-W function defined in Eq. A.18 and the coefficient

B; is defined as,
ewn/2+i€7r/2

Bu(n) = .
) = T 17

(A.12)

A.4 Partial-wave projected Coulomb Green’s function

The full Coulomb propagator, G¢(FE), is defined recursively. The Coulomb Green’s function,
in the coordinate space (using round brackets), can be expressed by the Coulomb wave

function, as
dp PSS (r)
27)3 B — p?/2Mp +ie

Go(E;r,v') = (r|Ge(BE)|Y) = / ( (A.13)

In the momentum space (using angle brackets), the Coulomb Green’s function is defined as

Go(E;k,K) = (k|Go(E)[K) . (A.14)

The partial wave expanded Coulomb Green’s function is

(r1|Ge(B)[rs) = > (20 + DGE (B 11, m) Py(iy - 1) - (A.15)
/=0
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The Green’s function for a specific partial wave is given by

3 *
©) . B °p Fo(n,p1)F;(n,p2) 1
Go (E,n,rg)—/(%rg) o R (A.16)

For the bound-state partial wave Coulomb Green’s function, it is possible to have a non-
integral from. The calculation take advantages of the independence of Coulomb function of
the first and the second kind. The boundary conditions at » = 0 and r — oo are considered.
Since we don’t actually use too many details in our paper, here we will just provide expression

of a special case at £ =0, p — 0,

M W1 ja(—2i
GO (=B;0,p) = ——;pr(um) ’7’1/;( i) (A.17)

A.5 Whittaker function

A Whittaker function is a special solution of the Whittaker’s equation. Two solutions are

given by the Whittaker-M function and the Whittaker-W function by

M, . (2) = e=2/2 15 (n—r+3,1+2u2) ,

’ (A.18)
Wieu(z) = e #2020 (h—r+3,1+42p2) .

The Kummer function, M (a,b, z), is defined in Eq. (A.21). The Tricomi function,
U(a,b, z), is defined in Eq. (A.23).

For future convenience, a particular Whittaker-M function is given,

Mo e1/2(2ip) = €2 (2ip) M (£ +1 — i, 20 + 2, 2ip) (A.19)

and a particular Whittaker-W function is given,

W_ines1/2(—2ip) = e (=2ip) UL + 1 + in, 20 + 2, —2ip) . (A.20)
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A.6 Kummer functions

Kummer’s function M (a, b, z) is also known as the confluent hypergeometric function of the
first kind.

It is defined as follows,

(A.21)

where

(A.22)
a™ =ala+1)(a+2)--(a+n—-1),

is the rising factorial. a(™ is sometimes written as (a),, = I'(a 4+ n)/T(a), which is called

the Pochhammer symbol.

A.7 Tricomi function

The Tricomi function, U(c, 3, z), which is also known as the confluent hypergeometric

function of the second kind, is given by

r(1—p)

T(B—1) 4
WM(a,ﬂ,z)Jr—zl Ma—-p+1,2-052) . (A.23)

U(O‘7ﬁaz) = F(Oé)

The M(a,b, z) is known as the Kummer function.

A.8 Gamow-Sommerfeld factor

The Gamow-Sommerfeld factor is used in both halo-EFT and EDM projects, defined by,

C, = e ™20(1 —in)| .

The squared value is then,

2 —T . 2 - . .
Cy=e ™1 —in)|" = e ™T(1 +in)l'(1 —in) .
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The I'(1 + in)['(1 — in) is evaluated as follows,

L1+ in)(1 —in) = / si"e_sds/ t~ et dt
0 0

o Uz‘n p o'} —ug
—/0 —<’U—|—1>2 U/O ue U
N———

=1

__™
~ sinhmn
where u = s +t,v = s/t.
Thus we get that,
2
2= "1 (A.24)

n e2m _ 1 °

Note that, this is in particular for the s-wave. To generalize it to higher partial wave, we

define,

Co(0) = e ™00 4+ 1 4 in)| . (A.25)

For convenience, we also write down the expression for |T'(2 + in)],

D2+ in)| = VT(2+inT(2 —in) = /(1 +in)(1 — in)/T (1 + in)T (1 — in)

=m!r<1+m>|:(<1+n2> ™ ) | (A.26)

sinh 7

N|=
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B Hadronic Amplitudes for Gamow-Teller and Fermi
Transitions

Below we will discuss the calculations for the hadronic matrix elements for S- and P-wave
halo nuclei. The weak vertex factors are moved into the leptonic part. In all calculations, we
have ignored the recoil effects. This is treated the same as textbooks. Let us firstly look at the
energy conservation with recoil effects and we are able to see it is truly negligible. Then we
take the simple energy conservation relation without recoil effects in our calculations. Next,
we give details of hadronic currents of S-wave with and without final state interactions.

P-wave amplitude without a final state interaction is given as well.

B.1 Energy conservation (with recoil)

The energy conservation relation in our system is simply
Eoy=Am—S, =T+ T+ E.+ Eye (B.1)

where S, is the one neutron separation energy. Am = m,, —m, ~ 1.29 MeV is the mass
difference between neutron and proton. Tj. and T}, are the non-relativistic kinetic energies
of the core and proton. E, and FE,. are the energies of the electron and neutrino. The mass
of neutrino is negligible is our case.

Considering the recoil effect, we arrive at an equation of F,.,

2

1 /
EO — p + —(pz -+ ES — 2peEye COS 8Ve> + pg + mg + EI/e ) (B2>
2mp  2my ©

where mpg is reduced mass. my is the total mass of proton and core. The cos is the cosine

between outgoing electron and neutrino. The equation above is a quadratic equation about

El/@?

1 De 2 p?
— VE? +(1 - 2= 0, )E, +(—Ey+ + 24m24+ =2 )=0.
( 2ma ) Ve ( ma costy ) By, +( 0 2mp Pe T e 2ma )
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We could solve the E,, easily, given that

b+ Vb?% — 4ac

E, = B.3
e i (B.3)
! (B.4)
o= — .

2my

Pe
b= (1— 0,) . B.5
(1= 2o, (85)

P’ P2

—(_E 2 24 _Te )y B.6
c=( o—|—2mR—|— pe+me+2mA) (B.6)

By using the notation above, we could express the S-wave decay rate without final state

interactions with the recoil effects,

GZmA( +3 3
L=~ A 1) / dp / dpep’peFe(n, E { —5)
my
2my Pe o 2C .8 Pe o 2C:3 2
- — — (1 — . (B.7
LeaZlig-Zopo ooy Zop o 2l b e

One can numerically implement this expression and find that it basically has no difference
from the case with no recoil effects. So we are correct to make the assumption of ignoring

recoil effect. Thus, we are allowed to use the energy conservation below.

B.2 Energy Conservation (without recoil)

Start from Ey = Am — S,, = Tie + Typ + Ee + E,e , if we ignore recoil terms we have,

p2+mi+ B . (B.8)

This is what we used in the main body.

B.3 Hadronic current without resonant final state interactions in

S-wave

Here we give the amplitude in diagram (a) of Fig. 3.1, which describes the most simple

process in halo beta decay. The two body dressed propagator, which stands for the two
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body halo system bound state, firstly breaks up into two parts due to the weak decay. Then
the proton and core are scattered by Coulomb interaction. The initial state and the final

state are,

initial state: [i4) dressed dimer field ,

final state: |¢.) two-body Coulomb state .

The total amplitude shown in the diagram above is simply given by,

A (p) = (beltba) = / (;ZT’;?,WC!pxpw (B.9)
where
(p|ta) = ta(p) = % : (B.10)

is the wave function of the dimeron. Note that we have ignored —¢ here in the appendix. Z is
the renormalization factor. g is related to the one neutron separation energy by vo = /27.5,.

Another piece is the well-known Coulomb wave function in the momentum space, given by

d*r
(2m)?

d’r

G ) (B.11)

c

(6lp) = 3 (p) = / ) (e]p) = /

The subscript ¢ indicates that this is a Coulomb wave function. Put everything together, we

have

(a) . d3k QmR %
L) = Vg [ i) (B.12)

Here we consider only the S-wave Coulomb wave function, which is well known. One can

easily get higher order results with similar calculations. Thus, in S-wave, we have the
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following expressions,

a 2mR arctan
Aé)(p) - ‘/ch(np)pz o 2 arctan(|p|/0) 7 (B.13)
0
(a) 2 2 2 2mR ? 4ny, arctan(|p|/7o0)
AL @I = 2P C0) (370 ) e . (B.14)
0

The Sommerfeld factor is defined previously. ), is the Sommerfeld parameter, which is

defined as n, = aZ,Z.mg/|p| = kc¢/|p|, with Z, =1 and Z, = 4.

B.4 Hadronic current without resonant final state interactions in

P-wave

Here we provide P-wave calculation as well. 3'Ne is an ideal system for a P-wave calculation.
The following results would be useful in the future with more experimental progresses. Note
that all P-wave related notations only apply to this P-wave subsection. Notations elsewhere
are in S-wave by default.

The P-wave contribution is given as

A (p) = Zogh / d*k o +,yk7)n/(2m3)wd(k’9kr) : (B.15)

where gl and Z, are defined in Sec. 2.4. 1. (k,0k.) is the Fourier transformed P-wave

Coulomb wave function, which is given as follows,

3 -

’QDd(k,(gkr) :/We T cl(E;r,ri), <B16)

where p = kr. Thus, the P-wave Coulomb amplitude can be expressed by

(a ) dsk Em, d3r kR
Al =2mrg1\ Zx (k2 ( e T (B 7, O) (B.17)

+2) 27)3
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Using the expression of the P-wave Coulomb function in coordinate space given in the

Appendix A.1 and integrate over k, we get

sz

AL (p) = / drn(p)e™ " (1 + 7or)

Ar? 3T

4
= Vinlh) (B.18)

where ¢1(p) = p Cy,, (1)e" e P M (2 —in,, 4, 2ip) as in Appendix A.1. Solving the coordinate

space integrals leads to

a /— Rgl ic
A(Clm 1-{—77%0%6 '

4T 2ip
X - y Fi(2 —1n,,4;2; +
lm (2 1( Tlp p—l—%)
2ip

270 .
- Fi(2—-1in,, 4,3, ———— , (B.19
P+ 2 F ( Mp Zp—l—’y())> ( )

where, o F(a, b; c; 2) is the famous Gauss hypergeometric function, given by,

. (a)n( abz ala+1)b(b+1)2?
Fi(a,b; —1 —— e B.2
2 F1(a,b;c; 2) Z © tot et 1) 2‘+ (B.20)

n=0 n

B.5 S-wave halo nuclei with final state interaction

We also consider resonance and large negative scattering length as final state interaction.

In each case, we need to sum over infinite possible re-scattering diagrams to get the total

amplitude. The calculation of such T-matrices was previously considered in Refs. [71, 88].
To include the final state interaction, we introduce a final state interaction Lagrangian

here,

Lii=p' (i&e +3

A& A& ,
mp> P +Xs { (Zat 2Mp0> - AO} X

— g ['pxs + Heel] . (B.21)
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where ¢, p and Y are core, proton and 'B dimeron field, respectively. The free core
Lagrangian is as in Eq. (3.2.1). The notations are the same as in Appendix B.3. Fig. 7
expresses the first Coulomb re-scattering process. Again, like in the case without final state

interaction, we define the initial and final state as,

initial state: [iy) dressed dimer field ,

final state: |¢.) two-body Coulomb state .

The Coulomb bubble in the middle is evaluated by the Coulomb propagator,

3 d3q |77/)C> <¢C|
1 P : E)=2 B.22
Coulomb Propagator: G¢(FE) mR/ oD — i ( )
. ! Vsl dgq w: (k/)wc(k)
Go (E;k, X) = (K|Ge(BE)|k) = 2mR/ Gr)ppt— @ tic (B.23)
The amplitude of this diagram is given by

Bo(p) = (c|ViGe(B)|va) (B.24)

d*k d’k d’k . .
= / (277')13 / (277')23 / (27T)3 <77Z}C|k><k|‘/8|k2><k2|GC|k1><k1|¢d> ) (B25)
(ko G. ki) = G¢ (E; ko, ky), which is defined above. (p’|Vs|p) is the local potential,

denoted as (V;), defined as follows,

2
k| Vs|ks) = g2 Da(B;0) = ——L0 B.2
Notice we could perform a Fourier transform on v.(k) like follows,
7 d3k 100

ﬁC(E; r = 0) is S-wave Coulomb wave function with zero separation in coordinate space.

Notice that this F is dependent on p and is able to take out of the integrand. Put those
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above back to the amplitude and get,

. ~ A d3k1 d3k2 m d3q ¢:(k2)wc<kl)
Bu(p) = (iEr =0) [ G [ (g [ SLULA ) (p2s)

Do another Fourier transform on the ky piece,

PKo i\ e
/ i) = Gi(Br = 0). (B.29)

where E,; denotes that the energy is g-dependent. The amplitude is simplified to,

Bulp) = (V) Eir = 02n [ G [ g =0

T e e O B LED

Content inside the braces is simply Ag)(p), which is the S-wave without final state
interaction we had previously.

Thus, we could express our expression as follows,
Bo(p) = (Vi)C(n,)e (2mp)*VZg T , (B.31)

where, (V;) is defined as in Eq. (B.26) and

L / dq C(1,)e2maretan(lal/) 1
(

, B.32
2m)? @ + 75 p? — q* +ie (B:32)

is a convergent integral, which gives a complex result. The convergence of the integral can
by easily proved by evaluating the integrand at ¢ — oo. The real part of Z is the principal

value, and the complex part is evaluated near the pole on the positive real axis by

p arctan
Im[I] = mcg(p)e% tan(p/0) . (B33)

All the following possible re-scattering diagrams together with By(p) form a geometry

series. nth order is denoted as B,(p), means n + 1 times re-scattering process. Those
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processes could be simply calculated by adding Coulomb bubbles and dimer propagators
based on By(p). The dimer propagator is defined before, and the Coulomb bubble is
evaluated by PDS scheme,

I(E) = D(E:0.0) = | (‘;Wk)/g / (;l;;adakcm,

d*q 1 )
- / (2m)3p? —q?® + iec () -

__m]F T (VO DR

(B.34)

in which x , D and Cg ~ 0.577 are the renormalization scale, dimensionality of spacetime
and the Euler-Mascheroni constant, respectively. ko = nk is a constant. For a real n, H(n)
can be expressed as

H(n) = Relip(1 + in)] — Iny + %C%m , (B.35)

in terms of digamma function (z).

Thus, the nth diagram is simply given by,

Bn(p) = Bo(p)({V) Jo(E))" . (B.36)

Thus the sum of all the re-scattering diagrams is,

AL =" Bu(p) = Bo(p) S_ (Vi) Jo(E))" | (B.37)

n=0

=V Zgam2,C(n,)e " I Tes . (B.38)

Again, like in Appendix. B.3, we have ignored the —i. T is given in Sec. 3.6, and in [71].

C Projectors and Indices Projections

In this section we show how projectors are derived and how to use them to do projections.
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C.1 Two and Three Body Projectors

The two and three body projectors are convenient ways to handle the Clebsch-Gordon
coefficients.

Two-body projectors

Consider spin and isospin couplings of two nucleon fields,
NTPN |

where P is a two-body projectors. A single nucleon is spin-1/2-isospin-1/2. A projector will
handle couplings in both spin and isospin spaces. We will firstly consider only spin-space.

The iso-spin space would be handled in exactly the same way. Denote,

A spin-singlet, denoted by |0, 0), can be written as

1

|0,0>=\/§<N—H)=(T ¢)% _01 (1) I :(T ¢>%g2 I : (C.2)

Thus, if want to project a NN onto spin-singlet channel, we could use the projector \%02

instead. Spin-triplet could be expressed similarly,

14 =1
1,00 = L(1L+ 1) - (C3)
|1’_> =
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The corresponding projectors are,

+ — it 521 (52 _ 451
spin-triplet 20 \/5(2 o ) ’
0 _ i 23
Pspin—triplet - ﬁo- g7,
- 212 ]
Pspin—triplet - \/50 \/5(20 to ) :

One can easily prove these are equal to Clebsch-Gordon coefficients. Combined the projectors

of spin and isospin spaces, we get the two body projectors,

Spin-triplet-isospin-singlet: Py, = ﬁazngz : (C.4)
1
Spin-singlet-isospin-triplet: Pj: = ﬁa%jr"l , (C.5)
1 1
Spin-singlet-isospin-pp: Py¥ = %JQTZE(Z'TQ -7, (C.6)
1
Spin-singlet-isospin-np: P,? = %027273 , (C.7)
1
Spin-singlet-isospin-nn: Py = —o*7°—(it> + 7). (C.8)

V8 V2

The Pj, and Ps} are in coordinate space. Py’, P, and PJ" are in spherical space. Notice
that when combining the spin and isospin projectors, we add an addition constant factor of

1/4/2. This implies we consider the nucleon fields distinguishable when doing contractions.

Three-body projectors

Three-body projectors handle the coupling between the trimer field and the combination of
a dimer and a nucleon field. Notice that the three-body projectors we introduced in this
dissertation are equal to Clebsch-Gordon coefficients only in our particular cases of *H and
3He. But we will not have a three-neutron or three-proton state anyway. By doing a very

similar but even easier analysis, we directly give the doublet channel projectors,

L1 1
P3t:%U,P£:%TA, (Cg)
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where Pi, project onto spin-doublet channel and Pjl project onto isospin-doublet channel.

It is intuitive to also provide the isospin doublet projectors in spherical basis,

1 1 1
Py =—(ir"—7') Pyt = —=7° Py = —=(ir’ + 7). (C.10)

V6 V3 V6

The quartet channel projectors are complicated. We provide the definition here,

. 1 1
Pl =9 = go'0) BT = 040 — oo .

For more details, see [58].

C.2 Indices of the *He Vertex Functions

The *He vertex function is shown in Fig. 5.1. Note that 7' = 1/2, S = 1/2 for the three-
nucleon systems. The time goes from left to right in the diagram, while the initial state is to
the right of the final state in our calculation. We first look at the inhomogeneous terms. The
spin, isospin indices of the initial trimer field and final nucleon field are denoted as (a, a) and
(B,b). Here the Greek letters represents the spin-indices while the latin letters denote the
isospin indices. The spin-triplet/singlet dimer field in the final state carries a spin/isospin
polarization of j/B.

We project the final state of C; onto spin doublet channel, while for C,, and C,, we
leave them unprojected. Read directly from the 3-body Lagrangian in Eq. (5.2.12), the

inhomogeneous term is given by,

(P3N (P
Ic =iw —(ngsp)%fa . (C.12)
(P,
The superscripts are isospin indices and the subscripts are spin indices. The first and the

second indices will always denote the row and column indices, respectively. Notice the fact

that the C,, is the only one with an outgoing pp-dimer and a neutron field. We get the
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inhomogeneous term by,

ba
Opal ‘a:l,b:l 1
Ic =iw —5@%(73)%(1:1,17:1 =iw | -0 | (C.13)
_5/306\%6(”2 - Tl)ba|a:1,b:2 \/g

where dg, is Kronecker delta function.

The homogeneous terms can be analysed similarly. We first work on the K kernel. Ky,
Ky and K, have similar process as K, and we will not repeat them. The spin, isospin
indices of the initial trimer field and final nucleon field are denoted as («, a) abd (/3,b). The
nucleon field connect to the trimer carries spin and isospin indices of (v, ¢). The spin and
isospin indices of the exchanged nucleon field is denoted as (9, d). The spin-triplet/singlet
dimer field in the initial and final state carry spin/isospin polarization of i/A and j/B,
respectively. There are nine elements in total. It is concise to express them all in matrix

form, given by

(PIDY (PSP (Pi)ce,  (PI%, (P (Pg)de  (PhY, (PYPYa (P3,) e

M. = (Py)Y (P, (P3)<e, (P3P (PyP)de (PR (PP de
(P35 (PP, (Phy)s, (PPl (P de (PR )b (PP de

it pit pi pi \™ it prwt pi \ it poot pi

(PSt PQtPQt‘Pgt)ga (PBt PQS P2t),8’7 <P3t PQS F)2t>ny

. \ ba " - be " be

= | (mirprey) (mrter) (RRE) | (Ca9)
Ba B’y By

. .\ ba be be
(Pipprey)  (Rtey)  (PrteR)
Box By By

where the first, second and third row/column of the matrix correspond to the channel with
an outgoing/incoming spin-triplet, spin-singlet-np, and spin-singlet-pp dimer propagator,
respectively. For a pp channel, one need to pick up the isospin index to be 2. For the other

two channel, isospin index is selected as 1. By inserting projectors and picking up correct
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indices, one get

-1 V3 -6
M= V3 1 V2. (C.15)
-6 V2 0

1473

Similarly, one can get My, My and My, by adding ~5— between corresponding

projectors. We will not cover details here.
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D The deuteron electric dipole form factor and EDM

The diagrams that give the deuteron EDM are given in Fig. 8. The EDFF of the deuteron

F(q?,?H) is only sensitive to the isospin-one C3g, sp, coupling, and we obtain

4
F(¢*,’H) = (dn +d, — 0351_3131) " aretan L (D.1)
q 4y
= (dn +d, — Css,_3p,) F.(¢*,*H) , (D.2)

where F.(q% *H) denotes the charge form factor of the deuteron. The resulting EDM is
obtained by taking the ¢ — 0 limit,

d=(d, +d,— Csg,_sp,) . (D.3)

The direct proportionality of the EDFF to the charge form factor causes the Schiff moment

of the deuteron to be zero.
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Figure 7: The first re-scattering process considered in the final state interaction. The thin
double line in the middle is the bare boron-11 dimer propagator. Solid eclipses are coulomb
bubbles. Single solid and dashed line are nucleon field and core field, respectively.

(a) (b)

Figure 8: Diagrams contribute to the deuteron EDM. The black squares denote insertions
of CP-odd operators. We omitted the diagrams that have the CP-odd operators to the right
of the photon-nucleon vertex.
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E Expressions for electric form factors F- and Fj

In this section, we give complete expressions for the diagrams contributing to the form factor
Fi. To avoid confusion, we note that we write ¢ = |g|. The three-nucleon wave function

renormalization Z, is defined as

where the self-energy 3 can be calculated via
S(E) = —n1" ©,G(E.q) . (E:2)

and B is the three-nucleon binding energy.

We simultaneously give expressions for the LO contributions to the CP-even three-nucleon
form factor; also see Ref. [149], and the LO contributions to the CP-odd form factor F;. The
CP-even form factor is denoted with a subscript “C”, while the CP-odd form factor is
denoted with a subscript “I”. The corresponding diagrams (a), (b), and (c) are the same as

Fig. 4.3, but with a CP-even photon vertex.

Diagram A: The calculation of the form factor diagrams is carried out in the Breit frame.
The vertex functions in diagram (a) that were originally defined in the center-of-mass frame

need to be boosted; for details see Ref. [149]. The sum of the three terms simplifies to

a ~T ~T . ~

F (0%) = Zo | ASL (@) +2G (B,p) @ AL (0,9) + G (B.p) @, AL (0. ,k) @4 G(B.F)]
(E.3)

In this equation and below, B denotes the binding energy of the three-nucleon state under

consideration. For the CP-even and one-body CP-odd photon vertex, we define the following
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matrices,

1474
i [0 gl (B D d( D 0
0 m 6 0 do (73 + 3) — d,(73 — 3)
(E.4)
The first term in Eq. (E.3) is given by
AC\I 47r2 / dl/ dm—lTMC\I’D(B ¢, 1, x,y)1 (E.5)
where
12 q* 1 lgx
D(B,q,l =D |DB - — = l E.
(Buadr) =D (B 5 = e+ Gt | (£6)
and
1
fly) = f(1) = f(0). (E.7)
0

The second term of Eq. (E.3) includes the CP-even vertex function and the function

A(gil(q, p) that is defined as

1
.Aé) (q,p dl dx— boost (g 1. p, .y, 2)
\I I y» Uy )
q‘%p\/l2 2lgz + 54
-1 3 ~
X 3 1 MCA\ID(B7Q7laxay)17 (E8)

where x is defined through I - ¢ = lgx. We also defined a boosted version of the function @),

k2+12+£+(y—5)qu—MNB
k\/52+q — (—1)"2lgz

QSOOSt(Q7Zakax7ya Z) = QO (Eg)
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The third term in Eq. (E.3) includes the function

boost ,l,]{? T ’ boost ,l, ., 72
A(cilqpa MN‘/dl/ (¢ Y, 1)Q0 (q,1,p, x,y,2)
gz kp\/P + 2z + L \/P 2ga + 1¢?

-1 3\ -1 3
X MC\ID(Ba q, l, Zz, y)

3 —1 3 —1

(E.10)

Diagram B: For the CP-even and one-body CP-odd photon vertex, we define the following

matrices,

B __ 2 2
My = s . ]
34T _ 3457
2 6

ap L [P 1) =5du(r 1) dy(7° +3) = da(r = 3)
B_

(E.11)
12\ dy(73 +3) = du(7% = 3)  dp(57° +3) — do(57° — 3)
The contribution from diagram (b) in Fig. 4.3 is given by
~T ~
FCB\I <q2) = Zw/ dl’/ dyg <B7p) ®P FB(q7p7k7x7y)MCB\I Rk g(‘Bak) ) (E12)
-1 -1

where we defined

M 27
PB(Q7p7k'7x7y) = _TN/ d(b
0

-1

1 1
X {kZ +p? + kp(zy + V1 — 22y/1 — y2 cos ¢) + gq(kx + 2py) + §q2 — MyB

1 1 =
X [kz +p2 + kp(xy + V1-— x2\/1 —y?cos @) — gq(Qk:x +py) + §q2 — MNB}

(E.13)
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and the x-, y- and ¢-integrals are angular integrals,

k-q=kqr, (E.14)
P-q=pqy, (E.15)
k- p = kpcos . (E.16)

Note that y in F, g\l (¢?) represents cos 6, which is different from the y defined in Eq. (E.7).

Diagram C: Finally, for the CP-even and one-body CP-odd photon vertex, we define the
matrices
1 0 2r3(d, + dp) dp —d,

M¢§ = |, M= : (E.17)
0 142 d, — d, 0

The contribution from diagram (c) in Fig. 4.3 is given by

1

drT(q,k,2) 2k |G (B.p)ME,G(B.K)| . (E.18)
1

() =2 [

where x is defined through k - q = kqx and the function I'(q, k) is defined as

M
g, k,x) = N arctan a , (E.19)
q 2\/3p* — MyB +2/2k*> — MyB
and
1
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F Expressions for form factor Fi;

Below we give the expressions for the contributions to the CP-odd form factor arising from

CP-odd two-nucleon operators.

F.1 Boosted vertex functions (of Diagram A)

The transition to the Breit frame again requires us to relate vertex functions that were
defined in the center of mass frame to boosted ones. The boosted CP-even vertex function
G is given by the integral (see also Ref. [149])

G (g, 1, x,y,2) = 1+ R (q,1,k, 2, y, 2) _; ?1’ @ G(B,k).  (F.1)
Here = denotes the cosine of the angle between the boost momentum ¢ and the relative
momentum [ between the dimer and the nucleon field. We have also already carried out the
lo loop integration that enters when the vertex functions is folded with the remaining parts
of the diagrams for the matrix elements. The factor z is introduced for convenience to have
a short-hand notation for the kinematically different vertex functions on the left or right

hand side of the photon vertex. The boosted function RE°° is given by

27

Ry (q,1 k2, y, 2
k\/l2 + q — (=1)*3lgx

boost (g 1k, x,y, 2), (F.2)

with Qo defined in Eq. (E.9).
We also need the boosted CP-odd vertex function T:

I —1)? 1477 0 1
TZOOSt(q, l7 x,, Z) — (g — u) 2 Ti:boost(q’ l) x,v, Z)

3 —73
0 ==
0 0 2 boost
T B ORI )
0 2
3
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The boosted isospin-projected CP-odd vertex functions required in Eq. (F.3) are given by

1

1 5,b00s N% 1 >
T§’bOOSt(Q7l7x7yvz) :R'%’b t(Q7l7 /‘Cax»y;Z) Rk T (Ba k) + Ré’bOOSt((blv k7$ay72) Rk g(Bv k) )

3 3 boos ’V% 3 ~
T%’bOOSt(Q7l7'xay7z) :R';Jb t(Q)la k%%yw’«’) ®1€ T (Ba k) + Rg’bOOSt(CLla k7xay7z> ®1€ g(Ba k) ;

(F.4)
where
1 00S _1 3
R (g, k2,9, 2) =Ry (g, 1k, 2.y, 2) ,
3 -1
3 008 0 0
R’;Jb t(q,l,k,x,y,z) :RII)OOSt(QJ’k’x’y’Z) ’
0 2
1 boost boost -1 boost b2
Rz <Q7 l, kamu Y, Z) = ROOOS (qa l7 k?‘xa Y, Z) + Rloos <Q7 l’ k,%, Y Z>
—2 0 -1 0
2 3
X | Csg,—1p, + 57' Csg,—3p,
- 0 2 boost 0 —1
+ | Ry (g, Lk, 2y, 2) — R q, 1, k@, y, 2)
-1 1 2 1

(0) 2 3.1)
X (015‘03P0 B gT 01303P0> ’

1) (2)
<R§,boost)T(q’ l, ]f, z,v, Z) :RBOOSt((L l, k, z,v, 2)% 0 80381—3P1(; C’15073P0 + ?;301503%
O _5(0150_3130 - 37—30150—3P0)

(1) (2
1 0 4035 _3p, — 2 <C _ - 37’30 _ >
+ REOOSt(q, l, l{j, 2,9, Z)g 1 1 o 150-3P o 155—3 P,
0 _4 (C15073P0 - 3T3015073PO>

(F.5)
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The function RE°° is given in Eq. (F.2) while

2T

Rboost ,l,km 7
1" (g y,z) = P (C1) g

K242+ % 4 (y—2)lge — MyB

1—
k\/12+q2— )*2lqx

boost (

¢k z,y, 2)

(F.6)

F.2 Diagram A

Diagram (a) in Fig. 4.4 is given by

FII?(CIQ) = Zy

A
MN2 l boost\ T boost
/O dl/ dmmgq_x[(g ) (%laxaya 2)D(B,q,l,x,y)TA (q,l,$,y,1)
— (T (¢, L.y, 2)D(B, ¢, 1, 2,46 (¢, 2,5, 1) | , (F.7)

where the boosted CP-even and CP-odd vertex functions were defined above.

F.3 Diagrams B and D

Diagram B: Diagram (b) in Fig. 4.4 is given by

FII Z¢_/ dl’/ dy{N p ®p (FB(Q7pakaxay)kq) ®k %B(Ba k:)

where

-1 7343

~ ~1 0 — 3
ToBR =\ 0y oy | T BB T (B (F.9)
2 6 e
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Diagram D: Diagram (d) in Fig. 4.4 can be written as

FH Z’lﬁ/ dl’/ dyg B y P ®p{ (Q7p7kax7y>

kx + 2py — = 2kx + py + 2 ~
x [ Sy 3qME— ];y 3qMD} }@kg(B,k), (F.10)
where
[RGB Ly O+ 5O
H =
_327 (Csg,_1p, +2Cs5, _3p,)) %Cf?{)_g% — 1+T Clso 2 ClSO

(F.ll)

The variables z, y and the function I'?(q, p, k, 7, y) are defined in Eq. (E.14), Eq. (E.15) and
Eq. (E.13).

F.4 Diagrams C and E

Diagram C: Diagram (c) in Fig. 4.4 leads to

! 1
() ZZw/ dzT%(q, k, x) s (k-q)G (B,p)To(B,k) Q)T o(B, ] ,
-1
(F.12)
where
~ 1 0 ~1 0 0} ~3
To(B k) = T (B, k) + T*(B,k) . (F.13)
0 1+ 273 0 -2

Diagram E: Diagram (e) in Fig. 4.4 is given by

! _r g
Fi (g% QZw/ dzT%(q, k,z) ®, G (B,p) po;—zg
-1
1 3 3 -
+ —q —MNB—FZRQ — _MNB+Zp2 ]\4Eg(B7 ]f) ’ (F.14)
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and we define the matrix Mg,

M 7-3 27’30351,31:-1 0351,1131 (F 15)
E=g 0 2 :
s _(01(5)0—3130 o 2611(5)0—3130) 0

The function I'?(q, k, z) and p are defined in Eq. (E.19) and in Eq. (E.20), respectively.
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G Expressions for form factor Fgp

In the SU(4) limit, the two-body diagrams can be simplified to a universal function depending

on ¢ times a combination of T-odd coefficients,
Fu(q?, SU(4)) = Fsuw(d®) (7’3035171]31 +2Csg, _sp, + 7301(?91_31:0 - 27301(2)(]_31:0) , (G.1)
Thus, the universal electric dipole form factor also has five terms,
Fsu)(4?) =Fsu,a(@®) + Fsu,5(q%) + Fsuw.c(@®) + Fsuw,n(¢?) + Fsuw.e(?). (G.2)

The first term is given by

1 A n
E My 4D, (B, g,1, , 00s lx 1
FSU(4)»A(q2> =Zy /dl doe—X +(B.q y)[ boost
0

[ 2 [ nNl=—=
1 A2 9(]1‘ + (Q7 'y Y, )7T9U(4)(Q7 'y Y, )(q 3

0

lx 1
- (E + g) 7TS'U(4) (Q7 la z,Y, Q)Q-IID—OOSt(Q7 l’ Y, 1)] ’ (Gs)

where the boosting is carried out analogously to Appendix F. The function D, (B, q,l,x,y)
is defined as

1
D.(B,q,l,z,y) = 5 (Dy(B,q,l,z,y) — Dy(B,q,l,z,y)) , (G.4)

where D, and D; are the diagonal elements of the matrix defined in Eq. (E.6). The second

term is given by

~ 1 1! gyl ~ ~
Fsvy,5(q%) =Z¢?/ dI/ dyg{g+(B,P) ®p (FB(C],Z% k,x,y)k- 01) Rk Tsu ) (B, k)
—1 —1

- %U(‘l) (Bap) ®p (p : qFB(Q7p7 k7 Z, y)) Ok §+(B, k)} ) (G5)
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where G, (B, k) and Tsy(4) are defined in Eq. (4.3.7) and Eq. (4.3.8). Similarly, the remaining

terms are

1

~ 1 =2 ~ ~
FSU(4),C(92) = Zw/ dx Fc(q,kﬂﬁ) by ?? (k ’ Q)g+(B,P)7§U(4)(B»k)

-1

—(p- )G (B,p)Tsvw (B, k)| , (G.6)

1 1
oo n(d) = — / da / dy G (B.p) ©, T (4, p, ks, y) ©x Go (B, )
-1 -1

2kx — py + 3q
i G.7
g BT (1)
and
~ L | ~ ~
Fsu).e(q®) :Zw/ dﬂ?grc(q,kﬁ) ®r G (B,p)G+(B, k) . (G-8)
-1

Recall that I'2(q, p, k, z,y), I'°(q, k, z) and other variables are defined previously in the

corresponding subsections in Appendix E.
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