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Abstract

Effective field theories(EFTs) are powerful tools to study nuclear systems that display

separation of scales. In this dissertation, we present halo EFT results for the β-delayed

proton emission from 11Be, and pionless EFT results for three-nucleon systems.

Halo nuclei are simply described by a tightly bound core and loosely bound valence

nucleons. Using the halo EFT, we calculate the rate of the rare decay 11Be, which is a

well-known halo nucleus, into 10Be + p + e− + ν̄e. We assume a shallow 1/2+ resonance in

the 10Be−p system with an energy consistent with a recent experiment by Ayyad et al. and

obtain a branching ratio and a resonance width of this decay. Our calculation shows that

the experimental branching ratio and resonance parameters of Ayyad et al. are consistent

with each other. Thus, no exotic mechanism (such as beyond the standard model physics)

is needed to explain the experimental decay rate.

Electric dipole moments (EDMs) of nucleons receive negligible contributions from the

CKM mechanism and are thus, extremely sensitive probes of CP-violation beyond the

Standard Model. Using the pionless EFT, we calculate the EDMs of three-nucleon systems at

leading order. Neglecting the Coulomb interaction, we consider the triton and 3He, and also

investigate them in the Wigner-SU(4) symmetric limit. We also calculate the electric dipole

form factor and find numerically that the momentum dependence of the electric dipole form

factor in the Wigner limit is, up to an overall constant (and numerical accuracy), the same

as the momentum dependence of the charge form factor. At last, under the same framework,

charge form factors with Coulomb interactions are considered both perturbatively and non-

perturbatively to NLO. The third Zemach moment of 3He is evaluated and compared to

experimental results.
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Chapter 1

Introduction

Our world displays interesting physics emerges at all different scales. On the other hand,

the richness of physical phenomena enhances the complexity of discovering principles of

nature. To be more specific, it is a tedious and almost impossible task if one wants to

calculate observables of low-energy nuclear systems starting with Quantum Chromodynamics

(QCD). Effective field theory (EFT) frameworks are widely used in modern theoretical

nuclear physics studies. EFTs are quantum field theories apply to specific momenta scales

with carefully selected degrees of freedoms, and can make calculations concise and with

controllable error. In general, this dissertation is an application of short-range EFTs to

low-energy nuclear systems.

In this work, we investigate two different but related systems, one neutron halo nuclei

and three-nucleon bound states.

Halo nuclei are a set of exotic nuclei with a tightly bound core and loosely bound valence

nucleons. Thus, halo nuclei can be considered as effective few-body systems. 11Be is a one

neutron halo consists of a 10Be core and a valence neutron. A neutron can decay into a

proton and emits an electron and neutrino through β-decay. The weak decay of the valence

neutron of 11Be is studied within the halo EFT framework for in this thesis. The neutron

lifetime puzzle has bothered people for decades [159]. 11Be is a perfect natural laboratory

to verify possible theories. The success of halo EFT eliminates the necessity of an unknown

dark decay mode proposed by Fornal and Grinstein [48] to explain this puzzle.

1



In the Standard Model (SM), the breaking of fundamental discrete symmetries of charge

conjugation C, charge conjugation and parity CP is a necessary condition for the dynamical

generation of a matter-antimatter asymmetry in the Universe [129]. All observed CP

violation (CPV) in the kaon and B meson systems can be explained by the Cabibbo-

Kobayashi-Maskawa (CKM) mechanism. CPV in the SM fails to generate the observed

matter-antimatter asymmetry of the Universe by several orders of magnitude [52, 54, 53, 75].

Electric dipole moments (EDMs) of leptons, nucleons, atomic and molecular systems receive

negligible contributions from the CKM mechanism. The existence of non-zero EDM from

light nuclei are thus, extremely sensitive probes of CPV beyond the SM. 3H and 3He are

typical three-nucleon systems. Here, using the pionless EFT framework on three-nucleon

systems, theoretical scattering amplitudes can be directly related to corresponding non-zero

EDM measurements. In addition, we can also describe 3He’s properties including Coulomb

interactions within the pionless EFT framework.

This thesis is organized as follows: Firstly, in Chapter 2, we explain the ideas of effective

field theories. The pionless EFT and halo EFT, which are essential for this dissertation,

are introduced specifically. Renormalization and the dimer formalism of both EFTs are

discussed as well as the phenomenology of halo nuclei. In Chapter 3, halo EFT is applied to

11Be to study the beta-delayed proton emission from 11Be. We report the branching ratio of

the decay into the continuum with a resonance in the final state 11B. Recent experiment [9]

confirmed the work. In Chapter 4, the three-nucleon systems, 3H and 3He, are investigated

at leading order in pionless effective field theory. We calculate the electric dipole moments

together with electric dipole form factors without Coulomb interactions. In Chapter 5,

we study the three-body system of 3He with the pionless EFT including the Coulomb

interactions between protons. The non-perturbative vertex function and charge form factors

with Coulomb interactions are studied both analytically and numerically. In addition, the

third Zemach moment of 3He is calculated. In the Appendices, we include more details about

the special functions, hadronic currents of halo beta decay, and one and two body electric

dipole form factor diagrams.
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Chapter 2

Effective Field Theory

Low energy effective field theories (EFT) are applied to few-body nuclear systems in this

dissertation. It is essential to introduce EFT first before we present the progress we made.

The majority of this section providing background knowledge about EFT. First, we explain

the concept of effective theory and effective field theory. Then we illustrate the benefits and

necessity of why we need EFTs in theoretical nuclear physics. We then discuss the basic

ideas about constructing an EFT with the example of the gravitational potential of a particle

moving close to Earth’s surface. We then review the low-energy nucleon-nucleon scattering

covered in basic quantum mechanics as well as the effective range expansion. Finally, we

describe the pionless effective field theory, which is considered as the cornerstone of this

dissertation, in detail.

2.1 Effective Field Theories in a Nutshell

2.1.1 What is an Effective Field Theory?

In science, almost all of the currently known theories are effective theories. An effective

theory should always be “effective” within its range of application. We will consider theory

to be effective if it satisfies two requirements. First, it should have the ability to explain

existing experiments and predict results within specific errors. Second, it should be relatively

easy to use and straightforward. The first requirement is obvious. The second requirement

3



guarantees that even in a future, where we have an “ultimate” theory, people will still prefer

to use effective theories in the range of application. A straightforward example is that

people’s photos on ID cards do not have extremely high resolutions, but already enough to

prove identity, even though we can provide photos with much higher resolution nowadays.

In physics, in order to probe short-distance phenomena, we need large momenta, which

is due to the Compton wavelength. One can also try to measure something very precisely

by increasing energy levels. For example, the resolution of an optical microscope is limited

by the natural light wavelength, which has an energy level of a few electron volts, which is

usually good enough for medical and biology studies. To get molecule-to-atom-level details,

we need to use electron microscopes, which have an energy level up to 40 keV, which is the

energy scale usually needed typically in material physics. In particle physics, we accelerate

protons from GeV to TeV to study the structure and properties of elementary particles.

On the other hand, at a low energy scale, we could have predictive and concise theories

without considering all the details about short-distance physics. One example is Newtonian

mechanics, which works well in daily life without considering any relativistic or quantum

effects. Now we say that an effective field theory (EFT) is a quantum field theory that

includes the appropriate degrees of freedom to describe physical phenomena occurring at a

chosen length scale or energy scale while ignoring substructure and degrees of freedom at

shorter distances. All currently know quantum field theories are EFTs [80].

Before we dive into more details, we give additional references materials for references.

General introductions of effective field theories by Polchinski [112], Howard Georgi [55], and

David Kaplan [80] are classic and heuristic. Matthew Schwartz’s textbook on quantum field

theories is in the perspective of EFTs [135]. Weinberg also provides rich information about

EFTs in his textbook [158]. For low-energy EFTs and few-body applications, Hammer,

König, and Platter provide valuable reviews [63, 109].

2.1.2 Why EFT in Nuclear Physics?

Studying nuclei with a phenomenological nucleon-nucleon potential has been very successful,

which I will refer to as the traditional approach in nuclear physics. By firstly constructing an

NN-potential and use it to fit the NN-scattering phase shift data, one can tune the necessary
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parameters and use the potential to predict and explain nuclear observables. Weinberg first

suggested that effective field theories can describe nuclei and nuclear matter equally or even

better [156, 157]. He stated that the chiral effective Lagrangian contains two parts. First,

the nucleon-pion couplings represent long-distance nuclear interactions. While short-range

physics is included through contact interactions. In this work, we will not discuss details

of chiral EFTs. What we learned from the example above is that just like using a nuclear

potential, EFT coupling constants can be fit to reproduce experimental data and then to

predict and explain future experiments.

Since both ways are solid, why do we have to use EFTs? There are several benefits of

using EFT in nuclear physics. First of all, using an EFT gives us a more natural framework.

The effective Lagrangian and relative Feynman diagrams depict the long and short-range

physics clearer than a potential can do. Second, in an EFT, it is easy to identify the error

and estimate the level of accuracy. Last, it is more straightforward and convenient to consider

relativistic effects, dynamical processes in an EFT framework than a potential model. So far,

numerous progress has been made on effective field theories, which are considered modern

approaches in nuclear physics.

2.1.3 How to Construct an EFT?

To describe the physics at some momentum scale m, we do not need to know the detailed

dynamics of what is going on at momentum scales Λ� m, which is considered a key principle

of EFT.

The most crucial requirement to construct an EFT is the identification of at least two

separated scales. The ratio of these two scales is used to construct a small expansion

parameter. In the most simple case, we need one low scale, Q, and a high scale, Mhi.

Q associated with the typical momentum of the physical system that we want to describe.

Mhi, which is also called the breakdown scales, associated with the physics that our EFT

does not need to resolve.

The basic steps to describe a physical system using EFT are as follows.

• Step 1: Determine relevant degrees of freedom, i.e., what fields will be used.
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• Step 2: Consider the symmetries of the system, i.e., determine the structures of

interactions.

• Step 3: Consider the expansion parameters and find a leading-order description, i.e.,

a power counting.

There are, in general, two directions, top-down and bottom-up, of constructing effective

field theories. We prefer the top-down approach when high energy theory is understood, but

we find it is easier to construct a more straightforward theory at low energy. For example,

we do not need to include quarks to calculate hydrogen energy levels. We want to make

the bottom-up approach when the underlying theory is unknown or non-perturbative. The

Standard Model is such an example of a bottom-up approach.

To illustrate the ideas above to everyone, now we look at an elementary problem. Suppose

we have a particle of massmmoving close to Earth’s surface. Now let us construct an effective

theory for it:

• Step 1: Determine the degrees of freedom. Degrees of freedom are coordinates of

tangent space (x, y, z), whose origin is on the ground.

• Step 2: Symmetries of the system. The interaction, the gravitational potential V ,

is invariant under translations along x and y and rotations around z. As for space

inversion, V is even for x, y, odd for z. Thus we determine V = V (z) contains all

powers of z. Be aware that the breakdown scale is the Earth’s radius, R, which is

much larger than |z|.

• Step 3: Power counting. Since V (z) =
∑∞

n=0 cnz
n all terms should be equal in size

at the breakdown scale. We conclude c1R
1 ∼ cnR

n. Since cn ∼ c1R
n−1, we say

cnz
n ∼ c1z(z/R)n−1. Thus we have a power counting and V (z) =

∑∞
n=0 c1z(z/R)n−1.

If it is really close to the surface so that z is much smaller than R, we could ignore

most of the terms in V (z).

Matching: The potential we’ve got have roughly no difference from what we learn in

middle school, ∆V = −mgz. Consider a relatively more precise theory, V (z) = −GMm
R+z

,
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whose Taylor expansion is just the EFT we have above. We just need to match our EFT

to this theory to get constants to all orders. And we got cn = n!GMm(−1/R)n+1, c0 =

−GMm/R.

2.2 A Brief Review of Nucleon-Nucleon Scattering

Low energy nucleon-nucleon (NN) scattering typically refers to neutron-neutron(n-n),

neutron-proton(n-p) and proton-proton(p-p) scattering. Here we will neglect electromagnetic

interactions, spin structures, and the mass difference between proton and neutron. Consider

a short-range nucleon-nucleon potential, VNN , the Hamiltonian of such a system is

H =
p2

1

2MN

+
p2

2

2MN

+ VNN , (2.2.1)

where particle 1 and 2 are labeled. It is more intuitive to work in the center-of-mass

frame. The Hamiltonian becomes

H =
P2

2Mtot

+
k2

2MR

+ VNN , (2.2.2)

where total mass Mtot = 2MN , reduced mass MR = MN/2, P = p1+p2, and k = (p1−p2)/2.

Now the two-body problem is reduced to an effective one-body problem. Through out this

dissertation, we will use a very similar principle to solve nuclear systems with a so-called

dimer formalism. We notice that the NN potential depends only on the center-of-mass

variables. From now on, our discussion is limited only in the center-of-mass frame. In

quantum mechanics, we describe the scattering process with an incoming plane wave and

an outgoing scattered wave. In an elastic scattering process, we describe the incoming and

outgoing relative momenta as k, with energy E = k2

2MR
. Then the asymptotic form of the

wave function is

ψ
(+)
E (r) −→

r→∞
(2π)−3/2

(
eik·r + f(k, θ, φ)

eikr

r

)
, (2.2.3)

where θ = arccos (kinkout) is the scattering angle. The scattering amplitude f(k, θ, φ) carries

out all the physical information, and directly related to scattering differential cross section,
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which is a physical observable, by

dσ

dΩ
(k, θ, φ) = |f(k, θ, φ)|2 . (2.2.4)

Notice that we have ignored the spin-structures, the scattering amplitude f(k, θ, φ) →
f(k, θ) is independent of φ. We can expand the wave function in spherical coordinates,

ψ(r, θ) =
∞∑
l=0

cl
ul(r)

r
Pl(cos θ) , (2.2.5)

where the radial function ul(r) satisfies the radial Schrödinger equation,

d2ul
dr2
−
(
l(l + 1)

r2
+ 2MRVNN − k2

)
ul(r) = 0 . (2.2.6)

The scattering amplitude f can be decoupled into partial waves with a central potential,

f(k, θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos θ). (2.2.7)

With the help of asymptotic form of plane wave expansion of the incoming wave,

eik·r −→
r→∞

∞∑
l=0

(2l + 1)Pl(cos θ)
(−1)l+1e−ikr + eikr

2ikr
, (2.2.8)

we can give asymptotic wave function with distinct incoming and outgoing spherical waves,

ψ
(+)
E (r) −→

r→∞
(2π)−3/2

∞∑
l=0

(2l + 1)Pl(cos θ)
(−1)l+1e−ikr + Sl(k)eikr

2ikr
, (2.2.9)

where the partial wave S-matrix is related to the phase shifts δ`(k) and scattering amplitude

f`(k) by,

Sl(k) = 1 + 2ikfl(k) = e2iδl(k) . (2.2.10)

It is very common to write the partial wave scattering amplitude f` as,

fl(k) =
1

k2`+1 cot δl(k)− ik . (2.2.11)
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The term, k2`+1 cot δl(k), has a power series expansion in k2. For ` = 0, the expansion is

given,

k cot δ0(k) = − 1

a0

+
1

2
r0k

2 + · · · , (2.2.12)

where a0 is the S-wave scattering length, and r0 is the S-wave effective range. Eq. (2.2.12)

is the so-called effective range expansion(ERE). One can find a more general expression

of higher partial waves [80]. In this thesis, we will only focus on S-wave scattering. The

scattering length is one of the most fundamental parameters in low-energy scattering. For

example, in the 2-body sector, the universal properties depend only on the scattering length

[24]. It represents the radial intercept of the slope of the radial wave function at the outer

asymptotic region. In a more classic point of view, the scattering length can be viewed as

the actual size of one particle in a scattering process. In fact, it is related to the mean

square separation by 〈r2〉 = 1
2a20

. Scattering length always plays a crucial role in our effective

theories.

The effective range expansion for hard-sphere scattering with radius R is a0 = R, r0 =

2R/3 [130]. More generally, while r0 ∼ R, if a0 ∼ R, it is called “natural” scattering length. If

|a0| � R, it is called “unnatural” scattering length. The latter one contains more interesting

physics. Furthermore, it is relevant for a realistic NN scattering process. These two terms are

mentioned here in advance since we will meet them again later. There are many discussions

in graduate quantum mechanics textbooks about the natural and unnatural scattering length

[130]. In short, with a positive scattering length, a > 0, we will have a shallow bound state.

In S-wave, the binding energy is related to scattering length by B = ~2
2MRa

2
0
. If a < 0, we will

have a virtual bound state.

Here we should note that the effective range expansion initially shows us that, at

low energies, the structure of a short-range potential can not be revealed. From the

perspective of effective field theory, the low-energy theory is determined by a few low-energy

constants(LECs) containing limited high-energy features that affect low-energy physics. Such

an effective field theory which reproduces the ERE and consistently extend it to include the

coupling to external probes is called pionless effective field theory, which we will dive deeper

into in the next section.
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2.3 Pionless Effective Field Theory

At low momentum below the pion mass, Mπ, one can use the so-called pionless effective

field theory (/πEFT) [84, 83]. It is a systematic generalization of the effective range

expansion(ERE) with nonperturbative nature in a quantum field theoretical framework.

Pionless EFT consists only of non-relativistic nucleons and contact interactions. Let

us first look at a system consist of identical bosonic, spin-less, non-relativistic particles

with short-range contact interactions. The breakdown scale is Mhi and the nucleon mass is

denoted as MN . The Lagrangian density of such a system with contact interactions is [65]

L = φ†
(

i∂t +
∇2

2m

)
φ− C0

4

(
φ†φ
)2 − C2

4

(
∇
(
φ†φ
))2

+
D0

36

(
φ†φ
)3

+ · · · . (2.3.1)

By doing naive dimension analysis, we find the dimensions of the coupling constants

C0 ∼
1

MNMhi

, C2 ∼
1

MNM3
hi

, D0 ∼
1

MNM4
hi

. (2.3.2)

Here, we will keep the first term as a leading order theory, including exclusively two-body

force. Now we are left with a leading order contact interaction in our Lagrangian density,

L = φ†
(

i∂t +
∇2

2m

)
φ− C0

4

(
φ†φ
)2

, (2.3.3)

which can be used to describe the two-body scattering problem. Notice that the operators are

Galilean invariant, which implies that the Lagrangian density form remains invariant under

boosting. Eq. (2.3.3) is already very close to the form of Lagrangian density of pionless EFT.

We will take this equation and discuss it further.

The EFT expansion needs a class of diagrams to sum over, which gives the scattering

amplitude iA to the desired order in a p/Λ expansion, where p is the relative momentum of

each nucleon in the center of the mass frame. This process is described schematically in Fig.

2.1. The scattering amplitude is related to the S-matrix by
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S = 1 + i
MNp

2π
A . (2.3.4)

Recall what we just reviewed previously, in quantum mechanics, the S-wave amplitude

A is expressed in terms of phase shift δ0 by,

A =
4π

MN

1

k cot δ0 − ik
. (2.3.5)

As we have discussed, at low energies, we can perform the so-called effective range

expansion. At least, ERE results should be reproduced with our effective field theory. Then

in our EFT framework, it will be more intuitive also to include electromagnetic and weak

interactions.

Let us firstly try to do a Taylor expansion of A in Eq. (2.3.5) in powers of p,

A ?
=
−4πa

MN

[
1− iap+ (

ar0

2
− a2)p2 +O(p3/Λ3)

]
, (2.3.6)

where a and r0 are known as the scattering length and effective range. Λ is the hard cutoff,

which is of the order or larger than the breakdown scale. This expansion is valid conditionally.

Since effective ranges are generally at the order of inverse cutoff, our only problem is the

scattering length, which can take on any value. In the next section, we will see the analysis

with so-called “natural” and “unnatural” scattering lengths , and a new necessary strategy

of renormalization for pionless EFT.

2.3.1 Renormalizing Pionless EFT

Let us look at Fig. 2.1 and consider the summation of all diagrams on the right-hand side.

To computer loops, one then encounters renormalization. That is what we are going to

cover in this section. One needs to realize that this equation of diagrams is the graphical

Dyson equation. In our case, due to the fact that each particle can consider the contact

interaction as an external short-range potential, the Dyson equation and the Lippmann-

Schwinger equation are the same.
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The sum of diagrams can be expressed as a geometric series and we obtain,

A =
1

− 1
C0

+ I(E,Λ)
, (2.3.7)

where I(E,Λ) is the one loop integral,

I(E,Λ) =

∫ Λ d3q

(2π)3

1

E − q2

m
+ iε

= −mΛ

2π2
+
m

4π

√
−mE − iε . (2.3.8)

Here we’ve regulated the loop with a hard cutoff Λ. It is convenient to rearrange the equation

in the following form

A(k) =
1

− 1
C0
− MNΛ

2π2 − iMNk
4π

=
4π

MN

1(
− 4π
MNC0

− ik
) ,

where
1

C0

=
1

C0

− MNΛ

2π2
. (2.3.9)

The C0 is related to real physical observable, scattering length, by

C0 =
4πa

MN

. (2.3.10)

Put above C0 back to the amplitude, we just get the quantum mechanics result,

A(k) =
4π

MN

1

−1/a− ik . (2.3.11)

Thus, we adjust the bare coupling constant to eliminate the cutoff dependence [158]. This

is because we have high momentum loop contribution that incorrectly goes into our theory.

This shows how we can renormalize the theory.

However, this is not the full story. For example, all the analysis above is based on the

fact that the expansion in Eq. (2.3.6) is valid and able to converges up to momenta p ∼ Λ,

which requires 1/|a| ' Λ is the so-called “natural” scattering length. Let us firstly consider

natural scattering length only, and we need to determine a useful subtraction scheme. The

minimal subtraction (MS) is suitable for this case. The loop integral is now evaluated by
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I =(µ/2)4−D
∫

d(D−1)q

(2π)(D−1)

(
1

E − q2/MN + iε

)
=−MN(−MNE − iε)(D−3)/2Γ

(
3−D

2

)
(µ/2)4−D

(4π)(D−1)/2
, (2.3.12)

where µ is the renormalization scale. It clear that there is no pole as we take the D → 4

limit. We can evaluate the equation above with no problem. The result under MS gives

IMS =

(
M

4π

)√
−ME − iε = −i

(
M

4π

)
p . (2.3.13)

In this way, we can reproduce the relation in Eq. (2.3.10). So we have successfully written

down an effective field theory that can reproduce ERE results.

The analysis above is useful but not realistic. In the real world, low-energy nucleon-

nucleon scattering processes have unnaturally large scattering lengths. The spin-singlet

(1S0) channel of NN-scattering has a scattering length of a0 = −23.7fm ' 1/(8MeV), which

is way much larger than the inverse pion mass. In such case, the expansion in Eq. (2.3.6)

fails. The related scattering lengths are considered as “unnatural”. This problem was first

addressed and solved by Kaplan, Savage and Wise [83, 84] with the so-called power divergence

subtraction(PDS) scheme. For a unnatural scattering length, instead of the previously shown

expansion, one needs to expand in powers of p/Λ while retaining ap to all orders,

A = −4π

M

1

(1/a+ ip)

[
1 +

r0/2

(1/a+ ip)
p2 +

(r0/2)2

(1/a+ ip)2
p4 +

(r1/2Λ2)

(1/a+ ip)
p4 + . . .

]
. (2.3.14)

In order to reproduce the scattering results emerge from the expansion above, PDS

scheme subtracts also poles in lower dimensions, in addition to the 1/(D − 4) poles in MS.

The loop integral in Eq. (2.3.12) has a pole in D = 3, which can be removed by including

an additional counterterm,

δI = − MNµ

4π(D − 3)
. (2.3.15)
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Adding MS results together, we get the

IPDS = IMS + δI = −
(
MN

4π

)
(µ+ ip) . (2.3.16)

More analysis and details can be found in [83, 84, 80]. Now with PDS scheme, our

scattering amplitude is now,

A =
−C0[

1 + C0MN

4π
(µ+ ip)

] , (2.3.17)

and coupling constant is µ dependent,

C0(µ) =
4π

M

(
1

−µ+ 1/a

)
. (2.3.18)

One can check that this meets the needs for the renormalization group equation. Now

we are able to use such an effective field theory without worrying about legitimacy. The

benefit of our previous efforts is that we can include electromagnetic and weak interaction

systematically, as we will see later in this dissertation.

2.3.2 Dimer Field Formalism

In classical mechanics, a three-body problem could have only some special solutions. There

is no general closed-form solution for such problems. A quantum three-body problem is

always hard to resolve, too. However, for a bound state, we can simplify this system with

the help of auxiliary fields representing few-body bound states.

Kaplan, Savage, and Wise [84] introduced the so-called dimer field to represent the two-

body bound state. Bedaque, Hammer and van Kolck [17] were the first to consider the

three-body system using this formalism. We will use auxiliary fields like the dimer field in

all projects. It is important to take a look at it.

Under the view of dimer fields, the Dyson equation of a bounded two-body state is

graphically express as in Fig. 2.2. The so called dressed propagator is equal to the sum of

all possible loop diagrams.

14



Consider the bosonic system with three-body contact force,

L = ψ†
(
i
∂

∂t
+

1

2m
∇2

)
ψ − g2

4

(
ψ†ψ

)2 − g3

36

(
ψ†ψ

)3
, (2.3.19)

where ψ is the non-relativistic bosonic field. By using the dimeron formalism, we can rewrite

the Lagrangian density as,

L = ψ†
(
i
∂

∂t
+

1

2m
∇2

)
ψ +

g2

4
d†d− g2

4

(
d†ψ2 + ψ†

2

d
)
− g3

36
d†dψ†ψ , (2.3.20)

where d represents the dimeron field. If we consider the equation of motion relative to d†,

we will have

d− ψ2 − g3

9g2

dψ†ψ = 0 ,

⇒ d =
ψ2

1− g3
9g2
ψ†ψ

. (2.3.21)

Now we get the relations between dimer fields and mono fields in the case of boson. Put this

back to the Lagrangian to eliminate d we have

L = ψ†
(
i
∂

∂t
+

1

2m
∇2

)
ψ − g2

4

(
ψ†ψ

)2

1− g3
9g2
ψ†ψ

. (2.3.22)

If we expand the interacting term, we will restore our original Lagrangian. This shows the

equivalence of dimer field formalism and traditional quantum field theory.

With such a dimer field, a two-body problem was translated into a quasi-single-body

problem. Furthermore, we could still use our known two-body observable, g2, to predict

three-body behavior. We need to know one more three-body observable, binding energy, for

example, to get all the coefficients needs to know at this level. Then we could reduce the

three-body problem to a two-body problem.
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2.4 Halo Nuclei and Halo Effective Field Theory

The physics of halo nuclei is very exciting and suitable for short-range EFT. One can apply

so-called halo EFT, which is correlated to pionless EFT, to such systems. In this section,

we will first introduce the phenomenology of halo nuclei. Then we will introduce halo-eft

briefly.

2.4.1 Halo Nuclei

Halo nuclei are simply described by a tightly bound core and loosely bound valence nucleons

[69, 79, 119, 146]. The valence nucleons are considered as “halos”. The term “halo” was

first applied to such nuclei by Hansen and Jonson in 1987 [68]. Halo nuclei are usually found

at the neutron-proton drip line since they represent the strong force’s range limit. The first

halo nucleus, 11Li, was discovered at Lawrence Berkeley Laboratory’s Bevalac in 1985 [147].

The halo is consists of no more than two valence nucleons, mostly neutron. Thus we will

refer a specific halo nucleus to one (or two)-neutron(or proton) halo nucleus. This “halo”

gives halo nuclei several unique properties compared to other isotopes.

Halo nuclei have much larger radii than that predicted by the liquid drop model. This

gives most of the halo nuclei a very good separation of scales, which makes us will not be

surprised that the shell model and mean-field approaches break down and indicate us to

apply effective field theory.

Halo nuclei have very short lifetimes. Due to the small separation energy, the valence

nucleon can easily get out of the potential barrier because of quantum effects. Most of the

halo nucleus will only expect a half time of a few milliseconds. For example, 11Li has a

half-life of 8.75 ms [100]. Because of the short lifetimes, halo nuclei are difficult to study in

the laboratory.

In Fig. 2.3, we show some currently known halo nuclei. As we discussed above, halo nuclei

are mostly close to the drip line. There are more neutron halos than proton halos, which is

due to the Coulomb barrier. This dissertation will focus on only one-neutron halo nucleus

and the halo EFT relative to it. 11Be is the leading character among all halo nuclei in this

work. In Fig. 2.4 we illustrate the structure of 11Be, which has a valence neutron and a core
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Figure 2.1: Diagrammatic representation of a two-body scattering amplitude, which can
be expressed as a sum of diagrams including the C0 vertex contribution.

Figure 2.2: Dyson equation with auxiliary dimer fields representing two-body bound states.
The thick double line is the dressed dimer propagator while the thin double line represents
the bare dimer propagator. Single solid lines are single nucleon propagators.

Figure 2.3: Confirmed and suggested halo nuclei. Neutron halo nuclei are shown by green
square and candidates of neutron halo are shown by light green. Orange squares show the
proton halos. This figure is taken from Ref. [148].
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consists of four protons and six neutrons. It has two shallow bound states. JP = 1/2+ is the

s-wave ground state, which has one-neutron separation energy of 500 keV. The first excited

state, JP = 1/2− is p-wave with a one-neutron separation energy of 180 keV [5]. Notice

that the first excitation of the core of 10B is 3.4 MeV [4], which displays a large separation

of scales implies a short-range EFT. Apply the short-range EFT to halo systems was firstly

carried out on the one-neutron halo, 5He [19, 13]. Now we are able to take a look at the halo

EFT approach in the next section.

2.4.2 Lagrangian of Halo EFT

We apply the Halo EFT to the 11Be system. We will first introduce the Lagrangian

density in the one-neutron halo in S-wave and P-wave bound states. Then we carry out

the renormalization in the case of both states. This work will focus only on one-neutron halo

nucleus, a two-body system consisting of a core field and valence neutron field. We will take

advantage of the auxiliary dimer fields mentioned previously. Thus, the Lagrangian density

L of Halo EFT at leading order can be written as

L = L0 + Lσs + Lπs . (2.4.1)

The free Lagrangian of the core and neutron, L0, is given by

L0 = c†
(
i∂t +

∇2

2mc

)
c+ n†

(
i∂t +

∇2

2mn

)
n . (2.4.2)

where c and n are core and neutron field, respectively. mc and mn are the masses of core and

neutron. The part of the Lagrangian that describes the S-wave core and neutron interaction,

Lσs , reads

Lσs = σ†s

[
η0

(
i∂t +

∇2

2Mnc

)
+ ∆0

]
σs − g0

[
c†n†σs + H.c.

]
. (2.4.3)

where σs is the spinor field and Mnc is the total mass of neutron and core. We describe

P -wave interactions with Lπs given by
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Lπs = π†s

[
η1

(
i∂t +

∇2

2Mnc

)
+ ∆1

]
πs − g1

[(
c
←→∇ i nα

)
π†β C

Jβ

(1i)( 12α)
+ H.c.

]
, (2.4.4)

where πs is the p-wave field dimer field.
←→
∇ ≡ mR

[
mc
−1←−∇ −mn

−1−→∇
]

is the Galilean-

invariant derivative. The coefficient CJβ

(1i)( 12α)
is a Clebsch-Gordan coefficient coupling

the neutron spin and the core-neutron relative angular momentum to the total angular

momentum of the dimer field. η0, η1 are either plus or minus signs.

2.4.3 Renormalization of the Core-Neutron System

The renormalization of the low-energy constants in the S- and P -wave the sector has been

discussed in detail in Ref. [67]. Here we will briefly summarize the relevant results to

define the notation we will use throughout this work. Let us firstly look at the s-wave

renormalization.

The spinor field σ is used to express the 1/2+ state. The corresponding bare dimer

propagator is given by

Bσ(p) =
1

∆0 + η0[p0 − p2/(2Mnc)] + iε
. (2.4.5)

Due to the non-perturbative nature of the interaction, we need to re-sum the self-energy

diagrams to all orders. We therefore obtain the dressed propagator

Dσ(p) = Bσ(p) +Bσ(p)Σσ(p)Dσ(p)

=
1

∆0 + η0[p0 − p2/(2Mnc)] + iε− Σσ(p)
, (2.4.6)

where p = (p0,p) and Σ(p) is the LO irreducible core-neutron self-energy given by

Σσ(p) = −mRg
2
0

2π

[
i

√
2mR

(
p0 −

p2

2Mnc

)
+ µ

]
. (2.4.7)
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Figure 2.4: A schematic diagram of 11Be, which is known as a one-neutron halo nucleus.
Red and blue balls represent proton and neutron, respectively.

= +

Figure 2.5: Diagrammatatic form of the Dyson equation. The thick black line denotes
the dressed S-wave halo propagator, the grey line denotes the bare halo propagator and the
thin solid and dashed line denote the neutron and core propagator, resepctively.
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It is evaluated in the power divergence subtraction (PDS) scheme [82] where µ is the

corresponding renormalization scale.

The full two-body scattering amplitude in the S-wave channel reads

− it0 = (−ig0)(iDσ(E,0))(−ig0) = −ig2
0Dσ(E,0) . (2.4.8)

This yields the two-body t-matrix

t0 =
2π

mR

[(
2π

mRg2
0

∆0 + µ

)
+

1

2

(
2πη0

m2
Rg

2
0

)
p2 + ip

]−1

(2.4.9)

Matching the expression above to the effective range expansion allows us to relate the low-

energy constants to the effective range parameters by

a−1
0 =

2π

mRg2
0

∆ + µ , (2.4.10)

r0 =− 2πη0

m2
Rg

2
0

. (2.4.11)

In the vicinity of the pole, the dressed propagator can be written as

Dσ(p) =
2πγ0

m2
Rg

2
0

1

1− r0γ0

1

p0 − p2/(2Mnc) +B0

+Rσ(p) , (2.4.12)

where B0 is the binding energy of the S-wave state and Rσ(p) denotes the regular part. The

Z-factor required to calculate physical observables is given by the residue of the full dimer

propagator and can be read off Eq. (2.4.12)

Zσ =
2πγ0

m2
Rg

2
0

(1− r0γ0)−1

=
2πγ0

m2
Rg

2
0

(1 + r0γ0 + · · · ) , (2.4.13)

with γ0 being the binding momentum of the S-wave state.
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Now we look at the p-wave renormalization. The dressed P -wave dimer propagator is

given by

Dπs(p) =
1

∆1 + η1[p0 − p2/(2Mnc)] + iε− Σπ(p)
, (2.4.14)

where the p-wave self-energy Σπ(p) in the PDS scheme reads

Σπ(p) = −mRg
2
1

6π
2mR

(
p0 −

p2

2Mnc

)[
i

√
2mR

(
p0 −

p2

2Mnc

)
+

3

2
µ

]
. (2.4.15)

Inserting this self-energy in Eq. (2.4.14) yields

Dπ =
6π

mRg2
1

[(
6π

mRg2
1

∆1

)
+

(
3πη1

m2
Rg

2
1

+
3

2
µ

)
p2 + ip3

]−1

. (2.4.16)

We match the resulting P -wave t-matrix to the scattering amplitude expressed in terms

of the effective range parameters

t1 =g2
1k · k′Dπ =

6π

mR

k · k′
1/a1 − 1

2
r1p2 + ip3

(2.4.17)

and hence achieve the following matching conditions for the coupling constants

a1 =
1(

6π
mRg

2
1
∆1

) , (2.4.18)

r1 =−
(

6πη1

m2
Rg

2
1

+ 3µ

)
. (2.4.19)

Since the amplitude has a pole at p = iγ1 with γ1 being the binding momentum of the

P -wave state, we can relate the scattering volume a1 to the P -wave effective momentum r1

via

1

a1

+
1

2
r1γ

2
1 + γ3

1 = 0 . (2.4.20)
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In the vicinity of the pole, the dressed propagator can be expressed as

Dπ = − 6π

mRg2
1

1

r1 + 3γ1

1

p0 − p2

2Mnc
+B1

+Rπ(p) , (2.4.21)

where Rπ(p) denotes the regular part.

The wave function renormalization constant of the P -wave state Zπ can be read off from

Eq. (2.4.21)

Zπ = − 6π

m2
Rg

2
1

1

r1 + 3γ1

. (2.4.22)

The conclusions above will be directly applied to the following chapter, in which we will

discuss the beta delayed proton emission from 11Be.
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Figure 2.6: Diagrammatic representation of the Dyson equation for the dressed P -wave
halo propagator. The thick (thin) double line denotes the dressed (bare) P -wave halo
propagator.
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Chapter 3

β-delayed proton emission from 11Be

This chapter is mainly based on the manuscript [46] with more details included. In this

chapter, we calculate the rate of the rare decay 11Be into 10Be+p+e−+ν̄e using Halo effective

field theory, thereby describing the process of beta-delayed proton emission. We assume

a shallow 1/2+ resonance in the 10Be−p system with an energy consistent with a recent

experiment by Ayyad et al. and obtain bp = 4.9+5.6
−2.9(exp.)+4.0

−0.8(theo.)×10−6 for the branching

ratio of this decay, predicting a resonance width of ΓR = (9.0+4.8
−3.3(exp.)+5.3

−2.2(theo.)) keV.

Our calculation shows that the experimental branching ratio and resonance parameters of

Ayyad et al. are consistent with each other. Moreover, we analyze the general impact of

a resonance on the branching ratio and demonstrate that a wide range of combinations of

resonance energies and widths can reproduce branching ratios of the correct order. Thus,

no exotic mechanism (such as beyond the standard model physics) is needed to explain the

experimental decay rate.

3.1 Introduction

The emergence of the halo degrees of freedom is a fascinating aspect of nuclei away from

the valley of stability. It can be considered a consequence of the quantum tunneling of halo

neutrons out of the core potential to the classically forbidden region. The halo nucleons in

the core potential spend most of their time in the classically forbidden region outside of the

range of the core potential. This is analog to the tunnel effect. But since the halo nucleons
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are bound to the core, they always have to come back into the core potential. This separation

of scales can be used to treat these systems using an effective field theory (EFT) approach

called Halo EFT [20, 18, 64]. Common to all EFTs is that observables are described in a

systematic low-energy expansion and that the accuracy of a calculation can be systematically

improved. Halo EFT has been applied to a number of observables, including electromagnetic

capture reactions and photodissociation processes [67, 123, 126, 166, 72, 116, 167].

Here we will consider, for the first time, the weak decay of the valence neutron of the

halo nucleus 11Be into the continuum, 11Be→ 10Be + p+ e− + ν̄e, within Halo EFT.

First experimental results for this rare decay mode were presented in Refs. [23, 120].

Riisager et al. [121] measured a surprisingly large branching ratio for this decay process,

bp = 8.3(9)× 10−6, which could only be understood in their Woods-Saxon model analysis if

the decay proceeds through a new single-particle resonance in 11B. Their measured branching

ratio is also more than two orders of magnitude larger than the cluster model prediction by

Baye and Tursunov [11]. This led Pfützner and Riisager [108] to suggest that β-delayed

proton emission in 11Be is also a possible pathway to detect a dark matter decay mode as

proposed by Fornal and Grinstein [48]. More recently, this branching ratio was remeasured

by Ayyad et al. [9] as bp = 1.3(3) × 10−5, similar in size to the previous measurement.

They also presented new evidence for a low-lying resonance in 11B with resonance energy

ER = 0.196(20) MeV and width ΓR = 12(5) keV. Using these parameters, the authors

calculated the decay rate in a Woods-Saxon model assuming a pure Gamow-Teller transition.

They obtained bp = 8×10−6, which has the correct order of magnitude but is only consistent

within a factor of two with their experimental result. The work by Ayyad et al. was criticized

in a recent comment by Fynbo et al. [50]. A new experiment by Riisager et al. [122] gives

an upper limit of bp ≤ 2.2 × 10−6 for the branching ratio but some questions remain due

to inconsistencies between different measurements. In conclusion, the branching ratio for

β-delayed proton emission in 11Be remains an important unsolved problem.

The ground state of 11Be is a well-understood S-wave halo nucleus. From the ratio of

the one-neutron separation energy of 11Be and the excitation energy of the 10Be core, one

can extract the expansion parameter for a description with the core and valence neutron as

effective degrees of freedom, Rcore/Rhalo ≈ 0.4 [67]. Here Rcore and Rhalo are the length scales
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of the core and halo, respectively. In principle, both the 10Be core and the halo neutron can

β-decay. Since the half-life of the neutron (T1/2 = 10 min) is much shorter than the half-life

of the core (T1/2 = 106 a), it is safe to assume that for β-delayed proton emission it is always

the halo neutron that decays in the halo picture. Therefore, one would naively expect the

nucleus to emit this proton due to the repulsive Coulomb interaction:

11Be→ 10Be + p+ e− + ν̄e . (3.1.1)

This process, called β-delayed proton emission, has well-defined experimental signatures.

However, it is also known that short-distance mechanisms such as the decay into excited

states of 11B (that are beyond the halo interpretation) dominate the total β-decay rate of

11Be [118, 85].

Halo EFT offers a new perspective on β-delayed proton emission from 11Be by providing

a value for the decay rate with a robust uncertainty estimate. It uses the appropriate degrees

of freedom and parametrizes the decay observables in terms of a few measurable parameters.

Thus, it is perfectly suited for the theoretical description of low-energy processes such as

β-delayed proton emission from halo nuclei. Kong and Ravndal [88] used these ideas to

successfully describe the inverse process of pp-fusion into a deuteron and leptons. In contrast

to the previous calculation in Ref. [11], we will use new experimental input parameters

and put additional emphasis on the uncertainties associated with using effective degrees of

freedom. The halo neutron can β-decay through both the Gamow-Teller and Fermi operators.

The Fermi operator can only connect states in the same isospin multiplet. If all neutrons

in 11Be contribute to the β-decay, this implies that the final state must have T = 3/2 for

a Fermi transition. No such states are currently known in 11B within the β-decay window.

However, due to the halo character of 11Be we expect that only the halo neutron decays,

such that the final state has no definite isospin. Thus, we will keep our analysis general and

consider both the scenarios of Gamow-Teller and Fermi decay as well a pure Gamow-Teller

decay in the following. Specifically, we will show that based on the measured branching

ratio, a low-lying resonance is the likely reason for the large partial decay rate, confirming

the suggestion of Ref. [121]. Furthermore, in 11B, we explore the impact of the resonance
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energy and width on the decay rate and show that the recent results for the resonance

energy and width of a low-lying resonance are consistent with the experimentally measured

branching ratio.

In order to keep our presentation self-contained, we start by summarizing the concepts

of Halo EFT for S-wave halo nuclei. We discuss the calculation of decay rates with and

without resonant final state interactions and then display our results. Note that these are

EFTs for two different scenarios. Formally, we perform calculations up to corrections of

order Rcore/Rhalo in both scenarios but because of the different physics assumptions these

cannot be directly compared. We conclude with a summary.

3.2 Theoretical Foundations

The Halo EFT Lagrangian L for 11Be as well as the low-lying resonance in 11B up to next-

to-leading order can be written as L = L0 +Ld, where L0 is the free Lagrangian of the 10Be

core, neutron and proton

L0 = c†
(
i∂t +

∇2

2mc

)
c+ n†

(
i∂t +

∇2

2mn

)
n

+ p†
(
i∂t +

∇2

2mp

)
p ,

(3.2.1)

with c, n and p the core, neutron and proton fields, respectively. The masses of core, neutron

and proton are denoted by mc = 9327.548 MeV, mn = 939.565 MeV and mp = 938.272 MeV.

The S-wave core-neutron as well as core-proton interaction are described by Ld, which reads

Ld = d†Be

[
η

(
i∂t +

∇2

2Mnc

)
+ ∆

]
dBe

+ d†B

[
η̃

(
i∂t +

∇2

2Mpc

)
+ ∆̃

]
dB

− g
[
c†n†dBe + H.c.

]
− g̃

[
c†p†dB + H.c.

]
,

(3.2.2)

where dBe and dB are spinor fields, with spin indices suppressed, that represent the JP = 1/2+

ground state of 11Be and the JP = 1/2+ low-lying resonance in 11B, respectively, while

Mnc = mn +mc and Mpc = mp +mc.
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The renormalization of the low-energy constants for 11Be has been discussed in Ref. [67].

Here, we will briefly summarize the relevant results to define our notation. Due to the

non-perturbative nature of the interaction, we need to resum the self-energy diagrams to all

orders. After matching the low-energy constants for 11Be appearing in Eq. (3.2.2) to the

effective range expansion, we obtain the full two-body T -matrix

T0(E) =
2π

mR

[
1

a0

− r0mRE −
√
−2mRE − iε

]−1

. (3.2.3)

where mR is the reduced mass, and a0, r0 are the S-wave 10Be−n scattering length and

effective range, respectively. The residue at the bound state pole of Eq. (3.2.3) is required

to calculate physical observables, Z = 2πγ0
m2
R
/(1 − r0γ0) , with γ0 = (1 −

√
1− 2r0/a0)/r0 ≡

√
2mRSn the binding momentum of the S-wave halo state, and Sn the one-neutron separation

energy of the halo nucleus.

In order to investigate β-delayed proton emission from 11Be, we include the weak

interaction current allowing transitions of a neutron into a proton, electron and antineutrino

which corresponds to the hadronic one-body current. Moreover, we have to consider hadronic

two-body currents that appear in the dimer formalism once the effective range is included.

The corresponding Lagrangian is given by

Lweak = −GF√
2
lµ−

((
J+
µ

)1b
+
(
J+
µ

)2b
)
, (3.2.4)

where lµ− = ūeγ
µ(1 − γ5)vν̄ and

(
J+
µ

)1b
= (V 1

µ − A1
µ) + i(V 2

µ − A2
µ) denote the leptonic and

hadronic one-body currents, respectively. Here the hadronic one-body current is decomposed

into vector and axial-vector contributions. At leading order, the contributions to this current

are V a
0 = N † τ

a

2
N , Aak = gAN

† τa
2
σkN , where |gA| ' 1.27 is the ratio of the axial-vector to

vector coupling constants [145]. Terms with more derivatives and/or more fields (many-

body currents) will appear at higher orders. The first and second term give the conventional

Fermi and Gamow-Teller operators, respectively. Including resonant core-proton final state

interactions, we have to take into account the two-body current arising here from the auxiliary

field formalism with no unknown constants. It is also decomposed into vector and axial-vector
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contributions and reads

(
J+
µ

)2b
=

−d
†
B dBe µ = 0 ,

gA d
†
B σk dBe µ = k = 1, 2, 3 .

(3.2.5)

There is also an unknown contribution usually denoted as L1A that normally appears at

the same order. However, in the case with Coulomb interaction, this piece is suppressed by

(Rcore/Rhalo)1/2 compared to the two-body current in Eq. (3.2.5).1 Therefore, it contributes

only at NNLO allowing us to make predictions up to NLO. Note that our power counting

including resonant final state interactions implies a suppression of (Rcore/Rhalo)1/2 going from

order to order instead of Rcore/Rhalo as in the case without resonant final state interactions.

3.3 Weak Matrix Element and Decay Rate

We ignore recoil effects in the β-decay and take both the Gamow-Teller and Fermi transitions

into account. After lepton sums, spin averaging, and partial phase space integration, we

obtain the decay rate

Γ =

∫
d3pc
(2π)3

∫
d3pp
(2π)3

∫
d3pe

(2π)3 (2Ee)

∫
d3pνe

(2π)3 (2Eνe)
C2(ηe) |A(p)|2(2π)4δ(4)

(
pA −

∑
i

pi

)

=
G2
F (1 + 3g2

A)

4π5

∫
dp

∫
dpep

2p2
e(E0 − E − Ee)2 C2(ηe) |A(p)|2 Θ(E0 − E − Ee) , (3.3.1)

where A is the reduced hadronic amplitude for Gamow-Teller and Fermi transitions whose

operator coefficients have been factored out and Θ is the Heaviside step function. Moreover,

p is the relative momentum of the outgoing proton and core, while E = p2/(2mR) is their

kinetic energy. Furthermore, E0 = ∆m− Sn, where ∆m = 1.29 MeV is the mass difference

between neutron and proton, and Ee =
√
m2
e + p2

e is the energy of the electron with me =

0.511 MeV denoting the electron mass.

1The scaling of rC0 ∼ 1/kC leads to the suppression of the counterterm contribution L1A.
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The Sommerfeld factor of the electron is given by

C2(ηe) =
2πηe

(e2πηe − 1)
, (3.3.2)

where ηe = αZZeEe/|pe| with α ' 1/137 is the fine structure constant. We use Z = Zp in

order to ensure that we reproduce the free neutron decay width in the limit of a vanishing

one-neutron separation energy of 11Be. This means that the electron is only interacting with

the outgoing proton. We assume this to be a good approximation since the 10Be core is far

away from the decaying valence neutron due to the small one-neutron separation energy. If

a pure Gamow-Teller transition is considered, the factor 1 + 3g2
A is replaced by 3g2

A. This

results in a reduction of the decay rate by 17 %.

3.4 Beta-strength Sum Rule

The so-called Fermi and Gamow-Teller sum rules (also collectively known as beta-strength

sum rule) count the number of weak charges that can decay in the initial state. We will

require that this beta-strength sum rule is fulfilled exactly at each order within our EFT

power counting. The beta-strenghts are related to the comparative half-life of a decay, the

so-called ft value given by

ft =
B

BF + g2
ABGT

, (3.4.1)

where B = 2π3 ln 2/(m5
eG

2
F ) is the β-decay constant. In this chapter, we will use the value

B = 6144.2 s [107, 70]. With BGT = 3BF, we find

BF =
B

(1 + 3g2
A)

1

ft
. (3.4.2)
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The inverse ft value is directly related to the transition matrix element M of 11Be into

10Be + p,
1

ft
=

1

B
|M|2

=
1

B

(1 + 3g2
A)

2π2

∫
dE mR

√
2mRE |A(p)|2 .

(3.4.3)

For a transition into the continuum, the sum rule is exactly fulfilled when integrating the

differential beta-strengths

dBF

dE
=

1

2π2
mR

√
2mRE |A(p)|2 , (3.4.4)

dBGT

dE
= 3

dBF

dE
, (3.4.5)

over the whole continuum leading to the sum rules BF = 1 and BGT = 3. In the halo picture,

we therefore expect beta-strengths BF and BGT to be at most 1 and 3, respectively, when

integrating over the available Q-window. At LO where the full non-perturbative solution for

a zero-range interaction is used in the incoming as well as outgoing channel, the sum rule

is always satisfied. At NLO where range corrections are included, the sum rule puts strong

constraints on the ranges in the incoming and outgoing channels such that only certain

combinations are allowed.

3.5 Hadronic Current without Resonant Final State

Interactions

The amplitude for the charge changing weak transition of a two-body system is illustrated

as diagram (a) of Fig. 3.1. It was first calculated in pionless EFT by Kong and Ravndal [88].

The details are provided in B.3. The corresponding hadronic current can be written as [127]

A(a)
C (p) = −ig

√
ZC(ηp)e

iσ0
2mR

p2 + γ2
0

e2ηp arctan(|p|/γ0) , (3.5.1)

where σ0 is the Coulomb phase and C2(ηp) is the Sommerfeld factor from Eq. (3.3.2). In the

10Be − p system, the Sommerfeld parameter is ηp = αZpZcmR/|p| = kC/|p|, with Zp = 1

32



and Zc = 4. The amplitude above is in S-wave, which is the case of 11Be ground state. For

a detailed P-wave calculation, see Appendix B.4.

3.6 Hadronic Current with Resonant Final State In-

teractions

The current (3.5.1) includes only the final state interaction from the exchange of Coulomb

photons. We now consider resonant final state interactions whose signature is a low-lying

resonance in the 10Be−p channel up to NLO. These contributions are shown as diagrams (b)

and (c) of Fig. 3.1. Diagram (c) contributes only at NLO to the amplitude. It arises from

a two-body current (with known coupling strength) that appears as a result of the energy-

dependent interactions used in the initial state (see Eq. (3.2.2)) and the final state (see

Ref. [71]). The thin double line together with the shaded ellipses that represent Coulomb

Green’s functions as depicted in diagram (b) essentially combine to the strong scattering

amplitude TCS given either in Eq. (3.6.1) or (3.6.7) [71, 88].

The degrees of freedom in Halo EFT are the emitted outgoing proton and 10Be. Our

treatment of the resonance follows Ref. [71]. The corresponding strong scattering amplitude

modified by Coulomb corrections is [71]

TCS =
−4π/mR(

rC0 − 1
3kC

)
(p2 − k2

R) + p2

3kC
− 4kCH(ηp)

, (3.6.1)

where H(ηp) = Re[ψ(1 + iηp)] − ln ηp + i
2ηp
C2(ηp) , with the digamma function ψ(z). The

parameters in Eq. (3.6.1) are directly related to the complex pole momentum k∗ = kR − ikI :

− 1

aC0
= −

(
rC0 −

1

3kC

)
k2
R

2
, (3.6.2)

rC0 = −2πkC
kRkI

1

e2πkc/kR − 1
+

1

3kC
, (3.6.3)
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where aC0 and rC0 are the Coulomb-modified scattering length and effective range, respectively.

Within our power counting, the parameters kC , kR, kI as well as γ0 scale as 1/Rhalo implying

that both Coulomb-modified scattering parameters aC0 and rC0 scale as Rhalo.

The diagrams (b) and (c) of Fig. 3.1 lead to

A(b)
CS = −ig

√
Z4m2

RC(ηp)e
iσ0ITCS , (3.6.4)

A(c)
CS = −ig

√
Z4m2

RC(ηp)e
iσ0

(√
r0rC0
8π

)
TCS , (3.6.5)

with the complex-valued integral

I =

∫
d3q

(2π)3

C2(ηq)e
2ηq arctan(|q|/γ0)

q2 + γ2
0

1

p2 − q2 + iε
. (3.6.6)

The total amplitude A is the sum of the amplitudes with and without resonance A =

A(a)
C +A(b)

CS +A(c)
CS.

At LO, the Coulomb-modified effective range in the 10Be − p system is zero and the

amplitude reduces to

TCS = − 2π

mR

[
1

−1/aC0 − 2kCH(ηp)

]
. (3.6.7)

To keep the main body be concise and clean, more details about the calculations in this

section are given in Appendix B.5.

3.7 Results without Resonant Final State Interactions

We consider two scenarios: beta-delayed proton emission with and without resonant final

state interactions from a low-lying resonance in 11B. We start with the first scenario and use

the one-neutron separation energy of 11Be Sn = 0.5016 MeV [85]. In Fig. 3.2, we plot the

differential decay rate dΓ/dE as a function of the kinetic energy E of the outgoing hadrons.

The solid line gives the result obtained by Baye and Tursunov [11]. The dash-dotted line

shows the EFT result with an uncertainty band obtained by adding an uncertainty of order

Rcore/Rhalo ≈ 40 % from higher order corrections where we use the smallest value of Rhalo
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Figure 3.1: (a): Feynman diagram for the weak decay of a one-neutron halo nucleus into
the corresponding core and a proton with Coulomb final state interactions only. (b) + (c):
Contributions of resonant final state interactions. The thin double line in the middle denotes
the dressed 10Be−p propagator. The shaded ellipse denotes the Coulomb Green’s function.
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Figure 3.2: Differential decay rate dΓ/dE for β-delayed proton emission from 11Be as a
function of the final-state particle energy E. The dash-dotted line shows our EFT result
without resonant final state interactions while the solid line gives the result obtained by
Baye and Tursunov [11]. The dashed line shows the EFT result including a resonance
at ER = 0.196 MeV in the outgoing channel at NLO. The colored bands give the EFT
uncertainty.
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given by 1/γ0 while we estimate Rcore by the effective range r0 as a conservative estimate.

The remaining curve includes resonant final state interactions and will be discussed below.

For the branching ratio, we obtain bp = Γ/Γtotal = (1.31 ± 0.51) × 10−8 where the EFT

uncertainty is again estimated to be of the order of 40 %. Correspondingly, we obtain for the

decay rate Γ = (6.6±2.6)×10−10 s−1. Baye and Tursunov [11] obtain Γ = 1.5×10−9 s−1 which

differs by a factor of 2.3 from our result. We note, however, that they used a Woods-Saxon

potential with Coulomb interactions tuned to reproduce 11B properties in the final state.

Both theoretical results are significantly smaller than the experimental results reported in

Refs. [23, 120, 121, 9].

3.8 Results with Resonant Final State Interactions

We now discuss the second scenario including final state interactions. In Fig. 3.3, we show

the possible resonance parameter combinations that fulfill the beta-strength sum rule. The

dash-dotted line is the result at LO where the effective range in the incoming channel as

well as the Coulomb-modified effective range in the outgoing channel are zero. At NLO,

we use r0 = 2.7 fm determined in Ref. [67] from the measured B(E1) strength for Coulomb

dissociation of 11Be. The one-neutron separation energy as well as the effective range of 11Be

determine the Coulomb-modified effective range in the outgoing channel to be rC0 = 1.5 fm.

The sum rule is then satisfied to very good approximation for a wide range of Coulomb-

modified scattering lengths in the outgoing channel. The square shows the experimentally

measured resonance parameter combinations given in Ref. [9]. We note that the value of rC0

is determined independently from the experimental resonance parameters. Our NLO curve

depicted as the dashed line corresponding to rC0 = 1.5 fm exhibits combinations of ER and

ΓR that are in agreement with this measurement as indicated by the overlap of the square

and the curve.

In Fig. 3.4, we show the results for the decay rate as a function of the resonance energy at

NLO while using the corresponding resonance width that satisfies the sum rule as shown in

Fig. 3.3. The black line represents the decay rate obtained moving along the NLO curve in

Fig. 3.3 while the red shaded envelope gives the theoretical uncertainty estimated from the
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Figure 3.3: Possible resonance parameter combinations fulfilling the sum rule. The dash-
dotted line shows the combinations for r0 = 0 fm at LO corresponding to rC0 = 0 fm while the
dashed line shows the combinations for r0 = 2.7 fm at NLO corresponding to rC0 = 1.5 fm.
The green bands show the resonance parameters given in Ref. [9].
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counterterm contribution in the axial current scaling with Rcore/Rhalo ≈ 40 %. The green

bands show the experimentally measured branching ratio and resonance energy of Ref. [9].

The horizontal blue dashed line denotes the result of the model calculation carried out in

Ref. [9] whereas the horizontal blue dash-dotted line gives the upper bound of Ref. [122].

Comparing our results with Ref. [122], we find that resonance energies ER ≥ 0.214 MeV give

results compatible with this upper bound. The corresponding resonance widths can be read

off in Fig. 3.3. When comparing our results with Ref. [9], we find that the low-lying resonance

measured in Ref. [9] with ER = 0.196(20) MeV and width ΓR = 12(5) keV is consistent with

their experimentally measured branching ratio as indicated by the overlap of the square

and the red shaded band. According to Fig. 3.3, we determine the width corresponding to

the resonance energy ER = 0.196(20) MeV as ΓR = (9.0+4.8
−3.3(exp.)+5.3

−2.2(theo.)) keV, which

agrees well with the experimental value. At LO, the resonance width scales as k2
C/mR

whereas at NLO this value is enhanced by a factor of 1/(1 − 3kCr
C
0 ). This enhancement

for Coulomb halos is well known [125, 94, 133]. Using ER = 0.196(20) MeV, we calculate

the logarithm of the comparative half-life log(ft) = 3.0 with BGT = 2.88 and BF = 0.96

for a decay including both Gamow-Teller and Fermi transitions and log(ft) = 3.1 with

BGT = 2.88 for a pure Gamow-Teller transition. The latter result can be compared to

log(ft) = 4.8(4) calculated by Ayyad et al. [9] which was obtained using a pure Gamow-

Teller transition as well, but is significantly larger than our result. This large log(ft) value

was also criticized in the comment by Fynbo et al. [50]. Ayyad et al. corrected the value to

log(ft) = 2.8(4) in their recent erratum [9]. This new value is now in good agreement with

our result. Using the half-life for 11Be given in Ref. [85] we convert the Halo EFT result

for ER = 0.196(20) MeV and ΓR = (9.0+4.8
−3.3(exp.)+5.3

−2.2(theo.)) keV into the final result for the

branching ratio bp = 4.9+5.6
−2.9(exp.)+4.0

−0.8(theo.) × 10−6. The corresponding differential decay

rate is shown by the dashed line in Fig. 3.2.
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3.9 Numerical Implementation

The calculation is relatively straightforward. In the case without final state interactions,

one take the only Eq. (3.5.1). Including final state interactions, one should notice that beta-

strength sum rule is taken as an input. We integrate Eq. (3.4.4) from zero to infinity and

adjust rC0 to get BF = 1. As a result, the choices of resonance parameters are not arbitrary,

as illustrated in Fig. 3.3. The complex-valued integral of Eq. (3.6.6) is evaluated separately

for the principal value part and the imaginary part. Then the norm is used in calculating

the squared amplitude. Constant parameters used in the calculation are given in Table. 3.1.

3.10 Conclusion

In this chapter, we considered β-delayed proton emission from 11Be. We compared the

scenario with no strong final state interactions with the scenario of a resonant enhancement

in the final 10Be−p channel up to NLO. In the case of no strong final state interactions,

we obtained results that are in qualitative agreement with Baye and Tursunov with

remaining small differences that can be explained by the different treatment of the final

state channel. Including a low-lying resonance with the energy measured in Ref. [9] results

in a resonance width and partial decay rate in agreement with this experiment. Thus, our

model-independent calculation supports the experimental finding of a low-lying resonance.2

Furthermore, we have explored the sensitivity of the partial decay rate to the resonance

energy and decay width and found that this problem is fine tuned, i.e. only certain

combinations of width and resonance energy can reproduce the partial decay rate. In contrast

to the model calculation in Ref. [9], we included both, Fermi and Gamow-Teller transitions.

However, if a pure Gamow-Teller decay is considered, their partial decay rate can also be

reproduced with slightly smaller resonance parameters. Thus, our result implies that 11Be

is not a good laboratory to detect dark neutron decays since no exotic mechanism is needed

to explain the partial decay rate.

The uncertainties are largely determined by higher order contributions of the EFT

expansion. The next contribution within our power counting that we did not include is

2See Ref. [103] for another recent theoretical calculation in support of this resonance.
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Figure 3.4: Partial decay rate as a function of the resonance energy at NLO using the
corresponding resonance width in accordance with the sum rule (see Fig 3.3). Explanation
of curves and bands is given in inset.

Table 3.1: Summary of parameters used in numerical implementation of β-delayed proton
emission from 11Be.

Constants used in this chapter
Name Symbol Value
11Be core mass mc 9327.548 MeV
Neutron mass mn 939.565 MeV
Proton mass mp 938.272 MeV
Electron mass me 0.511 MeV
Axial-vector coupling constant |gA| 1.27
β-decay constant B 6144.2 s
fine structure constant α 1/137
11Be one-neutron separation en-
ergy

Sn 0.5016 MeV
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a counterterm contribution in the axial current scaling with Rcore/Rhalo. Uncertainties of

the S-wave input parameter (the one-neutron separation energy) do not impact the total

uncertainty significantly. Therefore, we estimate the uncertainty in the final decay rate to be

approximately Rcore/Rhalo ≈ 40 %. Experimental data with higher precision could be used

to constrain the 10Be−n and 10Be−p interactions. It will be interesting to test whether the

inclusion of this resonance changes the Halo EFT predictions for deuteron induced neutron

transfer reactions off 11Be which were investigated in Ref. [134].
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Chapter 4

Electric Dipole Moments of

Three-nucleon Systems in the

Pionless Effective Field Theory

This chapter is another application of short-range EFTs. It is mainly based on the

manuscript [165] with more details included. In pionless effective field theory, we calculate

the electric dipole moments (EDMs) of three-nucleon systems at leading order. The one-

body contributions that arise from permanent proton and neutron EDMs and the two-body

contributions that arise from CP-odd nucleon-nucleon interactions are taken into account.

Neglecting the Coulomb interaction, we consider the triton and 3He, and also investigate

them in the Wigner-SU(4) symmetric limit. We also calculate the electric dipole form factor

and find numerically that the momentum dependence of the electric dipole form factor in

the Wigner limit is, up to an overall constant (and numerical accuracy), the same as the

momentum dependence of the charge form factor. Finally, we study the cutoff dependence

of these observables and find that they are properly renormalized.

4.1 Introduction

The breaking of the discrete symmetries of charge conjugation C and charge conjugation

and parity CP is a necessary condition for the dynamical generation of a matter-antimatter
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asymmetry in the Universe [129]. In the Standard Model (SM) of particle physics, C is

maximally broken by the different gauge interactions of left- and right-handed quarks and

leptons. The breaking of CP is much more subtle. In the SM with three generations

of quarks, CP is broken by the phase of the Cabibbo-Kobayashi-Maskawa (CKM) mixing

matrix [87] and by the QCD θ̄ term [143, 142]. While all observed CP violation (CPV)

in the kaon and B meson systems can be explained by the CKM mechanism, CPV in the

SM fails to generate the observed matter-antimatter asymmetry of the Universe by several

orders of magnitude [52, 54, 53, 75]. Baryogenesis thus requires the existence of new sources

of CPV.

Electric dipole moments (EDMs) of leptons, nucleons, atomic and molecular systems

receive negligible contributions from the CKM mechanism [115, 136, 164, 163] and are thus

extremely sensitive probes of CPV beyond the SM (BSM). Currently, the best limits are on

the electron EDM, |de| < 1.1 · 10−16 e fm (90% C.L.), deduced from experiments with ThO

and HfF molecules [7, 29], on the neutron EDM, |dn| < 1.8 · 10−13 e fm (90% C.L.) [1], and

on the EDM of 199Hg, |d199Hg| < 6.2 · 10−17 e fm [57]. Constraints on the diamagnetic atoms

129Xe and 225Ra are presently weaker [22, 128], but, particularly in the case of 225Ra, they

are expected to improve by several orders of magnitude in the coming years [22]. These

bounds can be naively converted into new physics scales in the range of 10 − 100 TeV,

making EDM experiments extremely competitive with direct searches at the Large Hadron

Collider (LHC). For this reason, there exists an extensive experimental program with the

goal of improving existing bounds by one or two orders of magnitude and to search for

EDMs in new systems. In particular, there are proposals to measure the EDMs of charged

particles, including muons, protons and light nuclei, in dedicated storage ring experiments

[104, 117, 3, 144]. These experiments might reach a sensitivity of 10−16 e fm, comparable

with the next generation of neutron EDM experiments, and they provide a much more direct

connection with the microscopic sources of CPV compared to EDMs of diamagnetic atoms,

whose interpretation is affected by the large nuclear theory uncertainties in the calculations

of nuclear Schiff moments [10, 47]. Thus, the measurement of the EDMs of the proton and

light nuclei might play a crucial role not only for the discovery of BSM physics, but also in

disentangling different high-energy mechanisms of CPV [37, 42, 25].
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A description of EDM observables that employs nuclear degrees of freedom is therefore

clearly needed for the interpretation of experimental data. Chiral effective field theory is

particularly useful in this endeavor since it can relate measured EDMs to their underlying

sources, such as the QCD θ̄-term or CPV operators from BSM physics. In Weinberg’s

power counting, the EDMs are for several BSM mechanisms dominated by pion-range CPV

interactions [37, 25], whose strength is related by chiral symmetry to nucleon masses and

mass splittings [32, 98, 37, 25, 138, 38]. The CPV pion-nucleon couplings appearing at leading

order (LO) can thus be extracted from existing lattice QCD calculations in the case of the

QCD θ̄-term [40], or require relatively simple lattice QCD input in the case of BSM operators

[38]. Over the last years significant efforts have been made to improve the description of

EDMs in chiral EFT, with the derivation of the chiral Lagrangian at next-to-next-to-leading

order (N2LO) from the QCD θ̄-term and dimension-six sources of CPV [98, 39, 27], and of

the N2LO time-reversal (T ) breaking potential [95, 26, 56, 35]. These developments made it

possible to carry out chiral effective theory calculations of EDMs of light nuclei [25, 56, 139]

which have complemented hybrid calculations using phenomenological nuclear potentials in

conjunction with CPV potential derived in the effective theory [140, 37, 162, 163]. For recent

reviews of EDMs of light nuclei see Refs. [47, 161, 35].

Such calculations, which employ a complete effective field theory approach to calculate

the wave function of the nuclear bound state and for the construction of the nuclear current,

promise to provide reliable uncertainty estimates and a path to the reduction of those

quantified uncertainties. We however stress that, even in chiral EFT, a systematic connection

between nuclear EDMs and their microscopic quark-level sources beyond LO requires the

determination of CPV nucleon-nucleon couplings, and thus lattice QCD simulations in two-

or three-nucleon systems. In addition, it was recently shown in Ref. [36] that long-standing

issues with the renormalization of singular chiral EFT potentials [81, 102] demand the

inclusion of LO CPV short-range nucleon-nucleon couplings whenever the CPV pion-nucleon

interactions act in the 1S0–3P0 channel. While this has no consequence for the EDM of the

deuteron, it significantly affects the chiral EFT uncertainties in the three-nucleon system

[36].
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The so-called pionless EFT, EFT(/π) [66], is an alternative EFT approach to light nuclei.

It is an expansion in the ratio of the range of the nuclear interaction R and the two-nucleon

scattering length a and has been shown to be a working, order-by-order renormalizable

framework for two-, three- and four-nucleon system [82, 15, 14, 110]. The low-energy

constants of this EFT can be related directly to scattering and bound state observables in few-

nucleon systems and pionless EFT predictions are thereby inherently tied to a small number

of these nuclear observables. The dependence of observables on the chosen regulators is also

well-understood and indicates that the inherent uncertainties of the low-energy expansion

are under control. This EFT can be applied to any system that displays a large scattering

length a and has therefore also found applications in atomic and particle physics.

Here we will use pionless EFT to calculate the EDM and the electric dipole form

factor (EDFF) of the three-nucleon systems at leading order. This has several benefits:

We can easily study the dependence of the EDFF on two- and three-nucleon observables.

Furthermore, a non-zero EDM measurement can be directly related to a corresponding

scattering amplitude using pionless EFT. We can thus retain predictive power by matching

these amplitudes to chiral EFT, at least in those channels in which the CPV pion-exchange

leads to regulator-independent results, or, even more promisingly, by taking advantage

of the significant progress in lattice QCD calculations of few-nucleon matrix elements

[101, 30, 74, 33], which can be directly related to the corresponding pionless EFT ones.

We will also calculate the EDFF in the so-called Wigner limit in which the two-nucleon

spin-singlet and -triplet interactions are identical. This limit has been used for many decades

to obtain a conceptual understanding of the three-nucleon system [49] and the unitary limit

(a special case of the Wigner limit) has also recently been proposed as a starting point for

a novel EFT description of light nuclei [91].

Finally, we will also study the regulator-dependence of the observables considered in our

EFT framework. Strong regulator dependence in observables is the first signature of missing

counterterms that have to be included in an EFT for it to become predictive. Our analysis

will demonstrate that our framework is fully renormalized and has thereby has predictive

power with the uncertainty deduced from the truncation error of the EFT.
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This chapter is organized as follows. In Sec. 4.2, we summarize the theoretical building

blocks and define the CPV interactions used in the calculation. The calculation of the EDFF

is conveniently performed by introducing a trimer field, following Ref. [61, 149, 151]. We

give the integral equation for the CP-even trimer-nucleon-dimer vertex function in Sec. 4.2.1,

and derive the integral equations in the presence of CPV interactions in Sec. 4.3. In Sec. 4.4,

we give the schematic diagrammatic expressions of the three-nucleon EDFF, leaving the

detailed expressions to appendices E and F. In Sec. 4.5, we discuss the numerical results,

and we conclude in Sec. 4.6.

4.2 Theoretical Building Blocks

The leading order CP-even effective Lagrangian in EFT(/π) for the three-nucleon system

is [16]

L = N †

(
i∂0 + eA0

1 + τ3

2
+

~∇2

2MN

)
N + ∆tt

†
i ti + ∆ss

†
asa + yt

[
t†iN

T P̂ i
tN + H.c.

]
+ ys

[
s†aN

T P̂ a
sN + H.c.

]
+ Ωψ†ψ +

[
ωtψ

†σiNti + H.c.
]
−
[
ωsψ

†τaNsa + H.c.
]
, (4.2.1)

where the auxiliary dimer fields ti and sa represent the 3S1 and 1S0 dibaryon field,

respectively. The trimer field ψ represents the three-nucleon field with total angular

momentum 1/2. A three-nucleon force appears at LO because it was shown [16, 14, 15]

to be necessary for the renormalization of three-body observables.

The operators P̂t and P̂s,

P̂ i
t =

1√
8
σ2σiτ 2, P̂ a

s =
1√
8
σ2τ 2τa, (4.2.2)

project on the spin-triplet, isospin-singlet and spin-singlet, isospin-triplet channels, respec-

tively. For the coefficients in Eq. (4.2.1) we choose the conventions

y2
t = y2

s =
4π

MN

, ∆t = γt − µ, ∆s = γs − µ, (4.2.3)
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where γt ' 45.7 MeV denotes the binding momentum of the deuteron, and γs ' −7.9 MeV

is the 1S0 virtual-state momentum. The renormalization scale µ is introduced through the

use of the so-called power divergence subtraction scheme in the two-nucleon sector [82].

Using a matching calculation to a theory without trimer fields it can be shown that

ωs = ωt [149]. These parameters are functions of the ultraviolet cutoff in the three-nucleon

Schrödinger equation. They are determined by adjusting them (at a given cutoff) to a

three-nucleon observable such as a binding energy, e.g. B(3H) = −8.48 MeV.

The dressed spin-triplet and spin-singlet dibaryon propagators are calculated by summing

over an infinite number of loop diagrams. At LO, they are given by

iDLO
t,s (p0, p) =

i

γt,s −
√

p2

4
−MNp0 − iε

. (4.2.4)

The renormalization of the deuteron wave function at LO is given by the residue about the

deuteron pole,

ZLO
d =

2γt
MN

. (4.2.5)

CPV from BSM physics can be systematically classified in the framework of the Standard

Model Effective Field Theory (SMEFT) [28, 59], where the SM is complemented by the most

general set of higher-dimensional operators, expressed in terms of SM fields and invariant

under the SM gauge group. The most important CPV operators arise at canonical dimension-

six, and are suppressed by two powers of v/ΛX , where ΛX is the BSM physics scale and

v = 246 GeV is the Higgs vacuum expectation value. For EDM studies, heavy SM degrees of

freedom can be integrated out, by matching the SMEFT onto an SU(3)c×U(1)em invariant

EFT [78, 77, 43]. Focusing on two light quark flavors and on operators that are induced

by SMEFT operators at tree level, the dimension-six CPV Lagrangian relevant for light

nuclear EDMs includes one dimension-four operator, the QCD θ̄ term, and nine dimension-

six operators, the gluon chromo-electric dipole moment, the u and d quark electric and

chromo-electric dipole moments, and four four-fermion operators. The operator set can be

easily extended to include strange quarks [78, 77, 43, 96].
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At low-energy, these operators manifest in CP-violating interactions between nucleons

and photons. In the single nucleon sector, the most important CPV operators are the

neutron and proton EDMs,

LNγ = −eN †
(
dp

1 + τ3

2
+ dn

1− τ3

2

)
(Sµvν − Sνvµ)NFµν

= eN †
(
dp

1 + τ3

2
+ dn

1− τ3

2

)
σ · EN, (4.2.6)

where vµ = (1,0) and Sµ = (0,σσσ/2) in the nucleon rest frame, and E denotes the electric field.

For all quark-level sources of CPV one expects dn ∼ dp [115, 41], but the calculation of the

exact dependence of dp,n on CPV quark-level couplings requires non-perturbative techniques.

The momentum dependence of the nucleon EDFF was computed in Refs. [73, 41]. Since the

typical scale of the momentum variation is q ∼ mπ, we ignore it in this chapter.

For the QCD θ̄-term, the neutron EDM can be estimated by the size of the long-range

pion loop [32, 99, 73, 105, 41, 97, 137, 40]

dn(θ̄) ' 2 · 10−3 θ̄ e fm, (4.2.7)

in good agreement with the naive expectation dn = O(m2
π/Λ

3
χ θ̄), where Λχ = 2πFπ is the

chiral perturbation theory breakdown scale, with Fπ ' 92 MeV the pion decay constant.

Progress in lattice QCD calculations will soon allow a theoretical error to be attached to the

estimate in Eq. (4.2.7) [76, 2, 21, 141, 86, 45]. The nucleon EDM induced by dimension-six

operators has been estimated using QCD sum rules [113, 114, 115, 62] or chiral techniques

[39, 137, 31]. With the exception of the contribution of the quark EDM, which is determined

by the nucleon tensor charges [60, 8], these estimates have large uncertainties.

In EFT(/π), the leading two-nucleon operators resulting in a non-zero EDM are given by

L/P /T =
yt√

8
C3S1−1P1

(
t†iN

tσ2τ2

←→∇ iN
)

+
yt√

8
C3S1−3P1

iεilm
(
t†iN

tσ2τ2τ3

←→∇ mσlN
)

+
ys√

8

(
s†aN

tσ2τ2τbσσσ ·
←→∇N

)(
C

(0)
1S0−3P0

δab + C
(1)
1S0−3P0

iε3ab + C
(2)
1S0−3P0

(
δab − 3δa3δb3

))
.

(4.2.8)
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These operators were constructed in Refs. [95, 153, 35]. All operators mediate transitions

between S and P waves, as denoted by the name of the coefficients. The operators C3S1−1P1

and C
(0)
1S0−3P0

are isospin invariant, C3S1−3P1
and C

(1)
1S0−3P0

break isospin by one unit, while

C
(2)
1S0−3P0

is an isotensor operator. The couplings C3S1−1P1
, C3S1−3P1

and C
(i)
1S0−3P0

have

dimension of mass−1, and are independent of the renormalization scale µ. Ref. [95] provides

a naive-dimensional-analysis estimate of the size of these coefficients in terms of quark-level

couplings. Going beyond dimensional analysis requires first principle calculations of CPV

matrix elements.

In this chapter we will thus express the EDMs of 3H and 3He in terms of dn, dp and of

the five couplings in Eq. (4.2.8), and discuss the minimal set of observables that is necessary

to disentangle them.

4.2.1 The three-nucleon bound state vertex function

We will calculate the EDFF by integrating over three-particle irreducible diagrams that

contain a single insertion of a CPV operator. Following the formalism defined in Refs.

[149, 151], we define a diagram to be three-particle irreducible when it cannot be separated

by cutting at a trimer field vertex. The resulting form factor diagrams contain necessarily

infinite sums of nucleon-deuteron rescattering diagrams that are given by vertex functions

that result from an integral equation, and pieces that include the photon coupling to a single

nucleon line.

The LO vertex function G(E, p) for a three-nucleon system in the center-of-mass frame

with binding energy E and relative momentum p between outgoing nucleon and dimer is

given by the integral equation shown diagrammatically in Fig. 4.1 and given explicitly by

G(E, p) = 1̃ + K0(q, p, E)⊗q G̃(E, q) . (4.2.9)

We define the short-hand notation

G̃(E, q) = D

(
E − q2

2MN

, q

)
G(E, q) (4.2.10)
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where

D

(
E − q2

2MN

, q

)
=

Dt

(
E − q2

2MN
, q
)

0

0 Ds

(
E − q2

2MN
, q
)
 , (4.2.11)

and the inhomogeneous term in this integral equation is

1̃ =

 1

−1

 . (4.2.12)

The convolution operator ⊗q is defined as

A(q)⊗q B(q) =

∫ Λ

0

dq
q2

2π2
A(q)B(q) , (4.2.13)

where Λ is a hard momentum-space cutoff. Observables will be Λ-independent for large

cutoffs.

The homogeneous term is defined by

K`(q, p, E) = R`(q, p, E)

 −1 3

3 −1

 , (4.2.14)

where the function R` is defined as

R`(q, p, E) =
2π

qp
Q`

(
q2 + p2 −MNE − iε

qp

)
, (4.2.15)

and Ql are functions proportionial to Legendre function of the second kind but differ from

their conventional definition by a phase of (−1)`,

Q`(a) =
1

2

∫ 1

−1

P`(x)

a+ x
dx . (4.2.16)
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= + +

= + +

Figure 4.1: Diagrammatic representation of the LO three-body CP-even vertex function.
The (dashed) double line denotes a dressed spin-singlet (spin-triplet) dibaryon propagator.

=

=

+

+

+

+

+

+

+

+

+

+

Figure 4.2: /P /T vertex function. A blue square denotes the /P /T vertex function, while a
black square an insertion of the operators in Eq. (4.2.8). Remaining notation as in Fig. 4.1.
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4.3 The T-odd vertex function

A three-particle irreducible diagram can contain repeated nucleon-dimer scattering between

a nucleon-photon vertex and an insertion of a two-nucleon CP-odd vertex. We include these

diagrams through two integral equations that generate a vertex function that contains a

single insertion of the CP-odd two-nucleon interaction. The diagrammatic expression for

these vertex functions is shown in Fig. 4.2.

The T-odd vertices convert the spin 1/2, isospin 1/2 trimer field ψ into a nucleon-dimer

with three possible spin/isospin quantum numbers: spin and isospin 1/2, spin 1/2 and isospin

3/2, as well as spin 3/2 and isospin 1/2. The latter does not contribute to the three-nucleon

EDM at leading order, since the LO electromagnetic interaction does not change spin and

the overlap of the spin 3/2 T-odd function with the triton or helion vanishes. The integral

equations for the isospin 1/2 component, T
1
2 , and the isospin 3/2 component, T

3
2 , of the

spin-1/2 T-odd vertex functions are given by

(σσσ · k)T
1
2 (E, k) = (σσσ · k)

{
R

1
2
T (E, k, q)⊗q T̃

1
2 (E, q) +R

1
2 (E, k, q)⊗q G̃(E, q)

}
, (4.3.1)

(σσσ · k)(δ3c + τ 3τ c)T
3
2 (E, k) = (σσσ · k)(δ3c + τ 3τ c)

{
R

3
2
T (E, k, q)⊗q T̃

3
2 (E, q)

+R
3
2 (E, k, q)⊗q G̃(E, q)

}
, (4.3.2)

where we show explicitly the spin/isospin structure of the vertex functions, and, similarly to

the CP-even case, we introduced the shorthand notation for the product of a vertex function

and a dressed dibaryon propagator

T̃
1
2
, 3
2 (E, q) = D

(
E − q2

2MN

, q

)
T

1
2
, 3
2 (E, q) . (4.3.3)

The kernels of the homogeneous terms are

R
1
2
T (E, k, q) =

q

k
R1(E, k, q)

−1 3

3 −1

 , R
3
2
T (E, k, q) =

q

k
R1(E, k, q)

0 0

0 2

 . (4.3.4)
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The inhomogeneous terms are driven by the T-odd operators in Eq. (4.2.8). The isospin

1/2 vertex functions receive contributions from both isoscalar and isovector operators in

Eq. (4.2.8),

R
1
2 (E, k, q) =

R0(E, k, q)

−1 1

−2 0

+
q

k
R1(E, k, q)

 1 2

−1 0

(C3S1−1P1
+

2

3
τ 3C3S1−3P1

)

+

R0(E, k, q)

 0 2

−1 1

− q

k
R1(E, k, q)

0 −1

2 1

(C(0)
1S0−3P0

− 2

3
τ 3C

(1)
1S0−3P0

)
.

(4.3.5)

The isospin 3/2 component is induced by the isotensor operator C
(2)
1S0−3P0

and by the

isovector operators yielding

R
3
2 (E, k, q) =

[
2R0(E, k, q) +

q

k
R1(E, k, q)

]0 0

1 0

 4

3
C3S1−3P1

−1

3

R0(E, k, q)

0 0

1 5

+
q

k
R1(E, k, q)

0 0

2 4

(C(1)
1S0−3P0

− 3τ3C
(2)
1S0−3P0

)
.

(4.3.6)

4.3.1 Integral equations in the SU(4) limit

Nuclear interactions exhibit an approximate SU(4) spin-isospin (Wigner) symmetry, which

would be exact in the limit [160, 155] of equal spin-triplet and singlet scattering lengths.

SU(4) breaking is parameterized by the difference γt − γs, and the expansion around the

Wigner limit converges very well [155]. We will study the electric dipole form factor of the

three-nucleon system in the SU(4) limit, and provide the relevant formulae in this section.
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In the SU(4) limit, Dt = Ds = DSU(4) and from Eq. (4.2.9) one can see that G̃t = −G̃s.
We can introduce the combinations

G± =
1

2
(Gt ∓ Gs) , (4.3.7)

so that G̃− vanishes in the SU(4) limit.

The structure of the T-odd vertex functions simplifies significantly in the SU(4) limit.

It can be shown that both the isospin 1/2 and isospin 3/2 components are proportional to

a single function TSU(4), which satisfies the integral equation

TSU(4)(E, k) = −RSU(4)(E, k, q)⊗q G̃+(E, q) + 2
q

k
R1(E, k, q)⊗q T̃SU(4)(E, q) , (4.3.8)

RSU(4)(E, k, q) = 2R0(E, k, q) +
q

k
R1(E, k, q). (4.3.9)

In terms of TSU(4), we can write

T
1
2

SU(4)(E, k) =

1

1

 T 1
2

SU(4)(E, k) , T
3
2

SU(4)(E, k) =

0

1

 T 3
2

SU(4)(E, k) , (4.3.10)

where

T
1
2

SU(4)(E, k) =

[
C

(0)
1S0−3P0

+ C3S1−1P1
+

2τ 3

3
(C3S1−3P1

− C(1)
1S0−3P0

)

]
TSU(4)(E, k) , (4.3.11)

T
3
2

SU(4)(E, k) =

[
− 2

3
(2C3S1−3P1

+ C
(1)
1S0−3P0

) + 2τ 3C
(2)
1S0−3P0

]
TSU(4)(E, k) . (4.3.12)

4.4 Three-nucleon form factors

The EDFF of a three-nucleon system can be obtained from the matrix element of the zero-

component of the electromagnetic current J0 in the presence of CP violation. Neglecting

recoil corrections, we can write the matrix element of J0 as

〈p′, α|J0|p, β〉 = FC(q2)δαβ + [σσσ · q]αβ FD(q2), (4.4.1)
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where α and β are spin indices of the in- and outgoing three-nucleon state, q = p−p′ is the

momentum injected by the current, and q = |q|. FC denotes the charge form factor and FD

the electric dipole form factor, which vanishes in the absence of CP-violation. We will write

the EDFF in terms of two components,

FD(q2) = FI(q
2) + FII(q

2). (4.4.2)

FI denotes the EDFF generated by the T-odd component of the electromagnetic current,

which is dominated by one-nucleon operators, namely the neutron and proton EDMs in

Eqs. (4.2.6). CPV interactions can in addition generate a CP-odd component in the three-

nucleon wavefunction, which is dominated by the two-body operators in Eq. (4.2.8). We

denote the ensuing EDFF by FII.

The diagrams contributing to FI are shown in Fig. 4.3, where the black square denotes

an insertion of the nucleon EDM, defined in Eq. (4.2.6). We therefore write the FI as the

sum of the three terms

FI(q
2) = FA

I (q2) + FB
I (q2) + FC

I (q2) , (4.4.3)

corresponding to the three diagrams shown in Fig. 4.3. We give explicit expressions for the

diagrams in Appendix E. From the expression in Appendix E and the charge form factor in

Refs. [149, 151], which we also report in Appendix E, it can be seen that in the SU(4) limit,

the one-body contribution to the triton and 3He EDFFs is identical to FC(q2), weighted by

the proton or neutron EDM,

FI(q
2,3 H)

SU(4)−−−→ dp FC(q2), FI(q
2,3 He)

SU(4)−−−→ dnFC(q2). (4.4.4)

We will see that the results at the physical values of γs and γt deviate from this expectation

by a few percent.

The second class of contributions arises from the two-nucleon operators given in

Eq. (4.2.8). In Fig. 4.4 we show the EDFF topologies that include a CP-odd two-nucleon

operator. Diagrams (a), (b) and (c) include the T-odd vertex functions defined in Section 4.3.
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(a) (b) (c)

Figure 4.3: Diagrams contributing to the one-body component of the EDFF, defined in
Eq. (4.4.3). Here, the double line can denote a spin-triplet or singlet dimer. The black square
denotes an insertion of the nucleon EDM, defined in Eq. (4.2.6).

(a) (b) (c)

(d) (e)

Figure 4.4: Diagrams for the three-nucleon EDM form factor at LO that involve a CP-odd
two-nucleon interaction.
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Diagram (d) and (e) include the CP-even G vertex functions, with an additional insertion

of the T-odd nucleon-dimer operators. For simplicity, we only show one topology. The

complete set of diagrams also includes the insertions of the T-odd operators to the right of

the photon-nucleon vertex.

We write the sum of contributions to the EDFF that include two-body CP-odd

interactions as

FII(q
2) = FA

II (q2) + FB
II (q2) + FC

II (q2) + FD
II (q2) + FE

II (q2) , (4.4.5)

where the superscript indicates the corresponding diagram in Fig. 4.4. We give explicit

expressions for the individual diagrams in Appendix F.

In the SU(4) limit, the two-body diagrams also undergo a noticeable simplification, and

they become proportional to a single combination of T-odd coefficients,

FII(q
2,3 H)

SU(4)−−−→ F̃SU(4)(q
2)
(
C3S1−1P1

+ C
(0)
1S0−3P0

− 2C
(2)
1S0−3P0

− 2C3S1−3P1

)
, (4.4.6)

FII(q
2,3 He)

SU(4)−−−→ −F̃SU(4)(q
2)
(
C3S1−1P1

+ C
(0)
1S0−3P0

− 2C
(2)
1S0−3P0

+ 2C3S1−3P1

)
,(4.4.7)

where F̃SU(4)(q
2) is a universal function that depends on q, on the scattering length in the

Wigner limit and the three-body binding energy. In particular, the three-nucleon EDM

becomes insensitive to the isospin-1 C
(1)
1S0−3P0

operator.

4.5 Results

We have calculated the numerical coefficients multiplying the low-energy constants that

appear in a decomposition of the CP-odd form factor as a function of q2. In the absence

of the Coulomb interaction, we take the binding energy of 3H and 3He to be equal, i.e.

B(3H) = B(3He). We estimate the numerical uncertainty of the results presented below to

be 1 % or lower. The theoretical uncertainty of our results is determined by the expansion

parameter of the pionless EFT which is γtρt ≈ 0.4, where ρt is the effective range in the
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triplet channel. The theoretical uncertainties of our results are therefore clearly larger than

the numerical ones.

The EDFF results obtained for 3H are shown in Fig. 4.6. In Table. 4.1 we show the cutoff

dependence of the dipole moment contributions arising from the different EFT operators.

Furthermore, we observe that cutoffs larger than 1.5 GeV are needed to obtain numerically

converged results. This convergence behavior is shown for the EDMs in Fig. 4.5.

At small q2, we will expand the charge form factor as

FC(q2) = Z

(
1− q2

6
〈r2
c〉+

1

5!
〈r4
c〉q4 + . . .

)
, (4.5.1)

where r2
c is the charge squared radius and r4

c the 4th Zeemach moment, Z denotes the total

charge of the nucleus considered and we omitted a label to denote the specific nucleus. We

define a similar expansion for the one- and two-body EDFF,

Fi(q
2, C) = di(C)

(
1− q2

6
〈r2
d, i(C)〉+

1

5!
〈r4
d, i(C)〉q4 + . . .

)
, (4.5.2)

where i = I, II. C = dn,p for the one-body term, while it denotes one of the nucleon-

dimer T-odd operators in Eq. (4.2.8) for the two-body contribution. In the SU(4) limit, all

the dependence on couplings factorizes into the universal function F̃SU(4)(q
2) and a linear

combination of low-energy constants, as shown in Eqs. (4.4.6) and (G.1). The square radius

of the EDFF is particularly important since it determines the nuclear Schiff moment, and

thus the EDMs of the atomic 3H and 3He species [132]. More precisely, the Schiff moment

is proportional to the difference of the charge and dipole radii [34]

Si(C) = −di(C)

6

(
〈r2
d, i(C)〉 − 〈r2

c〉
)
, (4.5.3)

where again i denotes either the one- (I) or two-body (II) contribution.

The three-nucleon charge form factor in EFT(/π) has already been computed in Refs.

[111, 149, 151], including next-to-leading order (NLO) and next-to-next-to-leading order
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(N2LO) corrections. At LO, and neglecting Coulomb interactions, one finds

〈r2
c (

3H)〉 = 1.28 fm2 , 〈r2
c (

3He)〉 = 1.56 fm2 . (4.5.4)

These results are in agreement with those in Refs. [149, 151]. We will use the charge form

factor as a point of comparison for the momentum dependence of the EDFF. In the SU(4)

limit,

〈r2
c (

3H)〉 = 〈r2
c (

3He)〉 = 1.32 fm2. (4.5.5)

The neutron and proton EDMs contributions to the 3H and 3He EDM are given by

dI(
3H) = 0.99 dp + 9.7 · 10−3dn, dI(

3He) = 0.99 dn + 9.7 · 10−3dp. (4.5.6)

The EDM only deviates by 1% from the expectation in the Wigner limit. These results can

be compared with chiral EFT calculations of Ref. [37, 25, 56]. These calculations include

subleading effects in the strong potential, and thus in the three-nucleon wavefunctions, and

typically find the dp (dn) contribution to 3H (3He) EDM to be roughly 10% smaller than

Eq. (4.5.6). In Ref. [139], a hybrid approach was used to calculate the EDMs of the three-

nucleon system. The current operators were taken from both pionless and pionfull effective

field theory but the wave function was evaluated using a model potential. The results for the

single-nucleon EDM contributions are roughly of the size found in the chiral EFT calculations

and therefore smaller than our results. However, the size of the deviation depends on the

specific model used in the calculations of Ref. [139].

The dominant momentum dependence of the EDFF is encoded by the dipole square

radius, which we find to be

〈r2
d, I(

3H, dn)〉 = −18.3 fm2, 〈r2
d, I(

3H, dp)〉 = 1.28 fm2, (4.5.7)

〈r2
d, I(

3He, dn)〉 = 1.28 fm2, 〈r2
d, I(

3He, dp)〉 = −18.3 fm2. (4.5.8)
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Figure 4.5: Cutoff dependence of the 3H EDM two-nucleon contributions.

Table 4.1: Coefficients of the 3H EDM low-energy constants for different values of the cutoff
Λ.

Λ (GeV) dp dn C3S1−1P1
C3S1−3P1

C
(0)
1S0−3P0

C
(1)
1S0−3P0

C
(2)
1S0−3P0

10 0.982 0.008 -0.358 0.708 -0.297 -0.038 0.481
30 0.988 0.010 -0.356 0.706 -0.295 -0.037 0.479
80 0.990 0.010 -0.358 0.708 -0.297 -0.038 0.481
600 0.991 0.010 -0.359 0.708 -0.298 -0.038 0.481
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(a) C3S1−1P1
(b) C3S1−3P1

(c) C
(0)
1S0−3P0

(d) C
(1)
1S0−3P0

(e) C
(2)
1S0−3P0

Figure 4.6: The EDFF contributions arising from five different two-nucleon CP-odd
operators as a function of q2.
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The square radii agree very well with the triton charge radius. This has consequences for

the Schiff moment, and thus the EDMs of atomic 3He and 3H. We see that in the case of

3H, the one-body Schiff moment vanishes at LO in EFT(/π), SI(
3H, dp) = 0. The one-body

Schiff moment of 3He is small, but non-vanishing,

SI(
3He, dn) =

dn
6

(0.28) fm2. (4.5.9)

We adopt the same expansion as Eq. (4.5.2) for the function FSU(4)(q
2) and obtain for

the two-body form factor in the SU(4) limit

dSU(4) = −0.332, 〈r2
d〉SU(4) = 1.32 fm2. (4.5.10)

where we used the average of spin-singlet and triplet binding momentum and the triton

binding energy in our calculation. In this limit, the momentum dependence of the form

factor seems to be dictated by the charge form factor, and we find that, to very good

approximation,
F̃SU(4)(q

2)

FC(q2)
= constant. (4.5.11)

For q between 0 and 500 MeV, this ratio deviates from a constant at the per mille level. At

the physical value of the scattering lengths, the 3H and 3He EDMs from the two-body form

factor FII are given by

dII(
3H) = −0.358C3S1−1P1

+ 0.707C3S1−3P1
− 0.297C

(0)
1S0−3P0

−0.0368C
(1)
1S0−3P0

+ 0.480C
(2)
1S0−3P0

, (4.5.12)

dII(
3He) = 0.358C3S1−1P1

+ 0.707C3S1−3P1
+ 0.297C

(0)
1S0−3P0

−0.0375C
(1)
1S0−3P0

− 0.480C
(2)
1S0−3P0

. (4.5.13)

where, as our central value, we took the EDFF at Λ = 60 GeV. As already remarked,

the numerical accuracy is a the percent level, and smaller than the LO EFT(/π) theoretical

uncertainty. The EDFF square radii induced by the CPV operators in Eq. (4.2.8) are given

in Table .4.2.
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We notice that, in the absence of the Coulomb interaction, the EDMs of 3H and 3He

follow simple isospin relations. In particular, the isoscalar and isotensor operators give rise

to an isovector EDM, while the isovector operators to an isoscalar three-nucleon EDM. These

patterns can be understood by noticing that only the isovector piece of the CP-even one-body

electromagnetic current J0 contributes to FII [93, 140, 37].

We observe that the EDM induced by the isoscalar operators C3S1−1P1
and C

(0)
1S0−3P0

and by the isospin-1 operator C3S1−3P1
deviate from the SU(4) limit by about 10%. The

EDM from the operators that connect the 3S1 to 1P1 and 3P1 waves increases (in absolute

value) by 10%, while the EDM from C
(0)
1S0−3P0

decreases by the same amount. We also

note that the isotensor operator C
(2)
1S0−3P0

shows a larger, 30% variation, from the Wigner

limit. Furthermore, we find that, with the exception of C
(1)
1S0−3P0

, all operators induce matrix

elements of O(1), as naively expected. The contribution of C
(1)
1S0−3P0

is suppressed by roughly

a factor of ten. It is interesting to note that in the case of 3H, the momentum dependence

of the form factor induced by C3S1−1P1
, C3S1−3P1

and C
(0)
1S0−3P0

cannot be distinguished from

the charged form factor within error. This leads to SII being compatible with zero, implying

that for these operators the Schiff moment vanishes at LO in pionless EFT. C
(2)
1S0−3P0

induces

a non-zero, but small Schiff moment. Specifically, in the case of 3He, all operators induce a

non-zero Schiff moment, but also in this case we expect subleading corrections in EFT(/π) to

be important.

Finally, a comparison with the pionless two-nucleon operator coefficients of the hybrid

calculations of Ref. [139] is problematic for a variety of reasons: the hybrid results vary

based on the choice of potentials to calculate the wave functions. In addition, a different

short-distance regulator is used for the CP-odd two-nucleon operators in these calculations.

While we have shown that the results presented in this chapter are regulator independent,

the pionless results of the hybrid calculation of Ref. [139] are only given for a single value (the

pion mass) of the corresponding regulator. Changing this value from the pion mass to the

η mass changes some of the results by factors of close to 10. While the CP-odd two-nucleon

operators are regulator-dependent in both approaches, the nuclear wave functions in the

hybrid approach lack the necessary regulator dependence to compensate for these changes.
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It is therefore unclear which values of each of the employed short-distance regulators should

be chosen for a comparison.

4.6 Summary

In this chapter, we have shown that EFT(/π) is an efficient framework that facilitates a

straightforward calculation of the EDMs and their corresponding form factors of three-

nucleon systems. We focused on the 3H and 3He systems at leading order in the pionless

EFT expansion and neglected Coulomb effects in the 3He system. At this order, the only

(CP-even) parameters that enter our calculation are the deuteron binding energy, the two-

nucleon spin-singlet scattering length, and the three-body binding energy of the state under

consideration. Allowing for CP-odd interactions in the few-nucleon sectors leads to a total

of 7 parameters, where two of them are the neutron and proton EDM and 5 arise from

short-distance physics in the two-nucleon system.

The deuteron and the isoscalar combination of the 3H and 3He EDMs are mostly sensitive

to the isovector coupling C3S1−3P1
(see App. D for a derivation of the EDFF and resulting

EDM in pionless EFT). These two observables are thus largely degenerate, and, neglecting

the one-body piece, our calculation finds

d(3H) + d(3He)

2d(2H)
= 0.71. (4.6.1)

For comparison, the chiral EFT calculation of Ref. [56] finds the ratio to be between 0.77 and

0.80, for both the isovector pion-nucleon coupling ḡ1 and for the linear combination A3−A4,

which corresponds to C3S1−3P1
. The isovector combination d(3H)−d(3He) probes the isoscalar

couplings C3S1−1P1
, C

(0)
1S0−3P0

and the isotensor C
(2)
1S0−3P0

, which are particularly important for

the QCD θ̄ term. In chiral EFT, this linear combination cannot be expressed only in terms

of pion-nucleon CPV couplings, but requires short-range nucleon-nucleon operators at LO

[36].

Specializing to the QCD θ̄-term, we combine Eqs. (4.5.6) and (4.5.13) to obtain

d3He(θ̄) = dn + 0.358 C3S1−1P1
+ 0.297 C1S0−3P0

. (4.6.2)

64



We can then use Eq. (??) to write the above result in terms of the dimensionless couplings

c3S1−1P1
and c

(0)
1S0−3P0

with size of order one

'
(

2.0 + 10 c3S1−1P1
+ 8.6 c

(0)
1S0−3P0

)
· 10−3 θ̄ e fm . (4.6.3)

From Eq. (4.6.2) we see that the 3He EDM can receive a dominant two-body contribution,

but of course more precise statements require a first principle determination of the LECs.

Our approach does not facilitate an as direct identification of the sources of possible

non-zero EDMs in light nuclei as chiral EFT does. However, it offers order-by-order

renormalizability, a clear understanding of the dependence of observables on the employed

ultraviolet regulator and exhibits the dependence of observables on simple measurable two-

and three-body observables such as the effective range parameters. At NLO, the effective

ranges in the singlet and triplet channels contribute to this correction will be of the order

γtρt ≈ 0.4 where ρt is the triplet effective range. It will be very interesting to study the

contributions to the EDFF at NLO. Such an NLO calculation of the CP-odd properties of

the three-nucleon system will require the construction of NLO vertex functions to include the

effects of NLO relevant two-body operators. We furthermore anticipate, based on results for

similar parity-violating interactions in three-nucleon systems [152], that at NLO a CP-odd

three-nucleon force will be required whose coefficient will have to be fixed with a CP-odd

three-nucleon observable.

We note that Coulomb corrections can be included in EFT(/π) and are expected to give

an approximately 10 % correction for 3He [90] and are thereby smaller than the expected

size of NLO range corrections.

Finally, we are optimistic that our EFT(/π)calculation can be directly connected to QCD

using lattice calculations, given recent results obtained with lattice QCD for electroweak

matrix elements [131, 33] of two-nucleon system and the possibility to carry out this

calculation in a finite volume [92].
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Table 4.2: Square radii of the two-body EDFF induced by the CPV operators in Eq.
(4.2.8), computed at Λ = 60 GeV. The C

(1)
1S0−3P0

squared radii have a numerical error of
approximately 10 % since the corresponding dipole moments are relatively small. The other
radii have few-percent numerical uncertainties, which we do not show.

C3S1−1P1
C3S1−3P1

C
(0)
1S0−3P0

C
(1)
1S0−3P0

C
(2)
1S0−3P0

〈r2
d, II(

3H)〉 (fm2) 1.31 1.30 1.24 1.48 1.19
〈r2
d, II(

3He)〉 (fm2) 1.90 1.50 1.83 4.58 1.19
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Chapter 5

3He with Coulomb Interactions in the

Pionless Effective Field Theory

5.1 Introduction

Three-body systems have been widely studied in the pionless EFT. One benefit of pionless

EFT is that it is straightforward to study the impact of the Coulomb interactions [6, 89, 154].

Continuing previous chapter’s work, here we provide both the analytical and numerical

results of studying 3He in the pionless EFT framework with the Coulomb interaction included

nonperturbatively at leading order (LO). The method we use is an extension of the previous

chapter. We decouple the isospin triplet dimer into np and pp channels explicitly. The

np-channel dimer is not modified by Coulomb interactions. Coulomb-photon exchanges

inside the pp-channel are resumed to all orders to get the dressed pp-dimer. Since Coulomb

interaction does not couple to isospin eigenstates, we do not project three-body bound states

onto isospin doublet and quartet channel separately. Instead, three-body isospin doublet and

quartet channels are included by picking up correct isospin indices. We calculate the charge

form factors of 3He with coulomb contributions. Moments of 3He, like charge radius and

the third Zemach moment, are evaluated. We also studied the cutoff dependence of our

observables.

This chapter will provide rich details of the calculation, which are important due to the

complexity of the diagrams. In Sec. 5.2, we will give the theoretical foundations of this
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work. We will only cover the content that is not mentioned in the previous chapter. Then

in Sec. 5.3, we will derive the 3He bound state vertex function with Coulomb contributions.

In Sec. 5.3, the calculation of all form factor diagrams with Coulomb, contributions are

discussed. The third Zemach moment is introduced later and we demonstrate our results in

the end.

5.2 Effective Lagrangian

We use a very similar formalism to the one we have used in the EDM chapter, yet still

different. To make this chapter self-contained, the effective Lagrangian for the 3He system

in pionless EFT can be written as

L = L2 + L3 + Lphoton , (5.2.1)

where L2 denotes the two-body Lagrangian density, and L3 denotes the three-body

Lagrangian density.

The two-body Lagrangian, L2, up to NLO is given by

L2 = N †

(
i∂0 + eA0

1 + τ3

2
+

~∇2

2MN

)
N

+ t†i

[
∆t − c0t

(
i∂0 +

~∇2

4MN

+
γ2
t

MN

)]
ti + s†a

[
∆s − c0s

(
i∂0 +

~∇2

4MN

+
γ2
s

MN

)]
sa

+ yt

[
t†iN

T P̂ i
2tN + H.c.

]
+ ys[s

†
aN

T P̂ a
2sN + H.c.], (5.2.2)

where the auxiliary dimer fields ti and sa represent the 3S1 and 1S0 dibaryon field,

respectively. For the coefficients, yt, ys, ∆t, and ∆s, we choose the same conventions as

in Eq. (4.2.1). Again, γt ' 45.7 MeV denotes the binding momentum of the deuteron, and

γs ' −7.9 MeV is the 1S0 virtual-state momentum. c0t and c0s are given by

c0t = (Zt − 1)
MN

2γt
, c0s = (Zs − 1)

MN

2γs
, (5.2.3)
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where Zt = 1.6908 and Zs = 0.9015 are the residues about the deuteron and the virtual 1S0

state poles, respectively [149].

The operators P̂2t and P̂2s are spin-triplet and spin singlet two-body projectors, defined

by

P̂ i
2t =

1√
8
σ2σiτ 2, P̂ a

2s =
1√
8
σ2τ 2τa, (5.2.4)

Since in this chapter, we need to distinguish the nn, np, and pp channels of the spin-singlet

dimers, it is useful also to write down the two-body projectors and spin-singlet dimer in the

spherical basis, given by,

P pp
2s = 1√

2
(iP 2

2s − P 1
2s) , spp = 1√

2
(is2 − s1) ,

P np
2s = P 3

2s , snp = s3 ,

P nn
2s = 1√

2
(iP 2

2s + P 1
2s) , snn = 1√

2
(is2 + s1) .

(5.2.5)

One can prove the validity by noticing the fact,

∑
a

τasa = − 1√
2

(τ 1 + iτ 2)spp + τ 3snp +
1√
2

(τ 1 − iτ 2)snn . (5.2.6)

More about the two-body projectors can be found in Appendix C.

The spin-triplet, spin-singlet-np, and spin-singlet-pp dibaryon propagators up to NLO

are respectively given by,
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iDt(p0,p) =
i

γt −
√

p2

4
−MNp0 − iε

 1︸︷︷︸
LO

+
Zt − 1

2γt

(
γt +

√−→p 2

4
−MNp0 − iε

)
︸ ︷︷ ︸

NLO

 ,

(5.2.7)

iDs(p0,p) =
i

γs −
√

p2

4
−MNp0 − iε

 1︸︷︷︸
LO

+
Zs − 1

2γs

(
γs +

√−→p 2

4
−MNp0 − iε

)
︸ ︷︷ ︸

NLO

 ,

(5.2.8)

iDpp(p0,p) =
i

1/aC + αMN h̃0(iη)

 1︸︷︷︸
LO

− rC
2

p2

4
−MNp0

1/aC + αMN h̃0(iη)︸ ︷︷ ︸
NLO

 ,

with

h̃0(iη) = ψ(iη) +
1

2iη
− log(iη) , (5.2.9)

and

iη =
αMN

2
√
p2/4−MNp0 − iε

. (5.2.10)

rC = 2.794 fm is the Coulomb modified effective range [[cite]]. In LO calculation, only the

LO part of the dimer propagators will be included.

For the three-body systems, in the doublet channel, Bedaque, Hammer, and van Kolck

[12] found that a three-body force is required at the leading order. The Lagrangian for this

three-body force up to LO is

L3 =
MNH(Λ)

3Λ2

[
ytN̂

†(~t · −→σ )† − ysN̂ †(~s · −→τ )†
] [
yt(~t · −→σ )N̂ − ys(~s · −→τ )N̂

]
. (5.2.11)

Here, ~t, ~s represent spin-triplet and spin-singlet dimer field, respectively. A three-nucleon

force appears at LO because it was shown [16, 14, 15] to be necessary for the renormalization

of three-body observables. The three-body force Lagrangian in Eq. (5.2.11), can be rewritten
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with a trimer auxiliary field, ψ, with total angular momentum 1/2, as follows

L3 = Ωψ†ψ +
(
ωt0ψ

†[P i
3t]
†Nti − ωs0ψ†[P pp

3s ]†Nspp − ωs0ψ†[P np
3s ]†Nsnp + h.c.

)
, (5.2.12)

where spp = 1√
2
(is2 − s1), P pp

3s = 1√
3

1√
2
(iτ 2 − τ 1), P np

3s = 1√
3
τ 3, and P i

3t = 1√
3
σi, P a

3s = 1√
3
τa.

The spin-singlet channel is split into np and pp channel explicitly. Here the nn channel

has zero contribution in the case of 3He. Using a matching calculation to a theory without

trimer fields, one can show that ωs = ωt. The LO three-body force H(Λ) is related to other

parameters by ,
H(Λ)

Λ2
= −(ωt0)2

4πΩ
= −(ωs0)2

4πΩ
= −ωt0ωs0

4πΩ
. (5.2.13)

More details can be found in [149].

The pure photon contributions is described in Lphoton, which is given in [65]. Here we

only need to know the Coulomb photon propagator, given by

i∆Coulomb(k) =
i

k2 + λ2
, (5.2.14)

where k is the three-momentum of the photon. λ is a photon mass to regulate infrared

divergences.

5.3 3He Vertex Function

We follow König’s pd-scattering work [89]. We use this work’s scattering equations for the

bound state regime to construct the integral equations for the 3He vertex functions. The LO

vertex function C(E, p) for 3He with Coulomb interaction in the center-of-mass frame with

binding energy E and relative momentum p between outgoing nucleon and dimer is given

by the integral equation shown diagrammatically in Fig. 5.1 and given explicitly by

C(B, p) = ĨC +
(
Ks(B, p, k)Mks +Kc(B, p, k)Mkc

+Kt1(B, p, k)Mkt1 +Kt2(B, p, k)Mkt2 +Kb(B, p, k)Mkb

)
⊗k C̃(B, k), (5.3.1)
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Figure 5.1: Diagrammatic representation of the LO three-body (3He) coulomb vertex
function. The double line denotes a dressed spin-triplet dibaryon propagator. The dashed
double line (with dot) denotes a dressed spin-singlet np (pp) channel dibaryon propagator.
The wavy lines represent Coulomb photon propagators.
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where the three-component 3He vertex function is defined by

C(B, p) =


Ct(B, p)

Cnp(B, p)

Cpp(B, p)

 . (5.3.2)

Ct(B, p) / Cnp(B, p) / Cpp(B, p) is the vertex function for a 3He bound state goes into

a nucleon and spin-triplet / spin-singlet-np / spin-singlet-pp dibaryon. The short-hand

notation, C̃(B, k), is defined as

C̃(B, k) = DC

(
E − k2

2MN

, k

)
C(B, k) , (5.3.3)

where

DC

(
E − k2

2MN

, k

)
=


Dt

(
E − k2

2MN
, k
)

0 0

0 Ds

(
E − k2

2MN
, k
)

0

0 0 Dpp

(
E − k2

2MN
, k
)
 .

(5.3.4)

The inhomogeneous term of the integral equation is given by,

ĨC =


1

− 1√
3√
2
3

 . (5.3.5)

The convolution operator ⊗k is defined the same as in the EDM calculation [[ref eq]]. The

constant matrices in the homogeneous terms are obtained by two-body projections and
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picking iso-spin indices appropriately, with

Mks =


−1

√
3 −

√
6

√
3 1

√
2

−
√

6
√

2 0

 , Mkc =


2 0 0

0 2 0

0 0 0

 ,

Mkt1 = −


0 0 0

0 0 0

−
√

6
√

2 0

 , Mkt2 = −


0 0 −

√
6

0 0 +
√

2

0 0 0

 , Mkb = −


−1

√
3 0

√
3 1 0

0 0 0

 .

(5.3.6)

The additional −1 in front of each matrix in the second row is not from spin/isospin indices

projection. It is taken from the kernel functions so that kernels can be easily compared

with previous literature, for example, see [89]. More details are in Appendix C. One should

notice that, we do not explicitly project isospin onto three-body doublet or quartet channels.

However, we project spin onto three-body doublet channels since the Coulomb interaction

only touches isospin. The kernel functions in the homogeneous terms represent contributions
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from different diagrams in Fig. 5.1, given by,

Ks(B, p, k) =
2π

kp
Q0

(
k2 + p2 −mB

kp

)
, (5.3.7)

Kc(B, p, k) =
αMN2π

kp

{
arctan k−p

2∆(B,p,k)

k − p −
arctan k+p

2∆(B,p,k)

k + p

+
1

4∆(B, p, k)

[
ln

(
k + p

k − p

)2

+ ln
(k − p)2 + 4∆2(B, p, k)

(k + p)2 + 4∆2(B, p, k)

]}
, (5.3.8)

Kt1(B, p, k) =
αMN2π

kp
√

3p2 − 4MNB

[
arctan2

(
2k + p√

3p2 − 4MNB

)

− arctan2

(
2k − p√

3p2 − 4MNB

)]
, (5.3.9)

Kt2(B, p, k) =
αMN2π

kp
√

3k2 − 4MNB

[
arctan2

(
2p+ k√

3k2 − 4MNB

)

− arctan2

(
2p− k√

3k2 − 4MNB

)]
, (5.3.10)

Kb(B, p, k) =αMNπ

∫ +1

−1

dx
1

|k − p|
1

k2 + p2 + kpx−MNB

×
[

arctan

(
2p2 − k2 − kpx

|k − p|
√

3k2 − 4MNB

)
+ arctan

(
2k2 − p2 − kpx

|k − p|
√

3p2 − 4MNB

)]
,

(5.3.11)

where,

Q0(a) =
1

2
ln
a+ 1

a− 1
, (5.3.12)

∆(B, p, k) =
√

3k2 − 4MNB +
√

3p2 − 4MNB . (5.3.13)

Ks(B, p, k), Kc(B, p, k), Kt1(B, p, k) , Kt2(B, p, k) , Kb(B, p, k) denote the kernels of the

homogeneous terms demonstrated in (a), (b), (c), (d) and (e) of Fig. 5.2, respectively. k and

p are the relative momenta of between the dimer and nucleon in the inner loop and final

state. x is the cosine of the angle between k and p. α is the fine structure constant. For

all terms above, we have taken the photon mass to be zero. One can also leaves the photon

mass small but non-zero, which is numerically unimportant but leads to more complicated
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(a) (b)

(c) (d) (e)

Figure 5.2: Partial diagrams contribute to the homogeneous terms of the 3He vertex
function. The double solid line here represents either deuteron dimer propagator or a spin-
singlet np dimer propagator to avoid verbosity. The dashed double line with dot denotes a
spin-singlet pp dimer propagator. The wavy lines represent Coulomb photon propagators.
The (c) and (d) are mostly called “triangular” diagrams in the literatures, while (e) is called
the “box” diagram. The kernels of diagram (a) to (e) are denoted as Ks, Kc, Kt1, Kt2 and
Kb, respectively.
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expressions. For numerical convenience, we also project the vertex function onto S-wave. In

addition, we have already used the on-shell nucleon energy, which is defined as,

p0 =
E

3
− 1

2MN

(
K

3
− p)2 , (5.3.14)

where E and K are the total energy and momentum of the three-body bound state. Before

we show the derivation of the kernel functions later in this section, let us first take a look at

the wavefunction renormalization.

5.3.1 Wavefunction Renormalization

As one can find, the inhomogeneous terms in the vertex function above is just a constant

vector. We have normalized the vertex function to not include the three-body coupling

constant, ω, and thus the vertex function C(B, p) is not the “physical” vertex function. The

“physical” vertex function is given by

Γ(B, p) =
√
ZψCC(B, p) . (5.3.15)

To get the Z factor used in this work, let us first look at the dressed trimer field, which

is given by,

i∆LO
3C (E) =

i

Ω
+
i

Ω
iΣP

C(E)i∆LO
3C (E) , (5.3.16)

where ΣP
C(E) is the trimmer-irreducible self-energy, represented by the sum of diagrams in

Fig. 5.3. ΣP
C(E) is evaluated by

iΣP
C(E) =

∫
d4q

(2π)4
iω

i

E − q0 − 1
2MN

q2 + iε
ĨTC iDC(E + q0, q)iωC(B, q)

= −iω2ĨTC ⊗q C̃(B, q) . (5.3.17)

The Z factor is the residue about the 3He pole,

ZψC =

(
d

dE

1

∆LO
3C (E)

)−1
∣∣∣∣∣
E=B

. (5.3.18)
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Figure 5.3: The self-energy is represented by the sum of three diagrams. The solid, dashed
and dashed-dot double lines represents the spin-triplet, spin-singlet-np, and spin-singlet-pp
dimer propagators, respectively.
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In order to keep consistency with other literatures [149, 150], we use the numerically

equivalent form given in the follows,

ZψC =
π

Σ′C(B)
, (5.3.19)

where ΣC(E) is defined by

ΣC(E) = −πĨTC ⊗q C̃(E, q) . (5.3.20)

In previous papers [6, 89, 154], they have more complicated expressions of vertex functions

compare to what we present in this chapter. We found that those are numerically equivalent.

In order to alleviate pains for future readers, we will provide more details of each piece in

the following sections.

Conventions for the vertex function calculation In order to not be verbose, we

explain the convent ions for calculating following kernel functions. k denotes the relative

momentum of the dimer and the nucleon that connects to the 3He vertex inside the loop. p is

the relative momentum of the outgoing final state. l, if exists, denotes the loop momentum

in between. k0, p0, and l0 are the corresponding timelike components of 4-momenta. K

is the momentum of the center of mass of the system and the total energy is denoted as

E = B + K2

6MN
, in which B is the 3He binding energy. A typical value of K is −q/2, which

is the momentum of the incoming side bound state in Breit frame. The final state is always

projected onto S-wave by default. The on-shell energy is given above in Eq. (5.3.14). For a

non-boosting vertex function, we always need this on-shell condition. A nucleon propagator

with energy p0 and momentum p is denoted as,

iSN(p0,p) =
i

p0 − 1
2MN

p2 + iε
. (5.3.21)

5.3.2 The “Ks” diagram

Ks(B, p, k) denotes the kernel of Fig. 5.2 (a), which has no Coulomb photon but a single

nucleon exchange. The four momenta of the dimer and the nucleon propagator associate

with the 3He propagator are (2
3
E + k0,k+ 2

3
K) and (1

3
E − k0,−k+ 1

3
K), respectively. The
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exchanged nucleon propagator has a four momentum given by (1
3
E + k0 + p0,k + p+ 1

3
K).

From dimer-NN vertices, we receive (iy)2 with y2 = 4π
MN

. Notice that, in order to follow the

conventions from the previous literatures, we also include the (1/
√

8)2 from the two-body

projectors. From contractions, a −4 must be included as the symmetry factor. Thus, we

give the expression below,

iHs(B,K, p0,p,k) =
y2

2

∫
d4k

(2π)4
iSN(

1

3
E− k0,−k+

1

3
K)iSN(

1

3
E + k0 + p0,k+p+

1

3
K)

Mks iDC(
2

3
E + k0,k +

2

3
K) iC(B, k) , (5.3.22)

whereMks is a constant matrix defined in Eq. (5.3.6). Picking the pole at k0 = E
3
− 1

2MN
(K

3
−

k)2, we have a (−2πi) from integrating over k0, and get

Hs(B,K, p0,p,k) =

∫
dk

2π2
k2−y2

2
MksDC(B − k2

2MN

,k)C(B, k)

× 1

2

∫ +1

−1

d cos θ

[
2

3
E − 1

2MN

(
K

3
− k)2 − 1

2MN

(k + p+
1

3
K)2 + p0

]−1

, (5.3.23)

where θ is the angle between k̂ and p̂. We get,

Hs(B,K, p0,p,k) = MksKs(B,K, p0,p,k)⊗k C̃(B, k) , (5.3.24)

where Ks(B,K, p0,p,k) is

Ks(B,K, p0,p,k) =
2π

kp
Q0(

k2 + p2 −MN(2
3
B + p0 + 1

2MN
p2 − 1

3
K · p)

kp
) . (5.3.25)

The expression above is for general cases, which does not necessarily use an on-shell p0.

Taking on-shell p0 in Eq. (5.3.14), we have,

Ks(B, p, k) =
2π

kp
Q0(

k2 + p2 −MNB

kp
) . (5.3.26)
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5.3.3 The “Kc” diagram

Kc(B, p, k) denotes the kernel of Fig. 5.2 (b), which has a Coulomb photon propagator

that connects one nucleon of the inner loop and another nucleon associate with the trimer

field. The four momenta of the dimer and the nucleon propagator associate with the 3He

propagator are (2
3
E + k0,k + 2

3
K) and (1

3
E − k0,−k + 1

3
K), respectively. The Coulomb

photon propagator carries momentum (k − p). The three nucleon propagators of the inner

loop have four momenta (−`0, `), (2
3
E+k0 + `0,k+`+ 2

3
K), and (2

3
E+p0 + `0,p+`+ 2

3
K).

From dimer-NN vertices, we receive (iy)2 with y2 = 4π
MN

. Notice that, in order to follow

the conventions from the previous literature, we also include the (1/
√

8)2 from the two-body

projectors. From contractions, a +4 must be included as the symmetry factor. In addition,

we have a factor −e2 due to the photon exchange. To avoid complexity, we insert the on-

shell p0 in the very beginning. Later in this section, we will discuss how to boost the vertex

functions. We give the expression for the homogeneous contribution below,

iHc(B, p, k) =
−y2

2
(ie)2

∫
d4k

(2π)4
Mkc iDC(

2

3
E + k0,k +

2

3
K) iC(B, k)

iSN(
1

3
E − k0,−k +

1

3
K)

i

(k − p)2 + λ2
Ωc(B, p, k) , (5.3.27)

where Ωc(B, p, k) represent the inner loop integration, given by

Ωc(B, p, k) =

∫
d4`

(2π)4
iSN(−`0, `)

iSN(
2

3
E + k0 + `0,k + `+

2

3
K)iSN(

2

3
E + p0 + `0,p+ `+

2

3
K) . (5.3.28)

Picking the pole at k0 = E
3
− 1

2MN
(K

3
− k)2, and `0 = − 1

2MN
`2 + iε, we have a factor of

(−2πi)2 from integrating over k0 and `0, we get

Hc(B, p, k) =
α4π2

MN

∫
dk

2π2
k2

∫ +1

−1

d cos θMkc C̃(B, k)
1

(k − p)2 + λ2
Ωc(B, p, k) , (5.3.29)

where cos θ is the cosine value between the k̂ and p̂. The Ωc(B, p, k) is reduced to
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Ωc(B, p, k) =

∫
d3`

(2π)3
SN(

2

3
E + k0 + `0,k + ` +

2

3
K)SN(

2

3
E + p0 + `0,p + ` +

2

3
K) .

(5.3.30)

Using the Feynman parameterization technique from Ref. [106], namely,

1

AB
=

∫ 1

0

du [uA+ (1− u)B]−2 =

∫ 1

0

du
[
`′2 + ∆c

]−2
, (5.3.31)

where

A = −MN/SN(
2

3
E + k0 + `0,k + `+

2

3
K) ,

B = −MN/SN(
2

3
E + p0 + `0,p+ `+

2

3
K) ,

`′ = `+
1

2

(
ku+

2K

3
+ p(1− u)

)
,

∆c =
1

4

(
−4BM + k2(−(u− 4))u+ 2kp cos θ(u− 1)u− p2(u− 1)(u+ 3)

)
.

Notice that, ∫ 1

0

du

∫
d3`

(2π)3

[
`′2 + ∆c

]−2
=
M2

N

8π

∫ 1

0

du∆
− 1

2
c . (5.3.32)

This integration can be done analytically, leave,

Hc(B, p, k) = MkcKc(B, p, k)⊗k C̃(B, k) , (5.3.33)

where,

Kc(B, p, k) = αMN2π

∫ +1

−1

d cos θ
1

(k − p)2 + λ2

× 1

|k − p| arctan
|k − p|√

3k2 − 4MNB +
√

3p2 − 4MNB
. (5.3.34)

A finite but small λ provides better numerical stability without affecting the accuracy. If

one could handle the numerics very well taken λ → 0, then it will be more efficient to use

82



the expression in Eq. (5.3.7), in which the angular integration is analytical done by setting

a zero photon mass.

5.3.4 The triangle diagrams, “Kt1” and “Kt2”

Kt1(B, p, k) and Kt2(B, p, k) denote the kernels of Fig. 5.2 (c) and (d), which has a Coulomb

photon propagator connects two nucleons associate with the pp-dimer propagator. Due to

the fact that Kt1(B, p, k) and Kt2(B, p, k) are very similar to each other, we will only show

the derivation of Kt1(B, p, k) to avoid the repetition.

Consider now only the Kt1(B, p, k), the four-momenta of the dimer and the nucleon

propagator associate with the 3He propagator are (2
3
E+k0,k+ 2

3
K) and (1

3
E−k0,−k+ 1

3
K),

respectively. The Coulomb photon propagator carries a momentum of l − k. The two

nucleon propagators associate with the pp-dimer have four-momenta of (1
3
E− `0,−`+ 1

3
K),

and (1
3
E + p0 + `0,p + ` + 1

3
K). The other nucleon propagator has a four-momentum of

(1
3
E + p0 + k0,p+ k + 1

3
K).

Similar to Kc, from dimer-NN vertices, we receive a factor (iy)2 with y2 = 4π
MN

. We also

include the (1/
√

8)2 from the two-body projectors, as well as a −4 symmetry factor and a

−e2. p0 is on-shell by default. We give the expression below,

iHt1(B, p, k) =
y2

2
(ie)2

∫
d4k

(2π)4
(−Mkt1) iDC(

2

3
E + k0,k +

2

3
K) iC(B, k)

iSN(
1

3
E − k0,−k +

1

3
K)iSN(

1

3
E + p0 + k0,p+ k +

1

3
K)Ωt1(B, p, k) , (5.3.35)

where Mkt1 is a constant matrix, defined in Eq. (5.3.6). The additional −1 is not physical

but a trick to have a positive form of kernel function. The function Ωt1(B, p, k) represent

the inner loop integration, given by

Ωt1(B, p, k) =

∫
d4`

(2π)4

i

(`− k)2 + λ2

iSN(
1

3
E − `0,−`+

1

3
K)iSN(

1

3
E + p0 + `0,p+ `+

1

3
K) . (5.3.36)
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Picking the pole at k0 = E
3
− 1

2MN
(K

3
− k)2 + iε, and `0 = E

3
− 1

2MN
(K

3
− `)2 + iε, we get

Ht1(B, p, k) = −α4π2

∫
dk

2π2
k2

∫ +1

−1

d cos θMkt1 C̃(B, k)

× 1

k2 + p2 + kp cos θ −MNB
Ωt1(B, p, k) , (5.3.37)

where cos θ is the cosine value between the k̂ and p̂. The Ωt1(B, p, k) is reduced to

Ωt1(B, p, k) = −
∫

d3`

(2π)3

1

(`− k)2 + λ2
SN(

1

3
E + p0 + `0,p+ `+

1

3
K) . (5.3.38)

We use the Feynman parametrization in Kc calculation and set photon mass to be zero,

and get

Ht1(B, p, k) = Mkt1Kt1(B, p, k)⊗k C̃(B, k) , (5.3.39)

where,

Kt1(B, p, k) = αMN2π

∫ +1

−1

d cos θ
1

k2 + p2 + kp cos θ −MNB

× 1

|2k + p| arctan
|2k + p|√

3p2 − 4MNB
. (5.3.40)

Previous literature keep the form including non-zero photon mass. We tested both cases

and found it is numerically legal to use such a form. Moreover, one could solve the angular

integral analytically and get the expression in Eq. (5.3.7).

For future reference, consider now only the Kt2(B, p, k). The four-momenta of the dimer

and the nucleon propagator associate with the 3He propagator are (2
3
E + k0,k + 2

3
K) and

(1
3
E − k0,−k + 1

3
K), respectively. The Coulomb photon propagator carries a momentum

of (l− p). The two nucleon propagators associate with the pp-dimer have four-momenta of

(1
3
E − `0,−` + 1

3
K), and (1

3
E + k0 + `0,k + ` + 1

3
K). The other nucleon propagator has a

four-momentum of (1
3
E + p0 + k0,p + k + 1

3
K). The rest of the calculation is identical to
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Kt1(B, p, k), given

Kt2(B, p, k) = αMN2π

∫ +1

−1

d cos θ
1

k2 + p2 + kp cos θ −MNB

× 1

|2p+ k| arctan
|2p+ k|√

3k2 − 4MNB
. (5.3.41)

5.3.5 The box diagram “Kb”

Kb(B, p, k) denotes the kernel of Fig. 5.2 (e), which has a exchange nucleon propagator and a

Coulomb photon propagator connects the other two nucleon propagators. However, due to its

complicated structure, one may have difficulties using only Feynman parameterization. The

four momenta of the dimer and the nucleon propagator associate with the 3He propagator are

(2
3
E + k0,k+ 2

3
K) and (1

3
E − k0,−k+ 1

3
K), respectively. The Coulomb photon propagator

carries a momentum of `. The exchange nucleon propagator have a four momentum of

(1
3
E + k0 − `0 + p0,k + ` + p + 1

3
K). The other two nucleon propagator connects both a

dimer and the Coulomb propagator have four momenta of (1
3
E− k0 + `0,−k− `+ 1

3
K), and

(1
3
E − p0 + `0,−p− `+ 1

3
K), respectively.

Similar to Kc, from dimer-NN vertices, we receive a factor (iy)2 with y2 = 4π
MN

. We also

include the (1/
√

8)2 from the two-body projectors, as well as a −4 symmetry factor and a

(ie)2. p0 is on-shell by default. We give the expression below,

iHb(B, p, k) =
y2

2
(ie)2

∫
d4k

(2π)4
(−Mkb) iDC(

2

3
E + k0,k +

2

3
K) iC(B, k)

× iSN(
1

3
E − k0,−k +

1

3
K)× (−iΩb(B, p, k)) , (5.3.42)

where Mkb is a constant matrix, defined in Eq. (5.3.6). The additional −1 is not physical

but a trick to have a positive form of kernel function. The −iΩb(B, p, k) represent the inner
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loop integration, given by

− iΩb(B, p, k) =

∫
d4`

(2π)4

i

`2 + λ2
iSN(

1

3
E + k0 − `0 + p0,k + `+ p+

1

3
K)

iSN(
1

3
E − k0 + `0,−k − `+

1

3
K)iSN(

1

3
E − p0 + `0,−p− `+

1

3
K) . (5.3.43)

Picking the pole at k0 = E
3
− 1

2MN
(K

3
−k)2+iε, and `0 = E

3
+p0+k0− 1

2MN
(K

3
+k+p+`)2+iε,

we get

Hb(B, p, k) =
α4π2

MN

∫
dk

2π2
k2

∫ +1

−1

d cos θMkb C̃(B, k)Ωb(B, p, k) , (5.3.44)

where cos θ is the cosine value between the k̂ and p̂. The Ωb(B, p, k) is reduced to

Ωb(B, p, k) =

∫
d3`

(2π)3

1

`2 + λ2

× SN(
1

3
E − k0 + `0,−k − `+

1

3
K)SN(

1

3
E − p0 + `0,−p− `+

1

3
K) . (5.3.45)

One can still try to use Feynman parametrization with

1

ABC
= 2

∫ 1

0

du

∫ 1−u

0

dv [uA+ vB + (1− u− v)C]−3 . (5.3.46)

However, here using such Feynman parameters will lead to extremely complicated expressions

if one tries to get an simple and clean analytical results. Instead, we will only partially use

Feynman parameters for two nucleon propagators and then take the advantage of Fourier

transform. To simplify this expression further, consider

1

AB
=

∫ 1

0

du [uA+ (1− u)B]−2 =

∫ 1

0

du
[
`′2 + ∆b

]−2
, (5.3.47)

86



with

A =−MN/SN(
1

3
E − p0 + `0,−p− `+

1

3
K) ,

B =−MN/SN(
1

3
E − k0 + `0,−k − `+

1

3
K) ,

`′ =`+
1

2
((2− u)k + (1 + u)p)

∆b =
1

4

(
−4BMN + k2(−(u− 4))u+ 2kp cos θ(u− 1)u− p2

(
u2 + 2u− 3

))
.

Notice we could make use the following Fourier transform formulae,

(
`2 + a2

)−1
=

∫
d3rei`·r

1

4πr
e−ar , (5.3.48)(

`2 + a2
)−2

=

∫
d3rei`·r

1

8πa
e−ar . (5.3.49)

By setting photon mass to be zero, we have,

Ωb(B, p, k) =

∫ 1

0

du

∫
d3`

(2π)3

∫
d3r1ei`

′·r1 1

8π
√

∆b

e−
√

∆br1 ,

∫
d3r2ei`·r2

1

4πr2

=
M2

N

8π

∫ 1

0

du
1√
∆b

1

(`′ − `)2 + ∆b

. (5.3.50)

The integration over u can be done analytically, and gives,

Ωb(B, p, k) =
M2

N

4π

1

|k − p|
1

k2 + kp cos θ + p2 −BMN

×
(

tan−1

(
2k2 − kp cos θ − p2√
3p2 − 4BMN |k − p|

)
+ tan−1

(
2p2 − kp cos θ − k2

√
3k2 − 4BMN |k − p|

))
. (5.3.51)

Having a finite photon mass is not a problem, but numerically unnecessary for the box

diagram. One thus has,

Hb(B, p, k) = MkbKb(B, p, k)⊗k C̃(B, k) , (5.3.52)
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where,

Kb(B, p, k) = αMNπ

∫ +1

−1

d cos θ
1

|k − p|
1

k2 + kp cos θ + p2 −BMN

×
(

tan−1

(
2k2 − kp cos θ − p2√
3p2 − 4BMN |k − p|

)
+ tan−1

(
2p2 − kp cos θ − k2

√
3k2 − 4BMN |k − p|

))
. (5.3.53)

5.3.6 Off-shell Vertex Functions Kernels

In the calculation above, we have only considered the case with only on-shell nucleon energy

in Eq. (5.3.14), which is exactly what we need most of the time. However, later in this

chapter, we would have to take off-shell nucleon energy. It is straightforward to define B̃,

which includes the binding energy and the energy shift from the three-body binding energy.

With off-shell nucleon energy, the vertex kernel functions can be done in similar ways from

previous sections, but may not be able to have as compact form as we have in Eq, [[cite eq]].

To sum up, the 3He vertex function with off-shell nucleon is given by,

C(B, B̃, p) = IC +
(
MksKs(B, B̃, p, k) +MkcKc(B, B̃, p, k)

+Mkt1Kt1(B, B̃, p, k) +Mkt2Kt2(B, B̃, p, k) +MkbKb(B, B̃, p, k)
)
⊗k C(B, k), (5.3.54)

where
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Ks(B, B̃, p, k) =
2π

kp
Q0

(
k2 + p2 −mB̃

kp

)
, (5.3.55)

Kc(B, B̃, p, k) =αMN2π

∫ +1

−1

d cos θ
1

(k − p)2 + λ2

× 1

|k − p| arctan
|k − p|

√
3k2 − 4MNB +

√
3p2 − 4MN B̃

, (5.3.56)

Kt1(B, B̃, p, k) =αMN2π

∫ +1

−1

d cos θ
1

k2 + p2 + kp cos θ −MN B̃

× 1

|2k + p| arctan
|2k + p|√

3p2 − 4MN B̃

(5.3.57)

Kt2(B, B̃, p, k) =αMN2π

∫ +1

−1

d cos θ
1

k2 + p2 + kp cos θ −MN B̃

× 1

|2p+ k| arctan
|2p+ k|√

3k2 − 4MNB
, (5.3.58)

Kb(B, B̃, p, k) =αMNπ

∫ +1

−1

d cos θ

∫ 1

0

du
1

MN(1− u)(B − B̃)−BMN + p2 + pq cos θ + q2

×
[
4MN(1− u)(B − B̃)− 4BMN − p2

(
u2 + 2u− 3

)
− 2pqu(1− u) cos θ + q2(4− u)u

]− 1
2
. (5.3.59)

One should notice that, choosing B̃ = B, we are able to restore the on-shell expressions in

the previous sections. In Kb(B, B̃, p, k), we keep the integral over u, the Feynman parameter.

Due to the fact that Feynman parameters can be applied in varies ways, the expression of

Kb(B, B̃, p, k) above is not the only correct one. However, all legit expressions are expected

to have the same numerical values.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 5.4: Diagrams contributing to the 3He charge form factor. Blue circles represent the
3He vertex function with full Coulomb interactions. Wavy lines are Coulomb photons. The
double line denotes either spin-triplet or spin-singlet dimers. Solid ellipse in (j) represent
Coulomb bubbles. The complex conjugate diagrams of (d), (e), (f) and (g), which are not
displayed here for simplicity, also contributing to the charge form factors. (a), (b) and (c)
are also the full diagrams contribute to charge form factors without Coulomb, but with no
Coulomb vertex functions.
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5.4 Calculations of Charge Form Factor Diagrams

We will write the charge form factors of 3He in terms of the sum of a few diagrams,

F3He(q
2) = FA

3He(q
2) + FB

3He(q
2) + FC

3He(q
2)

+ FBt1
3He (q2) + FBt2

3He (q2) + FBt3
3He (q2) + FBbox

3He (q2) + FCs
3He(q

2) + FCpp
3He (q2) , (5.4.1)

where FA
3He(q

2), FB
3He(q

2) and FC
3He(q

2) corresponding to diagram (a), (b) and (c) of Fig. 5.4,

respectively. FBt1
3He (q2), FBt2

3He (q2) , FBt3
3He (q2) and FBbox

3He (q2) represent contributions respectively

from Fig. 5.4 (d), (e), (f) and (g) together with their own complex conjugate. We only display

one topology here for simplicity. FCs
3He(q

2) is the sum of diagrams (h) and (i) of Fig. 5.4, while

FCpp
3He (q2) corresponds to diagram (j).

Here I provide details for calculating charge form factor diagrams. Conventions of

calculations are provided here. It is used for all form factor diagram calculations.

Conventions for the form factor calculation Form factor diagrams calculations are

performed in the Breit frame. Initial and final momenta of the 3He are K and P . The

external Coulomb photon inject no energy to the system but a momentum of q = P −K.

The total energy of 3He in the Breit frame is given by E = B − 1
24MN

q2, where B is the 3He

binding energy.

5.4.1 Diagram A

Diagram A is shown in panel (a) of Fig. 5.4. It has the simplest structure among all diagrams

but is the most difficult one to calculate. The two pole structure inside the loop forces us to

boost the vertex functions. The four-momentum of the dimer, the nucleon on the left, and

the nucleon on the right are (2
3
E+k0,k+ 2

3
K), (1

3
E−k0,−l+ 1

3
K), (1

3
E−k0,−l+ 1

3
K+q),

respectively. Thus, diagram A is given by,

FA
3He(q

2) = ZψC

∫
d4k

(2π)4
iC(B, B̃, k)iDC(

2

3
E + k0,k +

2

3
K)MA

3HeiC(B, B̃, p)

iSN(
1

3
E − k0,−l +

1

3
K)iSN(

1

3
E − k0,−l +

1

3
K + q) , (5.4.2)
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where p =
√
k2 − 4

3
kqx+ 4

9
q2 is the relative momentum of the final 3He propagator. x = k̂ ·q̂

represents the cosine value of the angle between k and q. The constant matrix, MA
3He, is

given by

MA
3He =


1 0 0

0 1 0

0 0 0

 . (5.4.3)

There are two poles at,

k1
0 =

1

3
E − 1

MN

(−k +
1

3
K)2 + iε , (5.4.4)

k0
0 =

1

3
E − 1

MN

(−k +
1

3
K + q)2 + iε . (5.4.5)

Notice that k1
0 is on-shell for the initial vertex function but off-shell for the final. k0

0 is the

other way around. Remind reader that on-shell nucleon energy is Eq. (5.3.14). Define the

quantity, ∆E, represents the difference between two poles, by,

∆E = k1
0 − k0

0 =
1

MN

(−k · q +
1

3
q2) . (5.4.6)

The expression of boosted vertex function is discussed at Eq. (5.3.54). At k1
0 and k0

0, FA1
3He(q

2)

and FA0
3He(q

2) are given separately by,

FA1
3He(q

2) =ZψC

∫
dk

2π2
k2

∫ +1

−1

dx
1

2

MN

kqx− 1
3
q2
C(B,B + ∆E, p)MA

3HeD(B − k2

2MN

, k)C(B, k) ,

(5.4.7)

FA0
3He(q

2) =ZψC

∫
dk

2π2
k2

∫ +1

−1

dx
1

2

−MN

kqx− 1
3
q2

× C(B, p)MA
3HeD(B −∆E − k2

2MN

, k)C(B,B −∆E, k) , (5.4.8)
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with p and x defined previously in this subsection. In numerical implementation, it is

always better to combine the two parts together to avoid numerical singularities, we get

FA
3He(q

2) = ZψC

∫
dk

2π2
k2

∫ +1

−1

dx
1

2

MN

kqx− 1
3
q2

×
(
C(B,B + ∆E, p)MA

3HeD(B − k2

2MN

, k)C(B, k)

−C(B, p)MA
3HeD(B −∆E − k2

2MN

, k)C(B,B −∆E, k)

)
. (5.4.9)

One should notice that, we do not take k → k + 1
3
q, like in Sec. 4.4, to make the time

reversal symmetry of the expressions.

5.4.2 Diagram B

Diagram B is shown in panel (b) of Fig. 5.4. The four-momenta of the dimer and the

nucleon propagator associate with the 3He initial propagator are (2
3
E + k0,k + 2

3
K) and

(1
3
E − k0,−k + 1

3
K), respectively. While for the dimer and the nucleon associate with the

final 3He state, the four-momenta are (2
3
E+p0,p+ 2

3
P ) and (1

3
E−p0,−p+ 1

3
P ), respectively.

The other two nucleon propagators have four-momenta of (1
3
E + k0 + p0,k+ p+ 2

3
K − 1

3
P )

and (1
3
E + k0 + p0,k + p + 2

3
K − 1

3
P + 1

3
q). From dimer-NN vertices, we received (iy)2

with y2 = 4π
MN

. We also include the (1/
√

8)2 from the two-body projectors, as well as a −4

symmetry factor. FB
3He(q

2) is thus, given by,

FB
3He(q

2) = (
y2

2
)ZψC

∫
d4k

(2π)4

∫
d4p

(2π)4
iC(B, p)iDC(

2

3
E + p0,p+

2

3
P )MB

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)iSN(

1

3
E − k0,−k +

1

3
K)iSN(

1

3
E − p0,−p+

1

3
P )

× iSN(
1

3
E + k0 + p0,k + p+

2

3
K − 1

3
P )iSN(

1

3
E + k0 + p0,k + p+

2

3
K − 1

3
P +

1

3
q) ,

(5.4.10)

where the constant matrix MB
3He is
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MB
3He =


0 0 −

√
6

0 0
√

2

−
√

6
√

2 0

 . (5.4.11)

Picking the pole at k0 = E
3
− 1

2MN
(K

3
− k)2 + iε, and p0 = E

3
− 1

2MN
(P

3
− p)2 + iε, we get

FB
3He(q

2) = ZψC

∫
dk

2π2
k2

∫
dk

2π2
p2C̃(B, p)MB

3HeC̃(B, k)

∫ +1

−1

dx

∫ +1

−1

dy

∫ 2π

0

dφ

(
−M

4

)
×
[
k2 + p2 + kpz − 1

3
kqx− 2

3
pqy +

1

9
q2 −MNB

]−1

×
[
k2 + p2 + kpz +

2

3
kqx+

1

3
pqy +

1

9
q2 −MNB

]−1

, (5.4.12)

where x = k̂ · q̂, y = p̂ · q̂, and z = k̂ · p̂ are the cosines of the angle between k and q, p and

q and k and p, respectively. z is expressed by x, y and φ as

z = xy +
√

1− x2
√

1− y2 cosφ . (5.4.13)

5.4.3 Diagram C

Diagram C is shown in panel (c) of Fig. 5.4. The four-momenta of the dimer propagators

associate with the 3He initial and final state are (2
3
E+k0,k+ 2

3
K) and (2

3
E+k0,k+ 2

3
K+q),

respectively. The nucleon propagator connects both vertex function carries a four-momentum

of (1
3
E − k0,−k + 1

3
K). Three nucleon propagator in the inner loop have four-momenta of

(2
3
E+k0 + `0,k+ 2

3
K+ `), (2

3
E+k0 + `0,k+ 2

3
K+ `+q), and (−`0,−`). With a symmetry

factor +4, and (iy/
√

8)2 from dimer-NN vertices, we give the expression for FC
3He(q

2), by,

FC
3He(q

2) = (−y
2

2
)ZψC

∫
d4k

(2π)4
iC(B, p)iDC(

2

3
E + k0,k +

2

3
K + q)MC

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)iSN(

1

3
E − k0,−k +

1

3
K)ΓC3He(B, q, k, p), (5.4.14)
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where p =
√
k2 + 2

3
k · q + 1

9
q2. ΓC3He(B, q, k, p) represent the inner loop,

ΓC3He(B, q, k, p) =

∫
d4`

(2π)4
iSN(−`0,−`)

× iSN(
2

3
E + k0 + `0,k +

2

3
K + `)iSN(

2

3
E + k0 + `0,k +

2

3
K + `+ q) . (5.4.15)

The constant matrix MC
3He is

MC
3He =


2 0 0

0 2 0

0 0 0

 . (5.4.16)

We stress that ( 1√
8
)2 from the two-body projectors are not included in the constant matrix.

Picking up the pole at k0 = E
3
− 1

2MN
(K

3
− k)2 + iε, and `0 = − 1

2MN
`2 + iε, we get

FC
3He(q

2) = ZψC

∫
dk

2π2
k2

∫ +1

−1

dx C̃(B, p)MC
3HeC̃(B, k)

MN

2q

× arctan

[
q
(√

3k2 − 4MNB +
√

3p2 − 4MNB
)−1
]
, (5.4.17)

where p =
√
k2 + 2

3
k · q + 1

9
q2 is the relative momentum of the final state. x is the cosine of

the angle between k and q. The inner loop is evaluated with the Feynman parameterization

very similar to Kc. I attach the inner loop result here for future readers checking their partial

results,

ΓC3He(B, q, k, p) =
M2

N

2πq
arctan

[
q
(√

3k2 − 4MNB +
√

3p2 − 4MNB
)−1
]
. (5.4.18)

5.4.4 Diagram B-tri 1

The first set of “triangular” B diagrams are partially shown in panel (d) of Fig. 5.4. Full

set of FBt1
3He (q2) includes both Fig. 5.4 (d) and its complex conjugation.

The four-momenta of the dimer and the nucleon propagator associate with the 3He initial

propagator are (2
3
E+k0,k+ 2

3
K) and (1

3
E−k0,−k+ 1

3
K), respectively. While for the dimer
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and the nucleon associate with the final 3He state, the four-momenta are (2
3
E+p0,p+ 2

3
P ) and

(1
3
E− p0,−p+ 1

3
P ), respectively. The nucleon propagator which is outside of the triangular

loop has a four-momentum of (1
3
E + k0 + p0,k + p + 2

3
K − 1

3
P ). The other three nucleon

propagators inside the triangular loop have four-momenta of (1
3
E+p0−`0,−`+p+ 2

3
K− 1

3
P ),

(1
3
E + `0, ` + 1

3
K) and (1

3
E + `0, ` + 1

3
K + q). The Coulomb photon propagator carries a

momentum of k + `.

From dimer-NN vertices, we received (iy)2 with y2 = 4π
MN

. We also include the (1/
√

8)2

from the two-body projectors, as well as a −4 symmetry factor. Notice that, due to the

symmetry of the diagram’s structure, Fig. 5.4 (d) numerically has the same value with its

own complex conjugation. Here we only demonstrate one diagram’s derivation for concision.

1
2
FBt1

3He (q2) is thus, given by,

1

2
FBt1

3He (q2) = (
y2

2
)ZψC

∫
d4k

(2π)4

∫
d4p

(2π)4
iC(B, p)iDC(

2

3
E + p0,p+

2

3
P )(−1)MBt1

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)iSN(

1

3
E − k0,−k +

1

3
K)iSN(

1

3
E − p0,−p+

1

3
P )

× iSN(
1

3
E + k0 + p0,k + p+

2

3
K − 1

3
P )iΓBt13He(B, q, k, p) , (5.4.19)

where the constant matrix MBt1
3He is

MBt1
3He =


0 0 0

0 0 0
√

6 −
√

2 0

 . (5.4.20)

MBt1
3He includes an additional minus sign from the rest part. Notice that, one should carefully

use the MBt1
3He in numerical calculation. Use the MBt1†

3He without being carefully checked the

order of initial and final state vertex function will lead to numerical mistakes. iΓBt13He(B, q, k, p)

represent the results from the triangular loop, given by

iΓBt13He(B, q, k, p) =

∫
d4`

(2π)4

−ie2

(k + `)2 + λ2
iSN(

1

3
E + p0 − `0,−`+ p+

2

3
K − 1

3
P )

× iSN(
1

3
E + `0, `+

1

3
K)iSN(

1

3
E + `0, `+

1

3
K + q) . (5.4.21)
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Picking the pole at k0 = E
3
− 1

2MN
(K

3
− k)2 + iε, p0 = E

3
− 1

2MN
(P

3
− p)2 + iε, and

`0 = E
3

+ p0 − 1
2MN

(p− `− 1
2
q)2 + iε for all three loops, we get

ΓBt13He(B, q, k, p) =

∫
d3`

(2π)3

α4π

(k + `)2 + λ2
SN(

1

3
E+ `0, `+

1

3
K)SN(

1

3
E+ `0, `+

1

3
K +q) .

(5.4.22)

Recall in Sec. 5.3.5 we use Feynman parametrization for the two nucleon propagators and

then fourier transform for the remaining integration. Put everything together we have,

1

2
FBt1

3He (q2) = ZψC

∫
dk

2π2
k2

∫
dp

2π2
p2C̃(B, p)MBt1

3He C̃(B, k)

×
∫ +1

−1

dx

∫ +1

−1

dy

∫ 2π

0

dφ

[
k2 + p2 + kpz − 1

3
kqx− 2

3
pqy +

1

9
q2 −MNB

]−1

×
∫ 1

0

du
−αMN

4

(
3p2 − 2pquy +

1

3
q2u(4− 3u)− 4BMN

)− 1
2

×
(
k2 + kpz + kqux− 4kqx

3
+ p2 − 2pqy

3
− q2u

3
+

4q2

9
−BMN

)−1

, (5.4.23)

where u is a Feynman parameter. Due to different ways applying Feynman parameters, the

expression can have different equivalent forms. x, y, and z are defined the same as in diagram

B. In numerical implementation, do not forget to multiply a 2 to include also contribution

from the complex conjugate diagram. For reference, from the inner loop we get,

ΓBt13He(B, q, k, p) = αM2
N

∫ 1

0

du

(
3p2 − 2pquy +

1

3
q2u(4− 3u)− 4BMN

)− 1
2

×
(
k2 + kpz + kqux− 4kqx

3
+ p2 − 2pqy

3
− q2u

3
+

4q2

9
−BMN

)−1

. (5.4.24)

5.4.5 Diagram B-tri 2

The second set of “triangular” B diagrams are partially shown in panel (e) of Fig. 5.4. Full

set of FBt2
3He (q2) includes both Fig. 5.4 (e) and its complex conjugation. FBt2

3He (q2) is relatively
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easy due to the fact that using Feynman parameters can already leave a good analytical

result. The four-momenta of the dimer and the nucleon propagator associate with the 3He

initial propagator are (2
3
E + k0,k + 2

3
K) and (1

3
E − k0,−k + 1

3
K), respectively. While

for the dimer and the nucleon associate with the final 3He state, the four-momenta are

(2
3
E+p0,p+ 2

3
P ) and (1

3
E−p0,−p+ 1

3
P ), respectively. The two nucleon propagators which

are outside of the triangular loop has four-momenta of (1
3
E+k0 +p0,k+p+ 2

3
K− 1

3
P ), and

(1
3
E+k0 +p0,k+p+ 2

3
K− 1

3
P +q). The other two nucleon propagators inside the triangular

loop have four-momenta of (1
3
E + p0 + `0, `+ p+ 2

3
K − 1

3
P + q) and (1

3
E − `0,−`+ 1

3
K).

The Coulomb photon propagator carries a momentum of −k + `.

Again, from dimer-NN vertices, we received (iy)2 with y2 = 4π
MN

. We also include the

(1/
√

8)2 from the two-body projectors, as well as a −4 symmetry factor. Notice that, due

to the symmetry of the diagram’s structure, Fig. 5.4 (f) numerically has the same value

with its own complex conjugation. Here we only demonstrate one diagram’s derivation for

concision. 1
2
FBt2

3He (q2) is thus, given by,

1

2
FBt2

3He (q2) = (
y2

2
)ZψC

∫
d4k

(2π)4

∫
d4p

(2π)4
iC(B, p)iDC(

2

3
E + p0,p+

2

3
P )(−1)MBt2

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)iSN(

1

3
E − k0,−k +

1

3
K)iSN(

1

3
E − p0,−p+

1

3
P )

× iSN(
1

3
E + k0 + p0,k + p+

2

3
K − 1

3
P )

× iSN(
1

3
E + k0 + p0,k + p+

2

3
K − 1

3
P + q)

∫
d4`

(2π)4

−ie2

(−k + `)2 + λ2

× iSN(
1

3
E + p0 + `0, `+ p+

2

3
K − 1

3
P + q)iSN(

1

3
E − `0,−`+

1

3
K) . (5.4.25)

where the constant matrix MBt2
3He is

MBt2
3He =


0 0 0

0 0 0
√

6 −
√

2 0

 . (5.4.26)
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The inner loop can be done very similar to what we have in Sec[[cite kc]], use Feynman

parametrization, one easily get,

1

2
FBt2

3He (q2) = ZψC

∫
dk

2π2
k2

∫
dp

2π2
p2C̃(B, p)MBt2

3He C̃(B, k)

×
∫ +1

−1

dx

∫ +1

−1

dy

∫ 2π

0

dφ

∫ 1

0

du
−αMN

4

[
k2 + p2 + kpz − 1

3
kqx− 2

3
pqy +

1

9
q2 −MNB

]−1

×
[
k2 + p2 + kpz +

2

3
kqx+

1

3
pqy +

1

9
q2 −MNB

]−1

×
(
k2 +

1

4
p2 + kpz +

2

3
kqx+

1

3
pqy +

1

9
q2

)− 1
2

× arctan

√
k2 + 1

4
p2 + kpz + 2

3
kqx+ 1

3
pqy + 1

9
q2

3
4
p2 −BMN

. (5.4.27)

x, y, and z are defined the same as in diagram B. In numerical implementation, do not

forget to multiply a 2 to include also contribution from the complex conjugate diagram.

5.4.6 Diagram B-tri 3

The third set of “triangular” B diagrams are partially shown in (f) of Fig. 5.4. Full set

of FBt3
3He (q2) includes both Fig. 5.4 (f) and its complex conjugation. FBt3

3He (q2) is alike to

FBt1
3He (q2), we will not provide too much details here. The four-momenta of the dimer and

the nucleon propagator associate with the 3He initial propagator are (2
3
E + k0,k+ 2

3
K) and

(1
3
E−k0,−k+ 1

3
K), respectively. While for the dimer and the nucleon associate with the final

3He state, the four-momenta are (2
3
E + p0,p + 2

3
P ) and (1

3
E − p0,−p + 1

3
P ), respectively.

The nucleon propagator which is outside of the triangular loop has a four-momentum of

(1
3
E+ k0 + p0,k+p+ 2

3
K− 1

3
P ). The other three nucleon propagators inside the triangular

loop have four-momenta of (1
3
E+p0+`0, `+p+ 2

3
K− 1

3
P ), (1

3
E+p0+`0, `+p+ 2

3
K− 1

3
P+q)

and (1
3
E − `0,−`+ 1

3
K). The Coulomb photon propagator carries a momentum of −k + `.

Again, from dimer-NN vertices, we received (iy)2 with y2 = 4π
MN

. We also include the

(1/
√

8)2 from the two-body projectors, as well as a −4 symmetry factor. Notice that, due to

the symmetry of the diagram’s structure, Fig. 5.4 (f) numerically has the same value with its

own complex conjugation. Here we only demonstrate one diagram’s derivation for concision.
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1
2
FBt3

3He (q2) is thus, given by,

1

2
FBt3

3He (q2) = (
y2

2
)ZψC

∫
d4k

(2π)4

∫
d4p

(2π)4
iC(B, p)iDC(

2

3
E + p0,p+

2

3
P )(−1)MBt1

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)iSN(

1

3
E + k0 + p0,k + p+

2

3
K − 1

3
P )

× iSN(
1

3
E − k0,−k +

1

3
K)iSN(

1

3
E − p0,−p+

1

3
P )

×
∫

d4`

(2π)4

−ie2

(−k + `)2 + λ2
iSN(

1

3
E + p0 + `0, `+ p+

2

3
K − 1

3
P )

× iSN(
1

3
E + p0 + `0, `+ p+

2

3
K − 1

3
P + q)iSN(

1

3
E − `0,−`+

1

3
K) . (5.4.28)

where the constant matrix MBt3
3He is

MBt3
3He =


0 0 0

0 0 0
√

6 −
√

2 0

 . (5.4.29)

We do the same analysis like in diagram Bt1, where Feynman parameterization and

Fourier transform are performed, leaving,

1

2
FBt3

3He (q2) = ZψC

∫
dk

2π2
k2

∫
dp

2π2
p2C̃(B, p)MBt1

3He C̃(B, k)

×
∫ +1

−1

dx

∫ +1

−1

dy

∫ 2π

0

dφ

∫ 1

0

du
−αMN

4

[
k2 + p2 + kpz − 1

3
kqx− 2

3
pqy +

1

9
q2 −MNB

]−1

×
(
−4BMN + 3p2 − 2pquy +

1

3
q2u(4− 3u)

)− 1
2

×
(
−BMN + k2 + kpz +

1

3
kq(2− 3u)x+ p2 +

1

3
pq(1− 3u)y +

q2

9

)−1

. (5.4.30)

where u is a Feynman parameter. Due to different ways applying Feynman parameters, the

expression can have different equivalent forms. x, y, and z are defined the same as in diagram

B. In numerical implementation, do not forget to multiply a 2 to include also contribution
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from the complex conjugate diagram. For reference, from the inner loop we get,

ΓBt33He(B, q, k, p) = αM2
N

∫ 1

0

du

(
−4BMN + 3p2 − 2pquy +

1

3
q2u(4− 3u)

)− 1
2

×
(
−BMN + k2 + kpz +

1

3
kq(2− 3u)x+ p2 +

1

3
pq(1− 3u)y +

q2

9

)−1

. (5.4.31)

5.4.7 Diagram B-box

Diagram B-box is partially shown in panel (g) of Fig. 5.4. Full set of FBb
3He(q

2) includes

both Fig. 5.4 (f) and the one with external photon connects to the nucleon field at the

top. The four-momenta of the dimer and the nucleon propagator associate with the 3He

initial propagator are (2
3
E + k0,k + 2

3
K) and (1

3
E − k0,−k + 1

3
K), respectively. While

for the dimer and the nucleon associate with the final 3He state, the four-momenta are

(2
3
E+p0,p+ 2

3
P ) and (1

3
E−p0,−p+ 1

3
P ), respectively. There are four nucleon propagators

in the loop with four-momenta of (1
3
E + `0 − p0,−p− `+ 1

6
q), (1

3
E + `0 − k0,−k− `− 1

6
q),

(1
3
E + `0 − k0,−k − ` + 5

6
q), and (1

3
E + k0 + p0 − `0,k + p + ` − 1

2
q). The Coulomb

photon propagator carries a momentum of +`. From dimer-NN vertices, we received (iy)2

with y2 = 4π
MN

. We also include the (1/
√

8)2 from the two-body projectors, as well as a −4

symmetry factor. Like previous calculation, we only loop at one specific diagram in this set.

1
2
FB

3He(q
2) is thus, given by,

FBb
3He(q

2) = (
y2

2
)ZψC

∫
d4k

(2π)4

∫
d4p

(2π)4
iC(B, p)iDC(

2

3
E + p0,p+

2

3
P )(−1)MBb

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)

× iSN(
1

3
E − k0,−k +

1

3
K)iSN(

1

3
E − p0,−p+

1

3
P )

× ΓBb3He(B, q, k, p) (5.4.32)
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where the constant matrix MBb
3He is

MBb
3He =


1 −

√
3 0

−
√

3 −1 0

0 0 0

 . (5.4.33)

ΓBb3He(B, q, k, p) represent the results from the inner loop, given by

ΓBb3He(B, q, k, p) =

∫
d4`

(2π)4
iSN(

1

3
E + `0− p0,−p− `+

1

6
q)iSN(

1

3
E + `0− k0,−k− `−

1

6
q)

× iSN(
1

3
E + `0 − k0,−k − `+

5

6
q)iSN(

1

3
E + k0 + p0 − `0,k + p+ `− 1

2
q)
−ie2

`2 + λ2
.

(5.4.34)

We pick the poles at k0 = E
3
− 1

2MN
(K

3
− k)2 + iε, p0 = E

3
− 1

2MN
(P

3
− p)2 + iε, and

`0 = E
3

+ k0 + p0 − 1
2MN

(k + p+ `− 1
2
q)2 + iε for all three loops. We get,

1

2
FBb

3He(q
2) = ZψC

∫
dk

2π2
k2

∫
dp

2π2
p2C̃(B, p)MBt1

3He C̃(B, k)

× −αMN

16

∫ +1

−1

dx

∫ +1

−1

dy

∫ 2π

0

dφ

∫ 1

0

du

∫ 1−u

0

dv
3a2 +Q2

a3(Q2 + a2)2
, (5.4.35)

where,

a2 = −BMN +
1

4
k2
(
−u2 − 2u(v + 1)− v2 − 2v + 3

)
+

1

2
kpz(u+ v − 1)(u+ v)

− 1

6
kqx(u− 2v)(u+ v − 1) +

1

36
p2
(
−9u2 − 18uv + 36u− 9v2 + 36v

)
+

1

36
pqy

(
6u2 − 6uv − 24u− 12v2 + 12v

)
+

1

36
q2
(
−u2 + 4uv + 4u− 4v2 + 4v

)
, (5.4.36)
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and

Q2 =
1

36
k2
(
9u2 + 18uv + 18u+ 9v2 + 18v + 9

)
− 1

2
kpz(u+ v − 2)(u+ v + 1)

+
1

6
kqx(u+ v + 1)(u− 2v − 2) +

1

36
p2
(
9u2 + 18uv − 36u+ 9v2 − 36v + 36

)
− 1

6
pqy(u− 2v − 2)(u+ v − 2) +

1

36
q2
(
u2 − 4uv − 4u+ 4v2 + 8v + 4

)
. (5.4.37)

u and v are Feynman parameters defined in Eq. (5.3.46). Due to the different ways of

applying Feynman parameters, one could expect several equivalent expressions. Here we use

the Feynman parametrization on the three remaining nucleon fields of the inner loop. Then

we perform a Fourier transform with the equation below,

(
`2 + a2

)−3
=

1

4

∫
d3rei`·r

1

8πa2
e−ar

(
1

a
+ r

)
. (5.4.38)

All other notations, x, y, z and φ retain the same definition as in diagram B.

5.4.8 Diagram C-spectators

FCs
3He(q

2) is represented by the sum of panel (h) and (i) of Fig. 5.4. The four-momenta of the

dimer and the nucleon propagator associate with the 3He initial propagator are (2
3
E+k0,k+

2
3
K) and (1

3
E − k0,−k + 1

3
K), respectively. While for the dimer and the nucleon associate

with the final 3He state, the four-momenta are (2
3
E+p0,p+ 2

3
K+q) and (1

3
E−p0,−p+ 1

3
K),

respectively. The Coulomb photon propagator carries a momentum of (k − p). The inner

loop of Fig. 5.4 (h) and (i) are labeled by Γcs13He(B, q, k, p) and Γcs23He(B, q, k, p), respectively.

Like the diagram C, a +4 symmetry factor and (iy/
√

8)2 are included. The full expression

is simply,

FCs
3He(q

2) = (−y
2

2
)ZψC

∫
d4k

(2π)4

∫
d4p

(2π)4
iC(B, p′)iDC(

2

3
E + p0,p+

2

3
K + q)MCs

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)

−ie2

(k − p)2 + λ2
iSN(

1

3
E − k0,−k +

1

3
K)

× iSN(
1

3
E − p0,−p+

1

3
K)
(
iΓCs13He(B, q, k, p) + iΓCs23He(B, q, k, p)

)
, (5.4.39)
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where p′ = |p+ 1
3
q| is the relative momentum of the final vertex function, and the constant

matrix is given by

MCs
3He =


2 0 0

0 2 0

0 0 0

 . (5.4.40)

ΓCs13He(B, q, k, p) and ΓCs23He(B, q, k, p) denotes the inner loop of Fig. 5.4 (h) and (i), given

separately by

iΓCs13He(B, q, k, p) =

∫
d4`

(4π)2
iSN(−`0,−`)iSN(

2

3
E + k0 + `0,k + `+

2

3
K)

× iSN(
2

3
E + k0 + `0,k + `+

2

3
K + q)iSN(

2

3
E + p0 + `0,p+ `+

2

3
K + q) , (5.4.41)

and

iΓCs23He(B, q, k, p) =

∫
d4`

(4π)2
iSN(−`0,−`)iSN(

2

3
E + k0 + `0,k + `+

2

3
K)

× iSN(
2

3
E + p0 + `0,p+ `+

2

3
K)iSN(

2

3
E + p0 + `0,p+ `+

2

3
K + q) . (5.4.42)

Picking up poles at `0 = − `2

2MN
+ iε, k0 = 1

3
E − 1

2MN
(−k + 1

3
K)2 + iε, and p0 = 1

3
E −

1
2MN

(−p+ 1
3
K)2 + iε, we get,

FCs
3He(q

2) = ZψC

∫
dk

2π2
k2

∫
dp

2π2
p2

∫ +1

−1

dx

∫ −1

−1

dy

∫ 2π

0

dφ C̃(B, p′)MCs
3HeC̃(B, k)

× −αM
2
N

16

1

(k − p)2 + λ2

∫ 1

0

du

∫ 1−u

0

dv

(
[∆Cs1]−

3
2 + [∆Cs2]−

3
2

)
, (5.4.43)

where ∆Cs1 and ∆Cs2 are defined by

∆Cs1 =
1

12

(
− 12BMN − 3k2(u+ v − 4)(u+ v)− 6p(u+ v − 1)(q(u+ 1)y

− kz(u+ v)) + 6kqx(u(u+ v − 1) + v)− 3p2(u+ v − 1)(u+ v + 3) + q2(u(2− 3u) + 1)

)
,

(5.4.44)

104



and

∆Cs2 =
1

12

(
− 12BMN − 3k2(u+ v − 1)(u+ v + 3) + 6k(u+ v − 1)(pz(u+ v) + qux)

− 3p2(u+ v − 4)(u+ v)− 6pquy(u+ v − 2) + q2u(4− 3u)

)
. (5.4.45)

To get this result, we use Feynman parametrization for the inner loop with u and v denoted

as Feynman parameters. Since there are three propagators,

5.4.9 Diagram C-pp

Diagram Cpp is shown in panel (j) of Fig. 5.4. The four-momenta of the dimer propagators

associate with the 3He initial and final state are (2
3
E+k0,k+ 2

3
K) and (2

3
E+k0,k+ 2

3
K+q),

respectively. The nucleon propagator connects both vertex function carries a four-momentum

of (1
3
E− k0,−k+ 1

3
K). With a symmetry factor +4, and (iy/

√
8)2 from dimer-NN vertices,

we give the expression for FCpp
3He (q2), by,

FCpp
3He (q2) = (−y

2

2
)ZψC

∫
d4k

(2π)4
iC(B, p)iDC(

2

3
E + k0,k +

2

3
K + q)MCpp

3He

× iDC(
2

3
E + k0,k +

2

3
K)iC(B, k)iSN(

1

3
E − k0,−k +

1

3
K)(−Γcpp3He(B, q, k)), (5.4.46)

where p =
√
k2 + 2

3
k · q + 1

9
q2. The constant matrix MC

3He is

MCpp
3He =


0 0 0

0 0 0

0 0 4

 . (5.4.47)

−ΓCpp3He(B, q, k) represent the inner loop integral. The inner loop is actually alike to a LO

two-body charge form factor diagram. Define following quantities,

E ′ =
2

3
+ k0, k

′ = k +
2

3
K +

1

2
q . (5.4.48)
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The benefit of defining those quantities is to keep symmetric forms of the equations. While

the two nucleon propagators connects to the initial dimer have four-momenta of (−k10,−k1)

and (E ′ + k10,k
′ − 1

2
q + k1). The two nucleon propagators connects to the final dimer have

four-momenta of (−k30,−k3) and (E ′ + k30,k
′ + 1

2
q + k3). The three nucleon propagators

in the middle loop have four-momenta of (−k20,−k2), (E ′ + k20,k
′ − 1

2
q + k2), and (E ′ +

k20,k
′ + 1

2
q + k2). Define the two nucleon propagator,

iS2N(E, p) =

(
E − 1

MN

p2 + iε

)−1

. (5.4.49)

We can write down the expression for the inner loop,

− ΓCpp3He(B, q, k) =

∫
d4k1

(2π)4

∫
d4k2

(2π)4

∫
d4k3

(2π)4

× iSN(−k10,−k1)iSN(−k20,−k2)iSN(−k30,−k3)

× iSN(E ′+k30,k
′+

1

2
q+k3)iχb(k3 +

1

2
k′+

1

4
q,k2 +

1

2
k′+

1

4
q, Eχb)iSN(E ′+k20,k

′+
1

2
q+k2)

×iSN(E ′+k20,k
′−1

2
q+k2)iχa(k2+

1

2
k′−1

4
q,k1+

1

2
k′−1

4
q, Eχa)iSN(E ′+k10,k

′−1

2
q+k1) ,

(5.4.50)

where χ is the momentum-space Coulomb four-point function in the center of mass frame,

related by the full Coulomb Green’s function GC(E) by,

S2N(E,k)χ(k,p, E)S2N(E,p) = −〈k|GC(E)|p〉 . (5.4.51)

More about the full Coulomb Green’s function can be found in Appendix A.4. Eχa and Eχb

are defined by

Eχa = E ′ − 1

4MN

(k′ − q
2

)2 , (5.4.52)

Eχb = E ′ − 1

4MN

(k′ +
q

2
)2 . (5.4.53)
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Picking up the pole at k10 = − k21
2MN

+ iε, k20 = − k22
2MN

+ iε, and k30 = − k23
2MN

+ iε, one can

find

SN(E ′ + k10,k
′ − 1

2
q + k1)→S2N(Eχa ,k1 +

1

2
(k′ − 1

2
q)) ,

SN(E ′ + k20,k
′ − 1

2
q + k2)→S2N(Eχa ,k2 +

1

2
(k′ − 1

2
q)) ,

SN(E ′ + k30,k
′ +

1

2
q + k3)→S2N(Eχb ,k3 +

1

2
(k′ +

1

2
q)) ,

SN(E ′ + k20,k
′ +

1

2
q + k2)→S2N(Eχb ,k2 +

1

2
(k′ +

1

2
q)) .

ΓCpp3He(B, q, k) can be reduced to

ΓCpp3He(B, q, k) =

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d4k3

(2π)3

×S2N(Eχb ,k3 +
1

2
(k′+

1

2
q))χb(k3 +

1

2
k′+

1

4
q,k2 +

1

2
k′+

1

4
q, Eχb)S2N(Eχb ,k2 +

1

2
(k′+

1

2
q))

×S2N(Eχa ,k2+
1

2
(k′− 1

2
q))χa(k2+

1

2
k′− 1

4
q,k1+

1

2
k′− 1

4
q, Eχa)S2N(Eχa ,k1+

1

2
(k′− 1

2
q)) ,

(5.4.54)

Notice that here we have removed the −1 in front of ΓCpp3He(B, q, k). Define,

k′1 = k1 +
1

2
(k′ − 1

2
q), k′3 = k3 +

1

2
(k′ +

1

2
q) . (5.4.55)

We get

ΓCpp3He(B, q, k) =

∫
d3k′1
(2π)3

∫
d3k2

(2π)3

∫
d4k′3
(2π)3

× 〈k′3|GC(Eχb)|k2 +
1

2
(k′ +

1

2
q)〉〈k2 +

1

2
(k′ − 1

2
q|GC(Eχa)|k′1〉 , (5.4.56)

where Eq. (5.4.51) is used to reduce the expression. Using the equation,

∫
d3r

∫
d3k

(2π)3
〈k|r)(r| = (0|, (5.4.57)
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where 〈 | and ( | are used to represent the momentum space and coordinate space,

respectively. We find,

ΓCpp3He(B, q, k) =

∫
d3k2

(2π)3
(0|GC(Eχb)|k2 +

1

2
(k′ +

1

2
q)〉〈k2 +

1

2
(k′ − 1

2
q|GC(Eχa)|0) .

(5.4.58)

Similarly, we have

ΓCpp3He(B, q, k) =

∫
d3reir·q/2(0|GC(Eχb)|r)(r|GC(Eχa)|0)

= 4π

∫
drr2j0

(qr
2

)
GC(Eχb ; 0, r)GC(Eχa ; r, 0) . (5.4.59)

Notice that the Coulomb Green’s functions have one end at zero separation, only the S-wave

part of these will contribute. Here we will take only S-wave from the partial wave expansion

of the Coulomb Green’s function, given by

G
(0)
C (E; 0, r) = −MR

2π
Γ(1 +

kC
γ

)
W− kC

γ
,1/2

(2γr)

r
, (5.4.60)

where

γ =
√
−2MRE =

√
−MNE (5.4.61)

kC =Z1Z2MRα =
MNα

2
. (5.4.62)

MR is reduced mass. In this case, MR = MN

2
. Z1 and Z2 are charge number of particles.

α is the fine structure constant. W− kC
γ
,1/2

(2γr) is the Whittaker-W function defined in

Appendix. A.5.

Back to the FCpp
3He (q2), we get,

FCpp
3He (q2) = ZψC

∫
dk

2π2
k2

∫ +1

−1

dx
4π2

MN

C̃(B, p)MCpp
3He C̃(B, k)

×
∫
drr2j0(

qr

2
)GC(Eχb ; 0, r)GC(Eχa ; r, 0) . (5.4.63)

108



The coordinate space integral receive its major contribution from the low r range. The

integrand decreases and gets close to zero rapidly due to the Whittaker-W function, which

is proportional to e−γr. If one integrates from 0 to +∞ or to a large hard cutoff, there will

be huge errors. On the contrary, if one puts too many mesh points at a super small r range,

python may not be able to give correct results. Only with carefully selected parameters or

with Mathematica can one get stable and reliable numerical results.

5.5 The Third Zemach Moment and Numerical Imple-

mentation

The third Zemach moment is a quantity that is relevant for the calculation of the lamb shift.

It is defined by [44]

〈
R3
E

〉
(2)

=
48

π

∫ ∞
0

dq

q4

[
F 2
E

(
q2
)
− 1 +

q2 〈R2
E〉

3

]
, (5.5.1)

where FE(q2) is the electric form factor. 〈R2
E〉 is a numerical value from fitting form

factor data. At q2 → 0, FE(q2) can be expanded by

FE
(
q2
)

= 1− 1

3!

〈
R2
E

〉
q2 +

1

5!

〈
R4
E

〉
q4 + . . . . (5.5.2)

We calculate the third Zemach moments numerically by separating the integration region

into 3 parts,

〈
R3
E

〉
(2)

=
48

π

[∫ q1

0

dq

q4

(
F 2

expansion(q2)− 1 +
q2 〈R2

E〉
3

)

+

∫ q2

q1

dq

q4

(
F 2

interpolation(q2)− 1 +
q2 〈R2

E〉
3

)
+

∫ +∞

q2

dq

q4

(
−1 +

q2 〈R2
E〉

3

)]
, (5.5.3)

where q1 is a small value up to a few hundred MeV. q2 is a value smaller than the cutoff but

large enough to ensure FE(q2
2)→ 0.
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At very small q, the 1
q4

can cause numerical problems. Taking the expansion of FE(q2)

gives,

F 2
expansion(q2) = 1− 1

3

〈
R2
E

〉
q2 +

(
〈R2

E〉
2

36
+
〈R4

E〉
60

)
q4 +O(q6). (5.5.4)

The first two terms in the expansion are canceled with the other terms in the integrand,

leave
1

q4

(
F 2

expansion(q2)− 1 +
q2 〈R2

E〉
3

)
=

(
〈R2

E〉
2

36
+
〈R4

E〉
60

)
+O(q2) . (5.5.5)

However, the expansion fails at larger q > q1. In this case, instead, we use interpolated

function, F 2
interpolation(q2). Since we have used hard cutoff for our numerical implementation

of form factors, we are not able to get meaningful data as q → ∞. Notice that, at q > q2,

FE(q2)� 1, we could ignore FE(q2) terms and are able to integrate q from q2 to +∞.

5.6 Results

The charge form factor results of 3H and 3He as functions of q, in the absence of Coulomb

interactions at leading order, are shown in Fig. 5.5. The hard cutoff we use is at 20 GeV.

Leading order charge form factor results of 3He with and without Coulomb interactions

as functions of q are shown in Fig. 5.6. The hard cutoff is also 20 GeV. The result without

Coulomb is evaluated at triton binding energy, while with Coulomb we take the 3He binding

energy. We observe the Coulomb interaction has obvious effects to 3He charge form factors.

At small q2, we are able to expand the charge form factor like in Eq. (4.5.1). By fitting

the data, at LO, for 3H without Coulomb interactions, one finds

〈r2
c (

3H, /C, LO)〉 = 1.28 fm2, 〈r4(3H, /C, LO)〉 = 5.80 fm4 , (5.6.1)

where /C denotes without Coulomb interactions. For 3He without Coulomb interactions, one

finds,

〈r2
c (

3He, /C, LO)〉 = 1.57 fm2, 〈r4(3He, /C, LO)〉 = 9.05 fm4 . (5.6.2)
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Figure 5.5: Leading order results, in the absence of Coulomb interactions, of the charge
form factors of 3H and 3He as functions of q.

Figure 5.6: Leading order results of the charge form factors of 3He with and without
Coulomb interactions as functions of q. The charge form factor without Coulomb is evaluated
at triton binding energy.
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By adding Coulomb interactions at leading order, we have

〈r2
c (

3He, C, LO)〉 = 1.66 fm2, 〈r4(3He, C, LO)〉 = 10.87 fm4 . (5.6.3)

The third Zemach moment is defined in Eq. (5.5.1). We find third Zemach moments with

and without Coulomb interactions at LO are

〈R3
E(3He, /C, LO)〉(2) = 8.34 fm3, 〈R3

E(3He, C, LO)〉(2) = 9.91 fm3 . (5.6.4)

We will work NLO in the future work.
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A Special Functions

Most of the special functions involved in this dissertation are related to the Coulomb related

problems. For more information, David Gaspard’s paper is a good reference about the regular

and irregular Coulomb functions [51]. Emil Ryberg also has valuable discussions about the

Coulomb wave functions [124].

A.1 Coulomb wave function

The Coulomb wave function is a solution of the Coulomb wave equation. They are used to

describe the behavior of charged particles in a Coulomb potential. It is a special case of the

confluent hypergeometric function of the first kind.

The partial wave expansion of the Coulomb wavefunction in the coordinate space is given

by

ψCp (r) =
1

ρ

∞∑
`=0

(2`+ 1)i`eiσ`F`(η, ρ)P`(p̂ · r̂) . (A.1)

Here, we define that ρ = pr, and η = kC/p, where the Coulomb momentum is defined by

kC = Z1Z2αMR. The α is the fine structure constant. The σl = arg Γ(` + 1 + iη). The Z1

and Z2 are the charge numbers of the relative point-like particles. For example, the hydrogen

atom would expect an overall Z1Z2 = −1. The nucleus of 11B, with a tightly bound 10Be

core and a halo proton, would expect a Z1Z2 = 4. F`(η, ρ) is the Coulomb function of the

first kind discussed in Sec. A.2.

Note that,

σ` = arg Γ(`+ 1 + iη) =

√
Γ(`+ 1 + iη)

Γ(`+ 1− iη)
. (A.2)

For convenience, here we provide s- and p-wave Coulomb wave functions,

ψCp,0(r) = Cηe
iσ0e−iρM(1− iη, 2, 2iρ) , (A.3)

ψCp,1(r) = iρCη(1)eiσ1e−iρM(2− iη, 4, 2iρ)P1(p̂ · r̂) . (A.4)
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The Gamow-Sommerfeld factors are defined in Sec. A.8.

A.2 The Coulomb function of the first kind

The Coulomb function of the first kind, also known as the regular Coulomb function, F`(η, ρ),

is given by,

F`(η, ρ) = A`(η)Miη,l+1/2(2iρ) , (A.5)

where Miη,l+1/2(2iρ) is the Whittaker-M function defined in Eq. (A.18). The A`(η) is defined

by,

A`(η) =
|Γ(`+ 1 + iη)|

2Γ(2`+ 2)
e−πη/2−i(`+1)π/2. (A.6)

Note that,

|Γ(`+ 1 + iη)| =
√

Γ(`+ 1 + iη)Γ(`+ 1− iη) (A.7)

Define the Gamow-Sommerfeld factor Cη = e−πη/2|Γ(1 + iη)|, we have,

C2
η =

2πη

e2πη − 1
, (A.8)

which is proved in Sec. A.8

F`(η, ρ) is sometimes also defined in the following form,

F`(η, ρ) = C`(η)ρ`+1e±iρM(`+ 1± iη, 2`+ 2,∓2iρ) . (A.9)

The choice of signs is immaterial. In the paper, we will go with

F`(η, ρ) = C`(η)ρ`+1e−iρM(`+ 1− iη, 2`+ 2, 2iρ) ,

for consistency.

C`(η) is the normalization coefficient, defined as,
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C`(η) =
|Γ(`+ 1 + iη)|

Γ(2`+ 2)
2`e−πη/2 . (A.10)

One can easily show that these two expressions of F`(η, ρ) are equivalent.

A.3 The Coulomb function of the second kind

The Coulomb function of the second kind, also known as the irregular Coulomb wave

function, Gl(η, ρ), is given by

Gl(η, ρ) = iFl(η, ρ) +Bl(η)Wiη,`+1/2(2iρ) , (A.11)

where Wiη,`+1/2(2iρ) is the Whittaker-W function defined in Eq. A.18 and the coefficient

Bl is defined as,

B`(η) =
eπη/2+i`π/2

arg Γ(`+ 1 + iη)
. (A.12)

A.4 Partial-wave projected Coulomb Green’s function

The full Coulomb propagator, GC(E), is defined recursively. The Coulomb Green’s function,

in the coordinate space (using round brackets), can be expressed by the Coulomb wave

function, as

GC(E; r, r′) = (r|GC(E)|r′) =

∫
d3p

(2π)3

ψCp (r)ψC∗p (r′)

E − p2/2MR + iε
. (A.13)

In the momentum space (using angle brackets), the Coulomb Green’s function is defined as

GC(E; k,k′) = 〈k|GC(E)|k′〉 . (A.14)

The partial wave expanded Coulomb Green’s function is

(r1|GC(E)|r2) =
∞∑
`=0

(2`+ 1)G
(`)
C (E; r1, r2)P`(r̂1 · r̂2) . (A.15)
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The Green’s function for a specific partial wave is given by

G
(`)
C (E; r1, r2) =

∫
d3p

(2π3)

F`(η, ρ1)F ∗` (η, ρ2)

ρ1ρ2

1

E − p2

2MR

. (A.16)

For the bound-state partial wave Coulomb Green’s function, it is possible to have a non-

integral from. The calculation take advantages of the independence of Coulomb function of

the first and the second kind. The boundary conditions at r = 0 and r →∞ are considered.

Since we don’t actually use too many details in our paper, here we will just provide expression

of a special case at ` = 0, ρ′ → 0,

G
(0)
C (−B; 0, ρ) = −MRp

2π
Γ(1 + iη)

W−iη,1/2(−2iρ)

ρ
. (A.17)

A.5 Whittaker function

A Whittaker function is a special solution of the Whittaker’s equation. Two solutions are

given by the Whittaker-M function and the Whittaker-W function by

Mκ,µ(z) = e−z/2zµ+ 1
2M

(
µ− κ+ 1

2
, 1 + 2µ, z

)
,

Wκ,µ(z) = e−z/2zµ+ 1
2U
(
µ− κ+ 1

2
, 1 + 2µ, z

)
.

(A.18)

The Kummer function, M(a, b, z), is defined in Eq. (A.21). The Tricomi function,

U(a, b, z), is defined in Eq. (A.23).

For future convenience, a particular Whittaker-M function is given,

Miη,`+1/2(2iρ) = e−iρ(2iρ)`+1M(`+ 1− iη, 2`+ 2, 2iρ) , (A.19)

and a particular Whittaker-W function is given,

W−iη,`+1/2(−2iρ) = eiρ(−2iρ)`+1U(`+ 1 + iη, 2`+ 2,−2iρ) . (A.20)
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A.6 Kummer functions

Kummer’s function M(a, b, z) is also known as the confluent hypergeometric function of the

first kind.

It is defined as follows,

M(a, b, z) =1 F1(a; b; z) =
∞∑
n=0

a(n)zn

b(n)n!
. (A.21)

where

a(0) = 1 ,

a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1) ,
(A.22)

is the rising factorial. a(n) is sometimes written as (a)n = Γ(a+ n)/Γ(a), which is called

the Pochhammer symbol.

A.7 Tricomi function

The Tricomi function, U(α, β, z), which is also known as the confluent hypergeometric

function of the second kind, is given by

U(α, β, z) =
Γ(1− β)

Γ(α− β + 1)
M(α, β, z) +

Γ(β − 1)

Γ(α)
z1−βM(α− β + 1, 2− β, z) . (A.23)

The M(a, b, z) is known as the Kummer function.

A.8 Gamow-Sommerfeld factor

The Gamow-Sommerfeld factor is used in both halo-EFT and EDM projects, defined by,

Cη = e−πη/2|Γ(1− iη)| .

The squared value is then,

C2
η = e−πη|Γ(1− iη)|2 = e−πηΓ(1 + iη)Γ(1− iη) .
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The Γ(1 + iη)Γ(1− iη) is evaluated as follows,

Γ(1 + iη)Γ(1− iη) =

∫ ∞
0

siηe−sds

∫ ∞
0

t−iηe−tdt

=

∫ ∞
0

viη

(v + 1)2
dv

∫ ∞
0

ue−udu︸ ︷︷ ︸
=1

=
πη

sinhπη
,

where u = s+ t, v = s/t.

Thus we get that,

C2
η =

2πη

e2πη − 1
. (A.24)

Note that, this is in particular for the s-wave. To generalize it to higher partial wave, we

define,

Cη(`) = e−πη/2|Γ(`+ 1 + iη)| . (A.25)

For convenience, we also write down the expression for |Γ(2 + iη)|,

|Γ(2 + iη)| =
√

Γ(2 + iη)Γ(2− iη) =
√

(1 + iη)(1− iη)
√

Γ(1 + iη)Γ(1− iη)

=
√

1 + η2|Γ(1 + iη)| =
(

(1 + η2)
πη

sinhπη

) 1
2

. (A.26)

135



B Hadronic Amplitudes for Gamow-Teller and Fermi

Transitions

Below we will discuss the calculations for the hadronic matrix elements for S- and P -wave

halo nuclei. The weak vertex factors are moved into the leptonic part. In all calculations, we

have ignored the recoil effects. This is treated the same as textbooks. Let us firstly look at the

energy conservation with recoil effects and we are able to see it is truly negligible. Then we

take the simple energy conservation relation without recoil effects in our calculations. Next,

we give details of hadronic currents of S-wave with and without final state interactions.

P-wave amplitude without a final state interaction is given as well.

B.1 Energy conservation (with recoil)

The energy conservation relation in our system is simply

E0 = ∆m− Sn = Tkc + Tkp + Ee + Eνe , (B.1)

where Sn is the one neutron separation energy. ∆m = mn − mp ' 1.29 MeV is the mass

difference between neutron and proton. Tkc and Tkp are the non-relativistic kinetic energies

of the core and proton. Ee and Eνe are the energies of the electron and neutrino. The mass

of neutrino is negligible is our case.

Considering the recoil effect, we arrive at an equation of Eνe,

E0 =
p2

2mR

+
1

2mA

(p2
e + E2

νe − 2peEνe cos θνe) +
√
p2
e +m2

e + Eνe , (B.2)

where mR is reduced mass. mA is the total mass of proton and core. The cos θ is the cosine

between outgoing electron and neutrino. The equation above is a quadratic equation about

Eνe,

(
1

2mA

)E2
νe + (1− pe

mA

cosθνe)Eνe + (−E0 +
p2

2mR

+
√
p2
e +m2

e +
p2
e

2mA

) = 0 .
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We could solve the Eνe easily, given that

Eνe =
−b+

√
b2 − 4ac

2a
, (B.3)

a =
1

2mA

, (B.4)

b = (1− pe
mA

cosθνe) , (B.5)

c = (−E0 +
p2

2mR

+
√
p2
e +m2

e +
p2
e

2mA

) . (B.6)

By using the notation above, we could express the S-wave decay rate without final state

interactions with the recoil effects,

Γl =
G2
Fm

2
A(1 + 3g2

A)

8π5

∫
dp

∫
dpep

2p2
eFe(η, E)

{
(4 +

4p2
e

3m2
A

)

− 4

mA

c+
2mA

3pe

[
[(1− pe

mA

)2 − 2c

mA

]
3
2 − [(1 +

pe
mA

)2 − 2c

mA

]
3
2

]}
|Al|2 . (B.7)

One can numerically implement this expression and find that it basically has no difference

from the case with no recoil effects. So we are correct to make the assumption of ignoring

recoil effect. Thus, we are allowed to use the energy conservation below.

B.2 Energy Conservation (without recoil)

Start from E0 = ∆m− Sn = Tkc + Tkp + Ee + Eνe , if we ignore recoil terms we have,

E0 =
p2

2mR

+
√
p2
e +m2

e + Eνe . (B.8)

This is what we used in the main body.

B.3 Hadronic current without resonant final state interactions in

S-wave

Here we give the amplitude in diagram (a) of Fig. 3.1, which describes the most simple

process in halo beta decay. The two body dressed propagator, which stands for the two
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body halo system bound state, firstly breaks up into two parts due to the weak decay. Then

the proton and core are scattered by Coulomb interaction. The initial state and the final

state are,

initial state: |ψd〉 dressed dimer field ,

final state: |ψc〉 two-body Coulomb state .

The total amplitude shown in the diagram above is simply given by,

A(a)
C (p) = 〈ψc|ψd〉 =

∫
d3p

(2π)3
〈ψc|p〉〈p|ψd〉 (B.9)

where

〈p|ψd〉 = ψd(p) =
2mR

√
Zg

p2 + γ2
0

, (B.10)

is the wave function of the dimeron. Note that we have ignored −i here in the appendix. Z is

the renormalization factor. γ0 is related to the one neutron separation energy by γ0 =
√

2πSn.

Another piece is the well-known Coulomb wave function in the momentum space, given by

〈ψc|p〉 = ψ∗c (p) =

∫
d3r

(2π)3
〈ψc|r〉〈r|p〉 =

∫
d3r

(2π)3
e−ip·rψ∗c (r) . (B.11)

The subscript c indicates that this is a Coulomb wave function. Put everything together, we

have

A(a)
C (p) =

√
Zg

∫
d3k

(2π)3

2mR

k2 + γ2
0

ψ∗c (k) . (B.12)

Here we consider only the S-wave Coulomb wave function, which is well known. One can

easily get higher order results with similar calculations. Thus, in S-wave, we have the
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following expressions,

A(a)
C (p) =

√
ZgC(ηp)

2mR

p2 + γ2
0

e2ηp arctan(|p|/γ0) , (B.13)

|A(a)
C (p)|2 = Zg2C(ηp)

2(p)

(
2mR

p2 + γ2
0

)2

e4ηp arctan(|p|/γ0) . (B.14)

The Sommerfeld factor is defined previously. ηp is the Sommerfeld parameter, which is

defined as ηp = αZpZcmR/|p| = kC/|p|, with Zp = 1 and Zc = 4.

B.4 Hadronic current without resonant final state interactions in

P-wave

Here we provide P-wave calculation as well. 31Ne is an ideal system for a P-wave calculation.

The following results would be useful in the future with more experimental progresses. Note

that all P-wave related notations only apply to this P-wave subsection. Notations elsewhere

are in S-wave by default.

The P -wave contribution is given as

A(a)
C1m(p) =

√
Zπg1

∫
d3k

(2π)3

km
(k2 + γ2

0)/(2mR)
ψc1(k, θkr) , (B.15)

where g1 and Zπ are defined in Sec. 2.4. ψc1(k, θkr) is the Fourier transformed P-wave

Coulomb wave function, which is given as follows,

ψc1(k, θkr) =

∫
d3r

(2π)3
e−i

~k·~rψ̃c1(E; r, θkr) , (B.16)

where ρ = kr. Thus, the P-wave Coulomb amplitude can be expressed by

A(a)
C1m(p) = 2mRg1

√
Zπ

∫
d3k

(2π)3

km
(k2 + γ2

0)

∫
d3r

(2π)3
e−i

~k·~rψ̃c1(E; r, θkr) . (B.17)
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Using the expression of the P -wave Coulomb function in coordinate space given in the

Appendix A.1 and integrate over k, we get

A(a)
C1m(p) = −imR

4π2

∫
drφ1(ρ)e−γ0r(1 + γ0r)

1

3π

√
4π

3
Y1m(p̂) , (B.18)

where φ1(ρ) = ρ Cηp(1)eiσ1e−iρM(2− iηp, 4, 2iρ) as in Appendix A.1. Solving the coordinate

space integrals leads to

A(a)
C1m(p) =

√
Zπ
imRg1

4π2

√
1 + η2

pCηpe
iσ1

× 1

3π

√
4π

3
Y1m(p̂)

p

p2 + γ2
0

(
2F1(2− iηp, 4; 2;

2ip

ip+ γ0

)+

2γ0

ip+ γ0
2F1(2− iηp, 4; 3;

2ip

ip+ γ0

)

)
, (B.19)

where, 2F1(a, b; c; z) is the famous Gauss hypergeometric function, given by,

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
= 1 +

ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · . (B.20)

B.5 S-wave halo nuclei with final state interaction

We also consider resonance and large negative scattering length as final state interaction.

In each case, we need to sum over infinite possible re-scattering diagrams to get the total

amplitude. The calculation of such T-matrices was previously considered in Refs. [71, 88].

To include the final state interaction, we introduce a final state interaction Lagrangian

here,

Lfsi = p†
(
i∂t +

∇2

2mp

)
p + χ†s

[
η′0

(
i∂t +

∇2

2Mpc

)
+ ∆′0

]
χs

− g′0
[
c†p†χs + H.c.

]
. (B.21)
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where c, p and χ are core, proton and 11B dimeron field, respectively. The free core

Lagrangian is as in Eq. (3.2.1). The notations are the same as in Appendix B.3. Fig. 7

expresses the first Coulomb re-scattering process. Again, like in the case without final state

interaction, we define the initial and final state as,

initial state: |ψd〉 dressed dimer field ,

final state: |ψc〉 two-body Coulomb state .

The Coulomb bubble in the middle is evaluated by the Coulomb propagator,

Coulomb Propagator: ĜC(E) = 2mR

∫
d3q

(2π)3

|ψc〉 〈ψc|
p2 − q2 + iε

, (B.22)

GC (E; k,k′) = 〈k′|ĜC(E)|k〉 = 2mR

∫
d3q

(2π)3

ψ∗c (k
′)ψc(k)

p2 − q2 + iε
. (B.23)

The amplitude of this diagram is given by

B0(p) = 〈ψc|V̂sĜC(E)|ψd〉 , (B.24)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k

(2π)3
〈ψc|k〉〈k|V̂s|k2〉〈k2|ĜC |k1〉〈k1|ψd〉 , (B.25)

〈k2

∣∣∣Ĝc

∣∣∣k1〉 = GC (E; k2,k1), which is defined above. 〈p′ |VS|p〉 is the local potential,

denoted as 〈Vs〉, defined as follows,

〈k|V̂S|k2〉 = g′20 Dd(E; 0) =
g′20

η′0E + ∆′0 + iε
. (B.26)

Notice we could perform a Fourier transform on ψc(k) like follows,

ψ̃c(E; r = 0) =

∫
d3k

(2π)3
ψc(k) = C(ηk)e

iσ0 . (B.27)

ψ̃c(E; r = 0) is S-wave Coulomb wave function with zero separation in coordinate space.

Notice that this E is dependent on p and is able to take out of the integrand. Put those
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above back to the amplitude and get,

B0(p) = 〈Vs〉ψ̃c(E; r = 0)

∫
d3k1

(2π)3

∫
d3k2

(2π)3

(
2mR

∫
d3q

(2π)3

ψ∗c (k2)ψc(k1)

p2 − q2 + iε

)
ψd(k1) (B.28)

Do another Fourier transform on the k2 piece,

∫
d3k2

(2π)3
ψ∗c (k2) = ψ̃∗c (Eq; r = 0) , (B.29)

where Eq denotes that the energy is q-dependent. The amplitude is simplified to,

B0(p) = 〈Vs〉ψ̃c(E; r = 0)2mR

∫
d3k1

(2π)3

∫
d3q

(2π)3
ψ̃∗c (Eq; r = 0)

ψc(k1)

p2 − q2 + iε
ψd(k1) ,

= 〈Vs〉ψ̃c(E; r = 0)2mR

∫
d3q

(2π)3

ψ̃∗c (Eq; r = 0)

p2 − q2 + iε

{∫
d3k1

(2π)3
ψc(k1)ψd(k1)

}
. (B.30)

Content inside the braces is simply A(a)
C (p), which is the S-wave without final state

interaction we had previously.

Thus, we could express our expression as follows,

B0(p) = 〈Vs〉C(ηp)e
iσ0(2mR)2

√
Zg I , (B.31)

where, 〈Vs〉 is defined as in Eq. (B.26) and

I =

∫
d3q

(2π)3

C2(ηq)e
2ηq arctan(|q|/γ0)

q2 + γ2
0

1

p2 − q2 + iε
, (B.32)

is a convergent integral, which gives a complex result. The convergence of the integral can

by easily proved by evaluating the integrand at q → ∞. The real part of I is the principal

value, and the complex part is evaluated near the pole on the positive real axis by

Im[I] =
p

4π(p2 + γ2
0)
C2
η(p)e2η arctan(p/γ0) . (B.33)

All the following possible re-scattering diagrams together with B0(p) form a geometry

series. nth order is denoted as Bn(p), means n + 1 times re-scattering process. Those
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processes could be simply calculated by adding Coulomb bubbles and dimer propagators

based on B0(p). The dimer propagator is defined before, and the Coulomb bubble is

evaluated by PDS scheme,

J0(E) = J0(E; 0, 0) =

∫
d3k′

(2π)3

∫
d3k

(2π)3
GC(E,k′,k) ,

=

∫
d3q

(2π)3

1

p2 − q2 + iε
C2(ηq) ,

= − µ

2π

{
κ

D − 3
+ 2kC

[
H(η) +

1

D − 4
− ln

(
κ
√
π

2kC

)
− 1 +

3

2
CE

}
,

(B.34)

in which κ , D and CE ' 0.577 are the renormalization scale, dimensionality of spacetime

and the Euler-Mascheroni constant, respectively. kC = ηk is a constant. For a real η, H(η)

can be expressed as

H(η) = Re[ψ(1 + iη)]− ln η +
i

2η
C2(η) , (B.35)

in terms of digamma function ψ(z).

Thus, the nth diagram is simply given by,

Bn(p) = B0(p)(〈Vs〉J0(E))n . (B.36)

Thus the sum of all the re-scattering diagrams is,

A(b)
CS =

∞∑
n=0

Bn(p) = B0(p)
∞∑
n=0

(〈Vs〉J0(E))n , (B.37)

=
√
Zg4m2

RC(ηp)e
iσ0ITCS . (B.38)

Again, like in Appendix. B.3, we have ignored the −i. TCS is given in Sec. 3.6, and in [71].

C Projectors and Indices Projections

In this section we show how projectors are derived and how to use them to do projections.
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C.1 Two and Three Body Projectors

The two and three body projectors are convenient ways to handle the Clebsch-Gordon

coefficients.

Two-body projectors

Consider spin and isospin couplings of two nucleon fields,

NTPN ,

where P is a two-body projectors. A single nucleon is spin-1/2-isospin-1/2. A projector will

handle couplings in both spin and isospin spaces. We will firstly consider only spin-space.

The iso-spin space would be handled in exactly the same way. Denote,

↑ := |1
2
, 1

2
〉

↓ := |1
2
,−1

2
〉
. (C.1)

A spin-singlet, denoted by |0, 0〉, can be written as

|0, 0〉 =
1√
2

(↑↓ − ↓↑) =
(
↑ ↓

) 1√
2

 0 1

−1 0

↑
↓

 =
(
↑ ↓

) i√
2
σ2

↑
↓

 . (C.2)

Thus, if want to project a NN onto spin-singlet channel, we could use the projector i√
2
σ2

instead. Spin-triplet could be expressed similarly,

|1,+〉 =↑↑
|1, 0〉 = 1√

2
(↑↓ + ↓↑)

|1,−〉 =↓↓
. (C.3)
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The corresponding projectors are,

P+
spin-triplet = − i√

2
σ2 1√

2
(iσ2 − σ1) ,

P 0
spin-triplet = − i√

2
σ2σ3 ,

P−spin-triplet = − i√
2
σ2 1√

2
(iσ2 + σ1) .

One can easily prove these are equal to Clebsch-Gordon coefficients. Combined the projectors

of spin and isospin spaces, we get the two body projectors,

Spin-triplet-isospin-singlet: P i
2t =

1√
8
σ2σiτ 2 , (C.4)

Spin-singlet-isospin-triplet: PA
2s =

1√
8
σ2τ 2τA , (C.5)

Spin-singlet-isospin-pp: P pp
2s =

1√
8
σ2τ 2 1√

2
(iτ 2 − τ 1) , (C.6)

Spin-singlet-isospin-np: P np
2s =

1√
8
σ2τ 2τ 3 , (C.7)

Spin-singlet-isospin-nn: P nn
2s =

1√
8
σ2τ 2 1√

2
(iτ 2 + τ 1) . (C.8)

The P i
2t and PA

2s are in coordinate space. P pp
2s , P np

2s , and P nn
2s are in spherical space. Notice

that when combining the spin and isospin projectors, we add an addition constant factor of

1/
√

2. This implies we consider the nucleon fields distinguishable when doing contractions.

Three-body projectors

Three-body projectors handle the coupling between the trimer field and the combination of

a dimer and a nucleon field. Notice that the three-body projectors we introduced in this

dissertation are equal to Clebsch-Gordon coefficients only in our particular cases of 3H and

3He. But we will not have a three-neutron or three-proton state anyway. By doing a very

similar but even easier analysis, we directly give the doublet channel projectors,

P i
3t =

1√
3
σi , PA

3s =
1√
3
τA, (C.9)
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where P i
3t project onto spin-doublet channel and PA

3s project onto isospin-doublet channel.

It is intuitive to also provide the isospin doublet projectors in spherical basis,

P pp
3s =

1√
6

(iτ 2 − τ 1) , P np
3s =

1√
3
τ 3 , P nn

3s =
1√
6

(iτ 2 + τ 1) . (C.10)

The quartet channel projectors are complicated. We provide the definition here,

P i,j
3t,q = δi,j − 1

3
σiσj, PA,B

3s,q = δA,B − 1

3
σAσB. (C.11)

For more details, see [58].

C.2 Indices of the 3He Vertex Functions

The 3He vertex function is shown in Fig. 5.1. Note that T = 1/2, S = 1/2 for the three-

nucleon systems. The time goes from left to right in the diagram, while the initial state is to

the right of the final state in our calculation. We first look at the inhomogeneous terms. The

spin, isospin indices of the initial trimer field and final nucleon field are denoted as (α, a) and

(β, b). Here the Greek letters represents the spin-indices while the latin letters denote the

isospin indices. The spin-triplet/singlet dimer field in the final state carries a spin/isospin

polarization of j/B.

We project the final state of Ct onto spin doublet channel, while for Cnp and Cpp we

leave them unprojected. Read directly from the 3-body Lagrangian in Eq. (5.2.12), the

inhomogeneous term is given by,

IC = iω


(P j†

3t )bb
′

ββ′(P
j
3t)

b′a
β′α

−(P np
3s )baβα

−(P pp
3s )baβα

 . (C.12)

The superscripts are isospin indices and the subscripts are spin indices. The first and the

second indices will always denote the row and column indices, respectively. Notice the fact

that the Cpp is the only one with an outgoing pp-dimer and a neutron field. We get the
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inhomogeneous term by,

IC = iω


δβα1

ba
∣∣
a=1,b=1

−δβα 1√
3
(τ3)ba

∣∣
a=1,b=1

−δβα 1√
6
(iτ2 − τ1)ba

∣∣
a=1,b=2

 = iω


1

− 1√
3√
2
3

 , (C.13)

where δβα is Kronecker delta function.

The homogeneous terms can be analysed similarly. We first work on the Ks kernel. Kt1,

Kt2 and Kb have similar process as Ks, and we will not repeat them. The spin, isospin

indices of the initial trimer field and final nucleon field are denoted as (α, a) abd (β, b). The

nucleon field connect to the trimer carries spin and isospin indices of (γ, c). The spin and

isospin indices of the exchanged nucleon field is denoted as (δ, d). The spin-triplet/singlet

dimer field in the initial and final state carry spin/isospin polarization of i/A and j/B,

respectively. There are nine elements in total. It is concise to express them all in matrix

form, given by

Mks =


(P j†

3t )bb
′

ββ′(P
i†
2t )

b′d
β′δ(P

j
2t)

dc′

δγ′(P
i
3t)

c′a
γ′α (P j†

3t )bb
′

ββ′(P
np†
2s )b

′d
β′δ(P

j
2t)

dc
δγ (P j†

3t )bb
′

ββ′(P
pp†
2s )b

′d
β′δ(P

j
2t)

dc
δγ

(P i†
2t )

bd
βδ(P

np
2s )dc

′

δγ′(P
i
3t)

c′a
γ′α (P np†

2s )bdβδ(P
np
2s )dcδγ (P pp†

2s )bdβδ(P
np
2s )dcδγ

(P i†
2t )

bd
βδ(P

pp
2s )dc

′

δγ′(P
i
3t)

c′a
γ′α (P np†

2s )bdβδ(P
pp
2s )dcδγ (P pp†

2s )bdβδ(P
pp
2s )dcδγ



=


(
P j†

3t P
i†
2tP

j
2tP

i
3t

)ba
βα

(
P j†

3t P
np†
2s P j

2t

)bc
βγ

(
P j†

3t P
pp†
2s P

j
2t

)bc
βγ(

P i†
2tP

np
2s P

i
3t

)ba
βα

(
P np†

2s P np
2s

)bc
βγ

(
P pp†

2s P
np
2s

)bc
βγ(

P i†
2tP

pp
2s P

i
3t

)ba
βα

(
P np†

2s P pp
2s

)bc
βγ

(
P pp†

2s P
pp
2s

)bc
βγ

 , (C.14)

where the first, second and third row/column of the matrix correspond to the channel with

an outgoing/incoming spin-triplet, spin-singlet-np, and spin-singlet-pp dimer propagator,

respectively. For a pp channel, one need to pick up the isospin index to be 2. For the other

two channel, isospin index is selected as 1. By inserting projectors and picking up correct

147



indices, one get

Mks =


−1

√
3 −

√
6

√
3 1

√
2

−
√

6
√

2 0

 . (C.15)

Similarly, one can get Mkt1, Mkt2 and Mkb by adding 1+τ3

2
between corresponding

projectors. We will not cover details here.
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D The deuteron electric dipole form factor and EDM

The diagrams that give the deuteron EDM are given in Fig. 8. The EDFF of the deuteron

F (q2, 2H) is only sensitive to the isospin-one C3S1−3P1
coupling, and we obtain

F (q2, 2H) =
(
dn + dp − C3S1−3P1

)4γt
q

arctan
q

4γt
(D.1)

= (dn + dp − C3S1−3P1
)Fc(q

2, 2H) , (D.2)

where Fc(q
2, 2H) denotes the charge form factor of the deuteron. The resulting EDM is

obtained by taking the q → 0 limit,

d = (dn + dp − C3S1−3P1
) . (D.3)

The direct proportionality of the EDFF to the charge form factor causes the Schiff moment

of the deuteron to be zero.
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c

n

p

Figure 7: The first re-scattering process considered in the final state interaction. The thin
double line in the middle is the bare boron-11 dimer propagator. Solid eclipses are coulomb
bubbles. Single solid and dashed line are nucleon field and core field, respectively.

(a) (b)

Figure 8: Diagrams contribute to the deuteron EDM. The black squares denote insertions
of CP-odd operators. We omitted the diagrams that have the CP-odd operators to the right
of the photon-nucleon vertex.
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E Expressions for electric form factors FC and FI

In this section, we give complete expressions for the diagrams contributing to the form factor

FI. To avoid confusion, we note that we write q = |q|. The three-nucleon wave function

renormalization Zψ is defined as

Zψ = π

(
dΣ(E)

dE

∣∣∣∣
E=B

)−1

, (E.1)

where the self-energy Σ can be calculated via

Σ(E) = −π1̃T ⊗q G̃(E, q) , (E.2)

and B is the three-nucleon binding energy.

We simultaneously give expressions for the LO contributions to the CP-even three-nucleon

form factor; also see Ref. [149], and the LO contributions to the CP-odd form factor FI . The

CP-even form factor is denoted with a subscript “C”, while the CP-odd form factor is

denoted with a subscript “I”. The corresponding diagrams (a), (b), and (c) are the same as

Fig. 4.3, but with a CP-even photon vertex.

Diagram A: The calculation of the form factor diagrams is carried out in the Breit frame.

The vertex functions in diagram (a) that were originally defined in the center-of-mass frame

need to be boosted; for details see Ref. [149]. The sum of the three terms simplifies to

FA
C\I
(
q2
)

= Zψ

[
A(a)
C\I(q) + 2G̃

T
(B, p)⊗p A(b)

C\I(q, p) + G̃
T

(B, p)⊗p A(c)
C\I(q, p, k)⊗k G̃(B, k)

]
.

(E.3)

In this equation and below, B denotes the binding energy of the three-nucleon state under

consideration. For the CP-even and one-body CP-odd photon vertex, we define the following
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matrices,

MA
C =

1+τ3
2

0

0 3−τ3
6

 , MA
I =

1

6

dn(τ 3 − 1)− dp(τ 3 + 1) 0

0 dn(τ 3 + 3)− dp(τ 3 − 3)

 .

(E.4)

The first term in Eq. (E.3) is given by

A(a)
C\I(q) =

MN

4π2

∣∣∣1
0

∫ Λ

0

dl

∫ 1

−1

dx
l

qx
1̃TMA

C\ID(B, q, l, x, y)1̃ , (E.5)

where

D(B, q, l, x, y) = D

(
B − l2

2MN

− q2

12MN

+
(1

2
− y
) lqx
MN

, l

)
, (E.6)

and ∣∣∣∣∣
1

0

f(y) = f(1)− f(0) . (E.7)

The second term of Eq. (E.3) includes the CP-even vertex function and the function

A(b)
C\I(q, p) that is defined as

A(b)
C\I(q, p) =

MN

2π

∣∣∣1
0

∫ Λ

0

dl

∫ 1

−1

dx
l

qx

1

p
√
l2 − 2

3
lqx+ 1

9
q2
Qboost

0 (q, l, p, x, y, 2)

×

−1 3

3 −1

MA
C\ID(B, q, l, x, y)1̃ , (E.8)

where x is defined through l · q = lqx. We also defined a boosted version of the function Q0,

Qboost
0 (q, l, k, x, y, z) = Q0

k2 + l2 + q2

9
+ (y − z

3
)lqx−MNB

k
√
l2 + q2

9
− (−1)z 2

3
lqx

 . (E.9)
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The third term in Eq. (E.3) includes the function

A(c)
C\I(q, p, k) =MN

∣∣∣1
0

∫ Λ

0

dl

∫ 1

−1

dx
l

qx

Qboost
0 (q, l, k, x, y, 1)Qboost

0 (q, l, p, x, y, 2)

kp
√
l2 + 2

3
lqx+ 1

9
q2

√
l2 − 2

3
lqx+ 1

9
q2

×

−1 3

3 −1

MA
C\ID(B, q, l, x, y)

−1 3

3 −1

 . (E.10)

Diagram B: For the CP-even and one-body CP-odd photon vertex, we define the following

matrices,

MB
C =

 τ3−1
2

3+τ3

2

3+τ3

2
−3+5τ3

6

 ,

MB
I =

1

12

5dp(τ
3 − 1)− 5dn(τ 3 + 1) dp(τ

3 + 3)− dn(τ 3 − 3)

dp(τ
3 + 3)− dn(τ 3 − 3) dp(5τ

3 + 3)− dn(5τ 3 − 3)

 . (E.11)

The contribution from diagram (b) in Fig. 4.3 is given by

FB
C\I
(
q2
)

= Zψ

∫ 1

−1

dx

∫ 1

−1

dy G̃
T

(B, p)⊗p ΓB(q, p, k, x, y)MB
C\I ⊗k G̃(B, k) , (E.12)

where we defined

ΓB(q, p, k, x, y) = −MN

4

∫ 2π

0

dφ

×
[
k2 + p2 + kp(xy +

√
1− x2

√
1− y2 cosφ) +

1

3
q(kx+ 2py) +

1

9
q2 −MNB

]−1

×
[
k2 + p2 + kp(xy +

√
1− x2

√
1− y2 cosφ)− 1

3
q(2kx+ py) +

1

9
q2 −MNB

]−1

,

(E.13)
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and the x-, y- and φ-integrals are angular integrals,

k · q = kqx , (E.14)

p · q = pqy , (E.15)

k · p = kp cosφ. (E.16)

Note that y in FB
C\I (q2) represents cos θpq, which is different from the y defined in Eq. (E.7).

Diagram C: Finally, for the CP-even and one-body CP-odd photon vertex, we define the

matrices

MC
C =

1 0

0 1 + 2τ3

3

 , MC
I =

2τ 3(dn + dp) dp − dn
dp − dn 0

 . (E.17)

The contribution from diagram (c) in Fig. 4.3 is given by

FC
C\I
(
q2
)

= Zψ

∫ 1

−1

dxΓC(q, k, x)⊗k
[
G̃
T

(B, p)MC
C\IG̃(B, k)

]
, (E.18)

where x is defined through k · q = kqx and the function ΓC(q, k) is defined as

ΓC(q, k, x) =
MN

q
arctan

 q

2
√

3
4
p2 −MNB + 2

√
3
4
k2 −MNB

 , (E.19)

and

p =k +
1

3
q . (E.20)
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F Expressions for form factor FII

Below we give the expressions for the contributions to the CP-odd form factor arising from

CP-odd two-nucleon operators.

F.1 Boosted vertex functions (of Diagram A)

The transition to the Breit frame again requires us to relate vertex functions that were

defined in the center of mass frame to boosted ones. The boosted CP-even vertex function

G is given by the integral (see also Ref. [149])

Gboost(q, l, x, y, z) = 1̃ +Rboost
0 (q, l, k, x, y, z)

−1 3

3 −1

⊗k G̃(B, k) . (F.1)

Here x denotes the cosine of the angle between the boost momentum q and the relative

momentum l between the dimer and the nucleon field. We have also already carried out the

l0 loop integration that enters when the vertex functions is folded with the remaining parts

of the diagrams for the matrix elements. The factor z is introduced for convenience to have

a short-hand notation for the kinematically different vertex functions on the left or right

hand side of the photon vertex. The boosted function Rboost
0 is given by

Rboost
0 (q, l, k, x, y, z) =

2π

k
√
l2 + q2

9
− (−1)z 2

3
lqx

Qboost
0 (q, l, k, x, y, z), (F.2)

with Qboost
0 defined in Eq. (E.9).

We also need the boosted CP-odd vertex function T :

T boost
A (q, l, x, y, z) =

(
lx

q
− (−1)z

3

)1+τ3

2
0

0 3−τ3
6

T
1
2
,boost(q, l, x, y, z)

+

0 0

0 2
3

T
3
2
,boost(q, l, x, y, z)

 . (F.3)
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The boosted isospin-projected CP-odd vertex functions required in Eq. (F.3) are given by

T
1
2
,boost(q, l, x, y, z) =R

1
2
,boost

T (q, l, k, x, y, z)⊗k T̃
1
2 (B, k) +R

1
2
,boost(q, l, k, x, y, z)⊗k G̃(B, k) ,

T
3
2
,boost(q, l, x, y, z) =R

3
2
,boost

T (q, l, k, x, y, z)⊗k T̃
3
2 (B, k) +R

3
2
,boost(q, l, k, x, y, z)⊗k G̃(B, k) ,

(F.4)

where

R
1
2
,boost

T (q, l, k, x, y, z) =Rboost
1 (q, l, k, x, y, z)

−1 3

3 −1

 ,

R
3
2
,boost

T (q, l, k, x, y, z) =Rboost
1 (q, l, k, x, y, z)

0 0

0 2

 ,

R
1
2
,boost(q, l, k, x, y, z) =

Rboost
0 (q, l, k, x, y, z)

−1 1

−2 0

+Rboost
1 (q, l, k, x, y, z)

 1 2

−1 0


×
(
C3S1−1P1

+
2

3
τ 3C3S1−3P1

)

+

Rboost
0 (q, l, k, x, y, z)

 0 2

−1 1

−Rboost
1 (q, l, k, x, y, z)

0 −1

2 1


×
(
C

(0)
1S0−3P0

− 2

3
τ 3C

(1)
1S0−3P0

)
,

(
R

3
2
,boost

)T
(q, l, k, x, y, z) =Rboost

0 (q, l, k, x, y, z)
1

3

0 8C3S1−3P1
− C(1)

1S0−3P0
+ 3τ3C

(2)
1S0−3P0

0 −5(C
(1)
1S0−3P0

− 3τ3C
(2)
1S0−3P0

)


+Rboost

1 (q, l, k, x, y, z)
1

3

0 4C3S1−3P1
− 2

(
C

(1)
1S0−3P0

− 3τ3C
(2)
1S0−3P0

)
0 −4

(
C

(1)
1S0−3P0

− 3τ3C
(2)
1S0−3P0

)
 .

(F.5)
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The function Rboost
0 is given in Eq. (F.2) while

Rboost
1 (q, l, k, x, y, z) =

2π

l2 + q2

9
− (−1)z 2

3
lqx

×

1− k2 + l2 + q2

9
+ (y − z

3
)lqx−MNB

k
√
l2 + q2

9
− (−1)z 2

3
lqx

Qboost
0 (q, l, k, x, y, z)

 .

(F.6)

F.2 Diagram A

Diagram (a) in Fig. 4.4 is given by

FA
II (q2) = Zψ

∣∣∣∣∣
1

0

∫ Λ

0

dl

∫ 1

−1

dx
MN

4π2

2

3

l

qx

[ (
Gboost

)T
(q, l, x, y, 2)D(B, q, l, x, y)T boost

A (q, l, x, y, 1)

−
(
T boost
A

)T
(q, l, x, y, 2)D(B, q, l, x, y)Gboost(q, l, x, y, 1)

]
, (F.7)

where the boosted CP-even and CP-odd vertex functions were defined above.

F.3 Diagrams B and D

Diagram B: Diagram (b) in Fig. 4.4 is given by

FB
II (q2) =Zψ

1

q2

∫ 1

−1

dx

∫ 1

−1

dy

{
G̃
T

(B, p)⊗p
(

ΓB(q, p, k, x, y) k · q
)
⊗k T̃ B(B, k)

− T̃
T

B(B, p)⊗p
(

p · q ΓB(q, p, k, x, y)

)
⊗k G̃(B, k)

}
, (F.8)

where

T̃ B(B, k) =

 τ3−1
2

τ3+3
2

τ3+3
2

−5τ3−3
6

 T̃
1
2 (B, k) +

0 −2

0 −2
3

 T̃
3
2 (B, k) . (F.9)
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Diagram D: Diagram (d) in Fig. 4.4 can be written as

FD
II (q2) = Zψ

∫ 1

−1

dx

∫ 1

−1

dy G̃
T

(B, p)⊗p
{

ΓB(q, p, k, x, y)

×
[
kx+ 2py − 2

3
q

q
MT

D −
2kx+ py + 2

3
q

q
MD

]}
⊗k G̃(B, k) , (F.10)

where

MD =

 τ3−1
6

(3C3S1−1P1
− 2C3S1−3P1

) 3+τ3

6
C

(0)
1S0−3P0

− 1+τ3

3
C

(1)
1S0−3P0

+ 2τ3

3
C

(2)
1S0−3P0

−3+τ3

6
(C3S1−1P1

+ 2C3S1−3P1
) 3+5τ3

6
C

(0)
1S0−3P0

− 1+τ3

3
C

(1)
1S0−3P0

− 2τ3

3
C

(2)
1S0−3P0

 .

(F.11)

The variables x, y and the function ΓB(q, p, k, x, y) are defined in Eq. (E.14), Eq. (E.15) and

Eq. (E.13).

F.4 Diagrams C and E

Diagram C: Diagram (c) in Fig. 4.4 leads to

FC
II (q2) =Zψ

∫ 1

−1

dxΓC(q, k, x)⊗k
1

q2

[
(k · q)G̃

T
(B, p)T̃ C(B, k)− (p · q)T̃

T

C(B, p)G̃(B, k)
]
,

(F.12)

where

T̃ C(B, k) =

1 0

0 1 + 2
3
τ 3

 T̃
1
2 (B, k) +

0 0

0 −2
3

 T̃
3
2 (B, k) . (F.13)

Diagram E: Diagram (e) in Fig. 4.4 is given by

FE
II (q2) =2Zψ

∫ 1

−1

dxΓC(q, k, x)⊗k G̃
T

(B, p)

[
p · q + q2

3

q2

+
1

2q

(√
−MNB +

3

4
k2 −

√
−MNB +

3

4
p2

)]
MEG̃(B, k) , (F.14)
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and we define the matrix ME,

ME =
τ 3

3

 2τ 3C3S1−3P1
C3S1−1P1

−(C
(0)
1S0−3P0

− 2C
(2)
1S0−3P0

) 0

 . (F.15)

The function ΓC(q, k, x) and p are defined in Eq. (E.19) and in Eq. (E.20), respectively.
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G Expressions for form factor FSU(4)

In the SU(4) limit, the two-body diagrams can be simplified to a universal function depending

on q times a combination of T-odd coefficients,

FII(q
2, SU(4)) = F̃SU(4)(q

2)
(
τ 3C3S1−1P1

+ 2C3S1−3P1
+ τ 3C

(0)
1S0−3P0

− 2τ 3C
(2)
1S0−3P0

)
, (G.1)

Thus, the universal electric dipole form factor also has five terms,

F̃SU(4)(q
2) =F̃SU(4),A(q2) + F̃SU(4),B(q2) + F̃SU(4),C(q2) + F̃SU(4),D(q2) + F̃SU(4),E(q2). (G.2)

The first term is given by

F̃SU(4),A(q2) =Zψ

∣∣∣∣∣
1

0

∫ Λ

0

dl

∫ 1

−1

dx
MN

4π2

4lD+(B, q, l, x, y)

9qx

[
Gboost

+ (q, l, x, y, 2)TSU(4)(q, l, x, y, 1)

(
lx

q
− 1

3

)

−
(
lx

q
+

1

3

)
TSU(4)(q, l, x, y, 2)Gboost

+ (q, l, x, y, 1)

]
, (G.3)

where the boosting is carried out analogously to Appendix F. The function D+(B, q, l, x, y)

is defined as

D+(B, q, l, x, y) =
1

2
(Dt(B, q, l, x, y)−Ds(B, q, l, x, y)) , (G.4)

where Dt and Ds are the diagonal elements of the matrix defined in Eq. (E.6). The second

term is given by

F̃SU(4),B(q2) =Zψ
1

q2

∫ 1

−1

dx

∫ 1

−1

dy
4

3

{
G̃+(B, p)⊗p

(
ΓB(q, p, k, x, y)k · q

)
⊗k T̃SU(4)(B, k)

− T̃SU(4)(B, p)⊗p
(

p · qΓB(q, p, k, x, y)

)
⊗k G̃+(B, k)

}
, (G.5)
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where G+(B, k) and TSU(4) are defined in Eq. (4.3.7) and Eq. (4.3.8). Similarly, the remaining

terms are

F̃SU(4),C(q2) = Zψ

∫ 1

−1

dxΓC(q, k, x)⊗k
1

q2

−2

3

[
(k · q)G̃+(B, p)T̃SU(4)(B, k)

− (p · q)G̃+(B, p)T̃SU(4)(B, k)
]
, (G.6)

F̃SU(4),D(q2) =−
∫ 1

−1

dx

∫ 1

−1

dy G̃+(B, p)⊗p ΓB(q, p, k, x, y)⊗k G̃+(B, k)

× 2

3

kx− py + 4
3
q

q
, (G.7)

and

F̃SU(4),E(q2) =Zψ

∫ 1

−1

dx
1

3
ΓC(q, k, x)⊗k G̃+(B, p)G̃+(B, k) . (G.8)

Recall that ΓB(q, p, k, x, y), ΓC(q, k, x) and other variables are defined previously in the

corresponding subsections in Appendix E.
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