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Abstract 

 This dissertation consists of the three essays in network and experimental economics. The 

first essay explores the importance of endogenous bilateral connections and punishment 

networks in public good settings.  I conduct a laboratory experiment that varies the incentive to 

form links among participants in a traditional Voluntary Contribution Mechanism game. I find 

that when link benefits are zero very few connections are formed, and very little punishment 

takes place. When link benefits are positive many links are formed and cooperation levels are 

increased. In general, we find evidence that participants strategically use the bilateral linking 

process to avoid punishment and find significant differences in the impacts of the bilateral link 

formation process when compared with exogenous punishment institutions.   The second essay 

studies heterogeneity in sequential Tullock contests in the form of increased prize valuations and 

probabilistic entry, in a theoretical and laboratory setting. Building upon a new modelling 

technique, I generate theoretical hypotheses about the impact of heterogeneity in sequential 

contests. Specifically, a change in prize valuation or effort cost has the largest impact when the 

individual with the heterogenous valuation moves earlier in the contest. We then design a 

laboratory test and find support for theoretical predictions. We also find evidence that 

overbidding tends to increase as players move later in the contest. Further, we find an interesting 

behavioral result that we call a Winning Probability heuristic. For final players in sequential 

contests, many subjects make decisions consistent with choosing a winning probability rather 

than expected payoff maximization predicted by Nash Equilibrium theory.  The final essay 

adapts a theoretical model commonly used in pricing of goods on a network with consumption 

complementarities to a setting that deals with telecommuting and flexible work arrangements. I 

provide an example of how allowing an employee to work from home can impact connectivity 

among employees and firm profitability. I show that the network of employees, wage structure, 

and the position of the employee in the network are all important determinants on whether a 

working from home arrangement is profitable.  I then explicitly model how a firm can invest to 

influence the connectivity of their employees through investments that facilitate connections 

among employees such as providing an office space, hosting get togethers, or setting up a team 

chat function for remote workers. I also find that optimal expenditure in facilitating connections 

has a nonlinear relationship to the cost. 
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Chapter 1 

Endogenous Punishment Networks in Public Goods 

I  Introduction 

The ability of group members to impose costly penalties on others has been shown to 

increase cooperation in settings where private and public interests are at odds, such as common 

pool resource and public goods games (Ostrom et al. 1992, Fehr and Gächter, 2000).  The 

effectiveness of a group in overcoming the social dilemma of free riding depends on their ability 

to establish norms that the group members follow. Further, research has shown that the design of 

the sanctioning (or reward) institution impacts the contribution expectations of group members 

and can take many forms (Andreoni and Gee 2012; Nicklisch et al. 2016; among others).  These 

can range from exogenous punishment from a third party (such as a fine or law) to an 

endogenous choice from within the group (e.g. an elected leader sanctioning free riders or 

vigilante justice). Each aspect of the sanctioning institution interacts with the preferences of the 

members to determine whether the group is successful in overcoming the free riding incentives 

created by the public goods problem.  

In this paper, we propose a new design for a sanctioning institution in a laboratory study 

of repeated public good games that we believe captures key features of an important set of real-

world scenarios. The design employs a bilateral linking stage that requires pairwise agreement of 

group members to be connected such that each is exposed to sanction by the other.   This linking 

choice allows for individual group members to “opt in” or “opt out” of sanctioning relationships 

depending on their preferences.  This is a form of endogenous peer-to-peer sanctioning similar to 

Ramalingam et al. (2016) but differs critically in the ability for individual players to avoid being 

sanctioned.  The bilateral linking choice is representative of situations that require both parties to 

engage in a relationship, one that potentially brings an additional benefit, before sanctioning can 

take place. Situations where this is applicable include international relations and group scenarios 

in personal or business relationships.  
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For example, consider how mutually beneficial relations between nations also expose 

them to potential sanctions. Such sanctions, which might occur in response to human rights 

violations or weapons proliferation, often come in form of a trade sanctions (e.g. tariffs), barriers 

to travel, or reduced financial aid. In these cases, there must be an established financial or trade 

relationship that is agreed on by both parties that makes the sanctioning actions possible.  It is 

possible that these relationships are formed exclusively for the potential to punish in the future, 

but in many cases (such as free trade agreements) they bring benefits that separate from the 

discipline that may apply to, for example, weapons proliferation (which has a public good 

characteristics).  Moreover, when choosing whether to sanction at all, the sanctioning party must 

weigh the potential deterioration of the relationship with the potential gains from a change in 

behavior of the sanctioned party.  Thus, the value that is placed on the relationship outside of the 

sanctioning context may influence whether sanctioning takes place and the extent of the 

sanctions. 

  This paper seeks to answer the following questions.  How does varying incentives to 

form connections in a decentralized bilateral punishment network affect the resulting network 

and subsequent public good contributions?  Further, how strong do the incentives need to be for 

individuals with differing preferences to form connections and agree to monitor each other in a 

decentralized setting?  If we consider where the most productive relationships in a punishment 

network would come from, it seems that individuals who are low contributors (and who are 

willing to increase their contributions) must believe that the punishment they will face will 

outweigh their utility loss from increasing their contributions and they must be matched with a 

willing punisher.  Indeed, research has shown that increased cooperation from low contributors 

who face the threat of punishment is a primary driver of increased contributions from groups 

with sanctioning institutions.  (Ramalingam et al, 2016; Nikiforakis, 2012).   

However, in many of the studies that look at punishment in public goods games, 

members do not have the ability to completely elude the punishment institutions.  In the seminal 

paper in this area by Fehr and Gätcher (2000) all players can punish one other.  More recent 

literature that endogenizes the punishment institution implements group level choice such as a 

majority vote (Deangelo and Gee, 2020) or self-selection mechanism (voting with their feet) 

(Gürerk et al. 2014; Nicklisch et al., 2016), which allow for some individual control but do not 
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allow for the presence of free riding without reproach. In our setting of bilateral linking, if group 

members understand that they face the threat of sanctions (or having to inflict costly sanction) by 

being connected with other group members who have mismatched preferences they may avoid 

forming those connections.  

Many analyses of endogenous punishment institutions have focused on a voting 

mechanism (such as in DeAngelo and Gee, 2020) that determines whether the punishment 

institution forms. In these and other designs it is not the case that a single individual can 

unilaterally avoid exposure to punishment without impacting others punishment options.  This 

separates the individual choice to be exposed to punishment from the social choice of the 

existence of a punishment network. In our setting punishment networks only exist to the extent 

individuals choose to expose themselves to sanction, and only by doing so can they sanction 

others. This is important because an individual who plans to free ride may see the value of 

increasing others’ contributions from the existence of a punishment network, while not wanting 

to expose himself to punishment.  

It could be the case that the requirement of mutual agreement to punish severely limits 

the ability for group members to self-organize and increase cooperation. In these cases, the most 

beneficial punishment relationships, likely high contributors punishing (or threatening to punish) 

free riders, can be avoided by a single party refusing to link together. Conversely, it could be the 

case that the bilateral linking process breaks the cycle of punishment and counter punishment, 

that can offset efficiency gains from increased contributions in a full punishment environment, 

while preserving the punishment opportunities that support higher levels of cooperation.  Thus, 

the bilateral linking process has the potential to achieve the benefits of punishment environments 

without some of the drawbacks. The tension between these countervailing forces makes it non-

obvious how behavior in a bilateral linking punishment network game will compare to other 

punishment institution settings.  

To study the above setting, we design a laboratory experiment that consists of a three-

stage game.  In the first stage, group members simultaneously propose links to other members of 

the group. If links are proposed by both players a link is formed and both players gain the ability 

to punish each other in the third stage. Before the punishment stage and after the link stage, the 

group makes public goods contributions in a standard Voluntary Contribution Mechanism 
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(VCM) game. To capture the (net) benefits that result from bilateral relationships we assign a 

fixed payment for each link that is formed. The treatments vary the fixed payment of established 

links from 0 to strongly positive. We include baseline comparisons of no punishment (a standard 

VCM game) and an exogenously imposed complete punishment network (replicating the setting 

of Fehr and Gächter, 2000). 

To preview the results, we find that when link benefits are zero, very few links are 

formed, little punishment is administered, and public good contributions are similar to the 

baseline comparison of no punishment. That is, in the absence of an external benefit of the link 

relationship, subjects generally do not choose to expose themselves to future punishment, despite 

the benefit that might be anticipated from disciplining free riding. As the link benefit is 

increased, we see increased connections between players and improved contributions, but in 

many cases, groups fail to reach a complete punishment network even when the value of a link is 

as high as 50% of the possible punishment that could be inflicted.  With positive link benefits we 

observe public good contributions that fall between the levels exhibited in the standard (no 

punishment) VCM game and the levels in the exogenous complete punishment network setting. 

Additionally, we find that a strong predictor of broken links is punishment in the previous 

period, indicating that subjects actively break links to avoid punishment. This provides a 

mechanism that reduces the presence of anti-social punishments that often offset the gains from 

increased contributions which is frequently observed in research on punishment networks 

(Nikiforakis, 2008; Nikiforakis et al. 2012). On balance, we find that the bilateral linking 

process, when the link benefit is positive, achieves similar overall efficiency as a full punishment 

network but with differing underlying behavior. That is, bilateral linking does not elicit a 

complete punishment network, and resulting contributions are lower in the VCM game than 

when the punishment network is complete, but bilateral linking results in significantly less 

socially costly realized punishment or sanctioning. 

II  Related Literature 

 Several papers have shown that sanctioning institutions can be effective in improving 

contributions by reducing free riding (Fehr and Gächter 2000; DeAngelo, Gee 2020; De Geest et 

al. 2017).  The pioneering work by Fehr and Gächter (2000) had players making contribution 
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choices in a VCM game with the option to inflict costly penalties on any group member after the 

contribution decisions had been made.  The authors found that this punishment option resulted in 

significantly higher contributions than situations without punishment. Variations of this design 

on many dimensions soon followed (see Chaudhuri, 2011 for a survey). For example, Van 

Leeuwen et al. (2019) show that the ability for participants to vote to exclude (exile) members 

from participating in a public good production results in higher contributions. Multiple studies 

have shown that there are differences between third-party (monitor outside the group) (Andreoni 

and Gee, 2012 & 2015) and second party (within-group) punishment (Carpenter & Matthews, 

2009; Carpenter et al., 2012; Leibbrandt et al., 2015).  In field settings, the availability of 

punishment may be limited by assignment of property rights or institutional design. For example, 

territorial user fishing rights (TURFS) and other types of fishing cooperatives (Deacon 2012; De 

Geest et al., 2017) assign rights to a group of individuals who protect the resource from outside 

use, as well as overexploitation by members. 

Other research has restricted the ability of players to punish other group members to a 

limited, fixed, subset of the group. This is referred to as an incomplete punishment network 

(Boosey and Isaac, 2016; Leibbrandt et al., 2015; Carpenter et al., 2012). In these settings, 

punishment is restricted to be between players who are connected to each other in the 

punishment network, or who are a part of a particular group. These punishment networks can be 

either exogenously or endogenously determined. It should be noted that punishment in this 

literature is designed to be socially wasteful. The player who is punishing imposes costs on 

themselves to inflict a larger punishment on their group member.  Thus, while punishment 

generally increases contributions, these gains can be offset by increased punishment, which 

yields an ambiguous result on efficiency.  

 Research dealing with exogenous punishment networks has been both theoretical as well 

as experimental. Bramoullé and Kranton (2007) were the first to present theoretical equilibrium 

results with players producing public goods on a network.  In this research and much of what has 

followed in the theoretical literature, the benefits of the public good generated by a player’s 

production are restricted only to the players they are linked with.  This is referred to as a local 

public good (Allouch, 2015; Bramoullé Kranton D’Amour, 2014). This network structure is 

quite different than the punishment networks that we are concerned with in this paper. Related 
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research deals with global public goods but the networks serve to a way to exchange information 

(Elliott and Golub, 2019).  

 More closely related to this paper is the study of fixed exogenous networks in the 

laboratory. Leibbrandt et al. (2015) study exogenously imposed incomplete networks and 

conclude that the primary determinant of the level of (and effectiveness) of punishment was the 

density of the punishment network rather than the scope of punishment. In other words, more 

connections, which are opportunities for punishment, resulted in higher contributions to the 

public good. Whereas the impact of who was connected to whom showed little to no effect on 

contribution levels. On the other hand, Boosey and Isaac (2016) study fixed punishment 

networks and find that the structure of the network, holding the number of punishment 

possibilities constant, results in different mean contribution levels.  Fatás et al. (2020) finds a 

similar result. They study four different exogenous punishment networks and find that central 

players have an important impact on punishment behaviors. 1  

Another literature explores endogenously formed punishment institutions in public good 

games.2  Theoretically, Brekke et al. (2011) showed that players who are more pro-social opt into 

groups together and contribute more in a VCM game.3  In the laboratory, and closely related to 

this study, Ramalingam et al. (2016) conduct a laboratory experiment where participants choose 

whether to participate in the sanctioning process in a public goods game. If participants opt into 

the sanctioning stage, they were allowed to freely punish others. Treatments in which 

participants had to pay for the option to punish and costless a costless option were compared. 

They find that, as the cost of joining the punishment network increases, the participation in the 

punishment network decreases.  Further, that the contributions in the costless treatment are 

higher than the costly treatment, and contributions decline as costs increase. Another study by 

Kosfeld, Okada, and Reidl (2009) show that when institutions are formed endogenously, 

contributions and group welfare are increased.  They also find that individuals who vote to 

implement punishment institutions contribute more, on average, than those that do not. Similarly, 

Gächter and Thoni (2005) find that cooperation among individuals who know they are grouped 

with other like-minded individuals is higher. This suggests that the composition of preferences 

 
1 (Shreedhar, Gange & Marchiori 2020) also study a similar idea. 
2 Sutter et al. (2010) study endogenous choice between punishment and reward institutions. 
3 See (Takács et al., 2008; Zschache, 2012; Kinateder Merline, 2017) for additional studies. 
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for those who agrees to interact in a punishment network likely differ from those who do not. 

This is not accurately reflected in an exogenously imposed punishment environment described 

by Leibbrandt et al. (2015).  We hypothesize that the bilateral linking mechanism in our study is 

more likely to link players who have similar contribution preferences than those without.  

This idea of preferential linking is very similar to the well-documented concept of 

homophily in the social network literature (see Jackson, 2010)4. Currarini and Mengel (2016) 

show that individuals show preference to people with similar characteristics (homophily) and 

preferences for others within their group (in group bias) and this bias disappears when groups are 

endogenously formed rather than exogenously imposed.   Further, much of the research on 

cooperative action, and why it prevails and some cases and not others, has been tied to presences 

of formal and informal institutions created by preferential linking (Jackson et al. 2017). 

Next, we discuss the literature on the determinants of punishment rather than the design 

of the punishment institution. Perceived norms have been shown to be an important factor in 

decision making as well as the punishment levels administered by players in the lab (Carpenter 

and Matthews, 2009; Michaeli and Spiro 2015; Boosey and Isaac, 2016).   In another study Eckel 

et al. (2010) theoretically study how central players in a network (who have higher social status) 

ultimately impact the coordination problem. They show that if players have strong preference for 

matching contributions, then the central player works as a coordinating device. This could be 

viewed as establishing a social norm for others to follow.  Other studies have used more explicit 

designs to elicit social norm behavior and treat the internal preference and the preference for 

conformity as two terms in the utility function (Andreoni et al. 2020; Granovetter 1978).  The 

enforcement of norms (through sanctions) by third parties have also been studied with reference 

to public goods (Fehr and Fischbacher 2004; Bendor and Swistak 2004). A robust conclusion in 

this literature is that deviation from norms is a motivation for punishment for the deviators.  

Some of the first studies in economics dealing with other-regarding preferences have 

deep ties to social norms. Whether individuals express preference for inequality aversion, 

efficiency (Fehr & Schmidt, 1999; Bolton & Ockenfels 2000), or maximin preferences (Charness 

& Rabin, 2002), these preferences could be unique to the individual or could be enforced on a 

 
4 Over 100 different studies across social science research have detected the presence of homophily (Block & Grund 

2018). 
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group level.  When other regarding preferences form the expectation of behavior in the group, 

they become a norm. Relatedly, norms can be either absolute or relative.  Carpenter and 

Matthews (2009) showed that, as an explanatory variable, absolute norms often outperformed 

relative norms (generally assumed to be the group average) in a laboratory setting. Further, the 

enforcement of norms by a third party has been shown to punish based on efficiency. Whereas 

second party (in-group) punishment is centered on the sanctioning of free riders. Nikiforiakis et 

al. (2012) showed that feuds (punishment in retaliation to previous punishment) most often 

developed in normative conflict when individuals had differing values of the public good.  

Lastly, we look at the literature that studies exactly who in the group is punishing and 

other types of preference heterogeneity. In the standard VCM punishment game, the most 

common type of punishment is pro-social, i.e. punishment by higher contributors inflicted on 

free riders. However, anti-social punishment (from low to high) has also been observed and has 

been suggested as a form of retaliation or seeking to enforce a low-contribution norm 

(Nikiforakis, 2012). Additionally, Nikiforakis (2008), finds that punishment is lower when a 

second counter-punishment stage is available which could suggest a fear of retaliation. 

Heterogeneity among players has also been found to be an important determinant in outcomes.  

Conditional cooperators, or players who will cooperate so long as others are not observed to be 

free riding, make up a substantial portion of players in the laboratory (Fischbacher et al., 2001). 

Moreover, a portion of players will always free ride and yet another will always contribute high 

amounts (Fehr and Gächter, 2001). Ones and Putterman (2007) test types of heterogeneity test 

the stability of these types in a repeated environment. They find that sorting individuals based on 

willingness to cooperate and avoiding anti-social punishment result in higher outcomes.  

Albrecht et al. (2018) finds that many conditional cooperators do not punish and that many free 

riders punish pro-socially.  Lastly, they find that information on punishment explains much of 

the variation in cooperation. Relating to the current paper, the importance of the interaction 

between types of players is likely to be intimately tied to the bilateral linking choice and should 

have important impacts on cooperation levels.  

The literature in this area is clearly expansive. Specifically, this study contributes to the 

literature by being the first to experimentally study the effects of an endogenous decentralized 

punishment network on cooperation in a public goods setting. The remaining sections will 
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highlight the basic payoffs and hypothesis generated for testing in the laboratory. The following 

experimental section will cover the design and procedures. We then cover the results and 

conclude with a summary of results and potential extensions.   

III  Experimental Design and Procedures 

III.A  Experimental Design 

 The complete game consisted of three-stages: 1) subjects proposed links with other 

members of a group; 2) subjects chose contributions in a standard VCM game, and 3) subjects 

had an opportunity to punish group members to whom they were linked in the first stage. This 

experiment consisted of three treatments plus two baseline comparison treatments.  The 

treatments varied the benefit of forming bilateral links in stage 1 from 0 (LB-0), 2 (LB-2), and 4 

(LB-4).   The baseline comparison treatments had no link formation stage. The comparison 

treatments had either a complete punishment network, (everyone could punish everyone) or an 

empty punishment network (no punishment stage). 

 

III.B  Experimental Procedures 

The experiment was conducted virtually using z-Tree Unleashed (Fischbacher, 2007; 

Duch et al., 2020) through the Experimental Economics Laboratory at the University of 

Tennessee-Knoxville. A total of 192 subjects participated over the course of 15 sessions, with 3 

sessions per treatment. Subjects were recruited from a database of undergraduate students who 

had previously agreed to receive recruiting e-mails for paid economics studies. 

At the beginning of the session students were given a copy of the experimental 

instructions and the instructions were read by a moderator5. The participants remained in a Zoom 

chat were encouraged to follow along with the instructions as they were read. Each experimental 

session was divided into 3 parts: A series of three preference elicitation tasks, the main 

experiment with treatments described above and a brief questionnaire.In the first of the three 

preference elicitation tasks students chose between 10 possible lotteries of $4 and $0 or a certain 

payoff of $2, similar to Holt and Laury (2002).  The second task was a variation of the 

 
5 Instructions are available for review in the Appendix. 
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Ultimatum Game that utilized the strategy method (see Brandts and Charness, 2011) to elicit 

preferences over the range of possible outcomes. Participants were asked to split 10 tokens 

(exchanged at a rate of 15 cents per token) with another participant who could either accept the 

decision paying out the proposed split or reject the decision and both players receive zero.  Each 

participant was asked (simultaneously) whether they would accept or reject each of the 11 

possible (integer) splits offered by a Player A.  Each participant’s decision as Player A was 

distributed to one other player and the corresponding accept or reject decision as Player B was 

applied. Thus, they received a single outcome as Player A and Player B. The third task also used 

the strategy method but this method was applied to a VCM setting. Following the task developed 

by Fischbacher et al. 2012, participants were sorted in random and anonymous groups of four 

and made an unconditional contribution choice in standard VCM setup. Before revealing any 

choices, they then made conditional contribution choices based on the 10 (integer) random 

hypothetical contribution averages from the remaining group members.  Three random 

unconditional choices were chosen to form the group average which the fourth group members 

contribution choice based on the average was automatically applied. The results for the three 

preference elicitation tasks were revealed at the end of the session. Monetarily incentivized 

practice questions to check for understanding were given for the second two elicitation tasks and 

the main experiment. 

The second part of the experiment was the administration of one of the treatments 

described above. Participants were randomly sorted into groups of four participants and were 

only viewed by their other group members through an identifier on the screen (N1, N2, or N3).  

These groups remained fixed for the 20 rounds of this session. Tokens were used and the 

exchange rate was adjusted to 25 tokens to $1 USD. Participants were told there would be 

between 15 and 25 rounds to limit last round effects6.  A round in the LB treatments of the main 

experiment consisted of three stages. In the first stage, participants proposed links to their three 

other group members. For a link to be formed both players must have proposed a link to each 

other. If one or both did not propose a link, no link was formed. The link is therefore pairwise 

and undirected. Links were used in the third stage to allow subjects to deduction earnings from 

any group members to whom they are linked. Depending on the treatment, participants earned a 

 
6 The ending point could potentially be inferred from the range, but the goal was simply to avoid a hard stopping 

point. This step was intended to limit the presence of end of round effects rather than eliminate it. 
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number of tokens for each linked formed (either 0, 2, or 4). While decisions in each stage are 

made simultaneously, the results from each of the stages were presented visually to the 

participants in such a way that they can review all possible information in the round up to the 

current decision stage7. Participants could also review results from all previous rounds. 

In the second stage, players played a linear VCM game where they could contribute up to 

their endowment (which does not depend on the link formation stage) tokens to the public good.  

All contributions to the public good were multiplied by 0.4 and distributed to all players.  Any of 

the ten tokens not contributed by a player, were kept.   The payoff for a player in stage 2 is: 

𝜋𝑖
2 = 10 − 𝑐𝑖 + 0.4∑𝑐𝑗

4

𝑗=1

 

where 𝑐𝑖 is the contribution of player 𝑖. 

In the third stage, subjects earn an additional endowment of 6 tokens and could spend to 

sanction their other group members.  If they wished to punish a group member with whom they 

are linked with they could spend up to 2 tokens8 out of their endowment, per player, that they 

were linked. All spent tokens were lost and for each token spent, 3 tokens are deducted from the 

linked group member’s total.9  We chose parameter values to be identical to the closely related 

study by Boosey and Isaac (2016).  The payoff in stage 3 for player 𝑖 is then: 

𝜋𝑖
3 = 6 − ∑ (𝑑𝑖𝑗 + 3𝑑𝑗𝑖)

𝑗∈𝑝𝑖𝑗=1

 

Where 𝑑𝑖𝑗  is the amount of tokens player 𝑖 used to punish player 𝑗 and 𝑝𝑖𝑗 are the positive 

elements of the symmetric 4𝑥4 punishment adjacency matrix 𝑃 determined by the linking 

decisions in the linking stage, 𝑝𝑖𝑖 = 0.  The elements of 𝑃,  𝑝𝑖𝑗,  represent whether a link is 

formed between players 𝑖 and 𝑗 and is equal to 1 in the presence of a link.  Since links must be 

proposed bilaterally, 𝑝𝑖𝑗 = 𝑝𝑗𝑖. The total number of positive links is known as the degree of a 

 
7 Example screens are given in the instructions, in the Appendix. 
8 By tenths. 
9 Note that it is possible for players to have negative payoffs in this stage, as the group members that they are linked 

with have to the ability to sanction them as well. 
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network and is defined by 
∑ ∑ 𝑝𝑖𝑗𝑗𝑖

2
.  Both the number of punishment opportunities that face any 

given player and the number they can give out is equal to ∑ 𝑝𝑖𝑗𝑗 .   

 In the comparison treatments, there was no linking stage. In the Complete treatment an 

exogenous complete network of punishment opportunities was applied, and all group members 

could deduct from one another. In the empty network, there was no deduction stage and no links.  

These represent the classic VCM game and the standard representation of a complete punishment 

network first studied by Fehr and Gäcther (2000). 

After each round a summary of the stages was given to players that displayed their 

earnings for the round. After completion of 20 rounds, participants filled out a brief 

questionnaire that elicited qualitative responses on decision making for the different decision 

settings and collected basic demographic information. For payment, the sum from the tasks in the 

elicitation tasks were added to the 20 rounds of play in the main experiment.  Average earnings 

were $23.78 and sessions lasted between 70-90 minutes. 

IV  Predictions 

IV.A  Hypotheses 

Using backward induction in a single-period three-stage game, without including 

regarding preferences, sub-game perfect Nash-equilibrium predictions are zero allocation and 

zero punishments in a linear VCM game.  In the third stage, no solely self-interested player 

would undertake costly punishment. Thus, anticipating no punishment in the next period, each 

player contributes zero to the public good. Then, given zero contributions and zero punishment, 

players only connect with other players if they receive positive benefits from connections. 

Therefore, a complete network is the equilibrium choice in the positive link benefit treatments, 

and when the connection benefit is zero, players should be indifferent about the formation of 

links. The efficient outcome for any VCM is full contribution and zero punishment and a 

complete (empty) network when the punishment benefit is positive. This tension between the 

efficient outcome and the self-interested Nash is the source of interest in the VCM game design.  

Much empirical evidence has shown us that the Nash equilibrium strategy is rarely 

played by the group.  A player’s decision in each game and round could depend on a myriad of 
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factors, such as conditional cooperation, other regarding preferences, or strategic behavior in a 

repeated game.  In the link formation phase, participants receive a payoff for formed links and 

gain the ability to punish others but also expose themselves to risk of punishment.  Intuitively, if 

the link cost is negative (benefit is positive) linking with players that they are not expected to be 

punished by or compelled to punish is the optimal choice. This involves either players that they 

expect will not punish them, potentially due to similar contribution choices or who have 

displayed willingness to permit deviating behavior. Moreover, if they know they are willing to 

punish others for contributing low amounts, then connecting to a low contributor may not be in 

their best interest. However, if they themselves are someone who punishes but believe the threat 

of punishment increases contributions of a low contributor then then they may still wish to link. 

As the rounds progress, the participants receive additional information about the history of 

punishment from those they are linked, which will further inform link formation and severance 

choices.  

Taking the links as given in the VCM phase, a higher number of links results in higher 

possibility of punishment.  Prior work has also found that punishment is linked to deviations 

from the average (Boosey and Isaac, 2016). On the margin, If the individual believes the threat 

of punishment will be larger than the payoff gained from withholding a token from the public 

pot, contributions would be expected to increase. Additionally, prosocial preferences and other 

factors determine levels of contributions in a standard VCM game (Ostrom, 1992; others). With 

this information we assert the following hypotheses: 

Hypothesis 1a: The total degree of the punishment network will increase when the link benefit is 

larger. 

Hypothesis 1b: Total (average) amounts of punishment and punishment levels will decrease as 

the benefits of linking are increased and in later periods. 

 

 The first part of this hypothesis is straightforward.   Increasing the incentives for link 

formation is expected to increase the number of links that are formed. Regarding part (b), 

previous research on fixed networks has shown that increasing the amount of punishment 

opportunities works to increases total contributions. As contributions rise, we expect punishment 
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to fall. This would suggest that punishments should decrease over time. However, in our study 

given the player’s endogenous choice of punishment network, players who wish to make a low 

contribution could opt out of the punishment network. This creates the possibility that, as the link 

benefits are increased, the likelihood of linking with a punisher (and the likelihood of being 

punished) may increase. Additionally, as players gain more information about other player’s 

types and likelihood of punishing only links will remain that do not result in punishing behavior.  

Hypothesis 2a: Contributions (and efficiency) will be larger in the treatments where the benefit 

from linking is higher.  

Hypothesis 2b: When the benefit from linking is higher, deviations from the group contribution 

mean will decrease. 

When the incentive to link is higher, more links are expected to form. When more links 

are formed the potential punishment levels are higher, and total contributions should rise. This 

should increase the connectivity between otherwise higher and lower contributors. Higher 

connectedness then, potentially, results in higher punishment possibilities for deviators from the 

mean and more convergent contribution levels. With less punishment and higher contributions, 

efficiency would increase.10  

Hypothesis 3 The likelihood of proposing a link to another player is higher when previous round 

contributions from the other player—the receiver--is closer to the previous round contributions 

the proposer.  This gap will be lower when the difference between proposer and receiver is 

positive.  

 Previous research has suggested that when contributions are similar, punishment is less 

likely to occur. Therefore, in the cases where links are incentivized players would prefer to be 

linked. Additionally, players who wish to punish low contributors may seek out the opportunity 

and propose links to historically low contributors. It is unknown whether low contributors will 

attempt to link with high contributors with the intention to punish. Punishment of high 

contributors has been documented, but traditionally this has been a result of anti-social 

punishment which can be potentially avoided in the bilateral linking environment. Further as 

shown, in theory, by Takács et al. (2009), when the rewards for conformity are low (high risk of 

 
10 Efficiency is defined as the total group contributions less the punishment inflicted. 
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punishment) then contributors will only link with contributors and defectors with defectors. This 

is potentially an expression of the sorting mechanism behind homophily. 

IV.B  Power Calculations 

 A pilot session was conducted to better inform experimental design in order to test the 

hypotheses listed above. The pilot session conducted used the LB-2 treatment. Participants were 

drawn from the same population and experimental procedures closely mirrored the processes 

described in the design.  The results from the session along with guidance from previously 

related research were used to motivate the selection of sample sizes for the treatments. 

Ultimately, based on the results from the pilot sessions, budget and time considerations, and 

participant availability, a treatment size of 40 individuals per treatment (10 groups per treatment) 

was selected.   Due to the random nature of participant attendance, the totals for each of the 

treatments were 36, 40, 40, 40 and 36 (Empty, LB-0, LB-2, LB-4, Complete). 

 We use these sample sizes and the pilot data to predict the minimum detectable effect 

sizes. For the aggregate treatment level comparisons, our power calculations (80% level) 

suggested that we could detect differences of 5.5 for Contributions and 3.75 for Efficiency across 

treatments (Hypothesis 3).   We are also powered to detect differences of 1.05 in Punishment 

totals and .68 in Network Size across treatments (Hypothesis 1). For Contributions and 

Efficiency, these are reasonably large effect sizes and with comparison to previous research, our 

design may be underpowered to detect more subtle differences between treatments, if they exist.  

For the variance calculations we are powered to detect differences of 6 (Contribution), .14 

(Connections), .9 (Link Proposals), 2.9 (Efficiency), and .4 (Punishment). For the individual 

comparisons, we are powered to detect the response of Contributions to Neighborhood and 

Punishment Size at effect sizes of .7 and 3.33.  To detect responses the presence of anti-social 

punishment we are powered to detect minimum effect sizes of .357.  

 It should be noted that these power calculations are approximations of the true underlying 

distributions that are guided by informed choices and a small sample of pilot data. The key 

feature of our design, changing the link benefit, is expected to have significant impacts on the 

resulting punishment network enabling participants to sanction their fellow group members. 

Further, with partner matching and the repeated nature of the game, the outcomes of the groups 

could vary significantly, and in ways that are not adequately represented by the small sample of 
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the pilot data. Nevertheless, for the variables where we observer similar levels of deviation in the 

data, the power calculations can provide confidence that the results we report represent the true 

characteristics of the underlying distributions. 

V  Analysis 

Overall, the average age of participants was 21.1 years of age. 63% of participants were 

female and 46% had participated in a previous economics experiment. Self-reporting on a 1-5 

Likert Scale where 1 is “strongly disagree” and 5 “strongly agree” 91.5% of the participants 

stated they agreed with the statement “I understood the instructions for experiment 1” and 82.3% 

stated they agree with the statement “I understood the instructions for experiment 2”. This 

provides some evidence to support the claim that most participants had a strong grasp of the 

instructions. In a similar fashion, 91% reported that they were well compensated.11  Table 1.1 

provides descriptive statistics for the variables used in the remainder of the analysis section.   

 In the rest of the section, we will present results starting with aggregate results on total 

contributions, link formation, punishment, and efficiency. We then look more closely at the 

differences in distribution of group choices between treatments.  Lastly, we compare individual 

behavior with respect to contribution choices, link offers, link establishment, breaking and 

formation of new links, punishment, and player types that were determined from the two pre-

game preference elicitations. 

 To summarize the main findings from the experiment, we find many similarities in 

behavior between the two positive link benefit treatments, LB-2 and LB-4. In these treatments we 

see evidence of many links being formed, modest increases in contributions over the no 

punishment treatment, a portion of groups achieving very high levels of cooperation, and some 

punishment behavior.  In most cases, these levels do not reach the levels found in Complete. We 

also find that when the outside incentive to link is zero (LB-0), very few links form and we see 

behavior that closely resembles Empty.  Subjects do not appear to take advantage of the 

opportunity to link for the sole purpose of disciplining free riding.  The activity in the 

 
11 Some questionnaire data was lost through the use of virtual method.  However, all participants were recruited 

from the same database and there is a no systematic reason to expect participant characteristics to differ in the 

missing data. 
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Table 1.1. Data Description: Endogenous Networks  

Variable Description Mean Std. Dev. 

    

Contribution 0 to 10 integer input of public goods 

contribution 

3.50 2.79 

LinkProposed  =1 if a link was proposed from player i to 

player j. 

.561 .496 

LinkEstablished =1 if a link was established between player 

i and player j. 

.476 .499 

NeighborhoodSize Takes values 0 to 3. Number of links 

established for each player  

1.43 1.36 

PunishedBy Takes values 0 to 2. Amount of tokens 

spent by player j to punish player i. 

.091 .378 

UGPref Number of offers rejected out of 11 in the 

Ultimatum Game preference elicitation. 

2.70 1.56 

Free Ride =1 if participant is classified as “Free Rider’ 

from the Public Goods preference 

elicitation  

.179 .384 

CondCoop =1 if participant is classified as 

“Conditional Cooperator” from the Public 

Goods preference elicitation 

.613 .487 

Age Participant’s age, in years 45.55 45.59 

Female =1 if participant was a female .633 .482 

TotalEarnings Total earnings for the experiment 23.99 4.29 

Note: Other variables are used in the analysis but are derived from the variables defined here. Any new variable 

that is introduced is explained at that time.  
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punishment network in LB-0 falls below LB-2, LB-4, and Complete. Further, we find that there is 

very limited evidence of groups achieving high levels of cooperation without the use of the 

punishment network. This indicates that some level of punishment (or threat of punishment) is 

necessary to sustain high cooperation.  

 In terms of the novel bilateral link design, we find strong evidence that links are broken 

in response to punishment. This indicates that participants are strategically utilizing the linking 

network to either 1) avoid repeated punishment interactions or 2) provide a secondary source of 

“punishment” via the reduction in benefits associated with severing a link. Moreover, we find 

clear evidence that as the link benefit is increased across treatments networks become denser and 

more players become connected to the network.  This suggests that, on average, subjects view  

the potential benefits/costs of a link (in absence of the benefit imposed by the treatment) 

differentially and each subsequent link requires increased compensation to form.12  We also find 

that there is a strong correlation within treatments between the contribution choices of Free 

Riders and Conditional Cooperators. We see a high proportion of 0 contribution choices by Free 

Riders in the LB treatments, indicating potential behavioral differences (e.g. link proposals acting 

as a signal) between treatments with link formation, and those without.  Lastly, we find muted 

evidence of homophily and no evidence of the convergence of contributions within groups across 

treatments.  

V.A  Aggregate Results 

Starting with aggregate comparisons across treatments, Table 1.2 presents the group level mean 

Contributions, Network Size, Punishment, and Efficiency. Figure 2.1 shows the average results, 

by period, between treatments for Contributions, Links Proposed, Network Size, Punishment, 

and Efficiency. Pairwise tests for significance across treatments are presented in the Appendix.  

For public good contributions we find significant differences between Complete and Empty and 

LB-0. While the difference between LB-4, LB-2 and Empty and LB-0 are positive, we do need see 

statistical differences.   Comparisons of contributions are discussed further later in the section 

but generally we find that contributions are highest in Complete with LB-2 and LB-4 falling  

 
12 This is likely a result of the increased compensation required to get uncooperative individuals into the punishment 

network, either free riders, or subjects with a high willingness to punish. 
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Table 1.2. Aggregate Group Outcomes by Treatment  

 

 

 Complete LB-4 LB-2 LB-0 Empty 

Contributions  17.51 14.99 14.87 10.73 12.08 
  (1.86) (3.20) (3.09) (2.20) (1.84) 

       

Links Proposed   10.21 7.994 3.562  

   (.736) (.954) (.717)  

       

Network Size   4.617 3.102 0.663  

   (.535) (.610) (.330)  

       

Punishment  8.375 3.852 3.376 0.846  

  (2.30) (1.10) (1.26) (.275)  

       

Efficiency  42.13 45.15 45.55 45.59 47.25 

  (2.77) (2.64) (2.50) (1.38) (1.10) 

       

Observations  180 180 197 190 180 

Groups  10 9 10 9 10 

 Note: Observations are at the period-group level. Standard errors in parentheses are clustered at 

the group level. 
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between Complete and LB-0/Empty.  One clear result from the aggregate data is the difference in 

connections in the LB treatments. All differences are significant at the 10% level (𝑝𝐿𝐵4,𝐿𝐵2 =

.058; 𝑝𝐿𝐵4,𝐿𝐵2 = .000; 𝑝𝐿𝐵2,𝐿𝐵0 = 0).  This leads to Result 1: 

Result 1 Bilateral punishment links (and link proposals) follow the law of demand.  

There is a clear positive relationship between the number of connections and the benefit 

received for connections. This result provides strong evidence in support of Hypothesis 1b. The 

result indicated that subjects consider the expected value of each connection in the group and  

compare this directly to the link benefit. Given the relatively low level of connections in LB-0, 

we can infer most links are viewed as having a negative net value by at least one player in each 

pair of players and are not formed. This is somewhat in contrast with the results of Ramalingam 

et al. (2016) who find that participants are willing to pay for the option to punish everyone in 

their group. The bilateral nature of the links allows for a single person to opt out of the institution 

and provides a clear distinction between this study and Ramalingam et al. This difference 

appears to negatively impact the value participants place on forming a single link (or more 

simply, that the proposed link is not reciprocated).   

Looking at link proposal rates in Table 1.2 we see that the point estimate difference in 

links proposed between LB-2 and LB-4 is 2.22, and the difference in connections formed is 1.51.  

Given that a single unconnected individual can reduce the connections of an otherwise fully 

connected group from 6 to 3 this suggests the possibility that the difference in links between the 

treatments are coming from a single member of the group, namely a free rider who views links as 

net-negatives only and must be compensated to form links.  We explore the individual level 

determinants of links a bit later in the section.  

 Figure 1.1 shows the treatment mean, by period, for each variable of interest.  We 

observe consistent behavior across treatments. Network Size and Proposals are quite stable over 

the periods and follow the patterns described above. In general, LB-2 and LB-4 display similar 

behavior in terms of Contributions, Efficiency, and Punishment, which indicates subjects 

perceive a limited value to the increased connectivity from increased linking benefits.  Efficiency   
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Figure 1.1. Treatment Averages  
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is defined on the group level as the total tokens created by the public and private goods minus the 

tokens expended punishment and the total deductions. 

We see a clear pattern of increased contributions over all treatments in Complete. Despite 

the treatment average only being significantly different that LB-0 and Empty, Complete has 

higher contributions than LB-2 and LB-4 in the final 13 periods.  Similarly, despite no statistical 

difference in average contributions, LB-2 and LB-4 display higher contributions than LB-0 and 

Empty in the final 17 periods.  The gains in contributions are not without cost, however. As we 

observe higher punishment in LB-2, LB-4, and Complete relative to LB-0 and Empty, with the 

largest average punishment in Complete.13 In general, the elevated levels of punishment result in 

reduced efficiency.  This is especially the case in Complete where the gains in contributions are 

not seen until earlier periods of high punishment translate into higher contributions in the later 

periods with less punishment. The persistent difference in contributions and punishment across 

periods yields support for Hypothesis 2a and the following result: 

Result 2 Contribution and Punishment in positive link benefit treatments fall between the 

Complete and empty network.  Contributions and Punishment in the no link benefit treatment 

behave similarly to the empty network. 

 An important caveat is need for the interpretation of relatively small differences in 

efficiency in the Link Benefit treatments.  Depending on the lens that the link benefit itself is 

viewed from, we can reach different conclusions.  If we connect this to the real-world context of 

the link benefit arising endogenously through interactions from participants in the group then the 

efficiency of the mechanism (when defined as contributions minus punishment), we understate 

the attractiveness of the bilateral linking environment.  In this case the additional benefits of the 

links would reasonably be included in efficiency calculations and serve to increase the overall 

efficiency. However, from a social planner’s perspective, if the links need to be subsidized then 

the benefit of the links to the subjects represents a social transfer, and there is no gain in 

efficiency resulting from connections. So far, we have looked at aggregate treatment average 

data. We will now compare the within-treatment variation at the group level, across treatments. 

Figure 1.2 shows group by period contribution levels for Empty LB-2 and LB-4 for each group 

 
13 Statistically significant differences are found at the 10% level for each treatment pair except LB-2, LB-4, and LB-0 

and Empty 
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within the treatments. Clearly Figure 1.2 shows a divergence in contributions in later rounds for 

LB-2 and LB-4, despite reasonably similar overall treatment averages by period. In LB-2 and LB-

4, a few groups tend toward full or nearly full contributions while other groups fail to coordinate 

and contribution below average.   Contributions in Empty remain relatively centered around the 

group average for all periods and only a single group reaches contributions levels greater than 20 

(half) as opposed to 3 groups in both LB-2 and LB-4 in the final period.  

Table 1.3 examines the variance for each of the 5 variables of interest presented in Table 

1.1. Deviations from the treatment mean by period are used to calculate the variance.  Pairwise 

tests for significant differences between treatments are given in the Appendix. We see significant 

differences in the variance of contributions in LB-2 and LB-4 and Empty.  The differences 

between Complete and LB-0 are large in point estimates but statistically insignificant.  The point 

estimates for the variance in connections and links proposed is highest in LB-2 and is statistically 

different from all other treatments at the 1% level, in connections.  LB-2 serves as the midpoint 

between LB-0 which has very few connections on average and LB-4 where connections trend 

toward the complete network. In these extreme cases, the networks in some group change very 

little. This heightened activity around LB-2 suggests possible sweet spot for interpreting how 

participants view the value of connections.   

Result 3 Between group variance is higher in the Complete, LB-2, and LB-4 treatments relative 

to the Empty and LB-0 treatments. 

The observed variance in Punishment is highest in Complete but is marginally 

insignificant when compared with LB-2 and LB-4.   A potential mechanism that reduces the 

variance that is observed LB-2 and LB-4 is the ability for any player to sever a link in the Link 

Benefit treatments. This avoids repeated anti-social punishment that can escalate punishment 

totals. We will provide evidence that this is indeed the case later in the section. Lastly, variance 

in Efficiency is significantly higher in LB-2 LB-4 and Complete relative to LB-0 and Empty.  

This result is a derived directly from the variance in contributions for LB-2 and LB-4 and the 

variance in punishment in the Complete treatment. These variances produce the differences in 

variances observed in Efficiency. 
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Figure 1.2.  Group Level Contributions by Treatment Type   
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Table 1.3. Group Outcomes by Treatment: Variance  

 Dependent Variable: Variance 

 Contributions Connections Links 

Proposed 

Punishment Efficiency 

      

Complete 1.152   9.394** 10.26** 

 (2.494)   (3.943) (4.146) 

      

LB-0 1.608 0.131** 0.788*** 0.661*** 1.363* 

 (1.972) (0.0607) (0.184) (0.179) (0.762) 

LB-2 7.821* 0.463*** 1.206*** 3.283** 7.159*** 

 (4.714) (0.100) (0.349) (1.383) (2.456) 

      

LB-4 7.896** 0.363** 0.770* 4.317*** 8.668*** 

 (3.653) (0.168) (0.417) (1.091) (2.033) 

      

Constant 4.427***    1.594*** 

 (1.406)    (0.506) 

      

Observations 927 927 927 927 927 

R-squared 0.074 0.240 0.184 0.106 0.108 
Note: Reported results are point estimates from a pooled OLS regression. The comparison group is the Empty 

treatment. Standard errors in parentheses are clustered at the group level. *** p<0.01, ** p<0.05, * p<0.1 

  



26 

 

To further explore differences in group choices among treatments, we compare decisions 

in each of the treatments conditional on the punishment network being full, and also conditional 

on the punishment network being empty. In these cases, the punishment networks are identical 

and the decision environment of the groups (in the absence of dynamic effects) are otherwise 

identical, but we expect that behavior may differ when the extant punishment network has arisen 

endogenously. Table 1.4 shows significant differences in contributions conditional on an empty 

network when such a network has arisen endogenously, i.e. when there is a positive link benefit 

but no players chose to link. Contributions are much lower in endogenous empty networks. 

When the punishment networks are complete, we see higher contributions in the LB-2 treatment 

relative to an exogenously complete case, but the difference is not significant. Particularly in the 

empty network observations, these results suggest that the dynamic interaction of the 

heterogeneity of individuals and the bilateral linking incentive influences how the punishment 

opportunities (or absence of) affect contribution choices.  We also present figures in the 

Appendix that show the network size and contributions for each group in the final period, as well 

as the maximum network size and contribution.   

IV.B  Individual Decisions 

So far, we have compared treatments and seem some similarities at the aggregate level 

across treatments. The differences arise when we look more closely at the group decisions. We 

now restrict our attention to the individual decisions within the groups and connect this to the 

differences we see in the groups between treatments.  We first present results which use the 

conditional cooperator and free rider classifications from the pre-stage preference elicitation.  

We then look at behavior at the individual linking and punishment choices focusing on the LB 

treatment. Finally, we will focus on pairwise linking and punishment decisions.  

Previous research has shown that much of the dynamic response that we observe in 

repeated public goods games is a result of “optimistic” conditional cooperators lowering their 

contributions in response to low contributions from other members of the group/session.   We 

use the results of the pre-experiment public goods preference elicitation to “type” players as 

Conditional Cooperator, Free Rider, or Other (Fischbacher et al. 2012).  We find similar  
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Table 1.4. Group Contributions with Full or Empty Networks  

 Dependent Variable: Group Contribution 

 Full Network Empty Network 

   

LB-0  -3.041 

  (2.965) 

   

LB-2 5.435 -7.539** 

 (7.388) (3.210) 

   

LB-4 -1.758 -6.685*** 

 (5.350) (1.938) 

   

Constant 15.36*** 14.65*** 

 (1.491) (1.306) 

   

Observations 315 343 
Note: The table reports pooled OLS regression results where the dependent variable is group contributions. 

Samples are restricted to observations in each treatment where the punishment network is either full or empty. The 

constant for each column is the corresponding baseline treatment, Complete for the full network and Empty for the 

empty network.  Period fixed effects are included but omitted. Standard errors clustered at the group level are 

given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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proportions of players as Fischbacher et al. (2012), with 61.3% of players classified as 

Conditional Cooperators, 17.9% as Free Rider, and 20.8% as Other.14  We then compare the 

individual frequency of contribution choices, by treatment and player type (Conditional 

cooperators and Free Rider), in Figure 1.3.  This provides us with some clarity in understanding 

how the player types interacted within groups and how the composition of types within groups 

may have affected contributions. From Figure 1.3 we can see a few clear differences between the 

treatments. First, in all treatments there are a substantial portion of Free Riders who contribute 

positive amounts despite responding with zero to all possible group averages in the single shot 

preference elicitation. A likely explanation for this behavior is the presence of a repeated game in 

which players recognize the importance of reputation formation and positive group contributions.   

Secondly, we see quite a bit of overlap in the density of contributions between 

Conditional Cooperators and Free Riders, where the center of the mass varies between treatments 

(and which generally trends up as the link benefit is increased). While Conditional Cooperators 

contribute higher for almost all positive contribution levels, in all treatments, there looks to be 

interdependence between Free Riders and Conditional Cooperators. This also suggests the 

possibility of strong path dependence for groups. Moreover, we see positive values at full 

contributions for both Free Riders and Conditional Cooperators in LB-2, LB-4, and Complete.  

The last striking difference is the noticeably larger portion of free riding, by Free Riders, 

in each of the LB treatments relative to both of the baseline treatments. A potential explanation 

for such behavior is that the link formation process serves as a signaling mechanism for 

contributions in the following stage.  It could be the case that the link formation stage induces 

players to cognitively think through their contributions and their group members response to 

their contributions (i.e. their expectations about punishment conditional on a link) and thus avoid 

linking.   And by avoiding linking they then feel justified in staying true to their “Type” and 

ultimately decide to free ride.  Alternatively, this could be a result of the punishment mechanism, 

in which Free Riders respond to punishment by removing links and reverting to free riding 

behavior in subsequent periods, similar to a Grim Trigger strategy studied in repeated games. 

 
14 Classifications are defined exactly as in Fischbacher et al. 2012. We exclude “Triangle Cooperators” and classify 

them in “Other”. Free Riders are classified by “0” conditional responses to all possible group contribution averages. 

Conditional cooperators have correlation coefficient of at least 1 with response to changes in the group average. 
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Figure 1.3. Contributions by “Type”  
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On the other hand, particularly in Complete, when they consider the potential for punishment 

from low contributions, they are forced to accept the punishment or alter their behavior if they 

wish to avoid punishment in future periods. In Empty15¸ low contributing individuals do not have 

to worry about punishment or linking but may still recognize the importance of positive 

contributions and settle on a small but positive contribution. We will explore the individual 

determinants of contributions next. 

 Table 1.5 reports the results from a random effects panel regression for each treatment 

with public account contributions as the dependent variable. The regressors include lagged 

contributions, lagged punishment, number of connections, lagged group average, and a period 

variable.  We see across treatments that the strongest predictors of contributions are both 

previous round contributions and the previous round group average.  An interesting result is that 

the point estimates on punishment received in the previous round are negative or near zero for all 

treatments.  The estimates are negatively significant at the 5% level in LB-0 and LB-4 (p=0.000 

and p=0.047, respectively). 

 It should be noted that the direction of the causality is not clear.  It could be the case that 

players who have punished in the previous period exerted lower effort levels, but it could also be 

the case that higher levels of punishment result in “counter-punishment” through the lowering of 

contribution levels. Shifting attention to the effect of individual network size on contribution 

levels we see significant positive estimates in both LB-0 and LB-4 at the 1% level (p=.000, 

p=0.010, respectively). The positive coefficient on NeighborhoodSize in LB-2 is marginally 

insignificant (p=.135). Results in the Appendix use dummy variables for each network size and 

find significant positive coefficients in all treatments for each level of network connections.  This 

shows that higher network sizes are correlated with higher levels of contributions (again the 

causality could run in both directions). Together these results suggest support for the idea that the 

actual mechanism that increases contributions is the threat of punishment as opposed to the 

actual act. This leads us to Result 4: 

 

 
15 The low levels of free riding could also be a small sample size issue with only 9 groups comprising the treatment. 

This persistence in positive contributions, particularly among free riders, is a likely source for the limited amount of 

decay over time we observe in the Empty treatment. 
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Table 1.5. Individual Contributions by Treatment 

 Dependent Variable: Contributions 

 Complete LB-0 LB-2 LB-4 Empty 

      

ContLag 0.589*** 0.336*** 0.571*** 0.577*** 0.470*** 

 (0.062) (0.114) (0.040 (0.041) (0.144) 

      

PunishInLag 0.008 -0.283*** -0.042 -0.0608**  

 (0.030) (0.068) (0.072) (0.034)  

      

NeighborhoodSize  0.863*** 0.249 0.167***  

  (0.108) (0.166) (0.0646)  

      

GroupAveLag 0.370*** 0.492*** 0.352*** 0.405*** 0.393*** 

 (0.085) (0.160) (0.072) (0.044) (0.122) 

      

Period 0.001 0.002 -0.005 -0.013 0.012 

 (0.007) (0.008) (0.007) (0.008) (0.008) 

      

Constant 0.239 0.210 -0.0125 -0.116 0.257 

 (0.195) (0.170) (0.134) (0.165) (0.240) 

      

Observations 680 720 748 684 684 

Number of Subjects 40 40 40 36 36 
Note: Regression is a random effects panel data model with standard errors clustered at the group level. 

NeighborhoodSize describes the total number of links for each subject (0 to 3). The number of clusters is equal to 

the number of subjects divided by 4 and the reported standard errors are in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1 
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Result 4a Higher levels of punishment received in the previous period are not correlated with 

higher levels of contributions in the next period. 

Result 4b Large punishment network degrees are correlated with higher levels of public goods 

contributions. 

Table 1.6 displays the results for a pooled OLS decision which regresses a set of 

covariates on the individual total punishment decisions conditional on a link existing. The data is 

decomposed so that each subject has 3 potential punishment decisions, conditional on the 

number of links formed, in each period.  Previous research (Nikiforakis, 2012) has shown that 

there is substantial retaliatory punishment observed in public goods games with punishment. We 

do see evidence of a similar trend in Complete and LB-4.  We do not observe coefficients that are 

significantly different from zero in LB-0 and LB-2, (however point estimates are positive). This 

is likely due, in part, to the ability for subjects to break links in which punishment has occurred. 

When the link benefit is higher, such as in LB-4, the opportunity cost of weighing the potential 

punishment in the next period is higher, thus a link is more likely to be retained.   In the 

Complete treatment it is not possible to opt out of links, so it is not surprising to see more robust 

evidence of anti-social punishment in this case. This is one strength of the pairwise linking 

environment. We show in Table 1.5 that a major predictor of destruction of a link is punishment 

in the previous period. 

From Table 1.6 we can also observe that a major predictor of punishment is punishment 

of the same person in the prior period, suggesting that once punishment of another player has 

begun, the player will continue to punish (likely until contributions have been raised to 

acceptable level or the link is broken).  Another notable finding is that we see very limited 

evidence for the other player contributions affecting the choice of punishment.16  This could be 

the result of conditional cooperators responding to low contributions with low contributions of 

there own while still administering punishment. We also do not find a significant effect of Period 

in any of the treatments. Thus, we do not find support for Hypothesis 1b. We also find limited 

evidence that deviation from the group average is a  

 
16 Regressions with the difference in effort replacing the two contribution related covariates does not produce 

significant coefficients in any treatment. 
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Table 1.6. Individual Punishment Administered by Treatment 

 Dependent Variable: PunishOut 

 Complete LB-0 LB-2 LB-4 

     

 Contribution 0.024 -0.011 -0.009 -0.011 

 (0.021) (0.044) (0.016) (0.012) 

     

PunishedByLag 0.142*** 0.173 0.0910 0.188* 

 (0.037) (0.363) (0.074) (0.103) 

     

PunishOutLag 0.421*** 0.282** 0.743*** 0.481*** 

 (0.049) (0.290) (0.155) (0.068) 

     

OtherPlayerCont -0.0284 -0.020                                                                                                                                       -0.001 0.002 

 (0.022) (0.092) (0.021) (0.016) 

     

OtherPlayerAveDev -0.018 -0.003 -0.012 -0.032* 

 (0.032) (0.145) (0.026) (0.019) 

     

UGPref 0.028 -0.021 0.0126 0.0329** 

 (0.028) (0.045) (0.025) (0.016) 

     

LinkCreated  0.576 0.375** 0.528** 

  (0.352) (0.121) (0.176) 

     

Period -0.006 -0.002 -0.002 0.003 

 (0.004) (0.013) (0.003) (0.002) 

     

Constant 0.112 0.309 0.079 -0.047 

 (0.087) (0.354) (0.114) (0.076) 

     

Observations 2,040 228 1,166 1,598 

R-squared 0.277 0.303 0.479 0.313 
Note: Regression is a pooled OLS model with standard errors clustered at the group level. UGPref is the amount of 

rejected offers in the Ultimatum Game preference elicitation. Dependent variable is in tokens spent (0-2). The 

number of clusters is the number of groups per treatment (9-10).   Bootstrapped standard errors are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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significant predictor of punishment. Only in LB-4 is the coefficient on OtherPlayerAveDev 

significantly different than zero (p=.084).   UGPreference is a variable that captures the number 

of rejections in the Ultimatum Game preference elicitation that was conducted before the 

experiment began. Again, we see only limited evidence of this variable predicting punishment 

choices17.   One quite striking result is the inclusion of the LinkCreated variable which is a 

binary variable that is equal to 1 when the link between the players was formed in the same 

period as the punishment. We see large positive estimates for each of the treatments18 (LB-0 

p=.102; LB-2 p=.002; LB-4 p=.003). This suggests that players are actively forming links with 

individuals they intend to punish. 

Result 5 Punishment is highly correlated with the formation of a link in the same period. 

Table 1.7 shows the marginal effects calculated at the variable means from a pooled 

probit regression where the dependent variable is the breaking of a link between two players 

from one period to the next. As mentioned above, a primary determinant of the breaking of link 

is the presence of punishment in a previous period.19 Thus, players are responding to the negative 

payoffs associated with punishment by severing potentially profitable links. The breaking of a 

link may be a substitute for increasing contributions that would be required to avoid punishment 

in Complete.  One other notable result from Table 1.7 is the negative coefficient on the round 

indicator. This suggests that networks become more stable as the rounds progress as fewer links 

are broken.  

Result 6a Punishment in the previous period is a strong predictor of broken links. 

 Result 6b The likelihood of a link being broken decreases over time; punishment networks 

become more stable over time.  

A more comprehensive regression with Link Broken as the dependent variable that includes 

player types is presented in the Appendix. This specification shows that Free Rider types are less 

likely to break a link when the Link Benefit is positive. 

 
17 Additional model with fixed effects is shown in the Appendix, these necessarily omit fixed variables. 
18 LB-0 standard errors are likely influenced by the low number of connections/observations. 
19 Due to the bilateral nature of a link breakage, the PunishedByLag variable accounts for both ingoing and outgoing 

punishment. 
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Table 1.7. Determinants of Broken Links by Treatment  

 Dependent Variable: Link Broken 

 LB-0 LB-2 LB-4 

    

ContLag 0.002 -0.004 0.004 

 (0.002) (0.003) (0.003) 

    

PunishedByLag 0.050** 0.051*** 0.063*** 

 (0.021) (0.008) (0.019) 

    

OtherPlayerLagCont -0.003 0.001 -0.002 

 (0.003) (0.003) (0.005) 

    

OtherPlayerLagAveDev 0.004 -0.004 0.001 

 (0.003) (0.004) (0.007) 

    

Period -0.001** -0.003*** -0.002* 

 (0.001) (0.001) (0.001) 

    

Observations 2,160 2,244 2,052 
Note: Regression results are from a pooled probit model clustered at the group level. The reported values are the 

marginal effects calculated at the variable means. The number of clusters is the number of groups per treatment (9-

10).   Bootstrapped standard errors are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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On the other hand, it also shows the interaction between a Conditional Cooperator and a Free 

Rider are likely to experience a severed links. This provides evidence that the likely mechanism 

of punishment is Conditional Cooperators punishing Free Riders (Nikiforakis et al., 2012), after 

which Free Riders respond by severing links.  

Our last set of analysis looks the factors that influence whether links are established or 

proposed. We will focus on established links, but corresponding analysis for link proposals is 

available in the Appendix, results are largely the same. Table 1.8 presents a regression with an 

established link between two players as the dependent variable.20   A presence of links between 

players of similar types would provide an example of the common finding of homophily in 

network science literature.  We define types, as above, based on the pre-game preference 

elicitation.  However, a type may simply be the contribution levels or some other observable 

characteristics. As we see however, contribution levels depend on group composition and 

previous contributions, so an exact measure is difficult to pin down.  We see limited evidence of 

preferential linking between player types, most prominently in LB-4.  In general, as the linking 

benefit is reduced, we see reduced point estimates and coefficient estimates that are not 

statistically different than zero.  

  Importantly these are dynamic estimates and will depend heavily on the interaction 

between players. We can easily observe that the strongest predictor of a link, is a link in the 

previous period. Thus, many links that are created, persist.  Further, if punishment happened in a 

link in the previous period, the likelihood of a link in the next period is reduced (identical result 

to Table 1.7).  The decreasing trend, as link benefit increases, of the coefficients on ContDiffLag 

and OtherPlayerLagAveDev indicates that the links formed (and maintained) when the link 

benefit is smaller are more likely to be between players that have higher contributions relative to 

the group or among players who have more disparate contribution differences. As link benefit 

increases and more subjects become connected, particularly free riders/low contributors, these 

relationships fall away. In general, when the link benefit is smaller, to maintain a link subjects 

must more be more tolerable to divergent behavior from their own. As the link benefit increases, 

subjects can exert more and more pressure in attempt to get divergent subjects to conform.   

 
20 Similar regressions were run as panel data with very little qualitative differences. 
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Table 1.8. Determinants of Established Links by Treatment  

 Dependent Variable: Link Established 

 Combined LB-0 LB-2 LB-4 

     

ContLag 0.026* -0.002 0.059* 0.009 

 (0.016) (0.006) (0.033) (0.010) 

     

ContDiffLag 0.001 0.016** -0.011 -0.006 

 (0.012) (0.007) (0.030) (0.011) 

     

PunishedByLag -0.170*** -0.052** -0.164*** -0.136*** 

 (0.027) (0.025) (0.050) (0.013) 

     

LinkEstablishedLag 0.578*** 0.167*** 0.658*** 0.367*** 

 (0.053) (0.050) (0.106) (0.033) 

     

FreeFree 0.104 -0.001 0.206* 0.064 

 (0.104) (0.020) (0.107) (0.057) 

     

FreeCond 0.041 -0.003 -0.089 0.078*** 

 (0.069) (0.019) (0.074) (0.021) 

     

CondCond 0.071 0.017 0.202** 0.019 

 (0.051) (0.020) (0.082) (0.046) 

     

FreeOther 0.102  0.039 0.130 

 (0.125)  (0.106) (0.086) 

     

CondOther -0.016 -0.003 0.146 -0.090*** 

 (0.068) (0.035) (0.139) (0.028) 

     

OtherPlayerLagAveDev 0.030** 0.025*** 0.041 -0.004 

 (0.013) (0.009) (0.031) (0.014) 

     

Observations 6,456 2,141 2,244 2,052 
Note: Reported results are from a dynamic probit regression with binary dependent variable =1 when a link was 

formed between players i and j, otherwise =0.  Reported results are marginal effects calculated at the independent 

variable means. The comparison group is two players with types: Other. FreeOther was omitted due to a very small 

number of links <.1% in the second regression. Bootstrap standard errors are clustered at the group level and given 

in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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VI  Conclusion 

This study builds on previous research into network effects, network formation, and 

outsiders in social dilemmas.  Overall, the results paint a picture of how the bilateral linking 

environment differs from the traditional variations in the complete network punishment game. 

Subjects often utilize the breaking of links to avoid punishment and even when the link 

formation is subsidized to a total of 50% of the maximum possible negative payoff from a 

formed link, we still do not observe complete network formation in many groups.   The ability 

for low contributing group members to avoid retaliation limits the contribution gains that we see 

in the more traditional punishment setting.   However, to the extent that punishment interactions 

can be avoided we can observe reduced instances of anti-social punishment.  

Ultimately many of the lessons that we learn from the more traditional framing of 

punishment carry over to the bilateral linking environment. When the linking benefit is positive, 

we see some ability for the network to enhance cooperative behavior and increase public good 

contributions but not to the level that a complete punishment setting enables. It is certain that the 

efficacy of a bilateral self-enforcement mechanism will depend on the strength of the link benefit 

between the parties, and the relative strength of punishment process itself.  

Variations utilizing the bilateral approach provide potential extensions to this research.  

For example, the use of directed rather than undirected endogenous punishment networks may 

create an environment that would not allow low contributors to opt out of the punishment 

network. Ultimately, this could increase overall contributions as the total amount of punishable 

connections may increase. Potentially, this would then mirror a complete punishment network 

that has previously been studied, in the sense that any player that would like to punish would be 

available to do so.  Also, in this study perfect information was available to all participants. 

Having link formation be related to information about contributions may potentially alter the link 

formation choice is interesting ways and provide an endogenous benefit for link formation. 

Lastly, varying link incentives, either through time or by individual, or utilizing a different 

punishment scheme (such as rewards) may create more a more externally valid environment. It 

could be the case that links and signaling in the early periods have disproportionate impact on the 

outcomes due to path dependence and more heavily subsidized links (or rewards) in early periods 

help groups achieve cooperative outcomes and reduced the need for strong link benefits in later 
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periods.  Hopefully, this study provides a first step to analyzing the impacts of bilateral 

interactions in public good settings.  
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Chapter 2 

Probabilistic Entry and Heterogenous Valuations in 

Sequential Contests 

I  Introduction 

 The expansive literature on contests, which models a great variety of settings in which 

competitors incur costs in pursuit of winning a fixed prize or prizes, has long recognized the 

importance of sequential play.  Many contests in the real world contain sequential elements. For 

example, in litigation arguments and evidence are brought forth sequentially.  In industry, 

incumbent firms or contractual parties are often given the right to make a final offer in an 

agreement (Morgan, 2003). However, identifying subgame perfect Nash equilibria of sequential 

contests has posed a significant theoretical challenge.  

 This paper seeks to answer the following two questions. How does exogenous variation 

in the value of the contest prize alter the equilibrium contest expenditure when comparing 

simultaneous and sequential environments? Also, how does the threat of entry into a contest 

differ between a simultaneous and sequential environment?  Recently, theoretical advancements 

in the study of contests by Hinnosaar (2018) have provided us with the tools to identify the 

SPNE of sequential contests with these characteristics. We then take the theoretically predicted 

solutions to the laboratory to test the theory and connect the findings to the robust experimental 

literature on simultaneous contests. 

   Previously, sequential modelling of contests had been primarily restricted to two-period 

and had found that, due to the shape of the best-response functions, and unlike the related 

Stackelberg quantity competition problem, a first mover advantage was only present when 

contest participants were asymmetric (Tullock, 1987; Linster, 1993).  While some research had 

extended contest theory to a third sequential player, the results using the traditional backward 
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induction technique are cumbersome and unwieldy (Kahana and Klunover, 2018). 21  

Hinnosaar’s innovation, using the inverse best response function, draws from techniques used in 

aggregative games (see Jensen 2018) and allows for the characterization the Sub-Game Perfect 

Nash Equilibrium (SPNE) for any homogenous (in valuations/costs) 𝑛-player 𝑇-period, and 

𝑛𝑡  player-per-period contest (∑𝑛𝑡 = 𝑛). This novel technique provides a substantial step 

forward from the 3-person limitation of the backward induction approach. 22 Further, embedded 

within this framework, are a variety of strategically similar games, including quantity 

competition among firms, pari-mutuel betting, public goods games, and Tullock contests.  

Hinnosaar’s primary result generalizes the first-mover advantage (Dixit, 1987) result to 

an earlier mover advantage (in an otherwise symmetric contest) that says that any player moving 

earlier in a contest will choose higher effort choices, have higher chance to win, and will have ex 

ante higher expected utility, ceteris paribus. Further, he suggests that the total amount of effort 

expended in the contest is increasing when additional information about total expenditure is 

revealed (direct observations). 

 In this paper we extend Hinnosaar’s model to incorporate heterogenous valuations of the 

contest prize as well as potential entry into a 3-person contest and test the predictions in a 

laboratory experiment. This paper provides one of the first theoretical and laboratory 

examinations of the effects of player heterogeneity in multi-period sequential contests23. While 

the experimental literature on simultaneous contests is robust and has generated many interesting 

behavioral phenomena, such as overbidding, relatively little experimental work has been done on 

sequential contests (see Dechaenaux et al. 2015 for a survey on contests).  Fonseca (2009) test 

and confirm the prediction that sequential and simultaneous Tullock contests have equivalent 

outputs in the two-period game.  Nelson (2019) and Nelson and Ryvkin (2019) recently studied 

whether subjects in the laboratory exhibit first-mover advantage in a variety of homogeneous 3-

player sequential contests (as predicted by Hinnosaar). They find that, contrary to prediction, 

subjects do not exhibit first-mover advantage. Additionally, they find that subjects produce lower 

 
21 Some other studies have looked at 3-periods models in different contexts (Glazer and Hazin, 2000 and Baik Lee, 2019 for 

contests; Daughety, 1990; Ino and Matsumura, 2012; Julien et al., 2012 for oligopolies with linear demand).  

22 Hinnosaar, in fact, proves that the most complicated situation that backward induction can provide an analytical 

solution for is the 3-player contest.  
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aggregate efforts in sequential contests relative to simultaneous contests. This is again contrary 

to theoretical predictions.  

  We build on this previous research but shift the focus to the impact of heterogeneity and 

the interaction between heterogeneity and sequential position in sequential contests.  We 

explicitly model both heterogenous prize valuation (equivalently, costs) and potential entry 

(heterogenous entry probabilities) in each of the sequential positions in a 3-period, 3-player 

contest.  While we operate in the framework of a Tullock contest, the strategic similarity to a 

quantity competition model generates implications for market competition settings. Incorporating 

heterogenous valuations in a sequential environment is similar to cost heterogeneity among firms 

in quantity competition or differences in market power. Potential entry and its impact on prices 

and quantity in markets is widely studied (MacDonald, 1986; Bresnahan and Reiss, 1990). 

Further, probabilistic entry has been studied in the closely related context of auctions (Bulow and 

Klemperer, 2009).  Contests have also been closely linked with auctions in the game theory 

literature (see Dechenaux et al. 2015 for a survey).   

Important results have come from the study of the interaction between heterogenous 

valuations and the sequential timing of the contest (primarily focused on two players and two 

periods). For example, Leininger (1993) reverses the result of Dixit (1987) who suggested that, 

even when players are given the option to move earlier or later in a contest, it is in their best 

interest to move first regardless of the choice by the other player. Leininger (1993) shows that if 

players have heterogenous valuation, which is theoretically identical to a cost advantage in a 

Tullock contest, the player with the larger valuation with always choose to move first, and the 

lower valuation player, second.  Our paper extends this literature by exploring contests beyond 

two periods (or two players) who have heterogenous valuations of a prize. This allows for a more 

robust analysis of the interaction between the timing of players decisions and their valuations.  

Lastly, the way in which we model heterogenous valuation is identical to the inclusion of 

a “joy of winning” (Sheremeta, 2010) into a subject’s utility function in a Tullock contest.  

Sheremeta suggests a “joy of winning” as one explanation for the persistent and well 

documented observation of overbidding in contests (see Sheremeta (2015) for a survey of 

overbidding in contests). Thus, our model can capture how joy of winning would affect players 

Nash Equilibrium bids in sequential contest, including the impact of heterogeneity in this value.  
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More generally, as the experimental investigation of sequential contests is relatively 

undeveloped, it is unclear how the mechanisms of overbidding in simultaneous experimental 

contests translates to the multi-period sequential setting.  Nelson and Ryvkin (2019) find that in 

the homogenous 3-player sequential contest that aggregate output and overbidding is lower in 

sequential contests but find very little overbidding in general.  As a preview of the experimental 

results in this paper, we also find that sequential contests tend to lower overbidding relative to 

simultaneous contests in a variety of treatments. However, unlike Nelson and Ryvkin (2019), we 

observe significant overbidding in both simultaneous and sequential contests. Further, we find 

that overbidding tends to increase as players make decisions later in the contest. We also explore 

an implied “joy of winning” and suggest a new mechanism to explain behavior in sequential 

contests which we call a “winning probability heuristic”. 

The theoretical results and corresponding experimental design are more easily understood 

within the context of key implications of Hinnosaar’s model. In a sequential contest, the contest 

order is defined by the order of decisions and revelation of effort to other contestants. 

Hinnosaar’s key result is that the more other players will observe a particular player’s effort prior 

to making their effort, the more effort the observed player will exert and the higher ex ante 

probability he will win. This is the aforementioned earlier-mover advantage.  Additionally, 

Hinnosaar shows that as a contest becomes “more sequential”24, thus having more observations 

of earlier players’ effort choices, the higher the aggregate output in the contest.  This provides 

clear and important predictions for a contest designer. In situations where rent-dissipation 

(competition) and higher aggregate outputs is desired, such as an R&D race, a maximally 

sequential structure should be utilized. In settings where it is not, sequencing is undesirable.  

 Utilizing Hinnosaar’s theory, we show that in a sequential contest of 3 players with 

heterogenous valuations always results in higher aggregate output than the corresponding 

simultaneous contest, regardless of ordering and valuation types. Moreover, similar to Leininger 

(1993) and Morgan (2003), placing players with higher (lower) valuations later (earlier) in the 

contest results in lower aggregate totals. However, in contrast to Leininger and Morgan, the 

totals in any sequential contest structure are greater than the simultaneous case.  Lastly, we find 

 
24 You can think of more sequential as “flatter”. Imagine a 3-player contest where 3 players made decisions at the 

same time (simultaneous). Then moving to a situation with 2 leaders and 1 follower. And finally, a fully sequential 

setting where each decision is made one after another. These contests are subsequently flatter. 
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that the total aggregate output is irrespective of the final period players’ valuation. This suggests 

that a contest designer can minimize the impact of an outlying participant (in terms of valuation) 

by placing him at the end of the contest. This result is generalizable to 𝑛-players when there is a 

single player who a heterogenous valuation (cost). Finally, the contest designer can maximize the 

impact of a value heterogeneity by placing it at the beginning of the contest.  

The final theoretical extension fully characterizes the SPNE solution to a three-player 

fully sequential model in which an incumbent player (who moves first) responds to probabilistic 

potential entry from two following players. This captures the notion of an incumbent firm facing 

potential entry in an output game. The incumbent firm chooses an output level given the public 

knowledge of the probabilities of the entrants in the two subsequent periods. Once the output 

from the first firm is submitted, the firm in period two receives his random opportunity cost draw 

and enters if he receives the low draw. He then chooses his output. The third firm follows 

identically. The contest is then resolved, and the prize is paid out. Thus, there are four potential 

outcomes. Both firms two and three enter, only one of two enter, or both stay out. Expected 

aggregate output increases as the probability of entry for both firm increases. Moreover, the 

increase in output, as firm entry probability increases, is very similar rates regardless of which’s 

firm chance of entry increases.  These hypotheses are intuitive. Earlier firms respond to potential 

entry by increasing output to capture a larger market share to buffer themselves from the 

potential entrant.  

Our experiment tests the implications of these theoretical extensions while also providing 

the first empirical work extensively testing the major theoretical advance by Hinnosaar. Only one 

other study, that we know of, has experimentally tested a sequential Tullock contest for contests 

of more than three players.25 Further, their results provided contradictory evidence for support of 

the theory, thus more research is needed to determine exactly how the model translates to real 

world applications. 

 
25 Nelson and Ryvkin (2019). 
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II  Theoretical Model 

In the following section we will explain the model and derive the hypotheses that we will 

be tested in the proposed experiment. An 𝑛-player sequential model of a Tullock contest between 

risk-neutral players 𝑖 = 1,2, . . , 𝑛 choosing effort 𝑥𝑖 ∈ 𝑅
+ is considered. All investments are 

made at the beginning of period 𝑡 and are public information. The winner of the contest is 

determined after all players have made the investment decisions and the probability of winning 

for each player follows a Tullock contest payoff given by: 

𝑝𝑖 =

{
 
 

 
 𝑥𝑖
∑ 𝑥𝑗
𝑛
𝑗

, 𝑖𝑓  ∑𝑥𝑗

𝑛

𝑗

> 0

1

𝑛
,    𝑖𝑓  ∑𝑥𝑗 = 0

𝑛

𝑗

 

The winner of the contest receives a prize of value 𝑣𝑖 > 0 and all players investments are lost. 

Individuals pay constant marginal effort costs 𝑐𝑖. Thus, the general payoff function for player 𝑖 is 

given by: 

max
𝑥𝑖

𝐸𝑈𝑖(𝒙) = 𝑣𝑖
𝑥𝑖
∑ 𝑥𝑗
𝑛
𝑗

− 𝑐𝑖𝑥𝑖 

Hinnosaar (2018) characterizes a sequential contest using a 𝑇-dimensional vector 𝒏 = (𝑛1, . . , 𝑛𝑡) 

where 𝑇 is the number of stages, and 𝑛𝑡 ≥ 1 is the number of identical (𝑣𝑖 = 𝑣 = 1, 𝑐𝑖 = 𝑐 = 1) 

players making investment decisions at period 𝑡. For a three-player contest this is represented by 

four different possibilities. 𝒏 = (3); (2,1); (1,2); (1,1,1); with (3) representing the simultaneous 

contest; (1,2) representing a Stackelberg game with one leader and two followers. Using an 

inverse best-response function, we rewrite the choice variable as a function of aggregate 

investment in the contest 𝑋 = ∑ 𝑥𝑗
𝑛
𝑗 ,  𝑋 ∈ [0,1]. Defining 𝑋𝑡 to be the aggregate investment up 

to period 𝑡, the objective function for a player 𝑖 in period 𝑡 looks like: 

max
𝑋
𝐸𝑈𝑖(𝒙) =

𝑋𝑡 − 𝑋𝑡−1
𝑋

− (𝑋𝑡 − 𝑋𝑡−1)                                         (1) 

Hinnosaar introduces the concept of an inverse best response function for participants in period 

𝑡, such that 𝑓𝑡−1(𝑋) is the solution to first order condition of (1).  𝑓𝑡−1(𝑋) is defined as the 



46 

 

choice in period 𝑡 − 1 that sets aggregate output to 𝑋 given all other players behave optimally.   

Utilizing these functions Hinnosaar then characterizes the solution to the general Tullock contest 

to recursively define the relationship: 

𝑓𝑡−1(𝑋) = 𝑓𝑡(𝑋) − 𝑛𝑡𝑓𝑡
′(𝑋)𝑋(1 − 𝑋) 

Which yields the solution of total aggregate output 𝑋 from the equation of the final player 

𝑓0(𝑋) = 0, given by the highest root. Further, the subgame-perfect Nash equilibrium output of a 

player 𝑖 is given by: 

𝑥𝑖
∗ =

1

𝑛𝑡
[𝑓𝑡(𝑋) − 𝑓𝑡−1(𝑋)] 

As mentioned in the introduction, this novel solution concept overcomes the limitation of 

the traditional backward induction approach by incorporating the first-order conditions of all 

players into a single variable of interest, the aggregate output 𝑋. For games with identical 

players, players who move in earlier periods have increased effort choices, winning probability, 

expected utility. Additionally, for games with identical number of players, the more information 

that is revealed (the more sequential a game is) the larger the predicted aggregate output of the 

game. I.e. as we move from (3) to (1,2) to (2,1) to (1,1,1), SPNE predictions of 𝑋 increase.  

II.A  Value Heterogeneity 

In our first theoretical extension we extend the model to allow for heterogeneity in prize 

values or effort costs for player 𝑖. We use a fully sequential model with a single player in each 

time period, 𝑡. We normalized the cost parameter to 1, 𝑐𝑖 = 1 which yields the expected payoff 

function: 

max
𝑋
𝐸𝑈𝑖(𝒙) = 𝑉𝑖

𝑋𝑡 − 𝑋𝑡−1
𝑋

− (𝑋𝑡 − 𝑋𝑡−1)                                             (2) 

The normalization of 𝑐𝑖 is innocuous, as 𝑣𝑖 and 𝑐𝑖 enter the optimal solutions in the same 

way (𝑣𝑖/𝑐𝑖).  Thus, a percentage point increase in valuation is equivalent to a percentage point 

decrease in cost.  𝑉𝑖 in our model can be then taken to represent a value to cost ratio 𝑣𝑖/𝑐𝑖.  

The major result we find from this model are given by Proposition 1 and Theorem 1 

below. First as players with higher valuations are moved from the beginning to the end of 
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contests, their impact on the contest is lessened, in the form of reduced aggregate output, reduced 

odds of winning, expected utility, and total investments.  

Proposition 1 (3-Player game) Moving players with higher (lower) valuations later in a purely 

sequential contest will reduce (increase) aggregate output of the contest. 

Proof of Proposition 1 is in the Appendix. 

Proposition 1 states that the total impact on the aggregate output from a change in 

valuation is dependent on the sequential position of the player whose valuation has changed.  

With larger absolute impacts resulting from changes in valuations, the earlier the player is in the 

sequential contest.  Additionally, we see that the aggregate output in unchanged with a change in 

valuation of the final player. 

Theorem 1 (n-player game) The aggregate output in a purely sequential contest is independent 

of the valuation of a player in the final period.  

Proof of Lemma 1 is given in the Appendix.  

Theorem 1 is related to Proposition 1 but provides a more robust and general result. 

Theorem 1 states that the impact of a change in valuation on the aggregate output of final 

player(s) is exactly zero. This does not imply that the distribution remains unchanged, only that 

the aggregate output. Stated another way, any increases (decreases) of effort expenditure by the 

last player(s) in the group resulting from an increase in the valuation of the prize is exactly offset 

by reductions from earlier players. The equilibrium aggregate output from two sequential 

contests that differ only the valuation of the final player are identical. This generalizes the results 

in earlier research on two-player contests that finds that second movers gain no advantage from 

increased valuations.   Further the aggregate outputs can be easily ordered. This has a powerful 

policy suggestion, depending on the maximization criteria the policy maker chooses. If he wishes 

to maximize (minimize) the impact (in terms of aggregate rent expenditure) of a contestant with 

a cost or value heterogeneity he should place the contestant at the beginning (end) of the contest. 

Further, if he places the contestant at the end, whether the contestant has advantage or 

disadvantage, the change in aggregate rent expenditure induced by the heterogeneity will be fully 

dissipated by the other participants in the contest. 
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II.B  Probabilistic Entry – One Entrant 

We now model probabilistic entry for players in a purely sequential game (1,1, … , 𝑛). 

Each player, noted by the period 𝑡 that they enter, after the first enters the contest with 

exogenous probability 𝑞𝑡. If they join the contest, they play as a standard contestant in a 

sequential Tullock contest. Otherwise, they receive outside option 𝑂𝑖 ∈ {𝐿, 𝐻}. The higher 𝑞𝑡 , 

the higher the chance to receive a low outside option value (low fixed cost). We assume that the 

gap is sufficient such that entry into the contest is optimal, that is the expected utility of entry 

into the contest exceeds 𝐿 but is lower than 𝐻. 

Thus, holding the valuations of all players equal, the player who has the outside option, 

realizes the option before he makes the decision, and chooses:  

𝐸𝑈𝑡(𝑥) = {

𝐻 , 𝑖𝑓 𝑂𝑖 = 𝐻
𝑥𝑡
∑ 𝑥𝑗
𝑡
𝑗

− 𝑥𝑡  , 𝑖𝑓 𝑂𝑖 = 𝐿                                                     (3) 

whereas the player who makes a move before an entrant who has a probabilistic outside option 

faces the problem: 

𝐸𝑈𝑡−1(𝑥) = 𝑞𝑡 (
𝑥𝑡−1

∑ 𝑥𝑗
𝑡−1
𝑗 + 𝑥𝑡

− 𝑥𝑡−1) + (1 − 𝑞𝑡) (
𝑥𝑡−1
∑ 𝑥𝑗
𝑡−1
𝑗

− 𝑥𝑡−1) 

Ultimately, the game yields the following solution. 

𝑍′ (𝑞𝑇𝑋
𝐻2 + (1 − 𝑞𝑇)𝑋

𝐻 − 𝑋𝐻
3
) + 𝑍 (2𝑞𝑇𝑋

𝐻 + (1 − 𝑞𝑇) − 3𝑋
𝐻2) = 0        (5) 

Where 𝑍 =
2𝑋𝐻−𝑞𝑇

(𝑞𝑇𝑋+2(1−𝑞𝑇))
 and 𝑍′ =

𝑑𝑍

𝑑𝑋𝐻
.  The solution to equation (4) is a polynomial in 𝑋𝐻.  

Hinnosaar demonstrates that the highest root of this polynomial yields the desired solution.  

Additionally, numerical results show that this total is strictly increasing in 𝑞𝑇 for 0 ≤ 𝑞𝑇 ≤ 1, 

i.e. 
𝑑𝑋𝐻

𝑑𝑞𝑇
> 0.  Similarly, ex ante equilibrium aggregate output is increasing in 𝑞𝑇 which leads to 

the following theorem. 

Proposition 2 (3-player contest) Increasing (decreasing) the entry probability for the third 

player in a sequential game increases (decreases) the aggregate output of the contest.  
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Details for solving the game characterized by equation (3) and the proof for Proposition 2 are 

presented in Appendix A. 

Solving for a similar exercise26with a probabilistic entrant in a simultaneous game we can 

generate the following finding. Through numerical derivative, we find that a change in the 

probability of entry by the final player has a larger impact on ex ante expected aggregate output 

relative to entry in a simultaneous game when the entry probability is large, and a smaller impact 

when the probability of entry is low. I.e. 
dE(XSeq)

dqT
>

dE(Sim)

dqT
 when qT is closer to 1 and 

dE(XSeq)

dqT
<

dE(Sim)

dqT
 when qT is closer to zero. 

II.C  Probabilistic Entry – Two Entrants 

Finally, we consider is a fully sequential three-player game where one incumbent faces potential 

entry from two competitors. The game can be fully characterized by the following payoff 

functions: 

𝐸𝑈3(𝑥) = {

𝐻 , 𝑖𝑓 𝑂3 = 𝐻
𝑥3

𝑥1 + 𝑥2 + 𝑥3
− 𝑥3 , 𝑖𝑓 𝑂3 = 𝐿

 

 

𝐸𝑈2(𝑥) = {

𝐻 , 𝑖𝑓 𝑂2 = 𝐻

𝑞3 (
𝑥2

𝑥1 + 𝑥2 + 𝑥3
− 𝑥2) + (1 − 𝑞3)(

𝑥2
𝑥1 + 𝑥2

− 𝑥2) , 𝑖𝑓 𝑂2 = 𝐿
 

𝐸𝑈1(𝑥) = 𝑞2 (𝑞3 (
𝑥1

𝑥1 + 𝑥2 + 𝑥3
− 𝑥1) + (1 − 𝑞3) (

𝑥1
𝑥1 + 𝑥2

− 𝑥1)) + 

(1 − 𝑞2)(𝑞3 (
𝑥1

𝑥1 + 𝑥3
− 𝑥1) + (1 − 𝑞3)(1 − 𝑥1)) 

Using the inverted best response correspondence, we can solve by backward induction. 

Optimizing and setting equal to zero solves for the total aggregate output in terms of 𝑋𝐻𝐻.  The 

equation is a polynomial in 𝑋𝐻𝐻 and is readily solvable. Numerical analysis finds that  𝑋𝐻𝐻 is 

 
26 Omitted. 
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decreasing in both 𝑞2 and 𝑞3. Also, given equivalent changes in 𝑞2 and 𝑞3, the change in 

aggregate output from a change in 𝑞3 is very similar to that in 𝑞2. Further, along either 

dimension, as the threat of entry increases, the expected aggregate output also increases. 27 In the 

following section we build a laboratory experiment to test the theoretical extensions of the 

sequential contest model with both heterogeneous treatment values and probabilistic entry for a 

single player. 

III   Experimental Design and Procedures 

III.A  Experimental Design and Hypotheses 

 The design of the experiment consists of 6 separate treatments, in which participants 

compete in 10 rounds of simultaneous and 10 rounds of sequential contests (with an additional 2 

practice rounds for each)28. In each round, in all treatments, each of the 3 players in the group 

received an endowment of 120 and competed to win a prize in a traditional Tullock contest. In 

the simultaneous contests, all players made decisions simultaneously.  In the sequential contests 

players made decisions one after another (1,1,1) and the total effort choices were revealed to the 

following player.  Players were allowed to bid up to their endowment.  The first treatment was 

the Control, in which the prize is valued at 100 lab dollars.  The second set of treatments were 

the Heterogenous Valuations (HV or HetP).  In this case the value of the prize for a single player 

is set to 120. Three treatments were derived using the HV, by varying the position of the player 

in the sequential game who had the HV (Player 1, 2 and 3). 29 The simultaneous decisions in 

these treatments are functionally equivalent. The last set, the Random Entry (RE; Random) 

treatments, consisted of two treatments.  The RE contests used the baseline prize values but 

introduced a 50% entry probability for either player 2 or 3.  This decision probability was known 

to all players, and whether the player had entered was not revealed until the end of the contest.    

Again, the simultaneous rounds of these treatments are functionally identical.  Nash equilibrium 

predictions for each of the treatments are provided in Table 2.1. 

 
27 An example showing the responses based on varying entrant probabilities is given in the Appendix. 
28 The ten rounds of each type were played concurrently, which type of contest was played first was randomly 

determined before the Session. 
29 This was the aggregate effort only, so Player 3’s did not see individual effort totals. Player 2’s only had input from 

one previous player, so the aggregate total displayed was equivalent to the individual total. 
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Hypotheses 

The experiment was designed to test the following hypotheses. 

Hypothesis 1 Aggregate contest expenditures are higher in sequential contests than 

simultaneous contests.  

 Nash predictions for sequential contests are higher than simultaneous contests which is a 

general proposition proposed by Hinnosaar (2018) for symmetric contests and shown in a 

heterogenous contest by this paper. 

Hypothesis 2 The aggregate output in sequential contest is independent of the valuation of a 

player in the final period.  

 Hypothesis 2 was generated from Theorem 1. By comparing the aggregate output of the 

Control treatment with the aggregate output from the HetP3 we provide support for the 

behavioral validity of Theorem 1.   

Hypothesis 3 Moving players with higher (lower) valuations later in a sequential contest will 

reduce (increase) aggregate output of the contest. 

Hypotheses 3 is similar to Hypothesis 2 but explores the relationship between value/cost 

heterogeneity, aggregate rent expenditures, and sequential position more generally.  From 

Proposition 1 we predict that the aggregate totals will be highest when a higher prize value is 

given to Player 1, second highest for Player 2, and lowest (and equivalent to a symmetric 

sequential contest) for Player 3. 

Hypothesis 4 Introducing an entry probability for the final player in a sequential game 

decreases the aggregate output of the contest.  

Our design allows us to compare a situation where a final player has a random entry probability 

and its ultimate impact on aggregate outputs. By comparing a 50% entry probability in the 

RandomP3 treatment to a guaranteed entrant in the Control treatment we can analyze how the 

threat of entry affects rent dissipation.  
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Table 2.1.  Nash Equilibrium Aggregate Effort Predictions: Control 

Treatment – Game Type Nash Equilibrium Aggregate Effort  

Control  

Sequential 78.87 

Simultaneous 66.67 

  

Heterogenous Prize Value  

Player 3 – Sequential 78.87 

Player 2 – Sequential 82.39 

Player 1 – Sequential 91.47 

Simultaneous  70.59 

  

Random Entry  

Player 2 – Sequential 64.28 

Player 3 – Sequential 64.31 

Simultaneous 58.66 

Note: Predictions are generated with prize value 100. Players valuation of the prize are identical. A fully sequential game has 

(1,1,1) structure and a simultaneous game has structure (3).  
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Hypothesis 5 Increasing the entry probability for the third player in a three-period contest has a 

nearly identical impact on the expected aggregate output than increasing the entry probability 

for the second player. 

  This hypothesis is related to the position of potential entry in a sequential game. 

Numerical analysis generated from the model shows that the position of potential entry by 

participants has very little impact on total expenditures in the contest. 

Hypothesis 6 Overbidding will be lower in sequential contests relative to simultaneous contests 

in multi-period contests in aggregate.   

 This is the exact finding by Nelson and Ryvkin (2019) that was discussed earlier.  Our 

introduction of heterogeneity could induce behavioral change, but we would expect to find 

similar results as the previous study of multi-period contests.  

Hypothesis 7 Overbidding will not differ between player types in Sequential Contests.   

 There is very limited evidence to anticipate the behavioral response to the revelation of 

efforts in contests affects subject’s choices. Results from Fonseca (2009) and Nelson (2019) find 

little evidence of overbidding by first players. However, introducing heterogeneity into the 

sequential decision setting may cause changes in behavior. 

Hypothesis 8 Players moving first in sequential contests will exhibit higher effort and receive 

higher expected payoffs by leveraging their earlier-mover advantage.   

 Hypothesis 8 is one of the primary results of Hinnosaar (2018) from extending contests 

into n-player sequential setting. This expands Dixit’s (1987) first mover advantage to a more a 

general earlier mover advantage. We can observe effort totals and calculated expected values for 

each treatment by player position. 

III.B  Experimental Procedures 

The experiment was conducted virtually using z-Tree Unleashed (Fischbacher, 2007; 

Duch et al., 2020) through the Experimental Economics Laboratory at the University of 

Tennessee-Knoxville. A total of 318 subjects participated over the course of 21 sessions. 
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Sessions varied in size from 9 to 21 participants.  Subjects were recruited from a database of 

predominately undergraduate students who had previously agreed to receive recruiting e-mails 

for paid economics studies. 

At the beginning of the session students were given a copy of the experimental 

instructions and the instructions were read by a moderator30. The participants remained in an 

online video chat were encouraged to follow along with the instructions as they were read. Each 

experimental session was divided into 3 parts. The first part was a risk preference elicitation task 

where students chose between 10 possible lotteries of $4 and $0 or a certain payoff of $2, similar 

to Holt and Laury (2002).  The results for the risk elicitation were revealed at the end of the 

session. The second part of the experiment was the administration of one of the treatments 

described above. The final part consisted of a brief questionnaire that elicited qualitative 

responses on decision making for the different player types and basic demographic information.  

In the main section of the experiment, participant played 24 rounds total of 3-person 

contests. Depending on the randomly determined treatment, participants either faced 12 

sequential contests followed by 12 simultaneous or vice versa.31  The first two rounds of each 

decision type were used as non-paid practice rounds.  Participants were unaware of the number 

of rounds in the experiment and were also not told of the different game type until the 

corresponding round was reached. In each round, participants were sorted in an anonymous, 

random group of 3 participants and given a random player number: 1,2, or 3 (both group and 

player number changing each round). These player numbers determined the order of play in the 

sequential contest and the prize value or probabilistic entry chance in the HV and RE treatments, 

respectively. 

Subjects contributed tokens out of their endowment for a chance to win the prize 

specified by their prize value. They were allowed to contribute up to their endowment of 120 and 

every token not bid was kept. The chance to win the prize was the ratio of their bids to the total 

bids from their group including their own. In the RE treatments, for the players that had the 

random entry chance and selected not to enter, they received a message saying they did not enter 

the contest and will receive 80 tokens in lieu of participation to simulate a high draw of the 

 
30 Instructions are available for review in the Appendix. 
31 Practice rounds were conducted at the start of each set of sequential or simultaneous contests. 



55 

 

outside option.  The contest proceeded as a two-player contest in this case and the other players 

were not notified of the result. 

 After each round, the winner was randomly chosen and each player received a summary 

of the total group contributions for their round, their chance to win, the result of the contest, and 

their earnings for the round based on remaining endowment and prize value, if applicable.   

 Each of the 20 non-practice rounds were paid out. Lab Dollars were exchanged at a rate 

of 170 to 1 US Dollar. One of the ten scenarios from the risk-preference elicitation was chosen 

randomly for each participant and paid out according to the decision for that scenario.  After the 

total for the experiment was determined, participants were paid via Amazon gift card. On 

average participants earned $15.88 and sessions lasted about 70 minutes. 

Overall, the average age of participants was 20.96 years of age. 53% of participants were 

female and 46% had participated in a previous economics experiment. Self-reporting on a 1-5 

Likert Scale where 1 is “strongly disagree” and 5 “strongly agree” 88% of the participants stated 

they agreed with the statement “I understood the instructions for experiment 2”. This provides 

some evidence to support that most participants had a strong grasp of the instructions. In a 

similar fashion, 87% reported that they were well compensated.32 Table 2.2 shows a description 

of the data used in the subsequent results section.33 

IV  Results 

 In this section, we provide three main aggregate results from the data. The first is that the 

position of the heterogeneity, both in valuation and entry probability, had a significant impact on 

the aggregate totals of effort in sequential contests. The second is that we observe that more 

overbidding relative to Nash Equilibrium in simultaneous contests relative to sequential 

Contests. The third result is that overbidding tends to increase with player position in sequential 

contests, i.e. later players tend to overbid more than earlier players. After exploring the three 

main results in more detail, we then explore heterogeneity in individual behavior in attempt to 

 
32 Some questionnaire data was lost through the use of virtual method.  However, all participants were recruited 

from the same database and there is a no systematic reason to expect the characteristics to differ in the missing data. 
33 Balance tests are not reported but show no evidence of non-random assignment of observables across treatments. 
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Table 2.2. Data Description: Contests  

Variable Description Mean Std. Dev. 

    

Effort 0 to 120 main input for effort choice in the 

contest 

48.46 38.08 

ExUtilPreDraw  calculated expected payoff conditional on 

effort choices by all players in the group 

before the winner of the contest was drawn 

106.39 26.30 

LastWin =1 if the contest was won in the previous 

period 

.333 .4714 

Female =1 if participant was a female .633 .482 

GPA self-reported GPA of subject (out of 4) 3.41 .454 

RiskPref Number of certain payoffs selected in pre 

experiment risk preference elicitation 

5.39 1.56 

ComprehensionAgree =1 if participants self reported a score of 4 

or higher out of 5 when agreeing to the 

statement “I understood the instructions for 

experiment 1”  

.179 .384 

Treatment  =1 binary indicators with the associated 

names: RandP2 RandP3 HetP1 HetP2 

HetP3 and Control  

- - 

Player # =1 binary indicator for the player position 

in sequential contests: Player 1, Player 2, 

and Player 3 

- - 

    

Note: Other variables are used in the analysis but are derived from the variables defined here. Any new variable 

that is introduced is explained at that time.  
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 understand the source of overbidding, primarily in sequential contests. We show that individuals 

who make decisions with complete information about the aggregate effort choices of the 

members of their group (Player 3s in Sequential contests) still exhibit overbidding, but a 

significant portion do display behavior consistent with expected utility maximization. We also 

study the implied “Joy of Winning” and relate this to the observed behavior of Player 3’s 

choosing a “winning percentage” in a sequential contest. Lastly, we explore the difference in 

outcomes in the RE treatments.   

IV.A  Aggregate Results 

 Tables 2.3 and 2.4 summarize the effort totals by group for each treatment type relative to 

the Nash equilibrium predictions along with the corresponding overbidding amount. The 

standard errors presented in parentheses are derived from simple regressions that control for 

session-by-period and individual correlation.   The first striking feature is the direction of the 

totals in the Sequential HV treatments.   

Result 1 The introduction of heterogeneity into sequential contests significantly impacts the 

aggregate totals. Further, the change in totals depend on which player in the sequential contest 

has the heterogeneity. 

In the HV treatments, we see strong support for the theoretical predictions of the change 

in aggregate outputs as we move the high value player later in the contest. Supporting 

Hypothesis 2, the observed point estimates decrease as the HV player is moved from the first 

position to the last.  Comparing with the control, as predicted by the theoretical model, when the 

HV is in the third position the point estimates are nearly equivalent.  Pairwise t-tests comparing 

the aggregate totals between treatments are reported in Tables B.1 and B.2 (Appendix). We see 

statistically significant differences between the HetP1 and HetP2 treatments when compared 

with HetP3 and Control. Thus, we can reject the null hypothesis of Hypothesis 3 of no change in 

aggregate output between Control and the HetP1 and HetP2 treatments.  Further, we fail to reject 

the null hypothesis of no difference between HetP3 and Control in Hypothesis 2.  Theorem 1 

asserted that the aggregate output in a sequential contest is independent of the valuation of the 

final player. We see convincing evidence that this is the case when comparing HetP3 and   
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Table 2.3. Group Level Outcomes: Sequential  

Treatment Type N Nash Eq. Observed Overbidding Amount 

Control 220 78.87 140.35 (4.57) 78.0% (5.80) 

HetP1 200 91.47 160.36 (5.57) 75.3% (6.09) 

HetP2 140 82.39 156.74 (6.97) 90.2% (8.46) 

HetP3 190 78.87  140.22 (4.05) 77.8% (5.13) 

RandomP2 140 64.28 140.88 (5.45) 119.2% (8.66) 

RandomP3 150 64.31 121.02 (4.46) 88.2% (7.09) 
Note: Totals shown are total group contributions by treatment type, standard errors are in parentheses. 

Overbidding is calculated as the percentage increase of the observed values relative to the Nash Equilibrium 

predictions. 

 

 

Table 2.4. Group Level Outcomes: Simultaneous  

Treatment Type N Nash Eq. Observed Overbidding Amount 

Control 220 66.67 149.34 (5.96) 124.0% (8.94) 

Het. Value 530 70.59 145.59 (3.19) 106.5% (4.52) 

Random Entry 290 58.66 131.12 (3.17) 123.5% (5.40) 
Note: Totals shown are total group contributions by treatment type, standard errors are in parentheses. 

Observations are pooled across relevant treatment types where decisions are functionally identical. Overbidding is 

calculated as the percentage increase of the observed values relative to the Nash Equilibrium predictions.   
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Control. Moreover, we see that point estimates of the aggregate totals decrease as the valuation 

moves to later players in the contest (HetP1 to HetP2 to HetP3). These results persist in spite of  

significantly elevated bids in all treatments, lending support for our extension of Hinnosaar’s 

model with regard to heterogenous prize valuations. 

  We find less support for the theory in the Random treatments as we observe deviations 

in aggregate output between RandomP2 and RandomP3 when we expected to find none. We see 

that the point predictions for RandomP2 and Control are quite similar with RandomP3 deviating 

downward substantially. Indeed, these differences with RandomP3 are statistically significant. 

These results suggest that the introduction of entry probability for the final player has a stronger 

impact relative to the intermediate player on reducing aggregate output.  Thus, we do not find 

support for Hypothesis 5.  We will explore some potential causes of this deviation later in the 

section. 

Result 2 Overbidding is higher in simultaneous contests relative to sequential contests. 

  Tables 2.2 and 2.3 clearly show significant overbidding for all treatments.  While the 

overbidding is high (~121% in the simultaneous case), these findings are well within observed 

overbidding rates in contests (Sheremeta, 2013).  Our study is the second to observe lower 

amounts of overbidding in sequential contests relative to simultaneous contests in multi-player 

environments. (Nelson and Ryvkin, 2019).  This provides support for Hypothesis 6. Examining 

the effects of different types of heterogeneity, we see that observed values of overbidding vary 

depending on treatment more widely in the sequential treatments than in the simultaneous 

environments. Overbidding in the sequential treatments is the largest in RE and close to the 

Control and the HV treatments.34  Further, we do not find ample evidence to support Hypothesis 

1, as the sequential contest outputs are not statistically different than the simultaneous outputs in 

the Control and Random treatments. In HV we observe differences in the HetP1 and HetP2 

only.35 

Result 3 Overbidding rates differ by player position in sequential contests.  

 
34 Pairwise t-tests and the regressions used to generate standard errors are presented in the Appendix. 
35 Reports are once again provided in the Appendix, sample comparisons are restricted to across treatment 

comparison only in all but the Control.  
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Figure 2.1 shows the outputs by player position (on aggregate) for each of the treatments 

compared to the Nash Equilibrium prediction and the Control treatment (and it’s Nash Eq. 

prediction).  Visual inspection shows that individuals respond similarly to theoretical prediction, 

albeit at elevated effort levels. Table B.6 in the Appendix shows the fully specified regressions 

for each player type relative to the control treatments. Further, we see that overbidding behavior 

tends to increase as players move later in contests. Table 2.5 confirms this by regressing 

overbidding relative to the Nash by player type pooling across all treatments.  We observe that 

overbidding increases by roughly 15 tokens for each increase in player position and the 

difference between type is significant at the 1% level (p<.001 for Type 2 against Type 3), 

rejecting Hypothesis 7. 

 A full specification of Table 2.5 is shown in Appendix and provides evidence for other 

observed patterns in contests, such as “Hot Hand”, decreasing effort choices in risk aversion, 

higher contributions from Females, and decreased contribution from previous participation. 

While at the aggregate level, we see evidence that later players in the sequential contests exhibit 

a peculiar response and increase bids when they observe earlier players effort choices. This is at 

odds with the theoretical predictions, especially considering the overbidding that is still taking 

place by earlier players. Generally, at these elevated levels of effort choices, effort contributions 

should be strategic substitutes so we would expect lower effort levels when higher levels of 

effort are being expended by earlier players. We explore this further in the next section.   

IV.B  Additional Analyses 

Player 3 Decisions  

 One unique feature of sequential contests (not limited to multi-player contests) is the 

ability to observe a direct response to output total of the rest of the participants. For example, 

Player 3 in our Sequential contests observes all total bids from the players before her and gets to 

precisely choose her winning percentage.  Thus, based on expected value, we can observe 

behavior that directly measures their (perceived) value of the prize that is not conditional on 

other player’s choices, such as in simultaneous contests or earlier players in a sequential contest. 
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Table 2.5.  Deviation from the Nash Equilibrium by Player Type: Sequential 

 Dependent Variable: 

 Deviation from Nash 

  

2nd Player 19.76*** 

 (1.643) 

  

3rd Player 33.62*** 

 (1.818) 

  

Constant 9.160*** 

 (1.322) 

  

Observations 2,632 

R-squared 0.109 
Note: Deviations from predicted Nash Eq. values based on total inputs from previous players and assuming values 

of prizes are equal to the assigned prize value. Sample does not include RandomP2, the 2nd player Nash is given by 

an approximation. The comparison group is the overbidding amount of the first player.  Cluster robust standard 

errors at the group-period-session level are in parentheses *** p<0.01, ** p <0.05, * p<0.1. 
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Figure 2.1.  Average Effort by Player Type and Treatment: Sequential  
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We also consider the possibility that players make decisions that are not based on maximizing 

the expected value (or their failure to correctly compute the value).   

Figure 2.2 shows a scatter plot of the individual responses as Player 3s relative to the 

Nash Equilibrium predictions.  We observe that approximately 11.2% of decisions are within 5 

tokens of the Nash predicted values. However, this number drops to 4.7% if we condition on 

positive values of Effort only, suggesting that many of the decisions that follow Nash predictions 

are “correct” zeros. Together these numbers paint a picture of at least a portion of individuals 

who respond according to Nash predictions.  

Table 2.6 explores this relationship between effort choices and Nash predictions further 

by regressing effort choices of Players 3 on the Nash with and without observable covariates.  

The Nash prediction in our case, conditional on a total input of 100 or less, is 𝑥3 = 100 ∗ √
𝑋−𝑖

100
−

𝑋−𝑖.
36 Thus, we would expect to see a coefficient of 1 on the square root term and -1 on the 

linear term. We observe significant point estimates of .685 and -.399, respectively.  For a portion 

of subjects, the Nash Equilibrium predict behavior, but the coefficients are not as high as theory 

would predict37.   

Player 3 Decisions-Winning Percentage Heuristic:  

Additionally, from Figure 2.2 we can see that despite a noisy decision environment there 

are clusters along positively sloped lines (slopes of 1 and .5 are shown).   This indicates the 

possibility that subjects are making decisions based on choosing a fixed “winning percentage” 

rather than the Nash equilibrium.  Figure 2.3 shows histograms based on the resulting winning 

chance based on the final decision of player 3s for all input totals and for positive predicted Nash 

Values (Input totals less than 100), respectively.  The “Nash” bins represent the winning 

percentage if the expected payoff maximizing Nash equilibrium choice was played.  Bins are set  

to a single percent. Visually we can see clear spikes at 33%, 50%, and 66% (0% and 100% 

correspond to 0 effort by a third player and 0 input total by the two players before the third). 

When the input total from the first two players yields a positive predicted Nash effort choice, 

 
36 Conditional on entry for Players in RandomP3 and multiplied by 120 in the HetP3 treatment. 𝑋−𝑖 is the total 

contributions from the previous players. 
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Figure 2.2.  Effort by Player 3 Against Input Total: All Treatments 
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Table 2.6. 3rd Player Efforts Against Nash: Sequential  

 Dependent Variable: Effort 

 Sparse Specification Full Specification 

PreviousInputTotSqrt 0.639** 0.685** 

 (0.286) (0.282) 

PreviousInputTotLinear -0.350 -0.399* 

 (0.230) (0.224) 

Age  -0.278 

  (0.595) 

Experience  -12.45*** 

  (3.910) 

Female  -2.901 

  (3.681) 

GPA  2.910 

  (3.254) 

Economics  2.037*** 

  (0.533) 

RiskPref  -5.291*** 

  (1.033) 

LastWin  -1.201 

  (2.209) 

ComprehensionAgree  0.982 

  (6.407) 

Constant 27.11*** 50.45*** 

 (8.971) (10.59) 

   

Observations 456 456 

R-squared 0.025 0.126 
Note: Coefficients are the point estimates from a pooled OLS regression. Robust standard errors are in parentheses 

and clustered at the session-period level (173). Sample is restricted to 3rd players in Sequential contest only when 

the Input Total from the first two players was less than 100 and the prize value was 100.  *** p<0.01, ** p<0.05, * 

p<0.1 
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8.6% of Player 3 choices give a win probability that is between 50-51% whereas only .33% and 

1.0% of player decisions result in a winning probability of 49-50% and 48-49%, respectively.  

The exact totals for a winning probability of 33-34% is 3.4% and 66-67% is 3.9%.38  

 Figure 2.3 provides compelling visual evidence that subjects make decisions based on the 

winning percentage which we refer to as a Winning Percentage Heuristic. 39 Whether the 

percentage serves as a cognitive anchor or a calculated outcome cannot be identified but both are 

plausible explanations. Even as Player 3, when all inputs from other players are known, the 

reasonably complex form of 𝑥3 = √𝑉3𝑋−𝑖 − 𝑋−𝑖 (when 𝑋−𝑖 < 𝑉3) is likely a source of difficulty 

for participants to intuit. Particularly, the response to the effort of other players transitioning 

from complements to substitutes is a quite complicated relationship. Further, subjects are 

experiencing large overbidding from other participants which can potentially muddle the ideal 

strategy. Subjects were not given a calculator in z-Tree and were not instructed to use one but 

were free to use resources that were available to them to do so.  

 A winning percentage of 50% is likely the simplest to calculation to perform mentally 

and may serve as a cognitive anchor for the decision. In Figure 2.4 we observe much higher 

proportions of decisions that are slightly greater than 50% relative to slightly below 50% which 

suggests that participants may start from they want a slightly larger than 50% chance to win.40 

While this strategy is likely to reduce the cognitive complexity of the task, it is unlikely to be in 

the best interest of the player in terms of expected payoffs. We can see visually from the scatter 

plot that many of the decisions that fall near the positive sloped lines are well outside of the 

predicted Nash values. However, given the relatively flat payoff functions around the Nash, 

perhaps this an improvement in utility for participants. 

Player 3 Decisions-Joy of Winning:  

Using Player 3 data, we also construct an implied value of the prize for each participant as Player 

3. This number is the average of the implied Nash values of an additive joy of winning 

 
38There are not the only noticeable trends. There looks to be a spike at 40% along with 60% and potentially 25%, but 

these are less pronounced.  In general, some percentage choice seems to be driving behavior for a large portion of 

participants.  
39 Additional figures are shown in the appendix for all decisions, with and without Nash predicted comparisons. 
40 This shares a similarity to a bunching response observed in the taxation response literature (Le Maire et al., 2016). 
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Figure 2.3.  Induced Winning Percentage for Player 3: Observed Values Against Nash 

Predictions - Input Totals Less Than 100   
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𝑉𝑎𝑙𝑢𝑒 = (𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 + 𝐽𝑜𝑦 𝑜𝑓 𝑊𝑖𝑛𝑛𝑖𝑛𝑔) such as presented in (Sheremeta, 2013).   This 

characterization conveniently fits the heterogenous valuation Table 2.6 presents the descriptive 

statistics for such a variable. This variable indicates that individuals are behaving as if they had a 

prize value of 292.72 on average with median 243.90. This average is high relative to the median 

due to a set of very large observations (which result from large inputs as Player 3 when the input 

total they face is low).  The median corresponds to about 140% overbidding which is about 15% 

higher than what we observe in the simultaneous cases. Combining this with Result 3 which 

indicates that overbidding is higher for later players in the contest gives a sense of how 

participants are viewing the contest.   

We can view these high values of implied “joy of winning” and the indication of a 

Winning Percentage Heuristic together.  Relating back to the theoretical model of heterogenous 

valuations, when the Joy of Winning enters additively in the success function it behaves 

inversely proportional to a decrease in the marginal cost of the effort. For illustration, the optimal 

response to the other player’s effort in a two person contests are given by 𝑥𝑖 = √
𝑉

𝑐
𝑥𝑗 − 𝑥𝑗 , where 

𝑉 is the value of the prize, and 𝑐 is the marginal cost of effort. Thus, if players are making a 

decision according to a Winning Percentage Heuristic that can easily be represented a reduced 

response to the cost of effort. Effectively they optimize based on the first term only and “face” 

values of 𝑐 that are lower than 1 (or even 0).   Further, the response to 𝑐 could be affected by the 

saliency of 𝑐 either through experimental design or in terms of cognitive mechanism such as the 

Winning Percentage Heuristic.  Thus, the Joy of Winning calculations provided by Table 2.7 are 

more correctly interpreted as the ratio between Joy of Winning and marginal cost. 

Earlier-Mover Advantage 

Here we discuss the evidence regarding first mover advantage. Tables 2.8 and 2.9 present 

the data for effort choices and expected utility before the prize drawing by player position in 

sequential contests for each treatment type.  From these tables we see little evidence of first 

mover advantage across all treatments.  Only in HetP1 do we see significantly larger effort levels 

by Player 1, but this translates to an expected utility increase only over Player 3 and Player 1 end 

with less expected utilities than Player 2s, on average, despite a 20-token prize advantage. Also, 

the 1st player efforts in the HetP1 treatment are closest to the Nash equilibrium prediction,  



69 

 

Table 2.7. Implied “Joy of Winning”: 3rd Player  

Implied Joy of Winning 

Mean 292.72 

 (556.15) 

Median 243.90 

  

Observations 770 
Note: Sample is restricted to Player 3s in sequential contests whose prize value is equal to 100. The standard 

deviation is in parentheses. 

 

 

Table 2.8. Effort Choices by Player Position: Sequential Contest 

 Dependent Variable: Effort 

 HetP1 HetP2 HetP3 RandomP2 RandomP3 Control 

       

Player 2 -23.08*** 16.23*** -0.607 0.0599 4.986 1.141 

 (4.025) (4.213) (4.333) (5.863) (4.371) (4.081) 

Player 3 -10.56** 5.294 12.23*** 6.149 -1.829 3.518 

 (4.131) (4.535) (3.974) (4.407) (5.851) (4.028) 

Constant 65.94*** 46.28*** 43.56*** 53.43*** 45.84*** 46.78*** 

 (3.015) (3.107) (3.029) (3.292) (3.089) (2.615) 

       

Observations 576 408 549 337 371 638 

R-squared 0.053 0.036 0.022 0.006 0.006 0.002 
Note: Standard errors in parentheses clustered at the group-session-period level (134-218). Sample is restricted to 

3rd players in sequential contests only when the input total from the first two players was less than 100 and the prize 

value was 100.  *** p<0.01, ** p<0.05, * p<0.1 
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Table 2.9. Pre-Draw Expected Utilities by Player Position: Sequential Contest  

 Dependent Variable: Expected Utility – Pre-Draw 

 HetP1 HetP2 HetP3 RandomP2 RandomP3 Control 

       

Player 2 3.827** 2.826 3.287* -5.806* 0.559 -2.211 

 (1.704) (1.901) (1.789) (3.213) (2.302) (1.716) 

Player 3 -2.994* -1.361 9.518*** 2.418 -6.528** -1.938 

 (1.695) (2.082) (1.855) (2.442) (3.141) (1.742) 

Constant 100.9*** 102.0*** 104.4*** 104.1*** 112.90*** 107.70*** 

 (1.953) (1.933) (1.783) (2.176) (2.210) (1.580) 

       

Observations 576 408 549 337 371 638 

R-squared 0.011 0.005 0.022 0.010 0.010 0.002 

Note: Standard errors in parentheses clustered at the group-session-period level (134-218). Participants in Random 

treatments who did not enter the contest are omitted.  *** p<0.01, ** p<0.05, * p<0.1 
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indicating that even when players are utilizing strategies closer to the Nash, they are not 

translating to higher payoffs in the experiment.41 

 As we saw from Result 3, the significant overbidding by the later periods reduces the incentive 

of exercising the earlier mover advantage in the contest.  If players are anticipating overbidding 

from players later in the contest, they may reduce their bids to compensate.  Looking at the rest 

of the Table 2.8 we see only significant increases in effort in the positions that correspond to 

higher valuations in HV treatments and only in the case of Player 3 in HetP3 does this translate 

into higher expected utilities. Lastly, we see significant negative deviations for the players who 

randomly entered contest in the corresponding RE treatments (Player 2 in RandomP2, and Player 

3 in RandomP3).  For the simplest comparison, in the Control treatment we find point estimates 

of increasing effort as players move later in the contest but negative returns to expected value.  

The coefficients for the Control treatment are not statistically significant and support previous 

research that does not find evidence of first mover advantage in contests (Fonseca, 2009).  

Lastly, we find that in all treatments and player positions, average expected payoffs are negative 

for each round. 

The lack of first mover advantage is tied closely to the Winning Probability Heuristic and 

the Joy of Winning discussion above. If later players are using behavioral heuristics to make 

decisions then the deterrence effect of an earlier player increasing the bid is drastically reduced.  

Further, effort choices by earlier players may be seen as a more cognitively complex task as a 

player must correctly anticipate later players movement when making your effort choice.  

Another potential explanation that has been put forth in the literature is effect of the 

contest structure itself.  Generally, payoffs are “flat” around the Nash Equilibrium choices, in the 

sense that the reduction in expected value from deviations from the Nash are not large. For 

example, if a Player 3 in a symmetric sequential contest with prize value of 100 and endowment 

of 100, faces an output total of 100 (thus, has Nash prediction of 0), loses only 16.7 tokens 

(16.7%) in expectation from a contribution of half of his endowment.  Further, if endowments 

are increased relative to the prize value, then the percentage loss lowers.  Lastly, feedback in a 

Tullock contest is probabilistic (random draws for the prize) could make learning the Nash 

 
41 This result would be reversed, as predicted by theory, in a case where later players also responded according to 

Nash predictions. 
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strategy difficult.  Lastly, we use random player roles in each period which may result in 

difficulty learning to exercise the positional advantage.  Taken together, these factors could 

explain the inability of subjects to respond to the incentives provided by the theory.  

Random Entry vs. Heterogenous Entry: 

Our final analysis examines the unusually high difference in overbidding rates between 

the Random treatments and relative to the Heterogenous treatments.  We look to the individual 

decisions by player type for clues on the divergent behavior.  Figure 2.4 shows the average effort 

totals by type for each of the RE treatments, conditional on both entry and no entry from the 

randomly participating subject. We find evidence that there is significantly higher bidding for the 

Player 3s in the RandomP2 sequential contest relative to the RandomP3 contest conditional on 

entry by all players.   Table 2.10 summarizes the difference means among the third players for 

RandomP2 and RandomP3.   Additionally, Table 2.10 shows that the totals that Player 3s receive 

conditional on full entry are not significantly different (although the point estimate is negative 

for RandomP3).   We can also observe that the simultaneous decisions look very similar across 

treatments. Taking these results in sum, it is difficult to discern the source of the significant 

deviations in Player 3 behaviors across treatments. 

Figure 2.5 displays a scatterplot of the inputs by Player 3s against the input totals they 

face.42 From the figures you can see there is a significant difference in the number of inputs of 5 

or less by the third players in the RandomP3 treatment relative to RandomP2 (31.7% to 13.7%, 

respectively). probabilistic entry from another player.  Similarly, there is a much larger portion 

of bids that are 100 or above in the RandomP2 treatment relative to the RandomP3 treatment 

(32.9% to 17.1%, respectively).  

While bids over 100 points to a potential lack of understanding of the incentives of the 

game and are clearly influencing the average, there is a substantial fraction of 0 bids from the 

RandomP3 treatment which potentially indicate a behavioral response conditional on entry into 

the contest. We observe simultaneous sections of the same treatment that do not show 

statistically different Effort choices, with a point estimate of .046 (2.28 sd, p=.984). This is in 

 
42 Figure B.2 and B.3 in the Appendix displays bar charts of Effort and Input Totals separately. 
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Table 2.10. Comparisons of Contributions in Random Entry Treatments  

 Dependent Variable 

 Input Total- 

Sequential 

Effort – Sequential 

Type 3 

Effort- 

Simultaneous 

    

RandomP3 -6.355 -23.18*** 0.0460 

 (7.518) (9.106) (2.283) 

    

Constant 103.8*** 68.01*** 52.86*** 

 (4.958) (6.662) (1.635) 

    

Observations 155 155 719 

R-squared 0.004 0.078 0.000 
Note: Treatment RandomP2 serves as the baseline comparison. Input Total refers to the total inputs that the third 

player faces.  Effort in the middle column refers to the efforts by the Player 3 conditional on entry by the 

corresponding random player in each treatment. Effort in the third column is the effort reported by players who 

enter the contest only. Standard errors in parentheses clustered at the session-period level (67,70) first the first and 

third columns and the subject level for the second (75).  *** p<0.01, ** p<0.05, * p<0.1 
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Figure 2.4. Average Effort Levels by Player Type: Random Treatments   

 

 

 

 

Figure 2.5. Effort by Player 3 Against Input Total: Random Treatments  
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conjunction point estimates for the difference in input totals that are being seen by Player 3s, as 

reported in Table 2.8.  The results are robust to the inclusion of observable characteristics, which 

suggests that the driver of the results is unobservable. 

  It is difficult to speculate why we see such differing results between these treatments. A 

likely explanation for these differences seems to be a spurious correlation between player 

characteristics or session level effects. In particular, the RandomP2 treatment is the driver for 

most of the differences between the Random and Heterogenous treatments as the RandomP3 

choices as conditional on entry and are fairly similar to Control.  Further, in the case of 

RandomP3, we observe the expected effects predicted by theory as the 50% entry on Player 3s 

(who are doing the most overbidding) results in significantly lower total contest outputs relative 

to Control when you incorporate the 0 efforts in the case of non-entry by Player 3s.  The use of 

an online environment may introduce noise in the decision process, as well. 

V Conclusion 

In this study we utilize a recent advancement by Hinnosaar (2018) in the modelling to 

sequential contests to explore common forms of heterogeneity in sequential contests. We 

generate Nash Equilibrium predictions for sequential contests that involve heterogenous 

valuations and probabilistic entry. From a contest design perspective, in a 3-player contest, we 

find that the effects of a heterogenous valuation for a single player, on aggregate expenditure, are 

maximized when the player with the heterogenous valuation moves earlier in the contest. This 

compounds the first mover advantage of the sequential position.  We derive a general result that 

in the n-player contest the aggregate expenditures in a contest with a single heterogenous value 

player that moves last has identical output to an aggregate contest in which all valuations are 

equal. Suggesting that if a designer sought to minimize the impact of a cost advantage or 

maximize the output when a firm is at a cost disadvantage, they would seek to place that player 

or firm at the end of the contest

 We then test these theoretical implications using an experiment. Linking the theory with 

the extensive literature in experimental economics on contests. We find some support for the 

theoretical predictions in terms of directions and the invariance of aggregate totals to a 

heterogenous value final player. However, we find a deviation from theoretical predictions in the 
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probabilistic entry treatment which may be linked to behavioral aspects of the decision-making 

process in a probabilistic entry environment. Like many other studies we find significant 

overbidding in our contests, and we confirm a recent result that suggests that overbidding in 

sequential contests tends to be lower than simultaneous environments.  Additionally, we provide 

evidence that overbidding tends to increase with player position relative to Nash predictions, but 

also with increased bidding by earlier players. We also find support that players in a contest 

make decisions in accordance with a Winning Percentage Heuristic, in which a subset of players 

choose effort to target a winning percentage as opposed to deciding based on a more complicated 

expected value.  The ability to observe behavior for the final player in the group in terms of a 

direct observation for the conditional response of a player’s effort relative to the group effort 

provides another interesting tool for experimental scientists who study contests. 

This study is limited to the examination of 3-player contests in terms of theoretical 

predictions (except for the invariance proposition) and experimental design.  This limitation is 

primarily driven by the inclusion of heterogeneity in player types which can make the theoretical 

analysis unwieldy. Further, the study exhibited relatively high levels of overbidding, which could 

indicate some procedural anomalies, although this overbidding was well within the overbidding 

amounts that have been observed in related studies. The high levels of overbidding and the 

Winning Percentage Heuristic behavior we observe is likely a function of the random nature of 

the contest itself.43  It is possible that the combination of overbidding and the heuristic drown out 

the earlier mover advantage that is predicted by the model. Deterrence of later effort is the source 

of earlier mover advantage but if players respond to high effort with even higher effort of their 

own the benefit of deterrence is lost. What we, and other studies, could be observing is learning 

by subjects that deterrence is ineffective (and reduces payoffs). Some other possible extensions 

could examine different contest structures by adding players, either in the same sequential 

position or creating contests with more sequential positions.  Introducing uncertainty or 

imperfect information into the output revelations may reflect more realistic settings where 

contestants do not have full information over the outputs of their competitors but receive signals 

of prior contributions could be interesting.  

 
43 Overbidding is observed in more deterministic contests such as auctions, but there is a gambling element involved 

in a standard Tullock contest. 
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Chapter 3 

A Network Model of Flexibility in the Workplace 

 I  Introduction 

Collaborative work in firms and other organizations has been studied from many 

perspectives dating at least to Coase’s (1937) seminal work. Modern network theory provides a 

new tool for understanding particular aspects of the structure of workplaces. In particular, this 

theory provides a tool for understanding how one worker’s effort may impact other “connected” 

workers, and from those workers on to others in the web of a worker network. With this tool we 

can understand how a firm or other organization may optimal differentially motivate otherwise 

similar workers depending on their position in a network. Further, we can model how the 

importance of connections in the network may impact organizational decisions that impact the 

formation of connections, such as how workplaces of physically structured, and whether workers 

are permitted to work from home. 

 With societal progress into the digital age, the work, and the workplace itself has 

evolved. Online collaboration tools, such as Zoom, have drastically heightened the level of 

integration possible between separated employees and enable expansion of remote work, while 

also raising questions about what might be lost when workers don’t share a space. While 

telecommuting and flexible work arrangements have been on the rise for a few decades, we still 

see prominent examples of companies who maintain large office spaces/campuses (such as 

Google). Further, in the COVID-19 pandemic we have seen many examples of companies rolling 

back working from home policies, even amid employee objections. 44 

 In this paper we develop a theoretical model that captures the value to an employer of 

investing in facilitating connections among her employees.  We model this with a formalized 

network of complementarities between employees that improve worker productivity ala Ballester 

et al. (2006). Additionally, we allow for the employer to sets wages differentially based on 

 
44 Web article by O’Connor (2021) details Apple’s push to return to the office. 
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observed network connections and make costly investments to improve the likelihood of 

generating connections and complementarities between employees. By modelling the workplace 

in this way we can capture many of the important elements of flexible work arrangements that 

have been suggested by previous research. Further, the model serves to connect literatures that 

distinctly focus on employee outcomes and employer outcomes but rarely in conjunction.45 

 Flexible work arrangements have been shown to have positive impacts on employees as 

well as reduced costs for employers. Research in management, social psychology and more 

recently economics, have explored flexible work arrangements. Much of the work is centered on 

the impact of remote work on employees (see Allen et al., 2015 for a summary). This research 

has suggested mostly benefits with few costs. Benefits include but are not limited to: increased 

productivity, increased satisfaction, lower stress, increased organization commitment, higher 

wages, reduced commute times, and reduced turnover (Gajendran and Harrison, 2007; Golden 

2007; Kurland & Egan, 1999; among others). Drawbacks include decreased satisfaction, in the 

form of isolation, decreased work-life separation (being contacted at odd hours), an inability to 

disconnect from work. Other research suggests lower productivity (distraction) could also result.  

 Less studied are the costs and benefits accrued by the firms.  Research has suggested that 

having employees work remotely allows firms to recruit in a wider area (resulting in cheaper, or 

more productive labor) and increased profits through increased productivity and lowered costs 

(e.g. rent/electricity) (Martinez Sanchez et al., 2007; Meyer et al., 2001). However, this result is 

likely situation-dependent, as some firms have opted to discourage telecommuting and create 

workplace environments that maximize interaction (see Schmidt & Rosenberg, 2014).  

One drawback with the current literature on remote working is that much of the existing 

data related to working remotely is observational, which makes it challenging to draw causal 

inferences. Explicitly, Gao and Hitt (2003) note that the telecommuting literature, while helpful 

for understanding telecommuting in practice, is largely empirical and has lacked sufficient 

theoretical foundation to build hypotheses. This statement is echoed by other researchers (Bailey 

and Kurland, 2002: Bloom et al, 2015). Bloom et al. (2015) state that the lack of experimental 

data in telecommuting research makes studies “hard to evaluate due to their non-random nature”. 

 
45 To our knowledge, no studies focus on firm and employee outcomes simultaneously. 
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This fault does not necessarily fall on the researchers however, as the Council of Economic 

Advisors (2010) cite a lack of data as a “factor hindering deeper understanding about the costs 

and benefits of flexibility.”  

Recent research in economics has worked to fill this void. In a field experiment, Bloom et 

al. (2015) randomly sent home a subset of call-center workers in a Chinese firm and observed 

increased output and increased employee satisfaction for those employees who worked from. 

Additionally, a recent paper by Chen et al. (2019) examines the surplus gained (relative to their 

reservation wage) by Uber drivers in a flexible work arrangement and finds that flexible work 

contracts gain twice the surplus they otherwise would. A similar element in these two studies is 

the type of work that is done by the firms they are studying benefit very little from employee-

employee interactions (e.g. Uber drivers and call center workers).  We believe this is a crucial 

aspect that must be considered to accurately generalize conclusions based on flexible work 

arrangements. 

A related paper by Calvó-Armengol et al. (2015) studies the investment in information 

transfers among agents in a network. They describe a setting in which agents can undertake 

costly actions to either speak or listen in order to coordinate actions. Calvó-Armengol et al. 

connect network structure into a broader literature about the role of communication in the theory 

of organizational design (Arrow, 1974).  Their model highlights the natural use of social 

networks when thinking about interactions among employees in a firm.  Networks are a good 

representation of a few important phenomenon in organizations, such as communication flows, 

hierarchies (or other firm organization), and influence.  In addition the model by Calvó-

Armengol et al. has many similarities to ours in the importance of centrality and network 

structure in a linear-quadratic payoff structure and the connection to organizational design. In 

contrast to their focus on communication, our model focuses on production complementarities 

between members and the impact of the altering the network structure by a principal. 

With widely cited benefits and few costs, the proliferation of flexible work arrangements 

should not be surprising.  But this begs the question, why is the office still the primary way to 

conduct business?  Quotes from managers such as CEO Jamie Diamond of Goldman Sachs may 

help elucidate some of the drawbacks of remote work. He listed four challenges associated with 

working from home regarding the COVID-19 pandemic: 1) Performing jobs remotely is more 



80 

 

successful when people know one another and already have a large body of existing work to do. 

It does not work as well when people do not know one another. 2) Most professionals learn their 

job through an apprenticeship model, which is almost impossible to replicate in the Zoom world. 

Over time, this drawback could dramatically undermine the character and culture you want to 

promote in your company. 3) A heavy reliance on Zoom meetings slows down decision making 

because there is little immediate follow-up. 4) And remote work virtually eliminates spontaneous 

learning and creativity because you do not run into people at the coffee machine, talk with clients 

in unplanned scenarios, or travel to meet with customers and employees for feedback on your 

products and services. While this example provides only anecdotal evidence, a central theme is 

clear. There is a social component that is created when employees work near each other that is 

difficult to replicate through remote work. We characterize this social component in our model 

as the primary drawback of offering a flexible work arrangement.  This is the key assumption for 

the tradeoff a firm faces when deciding to offer remote work.  Specifically, it takes the form of 

complementarities in a social network.   

 This model presented below builds directly on the seminal paper by Ballester et al. 

(2006) (BAZ) who examine games with strategic network complementarities among players 

using a linear-quadratic utility function. They show that a player’s Nash equilibrium output is 

proportional to their Katz-Bonacich centrality in the network. The BAZ framework has been 

applied to a wide range of topics such as crime (Ballester and Zenou, 2010; Pattachini and 

Zenou, 2012).   Additional papers have incorporated the framework provided by BAZ and 

developed second-stage principal optimizations to analyze different questions such as pricing on 

a network of consumers (Candogan et al., 2012; Chen et al., 2018; and others). Candogan et al. 

(2012) (CBO) provided the seminal example of this class of models. These models generally 

frame a monopolist (or multiple firms) who price a good that is purchased by a network of 

consumers with consumption externalities.  Specifically, CBO finds that the optimal pricing 

strategy is such that prices should be set inversely proportional to a consumers Katz-Bonacich 

centrality. 

 A key contribution of this paper is to adapt the framework pioneered by CBO to a 

workplace setting to show how the profit maximizing piece-rate wage to individual employees in 

a network is set proportional to their centrality. We then employ this framework to explore how 
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potential network outcomes may impact employer decisions that influence the formation of 

connections. For example, and employer may risk connections being broken by allowing a 

worker to work remotely. Conversely, an employer may make investments in facilitating 

connections between employees that create more cohesive networks, such as through “team 

building” events.  

 Another contribution to the literature by adapting the network pricing model (ala 

Candogan et al. 2012) to a corresponding wage setting environment in a principal-agent problem. 

In this new setting we add a theoretical framework to a burgeoning literature on working from 

home environments. We highlight the importance of thinking of the firm’s decision in 

conjunction with the employees when considering remote work. Lastly, we add a third stage to 

the model that allows for a firm to influence the shape of the network before making price/wage 

decisions. This reflects a more realistic setting when thinking about the models in a wage-setting 

environment. 

II  The Model 

In this model the principal (employer) first invests in influencing the complementarity 

network of the agents (employees), 𝑮.  The network is then realized (randomly) and the 

employer chooses a wage vector 𝝎 from allowable wage strategies 𝛀  to pay for production of a 

divisible good that maximizes profit.  Employees take the wage as given and choose production 

effort (output) accordingly.  The problem is solved using backward induction. The effort and 

wage setting stages of the model are a re-characterization of Candogan et al (2012) but the 

incentives are otherwise identical.   In the standard characterization of this type of network 

model with complementarities (Ballester et al., 2006) the network of connections between the 

agents generates complementarities in output, which serve to increase the effort level (output) of 

the employee holding wage rate fixed. We describe the stages in more detail below: 

Stage 1 (Wage setting) Conditional on a network of connections, the employer sets the optimal 

wage schedule.  The employer chooses wage vector 𝝎 to maximize profits associated with 

network 𝒈 (𝜋𝒈): max𝜋𝒈 = max
𝝎𝜖𝛀

∑ 𝜙𝑞𝑖 − 𝜔𝑖𝑞𝑖𝑖  where 𝜙 is the price received on the market by 

the employer from selling output 𝑞𝑖 from the employees. For ease, we us a linear production 

function  𝑞𝑖 = 𝑒𝑖 allowing for substitution of 𝑞𝑖 and 𝑒𝑖 (𝑒𝑖 henceforth). Also note that this profit 
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function implies that effort from the employees is treated as perfect substitutes in production. 

Spillovers resulting from employee effort are captured through the disutility of work described 

below. 

Stage 2 (Effort) Employee 𝑖 chooses effort 𝑒𝑖 to maximize utility given the wages chosen by the 

employer, 𝝎 and the effort levels of the other employees, 𝒆−𝑖, i.e.  

max
𝑒𝑖𝜖[0,∞)

𝑢𝑖(𝑒𝑖, 𝒆−𝒊, 𝝎) 

Each employee is represented in the set ℱ = {1,… , 𝑛}  selects a divisible effort 𝑒𝑖𝜖[0,∞) and 

receives the following utility: 

𝑢𝑖(𝑒1, … , 𝑒𝑛) = 𝜔𝑖𝑒𝑖 − 𝛼𝑖𝑒𝑖 −
1

2
𝛿𝑒𝑖

2 +  ∑𝛾𝑖𝑗𝑒𝑖𝑒𝑗𝑔𝑖𝑗

𝑛

𝑗≠𝑖

                                      (1) 

Note that utility decreases with own effort at an increasing rate, 
𝑑2𝑢𝑖

𝑑𝑒𝑖
2 = 𝛿 > 0.  An individual’s 

(strictly positive) wage, 𝜔𝑖, is set by the employer. The parameter 𝛼𝑖 is a “skill” factor where 

lower 𝛼𝑖 suggests less disutility from production.  The model accommodates varying quadratic 

own-effort costs, however we set them equal for all players, 𝛿𝑖 = 𝛿.  Interactions between 

players are captured by 𝛾𝑖𝑗.  The influence of network-connected employees’ efforts on the 

disutility of production by worker 𝑖 is captured by the parameter 𝛾. For any two workers this 

term captures the interaction effect with 𝑈𝑒𝑖𝑒𝑗 = 𝛾𝑖𝑗.   In general, for 𝛾𝑖𝑗 < 0 efforts are 

substitutes, while 𝛾𝑖𝑗 > 0 represents complements. In this paper we assume 𝛾𝑖𝑗 > 0 ∀𝑖, 𝑗 , thus, 

all interactions are complementary. This captures in a simple manner the team aspect of 

production. For any worker 𝑖 connected in the network to worker 𝑗 the disutility 𝑖 experiences to 

produce a given output 𝑒𝑖 decreases with 𝑒𝑗.  The adjacency matrix captures the full network of 

complementarities 𝒈 and is given by the 𝑛 × 𝑛 matrix  𝑮 = [𝛾𝑖𝑗𝑔𝑖𝑗] . The 𝑖𝑗th entry of 𝑮 

represents the presence of a link from player 𝑖 on player 𝑗 with positive indicator variable which 

can take value 𝑔𝑖𝑗𝜖{0,1} multiplied by weight 𝛾𝑖𝑗. By convention 𝑔𝑖𝑖 = 0, thus 𝑮 is a zero-

diagonal non-negative square matrix. When 𝑔𝑖𝑗 = 𝑔𝑗𝑖, the matrix is symmetric and the links 

between players are undirected (if 𝑖 is connected to 𝑗 then 𝑗 is connected to 𝑖), in this case 𝒈 is an 

undirected network.  Additionally, the convention 𝑔𝑖𝑖 = 0 rules out loops (which is a path 
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[sequence of links from 𝑖 to 𝑗 through links 𝑐 < 𝑔𝑖𝑐1,𝑔𝑐1𝑐2 , … 𝑔𝑐𝑓𝑗 >]  that travels through node 𝑖 

more than once.)  

III  Effort Equilibrium 

We solve the model through backward induction starting with the effort choice of 

workers. Assumption 1 is needed to ensure that effort choices remain finite.   

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 1: 2𝛿 > 𝜇(𝑮) 

Where 𝜇(𝑮) is the spectral radius of adjacency matrix 𝑮.  This assumption states that the 

disutility of own effort parameter is smaller than the utility gained from increases in effort by 

other employees in the network. Assumption 1 (with Assumption 2 below) guarantees an interior 

solution to the vector of efforts. Assumption 1 states that the utility returns on increase in fellow 

employee’s effort (or consumption in CBO) are likely to outweigh the cost of own effort when 

effort becomes large.  This is a standard assumption (parallel to Assumption 1 in BO; and 2𝛿 >

𝜆𝜇(𝑮) in BAZ) for this class of models. The assumption restricts employees from experiencing a 

feedback loop where complementary increases in effort from connected employees increasing 

utility more than the disutility of increasing the own effort resulting incentives to increase own 

effort infinitely.  

An additional assumption is needed to ensure positive wages (effort) choices for each 

employee and is the following:  

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 2: 𝜙 > 𝛼𝑖 

This ensures that the return to the employer is positive at small levels of effort and guarantees 

that the offered wage is positive and large enough so that there is positive effort from all 

employees and ultimately an interior solution in terms of optimal offered price and effort vectors.  

From CBO, under Assumptions 1 & 2, optimizing (1) we know that this problem solves to give 

unique optimal efforts:  

𝒆∗ = (𝚲 − 𝑮 )−1(𝝎 − 𝜶)                                                          (2) 

where 𝚲 is a 𝑛 × 𝑛 diagonal matrix with elements 2𝛿𝑖.  This expression is linked to the concept 

of Bonacich Centrality where (𝚲 − 𝑮 )−1 is the component matrix of Bonacich centrality 
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measures. Relating this with the centrality concept to our employee’s optimization we can return 

to the solution of the employee’s optimization problem (2) and set 𝛾𝑖𝑖 = 𝛾.  Equation 2 becomes: 

𝒆∗ = 𝜷(𝒈, 𝜆)(𝝎 − 𝜶)                                                                (3) 

Thus, the optimal effort for each employee is a linear function of her wage and her Bonacich 

centrality. More central players receive larger effects from increases in effort on the network, 

thus have ultimately higher effort levels.46 

IV  Optimal Wages 

The principal’s problem when he optimizes individual wages for a given network is47: 

max
𝝎𝜖𝛀

∑𝜙𝑒𝑖 − 𝜔𝑖𝑒𝑖
𝑖

= (𝜙𝟏 −𝝎)𝒆𝑻 

where he sells output from production function 𝑓(𝒆) on the market for price 𝜙 and pays total 

wages 𝜔𝑖𝑒𝑖 to each employee 𝑖. In our model 𝑓(𝒆) = ∑𝑒𝑖 which suggests the employer 

production function is linear.  To solve the two-stage problem we can substitute the solution to 

the employee’s problem and optimize. The important consideration here is the set of available 

wage choices Ω.  For the first setting we allow the employer to freely set wages for each 

employee. Again, following CBO, we can substitute equation (2) into the employer’s 

optimization problem and find that the optimal wage vector is: 

𝝎 = 𝜶+ (Λ − 𝑮)(Λ −
𝐺 + 𝐺𝑇

2
)

−1
𝜙𝟏 − 𝜶 

2
                                         (4) 

If the network is symmetric, i.e. the influence of employee 𝑖 on employee 𝑗 is identical to the 

influence of 𝑗 on 𝑖 the above equation reduces to:  

𝝎 =
𝜙𝟏 + 𝜶

2
                                                                           (5) 

 
46 More information on Bonacich Centralities is given in the Appendix. 
47 A reminder that we assume effort from the employees is directly converted, at a 1:1 ration, to inputs for the 

employers 𝑒𝑖 = 𝑞𝑖  
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This shows that when the network is symmetric the optimal wage vector does not depend on the 

structure of the network, and that the employer simply sets the wage proportional to the skill 

parameter of the worker where higher skill employees receive higher wages. However, many 

networks are not symmetric – some workers have increased influence over other workers in the 

network, in which case the network influences the optimal wage vector.  We can use equations 

(4) and (5) to solve for the indirect profit function yielding: 

𝜋∗ = (
𝜙𝟏 − 

2
)
𝑇

(Λ −
𝐺 + 𝐺𝑇

2
)

−1

(
𝜙𝟏 − 𝜶

2
)                                           (6𝑎) 

Or equivalently: 

𝜋∗ = (
𝜙𝟏 − 𝜶

2
)
𝑇

𝛽(𝒈, 𝜆) (
𝜙𝟏 − 𝜶

2
)                                                     (6𝑏) 

Thus, we see that more connected networks (with higher centralities) yield higher profits, ceteris 

paribus. 

 An important difference from prior network theory models arises when the adjacency 

matrix is asymmetric. In our workplace context, the optimal wages are given by the equation: 

𝝎 =
𝜙𝟏 + 𝜶

2
− 𝐺Λ−1�̃�(�̃�, Λ−1, �̃�) + 𝐺𝑇Λ−1�̃�(�̃�, Λ−1, �̃�)                              (7) 

where 𝛽(�̃�, Λ−1, �̃�) is the weighted Bonacich Centrality matrix, �̃� =
𝐺+𝐺𝑇

2
 and �̃� =

𝜙𝟏−𝜶

2
 .  The 

first term in this equation is a common term regardless of network position and based on the 

vector of own costs of effort. The second term indicates that the optimal wage for player 𝑖 

decreases in the complementarities that player 𝑗 exerts over player 𝑖, and the third term states the 

optimal wage increases in the influence that employee 𝑖 exerts over player 𝑗 (relevant elements of 

𝐺𝑇) which is scaled by how central each employee 𝑗 is (relevant elements of 𝛽(�̃�, Λ−1, �̃�)). Thus, 

the employer provides increased differential compensation based the ability of an employee to 

exert asymmetric influence over central employees in the network and takes advantage of the 

decreased effort costs (through complementarities) that the influential employee generates for 

other employees by reducing their piece-rate.  These terms cancel out when the influence matrix 

is symmetric and reduces to equation (5).  
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IV.A  Application—The Cost of Lost Connections 

 We will now present an example that demonstrates how the model informs that choice a 

firm would face when consider allowing one individual in a pre-existing workplace to enter a 

flexible working or telecommuting arrangement that could result in broken network connections. 

This will allow us to visualize how the model presented so far can be used in this setting to 

increase understanding of relationship between employer and employee that exist in flexible 

work settings. 

 Consider an 9-person network with the structure provided in Figure 3.1.  The network 

represents a potential workplace structure with a “boss” (Player 1), two “managers” (Players 2 

and 3) who each oversee 3 employees (Players 4-9).  The “types” of employees are given a 

corresponding letter. We will examine both a symmetric and asymmetric network. The arrows on 

the right represent the influence that each type of employee exert on one another in the 

asymmetric case. We can see that the “boss” asymmetrically influences the “managers” but does 

not (directly) influence the “employees”. 48 In a similar fashion, the managers asymmetrically 

influence the employees.  This example is very different from a symmetric setting where all 

influences are identical and which can be thought of as representing a non-hierarchical, or “flat”, 

organizational structure.49 

Throughout this application we set the parameter values to 𝜙 = 2, 𝑎𝑖 = 𝑎 = 1,  and 𝛿𝑖 =

𝛿 = 3 unless otherwise noted.  Thus, the price the monopolist receives is 2, the own-effort cost 

and quadratic own-effort cost parameters are set equal for each employee and set to 1 and 3, 

respectively.  We will assume that, when an employee accepts a flexible work arrangement, they 

potentially lose links within the network due to decreased interactions with their fellow 

employees.  

In this application we want to capture the potential benefits of flexible work 

arrangements arising to the worker, as well as the potential cost of broken connection. Our 

primary way of representing the benefit to the worker as a reduction in quadratic own-effort cost 

from 𝛿 = 3 to  𝛿𝑖 = 1.25. This reflects the idea that production in the flexible work environment  

 
48 Adjacency matrices are provided in the Appendix. 
49 We will refer to the players according to their “type”. 
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Figure 3.1.  Expected Profit by Link Probability  
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is easier than in the office environment through channels such as flexible working hours, reduced 

distractions, etc. Alternatively, we also present results keeping 𝛿𝑖 = 3 which represents 

environments where the benefits may be fixed, such as reduced commuting times.  However 

much of the example will focus on the case where 𝛿𝑖 = 1.25, and we will highlight the important 

details from the 𝛿𝑖 = 3 example when they arise.  Lastly, we assume that the employer does not 

re-optimize the wage-incentive structure based on the resulting network (i.e. she does not 

observe the broken connections).50 

 We first identify the effects that occur if an individual work of the various types were to 

lose all their connections in the workplace. Table 3.1 summarizes the change in efforts, wages, 

utilities, and profits in both the identical and differential incentive schemes, and in both the 

symmetric and asymmetric network cases.  Each row of the table represents a different network 

structure that is associated with the removal of the listed player type (“Complete” has no 

removals) from the network with the associated wage structure and change in 𝛿, if applicable.   

For example, the 6th row of table 3.2 starting with “Type B – Asymmetric” corresponds 

to the network associated with the removal of a “manager” (Player 2 or 3) from the network. In 

the second column we see a 5-element vector of efforts when the wage is set equal for all players 

(and set based on the “Complete” network before any changes in the network are induced by the 

working from home agreement). This is vector of elements corresponds to the efforts for each 

player type: {𝑒𝐴, 𝑒𝐵0 , 𝑒𝐵1 , 𝑒𝐶0 , 𝑒𝐶1}.  The differing efforts between player types result from the 

asymmetric changes in connections that the player types face. Assume Player 2 is the employee 

whose connections are lost, the “managers” (Type B) now have different centralities (number of 

connections) and thus, different effort levels; 𝑒𝐵0  for Player 2 and 𝑒𝐵1 for Player 3.  the 

“employees” (Type C) connected to Player 2 lose their only connection to network (but are 

otherwise identical) and are represented by 𝑒𝐶0 .  The employees connected to Player 3 retain their 

connections and efforts are given by 𝑒𝐶1.  This exercise is repeated for the differentially set 

wages in column 3 and then for utilities in columns 4 and 5.  Then, given wages and efforts, 

profits are calculated in columns 6 and 7.  Thus, any entry for effort or utility that has more than 

 
50 Results when the employer reoptimizes based on the new network structure are presented in the Appendix. 

Generally, the profit loss will be less dramatic when the employer can reoptimize, but the results are often in the 

same direction. 
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3 entries represents the different centralities for players of the same type that are induced by the 

loss of connections. We can then compare each row with the “Complete” rows to understand the 

impact that the working from home arrangement has for each employee type.  

The wage vector for each player in the symmetric case in both the identical and 

differential incentive structure is 𝜔 = 𝜔𝐼𝑑𝑒𝑛 = 𝜔𝐷𝑖𝑓𝑓 = 1.5. In the asymmetric case when the 

wage when is set identically is equal to  𝜔𝐼𝑑𝑒𝑛 = 1.5. When set differentially, 𝜔𝐷𝑖𝑓𝑓 =

[𝜔𝐴, 𝜔𝐵, 𝜔𝐶] = [1.84, 1.26, 1.56].  Since we assume that the wage is set before the employer 

knows the impact of the changes to the network structure that are induced by the flexible 

working arrangement, the wages are identical for each of the possible resulting networks. 

Focusing on the “Complete” networks in Tables 3.1 and 3.2 we can see that the employer 

only profits from the use of differential incentive schemes when the network is asymmetric 

(conditional on equivalent own-cost parameter values). We can also observe that in nearly all 

cases (except Asymmetric-Type C when 𝛿 = 1.25) the employer is set to lose profits from a 

working from home arrangement. It is important to understand that this represents the worst-case 

scenario for the employer, in that an employee who takes the flexible working arrangement then 

maintains no links.  When there is no change in 𝛿 for the employee (no reduction in effort costs 

from working at home) then the profit losses will reach their maximum. In this case, the profit 

difference represents the minimum that the employer would need to receive via fixed reduction 

in the employee’s compensation to guarantee a positive return.    

Another noticeable result is that often the profit loss when using differential incentive 

schemes is higher relative to the identical incentive scheme in the asymmetric environment. In 

general, if the employer is optimally setting differential incentive schemes, they must do at least 

as well as setting a fixed wage scheme; however, the loss in these cases is a result of the larger 

misappropriation of wages that comes from the change in the underlying network. If the 

employer could re-optimize wages this difference would be reversed. Nevertheless, it does 

suggest that using an identical wage structure can lead to less loss when you have a change in the 

underlying network structure, and the network structure is asymmetric. 

Another potentially interesting result in the “Complete” networks comes from examining 

the utilities of the “boss” and the “managers”. When incentive structures are identical, and in 
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both the symmetric and asymmetric settings, the “boss” receives lower utility (and produces less 

output) relative to the “managers”. This is because the “managers” have higher centralities 

within the network (without the asymmetric influence the “boss” description is less apt). 

However, when the employer can set differential incentive schemes in the asymmetric setting, 

the “boss” is compensated above the other employees and realizes significantly higher utility. 

This is an example of how the employer optimally leverages the influence asymmetries, 

essentially taking advantage of the decreased utility costs that are generated by the output 

increases of the “boss”.  This could also represent a situation where the employer makes 

incorrect assumptions about the network structure and sets wages incorrectly leading to a loss in 

utility for her most influential worker. 

The last notable result is that firm profits increase when Type C players enter a work 

from home arrangement, regardless of a change in 𝛿. It should be noted that, mechanically, this 

result is based on the parameter choices and influence network that we have defined in the 

example.  This is easiest to see in the symmetric, 𝛿 = 3 case where profit decreases when a Type 

C player exits the network. When a Type C is disconnected this lowers the centrality for all 

players in the network and lowers outputs/profits.  In the asymmetric, differential wage case, the 

profit increased. You can see that the efforts from the remaining Type C connected players are 

increased relative to the complete network case. This is due to the increased relative influence of 

the “managers” and “bosses” on the Type Cs.  The last important consideration is the choice of 

the change in 𝛿.  For demonstration, our parameter choice was a reasonably large change in 𝛿, 

suggesting large reductions in own-effort costs associated with working in a flexible 

environment. This change depends critically on the context, but it is intuitive to understand that 

the larger the reduction in 𝛿, the smaller the profit losses will be (or the larger the gains) when 

flexible work is introduced. Similarly, the more employees who have the arrangements the more 

own-cost advantages can be leveraged. 

So far, this example has examined the case where a flexible working arrangement 

resulted in an unanticipated complete loss of connections.  An alternative assumption may be 

that each link that has formed has a chance to fail. Mechanically the employer could attach some 

probability of failure for each link and calculate the expected profit loss from a failure of that 

link.  In other words, they could calculate the profits associated with or without the link. Then, 
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given the probabilities of failure for each link, calculate the likelihood of the formation of any 

given network and the associated probabilities and determine whether the expected value of the 

profit is greater with the introduction of the flexible work environment compared to a setting 

without.  

This is potentially a complicated calculation and there are a significant number of 

possible networks and parameter combinations if the employer made the choice for each 

employee. We will continue the application restricting our attention to the results from a single 

offer of a telecommuting arrangement to Player 2.  Figure 3.2 shows the relevant connection 

types for Player 2. Due to the parameter values chosen in the example, a link between Player 2 

and her “employees” are functionally identical (Type III). She also has a link between her 

“boss”, Player 1, and the other “manager”, Player 3 which have different influencing weights.  

Let us assume that the probability of failure of any link is equivalent and given by (1 −

𝑝) then the chance that a link persists is given by 𝑝. We can then calculate the resulting profits 

for each network. We will use 𝛿 = 1.25.  Table 3.3 displays the profits for each possible 

network. In Table 3.3, each row of the table lists the profits associated with the removal a link 

(or multiple links) of the listed type corresponding to Figure 3.2. For example, the fifth row (I, 

II) is the profit associated with the removal of two links, the link between the two managers 

(Player 2 and Player 3 - II) and a link between Player 2 and one employee (I).  The last row of 

the table is the profit in the case where there is no working from home arrangement (and no 

reduction in 𝛿 for manager).  Examination of Table 3.3 reveals a pattern that suggests that the 

most valuable connections in order are I, II, and III.  Thus, the employer has strong incentive to 

keep the “boss” connected to each of the managers and the managers to each other.  In this 

example, we treat the probability of each connection being maintained as identical, but this the 

table suggests that targeted intervention is the ideal choice if possible.Comparing the profit 

without the flexible work arrangement at the bottom of Table 3.3 with the values above in the 

corresponding columns, we can see that if three or more links are formed profits will always be 

higher in the telecommuting environment.   This level is highly dependent on the choice of 𝛿 and 

the required links for profitability will increase as 𝛿 increases.   Moving along with our example,
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Table 3.1. Optimal Values with Complete Link Loss, 𝛿 = 3  

Network Type Effort - Iden Effort - Diff Utility - Iden Utility - Diff Profit Profit  

 [𝑒𝐴, 𝑒𝐵, 𝑒𝐶] [𝑒𝐴, 𝑒𝐵, 𝑒𝐶] [𝑈𝐴, 𝑈𝐵, 𝑈𝐶] [𝑈𝐴, 𝑈𝐵, 𝑈𝐶] 𝜋𝐼𝑑𝑒𝑛 𝜋𝐷𝑖𝑓𝑓 

       

       

“Complete” - Symmetric [.150, .200, .117] [.150, .200, .117] [.458, .580, .368] [.458, .580, .368] 0.625 0.625 

       

“Complete” - Asymmetric [.215, .225, .112] [.165, .245, .104] [.522, .716, .347] [.755, .653, .395] 0.638 0.667 

       

Type A – Symmetric [.083, .167, .111] [.083, .167, .111] [.188, .333, .241] [.188, .333, .241] 0.542 0.542 

       

Type A – Asymmetric [.083, .158, .096] [.140, .112, .102] [.135, .220, .152 [.223, .123, .145] 0.489 0.462 

       

       

Type B - Symmetric [.109, .083, .156 [.109, .083, .156,  [.135, .109, .171,  [.135, .109, .171,  0.464 0.464 

 .083, .109] .083, .109] .109, .135] .109, .135]   

       

Type B - Asymmetric [.113, .083, .180,  [.167, .042, .165,  [.135, .106, .177,  [.249, .054, .151,  0.461 0.447 

 .083, .098] .093, .107] .107, .121] .133, .148]   

       

Type C - Symmetric [.145, .178, .195,  [.145, .178, .195,  [.380, .448, .481,  [.380, .448, .481,  0.588 0.588 

 .083, .113, .116] .083, .113, .116] .233, .306, .313] .233, .306, .313]   

       

Type C - Asymmetric [.161, .224, .239,  [.210, .203, .219,  [.457, .595, .624,  [.670, .534, .566,  0.611 0.635 

 .083, .102, .103] .093, .110, .111] .256, .308, .311] .302, .352, .357]   

       

Note: Under the Network Type header, Type A, B, and C refer to the player Type who works from home and subsequently has zero connections.  

Symmetric and Asymmetric labels refer to the use of the symmetric or asymmetric adjacency matrixes described in the text. Values in the Effort 

and Utility columns for “Type B” correspond with {𝑒𝐴, 𝑒𝐵0 , 𝑒𝐵1 , 𝑒𝐶0 , 𝑒𝐶1} and {𝑈𝐴, 𝑈𝐵0 , 𝑈𝐵1 , 𝑈𝐶0 , 𝑈𝐶1} where 𝐵0 is the Type B player who has zero 

links and 𝐵1 the traditional link. Similarly, 𝐶0 represents the Type C players who are connected to the 𝐵0 player and 𝐶1 with 𝐵1.  In the Type C 

column, the vector shown is {𝑒𝐴, 𝑒𝐵0 , 𝑒𝐵2 , 𝑒𝐶0 , 𝑒𝐶1 , 𝑒𝐶2} where 𝐶0 represents the zero-link type C player and 𝐵0, the connected “manager”. The 𝐶1 

represents the other two Type Cs connected to 𝐵0 with 𝐶2 and 𝐵2 representing the remaining. 
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Table 3.2. Optimal Values with Complete Link Loss, 𝛿 = 1.25 

Network Type Effort - Iden Effort - Diff Utility - Iden Utility - Diff Profit Profit  

δ [𝑒𝐴, 𝑒𝐵, 𝑒𝐶] [𝑒𝐴, 𝑒𝐵, 𝑒𝐶] [𝑈𝐴, 𝑈𝐵, 𝑈𝐶] [𝑈𝐴, 𝑈𝐵, 𝑈𝐶] 𝜋𝐼𝑑𝑒𝑛 𝜋𝐷𝑖𝑓𝑓 

       

       

“Complete” - Symmetric [.150, .200, .117] [.150, .200, .117] [.458, .580, .368] [.458, .580, .368] 0.625 0.625 

       

“Complete” - Asymmetric [.215, .225, .112] [.165, .245, .104] [.522, .716, .347] [.755, .653, .395] 0.638 0.667 

       

Type A – Symmetric [.222, .167, .111] [.222, .167, .111] [.188, .333, .241] [.188, .333, .241] 0.542 0.542 

       

Type A – Asymmetric [.222, .158, .096] [.372, .112, .102] [.135, .220, .152] [.223, .123, .145] 0.489 0.462 

       

       

Type B - Symmetric [.109, .222, .156 [.109, .222, .156,  [.135, .292, .171,  [.135, .292, .171,  0.533 0.533 

 .083, .109] .083, .109] .109, .135] .109, .135]   

       

Type B - Asymmetric [.113, .222, .180,  [.167, .113, .165,  [.135, .284, .177,  [.249, .145, .151,  0.530 0.500 

 .083, .098] .093, .107] .107, .121] .133, .148]   

       

Type C - Symmetric [.145, .178, .195,  [.145, .178, .195,  [.380, .448, .481,  [.380, .448, .481,  0.657 0.657 

 .222, .113, .116] .222, .113, .116] .622, .306, .313] .622, .306, .313]   

       

Type C - Asymmetric [.161, .224, .239,  [.210, .203, .219,  [.457, .595, .624,  [.670, .534, .566,  0.680 0.704 

 .222, .102, .103] .247, .110, .111] .684, .308, .311] .806, .352, .357]   

       

Note: Under the Network Type header, Type A, B, and C refer to the player Type who works from home and subsequently has zero connections.  

Symmetric and Asymmetric labels refer to the use of the symmetric or asymmetric adjacency matrixes described in the text. Values in the Effort 

and Utility columns for “Type B” correspond with {𝑒𝐴, 𝑒𝐵0 , 𝑒𝐵1 , 𝑒𝐶0 , 𝑒𝐶1} and {𝑈𝐴, 𝑈𝐵0 , 𝑈𝐵1 , 𝑈𝐶0 , 𝑈𝐶1} where 𝐵0 is the Type B player who has zero 

links and 𝐵1 the traditional link. Similarly, 𝐶0 represents the Type C players who are connected to the 𝐵0 player and 𝐶1 with 𝐵1.  In the Type C 

column, the vector shown is {𝑒𝐴, 𝑒𝐵0 , 𝑒𝐵2 , 𝑒𝐶0 , 𝑒𝐶1 , 𝑒𝐶2} where 𝐶0 represents the zero-link type C player and 𝐵0, the connected “manager”. The 𝐶1 

represents the other two Type Cs connected to 𝐵0 with 𝐶2 and 𝐵2 representing the remaining.
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Figure 3.2. Link Types for Player 2 
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Table 3.3. Profit Values: Incomplete Networks 

Missing Links  Adjacency Matrix Type  

      

  Symmetric  Asymmetric 

  𝜋𝐼𝑑𝑒𝑛 = 𝜋𝐷𝑖𝑓𝑓  𝜋𝐼𝑑𝑒𝑛 𝜋𝐷𝑖𝑓𝑓 

      

Complete  1.760  1.711 1.887 

      

I  .9475  .808 .809 

II  .890  .928 .999 

III  1.003  1.167 1.273 

      

I, II  .743  .653 .644 

I, III  .767  .839 .896 

II, III  .836  .908 .965 

III, III  .856  1.038 1.123 

      

I, II, III   .654  .606 .589 

I, III, III  .710  .679 .661 

II, III, III  .673  .762 .807 

III, III, III  .743  .928 .995 

      

I, II, III, III  .585  .565 .541 

I, III, III, III  .631  .627 .601 

II, III, III, III  .601  .697 .730 

      

All Missing  .533  .530 .500 

      

Profit with no 

arrangement 

 .625  .638 .667 

      
Note: The Roman Numerals correspond to the links shown in Figure 3.2 If the number is listed that link is missing. 

There are 3 possible III links, and 1 of I and II. Profits correspond to a 𝛿 of 1.25.  
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each network above has a probability of forming that is equal to 𝑃 = 𝑝5−𝑘(1 − 𝑝)𝑘 where 𝑘 is 

the number of missing links.  Thus, the expected profit is a function of 𝑝. Summing across all 

possible networks we have: 

𝐸[𝜋] =∑∑𝜋𝑧𝑝
5−𝑘(1 − 𝑝)𝑘

𝑧

5

𝑘

− 𝜋𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

where 𝑧 is each possible network associated with 𝑘 missing connections.  If the expected total 

from the working from home environment exceeds the profit associated with the baseline 

network, then it is the employer’s best interest to offer the arrangement.51 Figure 3.3 plots profits 

in each network environment less the baseline scenario against the probability of maintaining 

each connection.   One can observe that the expected profit for each of the three scenarios differs 

based on the values of 𝑝. This results from the benefits derived from higher levels of 

connectivity. Unsurprisingly, when the network is asymmetric, and the employer can exploit the 

structure with differential incentives, the value of highly connected networks is increased. We 

can also observe that the benefits to highly connected networks are nonlinear and see increasing 

returns at higher levels of connectedness.  Ultimately the value of 𝑝 that is required for a flexible 

work arrangement to be profitable, in expectation, is 𝑝 = {. 239, .208 , .263}. These values 

correspond to the symmetric, asymmetric identical wage, and asymmetric differential wage 

cases, respectively.  Thus, the choice of whether to offer flexible work arrangement does depend 

on the compensation scheme. Explicitly, the resulting values of 𝑝 above state that if the 

probability of maintaining connections is above 23.9% (20.8%, or 26.3%) then the working 

home arrangement for the manager will be profitable, in expectation.    

As mentioned before, these values will depend on the parameter choices so the results 

should be interpreted with caution. However, in many cases the directional relationships will 

persist regardless of the magnitude of the change in underlying parameters. Further, this stylized 

example only deals with a single employee working from home. The example should be thought 

of as a demonstration of how the re-characterization of the popular network pricing model can be  

  

 
51 Provided she is risk neutral. 
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Figure 3.3. Expected Profit by Link Probability 
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used in the context of flexible work arrangements to provide insights in this novel setting. One of 

the biggest differences in between the pricing scenario and a flexible work setting is the control 

that an employer has over the composition of the network. The above example showed one such 

way that an employer may make an impact on the underlying network structure. Moreover, the 

application started with an established baseline network and then examined how an induced 

change in network structure (and parameter values) alters profits and creates a tradeoff that 

depends on the likelihood of a network remaining intact.  

Another natural way to think of an employer interacting with the employee network is 

forming the network is from the ground up. If we continue to think of the network as 

representing complementarities in effort through productive interactions, an employer can 

choose the level of the investment in things such as an office space, holiday parties, 

communication technologies, etc. to enhance the formation of productive relationships among 

her workforce and create a more cohesive network. These investments come with nominal costs 

and conceivably there should be some level of investment that is optimal for her to undertake.  

We explore this scenario below by building on an additional stage to the presented model and 

provide an example of how this can be used.  

V  Investing in Network Formation 

The analysis in the model in Section IV corresponds to a single materialized network.  

The employer may be able to exert control or invest in the network to influence the 

shape/connectivity of the network and yield potentially higher profits (depending on the cost to 

change the network).  In Section IV, we characterized the firm and the employees’ response for 

any given fixed network 𝒈.  We now model a prior stage in which the firm makes costly 

investments to influence the formation of 𝒈 which potentially yields many different fixed 

networks (such as the example presented in section V). After this stage, the game proceeds as 

previously modeled, with the firm setting wages after observing the network, and workers then 

choosing effort. More explicitly we classify the stage in the following way: 

Investment Stage The principal chooses investment level vector 𝒙, with elements 𝑥𝑖𝑗 ,  in the 

feasible set of investment strategies 𝑿,  at marginal cost 𝑄 to maximize expected profits. The 

investment influences the probability of link formation in network 𝒈 through function 𝑝(𝒙). The 
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function 𝑝(𝒙)  maps investment levels, 𝑥𝑖𝑗 to probabilities of the formation of link 𝑔𝑖𝑗, i.e. 𝑝𝑖𝑗. 

Given a resulting profit from stage 2, 𝜋,  The employer solves the following problem:  

max
𝒙𝜖𝑿

𝐸[ 𝜋] − 𝐼𝒙 

Clearly, if the employer could choose the network directly, they would choose the 

network that provides him the highest profit. This is easily verified as the complete network in 

which a link exists between each pair of workers.  However, suppose connection formation to be 

probabilistic, rather than the deterministic.  In other words, an employer may force a set of 

employees to work together, but whether their work becomes complementarity requires an 

overlapping of skills, personality traits, developing friendships/better working relationships, type 

of work etc. Relating this to flexible work, we assume that an employer can invest in 

technologies that enhance the likelihood that co-workers can discover and benefit from these 

complementarities.  For example, providing work laptops with meeting software such as skype, 

company cell phones, paying for an office space (rent, electricity, etc.) where individuals can 

come to work, providing a gym at the office so employees can spend leisure hours together, 

financing company parties/get togethers etc. are taken to represent a gradient of spending that 

increases the likelihood of forming connections that lead to complementarities. Research has 

shown that a critical drawback from utilizing flexible work arrangements is that of decreased 

employee interactions and potentially isolation.  This suggests a mechanism where the firm can 

foster connections between employees, which require costly investments. 

Consider a setting with 3 players: A, B, C. There are several ways in which these players 

could interact. A with B only. A with B and C but no connection between B and C. All three 

players interact, etc. Given each of the network we can solve for an associated total effort level, 

and total profit that is given by equation (2) for each possible configuration (Figure 3.4 in the 

Example section below provides a visual representation). If these players share common 

parameter values or the connections strength between them are identical then some of the 

networks are functionally identical.  For instance, if players A, B, and C all have identical 

parameters and connection strength then there is no difference in (total) profit or efforts if only A 

and B share a link as opposed to only B and C.  The distributions amongst the players may differ, 

but from the principal’s perspective, the differences are relevant. More generally, players can be 
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classified according to their centrality measures, and any network with an identical centrality 

matrix will have equivalent profits.    

It is important to note that this does not imply that networks with an equivalent number of 

links have equivalent profits.  In fact, along the lines of other research, the shape of the network 

critically impacts on the associated profits. This is not, however, the focus of this paper.  Taking 

the relationship between centrality and profit a step further, adding links to a network strictly 

increases profits when wages can be set differentially.  This conclusion is drawn from Lemma 2: 

Lemma 2:  The weighted sum of the profits, 𝜋𝑚, is strictly increasing in m;  𝜋𝑎 > 𝜋𝑏 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 >

𝑏  𝑎, 𝑏 ∈ {1,𝑀} 

where M is the total number of possible connections52 between n employees and m is the number 

of connections on a network 𝒈. 𝑚 ∈ {0,𝑀}. Lemma 2 follows from the fact that for any network 

initial network by adding a connection to the network you weakly increase the centrality of all 

members of the network. When the centrality is increased, the employer can keep wages the 

same and receive higher output as increased centralities lowers effort cost through 

complementarities.53 Thus, the employer can be no worse off from an increase in links. Further, 

any network with m+1 connections can be built by adding a link to a network with 𝑚 

connections, therefore the weighted average must be larger.  

We will use the idea of weighted profit to characterize the investment stage of the model. 

Define the function, 𝜋𝑚 is defined by a weighted averaged of the profits of different networks 𝒈  

that have 𝑚 connections, 𝒈𝑚.  Let there be 𝑠 unique network configurations 𝒈𝒎 with 

𝑚 connections that have associated Bonacich centrality vector 𝜷(𝒈, 𝜆).  Let 𝑡 be the number of 

networks that have each configuration 𝑠. Let T be the total number of networks with connections 

𝑚.   Further  𝜋𝑚𝑠  is the profit associated with the 𝑠 configuration with 𝑚 connections.  Thus, the 

weighted profit associated with 𝑚 connections is: 

    𝜋𝑚 =
1

𝑇
∑𝑡 ∗ (𝜋𝑚𝑖 

)

𝑠

𝑖=1

 

 
52 M is given by = (

𝑛
2
) =

𝑛(𝑛−1)

2
 

53 It is important to note that this is not necessarily true in the presence of substitutability.  
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In terms of the model, we assume that the principal can invest in technology 𝑥 at price 𝐼 to 

influence the probability links forming. Any individual link 𝑔𝑖𝑗 has 𝑝 probability of forming.  

Thus, a binomial distribution appropriately represents the probability of a network configuration 

forming with 𝑚 links from 𝑛 players.  

𝑃 = 𝑝𝑚(1 − 𝑝)
(𝑛)(𝑛−1)

2
−𝑚         

 Or, 

𝑃 = 𝑝𝑚(1 − 𝑝)𝑀−𝑚                                                                    (7) 

 

For example, in a 3-person network, the maximum number of links that can be formed is 

(
𝑛
2
) = 3.  The probability that a link forms is 𝑝, thus the probability that each link forms is 𝑝 ∗

𝑝 ∗ 𝑝 = 𝑝3.  The probability that no links form is (1 − 𝑝)3. The probability that a certain 1-link 

network configuration forms is 𝑝1(1 − 𝑝)2 and so on. For our consideration, the probability of 

any 1-link network forming is: 

(
3
1
) 𝑝1(1 − 𝑝)2 =

3!

3 − 1! 1!
𝑝1(1 − 𝑝)2 = 3𝑝(1 − 𝑝)2 

or more generally,  

(
𝑛
𝑚
)𝑝𝑚(1 − 𝑝)

(𝑛)(𝑛−1)
2

−𝑚
 

For the future examples we use the logistic function, 𝑃(𝑥) = 1 − 𝑒−𝛽𝑥. This has 𝑆-shape 

characteristics such that the first investment in 𝑥 provides small increases in probability of 

formation, then beings to increase convexly. After sufficient investment, the ability to translate 

investment into substantial increases in connectivity decrease. E.g. moving from no office to an 

office compared with already having an office space and undertaking team-building activities.  

Putting these aspects together an employer can maximize expected profit, 𝜋𝑒.  The firm 

pays cost 𝐼𝑥 to influence the formation of networks. The profit resulting from the investment 

contains all possible networks 𝐺 which form with probability, 𝑝𝐺 and have given profit 𝜋𝐺 . Thus, 

the equation can be expressed as: 
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max
𝑥
𝜋 = ∑ 𝑃𝑚(𝑥)𝜋𝑚

𝑀

𝑚=0

− 𝐼𝑥 

which can be rewritten as  

max
𝑥
𝜋 = (∑ 𝜋𝑚 (

𝑀
𝑚
)𝑝(𝑥)𝑚(1 − 𝑝(𝑥))𝑀−𝑚

𝑀

𝑚=0

)   − 𝐼𝑥 + 𝜇𝐼                            (8) 

 

where 𝜋𝑚 is the weighted profit function from above.  

Solving yields, 

0 = ∑ (𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (𝑝(−𝑥)𝑀−(𝑚−1)𝑝(𝑥)𝑚)𝑀

𝑚=1 − 𝐼                              (9)  

The summation term is the marginal benefit of increasing investment in 𝑥.  The benefit is derived 

from the probabilistic increase of adding connections and increasing centrality.  Thus, the change 

in probability from the term (𝜋𝑚 − 𝜋(𝑚−1)) is strictly positive. The rest of the terms 

𝑚(
𝑀
𝑚
) (𝑝(−𝑥)𝑀−(𝑚−1)𝑝(𝑥)𝑚 are strictly positive and, marginal cost is constant and equal to 𝐼. 

Thus, the unique optima of the objection function are implicitly defined by equation (5).  

Uniqueness and existence criteria are provided in the Appendix.  

V.A  Application of Investment in Network Formation 

We will now put the third stage to work and provide a numerical example of the three-

stage model to generate qualitative insights on how an employer sets wages and invests in 

connections among her work force. For simplicity, we restrict the analysis to a network of three 

employees. We again compare both a symmetric and asymmetric network. Further, we will show 

how the optimal total investment in network complementarities changes in response to changes 

in model parameters. In each case, we present both the results when the employer sets a 

homogenous wage and is free to set the wage individually.  

 For this application, the parameters of the model are set to 𝜙 = 2, 𝑎𝑖 = 𝑎 = 1, 𝛿𝑖 = 𝛿 =

3, 𝐼 = .01.  This sets the marginal investment cost is set to .01.  We first start with a symmetric 
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network such that 𝛾𝑖𝑗 = 𝛾𝑗𝑖 = 1.  The number of undirected networks that can be formed from 

any 𝑛 nodes are equal to 2
𝑛(𝑛−1)

2 . In this example, the total number of possible networks is 8. Due 

to the symmetry assumptions and number of players in the example, the profit associated with a 

network with 𝑦 number of connections is identical. Therefore, we have four representative 

networks shown in Figure 3.1.  

The solutions to the optimal wage and effort choices given by Equations (2) and (4) 

represent the solution for each of the above networks. For demonstration, we show the results for 

Network 2 (N2) listed in Figure 3.4. In this case there are two connections in the network and 

Employee 2 functions as the center of the line. Due to the symmetry conditions, any other two-

player network would yield identical results with different employees serving the central role.  

When the employer is restricted to offering a homogenous wage, the optimal solutions is 

setting wage 𝜔𝑁2 = 1.5. The effort vector is 𝑒𝑁2 = [𝑒1, 𝑒2, 𝑒3] ≈ [.1029, 0.1176, 0.1029]. With 

the linear production function, effort is directly converted to output and the optimal profit is the 

sum over the workers of the difference between the selling price, 2, and the wage multiplied by 

the amount of effort giving 𝜋𝑁2 ≈ .1618.  From (5) we know that the optimal wages do not 

depend on the network structure when the adjacency networks are symmetric (i.e. 𝑔𝑖𝑗 = 𝑔𝑗𝑖). 

This means that the optimal values are identical when wages can be set freely. Repeating this 

exercise for each of the possible networks results in a vector of profits across the possible 

network formations: 𝜋 = [𝜋𝑒𝑚𝑝𝑡𝑦, 𝜋𝑁1, 𝜋𝑁2, 𝜋𝑁3] = [. 125, .142, .162, .188].   

Incorporating the employer’s investment choice in the probability of link(network) formation 

results in the explicit expected profit equation below: 

𝐸[𝜋] = 𝜋𝑒𝑚𝑝𝑡𝑦(1 − 𝑝(𝑥))
3
+ 3𝜋𝑁1(1 − 𝑝(𝑥))

2
𝑝(𝑥) + 3𝜋𝑁2(1 − 𝑝(𝑥))𝑝(𝑥)

2 + 𝜋𝑁3𝑝(𝑥)
3

− 𝐼𝑥 

The employer optimizes this function with respect to investment choice 𝑥. While increasing 𝑥 

increases the chance of more complete networks, and higher profits, it requires payment of 

marginal investment cost 𝐼.  From this equation it is apparent that the larger the gap in profit 

between less connected and more connected networks critically defines the level of investment. 

This gap will depend on the underlying parameters in the model and the ability of the employer  
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Figure 3.4.  Possible Network Structures with 3 players 
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to exploit the network structure to increase profits.  The above equation yields optimum 

investment choice, 𝑥 = 2.44  corresponding to a probability of link formation 𝑝(𝑥) =.705.  The 

expected profit is .142 and total investment in network formation  𝐼𝑥=.024.   

 The total expenditure in this constitutes between 3.3-4.9% of the total revenue for the 

employer, depending on the resultant network structure and 14.16% of expected profits.  While 

the expenditures can represent more than just office space rental these percentages fall within 

common suggested rent-to-revenue ratios of 2-20% depending on industry (citation). Clearly, the 

percentage of expenditures relative to revenue/profit depends heavily on the parameter values 

and network structure chosen in the model, but this type of analysis demonstrates one potential 

use of the model.   

 We now alter the example to examine how an asymmetric network affects the solution. 

Keeping the model parameters identical, we alter the adjacency matrix to be asymmetric such 

that the optimal freely set wage will vary between individuals based on network position.    Let 

the adjacency matrix be the following: 

𝐺 = [

0 2 1/2
1/2 0 1/2
1/2 2 0

] 

In the case of a complete network. This 𝐺 matrix describes a situation where Employee 2 has 

four times the impact on Employees 1 and 3, holding the sum of total influences ∑ ∑ 𝑔𝑖𝑗𝑗𝑖  the 

same provides a reasonable comparison. 

 Optimal wages and efforts will now vary based on network position, in addition the 

profits associated with a network with 𝑦 connections will now vary. Figure 3.5 displays the 

different possible networks with 2 connections and their associated profits. Note that Network 

2B from Figure 3.5 is functionally identical to a network with a link between Employee 2 and 3 

in lieu of Employee 2 and 1.  Tables 1 and 2 present the solutions the model for each of the 

possible network types along with the optimal investment in link formation and the expected 

profits. From Tables 3.4 and 3.5 we can see optimal investment in the network is lower in the 

asymmetric network environments relative to the symmetric network environments. While this is 
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sensitive to the choice of network connection strength, we can see that the average profit across 

the types of networks with the same number of connections are: 

𝜋𝑠𝑦𝑚 = [𝜋𝑒𝑚𝑝𝑡𝑦, 𝜋𝑁1, 𝜋𝑁2, 𝜋𝑁3] = [. 125, .1417, .1618, .1875] 

𝜋𝑎𝑠𝑦𝑚𝑠𝑖𝑛𝑔𝑙𝑒
= [𝜋𝑒𝑚𝑝𝑡𝑦, 𝜋𝑁1, 𝜋𝑁2, 𝜋𝑁3] = [. 125, .1410, .1595, .1815] 

𝜋𝑎𝑠𝑦𝑚𝑓𝑟𝑒𝑒
= [𝜋𝑒𝑚𝑝𝑡𝑦, 𝜋𝑁1, 𝜋𝑁2, 𝜋𝑁3] = [. 125, .1421, .1627, .1883]  

The profits confirm that the comparisons are quite similar. Moreover, it shows that when 

the network is asymmetric there is a larger penalty to using a single wage for the employer.  

While the differences are small in this example, due to modest changes in the model parameters, 

when the employer can freely set wages, there are gains to the employer from an asymmetric 

network. These gains translate into increased optimal investment in the formation of connections 

between employees. This is due to the ability of the employer to motivate more strongly the 

(relatively) influential employee and take advantage of the impact that the influential employee 

creates on others. In each of the asymmetric cases, there is a possibility for a lower realized 

profit than the symmetric case when the influential employee is not connected to the network.  

This leads us to important conclusion in the difference between being able to freely set wage and 

when the employer is restricted to a single wage, which can be seen by comparing Tables 3.4 and 

3.5. For any given network, in the single wage case, the employer is unable to differentially 

motivate the influential employee, and this results in lower output from this employee and lower 

realized utility for this employee (displayed in Appendix). However, when the employer can 

freely set wages, this is reversed. The employer increases the wage of the influential employee 

relative to the others, and this results higher output and more utility.  

Next, we examine how the optimal investment in network formation changes when 

model parameters vary.  Unless otherwise noted, we retain the asymmetric network and 

parameter values used in the previous example. One natural question that can be answered 

withthe model, is how does the optimal total investment in network generating technologies 

change when the marginal investment cost changes? 
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Table 3.4.  Optimal Values -Single Wage 

Network Wage Effort Vector  Profit 

 𝜔 𝑒𝑖 = [𝑒1, 𝑒2, 𝑒3] 𝜋 

    

𝑁0𝑒𝑚𝑝𝑡𝑦 1.5 [0.083,0.083,0.083] 0.125 

𝑁1(1,2) 1.5 [0.114,0.093,0.083] 0.145 

𝑁1(1,3) 1.5 [0.091,0.083,0.091] 0.133 

𝑁1(2,3) 1.5 [0.083,0.093,0.114] 0.145 

𝑁2(1,2),(1,3) 1.5 [0.122,0.094,0.094] 0.155 

𝑁2(1,2),(2,3) 1.5 [0.118,0.103,0.118] 0.169 

𝑁2(1,3),(2,3) 1.5 [0.094,0.094,0.122] 0.155 

𝑁3𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 1.5 [0.129,0.105,0.129] 0.181 

    

Investment - 𝑥  
  

2.169 

Probability - 𝑝(𝑥) 
  

0.662 

Expenditure - 𝐼𝑥 
  

0.022 

Expected Profit - 𝐸[𝜋] 
  

0.138 

Expenditure % of Revenue 
  

2.9-4.3% 

Note: Listed numbers in the parentheses in the network column are the links present between each player type listed 

in Figure 3.4.  Expenditure percentage revenue is calculated based on the expenditure divided by the range of 

realized revenues across each network type. 
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Table 3.5.  Optimal Values-Freely Set Wages 

Network Wage Effort Vector  Profit 

 𝜔𝑖 = [𝜔1, 𝜔2, 𝜔3] 𝑒𝑖 = [𝑒1, 𝑒2, 𝑒3] 𝜋 

    

𝑁0𝑒𝑚𝑝𝑡𝑦 [1.500,1.500,1.500] [0.083,0.083,0.083] 0.125 

𝑁1(1,2) [1.421,1.579,1.500] [0.105,0.105,0.083] 0.147 

𝑁1(1,3) [1.500,1.500,1.500] [0.091,0.083,0.091] 0.133 

𝑁1(2,3) [1.500,1.579,1.421] [0.083,0.105,0.105] 0.147 

𝑁2(1,2),(1,3) [1.420,1.585,1.500] [0.113,0.107,0.093] 0.157 

𝑁2(1,2),(2,3) [1.403,1.665,1.403] [0.11,0.129,0.11] 0.175 

𝑁2(1,3),(2,3) [1.500,1.585,1.420] [0.093,0.107,0.113] 0.157 

𝑁3𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 [1.400,1.682,1.400] [0.121,0.134,0.121] 0.188 

    

Investment - 𝑥  
  

2.458 

Probability - 𝑝(𝑥) 
  

0.707 

Expenditure - 𝐼𝑥 
  

0.025 

Expected Profit - 𝐸[𝜋] 
  

0.141 

Expenditure % of Revenue 
  

3.3-4.9% 

Note: Listed numbers in the parentheses in the network column are the links present between each player type listed 

in Figure 3.4.  Expenditure percentage revenue is calculated based on the expenditure divided by the range of 

realized revenues across each network type. 
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Figure 3.5.  Possible Types of 2-Link Networks-Asymmetric Networks 
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This scenario represents a potential response to a change in network building and 

communication technologies such as e-mail or Zoom. Technologies that foster connections 

between employees at lower costs should generate higher complementarities among those 

employees at lower costs and result in increased connectivity, but the effect on total investment 

in unclear.  It may be the case the decreased cost of investment is completely offset by the 

increase in investment. This is similar to the relationship between a monopolist’s pricing 

decision and elasticity of demand. Figure 3.6 shows how the total expenditure in network 

forming activities change. 

The figure shows a distinctly nonlinear relationship. Shown in the Appendix is that the 

probability of link formation decreases, at an increasing rate, as marginal investment cost rises.  

Thus, we can see that when marginal investment costs it is relatively inexpensive for the 

employer to achieve high levels of connectivity. As the investment cost rises, the employer seeks 

to increase expenditure to maintain high levels of connectedness. As the cost continues to rise, 

expenditure eventually drops. This is caused by the conversion of investment, 𝑥, into probability 

of link formation 𝑝(𝑥), which can be recalled as 1 − 𝑒−𝛽𝑥, 𝛽 = .5 . However the decreasing rate 

of change in investment expenditure remains.  More figures are displayed in the Appendix with 

varied 𝛽. 

Naturally, the choice of investment in network building depends on a multitude of 

factors. The example presented in this section and Section V hopefully provides an illustration of 

the value of applying a network model to thinking about employer and employee relationships 

when it comes to telecommuting arrangements. 

VI  Conclusion 

 The model presented above highlights the intricate tie between the firm and its’ 

employees when it comes to deciding the structure of the work arrangements, in terms of 

flexibility and telecommuting, that has been relatively under researched. While there has been 

ample research showing the benefits (sometimes costs) of telecommuting on the employees, the 

importance of studying how those arrangements affect the firm has not been studied.   Drawing 

on framework of network models of interactions we provide a new tool to study the explicit  
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Figure 3.6. Optimal Investment Expenditure 
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effects of networks of complementarities among employees in a firm and how a firm may invest 

to influence that network of complementarities. 

By highlighting the ability of the firm to influence the network of their employees we can 

show how increased investment expenditure in network formation technologies can improve 

profitability for firms.  We show that it is more advantageous for a firm to invest in network 

building technologies when the network is asymmetric, and they can freely set wages to 

differentially motivate individual workers.  Further, we showed that the change in optimal 

investment in these technologies as advances are made is nonlinear and depend on the underlying 

characteristics of the model.  Finally, we showed that profitability is gained by allowing some 

workers to telecommute if their effort costs are significantly reduced but only when there 

remains a sizable core of connected employees. 

One drawback of this study is the inability to generate analytical results for the 

investment stage of the model, thus limiting the generalizability of the results. It may be the case 

that there are alternative objective functions for this stage that generate more generalizable 

results and is a potential avenue for future research. The investment stage also relates to the 

pricing problem framed by the original model as a firm can potentially alter the connectivity of 

the consumption network through practices such as advertising.  

 The above insights are primarily drawn from considering how the firm makes decisions 

regarding offering alternative working arrangements. This appears to be of critical importance 

when studying telecommuting and flexible work arrangements. The connection between this the 

presented theoretical model and telecommuting behaviors can provide a useful tool when 

considering problems in this area of research. One may also consider applying the model 

empirically. The most difficult challenge is finding a suitable representation of the network of 

complementarities. Recent research on the use of Enterprise Social Networks may yield such a 

dataset.  Careful consideration should be given in regard the network of interactions, 

information/knowledge transfer, institutional structure, and other important organizational details 

and how they translate to complementarities in production among employees.  The network data 

could then be married with more easily observed wage or productivity data to test the 

implications of the model. Hopefully, this paper will provide a first step toward the integrating of 

principal-agent modelling in telecommuting and flexible work research. 
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 A  Appendix-Chapter 1  

Tables A.1.1-5 report pairwise Wald test of proportions between treatments. Distributions 

are generated by a pooled OLS regression of each variable on treatment indicators. Observations 

are at the group level in each period. Standard errors are clustered the group level. Tables 

A1.1.6-10 report pairwise 𝜒2 test of proportions between treatment. Distributions are generated 

by a pooled OLS regression with boostrapped standard errors. Observations are again at the 

group level by period. Standard errors are clustered at the group level.  

Table A.1.12 provides the corresponding random effects regression to Table 1.4.  There 

are some econometric concerns with using lagged dependent variables in the random effects 

model. Specifically, there are potential violations of the assumption of no cross-temporaneous 

correlations between the covariates and the error terms. Further, due to a small number of 

observations in certain network sizes and treatments which does not permit adequate sample 

sizes for bootstrapping, thus due to the small number of clusters, there is potential 

misspecification with the random effects model. 

Table A.11 provides the corresponding fixed effects regression to Table 1.4.  There are 

some econometric concerns with using lagged dependent variables in the random effects model. 

Specifically, there are potential violations of the assumption of no cross-temporaneous 

correlations among the covariates in the error terms.  However, the fixed effects model does not 

allow use of the type variables defined by the pre-experiment preference elicitation. Table A.12 

provides an alternative specification with network size indicators. 

Table A.13 provides an alternative specification to Table 1.5 with the removal of the 

variable derived from the pre-experiment Ultimatum Game preference elicitation and using a 

fixed effect panel regression. Tables A.14-A.16 provides additional alternative specifications. 

Table A.1.14 provides an alternative specification to Table 1.6 with the inclusion of indicators 

for the relationship between the proposer and proposee. For example, FreeCond indicates that 

the proposer is classified as a Free Rider and the proposee is the Conditional Cooperator.  Some 

additional specifications for Table 1.7 are also provided along with regressions for link proposals 

as opposed to established links.  Reported results are the coefficients in a probit model, marginal 

effects are not shown. Figure A.1 shows the two missing treatments from Figure 1.2. Figures A.2 
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and A.3 correspond with Table 1.4.  Figure A.2 shows the max connections and max 

contributions for each group. Figure A.3 shows the group contributions and connections in the 

final period. Figures A.4 and A.5 show the proportions for each treatment type corresponding to 

Figure 1.3.  
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Table A.1. Group Contributions by Treatment: Wald Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 4.69** 0.24 0.66 0.68 

 (.035) (.625) (.422) (.413) 

     

Complete  6.01** 0.58 0.50 

  (.018) (.451) (.481) 

     

LB-0   1.30 1.32 

   (.261) (.257) 

     

LB-2    0.00 

    (.977) 

     
Note: Reported statistics are F-test values for Wald Tests comparison of group averages between treatments. Test 

statistics are generated from a pooled OLS regression clustered with standard errors at the group level where each 

group is observed over 20 periods. p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

Table A.2. Group Punishment by Treatment: Wald Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 14.40*** 10.27*** 7.79*** 13.43*** 

 (.000) (.002) (.008) (.000) 

     

Complete  11.47*** 3.94* 3.42* 

  (.001) (.053) (.071) 

     

LB-0   4.18** 7.69*** 

   (.047) (.008) 

     

LB-2    0.09 

    (.768) 

     
Note: Reported statistics are F-test values for Wald Tests comparison of group averages between treatments. Test 

statistics are generated from a pooled OLS regression with standard errors clustered at the group level where each 

group is observed over 20 periods. p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.3. Links Formed in Each Group by Treatment: Wald Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 2.20e32*** 4.30** 27.94*** 81.59*** 

 (.000) (.044) (.000) (.000) 

     

Complete  278.58*** 24.40*** 7.33*** 

  (.000) (.000) (.009) 

     

LB-0   13.31*** 43.00*** 

   (.001) (.000) 

     

LB-2    3.79** 

    (.058) 

     
Note: Reported statistics are F-test values for Wald Tests comparison of group averages between treatments. Test 

statistics are generated from a pooled OLS regression with standard errors clustered at the group level where each 

group is observed over 20 periods. Empty and Complete treatments have fixed values of 0 and 6 connections, 

respectively.   p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

Table A.4. Group Efficiency by Treatment: Wald Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 3.19* 0.95 0.42 0.59 

 (.080) (.333) (.520) (.446) 

     

Complete  1.35 0.91 0.68* 

  (.251) (.345) (.415) 

     

LB-0   0.00 0.02 

   (.988) (.877) 

     

LB-2    0.01 

    (.908) 

     
Note: Reported statistics are F-test values for Wald Tests comparison of group averages between treatments. Test 

statistics are generated from a pooled OLS regression with standard errors clustered at the group level where each 

group is observed over 20 periods. p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.5. Link Proposals in Each Group by Treatment: Wald Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 1.82e30*** 24.62*** 69.92*** 192.07*** 

 (.000) (.000) (.000) (.000) 

     

Complete  138.64*** 17.75*** 5.94** 

  (.000) (.000) (.019) 

     

LB-0   13.72*** 41.84*** 

   (.000) (.000) 

     

LB-2    3.41* 

    (.071) 

     
Note: Reported statistics are F-test values for Wald Tests comparison of group averages between treatments. Test 

statistics are generated from a pooled OLS regression with standard errors clustered at the group level where each 

group is observed over 20 periods. Empty and Complete treatments have fixed values of 0 and 12 link proposals, 

respectively p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

Table A.6. Group Contribution Variance by Treatment: 𝜒2 Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 0.21 0.67 2.75* 4.67** 

 (.644) (.415) (.097) (.031) 

     

Complete  0.03 1.85 2.86* 

  (.859) (.174) (.091) 

     

LB-0   1.77 2.90* 

   (.183) (.089) 

     

LB-2    0.00 

    (.989) 

     
Note: Reported statistics are pairwise test statistic values for chi-squared tests of equivalent proportions of group 

averages between treatments. Test statistics are generated from a pooled OLS regression with standard errors 

clustered at the group level using bootstrapped standard errors where each group is observed over 20 periods. p-

values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 



131 

 

Table A.7. Group Punishment Variance by Treatment: 𝜒2Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 5.68** 13.69*** 5.63** 15.67*** 

 (.017) (.000) (.018) (.000) 

     

Complete  4.91** 2.14* 1.53* 

  (.027) (.143) (.216) 

     

LB-0   3.54* 10.93*** 

   (.060) (.000) 

     

LB-2    0.34 

    (.559) 

     
Note: Reported statistics are pairwise test statistic values for chi-squared tests of equivalent proportions of group 

averages between treatments. Test statistics are generated from a pooled OLS regression with standard errors 

clustered at the group level using bootstrapped standard errors where each group is observed over 20 periods. p-

values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

Table A.8. Links Formed Variance by Treatment: 𝜒2Test  

 LB-0 LB-2 LB-4 

    

Empty 4.68** 21.37*** 4.65** 

 (.031) (.000) (.031) 

    

LB-0  7.39*** 1.69 

  (.005) (.194) 

    

LB-2   0.26 

   (.611) 

    
Note: Reported statistics are pairwise test statistic values for chi-squared tests of equivalent proportions of group 

averages between treatments. Test statistics are generated from a pooled OLS regression with standard errors 

clustered at the group level using bootstrapped standard errors where each group is observed over 20 periods. 

Empty treatment is set to 0 variance. p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.9. Group Efficiency Variance by Treatment: Wald Test  

 Complete LB-0 LB-2 LB-4 

     

Empty 6.13** 3.20* 8.50*** 18.18 

 (.013) (.074) (.004) (.000) 

     

Complete  4.63** 0.42 0.12 

  (.031) (.516) (.728) 

     

LB-0   5.56** 12.50*** 

   (.018) (.000) 

     

LB-2    0.24 

    (.626) 

     
Note: Reported statistics are pairwise test statistic values for chi-squared tests of equivalent proportions of group 

averages between treatments. Test statistics are generated from a pooled OLS regression with standard errors 

clustered at the group level using bootstrapped standard errors where each group is observed over 20 periods. p-

values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

Table A.10. Link Proposals in Each Group by Treatment: Wald Test  

 LB-0 LB-2 LB-4 

    

Empty 18.37*** 11.95*** 3.42* 

 (.000) (.000) (.065) 

    

LB-0  1.09 0.00 

  (.297) (.969) 

    

LB-2   0.61 

   (.434) 

    
Note: Reported statistics are pairwise test statistic values for chi-squared tests of equivalent proportions of group 

averages between treatments. Test statistics are generated from a pooled OLS regression clustered at the group 

level using bootstrapped with standard errors standard errors where each group is observed over 20 periods. Empty 

treatment is set to 0 variance. p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.11. Individual Contributions by Treatment:Random Effects-No Lag 

 Dependent Variable: Group Contributions 

 LB-0 LB-2 LB-4 

    

GroupConnections 0.582 2.704** 1.846 

 (0.977) (0.865) (1.082) 

    

Constant 10.34*** 6.486** 6.472 

 (0.648) (2.683) (4.995) 

    

Observations 190 197 180 

R-squared 0.007 0.274 0.156 
Note: Regression is fixed effects panel data model with standard errors clustered at the group level. 

GroupConnections describes the total number of links for each group (0 to 6). The number of clusters is equal to the 

number of groups in each treatment (9 to 10) the reported standard errors are in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1 
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Table A.12. Individual Contributions by Treatment: Random Effects-No Lag 

 Dependent Variable: Contributions 

 Complete LB-0 LB-2 LB-4 Empty 

      

PGChoice 0.214* 0.252*** 0.171* 0.536*** 0.751*** 

 (0.116) (0.082) (0.094) (0.121) (0.181) 

      

TotalPunishInLag -0.00997 -0.255*** -0.045 -0.008  

 (0.038) (0.063) (0.038) (0.030)  

      

NeighborhoodSize  0.753*** 0.598*** 0.592***  

  (0.165) (0.186) (0.226)  

      

GroupAveLag 0.629*** 0.537*** 0.566*** 0.605*** 0.400*** 

 (0.191) (0.090) (0.145) (0.106) (0.078) 

      

Period 0.036 -0.001 -0.013 -0.018 -0.017 

 (0.023) (0.019) (0.025) (0.020) (0.015) 

      

Constant 0.595 0.0602 0.241 -1.71*** -0.941* 

 (0.751) (0.534) (0.704) (0.467) (0.545) 

      

Observations 680 720 748 684 684 

Number of SubjectID 40 40 40 36 36 
Note: Regression is a random effects panel data model with standard errors clustered at the group level. 

NeighborhoodSize describes the total number of links for each subject (0 to 3). The number of clusters is equal to 

the number of subjects divided by 4 and the reported bootstrapped standard errors are in parentheses. *** p<0.01, 

** p<0.05, * p<0.1 
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Table A.13. Contributions by Treatment: Network Size Indicators  

 Dependent Variable: Contribution 

 LB-0 LB-2 LB-4 

    

PunishInLag -0.255*** -0.037 -0.027 

 (0.061) (0.037) (0.022) 

    

1.NeighborhoodSize 1.004** 0.837** 2.051*** 

 (0.398) (0.387) (0.667) 

    

2.NeighborhoodSize 1.508*** 1.590*** 2.525*** 

 (0.282) (0.408) (0.634) 

    

3.NeighborhoodSize 2.431*** 1.864*** 2.453*** 

 (0.184) (0.473) (0.593) 

    

GroupAveLag 0.529*** 0.596*** 0.655*** 

 (0.083) (0.097) (0.089) 

    

Period -0.000 -0.010 -0.007 

 (0.018) (0.017) (0.015) 

    

Constant 1.063*** 0.551* -0.803 

 (0.403) (0.331) (0.663) 

    

Observations 720 748 684 

Number of SubjectID 40 40 36 
Note: Regression is a random effects panel data model with standard errors clustered at the group level. 

NeighborhoodSize describes the total number of links for each subject (0 to 3). The number of clusters is equal to 

the number of subjects divided by 4 and the reported standard errors are in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1 
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Table A.14. Individual Contributions by Treatment: Fixed Effects  

 Dependent Variable: Contributions 

 Complete LB-0 LB-2 LB-4 Empty 

      

ContLag 0.349*** 0.091 0.383*** 0.272*** 0.005 

 (0.047) (0.063) (0.066) (0.089) (0.058) 

      

TotalPunishInLag 0.0419* -0.250*** -0.054 -0.004  

 (0.024) (0.067) (0.050) (0.029)  

      

NeighborhoodSize  0.429* 0.193 0.516***  

  (0.252) (0.172) (0.138)  

      

GroupAveLag 0.430*** 0.455*** 0.364*** 0.448*** 0.348*** 

 (0.071) (0.144) (0.105) (0.065) (0.087) 

      

Period 0.022** -0.003 -0.005 -0.018 -0.020 

 (0.010) (0.014) (0.018) (0.015) (0.018) 

      

Constant 0.739*** 1.152** 0.748 0.051 2.13*** 

 (0.282) (0.510) (0.483) (0.399) (0.779) 

      

Observations 680 720 748 684 684 

R-squared 0.374 0.125 0.358 0.313 0.066 
Note: Regression is a fixed effects panel data model with standard errors clustered at the group level. 

NeighborhoodSize describes the total number of links for each subject (0 to 3). The number of clusters is equal to 

the number of subjects divided by 4 and the reported bootstrapped standard errors are in parentheses. *** p<0.01, 

** p<0.05, * p<0.1 
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Table A.15. Punishment by Treatment: Fixed Effects – Established Links Only  

 Dependent Variable: PunishOut 

 Complete LB-0 LB-2 LB-4 

     

 Contribution 0.042** -0.009 -0.016 -0.030*** 

 (0.020) (0.138) (0.017) (0.011) 

     

PunishedByLag 0.109*** 0.102 0.081 0.154*** 

 (0.036) (0.381) (0.051) (0.059) 

     

PunishOutLag 0.228*** 0.131 0.053 0.176** 

 (0.039) (0.356) (0.041) (0.089) 

     

OtherPlayerCont -0.024 -0.035 0.015 0.010 

 (0.021) (0.321) (0.018) (0.022) 

     

OtherPlayerAveDev -0.023 -0.006 -0.026*** -0.033** 

 (0.015) (0.259) (0.010) (0.015) 

     

     

LinkCreated  0.184 0.022 0.272** 

  (0.387) (0.030) (0.119) 

     

Period -0.007 0.001 -0.005* 0.002 

 (0.005) (0.015) (0.003) (0.003) 

     

Constant 0.150 0.353 0.220** 0.150** 

 (0.139) (0.626) (0.100) (0.067) 

     

Observations 2,040 228 1,166 1,598 

R-squared 0.140 0.077 0.035 0.096 
Note: Regression is a fixed effect panel regression with standard errors clustered at the group level. Dependent 

variable is in tokens spent (0-2). The number of clusters is the number of groups per treatment (9-10).   

Bootstrapped standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.16. Punishment by Treatment: Fixed Effects – All Observations 

 Dependent Variable: PunishOut 

 Complete LB-0 LB-2 LB-4 

     

Effort 0.039* -0.001 -0.004 -0.004 

 (0.023) (0.002) (0.012) (0.017) 

     

PunishedByLag 0.131*** 0.087** 0.182*** 0.158** 

 (0.040) (0.044) (0.070) (0.064) 

     

OtherPlayerCont -0.017 -0.003 0.009 0.029 

 (0.024) (0.003) (0.015) (0.018) 

     

OtherPlayerAveDev -0.034* 0.002 -0.000 -0.045*** 

 (0.019) (0.003) (0.017) (0.017) 

     

LinkCreated  0.682*** 0.357** 0.466*** 

  (0.223) (0.142) (0.165) 

     

Period -0.009 -0.002** -0.002 0.001 

 (0.005) (0.001) (0.003) (0.003) 

     

Constant 0.194 0.031* 0.055 -0.045 

 (0.159) (0.019) (0.047) (0.087) 

     

Observations 2,040 2,160 2,244 2,052 

R-squared 0.091 0.264 0.092 0.115 
Note: Regression is a fixed effect panel regression with standard errors clustered at the group level. Dependent 

variable is in tokens spent (0-2). The number of clusters is the number of groups per treatment (9-10).   

Bootstrapped standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.17. Punishment by Treatment: Fixed Effects – Established Links Only No Lag  

 Dependent Variable: PunishOut 

 Complete LB-0 LB-2 LB-4 

     

Effort 0.039* -0.014 -0.015 -0.032** 

 (0.023) (0.091) (0.017) (0.014) 

     

PunishedByLag 0.131*** 0.096 0.084* 0.178*** 

 (0.040) (0.270) (0.050) (0.064) 

     

OtherPlayerCont -0.017 -0.040 0.014 0.013 

 (0.024) (0.120) (0.018) (0.022) 

     

OtherPlayerAveDev -0.034* -0.004 -0.026*** -0.038*** 

 (0.019) (0.087) (0.010) (0.014) 

     

LinkCreated  0.122 0.007 0.224** 

  (0.139) (0.036) (0.108) 

     

Period -0.009 0.001 -0.005* 0.002 

 (0.005) (0.015) (0.003) (0.003) 

     

Constant 0.194 0.426 0.232** 0.172*** 

 (0.159) (0.493) (0.103) (0.066) 

     

Observations 2,040 228 1,166 1,598 

R-squared 0.091 0.071 0.033 0.074 
Note: Regression is a fixed effect panel regression with standard errors clustered at the group level. Dependent 

variable is in tokens spent (0-2). The number of clusters is the number of groups per treatment (9-10).   

Bootstrapped standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.18. Punishment by Treatment: Fixed Effects – All Observations  

 Dependent Variable: PunishOut 

 Complete LB-0 LB-2 LB-4 

     

Effort 0.042** -0.001 -0.003 -0.004 

 (0.020) (0.002) (0.011) (0.014) 

     

PunishedByLag 0.109*** 0.057 0.101*** 0.106** 

 (0.036) (0.058) (0.038) (0.051) 

     

PunishOutLag 0.228*** 0.083 0.347*** 0.187*** 

 (0.039) (0.078) (0.093) (0.055) 

     

OtherPlayerCont -0.024 -0.002 0.009 0.024 

 (0.021) (0.003) (0.014) (0.016) 

     

OtherPlayerAveDev -0.023 0.002 -0.003 -0.037** 

 (0.015) (0.003) (0.014) (0.015) 

     

LinkCreated  0.686*** 0.396*** 0.492*** 

  (0.223) (0.145) (0.172) 

     

Period -0.007 -0.001** -0.000 0.002 

 (0.005) (0.001) (0.002) (0.003) 

     

Constant 0.150 0.024* 0.005 -0.047 

 (0.139) (0.014) (0.026) (0.075) 

     

Observations 2,040 2,160 2,244 2,052 

R-squared 0.140 0.272 0.207 0.146 
Note: Regression is a fixed effect panel regression with standard errors clustered at the group level. Dependent 

variable is in tokens spent (0-2). The number of clusters is the number of groups per treatment (9-10).   

Bootstrapped standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.19. Links Broken by Treatment  

 Dependent Variable: Link Broken 

 Combined LB-0 LB-2 LB-4 

     

EffortLag -0.020 0.063 -0.097** 0.044 

 (0.034) (0.044) (0.041) (0.052) 

     

PunishedByLag 0.842*** 1.361*** 0.729*** 0.941*** 

 (0.096) (0.186) (0.187) (0.139) 

     

PunishWantedWithLag 0.821*** 1.371*** 0.733*** 0.878*** 

 (0.099) (0.189) (0.189) (0.150) 

     

OtherPlayerLagCont 0.027 -0.082 0.054 0.002 

 (0.034) (0.107) (0.051) (0.080) 

     

FreeFree 0.436 0.310 0.355  

 (0.293) (1.483) (0.263)  

     

FreeCond 0.685** 0.061 0.908*** 0.977 

 (0.295) (1.589) (0.224) (0.998) 

     

CondCond -0.107 -0.196 -0.162 0.083 

 (0.181) (0.519) (0.245) (0.310) 

     

CondFree 0.237 -0.137 0.531** 0.248 

 (0.170) (0.594) (0.260) (0.297) 

     

OtherPlayerLagAveDev -0.041 0.149 -0.142 0.051 

 (0.065) (0.128) (0.091) (0.127) 

     

FreeRide -0.444* -0.135 -0.404** -0.728 

 (0.258) (1.546) (0.200) (0.970) 

     

Period -0.046*** -0.026 -0.044* -0.062*** 

 (0.012) (0.023) (0.023) (0.024) 

     

Constant -1.807*** -2.094*** -1.539*** -1.948*** 

 (0.146) (0.525) (0.223) (0.417) 

     

Observations 6,456 2,160 2,244 1,976 
Note: Regression is a random effects panel data model with standard errors clustered at the group level. 

NeighborhoodSize describes the total number of links for each subject (0 to 3). FreeFree was omitted in the LB-4 

regression due to multicollinearity. The number of clusters is equal to the number of subjects divided by 4 and the 

reported standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.20. Links Proposals by Treatment  

 Dependent Variable: Link Proposed 

 Combined LB-0 LB-2 LB-4 

      

EffortLag 0.036 -0.073** 0.156*** 0.006 

 (0.049) (0.034) (0.031) (0.026) 

     

EffortDiffLag -0.014 0.109** -0.057 -0.023*** 

 (0.065) (0.050) (0.063) (0.009) 

     

PunishedByLag -0.787*** -0.870*** -0.752** -0.842*** 

 (0.188) (0.117) (0.333) (0.206) 

     

LinkEstablishedLag 2.482*** 2.110*** 2.153*** 2.140*** 

 (0.239) (0.421) (0.298) (0.406) 

     

FreeFree -0.387 -0.637*** -0.375 0.639*** 

 (0.511) (0.209) (0.287) (0.053) 

     

FreeCond -0.482*** -1.167*** -0.976* 0.194*** 

 (0.160) (0.328) (0.551) (0.010) 

     

CondCond 0.113 0.067 0.001 0.368*** 

 (0.103) (0.115) (0.309) (0.006) 

     

FreeOther -0.418**  -0.696 0.190 

 (0.205)  (0.444) (0.165) 

     

CondOther 0.011 0.238 0.115 -0.170 

 (0.261) (0.204) (0.208) (0.219) 

     

OtherPlayerLagAveDev -0.007 0.075 -0.003 -0.004 

 (0.043) (0.047) (0.061) (0.006) 

     

Constant -0.577*** -0.520* -0.576* -0.150 

 (0.144) (0.276) (0.301) (0.261) 

     

Observations 6,456 2,141 2,244 2,052 
Note: Regression is a pooled probit model with standard errors clustered at the group level. FreeOther was dropped 

due to insufficient observations in LB-0. The number of clusters is the number of groups per treatment (9-10).   

Bootstrapped standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table A.21. Links Proposed by Treatment-No Types  

 Dependent Variable: LinkProposed 

 Combined LB-0 LB-2 LB-4 

     

ContributionLag 0.092** -0.037 0.195*** 0.039 

 (0.043) (0.040) (0.062) (0.056) 

     

ContDiffLag -0.053 0.076 -0.144** -0.014 

 (0.046) (0.101) (0.070) (0.091) 

     

PunishedByLag -0.532*** -0.541* -0.460*** -0.656*** 

 (0.101) (0.306) (0.116) (0.174) 

     

LinkProposedLag 1.720*** 1.671*** 1.648*** 1.938*** 

 (0.128) (0.308) (0.084) (0.258) 

     

OtherPlayerLagAveDev 0.053 0.123 0.028 0.048 

 (0.045) (0.124) (0.061) (0.083) 

     

Constant -0.793*** -1.380*** -0.950*** 0.074 

 (0.204) (0.170) (0.305) (0.326) 

     

Observations 6,456 2,160 2,244 2,052 

Number of SubjectID 116 40 40 36 
Note: The table is created from the results of a dynamic panel probit regression with binary dependent variable 

equal to 1 when a link was formed between players i and j. The comparison group is two players with types: Other. 

FreeOther was omitted due to a very small number of links <.1% in the second regression. Bootstrap standard 

errors are clustered at the group level and given in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table A.22. Links Established by Treatment  

 Dependent Variable: LinkEstablished 

 Combined LB-0 LB-2 LB-4 

     

ContributionLag 0.096 -0.025 0.184*** 0.041 

 (0.059) (0.089) (0.070) (0.063) 

     

ContDiffLag 0.009 0.228* -0.036 -0.025 

 (0.047) (0.119) (0.071) (0.070) 

     

PunishedByLag -0.622*** -0.733*** -0.482*** -0.758*** 

 (0.096) (0.272) (0.152) (0.117) 

     

LinkEstablishedLag 2.156*** 2.388*** 2.093*** 2.080*** 

 (0.118) (0.509) (0.124) (0.270) 

     

OtherPlayerLagAveDev 0.121** 0.363*** 0.126 0.004 

 (0.053) (0.134) (0.084) (0.096) 

     

Constant -1.493*** -2.276*** -1.580*** -0.364 

 (0.212) (0.269) (0.280) (0.289) 

     

Observations 6,456 2,160 2,244 2,052 

Number of SubjectID 116 40 40 36 
Note: The table is created from the results of a dynamic panel probit regression with binary dependent variable 

equal to 1 when a link was formed between players i and j. The comparison group is two players with types: Other. 

FreeOther was omitted due to a very small number of links <.1% in the second regression. Bootstrap standard 

errors are clustered at the group level and given in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table A.23. Determinants of Established Links by Treatment-Panel  

 Dependent Variable: Link Established 

 Combined LB-0 LB-2 LB-4 

     

ContLag 0.098* -0.026 0.184** 0.051 

 (0.056) (0.085) (0.090) (0.059) 

     

ContDiffLag 0.005 0.225** -0.034 -0.032 

 (0.044) (0.112) (0.092) (0.061) 

     

PunishedByLag -0.632*** -0.744*** -0.514*** -0.749*** 

 (0.096) (0.161) (0.155) (0.115) 

     

LinkEstablishedLag 2.152*** 2.389*** 2.061*** 2.017*** 

 (0.128) (0.426) (0.121) (0.260) 

     

FreeFree 0.388 -0.016 0.645** 0.349 

 (0.391) (0.280) (0.312) (0.295) 

     

FreeCond 0.152 -0.040 -0.279 0.427*** 

 (0.258) (0.270) (0.237) (0.105) 

     

CondCond 0.265 0.245 0.634** 0.107 

 (0.192) (0.303) (0.269) (0.248) 

     

FreeOther 0.381  0.122 0.717* 

 (0.471)  (0.330) (0.424) 

     

CondOther -0.061 -0.045 0.457 -0.493*** 

 (0.253) (0.501) (0.429) (0.134) 

     

OtherPlayerLagAveDev 0.113** 0.355*** 0.128 -0.023 

 (0.049) (0.123) (0.104) (0.076) 

     

Constant -1.637*** -2.342*** -1.869*** -0.436** 

 (0.257) (0.337) (0.340) (0.200) 

     

Observations 6,456 2,141 2,244 2,052 
Note: The table is created from the results of a dynamic panel probit regression with binary dependent variable 

equal to 1 when a link was formed between players i and j. The comparison group is two players with types: Other. 

FreeOther was omitted due to a very small number of links <.1% in the second regression. Bootstrap standard 

errors are clustered at the group level and given in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Figure A.1. Group Contributions by Treatment: Remaining 

 

 

 

 

Figure A.2. Maximum Group Contributions and Network Size 

b) Complete a) LB-0 
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Figure A.3. Group Contributions and Network Size in Final Period 
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Figure A.4. Percentage of Contribution Choices by Treatment: Free Riders  
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Figure A.5. Percentage of Contribution Choices by Treatment: Conditional Cooperators 
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Below are sample instructions for the LB-2 treatment and the end of experiment questionnaire. 

Instructions for the LB-0 and LB-4 treatments are otherwise identical with small updates or 

removal of the link benefit line.  The Complete and Empty treatment used 2 and 1 stage, 

respectively.  
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Experiment Instructions 

Introduction 

 

Thank you for participating in today’s study. Please follow the instructions carefully. At any 
time, please feel free to raise your hand if you have a question.  If you follow the instructions 
carefully, you can earn more money depending both on your own decisions and on the 
decisions of others.  

 

You will make decisions using a computer. In order to keep your decisions private, please 
do not reveal your choices or otherwise communicate with any other participant.  

 

Today’s session has three parts: Experiment 1, Experiment 2, and a short questionnaire. 

You will have the opportunity to earn money in both experiments based on your decisions. 

You will be paid your earnings privately, and in Amazon gift card, at the end of the 

experiment session. We will proceed through the written materials together. Please do not 

enter any decisions on the computer until instructed to do so. 

 

At certain stages in the experiment, you will see a timer in the top right corner of your 

screen. In many cases, if you do not make a decision in the allotted time the program will 

automatically move along to the next decision and will input a ‘default’ decision.  These 

defaults are likely not in your best interest, so it’s important to stay focused on the 

experiment screen.  These timers are not designed to rush you and you should have plenty 

of time to make decisions. However, in many cases we can not move on until everyone has 

hit “Continue” “Submit” etc. So, again, please stay focused on your screen so that we may 

complete the experiment in a timely manner. 

  



152 

 

Experiment 1 

 

Please refer to your computer screen while we read the instructions.  

Experiment 1 will consist of three different decision tasks. We will proceed through the 

instructions for each one at a time and make the decision(s) before proceeding onto the next. We 

will reveal the results to each of the tasks at the end of the session. 

1 - Lottery Task 

In the first decision setting, we would like you to make a decision for each of 10 scenarios. Each 

scenario involves a choice between receiving $2 for sure (Option B) or playing a lottery that pays 

$4 or $0 with the stated chances (Option A).  

You will notice that the only differences across scenarios are the chances of receiving the high or 

low prize for the lottery. At the end of the session, ONE of the 10 scenarios will be selected at 

random and you will be paid according to your decision for this selected scenario ONLY. Each 

scenario has an equal chance of being selected. 

 Please consider your choice for each scenario carefully. Since you do not know which scenario 

will be played out, it is in your best interest to treat each scenario as if it will be the one used to 

determine your earnings. 

 Before making decisions, are there any questions?  

Please proceed to entering decisions on your computer. Once you are ready to submit your 

decisions, please click the “Submit” button. 

 

2- Offer Task: 

Tokens will be used as the currency in the remaining tasks in Experiment 1. Tokens are 

exchanged at a rate 6.66 of to $1 USD (15 cents per token). 

In this task, there are two types of decisions: Player As and Player Bs. 

 Player As will be given 10 tokens and will decide how to split that amount with Player B. 

 Player Bs have the option to accept or decline the split. If Player B accepts the offer, then the 

proposed split proposed is paid out. If Player B rejects, then both players receive zero. 

 

Illustrative Examples: 

Example 1: Player A offers 2 tokens to Player B (which is a split of 8 (A) / 2 (B)). If Player B 

accepts, Player A receives 8 and Player B receives 2. If Player B declines, both players receive 

zero. 
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Example 2:  If Player A offers 5 to Player B (a split of 5 (A) and 5 (B)). If Player B accepts, 

Player A receives 5 and Player B receives 5. If Player B declines, both players receive zero. 

 

We will now have some practice questions to help with understanding.   For each practice 

question you get correct you receive 2 tokens (30 cents). Once you are ready, please hit continue. 

 

Decision Task: 

Your first part of the task is, as Player A, to decide the split to offer to Player B.   

 

Then, in the second part of the task, as Player B, you will make an accept or reject decision 

based on each of the possible splits received from another participant who is Player A.  

Your decision screen will look like this: 

 

 

Your split offer as Player A will be given to one other randomly selected participant and their 

accept/reject decision as Player B will be automatically applied.  Then as Player B, you will 

receive one offer from a random Player A, in which your previously made accept/reject decisions 

will be applied. 



154 

 

 

 

As Player B, since you do not know which offers you will receive, it is in your best interest to 

carefully decide your choices as if you will receive that offer. 

 

Before we continue, are there any questions?  

Please proceed to entering decisions on your computer. Once you are ready to submit your 

decisions, please click the “Submit” button. 

 

 

3- Account Contribution Task 

In our last decision task, you will be randomly matched into groups of four participants.  

At start of the task each member is endowed with 10 tokens. Your task is to allocate them into a 

Public or Private account.  Each token that is not put into the Public account is automatically put 

into your Private account. Every other player in your group faces the same situation.  

For each token in your Private Account you will receive one token.  

For each token put into the Public Account all players in the group receive .4 tokens. Thus, 1 

token turns into a total 1.6 tokens that gets distributed evenly to the group. The total 

contributions to the Public  Account will come from the sum of contributions of all group 

members.  

 

Your earnings from the decision task will be the following: 

Your earnings = Total tokens in the Public Account * (.4) + Tokens from your Private Account 

   

Illustrative examples: 

Example 1: Everyone in your group contributes 0 to the Public Account 

                      Your Public Account contribution=0 

        Your Private Account contribution (automatically determined)=10 – 0 =10  

                      Total Public Account contributions from your other group members = 0 

                      Total in Public Account (you + your other group members) =0  

                       Payoff to you=Public Account*.4 + Private Account= 0 +10 = 10 
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Example 2: Everyone contributes 6 to the Public Account 

       Your Public Account contribution=6 

        Your Private Account contribution (automatically determined)=10 – 6 =4  

                      Total Public Account contributions from your other group members = 18 

                      Total in Public Account (you + your other group members) =24  

                       Payoff to you=Public Account*.4 + Private Account= 9.6 +4 = 13.6 

 

 

Example 3: You contribute 2 your group members contribute 8 

       Your Public Account contribution=2 

        Your Private Account contribution (automatically determined)=10 – 2 =8  

                      Total Public Account contributions from your other group members = 24 

                      Total in Public Account (you + your other group members) =26  

                       Payoff to you=Public Account*.4 + Private Account= 10.4 +8 = 18.4 

                      Payoff to your group members = 10.4 + 2=12.4 

 

 

As you can see from these examples, increasing your contributions to the Public Account 

increases the value of your tokens and increases everyone payoffs. On the other hand, increasing 

your Private Account contributions results in a higher payoff for you. 

 

We will now have some practice questions to help with understanding.   For each practice 

question you get correct you receive 2 tokens (30 cents).  Once you are ready, please hit 

continue. 

 

Your Decision: 

(First Decision – Unconditional Choice) Your task will be first to decide how much to contribute 

to the Public Account without information about your group members’ choices.   

(Second Decision- Conditional Choice) Then, you will make the same contribution decisions 

based on what you would do if you knew the average of what your other group members 
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contributed.  You will be asked this for a range of different group averages. For example, what 

would your contribution be if the average contribution from your group was 5 (15 total)? 

  

For payment, 3 random group members’ unconditional contributions will form the group average 

(rounded) and 1 player will have their conditional choice selected based on the group average. 

Thus, the total contributions will be made up 3 unconditional contributions and 1 conditional 

contribution. 

 

The earnings are determined based on the total of Public and Private contributions for each group 

member.  

 

 

Player A Decision (Unconditional): 
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Player B Decisions (Conditional): 

 

 

Illustrative Example: 

Example: You are randomly determined to make the conditional choice.   Your 3 group members 

contribute a total of 15 from their unconditional contributions (for an average of 5).  Your 

conditional choice when the average was 5, was 8. 

 

 

The payoff would be resolved in the following: 

The computer takes the 3 first decisions (unconditional) from your other group members and 

adds them up. The total is 15, giving an average of 5.  

The computer then takes your second decision (conditional) corresponding to the question that 

asked about an average of 5. Your response was 8.  

8 is then added to the Public Account and this is the total in the Public Account for the group. 

 

Payoff Calculation: 

        Your Public Account contribution=8 

         Your Private Account contribution (automatically determined)=10 – 2 =2  

                    Total Public Account contributions from your other group members =15 

                    Total in Public account (you + your other group members) =23  
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                     Payoff to you=Public Account*.4 + Private Account= 9.2 +2 = 11.4 

 

Since you do not know which scenario will be played out it is in your best interest to treat 

each scenario as if it is the one that will be chosen. 

 

Do you have any questions? 

 

 Once you are ready, please hit continue. 
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Experiment 2 

This experiment is made up a series of similar decisions over the course of several rounds. At the 

start of the experiment, you will be randomly put into a group of 4 players.  This group is 

different than the group from the previous experiment and your group members will remain 

the same throughout the remainder of the experiment.  There will be between 15-25 rounds 

and each round will be comprised of 3 separate stages.  We will adjust the token exchange rate to 

25 tokens to $1 US.  (1 token=$.04) 

 

We will describe each stage in the following instructions. We will start with the second stage, as 

this is the easiest way to understand.  

 

Second Stage 

This task is identical to the unconditional (first) decision in the account task. You are one of four 

members of a group. At the beginning of each round each member is endowed with 10 tokens. 

Your task is to allocate them into a Private or Public account.  Each token that is not put into the 

Public Account is automatically put into your Private Account. Every other player in your group 

will make the same decision.  

For each token in your Private Account, you will receive one token.  

For each token put into the Public Account all players in the group receive .4 tokens. Thus, 1 

token turns into a total 1.6 tokens that gets distributed evenly to the group. The total 

contributions to the group account will come from the contributions of all four players.  

  

Your earnings from Stage 2 will be the following:  

 

Your earnings = Total tokens in the Public Account * (.4) + Tokens from your Private Account 

 

Stages 1 and 3 Overview 

Stages 1 and 3 are related and are most easily explained together. In Stage 1 you will propose 

“links” to the members in your group. For a link to be formed both players must propose a link to 

each other. The primary use of a link is for Stage 3.  In Stage 3, whichever players are linked 

have the ability to deduct from the player they are linked with. In this case, players can pay up to 

2 tokens to reduce the player they are linked with by 3 times the amount spent. (.5 tokens reduces 

by 1.5; 1 token reduces by 3; etc.)  
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Stage 1- Link Formation  

Your choice in this stage is to whether or not to propose a link to each of your group members.  

For a link to form, both players must propose a link to each other. If one player proposes a link 

and the other does not, no link is formed (or if neither player proposes a link then no link is 

formed). For each link formed you receive 2 tokens.   

 

Your payoff for stage 1 is made up from the benefits/costs of linking: 

Stage 1 payoff= Number of links formed*2. 

 

Stage 3- Reduction 

You will receive 6 tokens of endowment in Stage 3 (each round).  If you are linked with 

someone you may spend up to 2 of your tokens (by .1) to reduce the payoff of the group member 

you are linked with by 3 times the amount spent.   Therefore, depending on how many group 

members you are linked with, you have up to 3 choices, and you can spend up to 2 tokens on 

each group member that you are linked with.  

Note that each player you are linked with can reduce your payoff as well.  

 

Your payoff for stage 3 is made up of the following: 

Stage 3 payoff= Endowment of 6 tokens – Tokens spent on reductions for others – 3*amount of 

tokens spent reducing your payoff from others. 
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You can potentially have negative payoffs for this stage/round. 

 

Your total payoff for each round will be the sum of the payoffs from stages 1, 2, and 3.  

Round payoff= Stage 1 payoff + Stage 2 payoff + Stage 3 payoff 

 

 

Are there any questions on the basic structure of the game? 

 

 

After the decisions are made in each stage, the relevant information will be displayed on your 

screen.  In each stage, all of the information from the previous stages will be available for your 

review as well by clicking the “previous round” buttons on the left hand of the screen as seen 

below.  

You’ll also be given a summary of your total payoff for the round. It is possible to receive 

negative payoffs for a round.   In the unlikely case that your payoffs for experiment 2 become 

negative the total will be counted as 0. The screen information looks like the following: 

General Information 
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Link Formation: 

 

Contributions and Deductions: 
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Results: 

 

 

 

We will have a final set of practice questions to help with understanding before we begin. (7.5 

tokens per correct answer; 30 cents) 

  

Reminder: Please stay focused on your screen and submit your decisions when you have made 

them.  The first two rounds will have extended timers before the screen automatically moves 

forward. After the second round the timers will be reduced. 

 

Do you have any questions? 

 

Once you are ready, please hit continue. 
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B  Appendix-Chapter 2 

Proof for Proposition 1 

We solve for the model of three players who have heterogenous valuation. Let the game 

be fully sequential (1,1,1) 𝑡 ∈ 1,2,3. For one player 𝑖, set valuation to 𝑉𝑖 ≠ 1 > 0 and the others 

𝑉~𝑖 = 1. Let 𝑉𝑡 be the valuation of the player in period 𝑡.   

For Case 1 (C1) set, 

𝑉1 = 𝑉  𝑉2 = 1 𝑉3 = 1 

The resulting optimizations give: 

𝑓2(𝑋) = 𝑋
2   𝑓1(𝑋) = 𝑋

2(2𝑋 − 1)   𝑓0(𝑋) = 6𝑋
2 − 𝑋[4𝑉 + 2] + 𝑉 

Solving for the highest root of the equation 𝑓0(𝑋) = 0 yields the total aggregate output: 

𝑋 =
2𝑉 + 1 ± √4𝑉2 − 2𝑉 + 1

6
 

For Case 2 (C2), 

𝑉1 = 1   𝑉2 = 𝑉   𝑉3 = 1 

 

𝑓2(𝑋) = 𝑋2   𝑓1(𝑋) = 𝑋2 (
2𝑋

𝑉
− 1)   𝑓0(𝑋) =

6

𝑉
𝑋2 − 𝑋 [

4

𝑉
+ 2] + 1 

 

𝑋 =
2 + 𝑉 ± √4 − 2𝑉 + 𝑉2

6
 

For Case 3 (C3), 

𝑉1 = 1   𝑉2 = 1   𝑉3 = 𝑉 

𝑋 =
1

2
±
√12

12
≈ .7887 
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𝑓2(𝑋) =
𝑋2

𝑉
   𝑓1(𝑋) =

𝑋2

𝑉
(2𝑋 − 1)   𝑓0(𝑋) =

1

𝑉
(6𝑋2 − 𝑋[4 + 2] + 1) 

Note: This is identical to a setting where 𝑉𝑖 = 1 in a fully sequential game.  

Now solving for the simultaneous game (CS). 

Let 𝑉𝑖 represent te value to player 𝑖 ∈ 1,2,3 ∶  

𝑉𝑖 = 𝑉 𝑉2 = 1 𝑉3 = 1 

Taking the FOCs and imposing symmetry for players 2 and 3, the FOCs reduce to:                

 𝑥2(2𝑉 − 1) = 𝑥1 

Solving for equilibrium outputs: 

𝑥2 =
2𝑉

(2𝑉 + 1)2
       𝑥1 =

2𝑉(𝑉 − 1)

(2𝑉 + 1)2
 

Aggregate output is given by: 

𝑋 =
2𝑉

2𝑉 + 1
 

The expected utilities for each player type: 

𝐸𝑈1(𝒙) =
1

(2𝑉 + 1)2
      𝐸𝑈2(𝒙) =

𝑉(4𝑉2 − 4𝑉 + 1)

(2𝑉 + 1)2
 

Given any value 𝑉𝑚𝑎𝑥 > 𝑉 > 1 the aggregate outputs can be easily ordered.𝐶𝑆 < 𝐶3 < 𝐶2 <

𝐶1. For 𝑉𝑚𝑖𝑛 < 𝑉 < 1, the sequential case order is reversed; 𝐶𝑆 < 𝐶1 < 𝐶2 < 𝐶3.  

Setting 𝑓𝑛(𝑋) = 𝑋−𝑛 for any previous contribution by the players before them 𝑋−𝑛 gives a 

relationship between the previous contributions and the Nash equilibrium choice of the player 

such that 𝑋 > 𝑋−𝑛. 

Proof of Theorem 1 

Let the game consist of a general 𝑡 period game with 𝑛𝑡 players per period who have value 

𝑉𝑡.  The maximization choice by the last player, 𝑚, is given by 
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𝐸𝑈𝑚 =
𝑉𝑚(𝑋 − 𝑋𝑚−1)

𝑋
− (𝑋 − 𝑋𝑚−1) 

Taking FOC yields, 

𝑉𝑚
𝑋𝑚−1
𝑋2

− 1 = 0    →   𝑓𝑚(𝑋) = 𝑋𝑚−1 =
𝑋2

𝑉𝑚
 

Which can be written as,  

  
1

𝑉𝑚
𝑧𝑚(𝑋)    𝑤ℎ𝑒𝑟𝑒 𝑧𝑚(𝑋) = 𝑓𝑚(𝑋) 𝑖𝑓 𝑉𝑚 = 1 

Thus, for player 𝑚 − 1 

𝑈𝑚−1 =
𝑉𝑚−1(𝑋𝑚−1 − 𝑋𝑚−2)

𝑋
− (𝑋𝑚−1 − 𝑋𝑚−2) =

𝑉𝑚−1 (
𝑋2

𝑉𝑚
− 𝑋𝑚−2)

𝑋
− (

𝑋2

𝑉𝑚
− 𝑋𝑚−2) 

𝐹𝑂𝐶:  𝑉𝑚−1 (
1

𝑉𝑚
+
𝑋𝑚−2
𝑋2

) −
2𝑋

𝑉𝑚
= 0 

𝑋𝑚−2 =
1

𝑉𝑚
𝑋2(2𝑋 − 𝑉𝑚−1) 

Which is equal to, 

1

𝑉𝑚
𝑧𝑚−1(𝑋)  

  𝑤ℎ𝑒𝑟𝑒 𝑧𝑚−1(𝑋) = 𝑓𝑚(𝑋) =  𝑋
2(2𝑋 − 𝑉𝑚−1) 

is the function if  𝑉𝑚 = 1 𝑎𝑛𝑑 𝑉𝑚−1 = 𝑉𝑚−2. 

Doing this recursively for any 𝑛 

1

𝑉𝑚
𝑧𝑚−𝑛(𝑋)  

The final equation that determines the aggregate output is then:  

1

𝑉𝑚
𝑧0(𝑋) = 0  
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Which clearly does not depend on 𝑉𝑚. 

Details for the solving of equation (3) and the proof of Proposition 2: 

A special case of this setup is a fully sequential setting in which only the final entrant in period 

𝑇 has probabilisitic entry. Utilizing the model by Hinnosaar, we rewrite the final players problem 

as  

max
𝑋

𝑋 − 𝑋𝑇−1
𝑋

− (𝑋 − 𝑋𝑇−1) 

Solving yields 

𝑋𝑇−1 = 𝑋2 

Thus, the player in period before the final player faces an entrant who will make the final 

aggregate outcome 𝑋2 or he will not play at all, 𝑋𝑇−1 = 𝑋. We label the final value 𝑋 generated 

in the case where the final entrant does enter the market, 𝑋𝐻, and 𝑋𝐿 corresponds to the setting in 

which he does not enter.  

The 𝑇 − 1 period player then maximizes his expected value given by: 

𝐸𝑈𝑇−1(𝑥) = (𝑞𝑇)(
(𝑋𝐻

2
− 𝑋𝑇−2)

𝑋𝐻
− (𝑋𝐻

2
− 𝑋𝑇−2)) + (1 − 𝑞𝑇)(

𝑋𝐿 − 𝑋𝑇−2
𝑋𝐿

− (𝑋𝐿 − 𝑋𝑇−2)) 

However, from the above equation we know the relationship between 𝑋𝐻  and 𝑋𝐿;  

𝑋𝐻
2
= 𝑋𝑇−1 = 𝑋

𝐿 

Therefore, we can rewrite the expected maximization problem in only one choice variable 

max
𝑋𝐿

𝐸𝑈𝑇−1(𝑥) = (𝑞𝑇) (
(𝑋𝐻

2
− 𝑋𝑇−2)

𝑋𝐻
− (𝑋𝐻

2
− 𝑋𝑇−2)) + (1 − 𝑞𝑇)(

𝑋𝐻
2
− 𝑋𝑇−2

𝑋𝐻
2 − (𝑋𝐻

2

− 𝑋𝑇−2)  

Taking the derivative and setting equal to zero, 

𝑞𝑇 (1 +
𝑋𝑇−2

𝑋𝐻
2 ) + (1 − 𝑞𝑇) (

2𝑋𝑇−2

𝑋𝐻
3 ) − 2𝑋

𝐻 = 0 
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𝑋𝑇−2 = 𝑋𝐻
3 2𝑋𝐻 − 𝑞𝑇
(𝑞𝑇𝑋 + 2(1 − 𝑞𝑇))

    

Restricting ourselves to a three-person model, the final player maximizes expected value: 

max
𝑋𝐻

𝑞𝑇 (
(𝑋𝑇−2 − 0)

𝑋𝐻
− (𝑋𝑇−2 − 0) + (1 − 𝑞𝑇)(

𝑋𝑇−2 − 𝑞𝑇
𝑋𝐿

− (𝑋𝑇−2 − 0)) 

Substituting for 𝑋𝑇−2 and 𝑋𝐿 and optimizing 

  𝐿𝑒𝑡 𝑍 =
2𝑋𝐻−𝑞𝑇

(𝑞𝑇𝑋+2(1−𝑞𝑇))
 𝑎𝑛𝑑 𝑑𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑍′ = 4(1 − 𝑝) +

𝑝2

𝑞𝑇𝑋+2(1−𝑞𝑇)
, 

𝑍′ (𝑞𝑇𝑋
𝐻2 + (1 − 𝑞𝑇)𝑋

𝐻 − 𝑋𝐻
3
) + 𝑍 (2𝑞𝑇𝑋

𝐻 + (1 − 𝑞𝑇) − 3𝑋
𝐻2) = 0 

Probabilistic Entry Setting B. 

Given the third player enters the contest he optimizes to produce: 

𝑋2 = 𝑋2 = 𝑋𝐻𝐻
2
 

Otherwise 0. 𝑋𝐻𝐻  represents the total output given both players entered.  

Thus, if the second player joins the contest, he faces the problem: 

𝐸𝑈2(𝑥) = 𝑞3 (
𝑋2 − 𝑋1
𝑋𝐻𝐻

− 𝑋2 − 𝑋1) + (1 − 𝑞3) (
𝑋2 − 𝑋1
𝑋𝐻𝐿

− (𝑋2 − 𝑋1)) 

Substituting, and using the fact that 𝑋2 = 𝑋
𝐻𝐿 = 𝑋𝐻𝐻

2
  when the third player does not join the 

contest; we can rewrite the expected value as a function of only one variable 

max
𝑋𝐻𝐻

𝐸𝑈2(𝑥) = 𝑞3 (
𝑋𝐻𝐻

2
− 𝑋1

𝑋𝐻𝐻
− (𝑋𝐻𝐻

2
− 𝑋1)) + (1 − 𝑞3) (

𝑋𝐻𝐻
2
− 𝑋1

𝑋𝐻𝐻
2 − (𝑋𝐻𝐻

2
− 𝑋1)) 

Yielding, 

𝑋1 = 𝑋𝐻𝐻
3 2𝑋𝐻𝐻 − 𝑞3
(𝑞3𝑋𝐻𝐻 + 2(1 − 𝑞3))

 

The first player, who always enters, then optimizes: 
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𝐸𝑈1(𝑥) = 𝑞2 (𝑞3 (
𝑋1 − 0

𝑋𝐻𝐻
− (𝑋1 − 0)) + (1 − 𝑞3) (

𝑋1 − 0

𝑋𝐻𝐿
− (𝑋1 − 0))) + 

(1 − 𝑞2)(𝑞3 (
𝑋1 − 0

𝑋𝐿𝐻
− (𝑋1 − 0)) + (1 − 𝑞3) (

𝑋1 − 0

𝑋𝐿𝐿
− (𝑋1 − 0)) 

In the case where the second player does not join, 𝑋2 = 𝑋1 thus, √𝑋1 = 𝑋𝐿𝐻 and 𝑋1 = 𝑋2 = 𝑋𝐿𝐿 

in the case where both players do not join. Substituting, and simplifying: 

𝐸𝑈1(𝑥) = 𝑞2 (𝑞3 (𝑋
𝐻𝐻2

2𝑋𝐻𝐻 − 𝑞3
(𝑞3𝑋 + 2(1 − 𝑞3))

) + (1 − 𝑞3) (𝑋
𝐻𝐻

2𝑋𝐻𝐻 − 𝑞3
(𝑞3𝑋 + 2(1 − 𝑞3))

)) + 

(1 − 𝑞2)(𝑞3(√𝑋𝐻𝐻
3 2𝑋𝐻𝐻−𝑞3

(𝑞3𝑋𝐻𝐻+2(1−𝑞3))
)+ (1 − 𝑞3)) − 

2𝑋𝐻𝐻−𝑞3

2−𝑞3
𝑋𝐻𝐻

2
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Figure B.1. Aggregate N.E. Predictions: Multiple Probability Combinations 
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B.I  Additional Results 

Tables B.1-B.5 Below are results for the pairwise comparisons for each of the listed values in 

Tables 2.3 and 2.4.  Reported values are t-statistics. Table B.6 shows the full specification 

corresponding to Table 2.5. 
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Table B.1. Group Total Comparisons: Sequential  

 HetP1 HetP2 HetP3 RandomP1 RandomP2 

      

Control 3.211*** 2.52** -.021 .081 -3.06*** 

 (.001) (.012) (.984) (.936) (.002) 

      

HetP1  .493 2.985*** 2.62*** 5.53*** 

  (.622) (.003) (.009) (.000) 

      

HetP2   2.342** 2.08** 4.91*** 

   (.020) (.039) (.000) 

      

HetP3    -.092 2.80*** 

    (.927) (.005) 

      

RandomP1     2.67*** 

     (.008) 

      
Note: Reported statistics are t-statistic values for two-sided t-test comparisons of total group effort between 

treatments. Each group observation in a period is treated as an independent observation.   p-values are given in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table B.2. Group Total Comparisons: Simultaneous  

 HetP1 HetP2 HetP3 RandomP1 RandomP2 

      

Control .172 .308 -2.13** -2.68*** -2.52** 

 (.864) (.758) (.033) (.008) (.012) 

      

HetP1  -.135 2.19** 2.68*** 2.54** 

  (.893) (.029) (.008) (.011) 

      

HetP2   2.30** 2.74*** 2.66*** 

   (.022) (.006) (.008) 

      

HetP3    -.862 .579 

    (.389) (.563) 

      

RandomP1     -.298*** 

     (.766) 

      
Note: Reported statistics are t-statistic values for two-sided t-test comparisons of total group effort between 

treatments. Each group observation in a period is treated as an independent observation.   p-values are given in 

parentheses. *** p<0.01, ** p<0.05, * p<0. 
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Table B.3. Group Overbidding Comparisons: Sequential 

 HetP1 HetP2 HetP3 RandomP1 RandomP2 

      

Control -.361 1.52 -.021 4.93*** -1.63 

 (.718) (.130) (.984) (.000) (.104) 

      

HetP1  -1.79* -.313 -5.03*** -1.86* 

  (.074) (.755) (.000) (.064) 

      

HetP2   1.42 -3.12*** 4.91*** 

   (.157) (.002) (.000) 

      

HetP3    -4.56*** -1.52 

    (.000) (.129) 

      

 RandomP1     2.67*** 

     (.008) 

      
Note: Reported statistics are t-statistic values for two-sided t-test comparisons of total group effort between 

treatments. Each group observation in a period is treated as an independent observation.   p-values are given in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table B.4. Group Overbidding Comparisons: Simultaneous  

 HetP1 HetP2 HetP3 RandomP1 RandomP2 

      

Control -1.16 -.969 -3.44*** -.222 -.139 

 (.247) (.333) (.000) (.825) (.890) 

      

HetP1  -.135 2.19** -.670 -1.12 

  (.893) (.029) (.485) (.261) 

      

HetP2   2.30** -.556 -.967 

   (.022) (.578) (.335) 

      

HetP3    -2.49** -3.09*** 

    (.013) (.002) 

      

RandomP1     -.298*** 

     (.766) 

      
Note: Reported statistics are t-statistic values for two-sided t-test comparisons of total group effort between 

treatments. Each group observation in a period is treated as an independent observation.   p-values are given in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

Table B.5. Group Overbidding Comparisons: Sequential  

 HetP1 HetP2 HetP3 RandomP1 RandomP2 Control 

       

 -3.67*** -2.38** 2.97*** -1.80* 1.54 2.37** 

 (.000) (.018) (.003) (.074) (.126) (.019) 

       

Observations 250 240 250 200 200 220 

       
Note: Reported statistics are t-statistic values for two-sided t-test comparisons of total group effort between 

treatments. Each group observation in a period is treated as an independent observation.   p-values are given in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 

  



175 

 

Table B.6. Individual Overbidding by Player Type: All Treatments  

 

 Dependent Variable: Overbid 

 All Treatment 

  

Player 2 14.98*** 

 (1.533) 

Player 3 29.23*** 

 (1.622) 

RiskPref -4.126*** 

 (0.450) 

GPA -3.071** 

 (1.218) 

Economics 0.636** 

 (0.296) 

Age 0.380 

 (0.234) 

Female 7.589*** 

 (1.561) 

Comprehension -10.32*** 

 (2.691) 

LastWin 8.127*** 

 (1.465) 

Constant 36.82*** 

 (3.327) 

  

Observations 3,120 

R-squared 0.138 
Note: The above table reports the results of a regression with dependent variable that is equal to the difference 

between individual effort choice and predicted ex-ante individual Nash choice. Standard errors are clustered at the 

group-period-session level.  p-values are given in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Figure B.2.  Induced Winning Percentage for Player 3: All Decisions   
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Figure B.3.  Induced Winning Percentage for Player 3: Nash Against Actual All 

Decisions   

 

 

 

Figure B.4.  Induced Winning Percentage for Player 3: Input Totals Less than 100   
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Figure B.5. Player 3 Effort Choices: Random Treatments  
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Figure B.6. Player 1 and Player 2 Effort: Random Treatments  
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Experiment Instructions 

Introduction 

 

Thank you for participating in today’s study. Please follow the instructions carefully. At any 

time, please feel free to raise your hand if you have a question.  

You have been randomly assigned an ID number for this session. You will make decisions using 

a computer. You will never be asked to reveal your identity to anyone. Your name will never be 

associated with any of your decisions. In order to keep your decisions private, please do not 

reveal your choices or otherwise communicate with any other participant. Importantly, please 

refrain from verbally reacting to events that occur.  

Today’s session has three parts: Experiment 1, Experiment 2, and a short questionnaire. You will 

have the opportunity to earn money in both experiments based on your decisions. You will be 

paid your earnings privately, and in Amazon gift card, at the end of the experiment session. We 

will proceed through the written materials together. Please do not enter any decisions on the 

computer until instructed to do so. 
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Experiment 1 

Please refer to your computer screen while we read the instructions.  

We would like you to make a decision for each of 10 scenarios. Each scenario involves a choice 

between receiving $2 for sure (Option B) or playing a lottery that pays $4 or $0 with the stated 

chances (Option A).  

You will notice that the only differences across scenarios are the chances of receiving the high or 

low prize for the lottery. At the end of the session, ONE of the 10 scenarios will be selected at 

random and you will be paid according to your decision for this selected scenario ONLY. Each 

scenario has an equal chance of being selected. 

 Please consider your choice for each scenario carefully. Since you do not know which scenario 

will be played out, it is in your best interest to treat each scenario as if it will be the one used to 

determine your earnings. 

 Before making decisions, are there any questions?  

Please proceed to entering decisions on your computer. Once you are ready to submit your 

decisions, please click the “Submit” button 
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Experiment 2 

In this experiment, all money amounts are denominated in lab dollars, and will be exchanged at a 

rate of 170 lab dollars to 1 US dollar. You will make a series of similar decisions over the course 

of several decision rounds. Your final payment will depend on the decisions you make in each 

round. Aside from decisions in “training” rounds, each decision you make impacts your earnings, 

which means that it is very important to consider each decision prior to making it. Each decision 

round is separate from the other rounds, in the sense that the decisions you make in one round 

will not affect the outcome or earnings of any other round.  

 

In each round you will be randomly placed into three-person groups.  You will compete with 

your group members in order to win a prize of 100 lab dollars. Only one member in each group 

will win the prize.   Your task in each decision round is to decide how many lab dollars to bid 

toward winning that prize. Who wins the prize depends upon the total bids from you and the 

other members in your group. The chance to win the prize depends on the following formula: 

For example, if you and each of your two other group members bid 10 lab dollars then a total of 

30 (10+10+10=30) lab dollars were bid.  Thus, you will have a 33.33% chance of winning (10 

out of 30, or 10/30, .3333). Additionally, each other player in your group would also have a 

33.33% chance of winning due to their bid of 10 out of 30.   

 

For another example, say you were to bid 10 lab dollars and both of your group members bid 20, 

then you have a 10 out of 50 (10+20+20) chance of winning, or 20%. While your group 

members each have a 20 out of 50 chance, or 40% chance.   Note that you do not necessarily 

know how many lab dollars will be bid by the other players before the round, this is up to each 

player to decide.  

In each round, you will receive 120 lab dollars in fixed income. This amount does not depend on 

your decision or whether you win the prize. You can bid anywhere from 0 to 120 lab dollars into 

the pot but your bid is subtracted from your fixed income. While increasing your bid will 

increase the chance you win the prize, any bid lab dollars are lost.  

 

IF you win : 

 

IF you do not win the prize…  

𝑌𝑜𝑢𝑟 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑟𝑖𝑧𝑒 + 𝐹𝑖𝑥𝑒𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝐵𝑖𝑑 

 

 

 

𝑌𝑜𝑢𝑟 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝐹𝑖𝑥𝑒𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝐵𝑖𝑑 

𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 =
𝑌𝑜𝑢𝑟 𝑏𝑖𝑑

𝑇𝑜𝑡𝑎𝑙 𝑔𝑟𝑜𝑢𝑝 𝑏𝑖𝑑𝑠(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑜𝑤𝑛)
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Proceeding through the experiment 

As mentioned before, at the start of each round, you will be randomly matched into a group of 

three players. This group will change each round. This means that the members of your group 

will vary from one round to the next. At the start of each round you will be randomly given an 

identifier, 1, 2, or 3. Each group member has an identical probability of being either member 1, 

2, or 3.  

In this experiment, players will make their decisions in order. We will call this a Sequential 

game.  Player 1 will start, followed by Player 2, then Player 3. In the case of Player 2 and Player 

3, these players will know the total of bids that have been made before them.  

Additionally, in all decision rounds, Player 3 will have a 50% chance of not entering the contest 

(or, equivalently, an 50% chance of entering).  In either case (whether Player 3 joins or not), you 

will not know if your fellow participant entered or not. If you are one of the players who is 

randomly selected to not enter, you will receive 80 lab dollars (plus your 120 in fixed income) 

for the round, but will make no contribution decision and no contribution. In this case, a screen is 

automatically displayed that prevents your decision from being made, and nothing needs to be 

done on your end.  

As for the group members that are participating in the contest, it proceeds as normal. However, 

now the total contributions are made up of only those who have entered the contest. For example, 

if Player 3 does not enter, the total contributions are made up of only those from Player 1 and 2. 

Say that Player 1 contributes 10 and Player 2 contributes 20, then there are 30 total bids in the 

pot (Player 1 has a 10/30=33.33% chance of winning and Player 2 has a 20/30=66.67% chance 

of winning). The prize and cost remain identical. (Note: There will always be at least 2 people in 

the contest).   
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This information will be displayed on your screen whenever you make a decision, as shown 

below

 

On this screen, you can that Player 2 is the decision maker (when they enter the contest). He/she can observe that a bid total of 

20 has been made so far. He/she can also see that Player 3 is still to play but has a 50% chance of not entering. He/she can also 

see that everyone in the group may bid up to 120 and the value of the prize for all players is 100. 

 

 

One last possibility is that there are zero contributions, in this case each player who entered will 

have an equal probability of winning the prize. A player who does not enter, can never win the 

prize. 

Lastly, you will be given a summary of the total contributions from your group, your chance of 

winning (if applicable), and your earnings for the round. 

We will begin with two training rounds to help you understand the procedures.  In the first 

practice round all players will enter (to practice making contributions). In the second practice 

round (and for all paid rounds) players will enter randomly as explained above.  

Before we continue, do you have any questions? 
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Ok, thank you for your participation so far. At this time, we will make a slight change to the 

experiment. All rules for the contest will remain the same but instead of players making 

decisions sequentially, they will be made Simultaneously.  Nothing in the rules of the game 

changes otherwise. Player 3 will still each have a 50% chance of entering.  

 

 The information about prize values and total bids will be displayed on your screen. 

 

 

On this screen, you can that Player 2 is the decision maker (when they enter the contest). He/she can see that Player 1 will is 

simultaneously taking part in the contest with 100% chance while there is only a 50% chance that Player 3 is taking part in the 

contest. He/She also knows that any player that has entered the contest is making a decision at the current time. He/she can also 

see that everyone in the group may bid up to 120 and the value of the prize for all players is 100. 

 

We will again have 2 practice rounds.  In the first practice round, each player will join.  In the 

second (and all subsequent paid rounds), the random entry chances described above will be 

followed. We will then resume the paid decision rounds.  

 

Do you have any questions? 
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Experiment Instructions 

Introduction 

 

Thank you for participating in today’s study. Please follow the instructions carefully. At any 

time, please feel free to raise your hand if you have a question.  

You have been randomly assigned an ID number for this session. You will make decisions using 

a computer. You will never be asked to reveal your identity to anyone. Your name will never be 

associated with any of your decisions. In order to keep your decisions private, please do not 

reveal your choices or otherwise communicate with any other participant. Importantly, please 

refrain from verbally reacting to events that occur.  

Today’s session has three parts: Experiment 1, Experiment 2, and a short questionnaire. You will 

have the opportunity to earn money in both experiments based on your decisions. You will be 

paid your earnings privately, and in cash, at the end of the experiment session. We will proceed 

through the written materials together. Please do not enter any decisions on the computer until 

instructed to do so. 
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Experiment 1 

 

Please refer to your computer screen while we read the instructions.  

We would like you to make a decision for each of 10 scenarios. Each scenario involves a choice 

between receiving $2 for sure (Option B) or playing a lottery that pays $4 or $0 with the stated 

chances (Option A).  

You will notice that the only differences across scenarios are the chances of receiving the high or 

low prize for the lottery. At the end of the session, ONE of the 10 scenarios will be selected at 

random and you will be paid according to your decision for this selected scenario ONLY. Each 

scenario has an equal chance of being selected. 

 Please consider your choice for each scenario carefully. Since you do not know which scenario 

will be played out, it is in your best interest to treat each scenario as if it will be the one used to 

determine your earnings. 

 Before making decisions, are there any questions?  

Please proceed to entering decisions on your computer. Once you are ready to submit your 

decisions, please click the “Submit” button 
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Experiment 2 

 

In this experiment, all money amounts are denominated in lab dollars, and will be exchanged at a 

rate of 170 lab dollars to 1 US dollar. You will make a series of similar decisions over the course 

of several decision rounds. Your final payment will depend on the decisions you make in each 

round. Aside from decisions in “training” rounds, each decision you make impacts your earnings, 

which means that it is very important to consider each decision prior to making it. Each decision 

round is separate from the other rounds, in the sense that the decisions you make in one round 

will not affect the outcome or earnings of any other round.  

 

In each round you will be randomly placed into three-person groups.  You will compete with 

your group members in order to win a prize of 100 lab dollars. Only one member in each group 

will win the prize.   Your task in each decision round is to decide how many lab dollars to bid 

toward winning a prize. Who wins the prize depends upon the total bids from you and the other 

members in your group. The chance to win the prize depends on the following formula: 

For example, if you and each of your two other group members bid 10 lab dollars then a total of 

30 (10+10+10=30) lab dollars were bid.  Thus, you will have a 33.33% chance of winning (10 

out of 30, or 10/30, .3333). Additionally, each other player in your group would also have a 

33.33% chance of winning due to their bid of 10 out of 30.   

 

For another example, say you were to bid 10 lab dollars and both of your group members bid 20, 

then you have a 10 out of 50 (10+20+20) chance of winning, or 20%. While your group 

members each have a 20 out of 50 chance, or 40% chance.   Note that you do not necessarily 

know how many lab dollars will be bid by the other players before the round, this is up to each 

player to decide.  

 

You can bid anywhere from 0 to 120 lab dollars into the pot. While increasing your bid will 

increase the chance you win the prize, any bid lab dollars are lost.  

In each round, you will receive 120 lab dollars in fixed income. This amount does not depend on 

your decision or whether you win the prize. Your earnings for the decision round will be 

calculated as follows: 

IF you 

win the 

prize…  

𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 =
𝑌𝑜𝑢𝑟 𝑏𝑖𝑑

𝑇𝑜𝑡𝑎𝑙 𝑔𝑟𝑜𝑢𝑝 𝑏𝑖𝑑𝑠(𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑦𝑜𝑢𝑟 𝑜𝑤𝑛)
 

𝑌𝑜𝑢𝑟 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑟𝑖𝑧𝑒 + 𝐹𝑖𝑥𝑒𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝐵𝑖𝑑 
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IF you do not win the prize…  

Proceeding through the 

experiment 

As mentioned before, at the start of each round, you will be randomly matched into a group of 

three players. This group will change each round. This means that the members of your group 

will vary from one round to the next. At the start of each round you will be randomly given an 

identifier, 1, 2, or 3. Each group member has an identical probability of being either member 1, 

2, or 3.  

In this experiment, players will make their decisions in order. This is known as a Sequential 

game.  Player 1 will start, followed by Player 2, then Player 3. In the case of Player 2 and Player 

3, these players will know the total of bids that have been made before them.   Additionally, in 

all decision rounds, one player (Player 3) will receive 120 from the prize rather than 100, if they 

win. This information will be displayed on your screen whenever you make a decision, as shown 

below.  

 

In this screen, the decision maker is Player 2. He/She can see that Player 1 and Player 2 receive 

100 from the prize and Player 3 receives 120. He/She can also see that 20 tokens have already 

been bid and that Player 3 will play after him/her. 

One last possibility is that there are zero bids, in this case each player will have an equal 

probability of winning, 

 

𝑌𝑜𝑢𝑟 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝐹𝑖𝑥𝑒𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝐵𝑖𝑑 
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Aside from decisions in “training” rounds, each decision you make impacts your earnings, which 

means that it is very important to consider each decision prior to making it. As mentioned before, 

each decision round is separate from the other rounds, in the sense that the decisions you make in 

one round will not affect the outcome or earnings of any other round. Lastly, you will be given a 

summary of the total contributions from your group, your chance of winning (if applicable), and 

your earnings for the round.  

 

We will begin with two training rounds to help you understand the procedures.  

 

Before we continue, do you have any questions? 
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Ok, thank you for your participation so far. At this time, we will make a slight change to the 

experiment. All rules for the contest will remain the same but instead of players making 

decisions at the sequentially, they will be made simultaneously. Thus, each player will make 

their decision at the same time and will have no knowledge of other players decisions.  Player 3 

will still have a value of the prize of 120, while Players 1 and 2 have valuations of 100. Nothing 

in the rules of the game changes otherwise.  The information about prize values and total bids 

will be displayed on your screen.  

 

 

Please click continue and you will see an example screen. 

 

 

In this screen, the decision maker is Player 2. He/She can see that Player 1 and Player 2 receive 

100 from the prize and Player 3 receives 120. He/She can also see that Player 1 and Player 3 

are making the decisions at the same time 

We will again have two practice rounds. We will then resume the paid decision rounds.  

 

Do you have any questions? 
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C  Appendix-Chapter 3 

Bonacich Centrality 

Centrality is a concept that is closely related to degree (number of connections a node has) that 

captures the influence of a node on the network.  In the example of this paper, let the network be 

unweighted (the influence among linked agents is equivalent) and equal to 𝜆, thus increasing 

effort of agent A generates a complementarity 𝜆, that increases the output of other agents B 

linked to the agent A.  The resulting increase to agents B then increases the output of agents C 

(also including A), at a rate of 𝜆2, and so on. In the limit the benefit becomes lim
𝑘→∞

𝜆𝑘, requiring  

𝜆 ≤ 1 for convergence. Additionally, the effort values are complementarity and strictly 

increasing the output of connected agents, thus the cost of own effort, 𝑏𝑖, must be sufficiently 

high to outpace the increase gained from complementarities.  With this set up, Bonacich (1987) 

proposed the following measure of centrality: 

Using the 𝑛-square adjacency matrix 𝑮 , the matrix that keeps track of all of the 

connections in network 𝒈, let 𝑮𝑘 be the 𝑘th power of 𝑮.  𝑮𝑘 has coefficients [𝒈𝑖𝑗
𝑘 ], where 𝑘 is an 

integer. The elements of 𝑮𝑘 then represent the number of paths of length 𝑘 from 𝒈𝒊 to 𝒈𝒋. Given 

a scalar 𝜆 ≥ 0 and a network 𝒈, define the matrix 

𝑴(𝒈, 𝜆) = ∑𝜆𝒌
∞

𝒌=𝟎

𝑮𝒌 

Using the equivalent matrix property of a geometric series, 

𝑴(𝒈, 𝜆) = [𝑰 − 𝜆𝑮]−𝟏 

Thus, under the condition  λ ≤ 1,  𝜆𝑘 is a decay factor that scales down the influence of each 

path, 𝒈𝑖𝑗
𝑘 , more for longer path lengths, 𝑘.  The components of matrix 𝑪(𝒈, 𝜆), 𝑐𝑖𝑗(𝒈, 𝜆) =

∑ 𝜆𝒌∞
 𝒌=𝟎 𝒈𝒊𝒋

𝒌  counts the number of paths in 𝒈 that start in 𝑖 and end at 𝑗, where paths of length 𝑘, 

are weighted by 𝜆𝑘. 
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The Bonacich centrality of a node 𝑖 is 𝛽(𝒈, 𝜆) = ∑ 𝑐𝑖𝑗(𝒈, 𝜆)
𝑛
𝑗=𝑖   and it counts the total 

number of paths in 𝒈 that start at i. It is the sum of the loops 𝑐𝑖𝑖(𝒈, 𝜆) from 𝑖 to 𝑖 itself and of all 

the outer paths ∑ 𝑐𝑖𝑗(𝒈, 𝜆)
𝑛
𝑗≠𝑖  from 𝑖 to every other player 𝑗 ≠ 𝑖. That is, 

𝛽𝑖(𝒈, 𝜆) = 𝑐𝑖𝑖(𝒈, 𝜆)  +∑𝑐𝑖𝑗(𝒈, 𝜆)

𝑛

𝑗≠𝑖

 

By definition, 𝑐𝑖𝑖(𝒈, 𝜆) ≥ 1 and thus, 𝛽𝑖(𝒈, 𝜆).  

Proof: 

 For any given network 𝐠𝐦𝐬
, and corresponding adjaceny matrix 𝐆𝐦𝐬

,  the corresponding 

Bonacich centrality vector is given by 𝐛(𝐠, λ). With individual components  

𝑏𝑖𝑚(𝒈, 𝜆) = 𝑐𝑖𝑖𝑚(𝒈, 𝜆)  +∑𝑐𝑖𝑗𝑚(𝒈, 𝜆)

𝑛

𝑗≠𝑖

 

Now for m+1, results in the adding of a connection to the network.  Any configuration, sm+1, can 

be built by adding a single connection so some configuration sm. Thus, for any  

𝑏𝑖(𝑚+1)(𝒈, 𝜆) = 𝑐𝑖𝑖(𝑚+1)(𝒈, 𝜆)  +∑𝑐𝑖𝑗(𝑚+1)(𝒈, 𝜆)

𝑛

𝑗≠𝑖

≥ 𝑏𝑖𝑚(𝒈, 𝜆) = 𝑐𝑖𝑖𝑚(𝒈, 𝜆)  +∑𝑐𝑖𝑗𝑚(𝒈, 𝜆)

𝑛

𝑗≠𝑖

 

With strict inequality for at least 1 i. ∴  𝐛(𝐦+𝟏)(𝐠, λ) > 𝐛𝐦(𝐠, λ) in turn  πm+1 > πm, applying 

this logic iteratively for all i ∈ {1, M −m}  we get the result, πm+i > πm. 

 

 

(Technical Assumption) Where 𝜇 is a fixed parameter that allows us to restrict the support of 

𝑝(𝑥) to (𝜇,∞), allowing us to optimize 𝑥 at marginal cost 𝐴. i.e.  The principal pays for any 

𝑥 above 𝜇: 

(𝑥 − (𝜇))𝐴 
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This does suggest that with no investment 𝑥, there is some small probability that connections 

form. We maximize the expected profit with respect to investment to get FOC: (Utilizing the 

even property of 𝑃(𝑥); 𝑝′(𝑥) = −𝑝′(−𝑥) 

𝑑𝜋

𝑑𝑥
= 0 = ∑ 𝑝′(𝑥)𝜋𝑚 (

𝑀
𝑚
) [−(𝑀 −𝑚)(1 − 𝑝(𝑥))

𝑀−𝑚−1
𝑝(𝑥)𝑚

𝑀

𝑚=0

+ (𝑚)(1 − 𝑝(𝑥))
𝑀−𝑚

𝑝(𝑥)𝑚−1] − 𝐼 

Rewriting, 

𝑑𝜋

𝑑𝑥
= ∑ 𝑝′(𝑥)𝜋𝑚−1 (

𝑀
𝑚 − 1

) [−(𝑀 − (𝑚 − 1))(1 − 𝑝(𝑥))
𝑀−(𝑚−1)−1

𝑝(𝑥)(𝑚−1)
𝑀+1

𝑚=1

+ (𝑚 − 1)(1 − 𝑝(𝑥))
𝑀−(𝑚−1)

𝑝(𝑥)(𝑚−1)−1] − 𝐼 

 

Utilizing the relationship,  

(𝑀 − (𝑚 − 1)) (
𝑀

𝑚 − 1
) = 𝑚 (

𝑀
𝑚
) 

(𝑀 − (𝑚 − 1))
𝑀!

(𝑀 − (𝑚 − 1)! (𝑚 − 1)!
= 𝑚

𝑀!

(𝑀 −𝑚)!𝑚!
 

And comparing the second term in the first equation and first term in the second equation the 

FOC can be reorganized as follows: 

0 = ∑ (𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (𝑝(−𝑥)𝑀−(𝑚−1)𝑝(𝑥)𝑚)𝑀

𝑚=1 − 𝐼   (5)  

The summation term is the marginal benefit of increasing investment in 𝑥.  The benefit is derived 

from the changing of the probabilities by adding a connection. From Lemma 1 the term (𝜋𝑚 −

𝜋(𝑚−1)) is strictly positive. The rest of the terms 𝑚(
𝑀
𝑚
) (𝑝(−𝑥)𝑀−(𝑚−1)𝑝(𝑥)𝑚 are strictly 

positive.  The Marginal cost is constant and equal to I. Thus, the optima of the objection function 

are implicitly defined by equation (5).  The next section shows that the investment choice 𝑥 

defined by equation (5) exists and is a unique maximum and minimum of the objective function.  
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Existence 

Lemma 2 The Marginal Benefit of the objective function approaches zero as 𝑥 → ±∞. 

Proof: 𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = lim
𝑥→∞

∑ (𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (𝑝(−𝑥)𝑀−(𝑚−1)𝑝(𝑥)𝑚𝑀

𝑚=1  

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→∞

∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (𝑝(−𝑥)𝑀+1 (

𝑝(𝑥)

𝑝(−𝑥)
)

𝑚𝑀

𝑚=1

) 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = ∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) 𝑙𝑖𝑚
𝑥→∞

(𝑝(−𝑥)𝑀+1 𝑙𝑖𝑚
𝑥→∞

(
𝑝(𝑥)

𝑝(−𝑥)
)

𝑚

)

𝑀

𝑚=1

 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = ∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (1)(0)

𝑀

𝑚=1

 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = −𝐼 

 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = lim
𝑥→−∞

∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (𝑝(−𝑥)𝑀−(𝑚−1)𝑝(𝑥)𝑚

𝑀

𝑚=1

 

𝑙𝑖𝑚
𝑥→−∞

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→−∞

∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (𝑝(−𝑥)𝑀+1 (

𝑝(𝑥)

𝑝(−𝑥)
)

𝑚𝑀

𝑚=1

 

𝑙𝑖𝑚
𝑥→−∞

𝑓(𝑥) = ∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) 𝑙𝑖𝑚
𝑥→−∞

(𝑝(−𝑥)𝑀+1 𝑙𝑖𝑚
𝑥→−∞

(
𝑝(𝑥)

𝑝(−𝑥)
)

𝑚𝑀

𝑚=1

 

𝑙𝑖𝑚
𝑥→−∞

𝑓(𝑥) = ∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (1)(0)

𝑀

𝑚=1

 

𝑙𝑖𝑚
𝑥→−∞

𝑓(𝑥) = −𝐼 

Given sufficiently low investment cost I such that, 
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 ∑(𝜋𝑚 − 𝜋(𝑚−1))𝑚 (
𝑀
𝑚
) (𝑝(−𝑥)𝑀−(𝑚−1)𝑝(𝑥)𝑚)

𝑀

𝑚=1

> 𝐼 

 for range 𝑥 ∈ {𝑥𝑚𝑖𝑛
∗ , 𝑥𝑚𝑎𝑥

∗ }  𝑥𝑚𝑎𝑥
∗ > 𝑥𝑚𝑖𝑛

∗  and that 𝑀𝐵 → 0 for 𝑥 → ±∞  the function must 

cross I at least twice which include ∈ {xmin
∗ , xmax

∗ }  

C.I  Additional Results 

Figure C.1 shows the adjancency matricies used in section IV.A. Figures C.2 shows the marginal 

change in Invesment with changes in cost of I. Figures C.3 and C.4 show additional results 

corresponding to Figure 3.6 with differing values of 𝛽. 
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𝐺𝑆𝑦𝑚𝑚 =

[
 
 
 
 
 
 
 
 
0 1 1
1 0 1
1 1 0

0 0 0
0 0 0
1 1 1

0 0 0
1 1 1
0 0 0

0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 1 0
0 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 
 

  

 

   𝐺𝐴𝑠𝑦𝑚𝑚 =

[
 
 
 
 
 
 
 
 
0 5/2 5/2
1 0 1
1 1 0

0 0 0
0 0 0
1/2 1/2 1/2

0 0 0
1/2 1/2 1/2
0 0 0

0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 1 0
0 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 
 
 
 

 

Figure C.1. Adjacency Matrices- Working from Home Example  
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Figure C.2. Change in Link Probability with Change in I 

 

 

 

Figure C.3. Total Investment Expenditure: 𝛽 = .8 
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Figure C.4. Total Investment Expenditure: 𝛽 = .3 
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