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Abstract 

 

Due to the lack of endpoint verification and modern security features built into the current 

data link, network, and transport layers of the TCP/IP stack, spoofing, lateral movement 

and data exfiltration are difficult to be detected. Often the security aspect of networks gets 

managed reactively instead of providing proactive protection. Security operations teams 

struggle to keep up with the ever-increasing number of devices and attacks daily. Modern 

zero trust security policies demand the verification of each entity in the network without 

implied trust. Data for policy enforcement and incident response are usually collected at 

the backbone. They are inadequate to identify endpoints at the edge network. Incident 

response teams require data that are timestamped and reliably attributed to each 

individual endpoint, for forensic analysis. With the current state of dissociated data 

collected from networks using different tools, it is challenging to correlate the necessary 

data to find origin and propagation of attacks within the network. Critical indicators of 

compromise may go undetected due to the drawbacks of current data collection systems 

leaving endpoints vulnerable to attacks. Proliferation of distributed organizations demand 

distributed and federated security solutions. Without robust data collection systems that 

are capable of transcending architectural and computational challenges, it is becoming 

increasingly difficult to provide endpoint protection at scale. This research focuses on 

reliable agentless endpoint detection and traffic attribution in federated networks using 

behavioral and characteristic modeling for incident response. 
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Chapter 1: Introduction 

In this chapter, we discuss the motivation for the research, the state of the art of endpoint 

detection and response systems (EDR), and how this work addresses the drawbacks of 

the current systems. Then we present the results of the incident response study we 

conducted on the Western Regional Collegiate Cyber Defense Competition (WRCCDC) 

and the learning outcomes. In Chapter 2, we discuss the novel data collection mechanism 

to collect both endpoint and network data. In Chapter 3, we use the collected data to build 

behavioral models that enable the detection of endpoints at the edge network. Chapter 4 

summarizes the learning outcomes and provides closing remarks. 

 

1.1 Motivation 

 

Even though computer networks still use the same Transmission Control Protocol over 

Internet Protocol (TCP/IP) set of protocols, traffic behaviors and cyber-attacks have 

significantly evolved since then and continue to do so. Most popular benchmark datasets 

that are being used today have been introduced more than two decades ago [1] and most 

networks collect data only from their backbone network and only have perimeter security 

systems (discussed in Section 1.2.3). This leaves endpoints vulnerable to attacks, and 

compromises may remain undetected. Endpoint detection and response (EDR) systems 

are experiencing a rapid growth [2] along with the proliferation of mobile devices and 

Internet of things (IoT) [3] and the increase of endpoint attacks [4]. EDR systems that use 

agents may not be applicable in all networks and agentless systems face challenges due 

to the lack of data collection systems (DCSs) and endpoint modeling techniques. 

 

The motivation for this research stems from analysis of 2019 WRCCDC [5] data. This is 

an annual college level blue-team, red-team cyber competition to test participant’s 

network defense skills. Packet captures [6] from this competition are publicly available. 

Packet captures are files containing the contents of complete network transactions which 
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are also known as PCAP files. We analyzed these packet captures as a forensic study 

exercise to identify the network attacks and compromised endpoints from the point of view 

of the participating Stanford University team. Packet captures from cyber competitions 

provide data that are not synthetic or simulated hence provide extremely valuable 

information related to the network transactions. The data include real human interactions 

and up-to-date cyber-attacks that widely used benchmark tests often lack. The ground 

truth was gathered from the competition rules as well as from the competition participants, 

regarding the operating systems (OS), services and topology. 

 

Learning outcomes from the analysis include the inadequacy of using IP address of the 

TCP/IP stack for endpoint detection and data attribution. We also identified architectural 

limitations of the state-of-the-art of packet capturing and the lack of statistical methods to 

differentiate endpoints using their behaviors and characteristics that negatively impact 

incident response. Since backbone packet captures do not capture all network traces 

from all endpoints in the network, they tend to omit critical data to identify certain 

indicators of compromise (IOC) [5]. 

 

Reliable and complete forensic investigations require a comprehensive set of features 

collected from modern networks and endpoints [7]. We studied the literature extensively 

including publicly available datasets, existing DCSs as well as commercial EDR systems. 

As we discuss next, existing data and tools do not offer the granularity and completeness 

needed for behavioral and characteristic modeling for federated agentless detection of 

endpoints. 

 

Contributions include 2019 WRCCDC packet capture forensic analysis, development of 

the InDepth DCS and cyber range, and development of the InMesh EDR system. The 

work has been documented in three papers, namely: 
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• H. A. D. E. Kodituwakku, A. Keller and J. Gregor, "InSight2: A modular visual 

analysis platform for network situational awareness in large-scale networks," 

Electronics, vol. 9.10, pp. 1747-1749, 2020. [5] 

• H. A. D. E. Kodituwakku, A. K. T. Shimeall and J. Gregor, "InDepth: A novel 

distributed and federated network and endpoint data collection system," Digital 

Threats: Research and Practice. Submitted May 2021. [8] 

• H. A. D. E. Kodituwakku, H. Bozdogan, T. Shimeall, and J. Gregor, "InMesh: An 

agentless system for endpoint detection and response," Digital Threats: Research 

and Practice. Submitted November 2021. [9] 

 

Analysis of the 2019 WRCCDC data provided the understanding and requirements 

expected for a robust next-generation DCS as well as an endpoint behavioral and 

characteristic comparison technique to differentiate devices using their traffic activity and 

system attributes without using software agents. InDepth was developed based on these 

requirements to collect the necessary data from production networks. InMesh was 

developed and implemented on InDepth that uses the comparison technique developed 

for endpoint detection. As a result, endpoints can be tracked more reliably, and their traffic 

can be attributed more accurately without relying on traditional IP or MAC addresses or 

software agents. 

 

1.2 State-of-the-Art 

 

Security analysts need data for training and post-breach forensic studies [10]. 

Cybersecurity researchers require data to develop and test network threat detection 

models and algorithms [11]. Both groups depend on access to an extensive set of features 

that cover network traces, endpoint telemetry data, and contextual information [12]. 

Studies discussed in Section 1.2.1 show that widely used, publicly available datasets 

contain outdated traffic scenarios, features that do not align with modern networks, 

statistical anomalies, and simulation artifacts. Due to architectural limitations and 
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computational challenges, even state-of-the-art data collection systems rely on 

workarounds that lead to incomplete and disassociated data.  

 

The accuracies of the underlying models and algorithms depend on the quality of the 

datasets. Lack of comprehensive DCSs that can collect both network and host features 

leads to incomplete data collected about endpoint activity and characteristics [13] [14]. 

Data collected using existing mechanisms may miss critical information needed to detect 

and analyze early stages of an attack such as reconnaissance and lateral movement. 

Shiravi et al [15] show that total interaction capture is needed including inter- and intra-

Virtual Local Area Network (VLAN) transactions. Even state-of-the-art DCSs typically use 

workarounds to compensate for architectural and computational challenges which leads 

to incomplete and disassociated data (discussed in Section 1.2.2).  

 

The TCP/IP stack has no built-in endpoint detection capability making it difficult to 

attribute network transactions to the correct endpoints. Network traces and characteristic 

logs must be collected and attributed to the correct endpoint for an effective cyber incident 

response. Agent-based EDR systems use endpoint software agents to uniquely identify 

the endpoint as well as collect system information such as host name, open ports, 

Operating System (OS) and network activity. These agent-based systems encounter 

practical limitations, such as unsupported operating systems, unmanaged devices, 

resource limitations, read-only memory, and privacy concerns, and can thus not easily be 

implemented on all devices in a network. Agentless EDR systems, on the other hand, 

allow ease of deployment and maintenance while also offering increased resilience to 

attacks not to mention privacy, since they are separate from the endpoint. They can be 

used standalone or in addition to agent-based EDR systems to cover all endpoints in a 

network. Current agentless EDR systems rely on addresses from the network packets for 

data attribution, which may not be reliable [16].  
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1.2.1  Publicly Available Datasets 

 

According to McHugh [17], widely used benchmark datasets such as DARPA'98 [18], 

KDD'99 [1], and NSL-KDD [19] are outdated and do not represent modern network traffic. 

They also lack information on how the data were collected including network topology, 

functional descriptions of each subnet, firewall rules, endpoint OS, service versions, 

attack details, and validation of the types of network traffic they are said to represent. 

Shiravi et al [15] pointed out that it is necessary to move away from static one-time 

datasets to generating data more dynamically because network behaviors and patterns 

change, and intrusions evolve. 

 

DARPA’98 and KDD’99 datasets suffer from simulation artifacts and inclusion of statistical 

anomalies that machine learning models and algorithms adapt themselves to, producing 

unusually high accuracies that cannot be replicated from real-world data [20]. UGR’16 

dataset labels records as benign or malicious [21]. This may lead machine learning 

models to use the attributes of a single flow to determine whether a network has been 

compromised. However, in practice, individual flow records do not necessarily represent 

an attack. Security analysts perform forensic investigations by looking for victim 

vulnerabilities, attacker motivation, and a chain of actions that lead to the compromise. 

The source address contained in the flow record may also not be the attacker’s real 

source identifier since source addresses can be spoofed and traffic can be bounced off 

of unsuspecting endpoints in the network.  

 

Figure 1.1 provides a histogram of the number of citations for the benchmark datasets 

included in the survey by Khraisat et al [22] as of June 1, 2021. The number of citations 

was obtained using Google Scholar. KDD’99 is seen to have more citations than all the 

other data sets combined. As shown in Figure 1.2, the number of articles that cite KDD’99 

has steadily increased every year since its introduction.  
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DARPA‘98 and its derivatives KDD’99 and NSL-KDD were created at the MIT Lincoln 

Lab. DARPA‘98 [18] contains synthetic tcpdump data of seven weeks of simulation with 

various attacks injected. KDD’99 [1] contains four attack types and includes 41 features. 

NSL-KDD eliminated some (but not all) problems associated with the KDD’99 dataset 

such as the duplicated records [19]. DARPA’99 [23] contains synthetic tcpdump traffic 

and endpoint data collected at two sensors, one inside the network and one outside the 

network. This dataset is not as widely used as the KDD’99 dataset.  

 

Tavallaee et al [19] analyzed KDD’99 and found that 78% of records in the training set 

and 76% of records in the testing set were duplicated which biases detection algorithms 

towards the more frequent records. They showed that less frequent attacks may go 

undetected which could be harmful. Kayacik et al [24] reported that 98% of the training 

data consists of just three classes, namely, Normal and Neptune or Smurf DoS attacks, 

which lead to high detection rates and low false positives for those classes. MacHugh et 

al [17] identified that KDD’99 does not include enough information on how the benign 

background data was generated. The overall distribution of different attacks was also 

shown to be biased with denial of service (DoS) attacks at over 71% being most prevalent 

[19]. Due to their large footprint, the DoS attacks are easily detected using simple 

statistical methods. Simulation artifacts bias the detection results. Indeed, the extremely 

high accuracy reported in the literature for the KDD’99 data may be attributed to 

simulation artifacts and statistical anomalies unique to the attack data [19] [20]. For 

example, some attacks can be identified by observing the time-to-live values present only 

in malicious traffic, anomalies in the TCP window size value and specific IP addresses 

unique to the attackers. Synthetic datasets such as DARPA'98 and its derivatives are not 

suitable for security analyst training and forensic analysis since they do not represent 

real-world traffic. 

 

KDD’99 is said to model network traffic for US Air Force bases, but support for this claim 

has not been published [17]. If so, the data may be specialized to the point of not 

representing commodity networks. Another potential issue is that the single-threaded 



 

 

7 

nature of the tcpdump tool renders it susceptible to packet drops [25], yet this aspect has 

not been studied. The data furthermore contains features that cannot be obtained from 

real-world networks as they require the contents of a network connection to be observed 

as cleartext, e.g., the number of login attempts, login status and attempts at privilege 

escalation. Modern encrypted network protocols such as SSH [26] make it impossible to 

extract cleartext from network traces. While specialized software agents running on each 

device can observe login attempts and export the data for decision making, firewall rules 

and readily available system software can easily prevent these types of attacks without 

sophisticated algorithms having to be developed. Attacks such as Smurf [27] were 

furthermore patched at the system level many years ago and do not occur in practice 

anymore. 

 

Each KDD’99 record is labeled either as normal traffic or as one of four types of attacks 

[17]. Detailed information about the attacks is missing such as OS and service version of 

the victim devices, and penetration testing tools and parameters used by the attacker. 

Labeling a single transaction as an attack is not ideal.  

 

Furthermore, a single packet that causes buffer overflow in the target system may not 

indicate an attack, and probing should be considered a precursor to a complex attack 

rather than an attack on its own.  

 

More recent datasets have attempted to improve upon the above-mentioned 

shortcomings. CAIDA [28] provides anonymized backbone network traces upon request, 

but the data is not labeled and therefore has limited applicability. UNSW-NB15 [29] 

contains more up-to-date network scenarios but used a proprietary tool to generate the 

data artificially. 
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Figure 1.1: Benchmark datasets and their number of citations [8]. 
 
 

 

 

 

 

 

Figure 1.2: Number of KDD’99 citations for per year [8]. 
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Studies have shown that UNSW-NB15 attributes are more efficient and provide more 

reasonable accuracies when machine learning models are trained, compared to 

unusually high accuracies provided by KDD'99 [30]. ISCX 2012 [31] contains 2 million 

records with 2% of them representing attack, namely, brute-force SSH, infiltration, HTTP 

DoS, and (Distributed Denial of Service) DDoS. This dataset covers seven days of 

network activity. CIC-IDS2017 [32] contains synthetic data of 25 user profiles that include 

HTTP, HTTPS, FTP, SSH, and email protocol usage. This dataset contains 5 days of 

activity that includes attack data based on brute-force FTP, brute-force SSH, DoS, 

Heartbleed, web attack, infiltration, iotnet and DDoS. In addition to flow data captured 

from the main switch, CIC-IDS2017 also includes memory dumps and system calls from 

all victim machines captured using software agents. ADFA-LD and ADFA-WD have 7 and 

13 class labels respectively [33]. Bot-IoT [34] dataset focuses on botnet activity in Internet 

of Things (IoT) networks.  

 

1.2.2  Data Collection Techniques 

 

Flow data from network packets can be either generated at the networking gear or using 

dedicated hardware [35]. Modern switches and routers perform switching and routing 

functions on hardware using an application-specific integrated circuit (ASIC) which is very 

efficient. As illustrated by Figure 1.3, flow generation on switches and routers is performed 

by software using RAM and CPU which are limited.  

 

A certain amount of memory proportional to the throughput of the network is required to 

cache the flow records, and the CPU must process and flush expired flows. Network 

hardware has limited processing capacity and can easily get overwhelmed in high-volume 

networks. Most network hardware also uses its processing resources to perform 

firewalling, Quality of Service (QoS), VPN functions. Further resource sharing can 

potentially hinder overall performance of the network.  
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Figure 1.3: Switching and flow data generation at the switch. 
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Flow data generation using a dedicated external device requires access to raw packets 

of the network. This can be done either using a mirrored port from a capable switch or a 

network Terminal Access Point (TAP) device. Advantages of using a network TAP include 

capturing everything on the wire, including errors where network port mirroring may drop 

them. Since a network TAP sits on a network link, it does not use switch resources either. 

However, adding a network TAP on each port of a switch may not be economical.  

 

On the other hand, port mirroring can be configured on one or more ingress or egress 

ports of an existing device which is more feasible and economical in most situations. For 

simplicity, we use port mirroring at each ingress port and address packet drop concerns 

by utilizing multi-threading. More powerful CPUs can thus be deployed for high throughput 

network segments. Port mirroring can be simple or encapsulated. The latter can be 

exported outside the subnet to a given IP address which helps central data collection but 

may not be available from all manufacturers. Simple port mirroring that mirrors traffic 

creates an exact copy of the traffic seen on all ports that have port mirroring enabled and 

is widely supported including Software Defined Networks (SDN). We utilize simple port 

mirroring and use the distributed node structure to finally aggregate all the data at a 

central location. 

 

Distributed data collection at the subnet level provides numerous benefits that cannot be 

achieved using central DCS. It captures the data-link layer activity and includes endpoint 

information such as MAC addresses and VLAN IDs. For example, a distributed system 

can capture data from the initial stages of a data exfiltration attack as the malicious agent 

performs scanning for vulnerabilities and lateral movement within the subnet. In contrast, 

traditional data-collection systems may only capture the final stage of the exfiltration of 

the data to the command and control (C2) outside of the network. Furthermore, active 

probing becomes more reliable due to the endpoints being a single hop away, adding 

valuable endpoint attributes into the data collected. Device active probing harvests 

endpoint data which may not be possible centrally due to Network Address Translation 
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(NAT). The data consisting of network activity, endpoint characteristics and contextual 

information are better generated at the VLAN since it reduces the burden for processing 

and memory consumption by distributing the computation. It only exports compact meta-

data saving the bandwidth compared to exporting packet captures. Due to the 

proliferation of cloud applications network traffic tend to bias packets going out to the 

Internet for web and cloud applications as opposed towards local network resources. 

Backbone DCS are efficient at mitigating threats coming from the Internet since they 

capture all traffic between local endpoint and internet. But these systems also struggle to 

process the extremely high throughput data rates at the backbone in modern networks 

and may miss critical activity happening at the subnet level. For example, critical stages 

of a compromise such as lateral movement do not involve traffic traversing the backbone. 

 

Several flow standards exist. Developed by Cisco, NetFlow v5 [36] includes five basic 

flow features, namely, source IP address, destination IP address, source port, destination 

port, and protocol. Flow generation can be performed randomly instead of capturing every 

packet to overcome issues with packet drops. For example, the NetFlow exporter can be 

configured to sample M out of N packets in which case flow records are created just for 

those samples. 

 

An alternative would be to use sFlow [37], which is specifically developed to generate 

sampled flow records. Both approaches trade performance for accuracy which can be a 

problem, especially when identifying slow attacks that span across a long period of time 

and leave small footprints on the network. NetFlow v9, which uses a proprietary protocol, 

collects more features from each flow and is the most widely used standard today. Juniper 

developed jFlow [38] to produce similar features, again using a proprietary protocol. The 

Internet Engineering Task Force (IETF) developed IPFIX [39] as open flow standard 

comparable to NetFlow v9. NetFlow and IPFIX are inherently unidirectional, the accuracy 

of deduplicated records depends on whether the data collection has been accounted for 

using ingress, egress, or both. Although initially developed by Cisco, NetFlow standard is 

being implemented by most mainstream vendors. However most white box solutions do 
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not support this standard with a few exceptions such as Open vSwitch [40]. It can be 

concluded that generating flow records using dedicated hardware provides the highest 

level of compatibility and uniformity. In addition, it provides the flexibility of tagging flows 

with endpoint data and other contextual information within a single process. 

 

In practice, networks employ a Security Information and Event Management System 

(SIEM) (e.g. Splunk [41]) in addition to a flow collection system such as NetFlow 

generated on networking hardware.  The purpose of a SIEM is to receive, collect, 

aggregate logs and events from many diverse sources that may send data in many 

different formats, often vendor-specific, and store the normalized records for use when 

needed. They can also help identify malicious events by correlating log data. Some of the 

data a SIEM parses are network firewall, IDS, antivirus, router logs, database logs, web 

application firewall, etc. Since SIEMs do not specifically collect endpoint characteristics, 

InDepth complements SIEM’s log data and at the same time free up resources of the 

networking hardware for switching and routing activity. 

 

Data collection is normally performed either outside the firewall, on the firewall, or on each 

endpoint. Data collected outside a firewall can be sent directly into traditional IDS/IPS 

solutions. Firewalls that have built-in IDS/IPS functionality benefit from on-firewall data 

collection. Data collected on each endpoint requires specialized software agents which 

are more suitable for HIDS applications. To our knowledge, a system does not exist that 

collects traffic and endpoint features simultaneously and enriches each record with 

contextual information from each VLAN without the need for software agents. 

 

Techniques exist for collecting data centrally that can be performed using one or more 

collection points. The challenge with these solutions is that some network transactions 

may generate duplicate records while others do not, depending on the source and 

destination addresses. 
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Single threaded packet capture utilities such as libpcap and PFRING suffer from high 

packet losses when exposed to high data rates [42]. CPU single core speeds have 

practical limitations where it starts to provide diminishing returns in terms of power 

consumption per clock frequency whereas modern multi-core CPUs can have a high 

number of CPU cores. A multi-threaded implementation of libpcap called DiCAP [43] is 

aimed at preventing packet losses using parallel processing. Packet loss is more prone 

to occur in centralized DCS such as backbone data collection. Backbone DCS demands 

high bandwidth requirements and high CPU and memory requirements because all the 

network packets routed at the backbone are processed at the backbone router. In 

contrast, distributed DCS that collect data at the subnet level can utilize low-power IoT 

devices in place of high-power servers and commodity network hardware. 

 

1.2.3  Endpoint Attacks and Protection  

 

EDR is an emerging aspect of enterprise cybersecurity that provides visibility into the 

activity of each endpoint in the network to identify emerging threats and active attacks 

using endpoint modeling. Endpoint models are crucial for shortening response times for 

incident response and can help eliminate threats before damage is done. For EDR 

systems to be effective, all network traffic must be captured and attributed to the correct 

endpoint. This can be challenging, especially when the IP and MAC addresses are used 

for identification, since these addresses can be spoofed and sometimes are shared 

among multiple endpoints, especially in private networks.  

 

Agent-based EDR systems attributes endpoint activity by capturing all endpoint activity 

from the device itself using the software agent. However, this requires dedicated agents 

to be developed that are compatible with the many OS and application programming 

interfaces (API) in use. Exacerbating matters, some devices are not capable of 

accommodating agent software. Internet of things (IoT) devices, for example, are low 

power devices designed to carry out a limited number of specific, pre-defined tasks. 

Endpoints that run firmware or an embedded OS, including but not limited to medical 
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devices, industrial control systems, smart TVs, voice-over-internet-protocol (VoIP) 

phones, webcams, and printers, do not allow third-party software to be installed which 

means the manufacturer would have to issue software with the agent embedded. Certain 

embedded systems furthermore run outdated and discontinued OS versions to remain 

compatible with other software; agent installation might create undesirable issues 

including an increase in the attack surface. The number of unmanaged devices in 

enterprise networks is currently growing by almost 31% a year [44]. In the near future, up 

to 90% of all devices are predicted to be unmanaged and unsecured [2]. EDR systems 

are expected to have an annual growth rate of more than 25% during the period of 2020-

2025 [45]. 

 

Most agentless EDR systems rely on network traffic captured by a backbone DCS for 

endpoint modeling. They use addresses seen in the data for attribution. An endpoint IP 

address, which is used for Layer 3 routing, can be assigned and altered within the usable 

range for the particular subnet manually or by a dynamic host control protocol (DHCP) 

server. DHCP IP re-lease and re-use facilitates communication for transient devices since 

there are limited number of IP addresses within the LAN pool with zero configuration. The 

endpoint IP address can also be modified during network address translation (NAT). In 

contrast, the media access control (MAC) address was designed to be immutable while 

being unique to the network adapter of the endpoint and is used for Layer 2 switching. 

However, they too can be changed, namely, by users with higher system privileges. 

Frame MAC addresses are replaced automatically when packets are routed from one 

subnet to another. Source MAC is replaced with that of the forwarding interface of the 

router and the destination MAC with that of the destination interface of the gateway. For 

these reasons, use of addresses from the TCP/IP stack may trigger generation of new 

models for the same endpoint or collision with an existing model for another endpoint 

when addresses are altered. 

 

When MAC address impersonation occurs, the MAC table (also known as the Content 

Addressable Memory (CAM) table) of the switch is altered, since it is designed to map 
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each MAC address to a device interface for switching. This is a Layer 2 to Layer 1 

mapping. When the attacker sends packets with the source MAC address of the victim, 

the switch learns that it should forward the future packets intended for the victim to the 

attacker, since the MAC/CAM table now lists the MAC address of the attacker instead of 

the victim. To reduce MAC/CAM table instability in case the victim reclaims the entry, the 

attacker periodically sends spoofed frames. Successful impersonation renders the victim 

device unreachable with all packets switched to the attacker. This Layer 2 man-in-the-

middle (MITM) attack only involves the LAN switch. It can also be performed at Layer 3 

using spoofed gratuitous address resolution protocol (ARP) messages against endpoints. 

This is called ARP poisoning. The ARP table contains the IP to MAC address mapping 

which is a Layer 3 to Layer 2 mapping. In both cases subsequent data will be from the 

attacker rather than the victim. 

 

IP address spoofing has limited legitimate use. One application (albeit legacy) involves 

certain Internet Service Providers (ISP) in mobile IP networks where roaming mobile 

devices have to use the IP address of the native ISP for billing purposes which is then 

spoofed by the ISP to provide Internet connectivity. However, RFC 2344 reverse 

tunneling eliminates the need for spoofing in this situation [46]. Another application 

involves virtual private network (VPN) providers who spoof the IP with that of the local IP 

address. This can also be eliminated using proper VPN routing implementation [47].  

 

Examples of malicious IP address spoofing are numerous, including but not limited to 

avoiding detection and implication in cyber-crime investigations, masking botnet devices, 

preventing being blocked by a victim host or network, preventing compromised devices 

from sending alerts, and bypassing block-lists and devices such as firewalls. Typically, IP 

address spoofing is followed by an actual attack such as denial of service (DoS), sending 

spam, and phishing emails. MAC address spoofing is used to bypass weak authentication 

systems such as MAC address allow-listing and ARP poisoning for MITM attacks. Replies 

to this traffic do not reach the actual source, since they are spoofed and do not offer 

bidirectionality. Spoofing is thus mainly used to disrupt communications. A notable 
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exception is double spoofing [48] which manipulates TCP sequence numbers by 

exploiting a vulnerability in sequence number generators on some older systems. This 

can help gather some information about the target without revealing the attacker’s actual 

IP address. 

 

For endpoint detection to be effective when IP or MAC addresses are changed, the EDR 

system needs to model the endpoint using system attributes such as OS, active services 

and host keys, and behavior indicators such as average inbound and outbound 

promiscuity, traffic producer-consumer ratios (PCR) and top talkers. In this dissertation, 

we use such behavioral models along with temporal and spatial features to develop what 

we refer to as the InMesh endpoint detection algorithm. Effective and accurate endpoint 

modeling requires data collection at Layer 2 which includes inter-LAN communication as 

well as MAC address information from the traffic. To capture this data, a distributed sensor 

network is required. Figure 1.4 shows data collectors we call ‘sensors’ operating on the 

Layer 2 installed on each LAN or VLAN, and a coordinator we call ‘core’ operating at 

Layer 7 for coordination and storage. The green arrows indicate flow of sensor data with 

the red arrows showing network connections. The placement and dataflow are depicted 

using a simple two-subnet network but can be extrapolated into more complex topologies 

where the sensor nodes will remain at the LAN level while the core node will move up to 

the backbone. 
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Figure 1.4: Agentless network and endpoint data collection. 
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Generally, attackers start with reconnaissance of the network topology and its endpoints. 

This step provides crucial information about the layout of the network, and, in turn, which 

intermediate devices must be compromised in order to reach the target endpoint. 

Reconnaissance and compromise are an iterative and incremental process. In Figure 1.4 

the attacker’s endpoint performs host discovery and vulnerability scanning on the same 

LAN using the A1 connection and other LANs using A2 connection. In this example, 

network data collection from the router or the Layer 3 switch does not reveal the A1 

connection. More complex networks may have deeper hierarchies where the A2 

connection would also not be detected.  

 

Once vulnerable endpoints are found, they are exploited using payloads for known 

vulnerabilities, zero-day vectors, and brute-forcing login credentials. Credentials can also 

be stolen using social engineering, phishing attacks and MITM attacks. Endpoints can be 

compromised leveraging disgruntled employees, phishing attacks and physical access. 

Once an endpoint is compromised, privileges can be escalated to root or administrator 

exploiting various vulnerabilities, then preventative software such as antivirus, anti-

malware and EDR agents can be disabled, malicious programs can be installed such as 

advanced persistent threats (APTs), a command-and-control (C2) channel can be 

established to communicate with the attacker, usually via a temporary virtual private 

server (VPS) hosted on the Internet on a predetermined domain name using domain 

name resolution (DNS) tunneling. In Figure 1.4, the attacker can use the A3 connection 

to establish a control channel with C2 on the internet. Perimeter protection can only detect 

an attack at this stage which may already be too late. More advanced threats can be fully 

autonomous, keeping silent until the target endpoint has been reached and data 

exfiltration begins. Transmission is typically to an attacker owned VPS via DNS tunneling, 

email, Bittorrent protocol, file transfer protocol (FTP) or secure shell (SSH), upload to a 

cloud service or paste site such as Pastebin or Github, or to physical media [49]. Attackers 

can compromise a significant number of devices in a network before current perimeter 

protection systems are able to identify them. Since perimeter protection systems look for 

known indicators and signatures, such compromises maybe missed entirely [50]. 
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Agentless EDR systems have advantages, such as faster deployment and easier 

maintenance, because data is collected outside the endpoint. They also offer increased 

privacy, since there is no software running with file system and process level access that 

reports user activity. Most importantly, since they run on separate security hardened 

devices they cannot be accidentally or deliberately disabled or uninstalled during an 

endpoint compromise. Agentless EDR systems do not monitor system processes and 

files for malicious activities. But antivirus, anti-malware and data loss prevention systems 

(DLP) are dedicated software to monitor endpoint files and system resources. Antivirus 

aims to detect known, more established threats, such as Trojans, viruses, and worms. 

Anti-malware provide protection from new threats, such as polymorphic malware and 

malware delivered by zero-day exploits. DLP consists of a set of tools and processes to 

prevents data leaks, misuse and loss. In 2021, more than 95% of all web traffic is 

encrypted compared to less than 50% in 2014 [51]. Modern malware also uses traffic 

encryption to hide the contents. While it is possible to decrypt SSL/TLS on the endpoint 

itself using agents, once setup with proper root certificates on the endpoint OS, encrypted 

traffic can be decrypted externally, eliminating the need for agents. 

 

Figure 1.5 shows common security solutions in a notional network, their physical location 

as well as the network stack layer they operate on. Perimeter security systems, such as 

intrusion detection and prevention systems (IDS/IPS), firewalls, and threat intelligence 

gateways monitor and secure traffic to and from the local network and the Internet. Threat 

intelligence gateways, firewalls and IDS/IPS aim to secure the network from threats from 

the Internet while antivirus, anti-malware, DLP, web application firewalls (WAF) and email 

security solutions aim to secure the particular service or the endpoint. Network 

segmentation, such as use of a demilitarized zone (DMZ), keeps internal devices of the 

network compartmentalized from resources that needs to be directly exposed to the 

Internet which have a higher probability of getting compromised. Devices within the DMZ 

are managed devices and can thus accommodate an agent based EDR system. It can 

be seen that the growing number of unmanaged devices, and the transient and mobile, 
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bring-your-own-devices on the enterprise network are not as protected as the other 

devices and the perimeter which can be protected using an agentless EDR system. 

 

Most cybersecurity research uses either network data or endpoint data but rarely both 

together. Examples of research that uses network flow data include [52], [53], research 

that uses system resources such as CPU, RAM and processes include [54], [55], [56], 

research that uses file system information include [57], [58], [59] and research that uses 

logs include [60]. Some research focuses on mobile devices, e.g., [61] and [62]. To the 

best of our knowledge, a system has not been reported in the literature for agentless EDR 

that combines network traffic statistics as well as endpoint telemetry together. 

 

A very limited number of datasets include both network traces and endpoint telemetry 

that may be used for EDR system development. One example is CIC-IDS2017 [32] which 

contains 5 days of traffic and endpoint data from simulated hosts that spans the protocols 

HTTP, HTTPS, FTP, SSH, and email. Attacks include brute-force FTP, brute-force SSH, 

DoS, web attack, infiltration, IoT and DDoS, as well as the relatively recent Heartbleed 

vulnerability. The dataset contains more than 80 network flow features collected from the 

main switch along with endpoint data such as memory dumps and system-calls from 25 

hosts including Ubuntu, Windows and Mac. A major drawback is that the endpoints are 

synthetic. Since the endpoint related data are captured from within the host itself, it may 

be more suitable for agent based EDR systems.  

 

Table 0.1 summarizes commercially available EDR systems and their capabilities [63]. 

Only Microsoft, Infocyte, and Cybereason vendors have agentless EDR products. We 

also compare them with regard to mobile device coverage and whether the appliance is 

hosted on the client’s premises or on the vendor’s cloud. On-premises installations can 

provide more flexibility and cloud-based systems can provide more up-to-date threat 

analysis.  
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Table 0.1: Commercially available EDR systems and their capabilities [63]. 
 

Name Mobile On-prem Cloud based Agentless 

Microsoft 

Defender  

No No No Yes 

Infocyte No No No Yes 

Cybereason No No No Yes 

Bitdefender No Yes Yes No 

BlackBerry 

Cylance 

Yes No Yes No 

Broadcom 

(Symantec) 

No No Yes No 

Check Point No Yes Yes No 

Cisco No No Yes No 

CrowdStrike No No Yes No 

ESET No No Yes No 

FireEye No No Yes No 

Fortinet No No Yes No 

F-Secure No No Yes No 

Kaspersky No No Yes No 

McAfee No Yes Yes No 

Panda Security No No Yes No 

SentinelOne No No Yes No 

Sophos No No Yes No 

Trend Micro No No Yes No 

VMWare Carbon 

Black 

No No Yes No 

Red Hat 

Openshift 

No No Yes No 
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Figure 1.5: Perimeter and endpoint security solutions. 
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1.3 Incident Response 

 

In this section we discuss the network incident response workflow of a security analyst 

using the network incident response exercise conducted using the 2019 WRCCDC data 

[5]. Figure 1.6 shows a typical forensic study workflow of a security analyst investigating 

a security incident that we used for the analysis. In this case the security incident was an 

endpoint compromise. First the critical services running on the endpoints are identified 

using the ground truth data and using passive packet analysis. Then each service was 

focused on using destination port number filter. Anomalous traffic was identified using the 

visualizations. The source of the anomalous traffic is identified. Using the ground truth IP 

addresses blue and red team are separately identified. Using the reverse shell port and 

the red-team IP address combination traffic was investigated to identify potentially 

compromised blue team endpoints. Further investigation was carried out to verify the 

compromises. Final goal of this exercise was to detect the reverse shell that originated 

from the victim machine to the attacker which has shown in Figure 1.7 and Figure 1.8. 

 

The ground truth about the data was available prior to the analysis. The 2019 WRCCDC 

competition topology is shown in Figure 1.9. It consisted of eight blue teams whose 

objective was to defend network services such as web and email servers. The blue teams 

operated on subnets 10.47.x.0/24, where x denotes team numbers 1 through 8. A red 

team operating on a wide network range of 10.128.0.0/9 attacked the blue team servers 

using various techniques. A service check engine operating at 10.0.0.111 (and various 

other IPs) periodically checked the status of the blue team services to see if attacks had 

successfully disabled their critical network applications.  
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Figure 1.6: Forensic study workflow [5]. 
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Figure 1.7: Attack visualization before port filtering [5]. 
 

 

 

 

 

 

 

Figure 1.8: Attack visualization after port filtering [5]. 
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Figure 1.9: 2019 WRCCDC network topology. 
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Based on the available ground truth the following discoveries were made using the 

forensic study workflow. The attacking red team had changed their source IP addresses 

occasionally to avoid being categorically blocked by the blue team. This made it 

challenging to aggregate their actions and attribute them to the correct source endpoint. 

With the data collected at the gateway router no endpoint information other than tcpdump 

data of the network packets crossing the gateway was logged. No contextual information 

about the endpoint's characteristics (both red and blue teams) was available either. The 

competition rules indicated that defending blue teams were given one hour to get familiar 

with and update their services that they were defending to make them more resilient to 

the potential attacks. The versions of the services at the time of compromise were thus 

unknown. 

 

The traffic was collected at the backbone of the network. It was challenging to track a 

single endpoint in the network using its IP address and model its behavior since IP 

addresses changed periodically to prevent getting block listed. It was difficult to collect 

and analyze all the traffic belonging to the endpoint under scrutiny in such scenarios. 

Even armed with some prior information which is not usually available for real world 

incident response situations, the analysis was slow and required substantial manual work 

which is prone to error. The simple topology made our task easier since it divided the red 

and blue teams into separate subnets. It is usually not the case in practice where IP 

addresses of attackers and victim endpoints are mixed within the same subnet making 

an analyst’s task much more challenging, calling for more robust and complete data 

collection mechanisms. 

 

1.4 Contributions 

There are several key contributions of this work. Novel InDepth DCS, which consists of a 

distributed set of sensor nodes, simultaneously collects network traffic and endpoint 

behavior. To the best of our knowledge, it is the only system that can perform total 

interaction capture from existing networks without needing any changes to the underlying 

hardware due to its unique architecture. The InMesh EDR system uses the rich data 
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provided by InDepth for correct attribution to endpoints using statistical endpoint 

modeling. It consists of a distance measurement technique and a decision algorithm to 

uniquely identify endpoints even when they are spoofing and impersonating their IP and 

MAC address. Together they perform endpoint detection and data attribution for incident 

response. We achieve these goals using WRCCDC data without simulating endpoint 

behavior on a cyber range that we developed for collecting experimental cybersecurity 

datasets which closely represent modern commodity networks. 
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Chapter 2: InDepth Data Collection System 

 

Increasingly, modern networks and devices are being implemented in software such as 

SDN and VMware ESXi. This allows network administrators to allocate resources based 

on demand, dynamically and instantaneously without any downtime. Network 

infrastructure and virtual servers can have a flexible amount of processing power, 

bandwidth, and memory. Current and future networks require a data collection framework 

that equally applies to both hardware and software implemented environments. They 

need to scale well based on the throughput of the network seamlessly. With reference to 

Figure 2.1, the InDepth system architecture consists of a distributed sensor-node-based 

DCS that generates network flows at sensor nodes passively and collects endpoint 

characteristics actively. The resulting data records are enriched by contextual information 

before being sent via a secure channel to a core node for indexing and storage. 

 

 

2.1 InDepth System Architecture 

 

The sensor node receives mirrored packets from the switch from all the ingress ports of 

its VLAN. Since simple port mirroring provides exact replicas of all packets seen on the 

selected ports (except for certain error messages depending on the manufacturer) this 

can be performed on any modern switch hardware or virtual networking device. Simple 

port mirroring also does not involve encapsulation thus does not require further 

processing at the receiving end. Received network packets are converted to network 

flows in parallel using separate CPU threads. This parallel processing can be scaled up 

to utilize all available CPU threads. 
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Figure 2.1: InDepth system architecture. 
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Endpoint data actively probed by a separate thread are collected and buffered for each 

device on the network. During the next step the flow records are enriched with both 

endpoint data and contextual data. Once the data records are created, they are exported 

to the core using an encrypted connection. The core aggregates the records from all the 

sensor nodes in the system.  

 

Figure 2.2 shows placement of the core and sensor nodes on the model cyber range. 

Details about the cyber range including network policies and endpoint OS and services 

are described in Section 1.2. Each VLAN is allocated a sensor node equipped with 

appropriate system resources. Since all processing is performed on commodity devices, 

sensor nodes can be upgraded as needed to keep up with increasing traffic.   

 

Open-source software was used when possible combined with commonly used industry 

standard software. For example, Argus [64] was used for flow data generation, nmap [65] 

for active endpoint probing, Elasticsearch [66] for storage and indexing, and WireGuard 

[67] to establish the encrypted connection between sensor nodes and the core node. 

These are all open-source tools and protocols. Cisco VIRL [68] was used to build the 

virtual network due to its ease of use and integrated features. However, it could be 

replaced by open-source SDN tools such as Open vSwitch [69] or Open Network 

Operating System (ONOS) [70] for a fully open-source stack. Different flow generators 

can likewise be used in place of Argus, e.g., NetFlow v9, and different probing tools such 

as ZMap [71] can replace nmap if needed. In other words, InDepth is a framework that 

can be implemented using different tools. Proprietary and open-source operating systems 

are used as endpoints with services running on them. 
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Figure 2.2: Overview of node placement and communication. 



 

 

34 

Modern networks are protected using multiple security solutions such as network 

firewalls, web application firewalls (WAF), next generation firewalls (NGFW), antivirus, 

IDS/IPS, network detection and response systems (NDR), SIEM, VPN, wireless security, 

email security, and endpoint security tools. They operate at different points in the network 

topology. For example, classic firewalls operate on the backbone router enforcing a pre-

programmed set of rules deciding whether to allow or drop connections. WAF are reverse 

proxies that protect the application layer of the network stack by mediating the 

connections between the user and the web application by examining the HTTP/S 

connections.  

 

NGFW are forward proxies that can detect web, email and other services and protects 

the user by enforcing user-based policies by performing URL filtering, file scanning for 

malware etc. IDS/IPS look out for known signatures and either flag the malicious activities 

or block them. They operate on a vast number of protocols and are used to protect Layer 

2 and 4 (in some cases up to Layer 7). NDR systems such as InSight2 [5], provides real-

time statistical analysis and insights about the network operations using threat intelligence 

feeds at the Layer 3. SIEMs collect log data from various resources. The other tools are 

typically designed to protect that specific service.  

 

InDepth operates primarily at Layer 2 collecting flow data and endpoint information and 

augmenting them with contextual information but uses Layer 7 (the application layer) for 

the communication between a sensor node and the core node. Its purpose is complete 

interaction capture and archival. It does not replace existing security solutions. 

Information collected by InDepth can be used to better understand, correlate and attribute 

collected data to the correct endpoint.  

 

Furthermore, datasets can be created using the data collected by InDepth during 

cybersecurity exercises or real-world security incidents.  

Figure 2.3 lists selected traffic and endpoint features collected both by passive and active 

monitoring at the sensor node. The features depicted in blue corresponds to the features 
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extracted from the network packets, the features depicted in green corresponds to system 

features harvested using active probing and the and features depicted in brown 

corresponds to the features enriched using the contextual data look-up table.  

 

First the presence of an endpoint is detected when it uses the network to send packets 

or by actively scanning the subnet for endpoint discovery. Discovered endpoints are 

monitored for their network activity and system characteristics. 

 

Features used for Layer 2 and 3 routing from the source to the destination are extracted 

from the packet headers such as MAC and IP addresses. Protocol, type of service (TOS), 

time to live (TTL) value and TCP options are also extracted from the packet header. 

Packets belonging to a single network transaction are aggregated into a flow record using 

the five tuples, namely, source and destination IP and port, and the protocol. Once 

packets are binned into flows, total number of bytes and packets for that flow are 

generated. Statistical features such as mean and maximum and minimum packet sizes 

are further generated using packet size information. Jitter is calculated using the TCP 

sequence numbers and packet arrival timestamps. Producer consumer ratio refers to the 

ratio between sent and received number of bytes. We extract the necessary traffic 

features including these using the Argus tool. 

 

System characteristics are harvested by sending especially crafted packets towards a 

target and observing its replies. Even though every OS TCP/IP stack is compliant with 

the IETF RFCs they have minor differences in their implementations due to ambiguities 

and interpretation differences. These differences are used to identify the OS, kernel, and 

service information. Target endpoint’s OS fingerprint is obtained by sending 1 – 16 TCP, 

UDP and ICMP packets and listening to the responses. Open ports are discovered by 

sending packets to the ports in the well-known ports range, namely, 1 – 1023. Their 

service types and versions are fingerprinted using similar techniques to OS fingerprinting.  
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Figure 2.3: Active and passive feature categorization. 
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Certain services such as web servers publish information that can be read by connecting 

to the port. If the endpoint is running SSH it publishes its key fingerprint and the public 

key which can also be read by connecting to the port. We use Nmap tool to obtain these 

features.  

 

Contextual information such as IOC, known botnet IP addresses, Internet Service 

Provider (ISP) IP ranges and physical/geo location can be further infused into the records. 

This information is time sensitive and contains data specific to the organization. They are 

indexed into a database for linear time lookups. Some examples of this information may 

include chassis serial number and reverse DNS.  

 

For total interaction capture [15], network transactions must be collected as close to the 

endpoint as possible. In this paper, we use the InDepth [8] data collection system (DCS) 

which collects data on the wire between the endpoint and the first hop at each subnet 

using a distributed network of sensors. To the best of our knowledge, this is the only 

system capable of collecting network traffic and endpoint telemetry simultaneously from 

each local area network (LAN) while augmenting the data with contextual information. 

This data is used to create endpoint models called host descriptors (HD).  

 

InDepth uses MAC address to identify the endpoint, under the assumption that MAC 

addresses do not change. The original MAC address is preserved since traffic is captured 

just after a packet leaves the source endpoint and before it is forwarded to the next subnet 

by the switch. InDepth is a distributed DCS that consists of a sensor node per LAN and a 

core node per network. A network consisting of n LANs will have n+1 nodes in total. Each 

sensor node is connected to a mirror port that replicates an exact copy of the traffic for 

that LAN for passive monitoring of the traffic as well as active probing of the endpoints to 

harvest system characteristics. See [8] for more details. 
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Even though MAC addresses are less volatile than IP addresses, they can still be 

spoofed. InMesh attributes endpoint activity without relying on MAC or IP addresses, 

ensuring correct data attribution even when an address does not have a one-to-one 

endpoint mapping. The goal of InMesh is to develop a unique identifier using behavioral 

and spatial endpoint data providing reliable information for a security incident response. 

‘Spatial’ information refers to the VLAN where the endpoint is located.  

 

The system enables record keeping of the different addresses used by the endpoint and 

their timestamps which is critical for attributing log data collected by a security information 

and event management (SIEM) system which can be dissociated due to address volatility. 

Combining the InMesh EDR with the InDepth DCS provides unified insights into endpoint 

activities even when they are mobile among different subnets or sites of a network. 

Models thereof can be used to detect behavior changes indicating a compromise, 

reconnaissance, or data exfiltration. 

 

2.2 InDepth Cyber Range 

 

We developed a modern model network topology with multiple types of devices and 

network applications known as a cyber range. As shown in Figure 2.4, traffic from four 

VLANs is routed using a Layer 3 managed switch. The default gateway is connected to 

the edge router which routes the Internet traffic to the ISP. This hierarchical topology can 

be considered a reference network from which other networks can be derived. Each 

subnet serves a specific purpose. We use the 802.1Q standard for tagging. For simplicity, 

the subnets consist of a Classless Inter-Domain Routing (CIDR) of 24 which provides 254 

usable IP addresses for endpoints. The VLANs have their ingress ports mirrored to a 

single port that the sensor node is connected to. Port bundling protocols such as LACP 

can be used to increase the bandwidth when single port bandwidth is not adequate. 

 

The Clearnet VLAN contains the user devices but has no VPN functionality or special 

firewall rules. It is untagged and uses CIDR 192.168.1.0/24. The management VLAN 
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consists of devices used by management staff which are separated from all other subnets 

using firewall rules. It uses CIDR 192.168.10.0/24 with an 802.1Q tag of 10. The site-to-

site VLAN connects this network to an off-site network over the Internet using an 

encrypted connection and is isolated from other networks. It uses CIDR 192.168.20.0/24 

with an 802.1Q tag of 20.  

 

These three network segments contain devices with a variety of up-to-date OS including 

Microsoft Windows, Apple MacOS, Ubuntu Desktop and Kali Linux. The latter host can 

be used for launching attacks against the other hosts since it has built in tools to launch 

attacks. The DMZ VLAN contains critical services in a demilitarized zone (DMZ) including 

web, email and database services. 

 

These services typically have public IP addresses accessible from the Internet as well as 

from the other subnets. However, for demonstration purposes we used private IP 

addresses from CIDR 192.168.30.0/24 with an 802.1Q tag of 30 since this cyber range is 

not actually connected to an ISP and also to prevent any association with potential conflict 

of such actual public IP addresses.  

 

We installed latest versions of the services for experimentation purposes. They can be 

replaced by earlier, vulnerable services to generate threat signatures such as the Open 

Web Application Security Project (OWASP) tools [72] and Metasploitable [73]. The 

InDepth VLAN uses CIDR 192.168.40.0/24 with an 802.1Q tag of 40 and hosts the Core 

node which aggregates the data collected at the Sensor nodes and is isolated from the 

other segments. The Core node uses a single connection since it is the only device in 

that subnet. Figure 2.4 lists services and their versions running on the DMZ. 
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Figure 2.4: InDepth cyber range. 
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2.3 Comparison with Backbone Data Collection 

 

We re-created parts of the network described by the competition rules consisting of one 

red team subnet and one blue team subnet. We collected traffic PCAP dumps the same 

way the competition gathered using the Layer 3 routing device at the backbone that 

connects the red and blue teams as well as using InDepth with a sensor node per LAN 

and a central node for aggregation. Then the following experiments were conducted in 

relation to Figure 2.5 where R represents the red team endpoint, and B1 and B2 represent 

two blue team endpoints in the same subnet as R and in a different subnet respectively. 

 

As summarized by Table 2.1, we conducted three experiments that compares InDepth 

distributed data collection against standard backbone DCS capabilities. We note that the 

attack scenarios may not occur all by themselves but are usually a step in the attack 

chain. The results show that in all three scenarios InDepth collected more complete and 

more actionable data.  

 

Experiment 1: This experiment consisted in aggregating and attributing all traffic 

originating from an endpoint when its IP address is changed by the owner or reassigned 

by a DHCP server. This use-case utilizes the endpoint characteristics that InDepth 

collects in addition to the network features.  
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Table 2.1: Examples of attacks that uses unique features of InDepth. 
 

Experiment InDepth Feature  Notes 

1. Aggregation and 
attribution 

Endpoint characteristics and 

contextual information 

collected in addition to 

conventional network flow 

information. 

Attacker changes source 

address occasionally to avoid 

being blocked by victim. Or 

lease renewal for a different IP 

address by the DHCP server. 

2. Reconnaissance 
and lateral 
movement 

Inter and intra VLAN peer-to-

peer traffic capture. 

Attacker uses techniques to 

move deeper into network after 

gaining initial access. 

3. IP address 
spoofing 

Flow visibility at both source 

and destination for traffic 

within the network reveals the 

attacker location. 

Attacker not interested in 

replies from victim(s), or the 

spoofed source IP address to 

that of the victim. Used in DoS 

or flood attacks. 
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In the 2019 WRCCDC dataset, we observed that the red team attacker IP addresses 

occasionally changed to avoid being permanently blocked by the blue team to protect its 

services from being further attacked. This is not frequent enough to be regarded as 

traditional spoofing since the red team still needed to listen to the replying packets to 

perform these attacks, unlike DoS attacks where the attacker is not interested in the 

replies. The red team used the Metasploit framework to send the attack payload data to 

compromise the target blue team device before waiting for the response. A successful 

compromise sent a reverse shell to the attacker device which was used to subsequently 

access the compromised device. We replicated this behavior in our replica network. As 

expected, when mixed with other traffic, detecting this IP address change and tracing the 

traffic back to the original real source device was challenging. From a flow perspective, it 

appeared as if the attack was being conducted by multiple devices.  

 

During security investigations, all the network activity and attributes belonging to the 

endpoint under investigation need to be manually compiled and analyzed. This process 

is time-consuming and prone to error when data-link layer information and endpoint 

characteristics are not available for the analyst from the centralized DCS. Currently in 

practice, attribution is achieved using packet marking, ICMP traceback messaging, 

reactive tracing, hop-by-hop tracing, IPsec authentication logs, and traffic pattern 

matching. 

 

These techniques require special network packets to be crafted, modifying the firmware 

of the routers, manual tracing, logging into the routers, comparing routing tables and 

advertised source IP addresses, and scanning through logs to detect discrepancies in 

IPsec security associations generated by Internet Key Exchange (IKE). The process, 

which requires a significant amount of time and skill and is usually carried out by a team 

of security experts, may only be feasible when large-scale data breaches are detected 

and the network is completely shut down, to stop ongoing damage caused by the attack.  
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Figure 2.5: Centralized vs. distributed DCS using 2019 WRCCDC topology. 
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InDepth collects data-link layer information such as MAC address at the originating 

subnet, endpoint characteristics including OS, services, open ports, host-keys, device 

type and kernel version, etc. and other extensible amount of contextual information 

making the attribution of network activity to the right endpoint more reliable. MAC address 

spoofing is outside the scope of this work and may require endpoint modeling to be 

detected. 

 

Experiment 2: This experiment focused on reconnaissance and lateral movement. A 

compromised device on the blue subnet initiated network connections on other 

unsuspecting devices in the network. This use-case utilizes the peer-to-peer traffic 

captured by InDepth both within a VLAN and between VLANs. During the A1 attack R 

initiated a connection to B1 which is on the same subnet as R, simulating an exploit 

payload for a known vulnerability. The same procedure was then carried out for B2 on a 

different subnet during the A2 attack. As seen in Figure 2.5 backbone data collection did 

not observe A1 attack connections, missing the footprint of the reconnaissance and lateral 

movement on the network. InDepth, on the other hand, was able to see the A1 attack due 

to endpoint characteristics such as OS and device type of R included in the collected 

data. The A2 attack was detected by both data collection mechanisms.  

 

The device initially compromised, here B1, is usually a low priority device on the network 

leveraged by the attacker to get inside the network. The average break-out time, which is 

the time for an attacker to move laterally into other systems after gaining access to one 

system, is just under 2 hours [74]. Detecting an attack and acting on it within this time 

period is critical as lateral movement if successful can cause serious damage. Network 

administrators typically use a combination of Endpoint Detection and Response (EDR) 

tools to identify these attacks. Real-time network and endpoint information collected by 

InDepth may be warranted for detection in a timely manner. 
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Experiment 3: This experiment studied spoofed source IP addresses. The visibility 

provided by InDepth by capturing the flow at both the source and the destination allowed 

us to observe the attacker activity even though the source IP was spoofed.  

 

This technique is used in DoS and certain flood attacks. One of the most common DoS 

attacks seen in practice is the buffer overflow attack. Under this attack a server receives 

more traffic than it is built to handle causing the system to be unavailable for legitimate 

request. The attacker randomizes the source IP address since it is not interested in the 

replies from the victim. There are two major types of flood attacks. ICMP type flood attack 

sends spoofed packets that ping every computer in the network and due to 

misconfigurations in the network these packets get amplified ultimately rendering the 

network unusable. SYN flood initiates TCP handshake by sending the first packet but 

never completes the handshake which exhausts server resources rendering the service 

unavailable for legitimate users. While large scale DoS attacks occur in practice involving 

many compromised devices through the Internet often using botnets, these attacks can 

also occur from within the network to disable critical local services.  

 

These types of attacks use spoofed source IP. With centralized DCSs it is almost 

impossible to detect the LAN segment the traffic is generated from. Since InDepth 

captures the connection both at its origin and destination network flows belonging to the 

attacker can still be identified. If the compromised endpoint is a part of a botnet, it can be 

used to launch dos attacks to the public Internet damaging the trust in the organization. 

This information can be used to remove the compromised device from the network. 
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Chapter 3: InMesh Endpoint Detection  

 

Reliable endpoint detection is crucial for a security analyst when conducting a forensic 

investigation. For example, flow data from archives and logs from a SIEM belonging to a 

particular host during a time period can be extracted using reliable address to timestamp 

mapping provided by InMesh. Behavioral changes can likewise be monitored over time 

to establish endpoint baseline behavior and detect unusual or malicious activities. It also 

reduces the burden of the analyst to manually compile the addresses used by the 

endpoints which may be incomplete.  

 

3.1 Endpoint Data Collection 

 

Endpoint discovery refers to the knowledge that some endpoint connected to the LAN 

while endpoint detection refers to identifying which endpoint it is. In other words, discovery 

is the sensing the presence of an endpoint and detection is differentiation of it from other 

endpoints. First, endpoints need to be discovered on the network before performing 

detection. Discovery is performed in two ways by the sensor nodes. Passive detection 

waits for the first packet from the newly connected endpoint and active probing 

periodically probes the subnet for any endpoints that has not yet sent any packets. 

Passive detection occurs when an endpoint automatically broadcasts a gratuitous ARP 

message to announce or update its IP and MAC address mapping to the entire subnet. 

Gratuitous ARP is an ARP response initiated by the endpoint itself rather than a reply to 

an ARP request. Active probing uses ARP packets for IPv4 and neighbor discovery 

protocol (NDP) for IPv6 endpoint discovery. The probing frequency depends on the size 

of the classless inter-domain routing (CIDR) IP address range. Discovery of a single 

endpoint takes a minimum of 250 ms, but in practice it depends on the network conditions, 

device power profile and Wi-Fi signal strength if connected wirelessly. In case a device 

connects to the network but neither sends packets nor responds to probing, it cannot 

pose a threat to other devices and will not be tracked. 
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Once an endpoint is discovered on the network, the sensor node probes it to harvest 

endpoint features and passively observes it for sample time (tS) for its traffic activity. Then 

an HD snapshot containing traffic statistics, endpoint features, and source sensor node 

ID (which provides spatial awareness) is created, timestamped and sent to the core node 

via a secure tunnel using a hub-and-spoke VPN. Figure 3.1 depicts how data are collected 

from the endpoints via the sensor nodes and sent to the core where endpoint detection 

can take place. 

 

Federation shown in Figure 3.1 allows endpoint models to be shared with other sites 

which may be geographically distributed and connected over the Internet using a secure 

channel. It expands the visibility beyond the network perimeter providing more insights 

into its behavior during roaming. Endpoint models are shared between remote 

deployments of the organization using a secure channel between core nodes of different 

federated sites. Endpoint activity at each site is available during an incident response. It 

also reduces the time needed to create a new endpoint model each time a device 

connects to a federated site for the first time, since it is only needed to be created once. 

 

The Layer 2 MAC addresses of the source and destination, Layer 3 IP addresses of the 

source and destination, and Layer 4 protocol make up the primary five-tuple used to 

identify a network flow. Some traffic features are directly collected using packet header 

information such as TCP base sequence numbers, TCP window advertisement, type of 

service (TOS) value, time to live (TTL) value and timestamps. Other statistics are 

generated after packets are binned into flows such as the number of packets, bytes, flow 

duration, packet loss, packet re-transmissions, packet rate (packets per second), 

interpacket arrival time and runtime. The destination endpoint requests resending of the 

lost packets when it identifies those packets are missing using the TCP sequence 

numbers. The source re-transmits the missing packets, and we capture the number of 

retransmissions per flow. Jitter is calculated when packets arrive out of order using the 

same TCP sequence numbers. High amount of jitter can have a negative impact for VoIP, 

video conferencing and streaming.  
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Figure 3.1: Federated logical dataflow of InMesh. 
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Furthermore, each of the traffic features can be further divided into source and destination 

such as number of packets, bytes, application-level bytes, re-transmissions, packet rate, 

interpacket arrival time, jitter, TCP window advertisement, mean maximum and minimum 

size of the packets. Percentage values for features such as packet loss and re-

transmissions are also calculated. These features are collected by observing the traffic 

from the mirror port. 

 

Endpoint features are collected using especially crafted packets and observing replies to 

them. OS detection requires at least one open port and one closed port. An open port 

usually corresponds to an active service running on that port that responds to incoming 

messages. In some cases, ports can be filtered. Filtered ports do not respond to probes 

since a firewall or a network obstacle is blocking the communication. Closed ports do not 

have services listening for packets. Port status changes when services are installed and 

start responding to incoming requests. If the endpoint has a public IP address, reverse 

DNS information is collected. Device type, common platform enumeration (CPE), OS 

details such as the kernel version, hop distance from the sensor, and traceroute 

information are also collected. The number of endpoint features may increase with an 

increase in the number of open ports. For each open port, the following additional 

information is collected: 

 

1. Port number 

2. Service name 

3. Service version 

4. Service data  

 

Service data includes host-keys, HTTP header, and banner information. 

 

In total, 126 fixed network features are collected. The number of endpoint features is 

given by 10 + 4m where m is the number of open ports. So, for an endpoint that has one 

open port, 14 features are collected. In addition, ingress and egress promiscuity is 
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calculated for the endpoint as a whole and per open port. These features are included in 

the snapshot sent to the core node. Each snapshot defines the position of the endpoint 

behavior observed within the tS time in the high-dimensional Gaussian point cloud. 

 

3.2 Endpoint Detection Technique 

 

The goal of endpoint detection is to identify endpoints even when their addresses have 

changed or when they have physically moved among different subnets. So, we can 

attribute the activities performed by each endpoint accurately for incident response. As 

an agentless EDR system, InMesh performs endpoint detection at the core node using 

the snapshot features. System attributes such as OS and port information etc., provide 

useful information about the system characteristics of the endpoint. Statistics about the 

traffic activity show the behavior of the endpoint on the network. However, not all features 

collected are suitable for endpoint detection. In this subsection we discuss the feature 

reduction methodology we used to select the core features that we use for endpoint 

detection. We first select the network features that define the endpoint behavior by 

removing irrelevant features. We analyze the endpoint behavior in its Gaussian point 

cloud using these features. Then we compare three statistical feature reduction 

techniques to reduce the number of features within the original feature space. Finally, we 

perform the same analysis using the reduced number of features and show the 

effectiveness of feature reduction. We also discuss the statistical distance measurement 

technique and present the endpoint detection algorithm using a decision tree, that we use 

on the final features for endpoint detection. 

 

Data is traditionally transformed. Features that vary are often standardized by subtracting 

the mean and dividing by the standard deviation. Static features are normalized using the 

minimum and maximum values. However, this requires recalculation each time a new 

snapshot is added, which is not scalable. Additionally, endpoint behaviors tend to drift 

over time which could be problematic if the transformation is based on historical values. 
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Instead, we apply a logarithmic transform to each feature when a new record is received 

which helps downplay large differences in the data. 

 

Some quantitative features are derived using others such as total bytes, which is the sum 

of source and destination bytes, and total packets, which is the sum of source and 

destination packets. Qualitative features that are useful to define characteristics of a 

single flow, such as the protocol and TCP options, are not useful outside of the context 

of that flow. We do not consider these features for endpoint detection. We also do not use 

MAC and IP addresses which are collected as a part of the network features since we do 

not rely on them. Furthermore, we omit features from the statistical distance calculation 

that are not common to all networks, such as autonomous system (AS) number, which is 

used for routing packets between Internet service providers (ISP), and multiprotocol label 

switching (MPLS) identifier, which is considered the Layer 2.5 that provides faster 

switching in wide area networks (WAN). This reduces the original feature space to 48 

network features that describe the endpoint behavior. 

 

Feature reduction techniques that map composite features to a lower dimensional space, 

such as principal component analysis (PCA), are detrimental for security analysts who 

need to understand the physical meaning of the features when investigating an incident 

[7]. An alternative is to use information entropy to eliminate features in the original high 

dimensional space [75]. Here, we compare two such criteria defined as follows [76], [77]: 

 

AIC(k) = −2 log L(θ̂k) + 2 k                                                            (3.1) 

CAIC(k) =   − 2 log L(θ̂k) + (1 +  log N) k                                        (3.2) 

 

where k is the number of features considered, θk is the corresponding feature vector, 

L(𝜃𝑘) denotes the value of the associated maximum likelihood estimate, and n is the 

number of underlying samples. CAIC has a stronger penalty for overparameterized 

models than AIC. We refer to the literature for more details.  
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Figure 3.2 illustrates the result of applying these criteria to the 48 network features. AIC 

yields poor discrimination. CAIC on the other hand, indicates that a minimum is achieved 

for 9 features.  Flow data contains features that describe individual network flows as well 

as features that describe the behavior of the particular endpoint. Using information 

entropy-based feature selection, we are able to discard many features as noise while 

retaining a significant amount of endpoint related information. Indeed, the 9 features 

selected by CAIC account for 99% of all the information. 

 

From the 14 endpoint features, 5 features are selected that are available for all endpoints 

and are not reflected in other features. Reverse DNS was omitted since local domain 

names are not always available. Traceroute was omitted since intermediate hops are 

reflected in the hop count. Other omitted features include device type, common platform 

enumeration (CPE), OS details, kernel version since in certain situations an exact match 

cannot be found. 

 

Table 3.1 lists the network and endpoint features used for snapshot distance 

measurement. The network features are numerical while the endpoint features are 

categorical. 

 

3.3 Distance Measurement 

 

We used the InDepth cyber range [8] to generate data for the feature reduction and 

observe the effect of the feature reduction. The cyber range consists of four subnets with 

different firewall rules found in a typical network including the Clearnet subnet which 

usually contains user devices. The endpoints were set up to match the 2020 Western 

Regional Collegiate Cyber Defense Competition (WRCCDC) [78].  See Figure 3.3. We 

applied the ‘tcpreplay’ tool to replay packet capture (PCAP) files from each endpoint.   
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Figure 3.2: Information complexity score vs. number of features considered. 
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Table 3.1: Features used for snapshot distance measurement. 

 

Network Features Endpoint Features 

        Average flow duration         Operating system 

        Average TCP window size         Device type 

        Average packets per flow         Hop distance 

        Average packet rate         Number of open ports, N 

        Average PCR         Open port 0 (4-tuple) 

        Average time to live (TTL)         Open port 1 (4-tuple) 

        Average hop count         … 

        Ingress promiscuity         Open port N-1 (4-tuple) 

        Egress promiscuity  
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A snapshot for each endpoint was generated and sent to the core node every tS time 

interval. We collected 138 consecutive snapshots with tS = 60 seconds. Lower values 

produced more volatile snapshots since they contained less behavioral information. Also, 

probing was found to take up to 60 seconds especially for battery powered mobile 

devices. 

 

We determine if two snapshots are from the same endpoint as follows. First, the Hamming 

distance (dH) is calculated for the categorical endpoint features. With only open ports 

considered, a Hamming distance greater than 1 is taken to imply that the endpoints are 

different. When this is not the case, the Euclidean distance (dE) is calculated for the 

numerical network features using data averaged across all observed flows for the tS time 

interval considered. Figure 3.4 and 3.5 shows histograms of average Euclidean distance 

observations for the same endpoint and the two different endpoints, respectively. The 

distance between two samples from the same endpoint follows a one-sided Gaussian 

curve with the majority of the distances being close to 0. The distance between two 

samples from different endpoints resembles a Gaussian curve with a slight left skew. To 

establish a threshold that distinguishes snapshots from the same endpoint from different 

endpoints, we chose a value of 4.32 corresponding to five standard deviations. 

 

We can now introduce the complete InMesh endpoint detection algorithm. With reference 

to Figure 3.6, the core node decides if a device is new, already existing in the network, 

physically moving throughout subnets, or associated with spoofing or impersonation using 

spatial and behavioral information. Here, ‘spoofing’ means use of an inactive address 

while ‘impersonation’ refers to the address belonging to another device in the network. 

Addresses refer to either MAC or IP addresses. As mentioned earlier, ‘spatial’ refers to 

the VLAN where the endpoint is located.  
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Figure 3.3: Partial InDepth cyber range used for use-cases. 
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Figure 3.4: Histogram of average dE of snapshots of the same endpoint. 
 

 

 

 

 

 

 

Figure 3.5: Histogram of average dE of snapshots of two different endpoints. 
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If the addresses of the received snapshot match with those of the latest snapshot of an 

existing HD and they are determined to be from the same endpoint per the technique 

discussed above, the snapshot is determined to be from a known endpoint. The snapshot 

is appended to the HD of the known endpoint. If the addresses match, but they are 

determined not to be from the same endpoint, impersonation has occurred. In this case, 

the snapshot is appended to the HD of the original endpoint and a flag indicating 

impersonation is raised.  

 

When a snapshot is received that does not have an existing snapshot for from the same 

endpoint with the same addresses, it is cross-checked with the last seen snapshots of 

existing HDs. If one exists from the same LAN (i.e., reported by the same sensor node) 

the endpoint is considered to be subject to spoofing. The snapshot is appended to the 

HD of the existing endpoint and a flag indicating spoofing is raised. If the snapshots are 

reported by two different sensor nodes from a different LANs, physical movement is 

detected. The snapshot is appended to the HD of the actual endpoint with its new IP, 

MAC address and LAN ID along with it.  

 

If the addresses are different and no snapshots from that endpoint exist, the new snapshot 

represents a new device joining the network. A new HD is created, and subsequent 

snapshots are attributed to it.  

 

If the time between the consecutive snapshots is within tS, the decision has high 

confidence because the two samples have high temporal resolution. Snapshots may be 

missing in certain situations increasing the time between the consecutive snapshots. This 

can happen when endpoints are unreachable due to various reasons such as 

disconnections, poor Wi-Fi signal, network congestion or power saving features. The 

longer the time between two snapshots the higher the probability of an event that can 

occur that can appear as spoofing. One such case is DHCP re-leasing which can happen 

if a device has been disconnected from the network for more than 24 hours, which is the 

standard DHCP lease time.  
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Figure 3.6: InMesh endpoint detection algorithm. 
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If the client did not renew its IP configuration during the DHCP lease time, then the client 

loses the IP configuration data and begins the DHCP lease negotiation process again 

which can result in a different IP address which can appear as spoofing.   

 

3.4 Scenarios 

 

Five scenarios were conducted to validate endpoint detection and response. Ettercap 

was used for ARP poisoning, Nmap for reconnaissance, and dnscat2 for DNS tunnelling 

[7]. Scenarios 1 through 3 relate to endpoint detection using the InMesh endpoint 

detection algorithm. Scenarios 4 and 5 simulate security analyst workflow [7] for an 

incidence response in connection with reconnaissance and data exfiltration. 

 

Scenario 1:  

In this scenario, endpoints within a LAN spoofed their IP and MAC addresses. We used 

the Kali Linux endpoint to spoof its own IP and MAC address. When the IP address is 

spoofed, it must be within the correct CIDR. Otherwise, traffic will not be routed properly 

to and from the endpoint. We used the Clearnet LAN, but the scenario will be identical on 

any other LAN since the event is self-contained within the LAN and all LANs are identical 

except for routing policies between the LANs.  

 

Address spoofing is instantaneous. InMesh endpoint detection algorithm identifies 

spoofing when two consecutive snapshots from the same endpoint have different 

addresses. When we spoof the IP or MAC addresses of the Kali Linux endpoint, snapshot 

received before spoofing and after had the same snapshot distance but different 

addresses.  

 

Scenario 2: 

In this scenario, the attacker’s endpoint took over the identity of another endpoint in the 

network. We used the Kali Linux endpoint to impersonate the Windows and Ubuntu Linux 

endpoints in turn by changing its IP or MAC address to that of those. IP address 
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impersonation is usually associated with MITM attacks and identity masking. When an 

attacker wants to take over the IP address of a victim it sends an ARP packet containing 

the attacker’s MAC address and the victims’s IP address to the target device known as 

ARP poisoning. This can be targeted on all endpoints in the LAN or to a specific target. 

Using the gateway’s IP address, we were able to capture victim’s replayed packet capture 

traffic exiting the subnet. In this case we also forwarded the incoming packets from the 

victim to the gateway using root privileges since by default the Linux kernel drops packets 

that are intended for other addresses.  

 

To capture bidirectional communication, the endpoints on either side must be modified by 

the attacker. Poisoning the ARP tables of Windows and Ubuntu hosts appropriately, we 

were able to capture bidirectional communication between the two endpoints successfully 

performing an MITM attack. This attack can be used to snoop on traffic between two or 

more devices. Similarly, critical systems can be put offline by re-directing traffic to a non-

existing IP address. It can also be used to perform malicious activities as one of the 

existing devices.  

 

We were able to detect impersonation when the same addresses were used by two 

different endpoints when they are within the same LAN. 

 

Scenario 3: 

In this scenario, endpoints were disconnected from one subnet and connected to another 

subnet simulating physical movement. Using the InMesh endpoint detection algorithm, 

we identified the device uniquely when it connects to a different subnet. InMesh endpoint 

detection algorithm uses behavioral and spatial information to identify physical movement 

between LANs. When two snapshots from an endpoint are seen on different subnets, it 

is deemed a physical movement event. 

 

Mobile devices in corporate networks are increasing in number and are more difficult to 

track compared to stationary devices since they connect, disconnect, and move between 
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different subnets. Some captive portals log the MAC address when the device is 

authenticated into the network and track device using its MAC address. This may not be 

practical in all situations as seen in Scenario 1 where MAC addresses can be spoofed. 

 

 

Scenario 4: 

In this scenario, endpoints engaged in reconnaissance attacks including vulnerability 

scanning to identify vulnerable OS and service versions to determine which attack 

payloads has to be sent to compromise the device. Even though ideally all devices should 

run the most up to date operating system and services, some devices often fail to be 

properly updated which leaves them vulnerable to attack. We studied this scenario using 

the same technique used to harvest endpoint system characteristics to protect them. That 

is, using the Kali Linux endpoint as the attacker, we initiated a port scan on the other 

endpoints. Specifically, we scanned ports 0–1023 since this is a well-known port range.  

 

Reconnaissance attacks change the egress promiscuity of the attacker when it sends 

probing packets to different IP addresses or to different ports of a single IP address. The 

producer consumer ratio (PCR) toward these endpoints also changed due to the attack 

payloads sent. Note that it is possible to perform slow scans that may not significantly 

change the behavior of the attacker’s endpoint. Stealth options for the Nmap tool were 

not used. 

 

Scenario 5: 

In this scenario, we simulated post exploitation data exfiltration. We transferred local data 

to an external endpoint which acted as the C2 server using the dnscat2 tool. Typically, 

attackers use unsuspecting protocols such as DNS for covert channels to send data back 

to the C2. Data exfiltration using DNS involves breaking down the data into smaller 

segments, encryption and embedding into DNS queries. Web traffic is fundamental for 

the operation of a network which almost never gets blocked at the protocol level. Web 

application firewalls monitor the HTTP and HTTPS traffic. It leaves the DNS traffic 
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overlooked, since is essential to resolve the IP address of a domain name to reach the 

website and is used by almost all the users in the network. 

 

Data exfiltration creates a signature that alters the top talkers and their traffic composition. 

Per protocol statistics such as average number of bytes and packets for DNS included in 

the snapshot revealed the altered behavior since most legitimate DNS queries are small 

in nature. 
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Chapter 4: Conclusion 

 

In this dissertation we discussed the inherent inadequacies of the TCP/IP stack for 

reliable endpoint detection. Endpoints can easily manipulate their network addresses to 

bypass security measures, hide the source of an attack and evade detection. Logs 

collected from the network may not be properly attributed to the correct endpoint due to 

the transient nature of the IP addresses. We provided a comprehensive review of the 

literature related to intrusion detection data sets and data collection mechanisms. We 

found that publications focus on a small number of datasets that do not describe modern 

networks and network attacks well. We found that data collection mechanisms and tools 

used in practice in many cases produce data that are disassociated. To our knowledge 

there does not exist a dataset nor a data collection system that includes both host and 

network data, which is required in order to build behavioral models that allow endpoints 

to be detected without relying on MAC and IP addresses.  

 

We also conducted a simulated incident response exercise using the 2019 WRCCDC 

cyber competition data set. Key findings of this activity include lack of data collected from 

the peer-to-peer communication within a LAN segment and lack of a reliable mechanism 

to attribute they collected data to the correct endpoint, especially when ground truth is not 

provided.  

 

We developed a novel federated distributed data collection system, that can collect 

network traces as well as endpoint characteristics called InDepth. We also developed a 

cyber range as a reference network from which other networks can be derived from. By 

deploying InDepth on the cyber range, we conducted three experiments that reflect the 

attacks observed in the WRCCDC data. We showed that InDepth can be used to collect 

data to identify these attacks where backbone data collection mechanisms failed to 

observe.  
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We adopted the developed cyber range to create a network similar to the one used for 

the 2020 WRCCDC cyber competition. We replayed the data from the competition that is 

publicly available. Using InDepth, we created a dataset that includes the network traces, 

endpoint characteristics and contextual information. After rigorous experimentation using 

entropy based statistical methods, we selected a final set of features that we used to build 

endpoint models called host descriptor (HD) that can be used to uniquely detect endpoint 

without relying on Mac or IP addresses. Finally, we developed the InMesh endpoint 

detection system that keeps track of endpoints during situations namely, spoofing, 

impersonation, and physical movement where backbone data collection systems failed. 

InMesh allows tracking endpoints and their behavior regardless of their address or the 

location.  We discussed its capabilities using five different scenarios. 

 

Cyber incident responders can use data from InMesh to identify attack origin and 

compromised devices during an audit since InDepth captures peer-to-peer network traffic 

within a subnet, which may be missed in backbone data collection systems. Furthermore, 

with more reliable data attribution provided by InMesh can identify attacker true identity 

even when spoofing is involved. 

 

To summarize, in this dissertation we have addressed one of the key challenges in 

modern network security, namely, endpoint detection. The combination of InDepth and 

InMesh provides a mechanism for existing computer networks to collect data that is 

reliably attributed. We presented its application using several realistic scenarios. The 

system can be deployed on production networks and cyber ranges for better incident 

response and dataset creation, respectively.  
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  Appendix 

Table A1: Complete list of network features collected [64] 

Field Name Description 

srcid source identifier for Argus 

stime starting time of the record 

ltime ending time of the record 

flgs flags of the Flow State 

seq sequence number of Argus flow record 

smac, dmac MAC address Source or destination node 

soui, doui OUI part of the source or destination MAC address 

saddr, daddr IP address of the source or destination 

proto Protocol 

sport, dport Source or destination port number 

stos, dtos type of service byte value of the source or destination 

sdsb, ddsb diff serve light value of source or destination 

sco, dco country code of source or destination 

sttl, dttl 
Source time to live:  source to destination or destination time to 

live:  destination to source value 

sipid, dipid IP identifier of source or destination 

smpls, dmpls MPLS identifier of source or destination 

spkts, dpkts 
Packet account from source to destination or destination to 

source 
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Table A1: Continued 

sbytes, 

dbytes 

transaction bytes from source to destination or destination to 

source 

sappbytes, 

dappbytes 

application bytes from source to destination or destination to 

source 

sload, dload load from Source or destination in bits per second 

sloss, dloss packets retransmitted or dropped from Source or destination 

sgap, dgap bytes missing in the flow Stream from Source or destination 

dir transaction Direction 

sintpkt, 

dintpkt 
inter packet arrival time from Source or  destination 

sintdist, 

dintdist 

Time-based distribution of arrival time between two packets by 

Source or destination 

sintpktact, 

dintpktact 

active arrival time between two packets from Source or 

destination 

sintdistact, 

dintdistact 
Time between two packets arriving from Source or destination 

sintpktidl, 

dintpktidl 
idle time between two packets from Source or destination 

sintdistidl, 

dintdistidl 

Distribution of the idle time of 2 packets from Source or 

destination 

sjit, djit Jitter observed at source or destination 

sjitact, djitact active jitter observed at source or destination 

sjitidle, djitidle Idle jitter observed at source or destination 

state state of the transaction 

suser, duser user data seen at the source or  destination 

swin, dwin TCP window length advertised by Source or destination 
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Table A1: Continued 

svlan, dvlan 
virtual local area network (VLAN identification number at source 

or destination 

svid, dvid VLAN Identification number observed at source or destination 

svpri, dvpri 
Private VLAN Identification number observed at source or 

destination 

srng, erng Center time range by start or ending time 

stcpb, dtcpb base sequence number of TCP Source or destination 

tcprtt round trip time of the connection 

synack time to set up connection between SYN and SYN_ACK 

ackdat time to set up connection between SYN_ACK and ACK 

tcpopt 
Connection options observed or the lack of it during connection 

initiation 

inode intermediate node IP address of ICMP event 

offset offset reported in the TCP header 

spktsz, dpktsz 
histogram of the distribution of packet sizes from Source or 

destination 

smaxsz, 

dmaxsz 

maximum packet size of the packets Santa by Source or 

destination 

sminsz, 

dminsz 

minimum packet size of the packets Santa by Source or 

destination 

 

 

dur Flow duration 

rate, srate, 

drate 
packet rate in packets per second 

trans total record count of the incoming Argus stream 

runtime total sum of duration of the records observed in the input 
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Table A1: Continued 

mean mean of duration of the records observed in the input 

stddev 
standard deviationof duration of the records observed in the 

input 

sum sum of duration of the records observed in the input 

min minimum of duration of the records observed in the input 

max maximum of duration of the records observed in the input 

pkts number of packets seen in the transaction 

bytes number of bytes seen in the transaction 

appbytes number of application bytes seen in the transaction 

load 
network load observed in the incoming Argus flow in bits per 

second 

loss number of packet retransmissions or dropped packets 

ploss 
percentage of number of packet retransmissions or dropped 

packets 

sploss, dploss 
number of packet retransmissions or dropped packets by Source 

or destination 

abr 
ratio between source application bytes and destination 

application bytes 
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Table A2: Complete list of endpoint features collected 

 

Field Name Description 

dDNS 
Reverse DNS name lookup for an IP 

address 

OS Operating system (Windows, Linux etc.) 

Device type 

Whether general purpose, router, bridge, 

firewall, load balancer, phone, printer, 

router, switch, WAP etc. 

Common platform enumeration (CPE) 
A URL that encodes seven ordered fields 
such as cpe:/<part>:<vendor>:<product>: 
<version>:<update>:<edition>:<language> 

OS details (raw) 
OS details including minor version and 

build if available 

Kernel version Linux and other OS kernel version 

Hop distance 
Number of network hops between the 

endpoint and the sensor 

Traceroute 
Traceroute results from the sensor to the 

endpoint 

Number of open ports Number of open ports 

Traffic per port Bytes transmitted per port 

Port info 

Port number Port number from 1-1023 

Service name Name of the running service e.g. Nginx 

Service version Version of the service 

Service data 
host-keys, HTTP header, banner 

information 
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Table A3: Intermediate 48 network features 
 

Field Name Description 

load network load observed in the incoming Argus flow in bits per second 

sload, dload load from Source or destination in bits per second 

rate, srate, 

drate 
packet rate in packets per second 

sintpkt, 

dintpkt 
inter packet arrival time from source or destination 

sintpktact active arrival time between two packets from source or destination 

sintdistidl, 

dintdistidl 
Distribution of the idle time of 2 packets from source or destination 

sjit, djit Jitter observed at source or destination 

sjitact active jitter observed at source or destination 

swin, dwin TCP window length advertised by source or destination 

tcprtt round trip time of the connection 

synack time to set up connection between SYN and SYN_ACK 

ackdat time to set up connection between SYN_ACK and ACK 

sMeanPktSz maximum packet size of the packets size by source or destination 

dMeanPktSz maximum packet size of the packets size by source or destination 

smaxsz, 

dmaxsz 
maximum packet size of the packets size by source or destination 

smaxsz, 

dmaxsz 
maximum packet size of the packets size by source or destination 

sminsz, 

dminsz 
minimum packet size of the packets size by source or destination 
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