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ABSTRACT

For all biological systems nutrients, including small molecules, are
necessary for life. Small molecules in particular are used for biological processes
such as energy metabolism and as building blocks for larger biomolecules like
DNA, proteins, and lipids. Because of this, nutrition and metabolism are intrinsically
linked, making metabolomics advantageous to nutritional studies. This work
describes three separate studies using metabolomics to probe the effects of
specific nutrients and diets in different conditions.

While exercise is documented to provide health benefits, the underlying
metabolic mechanisms are not well known. Additionally, exercise is often used to
reverse or prevent the negative effects of an unhealthy diet, such as gut dysbiosis.
As gut dysbiosis has been seen to be sufficient cause metabolic and neurologic
disorders, the interaction between an unhealthy diet, exercise, and the gut
microbiome was investigated. From these studies using C57BI/6J mice, it was
determined that while diet had the most significant influence, exercise impacted
cecal metabolism most.

Another approach that is commonly used to combat the negative affect of
unhealthy diets is through dietary supplements. One of these supplements is
fenugreek seeds (Trigonella foenum-graecum), which has been used in traditional
herbal remedies to treat Type 2 diabetes and obesity. A proposed method by which
fenugreek provides benefit is through gut microbiome alterations, which then alters
the metabolome. Investigations of the metabolome of C57BI/6J mice given ground
fenugreek seeds (2% [percent] w/w) revealed that the large intestinal and liver
metabolite profiles were significantly impacted by fenugreek.

The significant impact of nutrients on the metabolism is not limited to
multicellular organisms. Using a unigue one-host-two-temperate phage model
system from the environmentally relevant Roseobacter clade, the influence of
nutrients and phages were evaluated. The effects of a complex growth substrate
were compared to glutamate and acetate on the metabolism and lipid regulation
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of two Sulfitobacter lysogens. From these analyses it was discovered that while
there were small differences in the metabolome between strains, the lipids display
dramatic differences based on growth substrate. Additionally, it was determined

that phages impact the metabolite and lipid profiles in a nutrient dependent way.
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Figure 2.5 Diet and FG supplementation induce distinct differences in the large
intestine metabolome as shown by PLS-DA. Untargeted metabolomics was
performed on the cecum and colon contents of mice fed either HF, HFFG,
LFur, or LFHrFG diets after 14 weeks of diet exposure. PLS-DA were
performed for (A) identified jejunum metabolites, (B) all jejunum spectral
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intestine metabolome as shown by PLS-DA. Untargeted metabolomics was
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between the metabolic profiles associated with each diet, more notably in
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Figure 3.6 Ornithine Lipid (OL) and glutamate lipid (QL) in Sulfitobacter sp.
strains CB-A (orange) and CB-D (blue). Box & whisker plots highlight
differences between strains and time, and between substrates. These plots
are shown for all substrates for (A), (B), (C) ornithine lipid (OL) and (D), (E),
(F) glutamine (QL) lipid. Significant differences are denoted by asterisks (* =
p<0.1; ** = p<0.05; *** = p<0.01). Averages of biological replicates are
reported for all treatments (n= 3 in SMM grown cells; n=5 in glutamate and
acetate grown cells). All data are normalized according to optical density.
Structures of (G) ornithine lipid (OL) and (H) glutamine lipid (QL), with
respective retention times. (I) OL and QL biosynthesis gene organization in
Sulfitobacter sp. strains CB-D and CB-A. ..., 116

Figure 3.7 Percentages of significantly different (A) metabolites and (B) lipids of
SMM (dark gray), glutamate (light gray) and acetate grown cells (medium
[0 = 1Y) USRS 137

Figure 3.8 Lysine lipid (KL) in Sulfitobacter sp. strains CB-A (orange) and CB-D
(blue). Box & whisker plots highlight differences between strains and time,
and between substrates. These plots are shown for all substrates, (A)
standard marine media (SMM), (B) glutamate, and (C) acetate.. .............. 138

Figure 3.9 Pie charts display relative proportions of the sum of lipid intensities to
total detected lipid intensities in Sulfitobacter sp. strains CB-D and CB-A for
each timepoint and SUDSErate. ... 139
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Introduction



Nutrition and metabolism

“Eat your vegetables.” This is commonly told to children as a reminder that
what you eat, or your nutrition, matters. An unhealthy diet leads to malnutrition,
specifically either overnutrition or micronutrient deficiencies. Malnutrition increases
the chances for cardiovascular disease as well as metabolic diseases such as
Type 2 Diabetes and obesity.22 In children and adolescents, dietary patterns have
been correlated with mental health, specifically less healthy diets have been
associated with less healthy mental states.® This has also been observed in adults,
for example, Western diets including processed and fried foods and high sugar
has been linked to depression in women, and certain dietary fats have been
correlated with increased risk for depression for both men and women.*® In
addition to these metabolic and mental health effects, nutrition also has been
correlated with both the gut microbiome and the immune system.®’ With these
widespread impacts, the importance of proper nutrition is evident. Despite this,
healthy diets are often unattainable making alternative means of reversing or
preventing the negative effects of unhealthy diets necessary.

Two of the most common ways that are used to reverse the effects of an
unhealthy diet are exercise and dietary supplements. Exercise can be effective
and more economical. Additionally, exercise programs can be customized for
individual lifestyles. Because of this, exercise is a popular method for preventing
the effects of unhealthy diets. The underlying mechanism behind the benefits of
exercise are not fully known, but a proposed mechanism is that exercise alters the
gut microbiome, and thus influencing absorbed nutrients. However, exercise does
not address the micronutrient deficiencies caused by western style diets. In
contrast, dietary supplements play a more direct role in preventing and reversing
micronutrient deficiencies. A variety of different supplements are available ranging
from probiotics, herbal medicines, and vitamins. For example, researchers have
investigated lycopene, which is naturally found in tomatoes, and vitamin D as

potential diet-induced obesity treatments.®* Vitamin D has also been found to have
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hepato- and cardio-protective properties, while probiotics and polyphenols alter the
gut microbiome.'%12 Despite the wide range of dietary supplements available,
research is still needed to determine if specific supplements are sufficient to
reverse the effects of unhealthy diets, and the underlying mechanisms by which
they provide benefits.

While it is well known that nutrition is important for human health, the
significance of nutrition extends to all living organisms. At the most simplistic level,
essential nutrients are molecules not produced by an organism, which can be used
for energy metabolism via pathways such as the tricarboxylic acid (TCA) cycle or
as molecular building blocks for proteins or lipids. Because of this, all living
organisms have specific nutritional requirements which influences intracellular
metabolism. Although, all living organisms have nutritional requirements, the
essential nutrients vary by organisms. For example, plants can produce glucose
via photosynthesis, but most bacteria and all animals cannot undergo
photosynthesis, so exogenous glucose or another energy source is required.
However, bacteria can adapt to its environment and the available nutrients. This
can be significant as it can alter the structure and function of the cell, and
potentially even how the cells interact with the surrounding environment. Due to
this significance and the inherent connection between nutrition and metabolism,

the effect of nutrients, or growth substrates, on metabolism warrants further study.

Overview of metabolomics
Metabolomics is the latest addition to the omics cascade, focusing on the

detection of all small molecules, or metabolites, with a system. Whereas genomics,
transcriptomics, and proteomics are indirect measurements of the phenotype,
metabolomics is a direct measurement of the biochemical phenotype of a system.
However, because of the indirect nature of genomics, transcriptomics, and
proteomics, detected alterations do not always correlate to the phenotype.3 In
contrast, metabolites can be influenced by both intrinsic and extrinsic factors,

making metabolomics a more functional analysis.**'> Because of this, the
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metabolome has been described as a looking glass revealing insights to the
physiological, developmental, and pathological state of a biological system.* This
makes metabolomics useful for a wide variety of applications including
pharmaceutical science, food science, microbiology, and human health.517

Metabolomics is not without its challenges, however. Two of the greatest
challenges facing metabolomics is the high quantity and diversity of metabolites,
both in structure and concentration.'* Advances in analytical technology have
helped to address these challenges. Ultra-high performance liquid
chromatography high resolution mass spectrometry (UHPLC-HRMS) in particular
has driven these technological advances in metabolomics. Benchtop orbitrap
mass analyzers allow for quantitative high resolution analyses, while rapid scan
times and efficient separations increase the sensitivity and throughput. The use of
an ion pairing reagent with reversed phase separations further increases the
sensitivity by reducing ion suppression from coeluting metabolites.'® An additional
advantage provided by orbitrap mass spectrometry is the full scan capabilities. Full
scan analyses allow all ions within a select mass range to be detected. Resulting
from this, metabolomics analyses can be untargeted meaning that all water-soluble
metabolites can be detected in a single analysis.

Any overview of metabolomics would be remiss if lipidomics was not
included in the discussion. Lipids are an often overlooked in metabolomics studies,
however in recent years have been gaining attention for their significant biological
changes and functions.'®2% The accepted roles of lipids include energy storage,
membranes, and signaling. As metabolites are the molecular building blocks of
lipids, these amphiphilic compounds can be informative of metabolome changes.
This is because the reaction rates for lipid pathways is slower than metabolic
pathways. The rates of metabolic pathways can often provide difficulties to
metabolomics studies, as metabolism must be stopped, but not altered for effective
analyses. Combined with the biological roles of lipids, this makes lipidomics a

valuable addition to metabolomics studies.



Outline of dissertation
With these advantages of metabolomics and the natural connection

between metabolism and nutrition, metabolomics provides a significant advantage
to increasing the understanding of nutrients and specific diets. In the following
chapters, investigations of the effects of nutrients and diet in various conditions
using metabolomics will be described. In the first chapter, a metabolomics
approach was used to study the interaction between an unhealthy western style
diet, short term voluntary exercise, and the gut microbiome. To do this, C57BI/6J
mice were used in an animal model system and serum and intestinal contents were
analyzed for global metabolome changes. In the second chapter, the effect of an
herbal supplement, specifically ground fenugreek seeds, was evaluated via
metabolomics. For this research, the serum, liver, and intestinal contents were
analyzed for metabolic alterations caused by high fat or western style diets and
reversed by fenugreek supplementation. The third chapter describes research in
which metabolomics and lipidomics were used to probe the host-phage
interactions of an environmentally relevant bacteria when provided different
nutrients. Sulfitobacter spp. CB-D and CB-A were grown with either a complex
media or minimal media in which the only carbon substrate was either glutamate
or acetate. From these cultures, the impact of nutrients on host-phage interactions

were investigated throughout the growth curve.



Chapter 1 Western Diet and Short-Term Voluntary Exercise
Induce Intestinal Metabolome Changes



A version of this chapter is expected to be a part of a future publication.
Proposed authors:

Katarina A. Jones, Allison J. Richard, Annadora J. Bruce-Keller, Jacqueline M.
Stephens, Shawn R. Campagna

1.1 Abstract
High caloric diets, such as typical Western diets, disrupt the gut microbiome

which leads to health problems, including obesity and the related comorbidities.
Exercise is commonly assumed to be an effective method to prevent the negative
effects of unhealthy diets. Although exercise is known to provide health benefits,
the combined impact of unhealthy diets, exercise, and the gut microbiome is
remains unclear. This study was designed to elucidate this interaction between
diet, exercise, and the gut microbiome at the metabolite level. For this reason,
untargeted metabolomics was performed on the serum and intestinal contents of
male C57BIl/6J mice fed either Western diet (WD) or a low-fat control diet for the
entire experiment and each with and without short term voluntary exercise. The
experiment was performed in two time intervals, specifically 10 weeks and 18
weeks to evaluate the immediate and enduring effects of exercise, respectively.
Partial least squares discriminant analysis revealed that diet leads to more clear
separation between the metabolic profiles of either the serum or intestinal
contents. Metabolites relating to methionine metabolism and bile acid biosynthesis
were found to be significantly different between WD- and LFD-fed mice. While
exercise had a minimal impact on the metabolic profiles of serum and jejunum,
ileum, and colon contents of WD-fed mice, exercise did have a noticeable effect
on the metabolic profiles of the cecum contents of WD-fed mice. However, no clear
trend was observed in the metabolites driving these differences suggesting that

exercise influences multiple metabolic pathways.



1.2 Introduction
The gut microbiome is important for human health and has been correlated

with several adverse health outcomes.?'-?6 With up to 100 trillion microorganisms
residing in the average adult human intestines, the microbiome is complex and far
more genetically diverse than the mammalian host.?® 272 However, the
microbiome can be altered by a variety of influences including exposure to
environmental stressors such as heavy metals and pesticides, lifestyle and
behavioral changes such as exercise and physical activity, and dietary changes.??
24, 26, 2931 gome of these microbiome alterations result in gut dysbiosis, or a
disrupted microbiome, which has been associated with human diseases.?
Specifically, gut dysbiosis has been correlated with metabolic diseases including
obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and autoimmune
diseases including type 1 diabetes, inflammatory bowel disease, and multiple
sclerosis.?® 2% 32 With the growing prevalence of obesity and its comorbidities,
modulation of gut microbiota has been of interest for potential therapeutic options.
Additionally, these same disorders are often linked to unhealthy diets, specifically
diets such as a typical Western style diet, which is characterized by high fat and
sucrose content.33 With this association and because significant dietary changes
are often unattainable, alternative means of providing resiliency to diet-induced gut
dysbiosis is needed.

Exercise is commonly perceived as an option to counteract the negative
effects of unhealthy diets. Exercise is documented to assist in preventing many of
the same health conditions which are related to unhealthy diets, but the
mechanisms of these beneficial effects are not well known.3* A previous study has
shown that voluntary exercise is able to induce beneficial changes in the gut
microbiome of mice as well as reducing inflammation.3® Other studies have
demonstrated similar outcomes, specifically that exercise was able to alter the gut
microbiome in both mice and humans.?%30. 36-38 |n addition to microbiome
alterations, these studies have displayed beneficial effects of exercise on host
health. However, the underlying mechanisms leading to these advantages, and
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the interaction between diet, exercise, and the gut microbiome is still largely
unknown.3>36 This work sought to investigate the relationship between diet,
exercise, and the gut microbiome, and specifically to determine if short term
voluntary exercise is sufficient to provide metabolic resiliency to a Western style
diet in C57BI/6J mice.

The gut microbiome and the metabolome are closely related, each
influencing the mammalian host health.3® The microbiome interacts with the
metabolome through multiple pathways. One common example is dietary fiber and
complex carbohydrates, which human enzymes are incapable of digesting.?®
However, gut microbiota ferment these compounds to produce short chain fatty
acids (SCFAs) such as acetate, propionate, and butyrate.?3-?4 28 32 SCFAs have
diverse functions, but are primarily associated with energy metabolism.23-24 28
Additionally, gut microbiota have been associated with other metabolites including
the production of bile acids and choline, and digestion of polyphenols.?3 3%-40 From
this it can be concluded that the gut microbiome aids in the absorption, digestion,
metabolism, and excretion of a variety of bioactive compounds, often coming from
dietary sources.?® The significance of the microbiome is particularly evident in that
when germ free mice were colonized with only a single bacterial species it was
found to be sulfficient for microbial metabolites to be detected in the bloodstream.4°
Because of the intertwined nature of the metabolome and microbiome, it is of great
benefit to include metabolic profile analyses in gut microbiome research.

Untargeted metabolomics provides high throughput analysis of all
metabolites within a biological system. This research utilized the advantages of
high resolution mass spectrometry based metabolomics to investigate the
interactions between diet, exercise, and the gut microbiome on a molecular level.
Specifically, this work sought to determine alterations in intestinal and circulating
metabolite profiles of C57BI/6J mice provided either a low fat, or Western-style
diet, and within each dietary group were both sedentary and physically active
(exercise) mice. This research additionally evaluated the immediate versus lasting
effects of exercise, via a 10 week long experiment and an 18 week long
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experiment. From each of these experiments, both intestinal contents and serum
samples were collected and analyzed via metabolomics. Insights gained from this
study will contribute to the understanding of the underlying mechanisms from the

interaction of diet, exercise, and the gut microbiome.

1.3 Results

1.3.1 Metabolic profiles display differences between intestinal regions and
serum

This study utilized untargeted metabolomics to investigate the immediate
and lasting impact of both a Western style diet (WD) and short-term voluntary
exercise on the serum and intestinal metabolism of C57BL/6J mice. A total of 76
mice were initially divided into two groups and assigned either WD or a nutritionally
matched low fat (LF) diet, then each of these dietary groups were divided and
assigned to either an exercise (Ex) or sedentary (Sed) group. This process was
completed for both a 10-week study and an 18-week study to evaluate the
immediate and lasting effects, respectively, of short-term voluntary exercise with
WD. The mice were separated into a total of eight experimental groups based on
diet, activity level, and length of study (Table 1.1). Water soluble metabolites were
extracted and analyzed from serum and intestinal content samples, which were
collected at euthanasia, via ultra-high performance liquid chromatography coupled
to high resolution mass spectrometry (UHPLC-HRMS). After the mass spectral
analysis, known metabolites were identified by exact mass and retention time
compared to an in-house standard library containing 279 small molecules. A total
of 151 unique metabolites were identified from serum and contents from the
jejunum, ileum, cecum, and colon of the mice used in this study. As anticipated,
analysis of these identified metabolites across all samples reveals that the sample
matrix (serum or intestinal contents from jejunum, ileum, or large intestine regions)
has the greatest influence on the metabolic profiles regardless of diet, exercise

level, or length of experiment (Fig 1.1).
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Table 1.1 Summary of diets, activity group, and experimental
duration assigned to mice used in this study.

Western diet and exercise metabolomics

No. of replicates  Diet  Activity group Experimental duration

10 LF Sed 10 weeks
10 LF Sed 18 weeks
10 LF Ex 10 weeks
9 LF Ex 18 weeks
10 WD Sed 10 weeks
9 WD Sed 18 weeks
10 wD Ex 10 weeks
8 WD Ex 18 weeks

All identified metabolites

15

10

Component 2 ( 23.6 %)

Serum

-10

15 10 5 0 5 10
Component 1 ( 42.8 %)

Figure 1.1 Partial least squares discriminant
analysis (PLS-DA) of all identified metabolites
according to sample matrix. This analysis displays
distinct metabolic profiles for serum, jejunum,
ileum, and large intestinal regions.
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In addition to the identified metabolites, this study also investigated the
effects of diet and exercise on the global metabolome, including unidentified
spectral features. Interestingly, while there was almost no difference in the number
of identified metabolites between the intestinal regions, there are vast differences
in the number of unidentified features (Table 1.2). In the jejunum contents only 443
features were detected, while in the ileum, cecum, and colon contents there were
2959, 4503, and 2434 features detected, respectively. Only 245 features were
detected in serum. These dramatic differences in the complexity of the
metabolomes by matrix confirm the observation in the identified metabolites that
the sample matrix has the most influence on the metabolic profiles. However, the
alterations resulting from diet and exercise within each region are of greater

interest to this study and will be reported in the following sections.

1.3.2 Western diet has greater influence on metabolomes than exercise
Metabolomics analysis detected a wide range of spectral features between

intestinal regions and serum samples (Table 1.2). However, only a fraction of these
features were identified as known metabolites with 65 metabolites identified from
the 245 spectral features in serum. In the intestinal contents just over 140
metabolites were identified, but 443, 2959, 4503, and 2434 total features were
detected the jejunum, ileum, cecum, and colon contents, respectively (Table 1.2).
The analysis of both the total spectral features and the identified metabolites for
each matrix (serum or intestinal contents) and region (jejunum, ileum, cecum, or
colon) individually reveals that the most significant influence on the metabolomes
is the diet. This can be seen in partial least squares discriminant analysis (PLS-
DA) for the pairwise comparisons between WD versus LFD and exercise versus
sedentary groups using the identified metabolites (Representative example is
shown in Fig 1.2, see appendix Figs. 1.9-1.12 for other matrices). From the PLS-
DA, metabolite variable importance in projection (VIP) scores are calculated and

inform which metabolites are contributing most to the observed metabolic profiles.
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Table 1.2 Summary of identified metabolites and unique spectral features from this study.

Short term voluntary exercise metabolomics

Serum Jejunum lleum Cecum Colon

Total identified 65 141 144 143 144
Significantly altered by exercise (LF) 6 37 14 8 11
Significantly altered by exercise (WD) 1 3 6 9 11

Total unidentified 245 443 2959 4503 2434
Significantly altered by exercise (LF) 55 190 261 702 192
Significantly altered by exercise (WD) 6 7 232 205 212

Cecum contents

Diet Exercise
o LF © Ex
o WD © Sed
— D = ] L 5 o % D
S o ) (&}
= s © > @ @° =3
P~ ® o © & e o -
el ,
@© e 0° — % o o o®
~— [s] o — g (o] ;
~ o (8 (] OQQOE ) ~N o o] . :J% (5] OO a ©
E = a%§ &a ‘JJ =5 E ° o oo O,U@ & o
@ [ o o & 00 o © [
c 00t 9° o g8 o = &
] 8o 5] . 8
= CIE] og o 0q ©
£ £
[=] ® o o
Q o o ) ®
(€] Q
-5 0 5 10 6 4 -2 0 2 4 6
Component 1 ( 15.4 %) Component 1 ( 12.6 %)

Figure 1.2 Pairwise PLS-DA analysis of cecum content metabolomics data.
The left plot displays the pairwise comparison between low fat diet (LF) and
Western diet (WD) groups, with only minimal overlap. The right plot shows
much greater overlap between metabolic profiles of exercise (Ex) and
sedentary (Sed) groups.
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Using these VIP scores, it was determined that metabolites involved in cysteine
and methionine metabolism as well as taurine metabolism are more significantly
contributing to the differences (VIP>1) in the intestinal metabolic profiles of WD-
and LF-fed mice. These pathways are related in that cysteate is a downstream
product of methionine, but also is a precursor to taurine. Specifically, the detected
metabolites involved in these pathways include, homocysteine, cystathionine,
cysteine, cysteate, taurine, cholate, and taurodeoxycholate (Representative
example shown in Fig 1.3. For other selected metabolites see appendix Figs. 1.13-
1.20).

1.3.3 Immediate effects of exercise

In addition to the effects of WD, this study investigated both the immediate
and enduring effects of exercise. For this experiment mice were kept in standard
cages for 8 weeks, transferred to cages in which a subset of mice were allowed
short term voluntary exercise. This study was designed to evaluate the immediate
effects of short-term voluntary exercise on the metabolic profiles of mice fed an
unhealthy WD. Metabolomics analysis determined that the majority of identified
metabolites in the intestinal contents were detected in higher abundance in LF-fed
mice than in WD-fed mice (Appendix Fig 1.20. PLS-DA analysis revealed no
noticeable differences between the WD exercise and sedentary groups in any of
the identified metabolites in the analyzed intestinal regions or serum (Appendix
Figs 1.22 & 1.23). Analysis of the total detected, including unidentified, features
reveal small differences between the WD exercise and sedentary groups, in the
jejunum and cecum contents, but none in the ileum or colon contents (Fig 1.4).
Alternatively, the same PLS-DA of identified metabolites display much greater
separation between LFD exercise and sedentary groups in each of the intestinal
content analyses (Appendix Figs 1.22 & 1.23). Although there are minimal global
metabolome alterations due to exercise, there are immediate changes in certain

metabolites. In particular, evaluation of metabolites which were determined to be
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Taurodeoxycholate
10 weeks

1.00E+11

1.00E+10 §

1.00E+09 3
1 | F Sed 10w

-#=| F Ex 10w
——\\D Sed 10w
-a@=\VD Ex 10w

1.00E+08 4

1.00E+07

1.00E+06 . . T T
Serum Jejunum lleum  Cecum  Colon
contents contents contents contents

Sample Matrix

Log10 (average normalized peak area)

Figure 1.3 Average normalized peak area for taurodeoxycholate from the 10-week study. Data is
shown for low fat (LF) fed sedentary (Sed) and exercise (Ex) mice, and Western diet (WD) fed Sed
and Ex mice after 8 weeks of exposure to the assigned diet and 2 weeks of short-term voluntary
exercise for a total of 10 weeks (10w). The data is shown on a logio scale and p-values are indicated
as follows: "a" is used for LF/WD comparison of Sed mice, "b" is used for LF/WD comparison of Ex
mice, "c" is used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed comparison of WD mice.
Significance levels are as follows: a, b, ¢, d = p<0.1; aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd =
p<0.01.
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Figure 1.4 PLS-DA of total unique features detected from metabolomics analysis of (A) jejunum
contents, (B) ileum contents, (C) cecum contents, and (D) colon contents of low fat (LF) and
Western diet (WD) fed sedentary (Sed) and exercise (Ex) mice from the 10 week study.
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When comparing the exercise to sedentary mice, in the jejunum contents, nearly
all of these selected metabolites were detected in higher abundance in sedentary
mice, regardless of diet (Fig 1.5A). However, in the colon contents, these same
metabolites were detected in higher abundance in either LF- or WD-fed exercise
mice, and in the ileum contents there were minimal differences in abundance (Fig
1.5A). Interestingly, the selected metabolites are also significantly higher in
abundance in the cecum contents of exercise LF-fed mice compared to sedentary

LF-fed mice, but this trend was not apparent in WD-fed mice (Fig 1.5A).

1.3.4 Enduring effects of exercise
To investigate the enduring effects of exercise, an 18-week study was

performed. In this study, after 8 weeks in standard cages, a subset of mice were
allowed short term voluntary exercise for 2 weeks and returned to the original
cages for 8 weeks. Contrasting with the 10-week study, a greater percentage of
identified metabolites in the intestinal contents were detected in higher abundance
in the WD-fed mice relative to the LF-fed mice, in the 18-week study (Appendix
Fig. 1.21). However, analysis of the identified metabolites from the intestinal
contents displays minimal differences between exercise and sedentary groups,
with the exception of the cecum contents (Fig. 1.6 & Appendix Fig. 1.24).
Specifically, analysis of the identified metabolites within the cecum contents
displays a greater difference between exercise and sedentary groups of WD-fed
mice (Fig. 1.6). Evaluation of the enduring effects of exercise on the metabolites
altered by WD illustrate minimal fold differences between exercise and sedentary
mice for either diet (Fig. 1.5B). Despite the lack of obvious changes in the identified
metabolites from the intestinal contents or serum, PLS-DA of the total detected
features show greater separation (Fig. 1.7 & Appendix Fig. 1.25). In particular
differences between exercise and sedentary groups of LF-fed mice in the serum
metabolomes, and between exercise and sedentary groups of WD-fed mice in the

large intestine (cecum and colon) metabolomes were more apparent (Fig 1.7).
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Figure 1.5 Heatmap analysis of select metabolites from (A) 10-week experiment and (B) 18-week experiment. Log base 2 fold changes of
sedentary relative to exercise groups and significance determined by a Student’s T test are shown. Results from low fat diet-fed mice are shown

on the left, and Western diet-fed mice on the right. Orange indicates higher abundance in sedentary mice, and blue indicates higher abundance
in exercise mice. Brightness indicates the magnitude of fold change.

18



Identified Cecum Metabolites
. 18 weeks

MR e -

- e N 0 T I

S ¢

= 2

= @ ]

o~ ! QGL ir @ LF Ex
N K @ LF Sed
s ° NN & @ WD Ex
o -1 — @ WD Sed
g 2 5

8 sl e e+ L

Figure 1.6 PLS-DA of total unique features detected from metabolomics
analysis of (A) cecum contents, (B) colon contents, (C) serum of low fat (LF)

and Western diet (WD) fed sedentary (Sed) and exercise (Ex) mice from the
18-week study.
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Figure 1.7 PLS-DA of total unique features detected from metabolomics analysis of (A) cecum
contents, (B) colon contents, (C) serum of low fat (LF) and Western diet (WD) fed sedentary (Sed)
and exercise (Ex) mice from the 18-week study. 20



1.4 Discussion

Standard Western style diets have been linked to several adverse health
effects, resulting from the malnutrition of these diets.3® 4! These health effects
include, but are not limited to, gut dysbiosis and obesity. This is significant not only
because of the prevalence of Western style diets and obesity, but also as the
impact of gut dysbiosis on the mammalian host. The gut microbiome has been
linked to the host’s immune system, neurologic function, cardiovascular system,
and metabolic health.#246 Often times, exercise is used to counteract the negative
impact of an unhealthy diet, including gut dysbiosis, and obtain a healthier lifestyle.
While exercise is documented to provide significant health benefits (i.e., gut
microbiome alterations, body weight), the combined effect of unhealthy diets and
exercise on the gut microbiome and the resulting effect on metabolism is
understudied.3* 36. 38 47

Metabolomics is a valuable addition to nutritional and exercise studies as it
allows for both high throughput and high-resolution analyses at the small molecule
level. Additionally, metabolites can be influenced by a variety of both internal and
external factors. Using mass spectrometry based untargeted metabolomics
analysis, all water-soluble small molecules, rather than limiting the analysis to
known metabolites, can be directly measured, and analyzed. These factors make
metabolomics a practical way to gain insights into the phenotype of a biological
system. This research, utilizing the advantages offered by UHPLC-HRMS based
metabolomics, was designed to evaluate the immediate and enduring effects of
short-term voluntary exercise on the serum and intestinal metabolism of mice fed
a Western style diet. By including serum in this study, insights were gained about
the absorbed nutrients and circulating metabolite abundances.

Initial analysis of metabolomics results revealed that the sample matrix is
most influential factor in shaping the metabolome. This is an anticipated result, as
the intestinal regions and serum have diverse biological roles and functions.

Additionally, the microbiota found within the intestines can vary by regions, which
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alters the metabolome found in these matrices.*® While this result can be clearly
observed in the identified metabolites, it is also evident by the vast differences in
the number of unique spectral features in each sample type. In particular, the
greater number of features detected in the ileum, cecum, and colon contents
suggests greater microbial diversity in these intestinal regions. However, the
effects of diet and exercise profiles are the main focus of the remainder of this

chapter.

1.4.1 Western diet alters metabolism of specific amino acids

In this research, diet was found to have a greater influence on the
metabolome than exercise. This is particularly clear in the intestinal content
metabolite profiles. Metabolites which were determined to significantly contribute
to the distinctions between the profiles of mice fed WD and LF diet are involved in
the metabolism of methionine. Typical Western diets include high intake of red
meats and dairy products.** Methionine, which is an added component in the WD
used in this study, is most abundantly found in red meats and dairy products.4®-5°
Methionine is related to multiple biological processes, including glutathione
metabolism and antioxidant activity, and the activated methyl cycle and DNA
methylation.>>> These pathways are of interest as western diets lead to
inflammation which can be a result of an imbalance of antioxidants.53-%*
Additionally, DNA methylation is linked to several health conditions including
cancer, autoimmune disease, and metabolic disorders.>® However, methionine
metabolism is also linked to taurine biosynthesis, which can then be used to
produce taurine conjugated bile acids.

In this study the metabolites which connect methionine and taurine
metabolic pathways are significantly different between WD- and LF-fed mice. The
intermediate metabolites include homocysteine, cystathionine, cysteine, and
cysteate (Fig. 1.8), all of which have significant VIP scores in at least one intestinal
region. Cysteate, which is significantly different in all four analyzed intestinal

regions, is converted into taurine, which can then be conjugated to form the bile
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Figure 1.8 Cysteine and methionine metabolism and taurine metabolism pathways.
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acid, taurodeoxycholate. Taurodeoxycholate is also significantly altered in all
analyzed intestinal regions and is involved in regulating cholesterol levels.
Cholesterol is found in the same dietary sources as methionine and is elevated in
WD, thus making it unsurprising that taurodeoxycholate is significantly altered in
WD-fed mice. This suggests that with high levels of both methionine and
cholesterol in the WD used in this study, the production of bile acids is increased.
As the primary biological function of bile acids is to assist in forming micelles and
lipid absorption in the small intestines, an increase in bile acids may be an attempt
to regulate cholesterol levels. As these metabolites are altered by WD, they were
selected for further investigation of the impact of exercise on their relative

abundances.

1.4.2 Exercise impacts metabolites most greatly altered by Western Diet

Metabolites involved in methionine and taurine pathways were investigated
for both the immediate and lasting effects of exercise. Exercise can increase high
density lipoprotein (HDL) levels, and thus was anticipated to alter cholesterol
metabolism.%® As methionine and taurine metabolic pathways are precursors to
bile acids, and therefore cholesterol metabolism, it would be reasonable to expect
that the metabolic pathways most significantly affected by WD may also be
affected by exercise. These metabolites showed the greatest changes between
WD-fed exercise and sedentary mice during the 10-week study as compared to
the 18-week study (Figs 1.5 & 1.6). This implies that short term voluntary exercise
has a greater immediate impact than enduring impact on these metabolites.
Interestingly, these changes display opposite trends in the contents of the jejunum
versus the colon, in which most of these metabolites were decreased with exercise
in the jejunum contents but increased with exercise in the colon contents (Fig
1.5A).

Of these metabolites, taurodeoxycholate is of particular interest, as it is a

bile salt, used to aid in the digestion and absorption of dietary lipids such as
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triglycerides, cholesterol esters, and phospholipids. The increased levels of
taurodeoxycholate in the large intestinal regions is intriguing as bile salts are
secreted into the duodenum and jejunum and are reabsorbed into enterohepatic
circulation from the ileum. Because of this, bile salts are typically high in
concentration throughout the small intestines, but much lower in the large
intestines as only a small fraction is excreted. However, in this study the
abundance of taurodeoxycholate in the large intestines was increased with
exercise relative to sedentary mice for both diets. A possible explanation for this is
that with exercise, fewer dietary lipids can be digested into forms that can be
absorbed in the small intestines. This would lead to reduced uptake and recycling
of bile salts from the ileum, and thus higher concentrations in the large intestines.
Additionally, with fewer bile salts being recycled, the liver would increase
biosynthesis of bile acids which would reduce circulating cholesterol abundance
as well.

However, beyond these specific metabolites, the global metabolic profiles
resulting from short term voluntary exercise were evaluated. While there were
minimal effects on the metabolomes of WD-fed mice resulting from short term
voluntary exercise, greater effects were present in LF-fed mice. This suggest that
short term voluntary exercise alone may not be sufficient to reverse the metabolic
effects of WD, which could be linked to gut dysbiosis. In contrast to the intestinal
content metabolic profiles, there were small, but noticeable differences in the
serum profiles of exercise versus sedentary mice, in the 18-week study. This
implies that while exercise has a more immediate effect on the intestinal
metabolome, there is a more modest, but significant enduring effect on the
circulating metabolite profiles. A possible explanation for these differences could
be related to the gut microbiome, specifically that the microbial metabolism will
reflect alterations as the composition of the microbiome is being changed.
However, nutrients and other small molecules, which have been affected by
microbial activity, are absorbed from the intestines into the bloodstream.
Therefore, even small changes can be enhanced over time, which could explain
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the observed differences in the serum metabolome of mice from the 18-week

study.

1.4.3 Cecum contents are most greatly impacted by exercise

Although exercise induces only minimal global metabolome alterations in
WD-fed mice in most analyzed sample matrices, significant alterations were found
in the cecum contents. Within the analysis of identified metabolites, there was
more clear separation between the WD-fed exercise and sedentary groups after
18 weeks than after 10 weeks. From the 18-week study, the metabolites with an
average VIP score greater than two include a bile salt (taurodeoxycholate), a
vitamin  (ascorbate or vitamin C), a lipid biosynthesis precursor
(phosphorylethanolamine) and two phosphorylated nucleosides (UMP and dTMP).
The diversity of these metabolites which drive the separation between not only
WD-fed exercise and sedentary groups, but also the groups from LF-fed mice,
suggests that neither diet nor exercise effect only one pathway, but rather several
metabolic pathways. As metabolic pathways are complex and intertwined, it is
likely that these small changes across multiple metabolic pathways will have a
significant impact on the mammalian host function.

The metabolic profile changes may have been minimal in the identified
metabolite analysis of the cecal contents, but the global metabolome analysis of
all detected features show clear distinctions between diet and exercise versus
sedentary groups. This is particularly apparent in the PLS-DA of the total detected
spectral features which includes thousands of unidentified features, at either 10
weeks or 18 weeks. Generally speaking, the large intestines contain a greater
number or microorganisms, which could explain the large number of unique
spectral features which are evident in the cecal contents in this study.*® Although
the identified metabolites show less separation between the groups, this can be
easily explained in that many of the known primary metabolites are often
conserved across different organisms, and thus less likely to reflect microbiome

alterations. However, as metabolic profile differences are observed in both the
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identified and global metabolome analyses of cecal contents in both 10- and 18-
week studies, it was determined that short term voluntary exercise has a significant
impact on cecal metabolism. While this impact was immediately apparent after
exercise, the differences in metabolic profiles do not diminish in the 18 weeks
study, indicating that exercise has both immediate and enduring effects on cecal

metabolism.

1.5 Methods

1.5.1 Animals

Seventy-six male C57BL/6J mice were randomly divided between either
Western style diet (WD) or a nutritionally matched low fat control diet (LF). The
mice were purchased at 8 weeks of age (WOA) from Jackson Laboratories. Prior
to starting the studies, the mice were randomized and divided into experimental
groups. In addition to differing diets, the mice from each diet were divided into
sedentary and exercise groups, and by length of study either 10 weeks or 18
weeks. This gave a total of eight experimental groups, for the 18-week study the
groups were: 1) WD with exercise (WD-Ex, n=8), 2) WD with no exercise (WD-
Sed, n=9), 3) LF diet with exercise (LF-Ex, n=9), 4) LF diet with no exercise (LF-
Sed, n=10) (Table 1.1). The four experimental groups from the 10-week study were
the same as in the 18-week study, and for each 10-week group n=10. The 10-week
study began when the mice were 11 WOA and the 18-week study began when the
mice were 9 WOA. For both studies the mice were exposed to the assigned diets
for 8 weeks followed by 2 weeks with wheels, either upright for the exercise groups
or on its side for the sedentary groups as an enrichment control for 2 weeks. After
these 2 weeks of short-term voluntary exercise, the 10 weeks study mice were
euthanized, but the 18-week study mice were transferred back to standard cages
for 8 additional weeks of extended recovery prior to euthanasia. The mice were
fed the respective diets throughout the entire study and cage changes. Serum and

intestinal contents were collected at euthanasia for metabolomics. These studies
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were conducted in strict accordance with the National Institutes of Health
guidelines on the care and use of laboratory animals, and all experimental
protocols were approved by the Institutional Animal Care and Use Committee at

Pennington Biomedical Research Center.

1.5.2 Metabolomics sample preparations

Serum and intestinal content samples from the jejunum, ileum, cecum, and colon
were weighed prior to sample preparation procedures. The pre-weighed samples
were subjected to an acidic acetonitrile extraction, adapted from the protocol
described by Rabinowitz and Kimball.5” Using HPLC grade solvents, 1.3 mL of
metabolomics extraction solvent (4:4:2 acetonitrile: methanol: water with 0.1 M
formic acid) was added to the pre-weighed samples. The sample suspension was
stored at -20 °C for 20 minutes prior to centrifugation. The supernatant was
collected, and the pellet was re-extracted with 0.2 mL extraction solvent. The
collected supernatants were dried under nitrogen and stored at -80 °C.
Immediately before analysis, samples were thawed and resuspended in 300 pL

water.

1.5.3 Liquid chromatography

Water soluble metabolites were analyzed utilizing ultra-high performance liquid
chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS).
Resuspended samples were stored at 4°C in an UltiMate 3000 RS autosampler
(Dionex, Sunnyvale, CA) until analysis. An injection volume of 10 pL was used and
samples were analyzed in duplicate. Metabolites were chromatographically
separated using a Synergi 2.6 pm Hydro RP column (100 mm x 2.1 mm, 100 A;
Phenomenex, Torrance, CA). The gradient was performed as follows: 0 to 5 min
0%B, 5 to 13 min 20% B, 13 to 15.5 min 55% B, 15.5 to 19 min 95% B, 19 to 25
min 0% B.58 All solvents were HPLC grade and solvent A was 97:3 water: methanol
with 15 mM acetic acid and 10 mM tributylamine as an ion pairing reagent. Solvent

B was 100% methanol. Both the solvent flow rate (200 pL/min) and the
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temperature of the column compartment (25 °C) were held constant throughout
the analysis.

1.5.4 Mass Spectrometry

Following the reversed phase separations, the metabolites were introduced into
the mass spectrometer (MS) via negative mode electrospray ionization (ESI). The
ionization parameters were as following: spray voltage was set at 3 kV, nitrogen
sheath gas was set at 10 arbitrary units, and capillary temperature was set at
320°C. The mass analysis was performed in full scan mode on an Exactive Plus
Orbitrap MS (Thermo Scientific, San Jose, CA). The automatic gain control (AGC)
target was set to 3e6 and resolution set at 140,000. The scan range was set at 85
to 800 m/z for 0 to 9 min and at 100 to 1000 m/z from 9 to 25 minutes.%®

1.5.5 Data processing

Mass spectral data files were converted from .raw file generated by
Thermo’s Xcalibur software to .mzML files. This conversion was performed using
msConvert, an open source software package from ProteoWizard.>® These
converted files were uploaded to Metabolomic Analysis and Visualization Engine
(MAVEN), and metabolites were identified by comparison of exact mass (x5 ppm)
and retention time to an in-house spectral database.®%-6* The chromatographic
peaks were integrated and the area under the curve for each metabolite was
exported for further analysis. For global metabolome analysis, the R packages
XCMS and CAMERA were used to automatically detect and integrate all unique
spectral features and annotate isotope and adduct peaks.6264 All isotope and
adduct annotated features were removed before further analysis. Additionally, only
features with a signal to blank ratio of equal to or greater than 3 in at least half of
the biological replicates in at least one condition were used for the remainder of
the study and are reported here.
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1.5.6 Statistical analysis

Peak areas were background subtracted and normalized according to
mass. Fold changes and p-values calculated by a Student’s T-test were calculated
in excel, and visualized on a logz scale in heatmaps prepared using R (version
4.0.3).%* Partial least squares discriminant analyses (PLS-DA) were performed
using MetaboAnalyst 5.0 online.®>%® Prior to PLS-DA, normalized data was
preprocessed using interquartile range (IQR) filtering, log transformed, and Pareto
scaled using the MetaboAnalyst 5.0 software. Cross validation of PLS-DA was

performed using the leave one out (LOOCV) method in the same software.%®

1.6 Conclusions
In conclusion, this study used an untargeted metabolomics approach to

analyze the intestinal and circulating metabolite profiles of mice to evaluate the
combined effects of diet, exercise, and the gut microbiome. Specifically, the
metabolome was analyzed from the serum, and the contents from each of the
jejunum, ileum, cecum, and colon of exercise and sedentary mice fed either a WD
or LFD both immediately after exercise and after an extended recovery period
following exercise. There are a few limitations to this study, particularly that only
male mice were used and that only water-soluble metabolites were analyzed,
which excludes lipids. Additionally, serum samples were small volumes, which may
contribute to more metabolites at a concentration less that the limit of detection for
these analyses. From these studies it was determined that diet has a more
significant influence on the metabolic profiles of the mice, however exercise has
small but significant impact on the metabolites in a diet-dependent manner.
Additionally, this research revealed that exercise has the greatest impact on cecal
metabolism. This work contributes to the existing literature investigating the
interaction between diet, exercise, and the gut microbiome by monitoring the

metabolic changes resulting from these interactions.
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Figure 1.9 Pairwise PLS-DA of jejunum contents. The left plot is a
comparison of low-fat diet (LF) versus Western diet (WD) groups. The right
plot is a comparison of exercise (Ex) versus sedentary (Sed) groups.
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Figure 1.10 Pairwise PLS-DA of ileum contents. The left plot is a
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Colon contents
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Figure 1.11 Pairwise PLS-DA of colon contents. The left plot is a
comparison of low-fat diet (LF) versus Western diet (WD) groups. The right
plot is a comparison of exercise (Ex) versus sedentary (Sed) groups.
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Figure 1.12 Pairwise PLS-DA of serum metabolomics. The left plot is a
comparison of low-fat diet (LF) versus Western diet (WD) groups. The right
plot is a comparison of exercise (Ex) versus sedentary (Sed) groups.
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Figure 1.13 Average normalized peak area for cholate from the (A) 10-week
study and (B) 18-week study. Data is shown for low fat (LF) fed sedentary (Sed)
and exercise (Ex) mice, and Western diet (WD) fed Sed and Ex mice. The data
is shown on a logio scale and p-values are indicated as follows: "a" is used for
LF/WD comparison of Sed mice, "b" is used for LF/WD comparison of Ex mice,
"c" is used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed
comparison of WD mice. Significance levels are as follows: a, b, ¢, d = p<0.1;
aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.14 Average normalized peak area for cystathionine from the (A) 10-
week study and (B) 18-week study. Data is shown for low fat (LF) fed sedentary
(Sed) and exercise (Ex) mice, and Western diet (WD) fed Sed and Ex mice.
The data is shown on a logio scale and p-values are indicated as follows: "a" is
used for LF/WD comparison of Sed mice, "b" is used for LF/WD comparison of
Ex mice, "c" is used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed
comparison of WD mice. Significance levels are as follows: a, b, ¢, d = p<0.1;
aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.15 Average normalized peak area for cysteate from the (A) 10-week
study and (B) 18-week study. Data is shown for low fat (LF) fed sedentary (Sed)
and exercise (Ex) mice, and Western diet (WD) fed Sed and Ex mice. The data
is shown on a logio scale and p-values are indicated as follows: "a" is used for
LF/WD comparison of Sed mice, "b" is used for LF/WD comparison of Ex mice,
"c" is used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed
comparison of WD mice. Significance levels are as follows: a, b, ¢, d = p<0.1;
aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.16 Average normalized peak area for cysteine from the (A) 10-week
study and (B) 18-week study. Data is shown for low fat (LF) fed sedentary (Sed)
and exercise (Ex) mice, and Western diet (WD) fed Sed and Ex mice. The data
is shown on a logio scale and p-values are indicated as follows: "a" is used for
LF/WD comparison of Sed mice, "b" is used for LF/WD comparison of Ex mice,
"c" is used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed
comparison of WD mice. Significance levels are as follows: a, b, ¢, d = p<0.1;
aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.17 Average normalized peak area for homocysteic acid from the (A)
10-week study and (B) 18-week study. Data is shown for low fat (LF) fed
sedentary (Sed) and exercise (Ex) mice, and Western diet (WD) fed Sed and
Ex mice. The data is shown on a logio scale and p-values are indicated as
follows: "a" is used for LF/WD comparison of Sed mice, "b" is used for LF/WD
comparison of Ex mice, "c" is used for Ex/Sed comparison of LF mice, "d" is
used for Ex/Sed comparison of WD mice. Significance levels are as follows: a,
b, ¢, d = p<0.1; aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.18 Average normalized peak area for methionine from the (A) 10-
week study and (B) 18-week study. Data is shown for low fat (LF) fed sedentary
(Sed) and exercise (Ex) mice, and Western diet (WD) fed Sed and Ex mice.
The data is shown on a logio scale and p-values are indicated as follows: "a" is
used for LF/WD comparison of Sed mice, "b" is used for LF/WD comparison of
Ex mice, "c" is used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed
comparison of WD mice. Significance levels are as follows: a, b, ¢, d = p<0.1;
aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.19 Average normalized peak area for taurine from the (A) 10-week
study and (B) 18-week study. Data is shown for low fat (LF) fed sedentary (Sed)
and exercise (Ex) mice, and Western diet (WD) fed Sed and Ex mice. The data
is shown on a logio scale and p-values are indicated as follows: "a" is used for
LF/WD comparison of Sed mice, "b" is used for LF/WD comparison of Ex mice,
"c" is used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed
comparison of WD mice. Significance levels are as follows: a, b, ¢, d = p<0.1;
aa, bb, cc, dd = p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.20 Average normalized peak area for taurodeoxycholate from the 18-
week study. Data is shown for low fat (LF) fed sedentary (Sed) and exercise
(Ex) mice, and Western diet (WD) fed Sed and Ex mice. The data is shown on
a logio scale and p-values are indicated as follows: "a" is used for LF/WD
comparison of Sed mice, "b" is used for LF/WD comparison of Ex mice, "c" is
used for Ex/Sed comparison of LF mice, "d" is used for Ex/Sed comparison of
WD mice. Significance levels are as follows: a, b, ¢, d = p<0.1; aa, bb, cc, dd =
p<0.05; aaa, bbb, ccc, ddd = p<0.01.
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Figure 1.21 Heatmap visualization comparing WD-fed to LF-fed mice. Metabolomics data from the 10-week study is shown
on the left, and 18-week study on the right. Log base 2 fold changes are shown, and significance indicated.
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Figure 1.22 PLS-DA of identified metabolites detected from metabolomics analysis of (A)
jejunum contents, (B) ileum contents, (C) cecum contents, and (D) colon contents of low fat
(LF) and Western diet (WD) fed sedentary (Sed) and exercise (Ex) mice from the 10 week
study.
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Figure 1.23 PLS-DA of (A) identified metabolites and (B) total unique features detected from
metabolomics analysis of serum of low fat (LF) and Western diet (WD) fed sedentary (Sed)
and exercise (Ex) mice from the 10-week study.

42



A Identified Jejunum Metabolites B |dentified lleum Metabolites

. 18 weeks . _ 18weeks
[T T o T ]
|| - ] ]
—~ 86— L — o
2 T T L T 2
g T I O I ; 6 — | |
= ® < 4
S ] @LFEx o~ @LF Ex
oo < — ﬂ OLF Sed e 2 @ LF Sed
£ @ WD Ex g ¢ @ WD Ex
g © WD Sed & @ WD Sed
[T N N T I a 2| | |
™ £
g e e s I N B ] | 8 -4 | |
o — ™1 -
S T B B s o, o 1 6 — -
-8 L_|
0 == = T = =
R e o Teazqac”
e ¥ om, e ¥
Component 1 (17.8%)  qomponent 3 (9.5%) Ponent 4 (145, component 3 (9.9%)
C Identified Colon Metabolites D Identified Serum Metabolites
— 18 weeks I —_ 18weeks
. ‘___‘:: "f’::’gf__ 45 _______‘_:" T
SN supnEEnNE e T T
S osp ] 0 I ] S A
& o 225
ooe < ®LFE
N adnd @.FEx N s o @ LF Sec
e Z ] @ LF Sed = N n pSri
g o @ @ @ WDEx g o7s @ WD Sed
5 b | & @ WD Sed 5 HEER L]
2 2o Sl (T T T g 0 ——1—1 N .
§ 41— T I ™ e e e N 3§ o7 —~—I—H-': S
8 [——11 1 T e AS T T 1| E |
8 L L 225 = )
“'f}lomvwmoh‘*?mq‘ﬁorww?“’ ﬁ#g:@ﬁcﬁmmmqgcgfﬁ B
Com, T ' 9.8%) Co ! N TS .
PONeNt 1 (16,90, component 3 ¢ TPonent 1 (g2, 19, ) component3( A%

Figure 1.24 PLS-DA of identified metabolites detected from metabolomics analysis of (A)
jejunum contents, (B) ileum contents, (C) colon contents, and (D) serum of low fat (LF) and
Western diet (WD) fed sedentary (Sed) and exercise (Ex) mice from the 18 week study.
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Figure 1.25 PLS-DA of total unique features detected from metabolomics analysis of (A)
jejunum contents and (B) ileum contents of low fat (LF) and Western diet (WD) fed sedentary
(Sed) and exercise (Ex) mice from the 18-week study.
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Chapter 2 Fenugreek Supplementation to High Fat and Western
Diets Significantly Alters Liver and Intestinal Metabolome
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2.1 Abstract

Herbal remedies and plant materials are increasing in popularity as potential
treatments for metabolic conditions such as obesity and Type 2 Diabetes. One
potential therapeutic option is fenugreek seeds (Trigonella foenum-graecum),
which have been used for treating high cholesterol and Type 2 diabetes. A possible
mechanism for these benefits is through alterations in the microbiome that can
impact mammalian host metabolic function. This study used untargeted
metabolomics to investigate the fenugreek-induced alterations in the intestinal,
liver, and serum small molecules of male C57BL/6J mice fed either a 60% high fat,
western style diet, or nutritionally matched low fat control diets each with or without
fenugreek supplementation (2% w/w) for 14 weeks. Metabolomics analyses were
performed on the contents of the jejunum, ileum, cecum, and colon, as well as liver
and serum samples. Partial least squares discriminant analysis (PLS-DA) reveals
that the supplementation of very high fat diet or western diet with ground fenugreek
seeds induces substantial changes in the metabolome of the large intestines, as
compared to the small intestines and liver. However, it was also observed that

while the magnitude of changes was less, significant modifications were present
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in the liver tissues resulting from fenugreek supplementation. Further analyses
reveal the pathways affected by fenugreek and indicate that rather than only
impacting one single pathway, fenugreek supplementation affects multiple
pathways, including carnitine biosynthesis, cholesterol and bile acid metabolism,
and the arginine biosynthesis pathways that may play important roles in the
beneficial effects of fenugreek.

2.2 Introduction

Obesity is a global epidemic which has been steadily increasing over the last
few decades, and now affects more than two billion people worldwide.®’
Accompanying obesity are several comorbidities including, but not limited to,
metabolic and endocrine disorders such as Type 2 diabetes, dyslipidemia, and
cardiovascular disease, and it is frequently linked to mental health, specifically
anxiety and depression.®®72 These diseases are often related to an unhealthy diet,
particularly, high fat or high caloric diets. Despite this being well known, it is often
unattainable for subjects with obesity to have consistently healthy diets due to
societal and physiological barriers. To combat this growing problem, ongoing
research is aiming to develop more effective treatments. However, many
pharmacological therapies are limited by high costs and detrimental side effects.”®
> Herbal remedies and specific plant materials, which have traditionally been used
for obesity and metabolic diseases, are an alternative approach to therapy
development.’®’” Many of these traditional remedies include fenugreek (Trigonella
foenum-graecum), an annual herbaceous plant belonging to the Fabaceae (also
known as the Leguminoseae) family.”’-"°

Fenugreek is grown in several regions globally, including parts of Africa, Asia,
and Europe and is used for both medicinal properties and for food purposes, as a
seasoning.”®80 |t has been used for its anti-diabetic, anti-inflammatory, anti-cancer,
anti-hyperlipidemic, and hepatoprotective properties.”-8! The anti-diabetic effects
of fenugreek have been suggested to result from the inhibition of glucose

absorption in the intestines and/or insulinotropic activity.®! Fenugreek seeds
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contain several bioactive compounds including diosgenin, trigonelline,
galactomannan, and 4-hydroxyisoleucine, among others, however the source of
the beneficial effects of fenugreek is not well known.””-’® Studies have shown that
fenugreek supplementation is sufficient to alter intestinal microbiota, and thus
influence the host physiology.8'-83 Microbiome changes as a result of fenugreek
diet supplementation are a possible explanation for the therapeutic effects of
fenugreek. A previous study using metabolomic and microbiome analyses has
shown that microbiota from the Lachnospiraceae and Runinococcacea families (in
the Firmicutes phylum) increase coprostanol production in healthy humans, and
thus reduced blood cholesterol levels through increased fecal cholesterol
excretion.8* More recent microbiome data demonstrates that a fenugreek-
supplemented high fat diet was able to alter the expression of several taxa
belonging to these two families, suggesting that fenugreek may encourage fecal
fat excretion.®! This may be a possible explanation for the anti-hyperlipidemic
properties of fenugreek.

Metabolic health is influenced by gut microbiota, and is often mutually beneficial
to both microbiota and the host.%% 8% 85 The gut microbiome is a complex
heterogeneous mixture of primarily bacteria, but also other types of microbes, with
the greatest concentration found in the large intestines.®® Intestinal microbiota has
several important roles including aiding in digestion, synthesis of vitamins, as well
as neutralizing carcinogens, toxins, and pathogenic bacteria.8 8 In healthy gut
microbiomes, there is high diversity between bacterial species (alpha diversity),
but the majority of bacteria belong to three phyla, specifically gram-positive
Firmicutes (60%), gram-negative Bacteroidetes and gram-positive Actinobacteria
(combined ~10%).8> However, high fat and caloric diets, such as Western style
diets which are high in fat, sucrose, and animal protein, significantly alter the
composition of the microbiome.?% 8788 These diets, including Western style diets,
result in decreased microbial diversity, and an increase in pathogenic and pro-
inflammatory producing bacteria.®!: 8 8 These changes not only alter the
microbiome, but are also sufficient to cause detrimental metabolic effects.®!
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Fenugreek seeds are known to alter the microbiome and a previous study found
that fenugreek was able to partially restore a healthy microbiome to mice fed a
high fat diet, thus providing metabolic resiliency and improving metabolic health in
mice.8!

This study was designed to determine how the structure and function of the
mammalian host is altered by high fat or western style diets and fenugreek seeds
and the expected microbiome changes associated with these diets. High resolution
mass spectrometry-based untargeted metabolomics was used to study male
C57BL/6J mice that were fed either a 60% high fat diet, western style diet or low-
fat control diets nutritionally matched to either high fat or western style diets. A
subset of each experimental group received diets supplemented with ground
fenugreek seeds (2% w/w) for 14 weeks and the effects of the diets on the
metabolome were determined. Metabolomics permits high throughput analysis of
all water-soluble small molecules, which allows for a systems-level phenotype
analysis of the gut metabolome. To contribute to this analysis, liver and serum
analyses were included to provide insight into circulating nutrients resulting from
fenugreek supplementation. These data reveal significant alterations to the

metabolic profiles as a result of fenugreek supplementation.
2.3 Results

2.3.1 Significant differences between small intestine, large intestine, liver,

and serum

Untargeted metabolomics was used to analyze the metabolic effects of
fenugreek on the gut, liver, and serum of mice fed either HF or WD diets for 14
weeks. From these analyses, a total of 209 and 208 metabolites (HF and WD
respectively) were identified by exact mass and retention time across the contents
of four intestinal regions (jejunum, ileum, cecum, and colon), livers, and serum of

mice fed experimental diets. The diets, which were determined to evaluate the
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High fat diet B Western diet

Large Intestines Liver Large Intestines Liver

Small Intestines . . Small Intestines

Figure 2.1 Venn diagrams depicting the overlap of identified metabolites between the small intestines, large intestines, liver, and serum
from (A) HF-fed and LFnr-fed mice both with and without fenugreek supplementation and (B) WD-fed and LFwp-fed mice both with and
without fenugreek supplementation.
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effects of fenugreek in a diet specific manner, consisted of either HF or WD
diets and two separate LF diets nutritionally matched to HF (LFnr) and WD (LFwb),
and each with and without fenugreek for a total of 8 different diets: HF, HFFG,
LFuF, and LFuFFG (HF control) or WD, WDFG, LFwp, and LFwoFG (WD control).
Of these 209 metabolites detected in the HF study, 77 (37%) were detected in the
small intestine, large intestine, liver, and serum (Fig. 2.1A). Similarly, of the 208
metabolites detected in the WD study, 75 (36%) were detected in the small
intestine, large intestine, liver, and serum (Fig. 2.1B). As anticipated, the greatest
influence on the metabolic profiles was due to the origin of the sample (jejunum,
ileum, cecum, colon, liver, or serum), rather than the specific diet. PLS-DA analysis
(Fig. 2.2), when including groups for different sample location and diet, show four
clear and distinct groupings — small intestine (jejunum and ileum), large intestine
(cecum and colon), liver, or serum — but the difference resulting from fenugreek
supplementation is indistinguishable. However, when focusing on only one sample

location at a time, the influence of diet and fenugreek supplementation is apparent.

2.3.2 Metabolomics data indicate significant differences as a result of
fenugreek supplementation

Small intestine

From the metabolomics data of the HF analysis, nearly 7,000 unique spectral
features were detected in the jejunum and ileum samples (6,837 and 6,823 for
jejunum and ileum, respectively; Table 2.1). Of these features, 145 and 140 were
identified as metabolites in the jejunum and ileum samples, respectively. While
there were similar numbers of features and identified metabolites, there were vast
differences in the number of features which were determined to be significantly
different (p<0.05 and fold change>|1.5]) with fenugreek supplementation between
the two small intestine regions. Specifically, in the jejunum contents, no identified
metabolites and only 331 unidentified features were significantly different with
fenugreek (Table 2.1).
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Table 2.1 Summary of identified metabolites and mass spectral features from HF metabolomics
data. Features with p-values less than 0.05 and fold change (HFFG/HF) greater than 1.5 were
counted as significantly increased with fenugreek. Features with p-value less than 0.05 and fold
change (HFFG/HF) less than 0.667 were counted as significantly decreased with fenugreek.

High fat diet metabolomics

Jejunum lleum  Cecum  Colon Liver Serum
Total identified metabolites 145 140 141 137 130 120
Significantly increased w/FG 0 0 5 11 0 2
Significantly decreased w/FG 0 9 7 4 2 0
Total unique spectral features 6837 6823 11157 8974 3323 1772
Significantly increased w/FG 41 37 579 580 92 58
Significantly decreased w/FG 290 1580 1679 543 204 30
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Additionally, using visualization tools such as PLS-DA, minimal to no separation
was observed between the groups with and without fenugreek, although there is
slight separation between HF and LFur diets in the identified metabolome (Fig.
2.3A). However, there was more separation between the profiles associated with
the diets and resulting from fenugreek supplementation of LFnr diet when
comparing the unidentified and identified features (Fig. 2.3B). In the ileum content
samples, 1,617 spectral features, including nine identified metabolites were
determined to be significantly different with 1,580 of these features having been
decreased with fenugreek supplementation (Table 2.1). While the PLS-DA for the
identified metabolites again only shows a little separation between the groups (Fig.
2.3C), similar to the jejunum samples, including the unidentified features increases
the distinction (Fig. 2.3D) between all four diets.

Similar to the HF study, nearly 7,000 unique features were detected in the small
intestines of mice using untargeted metabolomics for the WD experiments.
Specifically, 6,786 features were detected in the jejunum contents, and 6,871
features were detected in the ileum contents (Table 2.2). Of these features, 1,236
and 965 were significantly different with FG supplementation in the jejunum and
ileum, respectively (Table 2.2). However, 310 and 1,951 (jejunum and ileum)
features were significantly different between WD and control diet, of which 73% or
89% (226 or 1,736 features, jejunum, and ileum) were reversed in WDFG
(Appendix Figs. 2.16 & 2.17). From the total spectral features, 144 and 139
metabolites were identified using exact mass and retention time. In the jejunum,
15 of the identified metabolites were significantly different with FG
supplementation, while in the ileum, 39 of the identified metabolites were
significantly different (Table 2.2). Using PLS-DA to analyze both the identified and
total detected features reveals that the metabolomes of each region are
distinguished between WD and LFwp diet groups (Fig 2.4). However, the PLS-DA
analysis of the total features in jejunum as well as both identified and total features
in the ileum, also exhibit separation between WD and WDFG groups (Fig 2.4B, C,
D).
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Figure 2.3 PLS-DA display minimal differences in metabolic profiles between diets and the
respective FG supplemented diet in small intestines. Untargeted metabolomics was performed on
the jejunum and ileum contents mice fed HF, HFFG, LFnr, or LFHrFG diets for 14 weeks. PLS-DA
were performed for (A) identified jejunum metabolites, (B) all jejunum spectral features, (C)
identified ileum metabolites and (D) all ileum spectral features. Experimental replicates are shown;
HF samples are shown in red, HFFG samples are shown in green, LFur samples are shown in dark

blue, and LFurFG samples are shown in light blue.

Table 2.2 Summary of identified metabolites and mass spectral features from WD metabolomics
data. Features with p-values less than 0.05 and fold change (WDFG/WD) greater than 1.5 were
counted as significantly increased with fenugreek. Features with p-value less than 0.05 and fold
change (WDFG/WD) less than 0.667 were counted as significantly decreased with fenugreek.

Western style diet metabolomics

Jejunum  lleum  Cecum  Colon Liver Serum
Total identified metabolites 144 139 140 136 130 117
Significantly increased w/FG 1 36 15 20 8 0
Significantly decreased w/FG 14 3 47 11 0 1
Total unique spectral features 6786 6871 10973 8721 3247 1750
Significantly increased w/FG 440 517 413 351 130 512
Significantly decreased w/FG 796 448 901 1056 60 4

54



A |dentified Jejunum Metabolites B Jejunum Metabolomics

I [— _____ All Features -
e T T L 1 sl || T T
IR o o e e N I O O A B 2o oy arsld | | T I i
£ ] 5 ]
& L & o011 I T
= @LF ® 225 @LF
S . OLFFG o O LFFG
5 |3 @ WD € 15 @ wD
S 2 @worc & ;5 § - @ WDFG
a <] @]
Y T P T I et S
E L] £
C 2T T T S 75— T
4 =T T 15 [——1— T T T
Tr}'owqmm me’Fva -EEGOG mDmgﬁ:‘—
mponent‘.'z TeTT \3(10"%) CI TREBe R ) 4 .8%)
@1.1%)  compone" omPonent 1 (26 74, ' Gomponent3 ¢
C lleum Metabolomics D
- @I Featuregﬁfﬂ,_; Identified lleum Metabolites
ANRNEN g T -
% F 11 [ I B A
o PSR- S N I O
= @LF =) Bl
o OLFFG o ! o [P o @LF
b ® WD ‘g 0 @ LFFG
5 @ WDFG S @ WD
a g - @ WDFG
5 E - —
o O A |
-4 —
—
ﬂ 0 ) - = -
N 5 N © oo
Poneont 1 (44 3%) COmponent’o‘ (12:4%) C"”TPOnentT (31.3%) component3 (6:3%)
. (]

Figure 2.4 PLS-DA display some differences in metabolic profiles between diets and the respective FG supplemented diet in small intestines.
Untargeted metabolomics was performed on the jejunum and ileum contents mice fed WD, WDFG, LFwp, or LFwpFG diets for 14 weeks. PLS-DA
were performed for (A) identified jejunum metabolites, (B) all jejunum spectral features, (C) identified ileum metabolites and (D) all ileum spectral
features. Experimental replicates are shown; WD samples are shown in red, WDFG samples are shown in green, LFwp samples are shown in dark
blue, and LFwoFG samples are shown in light blue. 55



Large intestine

Large intestine contents show dramatic differences with fenugreek
supplementation in these metabolomics data. Specifically, of the 209 total
metabolites identified in these studies, 141 and 137 were detected in the cecum
and colon contents, respectively (67% and 66%). Moreover, a total of 11,157
(cecum) and 8,974 (colon) spectral features were detected in the large intestines
contents of mice used in this study (Table 2.1). Among these features, 2,258
(cecum) and 1,123 (colon) were determined to be significantly increased or
decreased with the addition of fenugreek to HF diet (Table 2.1). Using PLS-DA to
visualize the small molecule profiles in the cecum and colon contents, it is apparent
that the profiles of mice fed fenugreek are distinctly different from the profiles of
mice not given fenugreek. This is in addition to alterations caused by either HF or
LFur diets for both identified and unidentified small molecules (Fig. 2.5).

Among the identified small molecules, many of these have been determined to
be involved in central carbon pathways. PLS-DA plots for these identified
metabolites display no overlap between the HF and HFFG groups (Fig. 2.5 A & B).
Using the variable importance in projection (VIP) score, it was determined that of
the top 10 highest VIP scoring metabolites, five metabolites were conserved
between cecum and colon and have a compelling impact on the separation of
these groups for both regions. These metabolites are inosine, adenine, myo-
inositol, xanthosine, and guanine (Appendix Fig. 2.18). These metabolites are
significantly altered by HF diet, particularly, inosine, myo-inositol, xanthosine, and
guanine decrease in HF- relative to LFnr-fed mice, but adenine increases in HF-
relative to LFnr-fed mice (Fig. 2.6; Appendix Figs 2.19 & 2.20). No consistent trend
of increasing or decreasing with fenugreek supplementation is evident for these
metabolites. However, for each region, a pairwise PLS-DA comparison of HF and
HFFG groups, which are clearly separated, (Appendix Fig. 2.21) found that while
several metabolites contribute to the separation of these profiles, two specific
metabolites, carnitine and 2,3-dihydroxybenzoate, heavily influenced the
separation (Fig 2.7; for 2,3-dihydroxybenzoate see Appendix Fig. 2.22).
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Figure 2.5 Diet and FG supplementation induce distinct differences in the large intestine metabolome as shown by PLS-DA. Untargeted
metabolomics was performed on the cecum and colon contents of mice fed either HF, HFFG, LFur, or LFurFG diets after 14 weeks of diet exposure.
PLS-DA were performed for (A) identified jejunum metabolites, (B) all jejunum spectral features, (C) identified ileum metabolites and (D) all ileum
spectral features. Experimental replicates are shown; HF samples are shown in red, HFFG samples are shown in green, LFnr samples are shown
in dark blue, and LFxrFG samples are shown in light blue.
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Figure 2.6 Normalized intensities of xanthosine from both cecum and colon data from HF-, HFFG-

, LFur-, and LFnrFG-fed mice. Data was normalized according to mass and the normalized peak

area is represented on a logio scale as mean * standard deviation. Significance was determined

using a Student’s t-test. Significance is represented as *p<0.05, **p<0.01, ***p<0.001, and

****p<0.0001 for comparisons against respective LF groups or  p<0.05, 11 p<0.01, 1t p<0.001,
and 111t p<0.0001 for comparisons against either HF or LF, respectively.
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Figure 2.7 Normalized intensities of carnitine from both cecum and colon data from HF-, HFFG-,
LFur-, and LFurFG-fed mice. Data was normalized according to mass and the normalized peak
area is represented on a logio scale as mean + standard deviation. Significance was determined
using a Student’s t-test. Significance is represented as *p<0.05, **p<0.01, ***p<0.001, and
****n<(0.0001 for comparisons against respective LF groups or ¥ p<0.05, 1F p<0.01, 1t p<0.001,
and 111t p<0.0001 for comparisons against either HF or LF, respectively.
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Representatively shown in Figure 2.7, these metabolites consistently display high
fold changes in LFirFG and HFFG relative to LFur and HF groups, respectively.

Metabolomics analysis of large intestinal contents of mice in the WD study,
reveal significant alterations related to diet. There were 10,973 and 8,721 features
detected, of which 140 and 136 were identified in the cecum and colon contents,
respectively (Table 2.2). Using only the identified features, three separate groups
in the PLS-DA plots for cecum contents corresponding to WD, WDFG, and
overlapping LFwp and LFwpFG groups, denoting a similarity in the metabolic profile
between these two groups (Fig. 2.8). This separation is driven by several
metabolites, however five metabolites which are significantly influencing this
separation (VIP >1) in both regions (appendix Figs. 2.26). These metabolites are
6-phospho-D-gluconolactone, glucose phosphate, gluconolactone, myo-inositol,
and homocarnosine (appendix Figs. 2.23-2.25). These metabolites also have fold
changes ranging from 7-35 (cecum) or 5-38 (colon) and p-values, determined by
a Student’s T-test, less than 0.05 (except for 6-phospho-D-gluconolactone) for
comparison between WD and WDFG groups. The analysis of the total spectral
features reveals similar grouping in the PLS-DA of the cecum as in the identified
metabolites in which the only overlapping groups are the LFwp and LFwpoFG control
groups (Fig. 2.8A). Alternatively, in the PLS-DA of the colon contents, all four
dietary groups were separated indicating distinct metabolic profiles (Fig. 2.8 C &
D). Additionally, of the 10,973 and 8,721 features, 2,301 and 2,232 features (26%
and 32% of features detected in all diets, respectively) were significantly different
between WD and LFwp diets (Fig. 2.9 & appendix Fig. 2.27). Greater than 75% of
the features altered by WD were significantly reversed by FG, specifically 94% and
78% (2,164 and 1,730 features) from cecum and colon contents. Interestingly, in
the cecum, the majority of significantly altered features are elevated in WD and
diminished in WDFG (2100 features) (Fig. 2.9). However, in the colon contents the
features reversed by FG are split more evenly, with 927 features elevated in WD,
and 803 diminished in WD (Appendix Fig. 2.27).
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Figure 2.8 Diet and FG supplementation induce distinct differences in the large intestine metabolome as shown by PLS-DA. Untargeted
metabolomics was performed on the cecum and colon contents of mice fed either WD, WDFG, LFwp, or LFwoFG diets after 14 weeks of diet
exposure. PLS-DA were performed for (A) identified jejunum metabolites, (B) all jejunum spectral features, (C) identified ileum metabolites and (D)
all ileum spectral features. Experimental replicates are shown; WD samples are shown in red, WDFG samples are shown in green, LFwp samples
are shown in dark blue, and LFwoFG samples are shown in light blue. 60
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Figure 2.9 Over a quarter of unique spectral features detected in metabolomics investigations of cecum contents of mice were
significantly different in WD-fed mice compared to LFwo fed mice. Of these features, over 90% were detected with higher abundance
in WD-fed mice relative to LF-fed mice, but lower abundance in WDFG-fed mice relative to WD-fed mice.
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Liver

While not as dramatic as in the large intestines, metabolomics data reveal the
liver metabolome is also altered by fenugreek. From the livers in the HF study, a
total of 3,323 spectral features were detected, from which 131 features were
identified as water-soluble metabolites when compared to an in-house standard
library (Table 2.1). Of the unidentified spectral features, 296 were determined to
be significantly altered with the addition of fenugreek to HF diet. From the PLS-
DA, which only includes the identified metabolites (Fig. 2.10A), and another that
includes all features (Fig. 2.10B), it is clear that the metabolite profiles in the livers
of mice are moderately different when the diet is supplemented with fenugreek.
From the multivariate analysis of the identified metabolites within HF and HFFG
groups, it was determined that the metabolite with the highest VIP score and thus
most substantially driving this separation is the bile salt, glycodeoxycholate
(Appendix Figs. 2.28 & 2.29). This bile salt has a fold change (HFFG/HF) of 2.6
and p-value below 0.06.

Liver metabolite profiles in the WD study also display small, but significant
alterations resulting from FG supplementation. From the metabolomics data, 3,247
unique spectral features were detected, of which 130 metabolites were identified
(Table 2.2). Eight identified metabolites and 190 features were determined to be
significantly different with FG supplementation to WD. While minimal separation is
apparent in the PLS-DA plots for the liver metabolome (Appendix Fig. 2.30), 16%
of features detected in all diets (410 features) were significantly altered in WD
compared to LFwp diet. The majority of these features (362) were elevated in WD,
all of which were significantly lower in WDFG relative to WD (Fig. 2.11).

Serum

Metabolomics data display minimal differences in the serum metabolome
resulting from fenugreek supplementation in the HF study. A total of 1,772 spectral
features were detected in the serum samples, with 120 metabolites identified
(Table 2.1). From the unidentified spectral features, only 88 features were
determined to be significantly different between HF and HFFG, and only two
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Figure 2.10 PLS-DA of liver and serum samples reveal subtle distinctions between the metabolic profiles associated with each diet, more
notably in the unidentified features. Untargeted metabolomics was performed on the liver samples from mice fed either HF, HFFG, LFuF, or
LFurFG diets. PLS-DA were performed for (A) identified liver metabolites, (B) all liver spectral features, (C) identified serum metabolites, and
(D) all serum spectral features. Experimental replicates are shown; HF samples are shown in red, HFFG samples are shown in green, LFur
samples are shown in dark blue, and LFurFG samples are shown in light blue.
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Figure 2.11 16% of unique spectral features detected in metabolomics investigations of livers of mice were significantly different in
WD-fed mice compared to LFwp fed mice. Of these features, nearly 90% were detected with higher abundance in WD-fed mice
relative to LF-fed mice, but lower abundance in WDFG-fed mice relative to WD-fed mice.



identified metabolites were significantly altered (Table 2.1). Neither PLS-DA of
identified or unidentified metabolites show obvious separation, however a small
degree of separation can be observed in both (Fig. 2.10C & D). In the PLS-DA of
identified metabolites (Fig. 2.10C), there is slight separation between groups as a
result of the diet, with FG having little to no influence. Despite this, the PLS-DA of
unidentified features (Fig. 2.10D), indicates there is separation, albeit small,
resulting from the addition of fenugreek to the diets.

From the metabolomics analysis of serum in the WD study, 1,750 spectral
features were detected, and 117 metabolites were identified (Table 2.2). PLS-DA
analysis of identified metabolites reveal minimal separation between WD and LFwp
groups, although no separation resulting from FG was present (Fig. 2.12A).
However, in the PLS-DA analysis of all features, the WD group was slightly
separated from the other groups, indicating that the metabolic profile associated
with the WDFG diet was more similar to the LFwp and LFwpoFG metabolic profile
than the WD profile (Fig. 2.12B). Additionally, 38% (494) of features detected in all
diets were significantly altered in WD relative to LFwp diet. Of these 494 features,
274 or 55% were reversed by FG (Fig. 2.13). In contrast to the intestinal contents
and liver features, the majority (270) of features reversed by FG were detected in
lower abundance in WD, and higher abundance in WDFG relative to WD.

2.3.3 Fenugreek supplementation modulates HDL balance and total
cholesterol in both HF diet- and WD-fed mice

This study expands on previous research at Pennington Biomedical Research
Center showing that fenugreek diet supplementation improved markers of
metabolic health as well as countered dysbiotic effects in mice fed a high-fat diet.8%
81 Since a previous study demonstrated an attenuated ability of fenugreek to
counter HF-diet induced metabolic dysfunction when mice were supplemented for

16 weeks, in the present study the treatment time was decreased to 14 weeks.

65



A " _ B .
|dentified Serum Metabolites Serug}ll\getabolomlcs
T —_ T T T —_— eatures
A o R O - B, w0f-d | | | ‘““#*ﬂ_ﬂ_____g______
2 O T sunnEEEE = 15— T[] ||
% 2 T 1 | ‘C§ 10 -“—_ ; nnEEEEn
= OLF ¢ LT ] BEE
N @ LFFG ~ OLF
clCJ @ WD = 0 1 Q@ LFFG
5 @ WDFG g 5 @ WD
a [=] @ WDFG
E 2 p ————4%— R e e
8 g 15 | T R e i B
S 15 ) —
20 |——— T T

=1 o
c‘\leog(c\"r%?r%o mgmomgi’ﬁw
Co s oow %)
Mponent 1 (37.9%) comPOT‘e“ o (127

Figure 2.12 PLS-DA of serum samples reveal distinctions, although minimal, between the metabolic profiles associated with each
diet, more noticeably in the unidentified features. Untargeted metabolomics was performed on the liver samples from mice fed either
WD, WDFG, LFwp, or LFwpoFG diets. PLS-DA were performed for (A) identified serum metabolites and (B) all serum spectral features.
Experimental replicates are shown; WD samples are shown in red, WDFG samples are shown in green, LFwp samples are shown
in dark blue, and LFwoFG samples are shown in light blue.
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Figure 2.13 Nearly 40% of unique spectral features detected in metabolomics investigations of livers of mice were significantly
different in WD-fed mice compared to LFwp fed mice. Of these features, over 50% were detected with lower abundance in WD-fed
mice relative to LF-fed mice, but higher abundance in WDFG-fed mice relative to WD-fed mice.
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As shown in Figure 2.14, the expected increases in total cholesterol and high-
density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol in HF-
versus LFur-fed mice were observed. Fenugreek supplementation decreased total
cholesterol levels in HF-fed mice (Fig. 2.14C), but this attenuation did not reach
statistical significance (p = 0.0627). When HDL was expressed as a percent of
total cholesterol, HF diet decreased the percent HDL compared to LF+r diet in the
absence of fenugreek but not in the presence of fenugreek (compare LF1rFG and
HFFG) (Fig. 2.14A & B). Concordant with previous results,® fenugreek
supplementation improved the HDL cholesterol composition in HF-fed mice
without altering body weight or body fat (Appendix Table 2.4).

Similar trends were apparent in the WD study. In particular, the absolute levels
of HDL, LDL, and total cholesterol were increased in WD-fed mice relative to LFwp-
fed mice (Fig. 2.15). Liver weight, body weight, and body fat also increased as
expected in WD-fed mice relative to LFwp-fed mice (Appendix Table 2.5).
However, fenugreek had a more significant influence in the WD study than in the
HF study. Specifically, the percent HDL of total cholesterol was significantly
increased from WD- to WDFG-fed mice (Fig 2.15A), but minimal change in the
percent LDL of total cholesterol (Fig. 2.15B). In contrast to the HF study, FG
supplementation was found to significantly decrease the liver weight in WD-fed

mice (Appendix Table 2.5).

2.4 Discussion

Fenugreek has traditionally been used in herbal remedies to treat disorders such
as hyperlipidemia and diabetes, however the mechanisms by which these benefits
arise are largely unknown. While several mechanisms have been proposed, a
compelling theory is that at least some beneficial effects are a result of fenugreek
altered gut microbiomes. Specifically, a previous study determined that while HF
diet has detrimental effects such as reducing alpha diversity and inducing gut
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Figure 2.14 Fenugreek supplementation improves cholesterol levels and high-density lipoprotein
(HDL) balance in HF diet-fed mice. Whole blood was collected from fasted mice following 14 weeks
on LFwr, LFurFG, HF, or HFFG diet, and serum was separated and analyzed for total cholesterol,
HDL, and low-density lipoprotein (LDL). (A) and (B) HDL and LDL are represented as percent
cholesterol. (C — E) show the absolute levels of total cholesterol, HDL, and LDL. Results are
presented as mean + SEM for each group — LFur, HF and HFFG (n = 11); LFurFG (n = 7). Statistical
significance was determined using Tukey’s multiple comparison test following a one-way ANOVA.
Significance is represented as *p < 0.05, **p < 0.01, **p < 0.001, and ****p < 0.0001 for
comparisons against the LFnrF group.
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Figure 2.15 Fenugreek supplementation improves cholesterol levels and high-density lipoprotein
(HDL) balance in WD-fed mice. Whole blood was collected from fasted mice following 14 weeks
on LFwo, LFwoFG, WD, or WDFG diet, and serum was separated and analyzed for total cholesterol,
HDL, and low-density lipoprotein (LDL). (A) and (B) HDL and LDL are represented as percent
cholesterol. (C — E) show the absolute levels of total cholesterol, HDL, and LDL. Results are
presented as mean + SEM for each group — LFwo and LFwoFG (n = 8); WD and WDFG (n = 12).
Statistical significance was determined using Tukey’s multiple comparison test following a one-way
ANOVA. Significance is represented as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 for
comparisons against the LFwp group.
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dysbiosis, fenugreek was able to reverse some of the harmful effects.8! This is
important as gut dysbiosis has been seen to be sufficient to impair metabolic and
neurologic function of the mammalian host.4% 81 90-%4 |n particular, studies have
shown that fenugreek is an efficient treatment for hyperlipidemia, cholesterolemia,
and hyperglycemia which maybe a result of the microbial alterations.8? 9598

This study however, focused on the changes in the metabolome resulting from
fenugreek supplementation. As fenugreek and the microbiome both contribute to
metabolic health, and the metabolome serves as a way to increase understanding
of phenotypes, it follows that metabolomics is an important addition to fenugreek
studies. Untargeted mass spectrometry-based metabolomics allows for the
analysis of all detectable, water-soluble small molecules, rather than limiting the
analysis to known central carbon metabolites, which are only a fraction of the total
metabolites. This study demonstrates, using high throughput mass analysis, that
fenugreek, not only alters the microbiome, but also significantly alters the intestinal,
liver, and serum metabolomes of mice in a diet dependent manner.

As anticipated, metabolomics data reveal distinctly different metabolic profiles
in the small intestine, large intestines, liver, and serum which arise from the
different microbial activity and physiological function of these tissues and biofluids.
For the small and large intestine samples, while it is expected that the metabolome
will be differentiated, it is not guaranteed that there will be clear and obvious
distinctions in metabolomics since certain metabolites are common to many cells
and organisms. However, substantial distinctions are present in this study, which
is an indicator of high-quality data. Regardless of diet, the sum of the normalized
abundance displays a higher abundance for the identified metabolites in the liver
and small intestine regions than in the large intestinal regions or serum (Appendix
Fig. 2.31), however, there were thousands more unidentified spectral features in
the cecum and colon as compared to other regions (Tables 2.1 and 2.2). It is
interesting that while the large intestines have a lower abundance of identified
metabolites, there are significantly more features, which likely leads to greater
diversity in the spectral features in this region.
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2.4.1 High fat diet influences purine metabolite abundances

The alterations in the relative abundance of purine metabolites within the large
intestine contents of mice from the HF study are intriguing as these compounds
are the building blocks for nucleic acids and cofactors, which are important for
energy metabolism. Additionally, a previous study, which investigated the impact
of various diets on both male and female mice found that purine metabolites were
impacted in liver tissues.®® Purine metabolites are regulated in mammalian cells
primarily through salvage pathways, but also de novo biosynthesis and purine
degradation pathways.%® However, as the metabolites leading into these pathways
(ex. AICAR, IMP, and uric acid) are not significantly different between HF and LFxr
diets in this study, alterations in mammalian purine metabolite regulation seems
an unlikely explanation. Another possible reason for these alterations is different
abundances of purine metabolites in the diets, but as the diets in this study were
nutritionally matched, this also seems an unlikely. While these metabolites are
altered between HF and LFur diets, and an integral part of primary metabolism,
there is not sufficient evidence in this study to suggest a causative relationship

between these metabolite abundances and the negative effects of HF diet.

2.4.2 Fenugreek induces considerable changes in the large intestines

Although fenugreek-induced alterations are less obvious in the small intestines,
the large intestines display fenugreek-induced alterations which are undeniable.
PLS-DA analyses of the metabolite profiles associated with the four diets from the
HF study for each intestinal region highlight the significant differences in the
metabolome of the cecum and colon metabolites between mice fed either HF or
LFur diet and each supplemented with fenugreek. These PLS-DA analyses (Fig.
2.5) show very similar separation, and from the VIP scores (Appendix Fig. 2.18), it
was determined that of the top 10 metabolites contributing most to the separations,
five metabolites are shared between cecum and colon. From these data, it can be
concluded that fenugreek has a dramatic effect on the metabolome of the large

intestines in conjunction with a HF diet. In these same PLS-DA analyses of
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identified metabolites (Fig. 2.5A & C) while HF and LFwr diet groups are separated,
the greater separation is found as a result of FG supplementation. This reiterates
that fenugreek has a significant influence on the metabolome of the large
intestines. The metabolome is representative of and informs about the phenotype,
thus the similarities between the HF study metabolite profiles in the cecum and
colon are suggestive of similar microbial activity and response to fenugreek in
these regions.

As in the HF study, the metabolite profiles from the large intestinal contents in
the WD study reveal significant alterations as a result of fenugreek
supplementation. The PLS-DA analyses of the identified metabolites from either
cecum or colon contents, and total features from the cecum contents show distinct
groupings between WD and WDFG groups (Figs. 2.8). Interestingly, in these same
PLS-DA plots, there is no separation between the LFwpo and LFwoFG groups.
Additionally, the WDFG group tends to be more similar to the LFwp groups than
the WD group, but this trend is not present in the PLS-DA analysis of the total
features from the colon contents (Fig. 2.8D). In another similarity with the HF study,
five of the top ten VIP scored metabolites are shared between the two regions,
revealing the comparable effect of fenugreek in the cecum and colon (Appendix
Fig. 26). These results suggest that fenugreek may be providing some resiliency
to the negative effects of WD, and that this effect could be more substantial in the
cecum contents than in the colon contents.

The metabolomics data correspond with microbial data described previously,
in which the fecal microbiome populations were sequenced after exposure to
fenugreek.8! In this former study, which was designed similar to the present study,
mice were given either HF or LF diet each with and without fenugreek (2% w/w)
for 16 weeks. After fecal microbiome samples were sequenced, 410 operational
taxonomic units (OTUs) were found to be common to all mice. HF diet significantly
altered 147 OTUs, but 50 OTUs were restored by fenugreek supplementation.
Further analyses of these OTUs found that many were from the Firmicutes phylum
and are predictive of metabolic function.®! While metabolites cannot be traced to
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specific bacterial or intestinal origins, the differences observed in the metabolome
often parallel changes in the microbiome. Additionally, as the microbiome is well
known to alter the mammalian host function and the most significant metabolome
differences were in the large intestine, it follows that fenugreek more significantly

alters the metabolic function in the large intestines than the small intestines.

2.4.3 Liver and serum metabolomes are affected by fenugreek

While the metabolic profile changes in the livers of mice given diets
supplemented with fenugreek are less dramatic than in the intestine, it is a
significant observation. Despite well-regulated pathways found in the liver
regardless of dietary changes, our analysis revealed distinct metabolic profiles
indicating that fenugreek does alter the liver metabolome in the HF and WD
studies. These global metabolome changes are more likely due to relative
abundance differences than different metabolites detected. In fact, the sum of the
relative abundance of all identified metabolites is lower in livers of the HFFG-fed
mice, than the HF-fed mice, however in contrast, the sum of the relative abundance
of all identified metabolites is higher in the livers of WDFG-fed mice, than the WD-
fed mice (Appendix Fig. 2.31). Of the metabolites with significant p-values, there
are more that have decreased than increased with fenugreek in HF-fed mice, but
more that have increased with fenugreek in WD-fed mice (Tables 2.1 & 2.2). These
contrasting results highlight that fenugreek may influence the mammalian host
metabolism, particularly in the liver, in a diet dependent fashion.

When considering the effects of particular diets or supplements, it is important
to assess the availability of nutrients in circulation. This study included the analysis
of the metabolites and small molecules found in both the serum and the liver. It is
beneficial to consider both, as the liver works to detoxify blood from the intestines
before entering circulation. Nearly all detected metabolites from the liver display
lower abundance in HFFG-fed mice as compared to HF-fed mice, while more
serum metabolites display higher abundance with fenugreek (Appendix Fig. 2.32).

This trend is reversed in the WD study, where more metabolites detected in the
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liver display higher abundance in WDFG-fed mice than in WD-fed mice, while in
the serum, more metabolites were detected in lower abundance with fenugreek
(Appendix Fig. 2.33). In particular, in the HF study, allantoate and 5-
methyltetrahydrofolate are significantly lower abundance with fenugreek
supplementation in the liver, but not in serum. Allantoate is involved with purine
degradation which produces urea and is a plant metabolite which is involved in
storage and transport of fixed nitrogen, while 5-methyltetrahydrofolate is involved
in the synthesis of methionine and regulation of homocysteine.1%9-192 A possible
explanation for the decreased abundance in the liver, is increased utilization of
these metabolites. However, glycodeoxycholate is a metabolite which was
significantly more abundant in livers of fenugreek mice in the HF study. Again, in
the serum, glycodeoxycholate was not detected, but the bile salt
taurodeoxycholate was detected and in a higher abundance in HF-fed compared
to HFFG-fed mice (Appendix Fig. 2.32). As these bile salts are synthesized from
cholesterol, they could potentially be involved in the decrease of total cholesterol
in fenugreek-supplemented mice.

In the WD study serum metabolome, one metabolite, xanthine, in particular
stands out due to the large differences in abundance between the dietary groups.
Xanthine was detected with nearly 20-fold higher abundance in WDFG-fed mice
than in WD-fed mice (Appendix Fig. 2.34A). This is intriguing as hypoxanthine is
oxidized to xanthine by xanthine oxidase, through which process reactive nitrogen
and oxygen species are produced. This is significant, as reactive oxygen species
can cause oxidative stress and increased xanthine oxidase activity has been
correlated to hypertension, dyslipidemia, and insulin resistance.® However,
xanthine is also involved in nitrogen, and more specifically purine metabolism and
degradation. The increase in abundance of this metabolite, rather than a result of
increased xanthine oxidase activity, could also be a result of decreased utilization
of xanthine. Additionally, similar to the HF study liver metabolomes, a bile acid,
cholate, was detected with noticeably different abundances in the livers of WD-
and WDFG-fed mice (Appendix Fig. 2.34B). However, unlike the HF-fed mice,
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cholate was found to be more abundant in the mice not supplemented with
fenugreek. These results reported from liver and serum metabolomics provide
insight to how the circulating metabolite levels may be altered by fenugreek in a

diet dependent fashion.

2.4.4 Fenugreek impacts specific pathways by location and diet

A more in depth look at the metabolomics data reported in this study reveals
specific pathways and metabolites that may be more significantly contributing to
the beneficial effects of fenugreek. For instance, carnitine biosynthesis and its
relative abundance are significantly increased by fenugreek supplementation in
the large intestines of mice in the HF study. The differences in carnitine
abundances is intriguing as this dipeptide, composed of methionine and lysine,
has an important role in lipid transport and fatty acid metabolism.194106 This
metabolite is synthesized in the liver, kidneys, and brain, but the majority is
absorbed from dietary sources such as red meat.1%4 19 As carnitine is used for
fatty acid oxidation and energy metabolism, the highest physiological
concentrations of carnitine occur in muscular tissues, specifically cardiac and
skeletal muscle.1%5-106 However, nearly all carnitine is absorbed through the small
intestine and the remaining fraction is metabolized by bacteria in the large
intestine, making it uncommon to detect carnitine in the large intestine.'%* Excess
carnitine in the intestines can be problematic as gut microbiota degrade carnitine
into trimethylamine (TMA) which is oxidized to trimethylamine N-oxide (TMAO)
which promotes atherosclerosis.1%” However, due to technical limitations, TMA and
TMAO were not included in this study. Carnitine deficiency, can also be concerning
as it has been associated with diabetes, cardiomyopathy, and obesity, as well as
other conditions.1%¢ Further studies will be needed to focus more on this metabolite
and how it specifically relates to the beneficial effects of fenugreek.

Similar to the HF study, the metabolism of another dipeptide, carnosine which
is composed of alanine and histidine, was influenced by fenugreek. In the large

intestinal samples, homocarnosine is significantly decreased in WD-fed mice
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relative to LFwp-fed mice and reversed (increased) by fenugreek supplementation
to WD-fed mice. This metabolite is suggested to have antioxidant properties, and
is commonly found in brain cells.19810° However, other metabolites which are
reduced in the large intestinal contents of WD-fed mice relative to LFwp-fed mice,
and then reversed with fenugreek supplementation include 6-phospho-D-
gluconolactone, glucose phosphate, gluconolactone, and myo-inositol. One of the
defining characteristics of a western style diet is elevated sucrose consumption.
As all four of these WD-altered and FG-reversed metabolites are related to glucose
metabolism, a possible explanation of the anti-diabetic effects of fenugreek may
be attributed to enhanced break down and metabolism of sucrose.

Besides carnitine metabolism, other pathways affected by fenugreek in the HF
study include cholesterol and bile acid metabolism, as well as arginine
biosynthesis and the urea cycle. While these pathways have important roles in the
liver, the magnitude of the impact fenugreek had on these pathways varies by
sample location. Using MetaboAnalyst's pathway analysis feature, arginine
biosynthesis was determined to be the most significantly impacted pathway from
these studies, but glycodeoxycholate, a bile salt, most significantly contributed to
differences in the metabolic profiles of the livers of HF-fed and HFFG-fed mice.10
In particular, this indicates that cholesterol metabolism and bile acids may be of
more influence and experience more modifications in the liver, but arginine
biosynthesis, while affected in all samples analyzed, show the most differences in
the cecum and colon contents. These pathways serve important functions and
metabolic benefits, however there is no known connection between them. Bile
acids and bile salts are primarily used to transport lipids through the intestines, and
arginine assists in regulation of nitric oxide (NO) and nitrogen waste. L-Arginine
has potential for use in treating several health conditions such as atherosclerosis
and hypertension, cardiovascular disease, and Type 2 diabetes, because of its role
in the urea cycle and NO regulation.!1-112 This suggests that the beneficial effects
of fenugreek may not be the result of a single altered pathway, but rather a
combination of pathways.
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It is also significant to note the high numbers of features detected with only a
fraction identified. Within this fraction, many metabolites were impacted by
fenugreek, however the profiles of the unidentified features are even more distinct
than the identified metabolites. This shows how important these features are and
how both HF and WD diets, and fenugreek supplementation alter the small
molecules, despite the lack of knowledge of these features. When both the
identified and unidentified features are considered, it is clear that the small
molecule metabolome is shaped by fenugreek which implies alterations within the
microbiome, and thus impacting the overall host function due to fenugreek

supplementation.
2.5 Methods

2.5.1 Animals and diets

Eighty male C57BL/6J mice were randomly divided between two studies
investigating the effects of fenugreek on unhealthy diets, specifically a 60% high
fat diet study and a western style diet study. The mice were purchased from
Jackson Laboratories at 8 weeks of age (WOA) and fed chow diet until they were
randomized at 9 WOA into the experimental diet groups. In the HF diet study, the
groups were: 1) 60% high fat diet (HF; n=11), 2) HF diet with fenugreek (HFFG;
n=11), 3) nutritionally matched (to HF) low fat diet (LFnF; n=11), or 4) LF diet with
fenugreek (LF1FFG; n=7). For the WD study the groups were: 1) a Western style
diet (WD; n=12), 2) WD with fenugreek (WDFG; n=12), 3) nutritionally matched (to
WD) low fat diet (LFwp; n=8), or 4) LF diet with fenugreek (LFwoFG; n=8). As
previously described, 8! fenugreek-supplemented diets were prepared at
Research Diets Inc. by adding 2% w/w ground fenugreek seed powder to the

respective experimental and control diets prior to pelleting (Table 2.3).
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Table 2.3 Summary of diets and animals per diet for fenugreek studies

Diets with and without fenugreek supplementation

No. of replicates  Diet Fenugreek Research Diets p/n

11 HF no D12492i

11 HF yes D18121403i

11 LFrr no D12450Ji

7 LFrr yes D18121402i

12 WD no D12079Bi

12 WD yes D18121405i
LFwp no D14042701i
LFwp yes D17121404i
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The fenugreek seeds used were fully characterized at Rutgers University by
the Botanical Dietary Supplements Research Center

(http://www.botanical.pbrc.edu/institutions.html). The mice were fed the indicated

diets for 14 weeks prior to euthanasia and subjected to assessment of metabolic
parameters including weight gain, adiposity, total cholesterol, high-density
lipoprotein (HDL), and low-density lipoprotein (LDL). Body weight/adiposity data
were collected regularly throughout the study. Serum, liver, and intestine sections
were collected at euthanasia. Intestinal contents were isolated from the jejunum,
ileum, cecum, and colon for metabolomics. These studies were conducted in strict
accordance with the National Institutes of Health guidelines on the care and use
of laboratory animals, and all experimental protocols were approved by the
Institutional Animal Care and Use Committee at Pennington Biomedical Research

Center.

2.5.2 Metabolic phenotyping

Body composition was measured using a Bruker minispec LF110 NMR
analyzer (Bruker Optics, Billerica, MA) as previously described.® All mice were fed
indicated diets for 14 weeks and then euthanized by decapitation under deep
isoflurane anesthesia following a 5-hour fast. Fasting levels of HDL and LDL
cholesterol as well as total cholesterol were measured using colorimetric assays

(Wako Chemicals, Richmond, VA) from serum samples collected at euthanasia.

2.5.3 Metabolite extractions

Prior to extraction of water-soluble metabolites, serum samples and pulverized
liver samples, jejunum contents, ileum contents, cecum contents, and colon
contents were pre-weighed. The extraction procedure was adapted from
Rabinowitz and Kimball.>” All solvents used were HPLC grade. The pre-weighed
samples were mixed with 1.3 mL of extraction solvent (4:4:2 acetonitrile: methanol:
water with 0.1 M formic acid). The mixture was allowed to extract for 20 minutes

at -20 °C. The mixture was centrifuged, and the supernatant collected. To the
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remaining pellet, an additional 200 pL of extraction solvent was added and
extracted for 20 minutes at -20 °C. This mixture was centrifuged and supernatants
from both extraction steps were combined and dried under nitrogen. The dried

samples were resuspended in 300 uL of water prior to mass analysis.

2.5.4 UHPLC-HRMS

The chromatographic and mass spectral analysis was performed according to
an established method using ultra-high performance liquid chromatography
coupled to high resolution mass spectrometry (UHPLC-HRMS).%® The
resuspended metabolites were stored at 4°C in an UltiMate 3000 RS autosampler
(Dionex, Sunnyvale, CA) until analysis. Samples were analyzed with duplicate
injections. All solvents used were HPLC grade (Fisher Scientific, Hampton, NH).
Reversed phase separations were carried out using a Synergi 2.6 pm Hydro RP
column (100 mm x 2.1 mm, 100 A; Phenomenex, Torrance, CA) and an UltiMate
3000 pump (Dionex). The chromatography utilized a 25-minute gradient elution as
described previously®® with a water:methanol solvent system and a tributylamine
ion pairing reagent. The separated metabolites were ionized via negative mode
electrospray ionization prior to analysis on an Exactive Plus Orbitrap MS (Thermo
Scientific, San Jose, CA). The full scan analysis was performed as described

previously.%®

2.5.5 Metabolomics Data Processing

Initial raw spectral files, which were generated by Thermo’s Xcalibur software,
were converted to mzML format using the msConvert package from
ProteoWizard.>® After converting these files, Metabolomic Analysis and
Visualization Engine (MAVEN) (Princeton University) was used for data
processing.0-%1 This software was used for retention time correction and peak
alignment. Metabolites were manually identified and annotated by comparing the
exact mass (x5 ppm) and retention times to an in-house standard library. The

unidentified spectral features were automatically selected, and isotope and adduct
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peaks annotated using XCMS and CAMERA R packages.%2:63 113 Before further
processing the adduct and isotope peaks were removed, and only features with a
signal/blank ratio of 3 or greater in at least half of the biological replicates for at

least one diet were used for further analyses and are reported here.

2.5.6 Statistical Analysis

All spectral data were normalized according to mass and background
subtracted. Heatmaps display log2 fold changes and p-values determined by a
Student’s T-test and were prepared using R (version 4.0.3).%4 The normalized data
were filtered via interquartile range (IQR), log transformed, and Pareto scaled via
MetaboAnalyst 5.0 before partial least squares discriminant analysis (PLS-DA)
was performed using the same software.®> 110 After PLS-DA was performed, the
plots were cross validated using 10-fold cross validation via MetaboAnalyst 5.0.114
115 Venn diagrams were prepared using an open source software, Venny 2.1.116
Bar graphs were prepared using R version 4.0.3. For the unidentified spectral
features, those with a fold change greater than 1.5 or less than 0.667 and p-value
below 0.05, were used for Fiehn's Seven Golden Rules analysis to determine
potential molecular formulas.''” Formulas were constricted to a mass accuracy of

5 ppm and only the following elements: C, H, N, O, P, S, and Cl.

2.6 Conclusions

The metabolic profile of the contents of four intestinal regions (jejunum, ileum,
cecum, and colon), the liver tissues, and serum of mice were analyzed to
determine the effects of fenugreek on the structure and function on the mammalian
host. However, this study was limited in that only male mice were used, preventing
analysis of sex-based differences in the impact of fenugreek. The results from this
study reveal insight into the effects of fenugreek on the gut metabolome, in the
presence of either HF or WD diets. Specifically, the most metabolic alterations
were found to occur in the large intestines and small, but significant metabolic

alterations were found in the liver and serum. Additionally, discrete pathways were
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more significantly affected by fenugreek, including carnitine biosynthesis,
antioxidant activity, glucose metabolism, bile acid and cholesterol metabolism, and

arginine biosynthesis.
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Appendix

Jejunum metabolomics
total unique features
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Figure 2.16 Only 5% of unigue spectral features detected in metabolomics investigations of
jejunum contents of mice were significantly different in WD-fed mice compared to LFwp fed mice.
Of these features, over 50% were detected with higher abundance in WD-fed mice relative to LF-
fed mice, but lower abundance in WDFG-fed mice relative to WD-fed mice.

lleum metabolomics
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Figure 2.17 A third of unique spectral features detected in metabolomics investigations of ileum
contents of mice were significantly different in WD-fed mice compared to LFwp fed mice. Of these
features, over 80% were detected with higher abundance in WD-fed mice relative to LF-fed mice,
but lower abundance in WDFG-fed mice relative to WD-fed mice. 84
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Figure 2.18 Top 10 metabolites with the highest VIP scores from PLS-DA of (A) cecum contents

and (B) colon contents comparing LFwxr, LFerFG, HF and HFFG diets. VIP scores for components
1-3 are shown.
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Figure 2.19 Normalized intensities of (A) adenine and (B) guanosine from both cecum and colon
data from HF-, HFFG-, LFur-, and LFurFG-fed mice. Data was normalized according to mass and
the normalized peak area is represented on a logio scale as mean * standard deviation.
Significance was determined using a Student’s t-test. Significance is represented as *p<0.05,
**p<0.01, ***p<0.001, and ****p<0.0001 for comparisons against respective LF groups or 1 p<0.05,
It p<0.01, ¥t p<0.001, and FFtt p<0.0001 for comparisons against either HF or LFwr,
respectively.
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Figure 2.20 Normalized intensities of (A) inosine and (B) myo-inositol from both cecum and colon
data from HF-, HFFG-, LFnr-, and LFurFG-fed mice. Data was normalized according to mass and
the normalized peak area is represented on a logio scale as mean + standard deviation.
Significance was determined using a Student’s t-test. Significance is represented as *p<0.05,
**p<0.01, ***p<0.001, and ****p<0.0001 for comparisons against respective LF groups or { p<0.05,
1t p<0.01, 1t p<0.001, and t3tt p<0.0001 for comparisons against either HF or LFhr,

respectively.
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Figure 2.21 Pairwise PLS-DA of identified metabolites from (A) cecum contents and (B) colon
contents of HF- and HFFG-fed mice. Experimental replicates and 95% confidence intervals are
shown. Top 10 metabolites with highest VIP scores are shown for (C) cecum contents and (D)

colon contents.
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Figure 2.23 Normalized intensities of 2,3-dihydroxybenzoate from both cecum and colon data from
HF-, HFFG-, LFur-, and LFurFG-fed mice. Data was normalized according to mass and the
normalized peak area is represented on a logio scale as mean + standard deviation. Significance
was determined using a Student’s t-test. Significance is represented as *p<0.05, **p<0.01,
***n<0.001, and ***p<0.0001 for comparisons against respective LF groups or 1 p<0.05, 1t
p<0.01, 11 p<0.001, and $11F p<0.0001 for comparisons against either HF or LF, respectively.
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Figure 2.22 Normalized intensities of 6-phospho-D-gluconolactone from both cecum and colon
data from WD-, WDFG-, LFwp-, and LFwoFG-fed mice. Data was normalized according to mass
and the normalized peak area is represented on a logio scale as mean * standard deviation.
Significance was determined using a Student’s t-test. Significance is represented as *p<0.05,
**p<0.01, ***p<0.001, and ****p<0.0001 for comparisons against respective LF groups or f p<0.05,
11 p<0.01, £11 p<0.001, and 111F p<0.0001 for comparisons against either HF or LF, respectively.
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Figure 2.24 Normalized intensities of (A) glucose phosphate and (B) gluconolactone from both
cecum and colon data from WD-, WDFG-, LFwp-, and LFwoFG-fed mice. Data was normalized
according to mass and the normalized peak area is represented on a logio scale as mean +
standard deviation. Significance was determined using a Student’s t-test. Significance is
represented as *p<0.05, **p<0.01, **p<0.001, and ****p<0.0001 for comparisons against
respective LF groups or ¥ p<0.05, 11 p<0.01, £¥t p<0.001, and 111F p<0.0001 for comparisons
against either WD or LFwo, respectively.
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Figure 2.25 Normalized intensities of (A) myo-inositol and (B) homocarnosine from both cecum
and colon data from WD-, WDFG-, LFwp-, and LFwpFG-fed mice. Data was normalized according
to mass and the normalized peak area is represented on a logio scale as mean * standard
deviation. Significance was determined using a Student’s t-test. Significance is represented as
*p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001 for comparisons against respective LF groups or
1 p<0.05, 1 p<0.01, 111 p<0.001, and 111t p<0.0001 for comparisons against either WD or LFwp,
respectively.
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Figure 2.26 Top 10 metabolites with the highest VIP scores from PLS-DA of (A) cecum contents and (B)

colon contents comparing LFwp, LFwoFG, WD and WDFG diets. VIP scores for components 1-3 are
shown.
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Colon metabolomics
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Figure 2.27 Nearly one third of unique spectral features detected in metabolomics investigations
of colon contents of mice were significantly different in WD-fed mice compared to LFwp fed mice.
Of these features, around 40% were detected with higher abundance in WD-fed mice relative to
LF-fed mice, but lower abundance in WDFG-fed mice relative to WD-fed mice.
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Figure 2.28 Normalized intensities of glycodeoxycholate detected in liver samples of LFwr,
LFhrFG, HF and HFFG fed mice. Data was normalized according to mass and the normalized
peak area is represented on a logio scale as mean * standard deviation. Significance was
determined using a Student’s t-test.
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Figure 2.29 Pairwise (A) PLS-DA of identified metabolites from liver samples of HF- and HFFG-
fed mice, and (B) Top 10 metabolites with highest VIP scores. Experimental replicates and 95%

confidence intervals are shown.
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Figure 2.30 PLS-DA of (A) identified metabolites and (B) total unique features from the liver of mice
fed WD, WDFG, LFwp, or LFwpoFG diets for 14 weeks. Experimental replicates are shown. Top 10
metabolites with highest VIP scores for components 1-3 from PLS-DA of identified metabolites are

shown in (C).
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Figure 2.31 Sum of the average intensity for each metabolite identified from the contents of the
jejunum, ileum, cecum, and colon, and liver and serum samples of mice fed (A) HF or LFur with
and without fenugreek (FG; 2% wi/w) or (B) WD or LFwp with and without FG (2% w/w). The
intensities were normalized by mass prior to being averaged and summed. Data is shown on a
logio scale.
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Table 2.4 Fenugreek supplementation does not alter body weight, body composition or liver weight
in mice fed a LFur or HF diet. Group comparisons were made using a one-way ANOVA, and
statistical significance was determined using Tukey’s multiple comparisons test. Significance is
donated by ***p < 0.001 and ****p < 0.0001 for comparisons against the LF group.

High fat diet study metabolic assessments

LFue (n=11) LFneEG (n=7) HF (n=11) HFEG (n=11)
Body Weight (g) 35.1+0.9 33.0+0.8 46.5 + 1. 2%k 49.0 + 0.6%
Body Fat (g) 4.7+0.4 5.2+0.6 13.9 + 0.5%* 14.5 + 0.3%%
Liver Weight (g) 1.21+0.06 1.45 + 0.06 1.89 + 0.1%+ 2.31 + 0,17+

Table 2.5 Fenugreek supplementation does not alter body weight or body composition in mice fed
a LFwp or WD diet but does alter liver weight in mice fed a WD diet. Group comparisons were made
using a one-way ANOVA, and statistical significance was determined using Tukey’s multiple
comparisons test. Significance is donated by ***p < 0.001 and ****p < 0.0001 for comparisons
against the LF group, and #p < 0.05 for comparisons against non-supplemented groups.

Western diet study metabolic assessments

LFwo (n=8) LFwpoFG (n=8) WD (n=12) WDFG (n=12)
Body Weight (g) 33.2+1.0 29.6 +0.5 45.6 + 1.1%** 43.4+£0.7
Body Fat (g) 46 +0.6 44+04 12.6 + 0.4*** 11.4+£0.6
Liver Weight (g) 1.26+0.1 1.25+04 3.23 £ 0.2%** 2.64 + 0.19#
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Figure 2.33 Heatmap analysis of metabolomics data from WD study. Fold changes are shown as
WDFG vs WD and LFwoFG vs LFwp. Each column represents either WD or LFwp diets and each
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Chapter 3 Metabolomics And Lipidomics Demonstrate Two
Genetically Similar Lysogens Influence Host Metabolism Based
on Growth Substrate
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Preface

In the following chapter a project using ultra-high performance liquid
chromatography high resolution mass spectrometry to determine relative
abundances of both polar metabolites and amphiphilic lipids in Sulfitobacter sp.
Strains CB-D and CB-A will be described. While the methods used are not novel,
this project is unigue in using metabolomics and lipidomics methods to study two
genetically similar lysogens. From this approach, the current state of the cells can
be examined. While metabolism is rapidly changing and influenced by both intrinsic
and extrinsic factors, lipid alterations take more time and are influenced by
metabolism. By combining metabolomics and lipidomics in this study, a more
complete understanding of that actual state of the cells can be elucidated.

This project was done in collaboration with Dr. Alison Buchan and her
former graduate student Dr. Jonelle Basso and undergraduate student Kaylee
Jacobs. The Buchan lab has focused their research on host-phage interactions
using a roseobacter-roseophage model system. A previous collaboration between
the Buchan lab and Campagna lab employed a metabolomics approach to study
host-phage interactions between Sulfitobacter sp. Strain CB-D and a lytic phage
¢B. This initial study increased understanding about this system, specifically that
phage infection did not lead to alterations in one specific metabolic pathway, but
generally increased host metabolic activity. Additionally, it was determined that the
living cells recycled the nutrients released by the lysed cells in the same culture.
As well as the metabolomic results, this study found that both the lytic phage ¢B
and the lysogenic phage ¢D were produced. Due to remaining viable cells present
at the final timepoint, it was found that a fraction of the cells were resistant to lysis.
It was theorized that the lysogenic infection by ¢D may have provided protection
from lysis. These informative results prompted the study reported in this chapter.

With the prevalence of lysogeny in nature, but the lack of research focusing
on lysogenic infection, temperate phages became the focus for this work. The

Buchan lab had previously isolated two genetically similar lysogens which a single
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host is infected by one of two temperate phages, and thus are 97% similar at the
nucleotide level. Despite the similarity, these lysogens, Sulfitobacter sp. Strains
CB-D and CB-A display marked differences in cell size and spontaneous prophage
induction. For the project described in the following chapter, this one-host-two-
temperate-phage model system was utilized. Furthermore, combined with the
results from the previous metabolomics studies and the constant flux of nutrients
in marine environments, the effects of specific nutrients were of interest. For this
purpose, a complex growth media and two carbon growth substrates were selected
for this study. By analyzing the differences between the strains grown with specific
nutrients, a greater understanding of the phages and their influence on the host
can be determined.

In this growth substrate study, the Buchan and Campagna labs worked
together to achieve a greater biochemical understanding of combined influence of
nutrients and phage on the host. To accomplish this goal, it was decided to probe
both metabolites and lipids to gather information regarding both the functional
alterations and structural changes. Untargeted methods were selected for global
analysis for both the polar metabolites and amphiphilic lipids. Because of this,
detection of largely unknown and uncharacterized lipid classes, such as amino
lipids, was possible. Using all ion fragmentation (AlIF) capabilities of Orbitrap mass
spectrometers allowed for not only the detection of the parent masses of these
amino lipids, but also confirmation based on fragment masses and retention time
matching. While the metabolomics data was consistent with the previous study in
that there was not one single pathway most impacted by phage infection, but the
phages did have an impact when nutrients were limited. This trend was also
apparent in the lipids, with significant alterations in the composition of the lipidome
between growth substrates and varying degrees of differences in the abundances
between strains. These results revealed that while growth substrates and available
nutrients have strong influence on the structure and function of the cells, the

phages have a notable impact in a nutrient dependent manner.
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3.1 Abstract

Bacterial growth substrates influence a variety of biological functions,
including the biosynthesis and regulation of lipid intermediates. The extent of this
rewiring is not well understood, nor has it been considered in the context of virally-
infected cells. Here, a one-host-two-temperate phage model system was used to
probe the combined influence of growth substrate and phage infection on host
carbon and lipid metabolism. Using untargeted metabolomics and lipidomics, the
detection of a suite of metabolites and lipid classes for two Sulfitobacter lysogens
provided three growth substrates of differing complexity and nutrient composition
(yeast extract/tryptone [complex], glutamate and acetate) are reported. Growth
medium led to dramatic differences in the detectable intracellular metabolites, with
only 15% of 175 measured metabolites showing overlap by growth substrate.
Between-strain differences were most evident in the cultures grown on acetate,
followed by glutamate then complex medium. Lipid distribution profiles were also

distinct between cultures grown on different substrates as well as between the two
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lysogens grown in the same medium. Five phospholipid classes, three amino lipid
classes, and one class of unknown lipid-like features were identified. Most (= 94%)
of these 75 lipids were quantifiable in all samples. Metabolite and lipid profiles were
strongly determined by growth medium composition and modestly by strain type.
As fluctuations in availability and form of carbon substrates and nutrients as well
as virus pressure are common features of natural systems, the influence of these
intersecting factors will undoubtedly be imprinted in the metabolome and lipidomes

of resident bacteria.

3.2 Introduction

The macromolecular composition of bacterial cells is the product of both
external and internal factors. The concentrations and chemical forms of carbon
and nutrients, such as nitrogen, oxygen, sulfur, and phosphorus, influence
bacterial physiology in a strain-specific fashion. For instance, growth substrates
affect cellular growth rates, size, morphology and other dynamic biological
functions.'® The processing of growth substrates through central metabolism
(e.g., the tricarboxylic acid [TCA] cycle) influences the synthesis and regulation of
many important ~macromolecules, including key lipid biosynthesis
intermediates.*'811° However, the extent to which substrates and nutrients utilized
for growth directly relate to cell lipid composition is not fully understood. This
knowledge gap presents challenges to application of lab-based studies of isolates
to interpretation of field-based measurements of natural microbial populations.

Lipids are key constituents of bacterial cell membranes and are organized
into a few broad classes, including the common phospholipids:
phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL),
phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylserine
(PS).120-123 Despite the diversity of phospholipid head groups recognized amongst
bacteria, a single key precursor to all of these molecules is phosphatidic acid
(PA).124 Other lipid classes, such as amino lipids and other phosphorous-free lipids

(e.g., sulfoquinovosyldiacylglycerol (SQDG)) have been documented in diverse
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bacteria where they have been linked to environmental stress, most notably
phosphorous limitation. 125127

Lipid composition tends to be a deeply conserved feature of bacteria. The
model organism Escherichia coli has been used for the elucidation of bacterial lipid
composition, but exhibits less complexity than other bacterial species with regards
to lipid classes it possesses.’?® In E. coli, PE, PG and CL are the primary
membrane glycerophospholipids, compromising ~75%, ~20% and ~1-5%,
respectively, of the total pool.1?812° Similarly, PG, PE and CL are frequently
produced by Alpha-Proteobacteria. However, PC and amino lipid species have
also been identified in subsets of this bacterial class, such as strains within the
marine Sulfitobacter genus and Rhodobacter sphaeroides, both of the
Rhodobacterales order.t20: 123, 126, 130-131

Cellular lipid composition can be viewed as an adaptive response. It is non-
static and favors forms which provide the necessary structural features for cells
under specified environmental conditions.??® Cellular modulation of lipid
composition has been linked to temperature, pH, as well as production and
accumulation of metabolites and nutrient levels.1?%: 132 As lipid biosynthesis is
intrinsically linked to central metabolism, factors influencing central metabolism,
including viral infection, may also be expected to affect lipid composition.

Lytic phage infection has been shown to alter host metabolism, the nature
and extent of which appears to be host-virus specific. Phage-dependent
manipulation of host metabolic processes can occur through redirection of
pathway-specific mechanisms, including alterations in central carbon metabolism,
nucleotide and/or lipid biosynthesis pathways.'33137 Though rare, examples
providing direct linkages between phage infection and host lipid composition
provide further insight into the varied fithess strategies employed by viruses. For
instance, cyanophage-encoded auxiliary metabolic genes (AMGS), specifically
fatty acid desaturases, have been implicated in alterations to host cyanobacterial
membrane fluidity, which are suggested to lead to host photoprotection.3® While
AMGs have been involved in virus-mediated host metabolic remodeling and their
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identification can lead researchers to specific targeted pathways, the presence of
such genes does not appear to be a requirement for metabolic redirection.
However, in the absence of obvious AMGSs, the specific mechanism of such
redirection is not easily elucidated from viral genetic signatures alone.139-140
Previous work in the Buchan lab has shown that the influx of nutrients from
viral lysis of neighboring cells leads to both the accumulation and rapid utilization
of these resources by the remaining viable cells for cultures of a Sulfitobacter
strain.13® These data are consistent with the notion that members of this group of
abundant marine bacteria are well adapted to a feast or famine lifestyle. The prior
work also highlighted the importance of nitrogen recycling in host-phage
interactions which was predicted to arise from a stoichiometric imbalance between
host and phage (i.e., phage are nitrogen rich relative to their hosts). However, the
prior study did not examine the impact of phage infection on lipid metabolism. This
study took advantage of a unique one-host-two-temperate phage roseobacter-
roseophage model system to assess the intersection of growth substrate, or

nutrients, and prophage activation on both host metabolism and lipid compaosition.

3.3 Results

A previously developed a one-host-two-phage system, in which a single
Sulfitobacter host is lysogenized with one of two temperate phages (denoted ¢A
and ¢D) and the resulting lysogens, termed CB-A and CB-D was used throughout
this study. The two phages share an integration site in their host and 97% identity
at the nucleotide level. These genetically similar temperate phages have been
demonstrated to have divergent influence on their shared hosts’ competitiveness.
It is hypothesized that this is due, in part, to differences in the lysogenic-lytic
switches of their resident prophage, with CB-A showing measurable prophage
induction not evident in CB-D when these strains are grown in a complex
medium.'#! However, it is recognized that other factors may contribute to observed
fitness differences between the strains. Thus, to better define the nature of these

host-phage interactions and influence on host physiology, this study compared the
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metabolite and lipid profiles of each host-phage pair (CB-A and CB-D) grown on
different carbon sources. The three media types utilized represent a range of
complexity of nutrients, particularly with respect to carbon (C) and nitrogen (N).
Specifically, the carbon sources ranged from simple to complex (acetate <
glutamate < tryptone + yeast extract). However, inorganic N, as ammonium
chloride, was supplied in all media, while organic N was only available in the
complex and glutamate containing media. Organic carbon in the complex medium
was 8.55 times greater (171 mM C) than either the glutamate or acetate containing
media (both supplied at 20 mM C). Combining organic and inorganic N sources,
the complex medium (at 27 mM N) had 1.6 or 2.2 times greater total N than either
the glutamate (14 mM N) or acetate (10 mM N) media, respectively. The C:N ratio
for the three media ranged from 1.4 to 6.3 (glutamate to complex) (Appendix Table
3.1). In our experiments, phosphorus was provided in non-limiting concentrations.
Inorganic phosphorus was provided as 1 mM potassium phosphate, a non-limiting
concentration for roseobacters, in all media.'*? Organic phosphorus was only
available in the complex medium, as a component of both tryptone and yeast

extract.

3.3.1 Growth physiologies of strains are different across substrates.

Growth of both strains was most robust on the complex substrate, followed
by glutamate then acetate (Fig. 3.1). Free phage, indicative of prophage induction,
were present in all CB-A cultures, but undetectable in the CB-D cultures (Appendix
Tables 3.2-3.4).141 Only the acetate grown cultures showed significant differences
in host viability, presumably as a result of greater prophage induction. By the final
(24 hr) timepoint, viable counts for CB-D were ~250% greater than CB-A in acetate
grown cultures relative to the other treatments (Appendix Tables 3.5-3.7). Cell size,
estimated by flow cytometry, revealed significantly larger CB-D cells relative to CB-
A cells for glutamate grown cells (Fig. 3.1D). No differences were evident between
the strains grown on the other two substrates (Fig. 3.1B & F).
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Figure 3.1 Growth dynamics and cell size data for Sulfitobacter sp. strains CB-D (light gray) and
CB-A (dark gray) in (A) Standard Marine Media (SMM), (C) glutamate and (E) acetate. Cell size
was measured by forward scatter through flow cytometry for cells grown in (B) SMM, (D) glutamate
and (F) acetate. Averages and standard deviations were calculated for CFU/ml. Final timepoint
average viable counts of each substrate per strain is as follows: SMM CB-A 5.36E+09 (+
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were taking from each media type. 109



3.3.2 Diversity of metabolites detected varies strongly with growth
substrate.

All cultures were sampled for metabolomics and lipidomics analyses at four
discrete time points over the course of the growth curve. Using ultra-high
performance liquid chromatography—nhigh resolution mass spectrometry (UHPLC-
HRMS) based untargeted metabolomics, a total of 175 metabolites were identified
across all samples, with only 27 (15%) detected in all growth conditions (Fig. 3.2).
The greatest number of metabolites were detected in glutamate grown cells (127
of the identified metabolites; 73%). Complex-grown cells and acetate-grown cells
had similar numbers of detectable metabolites (75 and 72 identified metabolites,
respectively; ~40%). There was some overlap of individual metabolites that were
detected in cultures grown on these two substrates (31 metabolites), but more
overlap was evident with glutamate-grown cells and either complex- or acetate-
grown cells (40 and 63 metabolites, respectively). Partial least squares
discriminant analysis (PLS-DA) showed strong separation of samples by growth
substrate, with little to no difference between strains (Fig. 3.3A). Where evident,
variation between strains was greatest at discrete timepoints. For example, for
both glutamate and acetate grown cultures, the greatest number of significant
differences (fold change >1.5 and p-value <0.05) was observed at 10 hr post
inoculation (57% of metabolites for glutamate, 47% of metabolites for acetate).
These between-strain differences in metabolite profiles diminished by the final
sampling timepoint, but still comprised a third of measurable metabolites in the
acetate-grown cultures (8% and 31% for glutamate- and acetate-grown cells)
(Appendix Fig 3.7A). The greatest differences in metabolite profiles for complex-

grown cultures was 5% at 21 hr.

3.3.3 Lipid profiles vary with growth substrate and strain.
A total of 75 lipids from nine lipid classes were identified across all samples

via UHPLC-HRMS-based untargeted lipidomics. Five phospholipids classes
(phosphatidic acid [PA], phosphatidylethanolamine [PE], phosphatidylcholine [PC],
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Figure 3.2 Metabolomics heatmap analysis of SMM, glutamate and acetate grown cells. Heat maps for these three media
grown cells display fold change between Sulfitobacter sp. strain CB-D and CB-A over time (orange denotes more CB-A,;
blue denotes more CB-D). All data are normalized according to optical density. Significant differences are denoted by
asterisks (* = p<0.1; ** = p<0.05; *** = p<0.01). Crossed out boxes denote that there was only detected in one strain, which
is indicated by the color. Averages of biological replicates are reported for all treatments (n= 3 in SMM grown cells; n=5 in
glutamate and acetate grown cells).
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Figure 3.3 Partial least squares discriminant analysis (PLSDA) plots illustrate significant clustering by substrate, and to a lesser extent, by
strain. (A) Sulfitobacter sp. strains CB-D and CB-A metabolites comparison and (B) lipids comparison were analyzed using MetaboAnalyst.
The following color scheme was used to denote samples: pink circles = acetate grown CB-A cells; green circles = acetate grown CB-D cells;
dark blue circles = complex media grown CB-A cells; light blue circles = complex media grown CB-D grown cells; purple circles = glutamate
grown CB-A cells; yellow circles = glutamate grown CB-D cells. All data are normalized according to optical density. Averages of biological
replicates are reported for all treatments (n= 3 in SMM grown cells; n=5 in glutamate and acetate grown cells).
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phosphatidylglycerol [PG], and acyl-phosphatidylglycerol [APG]), three amino lipid
classes (AL; lysine lipid [KL], ornithine lipid [OL], and glutamine lipid [QL]) and one
class of Unknown lipid-like features (Unk) were detected. Unlike the metabolite
profiles, the majority of these lipids (94-97%) were detected in all samples,
regardless of growth medium or strain type (Fig. 3.4). Thus, the differences
between these profiles are principally due to alterations in the relative abundance
of specific lipids.

While the samples principally clustered by growth substrate (Fig. 3.3B),
greater variation between strains raised on either glutamate or acetate was evident
amongst these lipid profiles. For example, upwards of 45% of lipids showed
significantly different distributions between the two strains grown on acetate (at 24
hr) and 63% of lipids varied between the strains when grown on glutamate (at 18
hr) (Appendix Fig. 3.7B). In contrast, only 8% of lipids were significantly different
between the strains when grown on complex media (0 hr). Regardless of growth
substrate, significant changes were observed within the phospholipid profiles over
time. When grown on complex media, the ratio of PG to the total phospholipids
detected generally increased with time for both strains, while the ratio of PE to total
phospholipids decreased (Fig. 3.5). However, acetate-grown cells demonstrated
the opposite trend. Glutamate-grown cells showed the ratio of PG increasing over
time for CB-D, however, a consistent trend was not observed for CB-A (Fig. 3.5).
In addition to the obvious variation between growth substrates and temporal
changes, a subset of lipid classes that showed significant variation between the

two strains were the amino lipids.

3.3.4 Presence of amino lipids correlates with nutrients.
Previous work characterized ornithine (OL) and glutamine lipids (QL) from

Rhodobacter sphaeroides, an organism belonging to the same Rhodobacteraceae
family as the host strain used in this study.'®! Here, the identification of AL
determined through exact mass and proposed structures were confirmed using all
ion fragmentation (Fig. 3.6G & H; Appendix Fig. 3.8D).14? The MS-based
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Figure 3.5 Pie charts display relative proportions of the sum of phospholipid concentrations in Sulfitobacter sp. strains CB-D and CB-A for
each timepoint and substrate. Phospholipid concentrations were determined using external calibration curves for phosphatidic acid,
phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. All data are normalized according to optical density. Averages of
biological replicates are reported for all treatments (n= 3 in SMM grown cells; n=5 in glutamate and acetate grown cells) and are within 2

standard deviations.
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times. (1) OL and QL biosynthesis gene organization in Sulfitobacter sp. strains CB-D and CB-A. i
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identification of these lipids is supported by genome analyses that indicate both
strains possess homologs of genes previously shown to be essential for OL and
QL biosynthesis in Silicibacter pomeroyi DSS-3, a close relative of sulfitobacters
(Fig. 3.61).

Of these lipids, a single glutamine lipid (QL 34:2), seven ornithine lipids (OL)
and four lysine lipids (KL) were detected, with significant differences between
strains when grown on glutamate or acetate (Fig. 3.4). Complex medium-grown
cells showed relatively constant OL abundance over time (Fig. 3.6A). By contrast,
in glutamate- and acetate-grown cultures, OL generally increased over time (Fig.
3.6B & C). In complex medium-grown cells, QL (34:2) was detected with
decreasing abundance over time (Fig. 3.6D), but with increasing abundance over
time in glutamate- and acetate-grown cells (Fig. 3.6E & F). Additionally, OL and
QL were detected with significantly higher abundance for CB-D than CB-A in
glutamate-grown cells at 0, 18, and 24 hr and acetate-grown cells (all time points)
(Fig. 3.6B, C, E, F). In contrast, no KL were detected in glutamate-grown CB-A
cells (Appendix Fig. 3.8B) but followed a similar trend as OL and QL in acetate-
grown cells with significantly higher abundance for CB-D than CB-A at 10, 18 and
24 hr (Appendix Fig. 3.8C). In complex medium-grown cells, no difference in KL
was evident between the strains, and abundance remained more constant until 21

hr when an increase was observed (Appendix Fig. 3.8A).

3.3.5 Detection of an abundant, but unidentified lipid class.

In addition to the aforementioned phospholipids and amino lipids, a class of
unidentified spectral features with characteristics of lipids (subsequently termed
“unidentified lipid class”) was detected in both CB-D and CB-A. This unidentified
lipid class was highly abundant in glutamate- and acetate-grown cells. This lipid
class was most abundant at the earliest sampling time point (O hr), with the ratio
of this lipid class to the total detected lipids reaching values of ~35% in glutamate-

grown cultures of both strains and 52% and 56% in acetate-grown CB-D and CB-
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A cultures, respectively (Appendix Fig. 3.9). This lipid class remained highly
abundant with the lowest ratios reaching values of ~20% for CB-D and CB-A grown
on glutamate (18 hr), and 40% for CB-D (24 hr) and 33% for CB-A (10 hr) when
grown on acetate (Appendix Fig. 3.9). However, this lipid class was not as
abundant in the complex medium-grown cultures of either strain, with ratios of only
3% at O hr, and a maximum ratio at 21 hr of ~13% (Appendix Fig. 3.9). This
unknown lipid class displayed significant differences between strains grown on
either of the defined carbon substrate conditions, but not on the complex medium
(Fig. 3.4), with the most significant differences in glutamate-grown cells. Between-
strain differences on glutamate were 260% at all time points, except 10 hr at which
only 10% of features were significantly different (Fig. 3.4). Acetate-grown cells
showed less deviation throughout the growth curve but had dramatic differences
(70% of this class of features) at 24 hr (Fig. 3.4).

To gain a better understanding of these features, relative abundances of
mass spectral isotope peaks were compared to the natural abundance of carbon-
13 (1.1%). The mass-to-charge (m/z) ratios for these features ranged from
702.4363 to 816.5776 m/z (£5 ppm), with the most abundant species at 802.5621
m/z, all in negative ionization mode for the [M-H]- ion. The corresponding masses
for the [M+H]+ ion were detected using positive ionization mode. From these
observed masses, using the nitrogen rule, it was suggested that the lipid-like
features contained an odd number of nitrogen atoms. To gain further
understanding of this class of features, further fragmentation experiments were
performed using a Q Exactive quadrupole-orbitrap hybrid mass spectrometer.
Using Fiehn’s seven golden rules, 137 potential molecular formulae were
determined for the most abundant feature (802.5621 m/z), containing carbon,
hydrogen, nitrogen, oxygen, phosphorus, or sulfur.!’’ These features were
compared with online lipid databases, including LipidMaps, but currently elude

identification.143
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3.4 Discussion

The ability of bacteria to modulate the lipid composition of their cellular
membranes is cited as a common adaptive mechanism to environmental
fluctuations. From a biogeochemical standpoint, much of the existing knowledge
regarding factors influencing lipid composition in marine bacteria focuses on the
role of phosphorus (P) availability, revealing widespread capacity for marine
microbes to remodel their membrane lipids in response to P starvation.44-145
However, lipid biosynthesis is intrinsically linked to central metabolism. As such,
the role of primary growth substrates can be predicted to be a critical factor in
shaping cellular lipid composition. This research sought to obtain a more holistic
picture of the relationship between growth regimes, metabolism, and lipid
composition in a representative heterotrophic marine bacterium of the
Roseobacter clade of marine bacteria. A secondary goal was to assess the
contribution of phage activity on the host cell metabolome and lipidome. To this
end, a one-host-two-phage system was employed. This system is comprised of
two genetically similar host-phage pairs, with different intrinsic levels of
spontaneous induction i.e. CB-A cultures produce measurable free phage particles
in the absence of obvious stressors, CB-D does not.'#! While recognizing that
disentangling responses due to growth condition, host physiology and viral activity
are difficult due to interdependencies, the data presented here reveal stark
differences in metabolite and lipid profiles which appear to be driven by phages,
but in a nutrient dependent manner.

The three growth substrates used herein represent a spectrum from simple
to complex nutrients, particularly with respect to carbon substrates and variation in
concentration and form (inorganic vs. organic) of N as well as P. The C:N ratios
for the complex-, glutamate- and acetate-containing substrates were ~ 6:1, 1.4:1
and 2:1, respectively (Appendix Table 3.1). While the C:N ratio of heterotrophic
marine bacteria can vary with nutrient availability, it typically ranges between 4-7

when bacteria are grown on organic matter with a C:N approaching that of the

119



Redfield ratio (6.6:1).246-147 Consequently, for those cultures grown on glutamate
and acetate, N was in high abundance relative to C when compared to most
environments. However, C:N stoichiometry may not alone tell the story as bacteria
can show preference for different N sources.#¢-151 Indeed, the Sulfitobacter strains
used in these studies may prefer the organic N present in both the complex and
glutamate media over the inorganic form, ammonium chloride, provided in the base
medium.'*® The absence of an exogenous source of organic N in the acetate-
based medium, may have contributed to the strains’ poor growth on this substrate.
While the N:P ratio of marine bacteria is typically 16:1, the N:P ratio of the defined
media used in this study was ~20:1.152 The N:P of the complex substrate was more
difficult to assess due to the lack of elemental composition data for tryptone and
yeast extract in the literature, but neither is expected to be limiting in this medium.
Sulfitobacter metabolite profiles are more defined by provided nutrients than
strain-phage pair. Across the three media types, there was little (15%) overlap in
the metabolites that were detected and identified. This is comparable to a recent
study in Pseudomonas aeruginosa, in which only 40% of 145 detectable
metabolites were found across all strains raised on six distinct carbon substrates
but contrasts findings in Bacillus subtilius raised on three different carbon mixtures,
where >90% of the 46 measured metabolites were present across all growth
conditions.'%315 Moreover, the intracellular metabolomes of these B. subtilis
cultures were largely indistinguishable. However, in that study all media types
contained glucose, varying only by addition of a secondary carbon substrate

(malate, fumarate, or citrate), making the comparison to this work less relevant.
Metabolome differences between-strains raised under the same growth
conditions were evident and most pronounced in glutamate- and acetate-grown
cultures. The most divergent metabolomes between the two strains were the
acetate-grown cultures, where the metabolite profiles of both strains became
increasingly divergent throughout growth. This result is consistent with the
influence of phage-mediated cell lysis, which was strongly evident in the CB-A
cultures, on host cell metabolism.'®® In contrast, significant differences in
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metabolite pools for the glutamate-grown cultures were greatest in early and mid-
exponential phases, but the metabolomes were largely similar as the cells reached
stationary phase. This suggests prophage-related effects in this growth medium
were most apparent in actively growing cells. As was seen with the acetate-grown
cultures, the between-strain comparisons indicate the overwhelming majority of
these differences were the result of an increase in a given metabolite in the CB-A
cells relative to CB-D. Additionally, a size difference in the two strains is apparent
when grown on glutamate, specifically CB-D is significantly larger than CB-A. This
is relevant since metabolites are normalized to OD which correlates to cell number,
so that the strains can be more appropriately compared. Though accurate
biovolumes for these two strains were not determined, it can be anticipated that
the metabolite concentration differences between the two strains, on a per cell
basis, is greater than what is reported here as the smaller cells had higher cell-
number normalized concentrations. Furthermore, these results are consistent with
earlier studies in the same Sulfitobacter host strain that revealed a generalized
increase in most measurable metabolites in response to an obligately lytic viral
infection.'*® The morphological difference of the two lysogens on glutamate is
intriguing and may be related to differential N quota needed by each lysogen: CB-
A has intrinsically higher rates of spontaneous induction than CB-D and thus is
anticipated to have a higher N demand due to viral production.3% 141 Detection of
infectious phage particles in the culture medium is an indication of cell lysis.
However, despite the detection of infectious particles in CB-A cultures, the cell
viability was indistinguishable from CB-D over the course of the growth curves.
This was also true for the strains grown on complex medium. However, the
metabolomes from the complex medium grown strains were far less divergent than
those grown on the two defined substrates. As both the glutamate and complex
media contain organic forms of N, these results suggest that supplemental organic
N may reduce the fithess costs associated with prophage induction in the CB-A

strain.

121



The lipid profiles support the metabolite data in that strains can be
discriminated by growth medium and strain-phage pairs. Unlike the metabolite
profiles, nearly all detected lipids were present across all samples. Mirroring the
metabolite profiling, strain level differences were not strongly apparent in complex
medium-grown cultures, but significant between strains grown on either of the
defined media, resulting in upwards of 50% and 60% variation in lipid profiles
between the strains when grown on acetate and glutamate, respectively. The
observed variation was noted in both the overall composition of the lipid classes
as well as in the composition of the acyl moieties. Temporal variation in lipid
profiles for batch grown cultures is expected and anticipated to be the result of
changing environmental conditions that occur in a closed system (e.g., changes in
nutrient concentrations, accumulation of metabolite waste products, alterations in
oxygen levels).*?6 As such, caution should be given against drawing summative
conclusions regarding the temporal variation evident in these lipid profiles, but the
observed variation demonstrates a flexibility in lipid composition in these strains
that warrants further study.

The lipid classes identified in this study are the same major (PC, PG, PE)
and minor (APG, AL) classes found in other characterized Sulfitobacter species
reared in a complex medium®>>. A common bacterial phospholipid class,
cardiolipin, has been reported as a minor lipid in Roseobacters, including
Sulfitobacter species %6, but was not detected in our strains. The presence of an
unidentified lipid class in our strains is consistent with findings in other
sulfitobacters 1%°. However, the methods of lipid identification employed (TLC vs
UHPLC-HRMS) prevent direct comparisons here, representing an area for future
study.

The most striking difference in lipid composition across media types occurs
within the phospholipid classes. Most notable is the relative abundance of PE and
PG. Lipids within these two classes typically co-occur in diverse bacteria.
Molecular simulations suggest interactions between the two influence membrane
integrity; increases in PG relative to PE are predicted to increase membrane
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stability and decrease membrane permeability . PE was the dominant
phospholipid in complex medium-grown cells whereas PG dominated in the
glutamate- and acetate-grown cells, suggestive of a fundamentally different
membrane architecture when these strains are grown on defined vs complex
media. Given common parameters influencing lipid composition in bacteria were
held static across the medium types (i.e., pH, salinity, and temperature), a likely
interpretation is that the differences are due to other components of the medium,
namely the primary growth substrate(s) and/or nutrients. The extent to which the
relative proportions of the identified phospholipid classes change in response to
primary growth components in this and other groups of marine bacteria does not
appear to be well understood, with examples in the literature difficult to identify.
Studies in the non-marine bacterium, E. coli, reveal no significant difference in
phospholipid composition in strains grown on the complex medium Luria Broth
versus a minimal medium, M9, supplemented with glucose.>® Early work
conducted in Bacillus subtilis identified alterations in phospholipid composition that
were ultimately linked to pH differences between media types, one supplemented
with glucose.'® In contrast, membrane phospholipid reconfiguration has been
demonstrated in response to supplies of exogenous fatty acids, which can be
directly incorporated into membrane lipids. This is a well-studied phenomenon in
many human pathogens, including Vibrio cholerae, Enterococcus faecalis and E.

coli, where it has been linked to virulence.60-162
Lipid remodeling, specifically the fatty acid tail component, by marine
bacteria is a widespread strategy for dealing with nutrient limitation, particularly
P.163-165 Amino lipids are a common class of non-P containing lipids found amongst
Roseobacters where their production has been linked to P limitation.126. 142
However, they are also common in many Sulfitobacter species grown under non-
limiting P conditions (i.e. in complex media).*>> Amino lipid head groups include
ornithine, glutamine and lysine, all of which were identified in our strains. 131 142
166-167 The genes required for the production of glutamine and ornithine lipid in
roseobacters has been elucidated and are present in the strains.**? Amino lipids
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were identified in all growth conditions tested here, which suggest their production
is not exclusively linked to P status. This finding, coupled with the prevalence of
this lipid class in members of the Sulfitobacter genus, indicates amino lipids play
an integral physiological role in this group of bacteria.

Differences in lipid profiles between the strains were most evident in the
ornithine (OL) and glutamine lipid (QL) classes and when grown on glutamate and
acetate. The general trend was an increased abundance of these ALs in CB-D
relative to CB-A. Silvano and coworkers reported an increase in OL in Roseobacter
strains in response to P starvation; the strains under study did not produce QL.%6°
The data collected in this study indicates phage activity may play a previously
unrecognized role in alteration of AL composition. It has been proposed that OL
may lead to enhanced membrane stability, and this lipid is required for optimal c-
type cytochrome function in the alpha-Proteobacterium Rhodobacter capsulatus,
comprehensive functional characterization of bacterial amino lipids is relatively
limited.168-16% As a consequence, interpretation of the results from this system is
presently challenging. In an unexpected finding, a highly significant, and abundant
(upwards of 50% of the total lipids in CB-A cultures grown on acetate) lipid-like
class of spectral features was detected. As with the aforementioned amino lipids,
these features displayed notable differences between strains raised on the same
growth medium. As such, these features are intriguing and would be of interest for
future studies. Once this class of lipid-like features is identified, more work can be
done to determine the biological role of these compounds and how they relate to
growth conditions, phage activity, and cell stress.

The bacterial metabolome comprises only a small fraction of the total
cellular dry weight (~3%), and this collection of molecules primarily exists to
provide energy and building blocks for macromolecular biosynthesis.'’° Bacterial
metabolism is highly responsive to substrate and nutrient availability, but it is also
known to be influenced by viral infection. However, these forces are not
unidirectional: viral infection is sensitive and responsive to cellular metabolism, as
it is often wholly dependent upon the host cell processes to produce viral
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progeny.t’* As both nutrient fluctuations and virus pressure are common features
of most natural ecosystems, including the coastal oceans where Roseobacters
dominate, the physiologies of resident bacteria are anticipated to be shaped by
these intersecting factors. The metabolic and lipid profiling presented here
provides a first look at the complexity of these interactions and lays the foundation

for future studies that relate cellular composition with function.
3.5 Materials and Methods

3.5.1 Bacterial propagation in different growth conditions.

Sulfitobacter sp. strains CB-A and C-D (formerly Sulfitobacter sp. strain
CB2047) 141 were inoculated and incubated overnight in 10ml cultures at 25°C at
200rpm.*#! Strains were grown in Standard Marine Media (SMM) [4.1 M NaCl; 950
mM KCI; 700 mM CaClz; 20 mM H3BOs; 2.1 mM MgSOa4 (7H20); 2.0 M MgClz; 1.0
M Tris (Tris-HCI and Tris-Base; pH 7.5); 800 mM NaHCO3; 5.0 M NH4Cl; 150 mM
K2HPO4. 1.1259g yeast extract, 2g tryptone, Fe, vitamins and minerals], or
Roseobacter Marine Media (RMM) [4 M NaCl; 0.2 M KCI; 0.2M CaCl2; 1.0 M
MgSOa4 (7H20); 1.0 M Tris-HCI (pH 7.5); 0.5M NH4ClI; 50 mM KzHPO4, Fe, vitamins
and minerals] supplemented with either (4 mM L-glutamic acid [glutamate], or 10
mM sodium acetate [acetate]. The concentrations of acetate and glutamate contain
comparable amounts of carbon. Overnight cultures were sub-cultured, and O hr
samples were taken at ODs4onm = 0.17. Growth was monitored every two hours for
24 hr. Samples were taken at 0, 4, 8 and 21 hr for SMM grown cells, and 0, 10, 18
and 24 hr for glutamate and acetate grown cells. Both strains were initially grown
in SMM in biological triplicate, then grown in glutamate and acetate in five 200ml
biological replicates. Growth dynamics, viable counts, and Spontaneous Prophage

Induction (SPI) data were recorded for these growth conditions.

3.5.2 Sampling methodology.

Five milliliters of bacterial culture were filtered at each time point and taken

for metabolomics processing and analysis. 5 mL of bacterial culture was
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centrifuged at 4,000 rpm for 5 minutes at 4°C, then taken for lipidomics processing
and analysis. Blanks were used as negative controls, and O hr data was used as
reference points for data normalization. All data were normalized by optical
density. 1 ml of bacterial culture was taken for serial dilutions (plating 10-°, 107,
107 dilutions), to obtain viable counts data and CFU/ml. Serial dilutions were
plated in technical triplicate. Optical density readings and viable counts were
conducted for the five biological replicates at ODssonm. 12 mL of bacterial culture
was filtered at each time point, flash frozen in liquid nitrogen, and archived at -80°C
for future transcriptomics analysis. 2 mL of culture was taken for flow cytometry.
All sampling was conducted for five biological replicates for all time points. For

complex media cultures, all sampling was conducted in biological triplicate.

3.5.3 Metabolomics.

Water-soluble metabolites were extracted from filtered samples using 4:4:2
acetonitrile:methanol:water with 0.1 M formic acid as previously described.’?
Analysis of the extracted metabolites was carried out using UHPLC-HRMS
(Thermo Scientific, San Jose, CA, USA) with a previously validated untargeted
metabolomics method.'”® The metabolites were separated using reversed phase
chromatography utilizing a Synergi Hydro RP column (100mmx 2.1 mm, 2.6 ym,
100 A; Phenomenex, Torrance, CA) and an UltiMate 3000 pump (Thermo
Scientific). All solvents used were HPLC grade. An Exactive Plus Orbitrap MS
(Thermo Scientific) was used for the full scan mass analysis. For the glutamate-
and acetate-grown cells, each biological replicate was analyzed by UHPLC-HRMS
in triplicate. Following the mass analysis, metabolites were identified by exact
mass and retention time from an in-house standard library using the open source
software package, Metabolomics Analysis and Visualization Engine (MAVEN).17#
175 Area under the curve (AUC) was integrated and normalized according to OD

prior to being used for further statistical analyses.
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3.5.4 Lipidomics.

Lipids were extracted from cell pellets using 15:15:5:1:0.18 95% ethanol,
water, diethyl ether, pyridine, and 4.2 N ammonium hydroxide followed by a water
saturated butanol extraction according to the protocol for glycerophospholipids and
sphingolipids described by Guan and coworkers.’® The extracted lipids were dried
under a steady stream of nitrogen, resuspended in 300 pl of a 9:1 ratio of
methanol:chloroform prior to UHPLC-HRMS analysis. Extracted lipids were
analyzed by UHPLC-HRMS using an established untargeted lipidomics method.*"’
The chromatographic separations were performed using a Kinetex HILIC column
(150 mm x 2.1 mm, 2.6 ym, 100 A; Phenomenex) and an UltiMate 3000 pump
(Thermo Scientific). The full scan mass analysis was carried out in both positive
and negative ionization modes with an Exactive Plus Orbitrap MS (Thermo
Scientific). Glutamate- and acetate-grown cells were analyzed in triplicate by
UHPLC-HRMS. The phospholipids were then identified by exact mass and
retention time by comparison to an in-house standard library using MAVEN. Amino
lipids were also identified by exact mass using MAVEN. Amino lipids were
confirmed using isotopic patterns as well as fragmentation data gathered by all ion
fragmentation utilizing high energy collision dissociation (HCD). Amino lipids KL,
OL, and QL were detected at retention times of 10.7, 10.6, and 2.5 minutes,

respectively. Statistical analyses were performed on the OD normalized AUC.

3.5.5 Spot plating assays for SPI detection.

1 mL of bacterial culture was taken for Spontaneous Prophage Induction
(SPI) detection. Sulfitobacter sp. strains CB-A and CB-D were inoculated in
duplicate and incubated overnight in 10 mL of SMM, glutamate or acetate, at 200
rpm at 25°C. Sulfitobacter sp. strains were sub-cultured in SMM, glutamate or
acetate, and at an optical density of 0.10-0.17 (ODs4onm), 500 uL of bacterial culture
was added to 3 mL top agar aliquots and plated. Top agar was prepared ahead of
time using 0.55-0.6 g (0.55-0.60%) noble agar. Once this top layer dried, 10 pl of
¢-D and ¢-A lysate were spot plated in technical triplicate. Serial dilutions were
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done for viral lysate of ¢-A and ¢-D, ranging from undiluted to 10 for ¢-A, and
from undiluted to 10 for ¢-D. The schematic included a media only control. Plates
were incubated at room temperature, and zones of clearing were observed 24-48

hours after plating.

3.5.6 Statistical analysis.

All data were normalized according to OD. Five replicates were done per
time point. Heat maps show fold change of CB-A relative to CB-D and significant
differences denoted by asterisks (* = p<0.1; ** = p<0.05; *** = p<0.01). Partial least
squares discriminant analysis (PLS-DA) was performed using MetaboAnalyst
4.0.11% Prior to PLS-DA data was filtered using interquartile range (IQR),
normalized by optical density, log 2 transformed, and Pareto scaled. PLS-DA was
used to determine the relationship between two matrices to visualize differences
between organism groups and substrates. Heatmaps were prepared using R
statistical program (version 3.5.1). Fold changes were log 2 transformed. The JGI
IMG portal was used to search for the OL and QL biosynthesis gene organization
in the Sulfitobacter sp. strains CB-D and CB-A genomes.

3.6 Conclusions
In conclusion, the metabolic and lipidomic profiles of Sulfitobacter sp.

strains CB-D and CB-A were analyzed in three different growth conditions. The
growth conditions varied by the available nutrients, specifically one had a complex
mixture of organic carbon and nitrogen sources, provided in tryptone and yeast
extract. The second growth condition contained a single organic carbon and
nitrogen source, namely glutamate. The final growth condition contained only
acetate as a single organic carbon source, and no organic nitrogen. Between these
three growth substrates there were dramatic differences between the metabolome,
but only small scale differences between the strains when provided the same
nutrient. In contrast, depending on the nutrient provided, there were vast
differences between the lipid profiles of the two strains. Specifically, when grown

on acetate, the strains displayed the greatest differences, while only minimal
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differences were apparent when the strains were grown on complex substrates. In
addition to the broad scale differences between the global lipid profiles, specific
lipid classes were investigated, including the largely uncharacterized amino lipids.
From this class of lipids, three different head groups were detected, ornithine lipid,
glutamine lipid, and lysine lipid. Analysis of these lipids revealed significant
differences between the strains when grown on either glutamate or acetate. These
growth substrate dependent alterations between strains indicate that there may be

differences nutrient preferences of the phages, warranting further research.
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Appendix

Table 3.1 Media comparisons for complex, glutamate, and acetate carbon sources. Total carbon,
organic nitrogen, inorganic nitrogen, and combined nitrogen molar concentrations are calculated

for all substrates. C:N ratios are calculated for all substrates.

Totals (mM)

Complex Glutamate Acetate
Carbon 171.72 20 20
Organic N 22.31 4 0
Inorganic N 5 10 10
Combined N 27.31 14 10

Ratios

Complex Glutamate Acetate
C:N 6.29 1.43 2
C:N (organic N) 7.7 5 0
C:N (inorganic N) 34.34 2 2

130



Table 3.2 Incidence of SPI from Sulfitobacter sp. strains CB-D and CB-A cells grown in SMM were detected through spot plating assays using
serial dilutions ranging from 100 to 10-3. Data for biological replicates are reported for all treatments and time points (n= 3 in SMM grown cells;
n= 5 in glutamate and acetate grown cells). Plating was done in technical triplicate. Detection of SPI is denoted by asterisks (* = detection at
100 dilution; ** = detection at 10! dilution; *** = detection at 10-2 dilution; **** = detection at 10-3 dilution; n.d. = not detected).

SMM
Biological SPI Biological SPI
Time Treatment Replicate detected Time Treatment Replicate  detected
70 cB-A (addition of R \ ™0 CBA(additionof \
0.2um filter 0.2um filter
sterilized CB-A sterilized CB-A
. B * . B n.d.
spent media to spent media to
host CB-D) c . host CB-D) c nd.
CB-D (addition of CB-D (addition of
0.2um filter A g 0.2um filter A e
sterilized CB-D sterilized CB-D
. B n.d. . B n.d.
spent media to spent media to
host CB-A) c nd. host CB-A) C nd.
T8 CB-A (addition of A nd T24 CB-A (addition of A *
0.2um filter h 0.2um filter
sterilized CB-A B * sterilized CB-A B *
spent media to spent media to
host CB-D) c nd. host CB-D) c .
CB-D (addition of CB-D (addition of
0.2um filter A n.d. 0.2um filter A n.d.
sterilized CB-D sterilized CB-D
! B n.d. . B n.d.
spent media to spent media to
host CB-A) c nd. host CB-A) c nd.
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Table 3.3 Incidence of SPI from Sulfitobacter sp. strains CB-D and CB-A cells grown in glutamate were detected through spot plating assays
using serial dilutions ranging from 10° to 10-3. Data for biological replicates are reported for all treatments and time points (n= 3 in SMM grown
cells; n=5 in glutamate and acetate grown cells). Plating was done in technical triplicate. Detection of SPI is denoted by asterisks (* = detection
at 100 dilution; ** = detection at 10! dilution; *** = detection at 10-2 dilution; **** = detection at 10-2 dilution; n.d. = not detected).

4mM glutamate

Biological SPI Biological SPI
Time Treatment Replicate  detected Time Treatment Replicate detected
** *k%k
0 ¢B-A (addition of A T8 cB-A (addition of A

0.2um filter B ** 0.2um filter B **

sterilized CB-A C * sterilized CB-A C *

spent media to D ok spent media to D ook

host CB-D) E - host CB-D) E *xk
CB-D (addition of A n.d. CB-D (addition of A n.d.
0.2um filter B n.d. 0.2um filter B n.d.
sterilized CB-D C n.d. sterilized CB-D C n.d.
spent media to D n.d. spent media to D n.d.
host CB-A) E nd. host CB-A) E nd.

T10 o T24 wek
CB-A (addition of A - CB-A (addition of A
0.2um filter B 0.2um filter B

sterilized CB-A C *x sterilized CB-A C n.d.
spent media to D ok spent media to D n.d.

host CB-D) E - host CB-D) E -
CB-D (addition of A g CB-D (addition of A e
0.2um filter B n.d. 0.2um filter B n.d.
sterilized CB-D C n.d. sterilized CB-D C n.d.
spent media to D n.d. spent media to D n.d.
host CB-A) £ nd. host CB-A) E nd.
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Table 3.4 Incidence of SPI from Sulfitobacter sp. strains CB-D and CB-A cells grown in acetate were detected through spot plating assays
using serial dilutions ranging from 10° to 10-3. Data for biological replicates are reported for all treatments and time points (n= 3 in SMM grown
cells; n=5 in glutamate and acetate grown cells). Plating was done in technical triplicate. Detection of SPI is denoted by asterisks (* = detection
at 100 dilution; ** = detection at 10! dilution; *** = detection at 10-2 dilution; **** = detection at 10-2 dilution; n.d. = not detected).

10mM acetate

Biological SPI Biological SPI

Time Treatment Replicate  detected Time Treatment Replicate  detected
* *%
0 ¢B-A (addition of A T8 cB-A (addition of A
0.2um filter B * 0.2um filter B *
sterilized CB-A C * sterilized CB-A C *
spent media to D n.d. spent media to D *
host CB-D) E ok host CB-D) E ok
CB-D (addition of A n.d. CB-D (addition of A n.d.
0.2um filter B n.d. 0.2um filter B n.d.
sterilized CB-D C n.d. sterilized CB-D C n.d.
spent media to D n.d. spent media to D n.d.
host CB-A) E nd. host CB-A) E nd.
T10 . *k T24 "y *
CB-A (addition of A " CB-A (addition of A
0.2um filter B 0.2um filter B n.d.
sterilized CB-A C * sterilized CB-A C *
spent media to D *kk spent media to D Kkkk
host CB-D) E N host CB-D) E .
CB-D (addition of A L CB-D (addition of A e
0.2um filter B n.d. 0.2um filter B n.d.
sterilized CB-D C n.d. sterilized CB-D C n.d.
spent media to D n.d. spent media to D n.d.
host CB-A) E nd. host CB-A) E nd.
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Table 3.5 Optical density and viable counts data for Sulfitobacter sp. strains CB-A and CB-D grown in SMM. Averages and standard deviations
data for biological replicates are reported for all treatments and time points (n= 3).

Complex medium

CB-A CB-D
optical density viable counts optical density viable counts
Time  Av Stdev Av Stdev Av Stdev Av Stdev
-1 0.07 0.01 0.07 0.01
0 0.14 0.03 2.93E+08 6.67E+07 0.15 0.02 4 59E+08 7.38E+07
2 0.28 0.04 0.3 0.02
4 0.49 0.03 1.37E+09 1.80E+08 0.5 0.02 1.25E+09 1.82E+08
6 0.69 0.01 0.64 0.04
8 0.81 0.01 3.67E+09 3.68E+08 0.75 0.06 2.80E+09 2.35E+08
10 0.89 0.02 0.87 0.05
12 0.97 0.03 0.96 0.03
18 1.12 0.03 1.13 0.03
21 1.13 0.01 5.36E+09 5.11E+08 1.14 0.03 4.37E+09 4.94E+08
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Table 3.6 Optical density and viable counts data for Sulfitobacter sp. strains CB-A and CB-D grown on glutamate. Averages and standard
deviations data for biological replicates are reported for all treatments and time points (n=5).

4mM glutamate medium

CB-A CB-D
optical density viable counts optical density viable counts
Time  Av Stdev Av Stdev Av Stdev Av Stdev
0 0 0 1.89E+07 1.57E+07 0.02 0 9.23E+07 2.88E+07
1 0 0 0.02 0
10 0.05 0.01 1.13E+08 3.51E+07 0.09 0.02 2.04E+08 4.10E+07
12 0.07 0.02 0.12 0.02
14 0.11 0.04 0.16 0.03
16 0.15 0.05 0.2 0.04
18 0.21 0.07 5.93E+08 2.43E+08 0.28 0.05 7.69E+08 2.00E+08
20 0.26 0.06 0.34 0.06
24 0.42 0.04 1.54E+09 4.90E+08 0.45 0.01 2.02E+09 7.16E+08

135



Table 3.7 Optical density and viable counts data for Sulfitobacter sp. strains CB-A and CB-D grown on acetate. Averages and standard
deviations data for biological replicates are reported for all treatments and time points (n=5).

10mM acetate medium

CB-A CB-D
optical density viable counts optical density viable counts
Time  Av Stdev Av Stdev Av Stdev Av Stdev
0 0.01 0 1.50E+07 5.32E+06 0.02 0.01 6.46E+07 2.19E+07
2 0.01 0 0.02 0.01
10 0.02 0 7.48E+07 3.95E+07 0.06 0.04 1.44E+08 7.60E+07
12 0.02 0 0.07 0.03
14 0.03 0.01 0.08 0.03
16 0.03 0.01 0.09 0.04
18 0.04 0.01 1.40E+08 5.28E+07 0.11 0.05 4.63E+08 2.14E+08
20 0.05 0.01 0.13 0.06
24 0.07 0.02 2.85E+08 1.07E+08 0.19 0.08 1.02E+09 6.85E+08
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Figure 3.7 Percentages of significantly different (A) metabolites and (B) lipids of SMM (dark gray),
glutamate (light gray) and acetate grown cells (medium gray). Significant difference is defined as
fold change > 1.5 and p-value < 0.05. All data are normalized according to optical density. Averages
of biological replicates are reported for all treatments (n= 3 in SMM grown cells; n= 5 in glutamate
and acetate grown cells).
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Figure 3.8 Lysine lipid (KL) in Sulfitobacter sp. strains CB-A (orange) and CB-D (blue). Box & whisker plots highlight differences between
strains and time, and between substrates. These plots are shown for all substrates, (A) standard marine media (SMM), (B) glutamate, and (C)
acetate. Significant differences are denoted by asterisks (* = p<0.1; ** = p<0.05). Averages of biological replicates are reported for all treatments
(n= 3 in SMM grown cells; n= 5 in glutamate and acetate grown cells). All data are normalized according to optical density. Structures of (D)
lysine lipid (KL), with respective retention time.

138



Sulfitobacier sp. CB-D Sulfitobacter sp. CB-A
T0 T4/10 T8/18 T21/24 TO T4/10 T8/18 T21/24 =
compiex | (W) » 2 r 4 | - \ 2 r g nPe
-k
wre @ € €@ € € € € € |12
| Unknown lipid
wae | @ €@ € & 6 & € € 7

Figure 3.9 Pie charts display relative proportions of the sum of lipid intensities to total detected lipid
intensities in Sulfitobacter sp. strains CB-D and CB-A for each timepoint and substrate. Ratios are
shown for phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine,
phosphatidylglycerol, lysine lipid, ornithine lipid, glutamine lipid, an unidentified class of lipid-like
features, and acyl-phosphatidylglycerol. All data are normalized according to optical density.
Averages of biological replicates are reported for all treatments (n= 3 in SMM grown cells; n=5 in
glutamate and acetate grown cells) and are within 2 standard deviations.
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Conclusion
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The benefits of including metabolomics in nutritional studies has been
highlighted in this dissertation. Nutrition and metabolism are intrinsically
connected, and with mass spectrometry based metabolomics, a broad range of
molecules can be detected. Because of this metabolomics can help to increase
the understanding of the underlying mechanisms behind specific nutrients and
factors influencing metabolic health of biological organisms. However, due to the
complexity of metabolism and intertwined nature of metabolic pathways, frequently
there is not one specific pathway that displays alterations, but rather multiple
pathways exhibit changes. Despite these challenges metabolomics remains a
useful tool for nutrition based studies.

In the first chapter of this dissertation, metabolomics was used to investigate
the underlying metabolic alterations caused by exercise and western diet. Many
metabolomics studies focus on only one variable at a time to reduce the
complexity. However, as many different factors can influence metabolism and the
gut microbiome, this study investigated both the impact of unhealthy diet and short-
term voluntary exercise. From this study it was determined that dietary choices
have a greater influence on the circulating and intestinal metabolism than short
term voluntary exercise. Nevertheless, there were some metabolic alterations
induced by exercise, particularly in the cecum contents. As noticeable alterations
were present after short term exercise, long term exercise is likely to increase the
metabolic differences.

The second chapter of this dissertation utilized metabolomics to analyze the
effect of fenugreek, an herbal dietary supplement, in the presence of either a high
fat or western diet. These studies analyzed liver, serum, and intestinal contents of
mice exposed to high fat, western (high fat and high sucrose), or respective low fat
control diets each with and without fenugreek seeds for 14 weeks. From these
analyses, it was determined that fenugreek impacts several metabolic pathways,
rather than a single isolated pathway. Fenugreek was observed to have the
greatest impact on the large intestinal contents, however, the liver and serum
metabolic profiles displayed differences with fenugreek supplementation. This
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suggests that fenugreek alters the metabolites absorbed through the small
intestines, which in turn impacts the circulating metabolome.

While it is well known that nutrition is vital for mammalian health, it is also
important for environmental systems. For this purpose, the third and final chapter
of this dissertation transitioned from mammalian nutrition and health applications
to environmental studies. Specifically, the effect of nutrients on host-phage
interactions was examined in lysogens from the environmentally relevant
Roseobacter clade. The three nutrients included a complex medium with unlimited
organic carbon, nitrogen, and phosphorus sources, and minimal media with either
glutamate, an organic carbon and nitrogen source, or acetate, a carbon source
only. Using these three growth substrates allowed for greater insight into not only
the carbon utilization, but also to the preferred nitrogen sources. To analyze the
impact of these nutrients, metabolomics and lipidomics were employed.
Metabolomics did not reveal substantial differences between the strains within
nutrients but did reveal metabolome distinctions based on growth substrate.
However, the lipidomics displayed dramatic differences between the strains when
grown on acetate. This revealed that the lipid profiles of the strains are significantly
influenced by the phage in a nutrient dependent manner. Additionally, in this study,
the presence of a minor class of lipids, the aminolipids, was confirmed and these
lipids were determined to significantly differ between strains in glutamate and
acetate grown cultures. The results of this study revealed that the host-phage
interactions are heavily influenced by the available nutrients. These results
increase the understanding of host-phage interactions and are particularly relevant
as lysogeny is highly prevalent in nature, and nutrients are often in flux in marine
environments.

These three chapters contribute to the understanding of nutrition at a
molecular level in different applications. While the first two chapters focus on health
applications and relate to the obesity epidemic and malnutrition, the third chapter
highlights the broad scope of nutritional and metabolomic investigations. Future
researchers can build upon these studies to answer further questions, whether
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about the specific roles of the gut microbiome, or nutrient recycling and

bacteriophages.
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