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Abstract. Let 𝐺 = (𝑉, 𝐸) be a simple, connected, and undirected graph. The graph 𝐺 = (𝑉, 𝐸) can be represented 

as a matrix such as antiadjacency matrix. An antiadjacency matrix for an undirected graph with order 𝑛 is a matrix 

that has an order 𝑛 × 𝑛 and symmetric so that the antiadjacency matrix has a determinant and characteristic 

polynomial. In this paper, we discuss the properties of antiadjacency matrix of a graph join, such as its determinant 

and characteristic polynomial. A graph join 𝐺 = (𝑉, 𝐸) is obtained of a graph join operation obtained from joining 

two disjoint graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2). 
. 
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1. INTRODUCTION 

Let 𝐺 = (𝑉, 𝐸) be a simple, connected and undirected graph with 𝑛 vertices. A graph 𝐺 can be 

represented by antiadjacency matrix. Antiadjacency matrix 𝐵 = 𝐽 − 𝐴, where 𝐴 is the 𝑛 × 𝑛 adjacency matrix 

of graph 𝐺, and 𝐽 the matrix whose entries are all one. Therefore, 𝐵 is a symmetric matrix so that the 

antiadjacency matrix has a determinant and a characteristic polynomial for each graph. The characteristic of 

matrix adjacency can be seen in [1][2]. Diwyacitta et. al. [3] has determined determinant of antiadjacency 

matrix for directed cycle graph 𝐶𝑛. Edwina and Sugeng [4] determined determinant of antiadjacency matrix 

of some undirected graphs, such as 𝐾𝑛 ∪ 𝐾𝑚,  wheels 𝑊𝑛, bipartite 𝐾𝑛,𝑚 and star 𝑆𝑛. In this paper, we 

discussed the determinant and characteristic polynomials of antiadjacency matrix of undirected graph 𝐺 

obtained from join operation graph. 

 

 

2. BASIC THEORY 

Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be finite graphs. A join operation of graphs  𝐺1 and 𝐺2 is denoted by 

𝐺 = 𝐺1 + 𝐺2, where 𝑉1 ∩ 𝑉2 = ∅ and 𝑉 = 𝑉1 ∪ 𝑉2 is a set of vertices of graph 𝐺 and 𝐸 = 𝐸1 ∪ 𝐸2 ∪

{{𝑥, 𝑦}; 𝑥 ∈ 𝑉1, 𝑦 ∈ 𝑉2} is a set of edges of graph 𝐺 [5]. An example of the join operation of graph 𝐺1 and 𝐺2 

is given in Figure 1. 

 

 

 

 
 

  

𝐺1 𝐺2 𝐺 = 𝐺1 + 𝐺2 

Figure 1. Graph join 𝐺1 and 𝐺2 

 

Let 𝐺 be a graph with 𝑉(𝐺) = {1, … , 𝑛} and 𝐸(𝐺) = {𝑒1, … , 𝑒𝑚}. The adjacency matrix of the graph 𝐺, 

denoted by 𝐴, is the 𝑛 × 𝑛 matrix. The rows and the columns of 𝐴 are indexed by 𝑉(𝐺). If 𝑖 ≠ 𝑗 then the 

(𝑖, 𝑗)-entry of 𝐴 is 0 for vertices 𝑖 and 𝑗 nonadjacent, and the (𝑖, 𝑗)-entry is 1 for 𝑖 and 𝑗 adjacent. The (𝑖, 𝑖)-

entry of 𝐴 is 0 for 𝑖 = 1, … , 𝑛. The matrix 𝐵 = 𝐽 − 𝐴 will be called the antiadjacency of graph 𝐺 [1].  

The adjacency matrix of the graph 𝐺 = 𝐺1 + 𝐺2 is written in a block matrix form as follows: 

𝐴 = [
𝐴1 𝐽
𝐽 𝐴2

], 

where 𝐴1 is an adjacency matrix of the graph 𝐺1 and 𝐴2 is an adjacency matrix of the graph 𝐺2. 

Therefore, the antiadjacency matrix of the graph 𝐺 is as follows:  

𝐵 = 𝐽 − 𝐴 =  [
𝐵1 0
0 𝐵2

], 
 

where 𝐵1 is the antiadjacency matrix of the graph 𝐺1 and 𝐵2 is the antiadjacency matrix of the graph 𝐺2.  

Let 𝑀 be a square matrix in a block matrix form 

𝑀 = [
𝐴 𝐵
𝐶 𝐷

], (1) 

where 𝐴 and 𝐷 are 𝑛 × 𝑛 and 𝑚 ×  𝑚 matrices, respectively. Thus, the determinant of 𝑀 can be obtained as 

stated in Theorem 1.  

 

Theorem 1. [7] Let 𝑀 be a square matrix partitioned as (1). Then  

𝑑𝑒𝑡 𝑀 = 𝑑𝑒𝑡 𝐴 𝑑𝑒𝑡(𝐷 − 𝐶𝐴−1𝐵), if A is invertibel, and 

𝑑𝑒𝑡 𝑀 = 𝑑𝑒𝑡(𝐴𝐷 − 𝐶𝐵), if 𝐴𝐶 = 𝐶𝐴. 

             

Theorem 2. [4]  Let 𝑊𝑛 be a wheel graph with 𝑛, 𝑛 > 3 vertices. If 𝐶𝑛 be a cycle graph with 𝑚 vertices, 𝑛 >
2 then  

𝑑𝑒𝑡(𝐵(𝑊𝑛)) = 𝑑𝑒𝑡(𝐵(𝐶𝑛−1)). 
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Furthermore, the relationship between symmetric functions, principal minors, and the coefficient of the 

characteristic polynomial is given in the following Theorem 3.  

 

Theorem 3. [6] if  𝜆𝑛 + 𝑐1𝜆𝑛−1 + 𝑐2𝜆𝑛−2 + 𝑐3𝜆𝑛−3 + ⋯ + 𝑐𝑛 = 0 is the characteristic polynomial for 𝐴𝑛×𝑛 

and if  𝑠𝑖 is the i^th symmetric function of the eigenvalue 𝜆1, 𝜆2, … , 𝜆𝑛 of 𝐴. Then 

 𝑐𝑖 = (−1)𝑖∑(𝑎𝑙𝑙 𝑖 × 𝑖 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑚𝑖𝑛𝑜𝑟𝑠), 
 𝑠𝑖 = ∑(𝑎𝑙𝑙 𝑖 × 𝑖 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑚𝑖𝑛𝑜𝑟𝑠), 

 𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 = −𝑐1, 

 𝑑𝑒𝑡(𝐴) = 𝜆1𝜆2 … 𝜆𝑛 = (−1)𝑛𝑐𝑛. 

The 𝑖𝑡ℎ symmetric function of 𝜆1, 𝜆2, … , 𝜆𝑛 is defined to be the sum of the product of the eigenvalues taken 

𝑖 at a time. That is,   

𝑠𝑘 = ∑ 𝜆𝑖1
… 𝜆𝑖𝑘

1≤𝑖1<⋯<𝑖𝑘≤𝑛

. 

For example, when 𝑛 = 3, 

𝑠1 = 𝜆1 + 𝜆2 + 𝜆3, 

𝑠2 = 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3, 

𝑠3 = 𝜆1𝜆2𝜆3. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Graph join 

Let 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) for 𝑖 = 1,2 be a finite graph with 𝑉1 ∩ 𝑉2 = ∅. The graph 𝐺 = (𝑉, 𝐸) is a graph join 

of 𝐺1 and 𝐺2, denoted by 𝐺 = 𝐺1 + 𝐺2 where 𝑉 = 𝑉1 ∪ 𝑉2 is a set of vertices and 𝐸 = 𝐸1 ∪ 𝐸2 ∪ {{𝑥, 𝑦}; 𝑥 ∈
𝑉1, 𝑦 ∈ 𝑉2}  is a set of edges. The adjacency matrix of graph 𝐺 is written in a block matrix form 

𝐴 = [
𝐴1 𝐽
𝐽 𝐴2

]. 

Let 𝐺 = 𝐺1 + 𝐺2. As mentioned before, the antiadjacency matrix of graph 𝐺 is as follows:  

𝐵 = 𝐽 − 𝐴  =  [
𝐵1 0
0 𝐵2

], 

where 𝐵𝑖 = 𝐽 − 𝐴𝑖 is an antiadjacency matrix of graph 𝐺𝑖 for 𝑖 = 1,2. Theorem 4 stated the value of det 𝐵(𝐺). 
 

Theorem 4. Let 𝐺 = (𝑉, 𝐸) is a graph join of 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) then 𝑑𝑒𝑡(𝐵(𝐺)) =
𝑑𝑒𝑡 𝐵(𝐺1). 𝑑𝑒𝑡 𝐵(𝐺2). 
 

Proof. Let 𝐺 = (𝑉, 𝐸) is a graph join that denoted by 𝐺 = 𝐺1 + 𝐺2 so that the antiadjacency matrix of graph 

𝐺 is written in the form of a block matrix as follows 

𝐵 = [
𝐵1 0
0 𝐵2

] 

We obtain, 

det 𝐵(𝐺) = det [
𝐵1 0
0 𝐵2

] = det 𝐵1. det 𝐵2 = det 𝐵(𝐺1). det 𝐵(𝐺2).                       □ 

 

In Theorem 5 and 6, we give the determinant from the example of graph join. 

 

Theorem 5. Let 𝐾𝑛 be a complete graph with 𝑛 ≥ 2 and 𝐵(𝐾𝑛) be an antiadjacency matrix of 𝐾𝑛, then 

𝑑𝑒𝑡 𝐵(𝐾𝑛) = 1. 

Proof. Given a graph 𝐾𝑛 with 𝐵(𝐾𝑛) is an antiadjacency matrix of graph 𝐾𝑛. Then the principal diagonal 

matrix is 1. Clearly, the determinant 𝐵(𝐾𝑛) = 1. □ 

 

Theorem 6.  Let fan graph 𝐹𝑛,1 be a graph join of path 𝑃𝑛, 𝑛 ≥ 2 and complete graph 𝐾1. Then  
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𝑑𝑒𝑡 𝐵(𝐹𝑛,1) = 𝑑𝑒𝑡 𝐵(𝑃𝑛). 

Proof. Let 𝐹𝑛,1 = 𝑃𝑛 + 𝐾1 be a fan graph. Then |𝑉| = 𝑛 + 1. Thus, 

det 𝐵(𝐹𝑛,1) = det 𝐵(𝑃𝑛) . det 𝐵(𝐾1) 

                      = det 𝐵(𝑃𝑛) . (1) 

 = det 𝐵(𝑃𝑛). 
□  

 

3.2. Characteristic Polynomial 

 

Theorem 7. The coefficients of the antiadjacency matrix graph 𝐺 satisfy  

1) −𝑐1 is the number of vertices of graph 𝐺; 

2) 𝑐2 is the number of edges of graph 𝐺; 

3) −𝑐3 is the number of 𝐶3 ⊂ 𝐺 – number of  {𝑣𝑖𝑣𝑗 , 𝑣𝑘|𝑖, 𝑗, 𝑘 = 1, … , 𝑛} and 𝑣𝑘 nonadjacent with 𝑣𝑖 and 

𝑣𝑗 . 

Proof. For 𝑖 ∈ {1,2, … , 𝑛}, the number (−1)𝑖𝑐𝑖 is the sum of those principal minors of 𝐵 which have 𝑖 rows 

and 𝑖 columns. Thus, it is clear that for 𝑖 = 1 then −𝑐1 is the sum of the diagonal elements of matrix 𝐵, 

because 𝑏𝑖𝑖 = 1 for 𝑖 = 1, … , 𝑛 so that −𝑐1 represents the number of vertices of graph 𝐺. For 𝑖 = 2, a principal 

minor with two rows and columns, and which has non-zero entry, must be of the form   

[
1 0
0 1

], 

This represents every edge of the graph 𝐺 and is 1, So, (−1)2𝑐2 = |𝐸(𝐺)|. This means that, 𝑐2 = |𝐸(𝐺)|. for 

𝑖 = 3 there are essentially four possibilities for non-trivial principal minors with three rows and columns 

[
1 0 0
0 1 0
0 0 1

] , [
1 1 1
1 1 0
1 0 1

] , [
1 1 0
1 1 1
0 1 1

] , [
1 0 1
0 1 1
1 1 1

]. 

The first form is worth 1 and the other is worth −1. The first principal minor denotes a triangle in graph 𝐺 

and the number of {𝑣𝑖𝑣𝑗 , 𝑣𝑘|𝑖, 𝑗, 𝑘 = 1, … , 𝑛} and 𝑣𝑘  not adjacent with 𝑣𝑖 and 𝑣𝑗 . So, −𝑐3 is the number of 

𝐶3 ⊂ 𝐺 − number of {𝑣𝑖𝑣𝑗 , 𝑣𝑘|𝑖, 𝑗, 𝑘 = 1, … , 𝑛} and 𝑣𝑘 not adjacent with 𝑣𝑖 and 𝑣𝑗 .                          □ 

 

Theorem 8. For graph  𝐾𝑛 and 𝐵(𝐾𝑛) antiadjacency matrix of graph 𝐾𝑛 then characteristic polynomial for 

𝑛 ≥ 1 that is 

𝑃(𝜆) = 𝜆𝑛−1(𝜆 − 𝑛). 
Proof. Let 𝐵(𝐾𝑛) antiadjacency matrix with all entries are equal to one. Thus, matrix 𝐵(𝐾𝑛) equivalent to 

matrix 𝐽. This implies that 𝑃(𝜆) = det(𝜆𝐼 − 𝐽) = 𝜆𝑛−1(𝜆 − 𝑛). □ 

 

Theorem 9. For 𝐺 = (𝑉, 𝐸) is a graph join of 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) then 𝑃(𝜆) = 𝑃1(𝜆). 𝑃2(𝜆), 

where 𝑃(𝜆), 𝑃1(𝜆) and 𝑃2(𝜆) are the characteristic polynomial of antiadjacency matrix of 𝐺, 𝐺1 and 𝐺2. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a graph join, which is denoted by 𝐺 = 𝐺1 + 𝐺2. Then the antiadjacency matrix of 

the graph 𝐺 can be written in a block matrix form as follows 

𝐵 = [
𝐵1 0
0 𝐵2

], 

with 𝐵1 is the antiadjacency matrix of the graph 𝐺1 and 𝐵2 is the antiadjacency matrix of the graph 𝐺2. Thus,  

𝑃(𝜆) = det( 𝐵 − 𝜆𝐼) = det [
𝐵1 − 𝜆𝐼 0

0 𝐵2 − 𝜆𝐼
] 

        = det(𝐵1 − 𝜆𝐼). det( 𝐵2 − 𝜆𝐼) = 𝑃1(𝜆). 𝑃2(𝜆) 

              □  
 

A bipartite graph 𝐾𝑛,𝑚 can be considered as the graph join  𝐾𝑛,𝑚 = 𝐾𝑛 + 𝐾𝑚, where 𝐾𝑛 and 𝐾𝑚 are the empty 

graphs on 𝑚 and n vertices, respectively.  

 

Corollary 10. For bipartite graph 𝐾𝑛,𝑚 = 𝐾𝑛 + 𝐾𝑚 with 𝑛, 𝑚 ≥ 1 and 𝐵(𝐾𝑛,𝑚) is an antiadjacency matrix 

of graph 𝐾𝑛,𝑚 then characteristic polynomial of the bipartite graph 𝐾𝑛,𝑚, 

𝑃(𝜆) = 𝜆𝑛+𝑚−2(𝜆 − 𝑛)(𝜆 − 𝑚). 
Proof. Let 𝐾𝑛,𝑚 = 𝐾𝑛 + 𝐾𝑚 be a bipartite graph So, the antiadjacency matrix of the graph  𝐾𝑛,𝑚 can be 

written in the form of a block as follows 
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𝐵(𝐾𝑛,𝑚)  = [
𝐽(𝑛×𝑛) − 𝐴1(𝑛×𝑛)  0(𝑛×𝑛)

0(𝑚×𝑚) 𝐽(𝑚×𝑚)  − 𝐴2(𝑚×𝑚)
]  = [

𝐽𝑛×𝑛 0
0 𝐽𝑚×𝑚

], 

where 𝐴1 is an adjacency matrix of the graph 𝐾𝑛 , 𝐴2 is an adjacency matrix of the graph 𝐾𝑚 and 𝐽 is the 

matrix whose entries are all one. Thus, 

𝑃(𝜆) = det [
𝐽𝑛×𝑛 − 𝜆𝐼𝑛×𝑛 0

0 𝐽𝑚×𝑚 − 𝜆𝐼𝑚×𝑚
] , 

          = det(𝐽𝑛×𝑛 − 𝜆𝐼𝑛×𝑛) . det(𝐽𝑚×𝑚 − 𝜆𝐼𝑚×𝑚) 
          = 𝜆𝑛−1(𝜆 − 𝑛). 𝜆𝑚−1(𝜆 − 𝑚) 
          = 𝜆𝑛+𝑚−2(𝜆 − 𝑛)(𝜆 − 𝑚). 

□  
 

Corollary 11. For a complete split graph 𝐾𝑛 + 𝐾𝑚 with 𝑛, 𝑚 ≥ 1 and 𝐵(𝐾𝑛 + 𝐾𝑚 ) is an antiadjacency 

matrix of the graph 𝐾𝑛 + 𝐾𝑚 then characteristic polynomial of a complete split graph is as follows,  

𝑃(𝜆) = 𝜆𝑚−1(𝜆 − 1)𝑛(𝜆 − 𝑚). 
Proof. Let 𝐾𝑛 + 𝐾𝑚 be a complete split graph with 𝑛, 𝑚 ≥ 1. Thus, the antiadjacency matrix of graph 𝐾𝑛 +
𝐾𝑚 can be written in the form of a block as follows 

𝐵(𝐾𝑛 + 𝐾𝑚)   = [
𝐽(𝑛×𝑛) − 𝐴1(𝑛×𝑛)  0(𝑛×𝑛)

0(𝑚×𝑚) 𝐽(𝑚×𝑚)  − 𝐴2(𝑚×𝑚)
] 

                           = [
𝐼𝑛×𝑛 0

0 𝐽𝑚×𝑚
], 

where 𝐴1 is an adjacency matrix of graph 𝐾𝑛, 𝐴2 is an adjacency matrix of graph 𝐾𝑚 and 𝐽 is the matrix 

whose entries are all equal to one.  The we have 

𝑃(𝜆) = det [
𝐼𝑛×𝑛 − 𝜆𝐼𝑛×𝑛 0

0 𝐽𝑚×𝑚 − 𝜆𝐼𝑚×𝑚
] , 

          = det(𝐼𝑛×𝑛 − 𝜆𝐼𝑛×𝑛) . det(𝐽𝑚×𝑚 − 𝜆𝐼𝑚×𝑚) 
          = (𝜆 − 1)𝑛. 𝜆𝑚−1(𝜆 − 𝑚) 
          = 𝜆𝑚−1(𝜆 − 1)𝑛(𝜆 − 𝑚). 

□  
 

The friendship graph 𝐹𝑛 on 2𝑛 + 1 vertices is a graph join 𝐹𝑛 = 𝑛𝐾2 + 𝐾1, where 𝑛𝐾2 is the disjoint 

union of 𝑛 copies of 𝐾2. 

 

Corollary 12. For friendship graph 𝐹𝑛 = 𝑛𝐾2 + 𝐾1 with 𝑛 ≥ 1 with 𝐵( 𝐹𝑛) is an antiadjacency matrix of the 

graph 𝐹𝑛 then characteristic polynomial of graph 𝐹𝑛 is 

𝑃(𝜆) = (𝜆 − 2𝑛 + 1)(𝜆 − 1)𝑛+1(𝜆 + 1)𝑛−1. 
Proof. Let 𝐹𝑛 = 𝑛𝐾2 + 𝐾1 be a friendship graph with 𝑛 ≥ 1. Then the antiadjacency matrix of the graph 

friendship 𝐹𝑛 written in the form of a block matrix as follows 

𝐵( 𝐹𝑛) = [
𝐽(𝑛×𝑛) − 𝐴1(𝑛×𝑛) 0(𝑛×𝑛)

0(𝑚×𝑚) 𝐽(𝑚×𝑚)  − 𝐴2(𝑚×𝑚)
] 

             = [
𝐵1 0
0 1

] , 

where 𝐴1 is an adjacency matrix of the graph n𝐾2, 𝐴2 is an adjacency matrix of the graph 𝐾1 and 𝐵1 is an 

antiadjacency matrix of the graph 𝑛𝐾1. Then we have 

𝑃(𝜆) = det [
𝐵1 − 𝜆𝐼 0

0 1 − 𝜆𝐼
] , 

          = det(𝐵1 − 𝜆𝐼) . det(1 − 𝜆𝐼) 
          = (𝜆 − 2𝑛 + 1)(𝜆 − 1)𝑛+1(𝜆 − 1)n. (λ − 1) 
          = (𝜆 − 2𝑛 + 1)(𝜆 − 1)𝑛+1(𝜆 − 1)n+1. 

  □  
 

 

4. CONCLUSIONS 

In this paper, we prove the correlation of the characteristic polynomial coefficients of the antiadjacency 

matrix of undirected graph and determined determinant of antiadjacency matrix of the graph join  𝐹𝑛 and 

complete graph 𝐾𝑛 with 𝑛 ≥ 2. Then, we determined the characteristic polynomial of the antiadjacency 
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matrix of some graphs such as bipartite graph, complete split graph, and friendship graph. Further work can 

be conducted to find the determinant and characteristic polynomial of other graphs. 
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