CHARACTERISTIC ANTIADJACENCY MATRIX OF GRAPH JOIN

Wahri Irawan ${ }^{1 *}$, Kiki Ariyanti Sugeng ${ }^{2}$
${ }^{\text {I*}}$ Department of Islamic Insurance, Faculty of Islamic Economic and Business, Universitas Islam Negeri Sultan Maulana Hasanuddin Banten Jln. Jendral Sudirman No. 30, Sumurpecung, Kota Serang, Banten, 42118, Indonesia
${ }^{2}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia Depok, Jawa Barat, 16424, Indonesia
Corresponding author e-mail: ${ }^{1 *}$ wahrii@sci.ui.ac.id

Abstract

Let $G=(V, E)$ be a simple, connected, and undirected graph. The graph $G=(V, E)$ can be represented as a matrix such as antiadjacency matrix. An antiadjacency matrix for an undirected graph with order n is a matrix that has an order $n \times n$ and symmetric so that the antiadjacency matrix has a determinant and characteristic polynomial. In this paper, we discuss the properties of antiadjacency matrix of a graph join, such as its determinant and characteristic polynomial. A graph join $G=(V, E)$ is obtained of a graph join operation obtained from joining two disjoint graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$.

Keywords: antiadjacency matrix, graph join, characteristic polynomial of antiadjacency matrix

Article info:

Submitted: $4^{\text {th }}$ August 2021
Accepted: $25^{\text {th }}$ January 2022

How to cite this article:

W. Irawan and K. A. Sugeng, "CHARACTERISTIC ANTIADJACENCY MATRIX OF GRAPH JOIN", BAREKENG: J. Il. Mat. \& Ter., vol. 16, iss. 1, pp. 041-046, Mar. 2022.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright © 2022 Wahri Irawan, Kiki Ariyanti Sugeng

1. INTRODUCTION

Let $G=(V, E)$ be a simple, connected and undirected graph with n vertices. A graph G can be represented by antiadjacency matrix. Antiadjacency matrix $B=J-A$, where A is the $n \times n$ adjacency matrix of graph G, and J the matrix whose entries are all one. Therefore, B is a symmetric matrix so that the antiadjacency matrix has a determinant and a characteristic polynomial for each graph. The characteristic of matrix adjacency can be seen in [1][2]. Diwyacitta et. al. [3] has determined determinant of antiadjacency matrix for directed cycle graph \vec{C}_{n}. Edwina and Sugeng [4] determined determinant of antiadjacency matrix of some undirected graphs, such as $K_{n} \cup K_{m}$, wheels W_{n}, bipartite $K_{n, m}$ and star S_{n}. In this paper, we discussed the determinant and characteristic polynomials of antiadjacency matrix of undirected graph G obtained from join operation graph.

2. BASIC THEORY

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be finite graphs. A join operation of graphs G_{1} and G_{2} is denoted by $G=G_{1}+G_{2}$, where $V_{1} \cap V_{2}=\emptyset$ and $V=V_{1} \cup V_{2}$ is a set of vertices of graph G and $E=E_{1} \cup E_{2} \cup$ $\left\{\{x, y\} ; x \in V_{1}, y \in V_{2}\right\}$ is a set of edges of graph G [5]. An example of the join operation of graph G_{1} and G_{2} is given in Figure 1.

Figure 1. Graph join G_{1} and G_{2}
Let G be a graph with $V(G)=\{1, \ldots, n\}$ and $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$. The adjacency matrix of the graph G, denoted by A, is the $n \times n$ matrix. The rows and the columns of A are indexed by $V(G)$. If $i \neq j$ then the (i, j)-entry of A is 0 for vertices i and j nonadjacent, and the (i, j)-entry is 1 for i and j adjacent. The ($i, i)$ entry of A is 0 for $i=1, \ldots, n$. The matrix $B=J-A$ will be called the antiadjacency of graph G [1]. The adjacency matrix of the graph $G=G_{1}+G_{2}$ is written in a block matrix form as follows:

$$
A=\left[\begin{array}{cc}
A_{1} & J \\
J & A_{2}
\end{array}\right]
$$

where A_{1} is an adjacency matrix of the graph G_{1} and A_{2} is an adjacency matrix of the graph G_{2}.
Therefore, the antiadjacency matrix of the graph G is as follows:

$$
B=J-A=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]
$$

where B_{1} is the antiadjacency matrix of the graph G_{1} and B_{2} is the antiadjacency matrix of the graph G_{2}. Let M be a square matrix in a block matrix form

$$
M=\left[\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right]
$$

where A and D are $n \times n$ and $m \times m$ matrices, respectively. Thus, the determinant of M can be obtained as stated in Theorem 1.

Theorem 1. [7] Let M be a square matrix partitioned as (1). Then

$$
\begin{aligned}
\operatorname{det} M= & \operatorname{det} A \operatorname{det}\left(D-C A^{-1} B\right), \text { if } A \text { is invertibel, and } \\
& \operatorname{det} M=\operatorname{det}(A D-C B), \text { if } A C=C A .
\end{aligned}
$$

Theorem 2. [4] Let W_{n} be a wheel graph with $n, n>3$ vertices. If C_{n} be a cycle graph with m vertices, $n>$ 2 then

$$
\operatorname{det}\left(B\left(W_{n}\right)\right)=\operatorname{det}\left(B\left(C_{n-1}\right)\right)
$$

Furthermore, the relationship between symmetric functions, principal minors, and the coefficient of the characteristic polynomial is given in the following Theorem 3.

Theorem 3. [6] if $\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+c_{3} \lambda^{n-3}+\cdots+c_{n}=0$ is the characteristic polynomial for $A_{n \times n}$ and if s_{i} is the $i^{i^{\text {th }}}$ symmetric function of the eigenvalue $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of A. Then

- $c_{i}=(-1)^{i} \sum($ all $i \times i$ principal minors $)$,
- $s_{i}=\sum($ all $i \times i$ principal minors $)$,
- $\operatorname{trace}(A)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=-c_{1}$,
- $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \ldots \lambda_{n}=(-1)^{n} c_{n}$.

The $i^{t h}$ symmetric function of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ is defined to be the sum of the product of the eigenvalues taken i at a time. That is,

$$
s_{k}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \ldots \lambda_{i_{k}} .
$$

For example, when $n=3$,

$$
\begin{aligned}
& s_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& s_{2}=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \\
& s_{3}=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

3. RESULTS AND DISCUSSION

3.1. Graph join

Let $G_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2$ be a finite graph with $V_{1} \cap V_{2}=\emptyset$. The graph $G=(V, E)$ is a graph join of G_{1} and G_{2}, denoted by $G=G_{1}+G_{2}$ where $V=V_{1} \cup V_{2}$ is a set of vertices and $E=E_{1} \cup E_{2} \cup\{\{x, y\} ; x \in$ $\left.V_{1}, y \in V_{2}\right\}$ is a set of edges. The adjacency matrix of graph G is written in a block matrix form

$$
A=\left[\begin{array}{cc}
A_{1} & J \\
J & A_{2}
\end{array}\right]
$$

Let $G=G_{1}+G_{2}$. As mentioned before, the antiadjacency matrix of graph G is as follows:

$$
B=J-A=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]
$$

where $B_{i}=J-A_{i}$ is an antiadjacency matrix of graph G_{i} for $i=1,2$. Theorem 4 stated the value of det $B(G)$.
Theorem 4. Let $G=(V, E)$ is a graph join of $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ then $\operatorname{det}(B(G))=$ $\operatorname{det} B\left(G_{1}\right) . \operatorname{det} B\left(G_{2}\right)$.

Proof. Let $G=(V, E)$ is a graph join that denoted by $G=G_{1}+G_{2}$ so that the antiadjacency matrix of graph G is written in the form of a block matrix as follows

$$
B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]
$$

We obtain,

$$
\operatorname{det} B(G)=\operatorname{det}\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]=\operatorname{det} B_{1} \cdot \operatorname{det} B_{2}=\operatorname{det} B\left(G_{1}\right) \cdot \operatorname{det} B\left(G_{2}\right)
$$

In Theorem 5 and 6, we give the determinant from the example of graph join.
Theorem 5. Let K_{n} be a complete graph with $n \geq 2$ and $B\left(K_{n}\right)$ be an antiadjacency matrix of K_{n}, then $\operatorname{det} B\left(K_{n}\right)=1$.
Proof. Given a graph K_{n} with $B\left(K_{n}\right)$ is an antiadjacency matrix of graph K_{n}. Then the principal diagonal matrix is 1. Clearly, the determinant $B\left(K_{n}\right)=1$.

Theorem 6. Let fan graph $F_{n, 1}$ be a graph join of path $P_{n}, n \geq 2$ and complete graph K_{1}. Then

$$
\operatorname{det} B\left(F_{n, 1}\right)=\operatorname{det} B\left(P_{n}\right) .
$$

Proof. Let $F_{n, 1}=P_{n}+K_{1}$ be a fan graph. Then $|V|=n+1$. Thus,

$$
\begin{aligned}
\operatorname{det} B\left(F_{n, 1}\right) & =\operatorname{det} B\left(P_{n}\right) \cdot \operatorname{det} B\left(K_{1}\right) \\
& =\operatorname{det} B\left(P_{n}\right) \cdot(1) \\
& =\operatorname{det} B\left(P_{n}\right) .
\end{aligned}
$$

3.2. Characteristic Polynomial

Theorem 7. The coefficients of the antiadjacency matrix graph G satisfy

1) $-c_{1}$ is the number of vertices of graph G;
2) c_{2} is the number of edges of graph G;
3) $-c_{3}$ is the number of $C_{3} \subset G$ - number of $\left\{v_{i} v_{j}, v_{k} \mid i, j, k=1, \ldots, n\right\}$ and v_{k} nonadjacent with v_{i} and v_{j}.
Proof. For $i \in\{1,2, \ldots, n\}$, the number $(-1)^{i} c_{i}$ is the sum of those principal minors of B which have i rows and i columns. Thus, it is clear that for $i=1$ then $-c_{1}$ is the sum of the diagonal elements of matrix B, because $b_{i i}=1$ for $i=1, \ldots, n$ so that $-c_{1}$ represents the number of vertices of graph G. For $i=2$, a principal minor with two rows and columns, and which has non-zero entry, must be of the form

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
$$

This represents every edge of the graph G and is 1 , $\operatorname{So},(-1)^{2} c_{2}=|E(G)|$. This means that, $c_{2}=|E(G)|$. for $i=3$ there are essentially four possibilities for non-trivial principal minors with three rows and columns

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
$$

The first form is worth 1 and the other is worth -1 . The first principal minor denotes a triangle in graph G and the number of $\left\{v_{i} v_{j}, v_{k} \mid i, j, k=1, \ldots, n\right\}$ and v_{k} not adjacent with v_{i} and v_{j}. So, $-c_{3}$ is the number of $C_{3} \subset G-$ number of $\left\{v_{i} v_{j}, v_{k} \mid i, j, k=1, \ldots, n\right\}$ and v_{k} not adjacent with v_{i} and v_{j}.

Theorem 8. For graph \bar{K}_{n} and $B\left(\bar{K}_{n}\right)$ antiadjacency matrix of graph \bar{K}_{n} then characteristic polynomial for $n \geq 1$ that is

$$
P(\lambda)=\lambda^{n-1}(\lambda-n) .
$$

Proof. Let $B\left(\bar{K}_{n}\right)$ antiadjacency matrix with all entries are equal to one. Thus, matrix $B\left(\bar{K}_{n}\right)$ equivalent to matrix J. This implies that $P(\lambda)=\operatorname{det}(\lambda I-J)=\lambda^{n-1}(\lambda-n)$. \square

Theorem 9. For $G=(V, E)$ is a graph join of $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ then $P(\lambda)=P_{1}(\lambda) \cdot P_{2}(\lambda)$, where $P(\lambda), P_{1}(\lambda)$ and $P_{2}(\lambda)$ are the characteristic polynomial of antiadjacency matrix of G, G_{1} and G_{2}.
Proof. Let $G=(V, E)$ be a graph join, which is denoted by $G=G_{1}+G_{2}$. Then the antiadjacency matrix of the graph G can be written in a block matrix form as follows

$$
B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right],
$$

with B_{1} is the antiadjacency matrix of the graph G_{1} and B_{2} is the antiadjacency matrix of the graph G_{2}. Thus,

$$
\begin{aligned}
& P(\lambda)=\operatorname{det}(B-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
B_{1}-\lambda I & 0 \\
0 & B_{2}-\lambda I
\end{array}\right] \\
& \quad=\operatorname{det}\left(B_{1}-\lambda I\right) \cdot \operatorname{det}\left(B_{2}-\lambda I\right)=P_{1}(\lambda) \cdot P_{2}(\lambda)
\end{aligned}
$$

A bipartite graph $K_{n, m}$ can be considered as the graph join $K_{n, m}=\bar{K}_{n}+\bar{K}_{m}$, where \bar{K}_{n} and \bar{K}_{m} are the empty graphs on m and n vertices, respectively.

Corollary 10. For bipartite graph $K_{n, m}=\bar{K}_{n}+\bar{K}_{m}$ with $n, m \geq 1$ and $B\left(K_{n, m}\right)$ is an antiadjacency matrix of graph $K_{n, m}$ then characteristic polynomial of the bipartite graph $K_{n, m}$,

$$
P(\lambda)=\lambda^{n+m-2}(\lambda-n)(\lambda-m) .
$$

Proof. Let $K_{n, m}=\bar{K}_{n}+\bar{K}_{m}$ be a bipartite graph So, the antiadjacency matrix of the graph $K_{n, m}$ can be written in the form of a block as follows

$$
B\left(K_{n, m}\right)=\left[\begin{array}{cc}
J_{(n \times n)}-A_{1(n \times n)} & 0_{(n \times n)} \\
0_{(m \times m)} & J_{(m \times m)}-A_{2(m \times m)}
\end{array}\right]=\left[\begin{array}{cc}
J_{n \times n} & 0 \\
0 & J_{m \times m}
\end{array}\right]
$$

where A_{1} is an adjacency matrix of the graph \bar{K}_{n}, A_{2} is an adjacency matrix of the graph \bar{K}_{m} and J is the matrix whose entries are all one. Thus,

$$
\begin{aligned}
P(\lambda) & =\operatorname{det}\left[\begin{array}{cc}
J_{n \times n}-\lambda I_{n \times n} & 0 \\
0 & J_{m \times m}-\lambda I_{m \times m}
\end{array}\right] \\
& =\operatorname{det}\left(J_{n \times n}-\lambda I_{n \times n}\right) \cdot \operatorname{det}\left(J_{m \times m}-\lambda I_{m \times m}\right) \\
& =\lambda^{n-1}(\lambda-n) \cdot \lambda^{m-1}(\lambda-m) \\
& =\lambda^{n+m-2}(\lambda-n)(\lambda-m)
\end{aligned}
$$

Corollary 11. For a complete split graph $K_{n}+\bar{K}_{m}$ with $n, m \geq 1$ and $B\left(K_{n}+\bar{K}_{m}\right)$ is an antiadjacency matrix of the graph $K_{n}+\bar{K}_{m}$ then characteristic polynomial of a complete split graph is as follows,

$$
P(\lambda)=\lambda^{m-1}(\lambda-1)^{n}(\lambda-m)
$$

Proof. Let $K_{n}+\bar{K}_{m}$ be a complete split graph with $n, m \geq 1$. Thus, the antiadjacency matrix of graph $K_{n}+$ \bar{K}_{m} can be written in the form of a block as follows

$$
\begin{aligned}
B\left(K_{n}+\bar{K}_{m}\right) & =\left[\begin{array}{cc}
J_{(n \times n)}-A_{1(n \times n)} & 0_{(n \times n)} \\
0_{(m \times m)} & J_{(m \times m)}-A_{2(m \times m)}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{n \times n} & 0 \\
0 & J_{m \times m}
\end{array}\right],
\end{aligned}
$$

where A_{1} is an adjacency matrix of graph K_{n}, A_{2} is an adjacency matrix of graph \bar{K}_{m} and J is the matrix whose entries are all equal to one. The we have

$$
\begin{aligned}
P(\lambda) & =\operatorname{det}\left[\begin{array}{cc}
I_{n \times n}-\lambda I_{n \times n} & 0 \\
0 & J_{m \times m}-\lambda I_{m \times m}
\end{array}\right] \\
& =\operatorname{det}\left(I_{n \times n}-\lambda I_{n \times n}\right) \cdot \operatorname{det}\left(J_{m \times m}-\lambda I_{m \times m}\right) \\
& =(\lambda-1)^{n} \cdot \lambda^{m-1}(\lambda-m) \\
& =\lambda^{m-1}(\lambda-1)^{n}(\lambda-m) .
\end{aligned}
$$

The friendship graph F_{n} on $2 n+1$ vertices is a graph join $F_{n}=n K_{2}+K_{1}$, where $n K_{2}$ is the disjoint union of n copies of K_{2}.

Corollary 12. For friendship graph $F_{n}=n K_{2}+K_{1}$ with $n \geq 1$ with $B\left(F_{n}\right)$ is an antiadjacency matrix of the graph F_{n} then characteristic polynomial of graph F_{n} is

$$
P(\lambda)=(\lambda-2 n+1)(\lambda-1)^{n+1}(\lambda+1)^{n-1}
$$

Proof. Let $F_{n}=n K_{2}+K_{1}$ be a friendship graph with $n \geq 1$. Then the antiadjacency matrix of the graph friendship F_{n} written in the form of a block matrix as follows

$$
\begin{aligned}
B\left(F_{n}\right) & =\left[\begin{array}{cc}
J_{(n \times n)}-A_{1(n \times n)} & 0_{(n \times n)} \\
0_{(m \times m)} & J_{(m \times m)}-A_{2(m \times m)}
\end{array}\right] \\
& =\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 1
\end{array}\right],
\end{aligned}
$$

where A_{1} is an adjacency matrix of the graph $n K_{2}, A_{2}$ is an adjacency matrix of the graph K_{1} and B_{1} is an antiadjacency matrix of the graph $n K_{1}$. Then we have

$$
\begin{aligned}
P(\lambda) & =\operatorname{det}\left[\begin{array}{cc}
B_{1}-\lambda I & 0 \\
0 & 1-\lambda I
\end{array}\right] \\
& =\operatorname{det}\left(B_{1}-\lambda I\right) \cdot \operatorname{det}(1-\lambda I) \\
& =(\lambda-2 n+1)(\lambda-1)^{n+1}(\lambda-1)^{\mathrm{n}} \cdot(\lambda-1) \\
& =(\lambda-2 n+1)(\lambda-1)^{n+1}(\lambda-1)^{n+1} .
\end{aligned}
$$

4. CONCLUSIONS

In this paper, we prove the correlation of the characteristic polynomial coefficients of the antiadjacency matrix of undirected graph and determined determinant of antiadjacency matrix of the graph join F_{n} and complete graph K_{n} with $n \geq 2$. Then, we determined the characteristic polynomial of the antiadjacency
matrix of some graphs such as bipartite graph, complete split graph, and friendship graph. Further work can be conducted to find the determinant and characteristic polynomial of other graphs.

KNOWLEDGEMENT

The author would like to thank the reviewers who have provided suggestions to improve this paper.

REFERENCES

[1] R. . Bapat, Graphs and Matrices, New Delhi: Hindustan Book Agency, 2010.
[2] N. Biggs, Algebraic Graph Theory, Second Edi. New York: Cambridge University Press, 1993.
[3] D. Diwyacitta, A. P. Putra, K. A. Sugeng, and S. Utama, "The determinant of an antiadjacency matrix of a directed cycle graph with chords," AIP Conf. Proc.,vol. 1862, pp. 1-6 (030127), July, 2017.
[4] M. Edwina and K. A. Sugeng, "Determinant of antiadjacency matrix of union and join operation from two disjoint of several classes of graphs," AIP Conf. Proc, vol. 1862, pp. 1-6 (030158), July, 2017.
[5] Z. Lou, N. Obata, and Q. Huang, "Quadratic Embedding Constants of Graph Joins," arxiv : 2001.06752, pp. 1-20, 2020.
[6] C. D. Mayer, Matrix Analysis and Applied Linear Algebra, Philadelphia: SIAM, 2000.
[7] F. Zhang, Matrix Theory Basic Results and Techniques, Second Edi, New York: Springer, 2011.

