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Abstract

Graph pebbling can be extended to a two-player game on a graph G, called Two-
Player Graph Pebbling, with players Mover and Defender. The players each use peb-
bling moves, the act of removing two pebbles from one vertex and placing one of the
pebbles on an adjacent vertex, to win. Mover wins if they can place a pebble on a
specified vertex. Defender wins if the specified vertex is pebble-free and there are no
more pebbling moves on the vertices of G. The Two-Player Pebbling Number of a
graph G, η(G), is the minimum m such that for every arrangement of m pebbles and
for any specified vertex, Mover can win. We specify the winning player for paths,
cycles, and the join of certain graphs.
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1 Introduction
From this point, G will denote a simple connected graph on n vertices and Pn will denoted
a path on n vertices labeled v1v2 . . . vn. The complement G is the graph such that V

(
G
)
=

V (G) and uv ∈ E
(
G
)

⇐⇒ uv /∈ E(G). For any graphs, G and H, the join, J = G ∨H, is
the graph such that V (J) = V (G) ∪ V (H) and E(J) = {uv |uv ∈ E(G), uv ∈ E(H), oru ∈
V (G) and v ∈ V (H)}. The diameter of a graph G, diam(G) = max

u,v
{dist(u, v)}, is the max-

imum distance over every pair of vertices in G.

We now define two graph-pebbling specific terms.

Definition 1.1. Given a graph G, a configuration C is an arrangement of pebbles to the
vertices of G with C(v) as the number of pebbles on vertex v.

Definition 1.2. A pebbling move consists of removing two pebbles from one vertex and
placing one pebble on an adjacent vertex.

So, for any pebbling move, we obtain a new configuration C ′ such that

• |C ′| = |C| − 1,

• there exists an edge, uv, where C ′(u) = C(u)− 2 and C ′(v) = C(v) + 1, and

• C ′(x) = C(x), ∀x 6= u, v.

We use pebbling moves to place one of the pebbles on a specified goal vertex r, called the
root. Given a configuration C on a graph G and a root r ∈ V (G), we say C is r-solvable
provided one can use a sequence of pebbling moves to place a pebble on the root. For a
vertex r, if there is an m ∈ N so that for any configuration C of m pebbles, C is r-solvable,
then we set π(G, r) to be the smallest m. The pebbling number of a graph, π(G), is the
maximum π(G, r) over all r ∈ V (G).

We can extend graph pebbling to a game with two players, Mover and Defender, as de-
fined in [2]. Each player will use pebbling moves, starting with Mover, in an attempt to win.
Mover wins provided they can place one of the pebbles on the root. Defender wins if the root
is pebble-free and there are no more pebbling moves on the vertices of G. There are two rules.

(1) Each player must take their turn.

(2) If Mover pebbles from vertex u to vertex v, then Defender cannot pebble from v to u on
their next turn.

By turn, we mean an individual player’s pebbling move. A round consists of two turns, first
made by Mover and then by Defender.

A variation for which Defender could forfeit their turn was considered in [2], however this
lead to severely restricting the graphs for which Mover could win. While playing the game,
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each player will employ a strategy, a choice function from the set of possible configurations
to the collection of legal pebbling moves. A strategy will be winning on a configuration for
either player provided the other player can not win, regardless of the strategy they can apply.
Some starting configurations allow Mover to win on their first turn.

Fact 1.3. If a starting configuration has two pebbles on any vertex in the neighborhood of r,
then Mover has a winning strategy.

So we define the following:

Definition 1.4. A nontrivial configuration on the vertices of G will have 0 or 1 pebbles on
vertices in the neighborhood of r.

We say η(G, r) is the minimum number m ∈ N such that given any configuration of m
pebbles and a given root vertex, r, Mover has a winning strategy. From this, we say the
Two-Player Pebbling Number is η(G) = max

r∈V
{η(G, r)}. However, if for a graph G, a root r,

and arbitrarily large t ∈ N, there exists a configuration of size at least t′, for t′ > t, for which
Defender has a winning strategy, then η(G, r) = ∞. The following provides a sufficient
condition for η(G, r) = ∞.

Theorem 1.5 ([2]). For a graph G, let S ⊂ V (G) be a cut set of G and let G0, G1, . . . Gk be
the components of G− S with r ∈ G0. If for every v ∈ S, |N(v)− (V (G0)∪ S)| ≥ 2 and for
every x ∈ N(S)− (V (G0) ∪ S), |N(x)− S| ≥ 2, then η(G, r) = ∞.

We say a configuration is Mover-win if the Mover has a winning strategy and Defender-
win otherwise. Below are a few basic results for π(G) and η(G).

Fact 1.6. For any graph G, η(G) ≥ π(G).

Mover cannot win with fewer than π(G) pebbles.

Fact 1.7. If η(G, r) = ∞ for some r ∈ V (G), then η(G) = ∞.

If Defender has a winning strategy for at least one choice of r, then Defender has a
winning strategy for G, overall.

Proposition 1.8 ([2]). If deg(r) = |V (G)| − 1, then η(G, r) = |V (G)|.

The next two classical pebbling results are included as comparisons for bounds for Two-
Player Pebbling we consider later.

Fact 1.9 ([1]). For every positive integer n, we have π(Pn) = 2n−1.

Theorem 1.10 ([4]). For every integer k ≥ 2, we have π(C2k) = 2k and for every integer
k ≥ 1, we have π(C2k+1) = 2

⌊
2k+1

3

⌋
+ 1.
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There are many significant differences between classical pebbling and Two-Player peb-
bling. For classical pebbling, the pebbling number for a graph, π(G), is nonincreasing when
edges are added to G. This is not the case for Two-Player pebbling, as stated in [2].

Additionally, for classical pebbling, solvability is preserved when adding pebbles to a
configuration. This is not the case for Two-Player Pebbling; a configuration C for which
Mover has a winning strategy does not necessarily imply that Mover has a winning strategy
on the configuration C ′ where is the same configuration as C with one additional pebble
added. A simple example (suggested by a referee) is the graph K1,3, a central vertex with
edges to 3 adjacent leaves. If one leaf is the root the configuration with 4 pebbles on another
leaf is Mover-win and the configuration with 4 pebbles on another leaf and 1 pebble on the
central vertex is Defender win as can easily be checked.

We briefly discuss a few more examples to illustrate the complexities of Two-Player
pebbling. Consider paths Pn = v1, v2, . . . , vn with the root v1 and write configurations as
(C(v1), C(v2), . . . , C(vn)). Given a path on 5 vertices, P5, one can check that (0, 0, 3, 2, 1)
is Mover-win and (0, 0, 3, 2, 2) is Defender win, providing an example that, even on paths,
adding pebbles might not preserve wins for Mover.

A useful tool for certain configurations comes from classical pebbling [3]. Define the
weight of a configuration on a path as P (C) =

∑
C(vi)/2

i−1. In [3], the authors define
weight in the context of placing m pebbles on the root. For our purposes, we require m = 1.
A move toward the root does not change the weight. If P (C) ≥ 1 either some vertex has at
least 2 pebbles and a move is possible or there is a pebble on the root. So the configuration
is solvable if and only if P (C) ≥ 1. So in the pebbling game Defender has a winning strategy
on a path if P (C) < 1 by playing arbitrarily.

For the configuration (0, 0, 0, 0, 16) on P5, Mover has a winning strategy. It is not hard to
check that Mover can force the configuration (0, 0, 2, 2, 4) after 4 rounds. If Mover pebbles to
(0, 1, 0, 2, 4) then Defender can pebble ‘backwards’ to (0, 1, 0, 0, 5) which has weight less than
1 and Defender then has a winning strategy. If instead, Mover pebbles from (0, 0, 2, 2, 4) to
(0, 0, 3, 0, 4) Defender must pebble to either (0, 1, 1, 0, 4) or (0, 0, 3, 1, 2) each of which can be
easily checked to have a winning strategy for Mover. Hence, Mover has a winning strategy
on (0, 0, 0, 0, 16) that involves ensuring that Defender can never pebble away from the root.
This is necessary since the initial configuration has weight exactly 1 and any move away from
the root will make it smaller. This example also illustrates that Mover pebbling toward the
root from the closest vertex possible is not always an optimal strategy.

As stated in Fact 1.9, for any path π(Pn) = 2n−1. Checking that η(P5, v1) = π(P5) = 16
of course involves checking that all configurations with 16 or more pebbles admit a winning
strategy for Mover. While long and involving many cases, one can check that η(P4) = 23 =
8 = π(P4) and η(P5) = 24 = 16 = π(P5).

For P6 and configuration (0, 0, 0, 0, 0, 32) it can be checked that Mover is no longer able to
prevent Defender from pebbling away from the root at some point. Thus Defender can take
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the weight below 1 and the configuration is Defender-win. Hence η(P6, v1) > 32. Similarly,
the configuration with 2n−1 pebbles on vn−1 can be used to show that η(Pn, v1) > 2n−1 =
π(Pn).

2 Paths & Cycles
In this section, we will show that Mover has a winning strategy for paths and cycles. That
is we show η(G) is finite for paths and cycles and provide bounds on these values.

2.1 General Upper Bound for Paths
The following general lemma will allow us to assume that path Pn is labeled as v1, v2, . . . , vn
with v1 the root.

Lemma 2.1. If r is a cut vertex of G and G1, G2, . . . Gk are the graphs induced by the

components G− r and r, then η(G, r) = 1 +
k∑

i=1

(η(Gi, r)− 1).

Proof. Let r be a cut vertex of G and G1, G2, . . . Gk be the graphs induced by the components
of G− r with r. Let C be a configuration with

∑k
i=1(η(Gi, r)− 1) pebbles arranged so that

Gi receives η(Gi, r)− 1 with a configuration that is winning for Defender. Defender playing
a winning strategy on each Gi is a winning strategy for Defender on G; Mover cannot reach
the root from any Gi.

Now, suppose C ′ is a configuration with
∑k

i=1(η(Gi, r)−1)+1 pebbles. By the Pigeonhole
Principle, at least one component Gk will have at least η(Gk, r) pebbles distributed on it.
Thus Mover has a winning strategy on G by always playing in Gk and using a winning
strategy for Gk.

It is tempting to conclude that placing 2η(Pn−1) pebbles on Pn will be enough to allow
Mover to win. The first η(Pn−1) pebbles used to place a pebble on v2 and then as η(Pn−1)
pebbles remain Mover can place a second pebble on v2. Since Defender cannot ‘undo’ this
move, Mover wins on the next turn. This approach fails because, while Mover still wins with
more than η(Pn−1) pebbles on Pn−1, more moves, and hence more pebbles, may be necessary
as the presence of additional pebbles allows Defender to avoid making moves that ‘help’
Mover. In particular, we stated above that η(P6) > 32 = π(P6), but π(P5) = 25−1 = 16.
This will be further illustrated in a future paper. For now, we have an upper bound for
η(Pn, v1).

Lemma 2.2. For n ≥ 4, we have η(Pn, v1) ≤ 3
2
· 2n−1 − n and for any configuration with at

least η(Pn, v1) pebbles Mover has a winning strategy that uses at most 3
2
· 2n−2 − 1 rounds.

Proof. We will use induction on n. The basis, n = 4 involves checking multiple cases but is
straightforward.
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For a nontrivial configuration on Pn with a least 3
2
· 2n−1 − n, consider the subpath Pn−1

on v2, . . . , vn. By induction Mover can place a pebble on v2 using at most 3
2
·2n−3−1 rounds

(trivially if C(v2) = 1). This uses at most 2 · (3
2
· 2n−3 − 1) pebbling moves, and counting 1

for the pebble on v1 at least (3
2
· 2n−1 − n)− (3

2
· 2n−2 − 2)− 1 = 3

2
· 2n−2 − (n− 1) pebbles

remain. Again by induction Mover has a strategy where a second pebble is placed on v2 in
at most 3

2
· 2n−3 − 1 rounds . If Mover places the second pebble on v2, then Defender cannot

undo this move and Mover can pebble from v2 to the root v1 in the next round. If Defender
places the second pebble on v2, then again Mover can pebble from v2 to the root v1 in the
next round. Thus Mover wins and counting the last move to the root there are at most
2 · (3

2
· 2n−3 − 1) + 1 = 3

2
· 2n−2 − 1 rounds.

Now, we can bound the Two Player Pebbling Number for paths.

Theorem 2.3. For n ≥ 4, we have 2n−1 ≤ η(Pn) ≤ 3
2
· 2n−1 − n.

Proof. The lower bound follows by Facts 1.9 and 1.6. For the upper bound, by Lemma 2.1
it suffices to assume that the root is v1. Then use Lemma 2.2.

While we did not include the long details, the observations at the end of Section 1 show
that the lower bound is tight for n = 4, 5 and strict for n ≥ 6.

The bound on the number of rounds in Lemma 2.2 can be checked to be tight. That

is, for any configuration with at least 4

(
3

2
· 2n−1 − 1

)
pebbles on vn, Defender can force

at least 3
2
· 2n−2 − 1 rounds. There are enough pebbles that, after fewer than 3

2
· 2n−2 − 1

rounds at least 2 pebbles remain in vn. Thus in each round, Defender could move from vn
to vn−1. The only case where this is prevented is if Mover pebbled ‘backwards’ from vn to
vn−1. Thus in each round Defender can force least one pebbling move between these two
vertices. While Mover pebbling from vn−1 to vn or Defender pebbling from vn to vn−1 when,
for example pebbling from vn−1 to vn is an option, might not be part of optimal strategies,
they are allowable moves to be considered. Assume Defender plays so that in each round
at least one move is between vn and vn−1. At least 2n−2 pebbling moves and hence at least
1
2
· 2n−2 rounds are required to place 2n−2 pebbles on vn−1. Then at least 2n−1− 1 = 2n−2− 1

moves on v1, v2, . . . , vn−1 are required from the classical pebbling bound and for each of these
moves, by Defender’s strategy, the other move in the round is between vn and vn−1. Hence
at least 2n−2 − 1 additional rounds are required for a total of 3

2
· 2n−2 − 1 rounds. It is

likely that maximum number of rounds could be forced with configurations with fewer than

4

(
3

2
· 2n−1 − 1

)
pebbles on vn. However, this number is needed for the argument that is

given.

Note that the pebbling bound in Lemma 2.2 is smaller than the number of pebbles,
3 · 2n−1 − 2 needed to play 3

2
· 2n−1 − 1 rounds. The slightly better pebbling bound is

possible, since with a smaller number of pebbles Defender can be forced to make moves that
help Mover. As an example, the configuration with 2 pebbles on vn and 1 pebble on every
other non-root vertex is Mover-win. The example showing that many rounds can be forced
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suggests that η(Pn) might be closer to the upper bound. However, as the argument requires
a large number of pebbles on vn, it does carry over to a lower bound on η.

2.2 Bounds for Cycles
Now, we move on to cycles. We will consider even cycles and odd cycles in different cases. For
even cycles, we can label the vertices of C2n as r, a1, a2, a3, . . . , an−1, x, bn−1, . . . , b3, b2, b1.
Thus, we can consider the vertices of the cycles as two internally disjoint paths with the same
starting and ending vertices, x and r, respectively. As Mover can choose to pebble on only
one of these paths as a strategy, we can consider a variation of Two-Player Pebbling for paths.

We define a new pebbling game on paths v1, v2, . . . , vn. The rules for Mover are the
same as the regular Two-Player Pebbling game. In this variation, Defender can pass, remove
2 pebbles from vertex vn or add a pebble to vertex vn, in addition to making pebbling moves.

Observe that this will capture the moves on a subpath from the root of a cycle. In
particular, each move that Defender makes on the cycle corresponds to a move in the new
game. It may be that no moves off the subpath are available in which case the pass option
on the subpath is not available. Mover could also make moves on the cycle corresponding to
the extra options in the new game. However, a winning strategy for Mover in the new game
translates to a winning strategy on the cycle since the options for Mover are a superset of
the those in the new game and the options for Defender are a subset. For the same reasons,
any lower bounds corresponding to strategies for Defender in the new game do not translate
to a strategy for Defender on the cycle.

Lemma 2.4. For the new pebbling game on paths Pn, n ≥ 4 and any configuration with at
least 2n+2n−1−2n pebbles, Mover has a winning strategy that uses at most 2n−1−1 rounds.

Proof. The proof is similar to the proof of Lemma 2.2. We will use induction on n. The
basis, n = 4 involves checking multiple cases but is straightforward.

For a nontrivial configuration on Pn with at least 2n + 2n−1 − 2n pebbles, consider the
subpath Pt−1 on v2, . . . , vt. By induction, Mover has a strategy that will place a pebble on v2
using at most 2n−2−1 rounds, trivially if C(v2) = 1. This uses at most 3 · (2n−2−1) pebbles,
as on each round Mover uses 2 pebbles to place a pebble on another vertex and Defender
could possibly remove 2 pebbles from vn. If Defender places a new pebble on vn, passes, or
uses 2 pebbles to place a pebble on another vertex then fewer pebbles are used. Counting 1
for the pebble on v1, at least (2n + 2n−1 − 2n) − 3(2n−2 − 1) − 1 = 2n−1 + 2n−2 − 2(n − 1)
pebbles remain. By induction Mover has a strategy where a second pebble is placed on
v2 in at most 2n−2 − 1 rounds. If Mover places the second pebble on v2, then Defender
cannot undo this move and Mover can pebble from v2 to the root v1 in the next round. If
Defender places the second pebble on v2, then Mover can pebble from v2 to the root v1 in
the next round. Thus Mover wins and counting the last move to the root there are at most
2 · (2n−2 − 1) + 1 = 2n−1 − 1 rounds.

Now, we consider an upper bound for even cycles C2n.
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Theorem 2.5. If n ≥ 2, then we have η(C2n) ≤ 2n+2 + 2n+1 − 4n− 3.

Proof. Let C2n be an even cycle with 2n vertices labeled r, a1, a2, a3, . . . , an−1, x, bn−1,
. . . , b3, b2, b1. Let d be the number of pebbles on r, a1, . . . , an−1 and e the number on
r, b1, . . . , bn−1 and f the number of pebbles on x. If d ≥ 2n + 2n−1 − 2n then Mover can
play a winning strategy for the new game described in Lemma 2.4 on this path as a winning
strategy on the cycle as noted in the paragraph before that lemma. Thus, if Defender has a
winning strategy d < 2n + 2n−1 − 2n. That is, d ≤ 2n + 2n−1 − 2n− 1.

Similarly, Mover has a winning strategy unless e ≤ 2n + 2n−1 − 2n − 1 and d + f ≤
2n+1 + 2n − 2(n + 1) − 1 and e + f ≤ 2n+1 + 2n − 2(n + 1) − 1. Combining these implies
2(d+ e+ f) ≤ 2(2n + 2n−1 − 2n− 1 + 2n+1 + 2n − 2(n+ 1)− 1). So the number of pebbles
d+ e+ f ≤ 2n+2 +2n−1 − 4n− 4. Hence, Mover has a winning strategy if number of pebbles
is at least 2n+2 + 2n−1 − 4n− 3.

Now, we can move on to odd cycles. We can label the vertices of odd cycles, C2n+1 as
r, a1, a2, . . . , an−1, an, bn, bn−1, . . . , b2, b1. Odd cycles can be thought of as two internally
disjoint points with different starting vertices, an and bn, but the same ending vertex, r. The
following is an upper bound for odd cycles:

Theorem 2.6. If n ≥ 2, then η(C2n+1) ≤ 2n+2 + 2n+1 − 4n− 5.

Proof. Let C2n+1 be an odd cycle with 2n+1 vertices. By Lemma 2.4, Mover can win unless
the number of pebbles on r, a1, . . . , an and the number on r, b1, . . . , bn are both less than
2n+1 + 2n − 2(n+ 1). Hence, since the case with a pebble on r is trivial the total number of
pebbles is at most twice this, 2n+2 + 2n+1 − 4(n+ 1)− 2. So Mover has a winning strategy
if the number of pebbles is at least 2n+2 + 2n+1 − 4n− 5.

With these results, we have a nice bound for the Two-Player Pebbling Number for cycles,

η(C2n), η(C2n+1) ∈ O(2n+2)

Since these are upper bounds, it is not unexpected that their bounds would match. However,
we do conjecture that the exact value of η(C2n) will differ from the exact value of η(C2n+1),
as do their classical pebbling numbers as noted in Theorem 1.10.

3 Joins of Certain Graphs
Previous results in [2] examined Two-Player Pebbling for Km ∨H with the root in Km.

Theorem 3.1 ([2]). Let m ≥ 3 and H with |V (H)| = n is any graph. Then if r ∈ Km, we
have

η(Km ∨H, r) =

{
m+ 2n+ 3, n is even
m+ 2n+ 2, n is odd.



Communications on Number Theory and Combinatorial Theory 3 (2022), Article 3 9

Proposition 1.8 covers the case m = 1. The method used in Theorem 3.1 can be used in
the case m = 2, producing a bound that is stronger than just using m = 2 in the bounds of
Theorem 3.1. We will do this in Theorem 3.6.

We will also examine Km ∨ H with the root in H. In this case, if m ≥ 2 and H
has a component that does not contain the root and has minimum degree at least 2, then
η(Km∨H, r) = ∞ by Theorem 1.5. When η(H) is finite we can get a bound on η(Km∨H, r)
that is closely related to η(H, r) and will do so below.

To motivate these results, we prove the following.

Theorem 3.2. Let G be a graph for which η(G) = m and H be any graph with |V (H)| = n.
If r ∈ G, then η(G ∨H, r) ≤ m+ 3n.

Proof. Suppose C is a configuration with at least m+ 3n pebbles on the vertices of G ∨H.
If initially any vertex of H has at least two pebbles then Mover will pebble to r and win.
The strategy for Mover is to first place a single pebble on each vertex of H. This takes at
most n rounds, the moves to H removing 2 pebbles from G and moves within G reducing
the number of pebbles by 1. Thus during this phase the number of pebbles on G remains at
least m = η(G) and hence there are vertices with 2 pebbles to pebble to H. If at any point,
Defender places a second pebble on a vertex of H, then Mover will pebble from that vertex
to r and win.

Once a pebble is placed on each vertex of H, on Mover’s next turn, at least m pebbles
remain on G. Then Mover plays a winning strategy on G. Again if at any point, Defender
places a second pebble on a vertex of H, then Mover will pebble from that vertex to r and
win. Otherwise Mover wins from playing the strategy on G.

A corollary to Theorem 3.2 is the case of η(Km ∨G), where m = 1:

Corollary 3.3. If η(G) is finite, then η(K1 ∨G) ≤ η(G) + 3.

This follows by applying Theorem 3.2 when r ∈ G and Proposition 1.8 when r = K1.
Recall that a wheel graph is is a join of a cycle to one additional vertex. A W6, or a

wheel with five vertices on the outer cycle, is shown in Figure 1. We then get the following:

Figure 1: A Wheel Graph W6 on six vertices

Corollary 3.4. For any positive integer n, we have η(Wn) ≤ η(Cn−1) + 3
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It may be tempting to consider Mover just playing a winning strategy on G and allowing
Defender up to n moves to vertices of H, which would indicate a bound of m+2n. However
this fails since this would be like allowing Defender up to n chances to forfeit their turn,
changing the Two-Player pebbling number. This can be checked, for example with P4 ∨K1

which attains the upper bound.
An immediate Corollary is the following:

Corollary 3.5. Let G and H be graphs for which Mover has winning strategies such that
|V (G)| = n1, |V (H)| = n2, η(G) = m1 and η(H) = m2. Then η(G ∨ H) ≤ max{m1 +
3n2,m2 + 3n1].

Another class of graphs that we can find an upper bound for the Two-Player Pebbling
Number of is fan graphs. Recall a fan graph, Fm,n = Km ∨ Pn, is the join of a independent
set and a path. The graph in Figure 2 is an example of a fan graph.

Figure 2: A Fan Graph F4,6

In determining η(Fm,n), Theorem 3.2 covers the case that the root is on Pn. For the root
in Km, Proposition 1.8 covers the case m = 1 and Theorem 3.1 covers the cases m ≥ 3. To
complete showing η(Fm,n) < ∞ we need a bound for η(K2 ∨H, r) with r ∈ K2. We use the
same ideas as in the proof of Theorem 3.1 given in [2].

Theorem 3.6. Suppose H is any graph with |V (H)| = n and minimum degree δ. If r ∈ K2

then η(K2 ∨H, r) ≤ n+ 2δ + 4

Proof. Call x the non root vertex in K2. Let v be a vertex with minimum degree δ in H,
N be the closed neighborhood of v in H and W be the remaining vertices in H. Note that
|N | = δ + 1 and |W | = n− δ − 1.

Suppose that C is a configuration of n + 2δ + 4 pebbles. We may assume that C is
nontrivial. Then, there is at most 1 pebble is on each vertex of H as they are adjacent to
the root. So, we can assume that the only moves are from x.

Suppose that there are k pebble-free vertices in W and l pebble-free vertices in N . Thus
there are n + 2δ + 4 − (n − k − l) = 2δ + k + l + 4 pebbles on x. If at any point Defender
places a second pebble on a vertex of H, then Mover can win.

If l ≤ k, the strategy for Mover will be to place a pebble on each pebble-free vertex of
N and then pebble to v. If Defender does not pebble from v, Mover then wins. However,
Defender can only pebble to another vertex with a pebble on it, as Defender cannot pebble
back to x and hence Mover can still win. Mover can fill N within l rounds and then if at
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least 2 pebbles remain on x Mover can win as described. This requires 4l + 2 pebbles on x.
This is possible because 2δ + k + l + 4 ≥ 2(l − 1) + l + l + 4 = 4l + 2.

On the other hand, if k < l, then within k + l pebbling moves all vertices of H will have
a pebble. The next move, by either player places a second pebble on a vertex of H. If Mover
pebbles next they win. If Defender pebbles next it must be to another vertex with a pebble
on it, since Defender cannot pebble back to x in this case. This requires 2k+2l+2 pebbles
on x. This is possible because 2δ + k + l + 4 > 2(l − 1) + k + k + 4 ≥ 2k + 2l + 2.

With this, we state the upper bound for fan graphs.

Corollary 3.7. For m ≥ 1 and n ≥ 2, we have η(Fm,n) ≤ η(Pn) + 3m.

Proof. When m = 1, Theorem 3.3 applies.
For m ≥ 2 and r ∈ Pn Theorem 3.2 applies and η(Fm,n, r) ≤ η(Pn) + 3m.
For m = 2 and r ∈ Km, η(F2,n, r) ≤ n+ 2 · 1 + 4 = n+ 6 ≤ m+ 2n+ 3 by Theorem 3.6.
For m ≥ 3 and r ∈ Km, η(Fm,n, r) ≤ m+ 2n+ 3 by Theorem 3.1.
To complete the proof we note that m+ 2n+ 3 ≤ 2n−1 + 3m ≤ η(Pn) + 3m when m ≥ 2

and n ≥ 2.

4 Conclusion
Two-Player Graph Pebbling has many interesting questions. Determining finiteness or exact
values of η for certain highly structured graphs can be challenging, as seen with paths and
cycles in this paper. While grids, Pn�Pm, have infinite η when m,n ≥ 4 by Theorem 1.5,
the cases when n = 2 or 3 remain challenging. We have also considered powers of a certain
graphs.

Definition 4.1. The kth power of a graph, Gk is the graph with vertex set V (Gk) = V (G)
and edge set E(Gk) = {uv | dG(u, v) ≤ k}.

We are investigating powers of paths P k
n . We can show for path powers P k

n , if 2 ≤ k ≤
n− 5, then η(P k

n ) = ∞. However, the Two-Player Pebbling Number for P n−2
n (the complete

graph minus an edge), P n−3
n and P n−4

n are finite. For Kn−e = P n−2
n = K2∨Kn−2 the bound

from Theorem 3.6 is 4n− 6. However it is easy to check that η(Kn− e) = 2n− 2. It remains
to determine values η(P n−3

n ) and η(P n−4
n ) exactly and to improve the bounds we have given

for paths and cycles in this paper.
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