
State University of New York College at Buffalo - Buffalo State College State University of New York College at Buffalo - Buffalo State College 

Digital Commons at Buffalo State Digital Commons at Buffalo State 

Great Lakes Center Masters Theses Great Lakes Center 

3-2022 

Spatial and Temporal Analysis of Big Dataset on PM2.5 Air Spatial and Temporal Analysis of Big Dataset on PM2.5 Air 

Pollution in Beijing, China, 2014 to 2018 Pollution in Beijing, China, 2014 to 2018 

Hutong Fan 
fanh01@mail.buffalostate.edu 

Advisor Advisor 

Tao Tang 

First Reader First Reader 

Tao Tang 

Second Reader Second Reader 

Stephen J. Vermette 

Third Reader Third Reader 

Qiang Sun 

Recommended Citation Recommended Citation 
Fan, Hutong, "Spatial and Temporal Analysis of Big Dataset on PM2.5 Air Pollution in Beijing, China, 2014 
to 2018" (2022). Great Lakes Center Masters Theses. 9. 
https://digitalcommons.buffalostate.edu/greatlakes_theses/9 

Follow this and additional works at: https://digitalcommons.buffalostate.edu/greatlakes_theses 

 Part of the Environmental Sciences Commons 

https://digitalcommons.buffalostate.edu/
https://digitalcommons.buffalostate.edu/greatlakes_theses
https://digitalcommons.buffalostate.edu/glc
https://digitalcommons.buffalostate.edu/greatlakes_theses?utm_source=digitalcommons.buffalostate.edu%2Fgreatlakes_theses%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=digitalcommons.buffalostate.edu%2Fgreatlakes_theses%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages


i 

Spatial and Temporal Analysis of Big Dataset on PM2.5 Air Pollution  

in Beijing, China, 2014 to 2018 

 

by
 

Hutong Fan 

 

 

An Abstract of a Thesis 

in 

Great Lake Environmental Science 

 

 

 

Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Arts 

May 2022 

 

 

 

 

 

State University of New York 

College at Buffalo 

Great Lake Center 

 

 

 



ii 

ABSTRACT OF THESIS 

 

 

Air particulate matter (PM2.5) pollution is a critical environment problem worldwide and 

also in Beijing, China. We gathered five-year PM2.5 contaminate concentrations from 2014 

to 2018, from the Beijing Municipal Environmental Monitoring Center and China Air 

Quality Real-time Distribution Platform. This is a big dataset, and we collected with crawler 

technology from Python programming. After examining the quality of the recorded data, we 

determined to conduct the temporal and spatial analysis using 27 observation stations 

located in both urban and suburb area in the municipality of Beijing. The big dataset of five-

year hourly PM2.5 concentrations was sorted to actionable datasets (Selected Datasets and 

Seasonal Average Selected Datasets) with the help of Python programming. Linear 

Regression based Fundamental Data Analysis was conducted as the first part of temporal 

analysis in R studio to gather the temporal patterns of five-year seasonal PM2.5 contaminant 

concentrations on each observation sites. As the second part of temporal analysis, the 

Principal Component Analysis (PCA) was conducted in MATLAB to gather the patterns of 

variations of entire five-year PM2.5 contaminant concentration on each of the sites. 

Geographic Information System (GIS) was utilized to study the spatial pattern of air 

pollution distribution from the selected 27 observation sites during selected time periods. 

The results of this research are, 1) PM2.5 pollutions in winter are the most severe or the 

highest in each of the natural years. 2) PM2.5 pollution concentrations in Beijing were 

gradually decrease during 2014 to 2018. 3) In terms of a five-year time perspective, the 

improvements of air quality and reduction of PM2.5 contaminant appeared in all the seasons 

based on Fundamental Data Analysis. 4) PM2.5 contaminant concentrations in summer are 
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significantly less than other seasons. 5) The least PM2.5 pollutant influenced area is north 

and northwest regions in Beijing, and the most PM2.5 pollutant influenced area is south and 

southeast areas in Beijing. 6) Vehicle concentration and traffic congestion is not the 

significant impact factor of PM2.5 pollutions in Beijing. 7) Heating supply of buildings and 

houses generated great contributions to the PM2.5 contaminant concentration in Beijing. 

While, in the background of rigorous emission reduction policy and management operations 

by the municipal government, contribution of heating supplies is gradually decreasing. 8) 

Human activities have limited contributions to the PM2.5 contaminants in Beijing. 

Meanwhile, type and quantity of fossil fuel energy consumptions might contribute large 

amount of air pollutions.   
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1. Introduction 

Air particulate matter (PM2.5) pollution is a critical environment problem worldwide and in 

China. PM2.5 is a kind of tiny air particulate pollution which diameter is usually 2.5 microns or 

less, as contrasted with gaseous pollutants (ozone, carbon monoxide, etc.) (EPA Particulate 

Matter, 2016). Those particles are able to go through the nose and throat into the lungs. Different 

particles may have many types of components, such as bacteria, pollen, heavy metals, dust, 

sulfates, and nitrates. Those different combinations mean PM2.5 will provide complex effects on 

the body (EPA. Integrated Science Assessment for Particulate Matter (Final Report), 2009). 

Moreover, PM2.5 also causes more health burden worldwide. The life expectancy decrease is 

positively correlated with the average PM 2.5 concentrations. In 2016 worldwide statistics, the 

expected average life was reduced about 1 year globally in average to the people exposed to 

PM2.5 pollution at birth and about 1.2-1.9 years in the heavily polluted countries (Joshua et al., 

2018). Based on some researches, the primary pollutant type of air pollution that causes lung 

cancer was ambient PM2.5 air pollution. In addition, the exposure in PM2.5 is more harmful to 

male and elderly group (Wu et al., 2021). With the metagenomic methods, several inhalable 

respiratory microbial allergens and pathogens were determined in the PM2.5 contaminant of 

severe haze disaster in January 2014 (Chen et al., 2014). 

Reducing and mitigate air pollutions is also the key emphasis in the focus of Chinese 

government. In Dr. Tang’s previous research, field work was conducted with handheld laser 

particle counters (Tang et al., 2010). To obtain the proper interpolation map, the researchers had 

to measure at different observation sites in Beijing at different times during a day. This process 

caused the field measuring of PM2.5  to be less reliable for purposes of spatial analysis. The 

objective of this research is to analyze the officially published daily PM2.5 data from 2014 to 
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2018 by the Bureau of Environmental Protections, City of Beijing, that was measured at its air 

pollution monitoring stations in finding the temporal and spatial distribution and variation 

patterns. This research also analyzes the major sources and impacting factors of PM2.5 in the city. 

The original dataset covers a total of 35 field measuring stations with hourly measurements taken 

daily  for a total of five years. Analyzing this big data of PM2.5 pollution can yield results with 

higher precision, accuracy, and consistency comparison to the previous study. The variations of 

PM2.5 pollutant temporal pattern can be used to analyze the trend and evaluate the effects of the 

air pollution control policies of the government. The variations of spatial pattern of PM2.5 

contaminant concentrations can be also used to identify the highly polluted areas, to visualize the 

variation trend in different regions, and to trace the major source of pollutant in different times 

during a day and in different seasons in a year.  

The hypothesis of this research is, first, that the PM2.5 pollution in Beijing becomes gradually 

reduced and mitigated chronologically with the “Air Pollution Prevention and Control Action 

Plan”. The “Air Pollution Prevention and Control Action Plan”, introduced in 2013, is the most 

rigorous emission reduction policy enacted by the Chinese government in Chinese history  (Zhao 

et al., 2018). Secondly, the major concentrations of PM2.5 pollutant might come from different 

sources at different time periods. During the building heat supply time-period  (the winter season 

of each year), the major source of PM2.5 pollutant is from building heat supply using coal or 

natural gas. During other seasons, the major contributor to the PM2.5 pollutant in Beijing is 

mainly from vehicle traffic emissions. 

 

2. Literature Review 

2.1. Social-Economic and Natural Factors Analysis 
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2.1.1. Studies of Social-Economic Indicators 

From the perspective of socio-economic indicators, air pollutions are the indicators that reflect 

all social phenomena and are related to human industrial production activities. Frank (et al., 

2001), looking at the impact of economic growth on air pollution (taking the actual per capita 

GDP as an economic index in Hebei Province, China), found that the energy consumption 

generated in industrial activities is the main factor producing air pollution. Du (2016) analyzed 

the changing trend of industrial waste gasses. The research found that industrial sulfur dioxide 

and industrial dust emissions are correlated with the economic index. Dinda (2004) proved that 

the relationship between air pollution and the growth of secondary sector followed the inverted 

‘U’ environmental Kuznets curve (EKC). That is to say, the air pollution will be aggravated at 

the initial stage of the development of the secondary industry. The air pollution will be slowed 

down when the secondary industry and people income develop which caused people seek for the 

better air quality. Wang and Shen (2017) selected the per capita GDP, the proportion of added 

industrial value, the proportion of coal consumption, the building area, and the number of 

civilian automobiles to study the influence of automobile exhaust and dust on air pollution. Hui, 

Mao and Dai (2018) comprehensively analyzed the influencing factors of air pollution in Hebei 

Province, China. Among them, the output values of indicators on secondary sector and 

urbanization level have positive effects on haze pollution. In the meantime, they pointed out 

actual per capita GDP, foreign direct investment, population density, and highway mileage have 

different effects on haze pollution. Li (et al., 2013) studied the air pollution of 237 cities in 

finding the impact variables. There is a significant positive correlation between the factors of 

urban secondary industry and the size of built-up area and the concentration of major pollutants 

in urban air. Jiang (et al., 2017) explored the influencing factors of air pollution from the 
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perspective of exponential decay effect, and considered that SO2 emission, per capita GDP and 

PM2.5 concentration were the main influencing factors of air pollution. 

 

2.1.2. Studies of Natural Factors 

From the perspective of natural factors, natural factors mainly refer to geographical factors and 

meteorological factors. Zhou (et al., 2010) studied the influence on the air quality of cities in 

middle Liaoning province of two sandstorm events in March 31st and May 7th, 2007. The 

conclusion showed that the average PM10 concentration increased 20% to 260% and 150% to 

380% respectively than the daily average PM10 mass during those two events. PM10 was also the 

major factor which influenced the air quality during the sandstorm events. Chen and Zhan (2018) 

considered that the particle of sand and dust made major impact to the concentration of PM10 and 

secondary impact to the concentration of PM2.5 based on the sandstorm event in Jilin province, 

May 5th, 2017. Spiroska, Rahman and Pal (2011) found that the concentration of pollutants in the 

air was the lowest in windy seasons and open terrain. Zhou and Liang (2013) took Shanghai as 

an example - the long-term relationship between air quality, wind speed and direction was 

studied, and it was found that the concentration of PM10 decreased with the increase of wind 

speed. Based on meteorological factors such as air pressure, air temperature, relative humidity, 

wind speed and direction, sunshine,  and geographical indicators such as vegetation coverage, 

altitude, and topographic relief, Liu et al. (2018) studied comprehensively influencing factors of 

air pollution in urban agglomeration of Beijing-Tianjin-Hebei. Zhou (et al., 2014) incorporated a 

precipitation index into influencing factors, studied the future changes of meteorological factors, 

and estimated their impact on air quality in Beijing-Tianjin-Hebei region. Zhang (et al., 2015) 

studied the temporal and spatial distribution pattern of fine particulate pollution in China. The 
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results indicated that the overall pollution degree of PM2.5 was intensive and shows seasonal 

effect. The concentration of air pollutants in winter and autumn was higher than that in spring 

and summer, and the concentration of air pollutants in summer was the lowest. 

 

2.2. Classical Modeling in Air Pollution Analysis   

Air quality is related to people's health and has always been one of the focuses of scientists. 

Accurately evaluating and quantifying the relationship between PM2.5 and pollution sources 

(including traffic emissions) is the premise of effectively guiding pollution prevention and 

mitigation. Related research methods can be divided into the following two categories: physical 

methods and statistical methods.  

 

2.2.1. Physical Methods 

Physical methods were based on the physical and chemical reactions in the atmosphere, and the 

modeling of pollutant emission process. Physical methods are mainly referring to the source 

analysis method of atmospheric particulate matter, including source emission inventory method, 

source model method and receptor model method.  

 

2.2.1.1. Source Emission Inventory Method 

The emission inventory method is to make statistical analysis on the activity status and emission 

level of various emission sources in a certain region or a certain country, to determine the 

emissions of pollutants from various emission sources, and then to obtain the pollution emissions 

of different pollution sources to the atmospheric environment (Zhu, Lian and Liu, 2017). This 
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method has simple and clear objectives and has been widely used up to this date. Some scientific 

research institutions in China had established emission source inventories for some typical cities 

in China, such as China Multi-scale Emission Inventory (MEIC), established by Tsinghua 

University (Shen, Yao and Zhang, 2015, and Zheng, Tong and Li, 2018).  

 

2.2.1.2. Source Model Method 

Source model method, also called diffusion model method, simulates different meteorological 

conditions and emission sources through numerical simulation process, and further estimates the 

contribution of different pollution sources to pollutant concentration (Burr and Zhang, 2011, and 

Koo, Wilson and Morris, 2009). The most widely used source model methods include multi-

scale motor Vehicle and equipment Emission System (MOVES) (Koupal et al., 2003), Computer 

Program to Calculate Emissions from Road Transport (COPERT) (Nikoleris et al., 2011) and 

International Vehicle Emission (IVE) (Zhang et al., 2008). The U.S. Environmental Protection 

Agency developed the MOVES model to estimate the emissions from road and off-road mobile 

pollution sources (Koupal et al., 2003). COPERT is a commonly used emission model in Europe. 

The model utilizes a large amount of experimental data to determine the emission parameters of 

road traffic and obtain the emission list (Nikoleris et al., 2011). IVE model uses the information 

of vehicle emission rate and vehicle driving characteristics to obtain the predicted emissions, and 

establishes the pollutant emission list (Zhang et al., 2008). The source model can obtain the 

spatial distribution of emission sources and analyze the sharing rate of different regions. 
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2.2.1.3. Receptor Model Method 

The receptor model method starts from the receptor sampling points and backtracks the 

contribution ratio of each pollution source through the physical and chemical information of the 

sampling points (Henry et al., 1984). The receptor model method is mainly divided into two 

types, namely physical method and chemical method. Physical method mainly refers to the use 

of optical microscope, scanning electron microscope and other experimental tools to analyze the 

physical characteristics of many particles (Ogulei et al., 2007). Chemical method uses chemical 

tracing with indicating ability in atmospheric particulate matters and statistical analysis method 

to obtain the source of particulate matter (Zhao et al., 2007). 

 

2.2.2. Statistical Methods 

The statistical method is to study the correlation of air quality from the perspective of air quality 

data and use the existing urban spatio-temporal multi-source data to conduct statistical modeling 

and analysis of air quality. With the wide development of air quality monitoring technology, a 

large number of data from air quality monitoring networks are generated and collected at an 

unprecedented level (Zheng et al., 2014). These spatio-temporal data, generally, can more 

effectively capture the local fine-grained grids closely related to the air quality of a certain place, 

thus obtaining better inference results than physical methods. In statistical methods, related work 

can be further divided into pollutant concentration prediction, correlation analysis and spatio-

temporal emission modeling.  
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2.2.2.1. Prediction of Pollutant Concentration 

Pollutant concentration prediction is based on a data-driven method, which uses the historical 

data of air pollutant concentration and other related data, such as human activity data and 

meteorological data, to predict the future changes of pollutant concentration, and then realize the 

effect of air quality for prediction or early warning (Lin et al., 2011). A great deal of research is 

focused on using urban spatio-temporal data and capturing the characteristic information closely 

related to air quality, then a better air pollution model than the physical method can be obtained. 

In recent years, more researchers have used machine learning methods, such as Support Vector 

Regression (SVR), Hidden Markov Model (HMM), to achieve air quality prediction and improve 

the accuracy of predictions (Welling, 2004; Awad and Khanna, 2015; Zhang et al., 2012).  

 

2.2.2.2. Correlation Analysis 

The correlation between transportation traffic and air quality can be analyzed. Many studies have 

used Pearson/Spearman correlation coefficient to analyze the correlation between road traffic 

related data and air quality data, and then evaluated the impact of road traffic on air quality (Guo 

et al., 2019 and Ni et al., 2017). However, due to the dynamic and complex process from 

pollutant emission, emission source to air pollution, it is difficult to effectively capture the 

complex nonlinear relationship between transportation traffic characteristics and air quality by 

correlation analysis. Deep learning is a subfield of machine learning that involves algorithms 

inspired by the structure and function of the brain (Najafabadi et al., 2015). Because of the 

ability of deep learning  to fit complex relationships, many people considered using deep 

learning methods to analyze the relevance. For example, Qi (et al., 2018) proposed research to 

embed feature selection methods into deep learning models, reveal the internal mechanism of the 
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deep-layer network model, and explore the relationship between air pollution prediction and 

input features. However, although feature selection methods can select the most relevant input 

information in training, but at the same time, it will also reduce prediction accuracy. Recently, 

more and more researchers think that it can be a powerful tool to explain the model by paying 

attention to important input features (Vaswani et al., 2017).  

 

2.2.2.3. Modeling of Spatio-Temporal Emissions 

Spatio-temporal emission modeling is to reconstruct the spatio-temporal pattern of traffic volume 

by using big data mining technology, and then calculate the pollution emissions by using the 

emission model and match the calculation results to the actual road network to obtain the spatio-

temporal emission pattern of urban traffic. This is the most common method to analyze 

transportation traffic emission at current time (Liu et al., 2019). However, many studies used taxi 

GPS track data to infer urban traffic volume, and then use emission models to calculate pollution 

emissions, thus obtaining the spatio-temporal emission patterns of urban traffic (Liu et al., 2019, 

Jamshidnejad et al., 2017 and Shang et al., 2014). However, taxi GPS data can only represent 

part of traffic volume in the reality (Liu et al., 2019 and Shang et al., 2014). 

 

2.3. Application of Big Data and GIS in Air Quality Research 

In the view of complexity of air pollution, it is necessary to continuously explore effective 

methods and technologies to simulate the pollution diffusion process (Yuan, 2016). Based on the 

existing environmental data, the simulation of pollution diffusion and the prediction of the total 

amount of pollutants discharged provided auxiliary decision support for the industries of 

pollutant emissions to mitigate the total amount of air pollution and manage effectively. GIS 
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(Geographic Information System), as a multidisciplinary science, has powerful spatial data 

analysis and processing functions. In the study of air pollution, according to the requirements of 

ease of use, high efficiency, safety and reliability, the air pollution diffusion model is integrated 

with GIS. The advantages of GIS in data integration, spatial data processing and analysis, spatial 

data visualization are fully utilized to study the influencing factors among various pollution 

elements (Ma, 2015). The air pollution diffusion simulation and prediction management system 

were established by using GIS related technology combined with commonly used diffusion 

models and prediction methods, which provides comprehensive and efficient functions such as 

air environment information inquiry, pollution diffusion simulation and pollution prediction, and 

auxiliary decision-making. It can directly reveal the spatial characteristics of air pollution related 

information and visualize pollution information based on GIS. The system can provide air 

pollution analysis and visualizations for meteorological departments, environmental protection 

departments and transportation departments. It has great application values. 

In the 1970s and 1980s, the study of the atmospheric environmental information system begun. 

In some western countries, with the improvement of environmental awareness, people began to 

conduct research on atmospheric environmental pollution (Holmes, 2006). At the same time, 

environmental protection organizations and software R&D companies began to research and 

develop application models and applications related to air pollution. For example, CALPUFF 

model and Atmospheric Dispersion Module (AERMOD) of U.S. Environmental Protection 

Agency (EPA), Atmospheric Dispersion Modelling System (ADMS), atmospheric diffusion 

model system of Cambridge environmental research company (CERC) (Holmes, 2006). Some 

countries have successively established geographic information application systems for air 

pollution management, and it is an important trend in international research on environmental 
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pollution management to use GIS technology to analyze data. The U.S. Environmental 

Protection Agency made spatial analysis and visual expression of the numerical simulation 

results of various air quality models by means of GIS and put forward an integrated system 

model. GIS enabled prediction model provides an effective method for users to carry out spatial 

analysis. The concentration distribution simulation research by Tchepel (et al., 1993) based on 

GIS technology combined with atmospheric model shows that GIS is outstanding in data 

processing. Marquez (et al., 1999) proposed a framework for integrating land use, transportation, 

and air diffusion models to assess the impact of urban morphology on air quality. The framework 

defined the relationships among the various components, such as GIS database, land use-traffic-

environment module and atmospheric model. The frame structure and robustness were discussed, 

and the results of recent air quality survey were introduced. Combining the ADMS model of 

Carruthers with commercial GIS software, the ADMS-Urban application system was established, 

which enhanced the spatial visualization and spatial analysis ability in air pollution prediction 

results of the model (Carruthers et al., 1997). The results could be applied to environmental 

monitoring and governance by government.  

Although the research on air pollution control, pollution diffusion simulation and pollution 

impact analysis based on GIS technology is relatively late in China, some achievements have 

been made after years of development (Zhao, 2007). In the 1980s, China established the State 

Key Laboratory of Resources and Environmental Information System. The laboratory devotes 

itself to the research of the basic theory and practical methods of geographic information, builds 

a professional scientific system integrating data and application, and promotes data integration 

and sharing in the industries. Some domestic higher education institutions, experts and scholars 

have done a great deal of scientific research in the integrated application of atmospheric 
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diffusion simulation and GIS. Jing (et al., 2006) used the spatial analysis and geostatistical 

analysis functions of GIS, based on the research on the diffusion characteristics of ozone 

pollution in Changchun urban area in summer, combined with relevant data such as air quality 

grades, and assessed the air quality status in the research area by regions. Using ArcGIS, the 

analysis results are spatially superimposed, measured, analyzed; and the dynamic change 

classification model of the research area is constructed, and the spatial distribution characteristics 

and change laws of air pollution in this area are deeply studied. Based on GIS and Remote 

Sensing (RS) techniques, some factors are mapped affecting Beijing urban airborne particulates 

pollutions, the ground surface pattern for example. With the one-year particular pollution 

observation data from 76 air sampling stations in Beijing, Tang et al. conducted the interpolation 

with the universal kriging model in GIS to analyze the spatial distribution of contaminants within 

different diameters (Zhao et al. 2009; Tang et al., 2010). Population distribution at the 

community level is also used in this research to ascertain the community exposure issues to the 

high air particle pollution. In the subsequent research (Tang et al., 2009; Xiong et al., 2015), the 

records of residents’ disease of the respiratory system were used to ascertain the spatial 

relationship with the concentration of airborne particulate matter pollution in 2008 using a 

geographically weighted regression model in GIS. The studies indicated that PM diameter 

between 0.5 to 3 micrometers had severe affection to the occurrences of respiratory diseases in 

Beijing.  Zhao (et al., 2008) realized the air pollution diffusion model by using VB programming 

environment and built the air pollution diffusion application program based on GIS by using 

Map Objects and Surfer 8.0 components. The simulation of different types of pollution diffusion 

and the visualization of the results are realized, which provides a scientific auxiliary decision for 

the relevant government departments to effectively manage and solve the urban air environment 
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problems. Li (2012) compared and analyzed various spatial interpolation methods, finally chose 

Kriging interpolation method, and designed and developed an air pollution diffusion simulation 

system based on IDL language. The spatial visualization of the model simulation results was 

presented, and Beijing was selected as the research area for practical research and analysis. The 

research results can be used to show the spatial distribution characteristics and forecast for air 

pollutant diffusion. An (et al., 2012) used GIS spatial analysis and interpolation function to study 

the spatial distribution of air pollution in Lanzhou in winter. Using Surfer to draw isolines, the 

research shows that GIS spatial analysis function can effectively simulate the air pollution 

diffusion in the research area, intuitively display the spatial distribution of pollutants, and 

provide a feasible method for studying the spatial distribution and spatial diffusion of air 

pollution in cities with similar geographical environment. Zhang and Zhao (2008) combined air 

pollution diffusion model with GIS, displayed simulation results of air pollution diffusion based 

on GIS spatial visualization function, and summarized the theoretical method and 

implementation process in combining GIS with Gaussian diffusion model.  

It clear that, GIS has made great contribution and wide application in the air pollution studies 

worldwide. With the gradual deterioration of human living environment and the destruction of 

ecological balance, GIS can play a greater role in the field of environmental comprehensive 

management, especially in the prevention and management of air pollution. The exploration of 

air pollution reduction and elimination based on GIS technology will also make great progress in 

practice.  
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2.4. The Applications of Machine Learning and Deep Learning in The Research of 

Air Pollution 

At present, the main air quality prediction methods using machine learning are based on neural 

network, gray model and support vector machine (Zhang et al., 2017). The prediction method 

based on gray model has the advantage of convenient calculation, but it cannot adapt to the 

nonlinear and time-varying characteristics of air quality. The prediction method based on support 

vector machine has the ability to quickly obtain the global optimal solution, but its processes of 

setting parameters are difficult. The reasonable selection of parameters directly affects the 

accuracy of the prediction results (Zhang, 2014). The artificial neural network technology has 

good adaptability to uncertain, multi-input and complex nonlinear problems (Yan et al., 2015), 

and shows excellent ability in the field of prediction. Therefore, the prediction method based on 

neural network was selected by Yan et al. (2015). The exploration of neural network began in the 

1940s (Li et al., 2015). Based on biological neurology, it imitated the transmission of brain 

neurons and abstracts a way of information processing. In the progress of scientific research, 

neural network is constantly enriched, from the simple linear approach to be able to simulate the 

complex network structure now, in order to solve more complex problems. According to the 

characteristics of neurons and learning rules, at present, it has formed dozens of kinds, such as 

BP neural network and Boltzmann machine (Asja and Christian, 2014), Hopfield neural network, 

radial basis function neural network (Schilling et al., 2001), self-organizing competitive neural 

network, convolution neural network, and deep neural network (Szegedy et al., 2014) and cyclic 

neural network developed on the basis of convolution neural network. According to the 

topological structure, it can be divided into feedforward neural network and back fed neural 
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network. Artificial neural network has strong noise tolerance and nonlinear processing ability, so 

it has a place in the research of air quality prediction. 

As a branch of machine learning method, deep learning technology has the ability to fit any 

continuous function (Chang, 2015), and can better mine the characteristic information closely 

related to air quality in urban spatiotemporal data, so as to achieve good prediction accuracy (Cai 

et al., 2019). A hybrid artificial neural network model combining air quality trajectory analysis 

and wavelet transform was adopted by (Liu, 2003), and predicted the change of PM2.5 average 

concentration in the next two days. Using the memory function of Recurrent Neural Network 

(RNN) in time series, a special RNN, Long Short-Term Memory network (LSTM) was used to 

replace the fully connected neural network for time series prediction (Mehmed, 2003). The Deep 

Air team at UC Berkeley also used machine learning to predict air pollution. The LSTM based 

air pollution sequence prediction model was studied, which can accurately predict the air 

pollution in the next ten hours. Tan (2013) constructed a real-time air quality prediction system, 

using data-driven models to predict fine-grained air quality in the next 48 hours. Zhao (2017) and 

Zhu (2017) proposed to use two-stage attention model (DA_RNN) to achieve time series 

prediction task and multi-level attention based RNN time series prediction model (GEO_MAN) 

to achieve air quality prediction. However, the existing models can improve the accuracy of the 

models by using the latest network structures, such as Long-Short-Term Memory network 

(LSTM), Gating Cycle Unit (GRU), while the dynamic process modeling of air pollution is not 

considered. For example, the generation process of PM2.5 is hierarchical, including direct 

emission and secondary generation. Although the effective air pollution concentration prediction 

and early warning can provide guidance for people's travel safety, the existing methods only 
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realize the prediction of PM2.5 concentration, which cannot provide effective help to solve the 

pollution problem fundamentally. 

 

2.5. Air Pollution Studies in China 

There are various methods for Chinese researchers to analyze the influencing factors of air 

pollution. Wang (et al., 2020) used the grey correlation analysis model to analyze the impact of 

industry, resident population, agriculture, and automobile ownership on air quality based on the 

air pollution data of cities Tianjin and Xingtai. Gray correlation analysis was proposed by Deng 

(1990) from the gray system approach. It is a methodology for quantitative analysis of dynamic 

processes using similarity of trends and patterns between reference and comparison series. Wang 

(et al., 2019) used the grey correlation analysis method to study the correlation degree of 

industrial added value, energy consumption and vehicle ownership on air pollution components 

in Handan City, Hebei Province, China during 2014 to 2018. Huang (2016) used the grey 

correlation analysis method to calculate the correlation degree between the total population, the 

proportion of the secondary industry and the concentration of air pollutants, so as to measure the 

degree of air quality affected by various indicators. He (et al., 2016) used the principal 

component analysis method to analyze the influencing factors of air pollution in Beijing – 

Tianjin – Hebei region from the aspects of regional environment, economic development level 

and resource consumption.  

Chen and Jin (2019) analyzed the impact of PM2.5 concentration on housing prices in 286 

Chinese cities and indicated that the housing prices in cities with high air pollution were lower. 

The housing prices were also affected by population density, average wage, industrial structure, 

public service level and other factors to a large extent according to the study. Jia (et al., 2020) 
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analyzed the PM2.5 data and showed that the areas with poor air quality were mainly 

concentrated in the vicinity of urban construction and urban main traffic network areas. Zheng et 

al. (2015) conducted the model-assisted analysis on major chemical compositions of PM2.5 

pollutant in Beijing based on the hourly observation data. Their conclusions are: (1) The severe 

haze incidents happened in Beijing were driven by stable weather conditions in Northeast China. 

(2) The major component of PM2.5 during 2012 to 2013 were secondary species or made by 

human activities, including organics, sulfate, nitrate, and ammonium. (3) The aerosol 

concentration accumulation process that happened in southeast part of Beijing was persistent. 

The instantly increased PM2.5 concentration represented the imported contaminant accumulations 

in Beijing, rather than locally produced pollutants. Research suggested regional migration of 

pollutants plays an important role in those severe haze events in Beijing (Zheng et al. 2015). 

Zheng et al. (2005) also found the seasonal trend of Beijing PM2.5 contaminant. The major 

contents of Beijing PM2.5 mass are dust (20%), sulfate (17%) is the second largest, and nitrate 

(10%) is the third. But during the building heating time period in winter, coal combustion and 

biomass aerosol contributed more to the PM2.5 concentrations. Dust storms also made major 

impact on PM2.5 concentrations. During the dust storm event in April 2004, 36% of PM2.5 mass 

was contributed by dust alone. According to Li’s (2016) study, the distribution of PM2.5 in 

Beijing area is obviously affected by the surrounding regions. The process of PM2.5 pollutant 

diffusion was greatly influenced by the landscape and weather conditions in Beijing. The results 

showed the importance of controlling the transport of pollutants in the southern and western 

regions in winter (Li, 2016). Taking Wuhan as the research area, Xu and Chen (2020) elaborated 

the impact of urban development structure on air quality and found that air pollution decreased 
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from the center of the city to the periphery. It is suggested that the urban development method 

with high capacity and low density could reduce urban air pollution. 

In Fan and Shan’s research (2017), based on the air quality monitoring data and relevant 

meteorological data of 17 cities in Shandong Province, using the methods of spatial 

autocorrelation analysis and spatial interpolation, they studied the temporal and spatial 

characteristics of PM2.5 and the influence of meteorological factors. Sun (2019) analyzed and 

compared the air pollution status of Beijing – Tianjin – Hebei – region from aspects of natural 

factors and social economy and constructed a spatial econometric model. The results showed that 

the influence directions of PM2.5 concentration and six indicators such as temperature, relative 

humidity, wind speed, regional GDP, the proportion of primary and tertiary industries were the 

same, the influence directions of population density, urban green coverage rate and precipitation 

were opposite. 

Ye (2016) and others found that the bad situation of Hebei environment had a negative role in 

promoting economic growth and would inhibit economic growth in the long term. Based on the 

semi parametric panel data model, Lu (2018) and others found that there is an inverted ‘U’ curve 

relationship between economic growth and environmental pollution emissions in Jiangsu 

Province. When exploring the relationship between economic growth and air pollution, Wu 

(2018) found that there was a shock curve relationship between air pollution and economic 

growth, but it was not completely consistent with the traditional inverted ‘U’ curve and 

compared the ordinary parameter model and semi parameter space model, and the results showed 

that the semi parametric spatial model was more accurate than the ordinary parameter model. 

Chen and Qiao (2017) studied the semi parametric spatial error model. Based on small sample 
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data, the model fitting effect was better, and the model accuracy increased with the increase of 

sample size. 

Yang and Chen (2018) analyzed the precision and real-time performance of ARIMA and LSTM, 

the results showed that LSTM model had obvious advantages in real-time online prediction. Li 

and Yang (2018) fully used the LSTM model to process the time series, which could consider the 

characteristics of the correlation information before and after the data and used it to predict the 

silicon content. Based on LSTM, Bai and Shen (2019) used air pollutants as predictive indicators 

to build a PM2.5 prediction model. Shi and Jiang (2019) conducted multiple comparative 

experiments with the models established by SVM, BP neural network and multiple linear 

regression, which showed that the LSTM prediction model had better prediction effect. Zheng, 

Bai and Hou (2019) constructed a LSTM model based on Keras deep learning framework to 

predict the AQI in Taiyuan. Zhang and Wei (2019) built a prediction model based on LSTM to 

predict water saturation distribution. Zhang and Chen (2019) put forward the method of space-

time adjustment to eliminate meteorological interference and evaluated the air quality in Beijing. 

Deng and Wu (2020) constructed a PM2.5 hourly concentration prediction model combining 

Stack Sparse Auto-Encoder (SSAE) and LSTM to analyze the air quality data of Beijing Tianjin 

Hebei region. 

  

2.6. Air Pollution Studies in The United States and Other Countries 

From the 1960s to the 1980s, most of the air pollution studies have taken American cities as 

empirical cases. Ridker and Henning (1967) pointed out earlier that the market value of a house 

was determined by a series of attributes. Their study, taking the metropolitan area of St. Louis as 

an example, proposed that with some improvements in air quality, the value of real estate can be 
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greatly improved. Rosen (1974) developed a classical hedonic price model, which interpreted 

housing characteristics as independent variables, and applied air pollution as implicit price to 

housing value evaluation. Harrison and Rubinfeld (1978) used hedonic price models to 

investigate consumers' willingness to pursue clean air in the Boston area housing market. Nelson 

(1978) used a two-stage model to estimate people's demand for urban air quality from the value 

of housing in Washington, D.C. Since 2000, Researchers have also begun to pay more attention 

to the impact of air quality in developing countries. Azmi (et al., 2012) took Bangkok as an 

example to study the relationship between air quality and the real estate market through the air 

quality index (AQI). 

In addition, environmental justice research provided a lot of evidence that ethnic minorities and 

low-income people were more vulnerable to the negative impact of air pollution. Brulle and 

Pellow (2006) proposed that environmental inequality is the result of social processes. Hajat (et 

al., 2015) collected 37 environmental justice studies around the world, to examine trends in the 

impact of air pollution on ethnicity and socio-economic status. Their research showed that in 

North America, people with lower socioeconomic status were more likely to suffer from more 

severe air pollution. Although air pollution was decreasing over time, it was important to assess 

whether certain environmental policies had an impact on the unequal distribution of air pollution. 

The research of Miranda (et al., 2011) made use of the ethnic distribution of the population, age 

and income level to test the impact of air pollution on different groups of people, especially the 

non-Hispanic and African American population in the United States. The study found that this 

group was always exposed to the worst urban air. Brochu (et al., 2011) studied the impact of 

PM2.5 on urban population in northern America. It was found that people with lower 

socioeconomic status were at higher risk of air pollution. Mathieu Carrier (et al., 2014) also 
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studied the relationship between urban population income, minority groups and air pollution, and 

found that low-income minority groups tend to live near major roads with higher air pollution 

levels. 

Felix (et al., 2000) introduced forgetting gate, that is, LSTM pattern, on the basis of RNN to 

solve the problem of step elimination. Thomas and Christopher (2017) constructed the LSTM 

neural network prediction model in deep learning to predict the environmental quality, which has 

a good prediction effect. Suleiman (et al., 2018) based on AQI and CO, NO2, O3, PM10 and SO2 

in Romania, constructed a machine learning model to predict the air pollutants (PM2.5, PM10), 

and the final result achieved good prediction accuracy. Wang (et al.,2017) combined the two-

phase decomposition technology and improved extreme learning to construct the AQI prediction 

model and achieved good prediction results. Ji and Xie (2018) combined FCM and BP neural 

network to construct AQI prediction model. The predicted value is close to the true value, and 

the prediction accuracy of the model is very high. Esposito (et al., 2016) built a dynamic neural 

network volume prediction model which can be used for random calibration in the field based on 

the air quality sensing system with good cost performance. Alimissis, Philippopoulos and Tzanis 

(2018) used the BP neural network pre-model to predict the air pollution index, and achieved 

good prediction results.  

Johnson, Bartosz and Constantine (2018) studied the universality of air quality sensor in dense 

heterogeneous urban agglomeration. Tang and Ji (2018) made full use of WRF-Chem model to 

predict pollution, weather and chemical composition as input features, and designed a 

comprehensive evaluation framework to improve the prediction performance. Belavadi (et al., 

2020) used two neural network models, LSTM and RNN, to predict air quality. Navares and 

Aznarte (2021) studied a method to predict the concentration of CO, NO2, O3, PM10, SO2 and 
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pollen. This method introduced different topologies of LSTM. Compared with the traditional two 

forecasting methods, the LSTM model has higher accuracy. 

 

2.7. PM2.5 National Standard Differentiation  

The global average annual concentration of PM2.5 ranges from less than 10 μg/m3 to more than 

100 μg/m3. Based on World Health organization guideline values, the annual mean particulate 

matter is 10 μg/m3, the 24-hour mean is 25 μg/m3 (Ambient (outdoor) air pollution, 2018). Based 

on the National Ambient Air Quality Standards (NAQQS), in the United States, 12.0 μg/m3 is the 

primary annual mean standard and 15.0 μg/m3 is the secondary annual mean standard. In 

NAQQS, primary standard provides public health protection, and secondary standard provides 

public welfare protection. The 24-hour standard based on the NAQQS Table is 35 μg/m3 

(NAQQS Table, 2021). In China, based on the Ambient Air Quality Standards (GB3095-2012), 

15 μg/m3 is the primary annual mean standard and 35 μg/m3 is the secondary annual mean 

standard. 35 μg/m3 is the primary 24-hour mean standard and 75 μg/m3 is the secondary 24-hour 

mean standard. In Chinese Ambient Air Quality Standards, primary standard is used in nature 

reserve, tourist attractions, and other areas need special protections. Secondary standard is used 

in residential, commercial traffic mixed area, cultural area, industrial parks and rural areas 

Ambient Air Quality Standard (Ministry of Ecology and Environment Protection of the People’s 

Republic of China, 2012). In addition, the breakpoints for the Air Quality Index (AQI) in the 

U.S. and China are different. AQI is a non-linear dimensionless index that quantitatively 

describes the air quality condition. The larger the value and higher the level, the more serious the 

air pollution condition is and the greater the health risk to humans (Monteiro et al., 2017). 

According to Table 1 below, the major differentiates are in the 0 to 200 AQI section. It’s clearly 
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showed that, in good, moderate and unhealthy for sensitive groups categories, Chinese 

breakpoints have a wider range to the 24-hour PM2.5 concentrations. 

Category AQI PM2.5 (μg/m3) 

24-hour America 

PM2.5 (μg/m3) 

24-hour China 

Good 0-50 0.0-12.0 0-35 

Moderate 51-100 12.1-35.4 35-75 

Unhealthy for 

Sensitive Groups 

101-150 35.5-55.4 75-115 

Unhealthy 151-200 55.5-150.4 115-150 

Very Unhealthy 201-300 150.5-250.4 150-250 

Hazardous 301-400 250.5-350.4 250-350 

401-500 350.5-500.4 350-500 

Table 1: Comparation between Chinese and American Breakpoints for the AQI 

 

3. Method 

3.1. The Study Area 

Beijing is in the northern part of North China Plain, 39.9042°N and 116.4074°E. The city area is 

surrounded by the Yan Mountain located to Beijing’s north, northwest, and west sides (Figure 1). 

The climate in Beijing is a monsoon-influenced humid continental climate (Dwa: Köppen 

Climate Classification) which is characterized by relatively high humidity and high temperature 

in the summer times; relatively dry and low temperature in the winter times (Beck et al., 2020).  
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Figure 1: The Location of Beijing in the North China Plain.  

(Maphill, 2011) 

 

With the fast urbanization and industrialization process, Beijing has observed a sharp increase in 

the frequency of severe air pollution incidents in the past few decades. During the wintertime in 

2012 and 2013, the severe haze incident affected Beijing repeatedly, causing serious 

environmental and health problems. Zheng et al. (2015) conducted the model-assisted analysis 

on major chemical compositions of PM2.5 pollutant in Beijing based on the hourly observation 

data. Their conclusions are, (1) The severe haze incidents happened in Beijing were driven by 

stable weather conditions in Northeast China. (2) The major component of PM2.5 during 2012 to 

2013 were secondary species or made by human activities, including organics, sulfate, nitrate, 

and ammonium. (3) The aerosol concentration accumulation process happened in southeast part 

of Beijing was persistent. 
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3.2. Data Acquisition and Processing 

3.2.1. Siting Criteria of Official Beijing Municipal PM2.5 Datasets  

The PM2.5 air pollution were monitored and published by the Beijing Municipal Environmental 

Monitoring Center. The siting criteria was according to the Technical Specifications for 

Installation and Acceptance of Ambient Air Quality Continuous Automated Monitoring System 

for PM10 and PM2.5 (HJ 655-2013) (Ministry of Ecology and Environment Protection of the 

People’s Republic of China, 2013). All the monitoring sites should be on the ground when 

intermittent monitoring method is used. Around the monitoring site, there should not be new 

construction site, or tall buildings, trees or other obstacles to hinder the air circulations. The 

height of sample collection ports from the ground should be within 3 to 15 meters. The air flow 

within the space of 270 degrees around the sample collection port should not be affected by other 

environmental factors. For the road traffic pollution monitoring sites, the height of sampling 

ports from the ground should be within 2 to 5 meters. The distance between the sampling ports 

and the upholder surface such as building walls, roof should be more than 1 meter. If there are 

physical fences around the upholder surface, the sampling ports should be higher than solid 

fences at least 0.5 meters. When the multiple sampling sites are set up, to prevent interference of 

other particulate sample collection, particulate matter sampling ports should be kept greater than 

1-meter in horizontal distance with other sampling ports. If the reference sampler flow rate ≤

200L/min during the comparative monitoring, the linear distance between each sampling port of 

the sampler and the monitor should be about 1 meter. If the reference sampler flow 

rate >200L/min, the linear distance between each sampling port of the sampler and the monitor 

should be 2 ~ 4 meters. If high vacuum and large flow sampling devices are used for 

comparative monitoring, the linear distance between them should be 3 ~ 4 meters.  
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Beijing Municipal Environmental Monitoring Center manages a total of 35 environmental air 

monitoring stations, which are located in different districts and counties in both urban and suburb 

areas in Beijing. The particle matter sampling site located at Longevity West Palace is one of the 

selected daily PM2.5 data source stations in Beijing which is used in this study (Figure 2) 

 

Figure 2: The Particle Matters Sampling Site and Equipment Setup in Longevity West Palace 

 

3.2.2. Research Data Collection 

Hourly values of PM2.5 air pollution were monitored and published by the Beijing Municipal 

Environmental Monitoring Center (http://www.bjmemc.com.cn/). The five-year period datasets 
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of this research were downloaded with the help of Professor Zhao and his graduate students at 

the Capital Normal University, Beijing, China. The PM2.5 concentration data was collected from 

the websites of Beijing Municipal Environmental Monitoring Center 

(http://www.bjmemc.com.cn/) and China Air Quality Real-time Distribution Platform 

(http://106.37.208.233:20035/) with crawler technology using a Python program. Web crawler is 

a program or script that automatically captures information on the World Wide Web according to 

certain rules. Crawler technology is an efficient downloading software that can transfer massive 

amounts of web data to the local storage space in a continuously manner, where it forms a mirror 

backup of Internet pages (Meng et al., 2006).  

After the PM2.5 source data was collected, we conducted manual examinations and data quality 

evaluations. Eight (8) monitoring stations were removed owing to large quantity of “null” values 

in the database. We think the reason to cause this situation is the instability of the data collecting 

computer. This research used the datasets of remaining 27 environmental air monitoring stations 

located in both urban area and suburb area (Figure 3) across Beijing.  
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Figure 3: Map of Total PM2.5 Observation Sites and the Sites Used in This Research in Beijing 

Municipality 



29 

3.2.3. Research Time Selection and Data Processing 

Fan et al. (2015) studied emission characteristics of vehicle exhaust based on actual traffic flow 

information in Beijing. The research analyzed the spatial and temporal distribution patterns of 

vehicle volume and pollutant emission quantities. The research indicated there was a positive 

correlation between pollutant emission intensities and traffic volume. The emission intensity was 

generally higher during the daytime and high traffic hours than the evening hours. Based on the 

results of this research, we hypothesized the possible high and low pollution time periods during 

a 24-hour day. A total of five (5) sample time periods were classified for each of the monitoring 

days during the five-year period. These are: morning peak traffic time period (MPT, an average 

PM2.5 concentration data from 06:00am and 08:00am); morning low traffic time period (MLT, an 

average PM2.5 concentration data from 9:00am and 11:00am); afternoon low traffic time period 

(ALT, an average PM2.5 concentration data from 01:00pm and 03:00pm); afternoon peak traffic 

time period (APT, an average PM2.5 concentration data from 04:00pm and 06:00pm); and 

midnight time period (MIDN, an average PM2.5 concentration data from 01:00am and 03:00am). 

MPT and APT are the commuting peak time in Beijing which have the maximum traffic flow. 

MLT and ALT are the major working time periods during a day. We would like to find the 

contribution of human activities on the PM2.5 pollutions in Beijing. To discover the potential 

contributions of PM2.5 concentration from heating supply to buildings and houses in Beijing, we 

also selected a mid-night sample period.  

 

Data of sampling time periods were extracted using MATLAB software and stored in Excel. 

Python programming was applied to integrate those Excel charts into yearly different and site 

different Excel sheets (Appendix A, several notes and result output language in Chinese). One 
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example of Python program was inserted into the appendix. A total of 27 programs were made 

for the 27 environmental air pollution observation sites. In each dataset, our selected time periods 

are in the order of MIDN, MPT, MLT, ALT, APT. (Figure 4) 

 

Figure 4: Example of Integrated Dataset, Agriculture Pavilion Site, 2014 

 

After reorganizing the hourly PM2.5 air pollution observation datasets during five years, each site 

has 5 Selected Datasets for each sampling year, and there are 135 Selected Datasets in total for 

the 27 air pollution monitoring stations.  

 

In order to capture the seasonal distribution and changes of the PM2.5 air pollutions, one of the 

major approaches in this study is to divide the season in each year and calculate the mean value. 

Using a typical meteorological breakdown of seasons, we decided to use March, April, May in 

each year as months of spring season; June, July, August in each year as months of summer 
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season; September, October, November in each year as months of autumn season; December, 

January, February in each year as months of winter season. Then we calculated the seasonal 

average of PM2.5 concentrations in each of the observation sites in each year and saved them into 

new datasets (Seasonal Average Selected Datasets). (Figure 5) These operations were completed 

with Excel. We obtained 5 Seasonal Average Selected Datasets for each sampling year which 

include all the observation sites. 

 

Figure 5: Example of Seasonal Average Selected Datasets, 2014 

 

3.3. Methods and Approaches of Temporal Distributions and Change of Air 

Pollution 

3.3.1. Fundamental Data Analysis – Linear Regression Model Regression Trend Lines 

In big data analysis, regression analysis is a predictive modeling technique that studies the 

relationship between dependent variables (targets) and independent variables (predictors). This 

technique is often used in predictive analysis. In statistics, regression analysis refers to a 

statistical analysis method that determines the quantitative relationship between two or more 

variables that are depended on each other. We conducted basic analysis of simple seasonal 
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temporal pattern with the linear regression model of daily average PM2.5 concentration data in R 

studio (Appendix C). Linear regression model is one of the most well-known modeling 

techniques. Linear regression model is a statistical analysis method that uses regression analysis 

in mathematical statistics to determine the interdependent quantitative relationship between two 

or more variables. Linear regression uses the best fitting line (regression line) to establish a 

relationship between the dependent variable (Y) and one or more independent variables (X). In 

our study, daily variation or temporal change patterns were specified as the dependent variable 

and PM2.5 concentrations as independent variable. The objective of this analysis is to 

demonstrate the general trend of slopes on decreasing or increasing of seasonal PM2.5 

concentrations with regression trend lines of linear regression model in the 5-year period. This 

simple temporal pattern can show the general trends of seasonal variation on PM2.5 pollutants in 

Beijing. 

 

To show the significance of time trend in these sites, we conducted Mann-Kendall statistical test 

in the R studio (Appendix C). The Mann-Kendall nonparametric statistical method recommended 

by the World Meteorological Organization and is widely used. The method can effectively 

distinguish whether a natural process is in natural fluctuation or has a monotonic trend (Cao et 

al., 2008). Mann-Kendall nonparametric rank test is useful in trend detection of data. Its 

advantage are as follows, first, the series is allowed to have missing values. Secondly, there is no 

need to conduct specific distribution test for data series, and trend test can also be performed for 

extreme values. Thirdly, the analysis is mainly about the relative order of magnitude rather than 

the number itself, which enables the analysis of trace values or values below the detection range 

(Karmeshu, 2012).  
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With the help of R studio, we generated 5-year seasonal datasets in the program and conducted 

analyses of two observation sites by two observation sites, all the codes we used are in the 

Appendix C. 

 

3.3.2. Principal Component Analysis – PCA 

Principal Component Analysis (PCA), is a multivariate statistical method to examine the 

correlation among multiple variables. PCA studies how to reveal the internal structure among 

multiple variables through a few principal components, deriving a few principal components 

from the original variables so that they retain as much information as possible about the original 

variables. The objective of using PCA in this research is to look for the major impact pollution 

pattern among the five different sampling times during a day in five-year period in temporal 

scale for the entire five years. 

We analyzed aggregative temporal patterns of the dataset with the principal component analysis 

(PCA) in MATLAB platform. The detail program code of this analysis is listed in Appendix D. 

The first step in PCA procedure is Data Arrangement. We converted the data from Excel 

worksheets into a MATLAB data file, which organized by location and year. In order to 

standardize the data, we subtracted the mean and dividing by the standard deviation for each value 

of the variables. The purpose of this step is to standardize the range of continuous initial variables 

so that each of them contributes equally to the analysis. The next step is the Covariance Matrix 

Computation. The purpose of this step is to understand how the variables in the input data set vary 

relative to each other's means, in order to determine the relationships between variables. Then we 

computed the eigenvectors and eigenvalues of the covariance matrix to identify the principal 

components. The principal component with the highest variance is termed the “first principal 
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component.” To avoid protentional negative values in the process, which are meaninglessness in 

PM2.5 concentration values, we only used the result of “first principal component”. In the end, we 

recasted the data along the axes of principal components. The purpose is to redirect the data from 

the original axes to the axes represented by the principal components using the eigenvectors 

formed by the eigenvectors of the covariance matrix. 

Based on tutorial textbook of Shlens (2014), the central idea of principal component analysis is to 

reduce the dimensionality of a data set composed of many related variables while preserving the 

variation existed in the data set as much as possible. This is achieved by converting input variables 

to a new set of variables, known as principal components (PCS), which are unrelated and ordered 

so that the first few retain most of the changes that occurred in all the original variables. The 

principal component represents the direction of the data that explains the largest amount of 

variance or changes over time period, that means the line that captures most of the information in 

the dataset. In this study, our objective is to find the principal component that represents the 

temporal variations of the entire time during this 5-year on the hourly basis, which is a 

measurement or survey in this large database.   

 

3.4. Methods and Approaches of Spatial Distributions of Air Pollution  

3.4.1. Recent Development of Spatial Interpolation Methods – A General Review 

Spatial interpolation is the process of estimating the values of the variables to be studied at 

unsampled locations with data of known observation points in the same region. Statistical 

interpolation methods were applied to air pollutant modeling to estimate the spatial distribution 

of air pollutions based on data provided by air quality monitoring sites (Lozano et al, 2009; 

Deligiorgi et al, 2011). In general, there are two major categories of interpolation techniques: 
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deterministic and geostatistical. Proximity interpolation, global polynomial interpolation (GPI), 

local polynomial interpolation (LPI), inverse distance weighted (IDW), and radial basis functions 

(RBF) belong to the category of deterministic methods. Geostatistical interpolation techniques 

include surface trend and Kriging. Deterministic interpolation methods create prediction value 

surfaces with measured points based on degree of similarity or smoothness (Gimond, 2021). 

Geostatistical methods quantify the spatial autocorrelation between measurement points and 

account the spatial configuration of sampling points around the predicted location. Based on 

statistical data, these approaches are able to generate not only prediction value surface, but also 

error surface or uncertainty surface to indicate the ideal degree of prediction results (Gimond, 

2021). In addition, based on different application scenarios, several spatial analysis models were 

developed. Triangular Irregular Network (TIN) is for elevation, slope and aspect modelling. 

Neighborhood Analysis is for spatial analysis of categorical data. Data with natural 

neighborhood points should be mapped to discrete regions where the value assigned to each 

point is constant, such as soil type and land use. 

 

3.4.2. Methods of Inverse Distance Weighted Spatial Interpolation    

The Inverse Distance Weighted (IDW) technique uses values from nearby weighted positions to 

calculate the average of unsampled positions. IDW interpolation explicitly assumes that things 

are close to one another are more alike than those that are further apart. It is expected that we 

will have more accurate result from IDW interpolation for those physically generated features or 

events. Based on Gimond’s guidance article (2021), the weight is proportional to the proximity 

of the sampling point to the unsampled position and can be specified by the IDW power 
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coefficient. The bigger the power coefficient, the stronger the weight of nearby points as can be 

gleaned from the following equation that estimates the value z at an unsampled location j: 

𝑍�̂� =  
∑ 𝑍𝑖/𝑑𝑖𝑗

𝑛
𝑖

∑ 1/𝑑𝑖𝑗
𝑛

𝑖
 

The carat ^ above the variable z points out that the value at j is being estimated. The parameter n 

is the weight parameter that is applied as an exponent to the distance thus amplifying the 

irrelevance of a point at location i as distance to j increases.  

IDW algorithm is actually a moving average interpolator that is typically applied to highly 

variable data. For some specific data types, it is possible to return to the collection site and 

record a new value within the overall trend for the region. Examples of such data include soil 

chemistry results, and environmental monitoring data. To predict a value for any unmeasured 

location, IDW uses the measured values surrounding the prediction location. In this study, we 

used the average data that was calculated from observation stations to predict spatial 

distributions of PM2.5 air pollutions. In addition, IDW assumes that the local effect of each of the 

measurement points decreases with increasing distance, which better reflects the geographic 

distribution pattern of the PM2.5 in the city. In our study, we will make PM2.5 concentration 

spatial interpolation maps in annual average and in seasonal average by five different sample 

time periods for each of the 27 air pollution monitoring stations applying ArcGIS Desktop. 

 

3.5. Integration of Spatial and Temporal Analyses with Large Air Pollution Dataset 

Reading the result atlas of spatial interpolations, we decided to perform standardization 

procedures to separate and standardize the legend in our annual average spatial interpolation 
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atlas (Annual Average Atlas) of PM2.5 concentrations and seasonal average spatial interpolation 

atlas (Seasonal Average Atlas) for different daily sample time periods of PM2.5 concentrations. 

For the annual average spatial interpolation atlas of PM2.5 concentrations, we selected 5 ug/m3 as 

the legend group unit. All the maps in the annual average spatial interpolation atlas of PM2.5 

concentrations began at 50 ~ 55 ug/m3 group and end at 95 ~ 100 ug/m3 group. There are a 10 

concentration groups in total. 

In the spatial interpolation atlas for seasonal average of PM2.5 concentrations at different daily 

sample time periods, we found 27 ug/m3 is the lowest PM2.5 concentration, which is from APT 

time in the summer of 2018. The highest PM2.5 concentration is 200 ug/m3 and is from MIDN 

time in the winter of 2015. To guarantee the distinguishability of each map, we defined 18 

concentration groups in total. For the Seasonal Average Atlas, we selected 10 ug/m3 as the 

legend group unit. All the maps of seasonal spatial interpolation atlas of PM2.5 concentrations in 

the different daily sample time periods began at 20 ~ 30 ug/m3 group and end at 190 ~ 200 ug/m3 

group.  

 

Owing to majority of maps in the Seasonal Average Atlas have completely different PM2.5 

concentration range, we need to use ArcGIS Desktop to create a “hypothetical” standard PM2.5 

concentration map (Figure 6) based on the adjusted PM2.5 concentration dataset to generate the 

standardized legend for the Seasonal Average Atlas. This “hypothetical” PM2.5 concentration 

map includes the lowest and highest PM2.5 pollutant values. Then, we used the function “convert 

a map element into a graphic” to convert the legend to a graphic, which means disconnect to the 

“hypothetical” map document and is able to copy to all the maps in the Seasonal Average Atlas.  
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Figure 6: Hypothetical Map for Creating the Legend of Seasonal Average Atlas (ug/m3) 
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4. Results 

4.1. Results of Temporal Analysis of Air Pollution 

4.1.1. Results of Mann-Kendall Trend Analysis 

We analyzed the slope of trend lines and p-values and organized several charts in the R studio 

program (Appendix C). In our Basic Data Analysis, the null hypothesis is that there is no obvious 

up or down trend within the five-year period for different seasons. If p-value < 0.01, the 

description of the result is a stronger determination in rejecting the null hypothesis. If p-value is 

between 0.01 and 0.05, the description of the result is a weaker determination in rejecting the 

null hypothesis. If p-value > 0.05, it indicates that the results are more inclined to accept the null 

hypothesis. 

Table 2 summarizes the result of slope and p-value of spring season trend line during the five-

year period. Table 2 is sorted by the slope rate from lowest to highest. From Table 2, we can find 

p-values of several sites are between 0.01 and 0.05 (green section) or higher than 0.05 (orange 

section). Meanwhile, 11 of 27 PM2.5 observation sites show that there are significant descending 

trends in the spring season during the five-year period of PM2.5 contaminant concentrations. 11 

of 27 PM2.5 observation sites show there are weak descending trends in the spring season during 

the five-year period of PM2.5 contaminant concentrations. 5 of 27 PM2.5 observation sites show 

that there are no obvious up or down trends of PM2.5 contaminant concentration in the spring 

season during the five-year period. Figure 7 shows the example result of 3 diagrams with 

different trend conclusions. The detailed diagrams can be found in Appendix E. From Figure 7, 

we can clearly identify the differences of the slope of trend lines. Although the variance of p-

value results exists, majority of PM2.5 observations (22 of 27) show descending trend (significant 

or weak trend) during the spring season of five years. Comparing different locations of the PM2.5 
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observation sites in the spring (Table 2), all 5 sites with no obvious variation trends are located in 

the suburban areas in Beijing. 

Station-Name Spring Slope P-value 

Fangshan -0.0842 <0.01 

South Third Ring Road -0.07639 <0.01 

Yungang -0.07217 <0.01 

Yizhuang -0.07102 <0.01 

Daxing -0.0642 <0.01 

Fengtai Garden -0.06266 <0.01 

Inside Yongding Gate -0.06159 <0.01 

Agricultural Pavilion -0.05878 <0.01 

Tongzhou -0.05798 <0.01 

Wanliu -0.05735 <0.01 

Olympic Sports Center -0.05692 <0.01 

Front Gate -0.05393 0.01019 

Temple of Heaven -0.05079 0.01083 

Shunyi -0.04966 0.02043 

Yongle Village -0.04934 0.01412 

Huairou -0.04844 0.01377 

Longevity West Palace -0.04674 0.02326 

Pinggu -0.04505 0.02396 

Guanyuan -0.0436 0.03119 

Dongsi -0.04342 0.04226 

Changping -0.04183 0.03521 

Xizhi Gate North -0.04166 0.04641 

Ancient Town -0.04018 >0.05 

Dingling -0.03518 >0.05 

Mentougou -0.03273 >0.05 

Miyun -0.01769 >0.05 

Badaling 0.000885 >0.05 

Table 2: Results of Slope rate and P-value from Five-year Spring Sampling Trend Line 
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Figure 7: Examples of Different Trend Conclusions in Spring  

A) Daxing (p < 0.01), B) Longevity West Palace (0.01 < p <0.05), C) Mentougou (p > 0.05) 
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Table 3 presents the result of slopes and p-values of trend lines for the summer during the five-

year period, sorted by slope rate from lowest to highest. The detailed graphs can be found in 

Appendix E. All the p-values of PM2.5 observation sites are less than 0.01. Comparing with 

negative slope rates, all the PM2.5 observation stations show there are significant decreasing 

trends of PM2.5 contaminant concentration during the summer of five-year period. 

 

Station-Name Summer Slope P-value 

South Third Ring Road -0.11223 <0.01 

Yizhuang -0.1022 <0.01 

Daxing -0.1004 <0.01 

Guanyuan -0.08778 <0.01 

Tongzhou -0.08653 <0.01 

Olympic Sports Center -0.08599 <0.01 

Temple of Heaven -0.08449 <0.01 

Dongsi -0.08321 <0.01 

Front Gate -0.08149 <0.01 

Yungang -0.08036 <0.01 

Shunyi -0.07902 <0.01 

Pinggu -0.07718 <0.01 

Fangshan -0.07604 <0.01 

Wanliu -0.07571 <0.01 

Huairou -0.07538 <0.01 

Inside Yongding Gate -0.07533 <0.01 

Fengtai Garden -0.07304 <0.01 

Yongle Village -0.07204 <0.01 

Longevity West Palace -0.06851 <0.01 

Ancient Town -0.06802 <0.01 

Agricultural Pavilion -0.06619 <0.01 

Changping -0.06546 <0.01 

Dingling -0.05571 <0.01 

Mentougou -0.04885 <0.01 

Xizhi Gate North -0.04631 <0.01 

Badaling -0.04514 <0.01 

Miyun -0.04451 <0.01 

Table 3: Results of Slope rate and P-value from Five-year Summer Sampling Trend Line 
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Table 4 shows the result of slopes and p-values of autumn season during the five-year period, 

sorted by slope rate from lowest to highest. All the p-values of PM2.5 observation sites are less 

than 0.01. Comping with negative slope rates, all the PM2.5 observation sites show the trends of 

significant decrease of PM2.5 contaminant concentration during the autumn of five-year period. 

 

Station-Name Autumn Slope P-value 

Yizhuang -0.1553 <0.01 

Daxing -0.14174 <0.01 

Front Gate -0.12925 <0.01 

South Third Ring Road -0.12858 <0.01 

Inside Yongding Gate -0.12808 <0.01 

Agricultural Pavilion -0.12265 <0.01 

Xizhi Gate North -0.12028 <0.01 

Fangshan -0.11945 <0.01 

Fengtai Garden -0.11504 <0.01 

Tongzhou -0.11134 <0.01 

Wanliu -0.10973 <0.01 

Yungang -0.1071 <0.01 

Yongle Village -0.10435 <0.01 

Olympic Sports Center -0.1021 <0.01 

Longevity West Palace -0.09932 <0.01 

Temple of Heaven -0.09929 <0.01 

Guanyuan -0.09921 <0.01 

Ancient Town -0.09762 <0.01 

Dingling -0.09262 <0.01 

Changping -0.0917 <0.01 

Dongsi -0.08727 <0.01 

Shunyi -0.0828 <0.01 

Huairou -0.0809 <0.01 

Mentougou -0.07568 <0.01 

Pinggu -0.07493 <0.01 

Miyun -0.07254 <0.01 

Badaling -0.06505 <0.01 

Table 4: Results of Slope rate and P-value from Five-year Autumn Sampling Trend Line 
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Table 5 indicates the result of slopes and p-values for winter during the five-year period, sorted 

by slope rate from lowest to highest. All the p-values of PM2.5 observation sites are less than 

0.01. Comparing the negative slope rates, all the PM2.5 observation sites show there are 

significant decreasing trends of PM2.5 contaminant concentrations in winter of the five-year 

period. 

 

Station-Name Winter Slope P-value 

Daxing -0.24024 <0.01 

Fangshan -0.22595 <0.01 

Tongzhou -0.22527 <0.01 

Yizhuang -0.221 <0.01 

Yongle Village -0.20937 <0.01 

Fengtai Garden -0.19942 <0.01 

South Third Ring Road -0.19311 <0.01 

Yungang -0.18349 <0.01 

Olympic Sports Center -0.1822 <0.01 

Front Gate -0.17994 <0.01 

Longevity West Palace -0.17907 <0.01 

Wanliu -0.17718 <0.01 

Agricultural Pavilion -0.17653 <0.01 

Inside Yongding Gate -0.16561 <0.01 

Pinggu -0.165 <0.01 

Dongsi -0.15862 <0.01 

Changping -0.15601 <0.01 

Ancient Town -0.1541 <0.01 

Guanyuan -0.15385 <0.01 

Temple of Heaven -0.15187 <0.01 

Huairou -0.15095 <0.01 

Dingling -0.15053 <0.01 

Xizhi Gate North -0.14904 <0.01 

Shunyi -0.1459 <0.01 

Miyun -0.13578 <0.01 

Mentougou -0.13316 <0.01 

Badaling -0.09116 <0.01 

Table 5: Results of Slope rate and P-value from Five-year Winter Sampling Trend Line 
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According to these four tables of slope rates during four seasons, almost all the p-values show 

that PM2.5 concentrations were declining during the five-year period (103 of 108 p-value results). 

Results of both tables and diagrams demonstrate PM2.5 air pollutions are decreasing in Beijing 

for all seasons during the survey period. Figure 8 is the result of different seasons during the 

five-year period at the Daxing observation station. The slope rates from Daxing observation site 

in spring, summer, autumn, winter are -0.0642, -0.1004, -0.14174, -0.24024. 

 

Figure 8: Example: Five-year Different Seasons of PM2.5 Contaminant Result 

A) Spring, B) Summer, C) Autumn, D) Winter in Daxing Station 

 

4.1.2. Results of Principal Component Analysis 

Principal component analysis (PCA) was conducted in the MATLAB environment. All the charts 

with five eigenvalues and corresponding weight percentage were outputted. Due to the limitation 

of space, we listed the table of five eigenvalues and corresponding weighting percentage in the 

Appendix E. To avoid protentional negative values in the process, which are meaninglessness in 



46 

PM2.5 concentration variable, we only used the result of “first principal component”. There are a 

total of five eigenvalues in the chart. The result of this chart shows that the lowest weight 

percentage of fifth eigenvalues is 77.62% and the highest weight percentage of fifth eigenvalues 

is 82.50%. All of the weight percentage of fifth eigenvalues are around 80%. These results of 

analysis suggest that the fifth eigenvalues are the “first principal component” in our research.  

 

In the meantime, we also outputted the result figures of PCA with the “first principal 

component”. These diagrams are attached in the Appendix F. It is important to point out that the 

unit in these diagrams are the same as unit of the PM2.5 contaminant Datasets (ug/m3). Examples 

of PCA results of several PM2.5 contaminant observation sites, showing Beijing urban and 

suburban areas similar to Figure 3, are in Figure 9. Sites of Inside Yongding Gate and Xizhi Gate 

North are located in the urban area in Beijing. Badaling site is located in the north suburb in 

Beijing and Yongle Village site is located in the south suburb in Beijing. 
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Figure 9: PCA Results of Selected PM2.5 Contaminant Observation Sites  

A) Inside Yongding Gate, B) Xizhi Gate North, C) Badaling, D) Yongle Village 

 

According to principles of the PCA analysis, PCA is designed for identifying the most 

significant aspects or characteristics of the dataset. In order to identify the significant temporal 

distribution patterns of large dataset, the analysis replaces the original data with the most 

significant aspects of the data. Therefore, PCA analysis is a suitable method to combine PM2.5 

contaminant temporal variations in the five selected time periods using a single change (time 

series) curve. The results of PCA time series pattern reflect the daily variations of PM2.5 

contaminant concentration for the entire 5-year period (Figure 9).  
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According to all the result figures from PCA analysis in MATLAB (Appendix F), the general 

trends of PM2.5 contaminant concentrations in Beijing at different observation stations are 

fluctuation downwards. The PM2.5 air pollution concentration values are relative higher in the 

winter each year. This also means the PM2.5 contaminate concentration values in winter reach the 

highest volumes in each year while the year-to-year trend is decreasing. Temporal pattern 

projected in PCA analysis shows the PM2.5 contaminate concentration values in the middle of 

each year, such as late spring and summer tend to be the lowest. In summary, the results of this 

research suggest that the PM2.5 contaminate concentration is relatively low in summer and 

relatively high in winter in Beijing. In addition, the Y-axis of PM2.5 concentrations in each of 

result figures shows the magnitudes of PM2.5 contaminant concentrations day by day during the 

five-year period. It is very straightforward to pinpoint when and where the most severe pollution 

situation occurred during the 5 years. In the urban area in Beijing (Figure 9 A), and B)), the most 

severe of PM2.5 contaminant concentration is around 1300 ug/m3. In the north suburb of Beijing 

(Figure 9 C)) the most severe of PM2.5 contaminant concentration is around 800 ug/m3. In the 

south suburb of Beijing (Figure 9 D)) the most severe of PM2.5 contaminant concentration is 

around 1300 ug/m3. The PM2.5 contaminant concentration in the south suburban region is on the 

same magnitude as which in the urban areas. This observation result suggests that the downtown 

urban area is not the highest region of PM2.5 pollution distribution. Secondly, this result also 

suggests that major sources of PM2.5 air pollution might at the south part of the urban area and 

south suburban regions. 
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4.2. Results of Spatial Distribution Analysis of Air Pollution 

4.2.1. Result of Annual Average Spatial Distribution Patterns 

Figure 10 shows the annual average spatial distribution patterns of five years from 2014 to 2018. 

The legend of these maps was standardized and the color presentations of the PM2.5 air pollutions 

are comparable across all the five maps. ArcGIS Desktop was used to conduct IDW 

interpolations and construct these maps. Among these 5 maps that represent five consecutive 

years, the highest annual average PM2.5 concentrate value range is 95 ~ 100 ug/m3, and the 

lowest annual average PM2.5 concentrate value range is 50 ~ 55 ug/m3. These map results show 

that the area that suffered the most severe PM2.5 air pollutions is in the south and southeast part 

of Beijing. The area affected least by PM2.5 air pollutions is in the north and northwest section in 

Beijing. It is important to point out that the area with highest PM2.5 air pollution concentrations is 

located in the southern suburban region, it is not in the urban area in Beijing. This suggests the 

core urban region in Beijing is not the area most impacted by PM2.5 air pollutions. During the 

five-year study period, the severity of PM2.5 contaminant concentrations in Beijing is reduced 

and the air quality becomes better. The annual average value of PM2.5 contaminant 

concentrations become lower as time goes on. 
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Figure 10: Results of Annual Average Spatial Distribution Patterns (ug/m3) 

A) 2014, B) 2015, C) 2018, D) 2017, E) 2018 
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4.2.2. Results of Seasonal Average Distribution Patterns for Different Daily Sample 

Time Periods  

Example of seasonal average distribution patterns of the different daily sample time periods is 

shown in Figure 11. A total of 20 PM2.5 air pollution maps are in the Appendix G, which are 

sorted by the time order. In the meantime, all the legends on these maps were standardized for 

the purpose of better visualization and comparisons. In this atlas of PM2.5 air pollution maps, the 

highest average PM2.5 concentration value range is 190 ~ 200 ug/m3, and the lowest average 

PM2.5 concentration value range is 20 ~ 30 ug/m3. Comparing the seasonal changes with 

different daily monitoring time periods, we found that spatial distribution pattern of the PM2.5 

contaminant concentration also changes. In the majority of time periods in spring, autumn and 

winter, the area of least PM2.5 pollutions is still in the north and northwest part in Beijing, while 

the area with most PM2.5 pollutions is still in the south and southeast region of Beijing (Figure 

11, A)). However, the PM2.5 air pollution pattern in the summertime shows evenly distributed 

concentrations in Beijing. In the summer season, the area most affected by PM2.5 air pollutions is 

in the central urban area in Beijing, as well as the south and southeast region of Beijing (Figure 

11, B)). 
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A) 

 

B) 

Figure 11: PM2.5 Contaminant Spatial Distribution Variation (ug/m3) 

A) 2014 MIDN Winter Average PM2.5 Concentrate Map, B) 2018 MPT Summer Average PM2.5 

Concentrate Map 



53 

Figure 12 shows the selected results of spatial interpolations of different daily time periods by 

seasons. we found that severe PM2.5 air pollutions often happened during the wintertime with 

building heat energy supply (The Government of Beijing Municipality, 2020). During winter, 

midnight periods (MIDN) present the heaviest PM2.5 air pollutions. This evidence strongly 

suggests that heating supply to buildings and houses is a major PM2.5 air pollution source. While 

the lowest temperature always occurs during midnight (MIDN) time period. Therefore, the heat 

supply facilities for buildings and houses need to consume more coals or fuels and ramp up 

power to maintain the indoor temperature higher than 16℃ (The Government of Beijing 

Municipality, 2020). This process in turn produced more PM2.5 air pollutions. 
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Figure 12: Severe PM2.5 Contaminant Situation in Winter Time (ug/m3) 

A) 2014 Spring ALT Average PM2.5 Concentrate Map, B) 2014 ALT Winter Average PM2.5 

Concentrate Map, C) 2014 MIDN Winter Average PM2.5 Concentrate Map, D) 2017 Spring ALT 

Average PM2.5 Concentrate Map, E) 2017 ALT Winter Average PM2.5 Concentrate Map, F) 2017 

MIDN Winter Average PM2.5 Concentrate Map 
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This research also found that the PM2.5 air pollutions were decreasing during the study time 

period across different daily sampling times and at the different seasons year by year. According 

to Figure 13, even in the time period of most severe PM2.5 air pollutions – midnight (MIDN) in 

winter each year, the concentrations of PM2.5 pollution show the declining trend. Assuming the 

heat energy supply to buildings and houses in winter kept the same, the decreasing of PM2.5 air 

pollution concentrations should attribute to the government policy of converting coal combustion 

to natural gas combustion, to electricity heating, as well as clean coal technology replacement 

(Xie et al., 2019). 
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Figure 13: The Decreasing Trend of PM2.5 Pollutant within MIDN Winter Sample Time (ug/m3) 

A) 2014 MIDN Winter Average PM2.5 Concentrate Map, B) 2015 MIDN Winter Average PM2.5 

Concentrate Map, C) 2016 MIDN Winter Average PM2.5 Concentrate Map, D) 2017 MIDN 

Winter Average PM2.5 Concentrate Map, E) 2018 MIDN Winter Average PM2.5 Concentrate Map 
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In addition, Figure 14 indicates the gradients of declining of PM2.5 concentrations in the study 

area is decreasing as well during the five-year period. Comparing the APT sampling time period 

in winter with that in the summer in 2018, the gradient is much lower than that during 2014. The 

decreasing of PM2.5 air pollution gradients through the years in the study area shows the strong 

reduction of PM2.5 pollutants and represents the success of government policy and improvement 

of air quality in Beijing. 

 

Figure 14: The Descending of PM2.5 Contaminant Concentration Gradients (ug/m3) 

A) 2014 MIDN Winter Average PM2.5 Concentrate Map, B) 2014 APT Winter Average PM2.5 

Concentrate Map, C) 2017 APT Winter Average PM2.5 Concentrate Map, D) 2018 APT Winter 

Average PM2.5 Concentrate Map 
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4.3. Summaries of Major Discoveries of Spatial and Temporal Distributions of Air 

Pollution in the Study Region 

First, winter is the most severe period of PM2.5 air pollution in each meteorological year. PCA 

results (Appendix F and Figure 9) indicates that the PM2.5 air pollution peaks in each PCA result 

graph are during the winter season in each year. The results of Seasonal Average Distribution 

Patterns (Appendix G) show that most of the high PM2.5 air pollution concentration ranges occur 

during the winter season, especially within the midnight (MIDN) sample time period (Figure 13). 

Secondly, the PM2.5 air pollution concentrations in Beijing were gradually decreasing from 2014 

to 2018. The evidence to support this conclusion are from PCA results (Appendix F and Figure 

9) and Results of Annual Average Spatial Distribution Patterns (Figure 10). All the PCA results 

show the fluctuation decline of the air pollution from 2014 to 2018 (Appendix F and Figure 9). 

Standardized Result Atlas of Annual Average Spatial Distribution Patterns (Figure 10) show the 

improvement of the air quality during the study period. 

Thirdly, in terms of a five-year time perspective, Mann-Kendall Trend Analysis shows the 

reductions of PM2.5 air pollutions in summer, autumn, and winter seasons (Table 3, Table 4, 

Table 5). Although there are a few observation sites (5 of 27) support there are no obvious up or 

down trends among spring samplings of PM2.5 air pollution concentrations during the five-year 

period (Table 2), most of observation sites (22 of 27) support that there is descending trend 

(significant or weak trend) in the spring seasons during the five-year period. The most rigorous 

emission reduction policy in Chinese history, “Air Pollution Prevention and Control Action 

Plan” that was enacted by the Chinese government in 2013 and the actions to comply with this 

policy may cause the overall improvement of air quality and declining trend of PM2.5 air 

pollution in Beijing (Zhao et al., 2018). 
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Fourthly, the PM2.5 air pollution concentrations in summer are significantly lower than other 

seasons. According to the results of PCA analysis (Appendix F and Figure 9), the values of PM2.5 

air pollution concentration are the lowest during the summer comparing to other seasons. 

Meanwhile, based on the Result Atlas of Seasonal Average Distribution Patterns (Appendix G), 

even in the most polluted years, the highest PM2.5 pollution concentration range is lower than 80 

~ 90 ug/m3 level (Figure 15) in summers. 

 

Figure 15: Better PM2.5 Contaminant Situation in Summer Time (ug/m3) 

A) 2014 MLT Summer Average PM2.5 Concentrate Map, B) 2015 MPT Summer Average PM2.5 

Concentrate Map, C) 2018 APT Summer Average PM2.5 Concentrate Map 
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Fifthly, spatial distribution patterns show the area of lowest PM2.5 pollutions in Beijing is north 

and northwest region (Appendix G). The highest concentrations of PM2.5 air pollution in the 

northwest part in Beijing occurred during midnight (MIDN) in 2014 winter (Figure 16). The 

PM2.5 air pollution concentration record at Badaling Observation Site reached to the 80 ~ 90 

ug/m3 level. Also, the most polluted area is in the south and southeast part of Beijing. The core 

urban area in Beijing is not the most polluted regions according to both Annual Average 

Concentrate Atlas (Figure 10) and Result Atlas of Seasonal Average Distribution Patterns 

(Figure 12, 13, 14, 15, 16, Appendix G). 

  

Figure 16: 2014 MIDN Winter Average PM2.5 Concentrate Map (ug/m3) 
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Sixthly, the results of this research suggest that vehicle traffic volume may not be the major 

influential factor of PM2.5 air pollution in Beijing. The Result Atlas of Seasonal Average 

Distribution Patterns (Figure 17, Appendix G) does not show significant high level of PM2.5 air 

pollution concentrations during the peak traffic time periods, nor does it show high values in the 

dense road network area in the study region. However, the interpolation patterns might be 

impacted by the locations and density of air pollution monitoring stations. Further studies are 

needed. 

 

 

 

 



62 

 

Figure 17: Selected Part of the MPT and APT Sample Time Periods’ Map (ug/m3) 

A) 2014 MPT Spring Average PM2.5 Concentrate Map, B) 2014 APT Spring Average PM2.5 

Concentrate Map, C) 2017 MPT Winter Average PM2.5 Concentrate Map, D) 2017 APT Winter 

Average PM2.5 Concentrate Map 

 

Seventhly, winter season heat energy supply to buildings and houses generated great impacts to 

the PM2.5 air pollution concentrations in Beijing. According to the Result Atlas of Average 

Distribution Patterns (Figure 12, Appendix G), the PM2.5 concentrations in winter are the highest 

in each meteorological year.  
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5. Discussions and Conclusion 

The selection of time period of winter season in this research coincides with building and house 

heating supply time period in Beijing (The Government of Beijing Municipality, 2020). The 

analytical results of this research indicate building and house heating in winter contributed a 

great amount of PM2.5 air pollution during the season. It makes the winter season as the highest 

air pollution season. While, implementing the rigorous emission reduction policy “Air Pollution 

Prevention and Control Action Plan” enacted in 2013 (Zhao et al., 2018), the PM2.5 pollution was 

gradually reduced in the winter. Figure 13 clearly indicates the improvement of air quality and 

reduction of PM2.5 pollution in winter seasons, in particular for midnight (MIDN) time periods. 

Thanks to the policy actions of converting coal combustion to electricity or natural gas 

combustion, or clean coal technology replacement (Xie et al., 2019), the proportion of fossil fuel 

consumptions in heat supply activities gradually declined year by year. According to the 

Northern Region Winter Clean Heating Plan (2017-2021) (Chinese Central Leading Group on 

Finance and Economics, 2016), the percentage of clean energy heating supply in the northern 

region in China should reach 50% by the end of 2019, and 74 million tons of CO2 should be 

reduced from the coal consumptions and from inefficient small furnace shutdowns. With the help 

of multiple government policies and macro-management, the pollution from winter heat supply 

decreased during this research time (2014 ~ 2018). 

 

This research demonstrates the preliminary step to analyze temporal and spatial patterns using a 

five-year hourly monitored large PM2.5 air pollution dataset. The focus of this research is the data 

processing and analysis for the big PM2.5 air pollution dataset itself. In the future, we can 

combine the population distribution data to analyze the impacts to the PM2.5 pollutions by 
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population density. We can also combine the temperature variations and weather condition data 

to gain better understanding to the winter heating supply factor on PM2.5 air pollutions. 

According to Li’s (2016) study, the distribution of PM2.5 in Beijing area is obviously affected by 

the surrounding areas. The process of PM2.5 pollutant diffusion was greatly influenced by the 

landscape and weather conditions in Beijing. Therefore, exploring the diffusion process of PM2.5 

pollutants with the terrain around Beijing and big datasets will also be significant in the future 

studies. In addition, we can also improve the accuracy of our spatial pattern analysis. For 

example, the standardized legend of Average Distribution Patterns (Appendix G) could have 

higher contrast ratio and more precise PM2.5 pollution concentration categories. 
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Appendix A 

Codes of Import and Integrate Beijing PM2.5 Data Based on Python 

import datetime 

import xlrd, openpyxl 

from openpyxl.workbook import Workbook 

from openpyxl.writer.excel import ExcelWriter 

def main(): 

    begin = datetime.date(2018,1,1) 

    end = datetime.date(2018,12,31) 

    for i in range((end - begin).days+1): 

        day = begin + datetime.timedelta(days=i) 

        day1 = day.strftime("%y%m%d") 

        path = "beijing_PM25_20180101-20181231/Beijing_PM25_20" + (str(day1)) + ".xlsx" 

        print("Open"+path) 

 

        data = xlrd.open_workbook(path)  

        table = data.sheets()[0]   

        time1 = int(table.cell_value(rowx=1, colx=0)) 

        MIDValue = table.cell_value(colx=8, rowx=5)   

        OtherValue = table.col_values(colx=8, start_rowx=1, end_rowx=5)    

        print(f"Date is：{time1},Data from OtherValue is：{MIDValue}{OtherValue}")    

 

        resultdata = openpyxl.load_workbook(' /PM25_2018_Agricultural Pavilion.xlsx')   

        resultsheet = resultdata['Sheet1'] 

        OtherValue.insert(0, MIDValue) 

        OtherValue.insert(0, time1)     

        resultsheet.append(OtherValue) 

        resultdata.save('2015/PM25_2018_Agricultural Pavilion.xlsx')   
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        print("Finished " + path) 

if __name__ == '__main__': 

main() 
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Appendix B 

Codes of Compute Beijing PM2.5 Data Based on Python 

import os 

import openpyxl 

import xlrd, openpyxl 

from openpyxl.workbook import Workbook 

from openpyxl.writer.excel import ExcelWriter 

 

def getFileNames(path): 

    filenames = os.listdir(path) #os.listdir  

for i, filename in enumerate(filenames): #enumerate  

 

 

        iSpecialFile = i + 1 

        print('==================%s 

 =========================' % (iSpecialFile)) 

        print('name：%s' % (filename)) 

        #getSheetNames(path, filename) 

        filepath = path+"/"+filename 

        replace_zero(filepath) 

        print('\n') 

        print('================== 

 =========================' % (iSpecialFile)) 

        print('\n') 

 

def replace_zero(path): 

 

    data = xlrd.open_workbook(path)  
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    table = data.sheets()[0]   

    nrows = table.nrows  

    ncols = table.ncols   

    alist = []  

    dlist = [] 

    clist = [] 

    blist = []  

 

    print(f"：{nrows}")    

    print(f"：{ncols}")    

    for rownum in range(0, nrows): 

        for colnum in range(0, ncols): 

            if table.cell_value(colx=colnum, rowx=rownum) == 0: 

                #print (f" {rownum+1} {colnum+1}")    

                alist.append((rownum,colnum))   

                if colnum == 1 

                    if (table.cell_value(colx=colnum+1, rowx=rownum) == 0) and 

(table.cell_value(colx=colnum+2, rowx=rownum) != 0): 

                        print(f" {rownum+1}{colnum+1}， {colnum+2}")   

                        clist.append((rownum, colnum))   

                    elif (table.cell_value(colx=colnum + 1, rowx=rownum) == 0) and 

(table.cell_value(colx=colnum + 2, rowx=rownum) == 0) and (table.cell_value(colx=colnum+3, 

rowx=rownum) != 0): 

                        print(f" {rownum+1}{colnum+1}， {colnum+2}，{colnum+3}")   

                        blist.append((rownum, colnum))   

                    elif table.cell_value(colx=colnum + 1, rowx=rownum) != 0 : 

                        print(f"{rownum+1} {colnum+1}")   

                        dlist.append((rownum, colnum))   
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                elif colnum == 2:  

                    if (table.cell_value(colx=colnum + 1, rowx=rownum) == 0) and 

(table.cell_value(colx=colnum + 2, rowx=rownum) != 0) and (table.cell_value(colx=colnum - 1, 

rowx=rownum) != 0) :   

                        print(f" {rownum+1}{colnum+1}， {colnum+2}")   

                        clist.append((rownum, colnum))   

                    elif (table.cell_value(colx=colnum + 1, rowx=rownum) == 0) and 

(table.cell_value(colx=colnum + 2, rowx=rownum) == 0) and (table.cell_value(colx=colnum+3, 

rowx=rownum) != 0) and (table.cell_value(colx=colnum-1, rowx=rownum) != 0): 

                        print(f"{rownum+1}{colnum+1}， {colnum+2}{colnum+3}")   

                        blist.append((rownum, colnum))   

                    elif (table.cell_value(colx=colnum + 1, rowx=rownum) != 0) and  

(table.cell_value(colx=colnum - 1, rowx=rownum) != 0): 

                        print(f"{rownum+1}{colnum+1}")   

                        dlist.append((rownum, colnum))   

                elif colnum == 3:  

                    if (table.cell_value(colx=colnum + 1, rowx=rownum) == 0) and 

(table.cell_value(colx=colnum + 2, rowx=rownum) != 0) and (table.cell_value(colx=colnum - 1, 

rowx=rownum) != 0) :  

                        print(f"{rownum+1}{colnum+1}， {colnum+2}")   

                        clist.append((rownum, colnum))   

                    elif (table.cell_value(colx=colnum + 1, rowx=rownum) == 0) and 

(table.cell_value(colx=colnum + 2, rowx=rownum) == 0) and (table.cell_value(colx=colnum-1, 

rowx=rownum) != 0): 

                        print(f" {rownum+1}{colnum+1}， {colnum+2}，{colnum+3}")   

                        blist.append((rownum, colnum))   

                    elif (table.cell_value(colx=colnum + 1, rowx=rownum) != 0) and  

(table.cell_value(colx=colnum - 1, rowx=rownum) != 0): 

                        print(f"{rownum+1}{colnum+1}")   

                        dlist.append((rownum, colnum))   

                elif colnum == 4:  
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                    if (table.cell_value(colx=colnum + 1, rowx=rownum) == 0)  and 

(table.cell_value(colx=colnum - 1, rowx=rownum) != 0) :   

                        print(f"0：{rownum+1}{colnum+1}， {colnum+2}") 

                        clist.append((rownum, colnum))   

                    elif (table.cell_value(colx=colnum + 1, rowx=rownum) != 0) and  

(table.cell_value(colx=colnum - 1, rowx=rownum) != 0): 

                        print(f"{rownum+1}{colnum+1}")   

                        dlist.append((rownum, colnum))   

                elif colnum == 5:  

                    if (table.cell_value(colx=colnum - 1, rowx=rownum) != 0): 

                        print(f"：{rownum+1} {colnum+1}")   

                        dlist.append((rownum, colnum))  

 

 

    #print (clist) 

    #print (blist) 

    print (f" 0{len(alist)}") 

 

 

    workbase = openpyxl.load_workbook(path)  

    print (workbase.sheetnames)  

    sheet=workbase.sheetnames[0]  

    table = workbase[sheet]  

    for blistn in range(0, len(blist)): 

        if (blist[blistn][0]!=0): 

            x = blist[blistn][0] + 1  

            y = blist[blistn][1] + 1  

            #print(x) 

            #print(y) 
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            a0 = table.cell(row=x - 1, column=y).value 

            b0 = table.cell(row=x + 1, column=y).value 

            a1 = table.cell(row=x - 1, column=y+1).value 

            b1 = table.cell(row=x + 1, column=y+1).value 

            a2 = table.cell(row=x - 1, column=y+2).value 

            b2 = table.cell(row=x + 1, column=y+2).value 

            #print(a0) 

            table.cell(row=x, column=y, value=(a0 + b0) / 2) 

            table.cell(row=x, column=y + 1, value=(a1 + b1) / 2) 

            table.cell(row=x, column=y + 2, value=(a2 + b2) / 2) 

            print(f"{x} {y}{y+1}，{y+2}") 

 

    for clistn in range(0, len(clist)): 

        if (clist[clistn][0]!=0): 

            x = clist[clistn][0] + 1  

            y = clist[clistn][1] + 1  

            #print(x,y) 

            if y == 2: # 

                a0 = table.cell(row=x - 1, column=4).value 

                b0 = table.cell(row=x - 1, column=5).value 

                c0 = table.cell(row=x - 1, column=6).value 

                table.cell(row=x, column=y, value=(a0 + b0 + c0) / 3) 

            elif y == 3:  

                a0 = table.cell(row=x - 1, column=5).value 

                b0 = table.cell(row=x - 1, column=6).value 

                c0 = table.cell(row=x , column=2).value 

                table.cell(row=x, column=y, value=(a0 + b0 + c0) / 3) 

            elif y == 4:  
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                a0 = table.cell(row=x - 1, column=6).value 

                b0 = table.cell(row=x , column=2).value 

                c0 = table.cell(row=x , column=3).value 

                table.cell(row=x, column=y, value=(a0 + b0 + c0) / 3) 

            else :  

                a0 = table.cell(row=x , column=y-3).value 

                b0 = table.cell(row=x , column=y-2).value 

                c0 = table.cell(row=x , column=y-1).value 

                table.cell(row=x, column=y, value=(a0 + b0 + c0) / 3) 

            print(f" {x}{y} ") 

 

    for clistn in range(0, len(clist)):# 

        if (clist[clistn][0]!=0): 

            x = clist[clistn][0] + 1  

            y = clist[clistn][1] + 1  

            if y == 2:  

                a0 = table.cell(row=x - 1, column=6).value 

                b0 = table.cell(row=x , column=y + 1).value 

                table.cell(row=x, column=y+1, value=(a0 + b0) / 2) 

            elif 2< y < 6 :  

                a0 = table.cell(row=x, column=y-1).value 

                b0 = table.cell(row=x, column=y+1).value 

                table.cell(row=x, column=y+1, value=(a0 + b0) / 2) 

            elif y == 6:  

                a0 = table.cell(row=x, column=y - 1).value 

                b0 = table.cell(row=x + 1, column=2).value 

                table.cell(row=x, column=y+1, value=(a0 + b0 ) / 2) 

            print(f" {x} {y} ") 
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    for dlistn in range(0, len(dlist)): 

        if (dlist[dlistn][0]!=0): 

            x = dlist[dlistn][0] + 1  

            y = dlist[dlistn][1] + 1 

            if y == 2:  

                a0 = table.cell(row=x - 1, column=6).value 

                b0 = table.cell(row=x , column=y + 1).value 

                table.cell(row=x, column=y, value=(a0 + b0) / 2) 

            elif 2< y < 6 :  

                a0 = table.cell(row=x, column=y-1).value 

                b0 = table.cell(row=x, column=y+1).value 

                table.cell(row=x, column=y, value=(a0 + b0) / 2) 

            elif y == 6:  

                a0 = table.cell(row=x, column=y - 1).value 

                b0 = table.cell(row=x + 1, column=2).value 

                table.cell(row=x, column=y, value=(a0 + b0 ) / 2) 

            print(f" {x} {y} ") 

 

 

 

    save_path=path+"_new.xlsx" 

    workbase.save(save_path) 

 

 

if __name__ == '__main__': 

    path = r'D:\MrVans Document\Buffalo Fourth Semester\Thesis\Thesis 

Program\Beijing_PM25_Rebuilt_Result_03\Miyun' 

    getFileNames(path) 
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#resultdata = openpyxl.load_workbook('2015 /PM25_2018_Fengtai Garden.xlsx')  

#resultsheet = resultdata['Sheet1'] 

#OtherValue.insert(0, MIDValue) 

#OtherValue.insert(0, time1)     

#resultsheet.append(OtherValue) 

#resultdata.save('2015 /PM25_2018_Fengtai Garden.xlsx')   

#print("Finished " + path) 
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Appendix C 

Codes of Mann-Kendall Trend Analysis Based on R-studio 

library(trend) 

library(ggplot2) 

 

csv_1 <- read.csv("D:/MrVans Document/Buffalo Fourth Semester/Thesis/R Program/5 Years 

PM25 data/.csv File/PM25_five_years_Yungang.csv") 

csv_2 <- read.csv("D:/MrVans Document/Buffalo Fourth Semester/Thesis/R Program/5 Years 

PM25 data/.csv File/PM25_five_years_Yongle Village.csv") 

 

#Spring 

Spring_csv_1 <- subset(csv_1, Season == "Spring") 

Spring_csv_2 <- subset(csv_2, Season == "Spring") 

 

Spring_csv_1$New_Day<-order(Spring_csv_1[,8]) 

Spring_csv_2$New_Day<-order(Spring_csv_2[,8]) 

 

lm_Spring_csv_1 <- lm(Daily_Average ~ New_Day, data = Spring_csv_1) 

lm_Spring_csv_2 <- lm(Daily_Average ~ New_Day, data = Spring_csv_2) 

 

 

summary(lm_Spring_csv_1) 

mk.test(Spring_csv_1$Daily_Average, continuity = TRUE) 

 

summary(lm_Spring_csv_2) 

mk.test(Spring_csv_2$Daily_Average, continuity = TRUE) 

 

 

ggplot(Spring_csv_1, aes(New_Day, Daily_Average)) +  
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  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Spring PM2.5 Concentrate from Yungang Weather 

Site") 

 

ggplot(Spring_csv_2, aes(New_Day, Daily_Average)) +  

  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Spring PM2.5 Concentrate from Yongle Village 

Weather Site") 

 

#Summer 

Summer_csv_1 <- subset(csv_1, Season == "Summer") 

Summer_csv_2 <- subset(csv_2, Season == "Summer") 

 

Summer_csv_1$New_Day<-order(Summer_csv_1[,8]) 

Summer_csv_2$New_Day<-order(Summer_csv_2[,8]) 

 

lm_Summer_csv_1 <- lm(Daily_Average ~ New_Day, data = Summer_csv_1) 

lm_Summer_csv_2 <- lm(Daily_Average ~ New_Day, data = Summer_csv_2) 

 

 

summary(lm_Summer_csv_1) 

mk.test(Summer_csv_1$Daily_Average, continuity = TRUE) 
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summary(lm_Summer_csv_2) 

mk.test(Summer_csv_2$Daily_Average, continuity = TRUE) 

 

 

ggplot(Summer_csv_1, aes(New_Day, Daily_Average)) +  

  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Summer PM2.5 Concentrate from Yizhuang Weather 

Site") 

 

ggplot(Summer_csv_2, aes(New_Day, Daily_Average)) +  

  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Summer PM2.5 Concentrate from Xizhi Gate North 

Weather Site") 

 

#Autumn 

 

Autumn_csv_1 <- subset(csv_1, Season == "Autumn") 

Autumn_csv_2 <- subset(csv_2, Season == "Autumn") 

 

Autumn_csv_1$New_Day<-order(Autumn_csv_1[,8]) 

Autumn_csv_2$New_Day<-order(Autumn_csv_2[,8]) 

 

lm_Autumn_csv_1 <- lm(Daily_Average ~ New_Day, data = Autumn_csv_1) 
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lm_Autumn_csv_2 <- lm(Daily_Average ~ New_Day, data = Autumn_csv_2) 

 

 

summary(lm_Autumn_csv_1) 

mk.test(Autumn_csv_1$Daily_Average, continuity = TRUE) 

 

summary(lm_Autumn_csv_2) 

mk.test(Autumn_csv_2$Daily_Average, continuity = TRUE) 

 

 

ggplot(Autumn_csv_1, aes(New_Day, Daily_Average)) +  

  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Autumn PM2.5 Concentrate from Yizhuang Site") 

 

 

ggplot(Autumn_csv_2, aes(New_Day, Daily_Average)) +  

  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Autumn PM2.5 Concentrate from Xizhi Gate North 

Weather Site") 

 

#Winter 

Winter_csv_1 <- subset(csv_1, Season == "Winter") 

Winter_csv_2 <- subset(csv_2, Season == "Winter") 
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Winter_csv_1$New_Day<-order(Winter_csv_1[,8]) 

Winter_csv_2$New_Day<-order(Winter_csv_2[,8]) 

 

lm_Winter_csv_1 <- lm(Daily_Average ~ New_Day, data = Winter_csv_1) 

lm_Winter_csv_2 <- lm(Daily_Average ~ New_Day, data = Winter_csv_2) 

 

summary(lm_Winter_csv_1) 

mk.test(Winter_csv_1$Daily_Average, continuity = TRUE) 

 

summary(lm_Winter_csv_2) 

mk.test(Winter_csv_2$Daily_Average, continuity = TRUE) 

 

ggplot(Winter_csv_1, aes(New_Day, Daily_Average)) +  

  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Winter PM2.5 Concentrate from Yizhuang Weather 

Site") 

 

ggplot(Winter_csv_2, aes(New_Day, Daily_Average)) +  

  geom_point() +  

  geom_smooth(method = "lm", colour = "Red") +  

  labs(x = "Day", 

       y = "Selected Daily Average of PM2.5 Concentrate", 

       title = "Fundamental Data Analysis of Winter PM2.5 Concentrate from Xizhi Gate North 

Weather Site") 
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Appendix D 

PCA Codes Based on MATLAB 

%This script turns the Excel worksheets into a MATLAB data file 

%organized by location, then year e.g. to get the first year of 

%the Ancient Town would be data(2).site{1,1} 

clear, clc, close all 

%E.g. for the 2018 Midnight data of Badaling, data(2).site{1,5}(:,1) 

 

%% 

%Get folder names 

d = dir(pwd); 

foldernames = {d.name}; 

foldernames = foldernames([d.isdir]); %Remove non-folders 

foldernames = foldernames(~ismember(foldernames,{'.','..'})); %Remove extra folders 

%Set up data structure 

data = struct('name',foldernames,'site',cell(1,length(foldernames))); 

for i = 1:length(foldernames) %Iterate through 27 locations 

    %Get the names of the files in each folder 

    dd = dir([foldernames{i} '\*.xlsx']); 

    filenames = {dd.name}; 

    filenames = filenames(~contains(filenames,'~$')); %Remove extra filenames 

     

    %Set up cell array for 5 years (5 Excel files) 

    temp = cell(1,length(filenames)); 

    %Populate cell array with tables 

    for j = 1:length(filenames) 

        T = readtable([foldernames{i} '\' filenames{j}]); 

        temp{j} = T; 
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    end 

    data(i).site = temp; 

end 

 

%Save the variable 'data' in the file 'BPollution.mat' 

save('BPollutionData.mat','data'); 

 

 

%This script uses PCA to reduce the five year data at each location to 2 

%variables 

clear, clc, close all 

 

%Load .mat file 

load('BPollutionData.mat'); 

 

for i = 1:length(data) 

%for i = 27 

    %Assemble column-normalized 5-year data 

    fiveyeardata = []; 

    for j = 2:6 

        fiveyeardata(:,j-1) = table2array([data(i).site{1,1}(:,j); data(i).site{1,2}(:,j);... 

            data(i).site{1,3}(:,j); data(i).site{1,4}(:,j); data(i).site{1,5}(:,j)]); 

    end 

    %norm_data = fiveyeardata - mean(fiveyeardata); 

     

    %Get covariance matrix 

    C = cov(fiveyeardata); 

    %Get eigenvectors and eigenvalues 
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    [V,D] = eig(C); 

     

    %Form new data from eigenvectors 

    newdata = fiveyeardata*V; 

     

    %Calculate variance from eigenvalues 

    variance = D / sum(D(:)); 

    variance = sum(variance); 

     

    %Reduce to the only the biggest (two) columns of max variance 

    [~, ix1] = max(variance); 

    [~, ix2] = max(variance(~(variance == max(variance)))); 

    if ix2 >= ix1 

       ix2 = ix2 + 1;  

    end 

    newdata = newdata(:,[ix1]) 

    %newdata = newdata(:,[ix1 ix2]); 

     

    A = diag(D) 

    A(5)/ sum(A) 

 

    %Plot 

    figure('Position',[80, 80, 900, 600]) 

    hold on 

    for i = 1:size(newdata,2) 

    plot(newdata(:,i)) 

    end 
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    %Plot formatting 

    xticks(0:365:length(newdata)) 

    xlim([-20, length(newdata)+20]) 

    xlabel('Year') 

    xticklabels(2014:2018) 

    ylabel('PM 2.5 Concentration (ug/m^3)') 

    title([data(i).name ', 1 PCA Components']) 

    set(gca,'FontWeight','Bold','FontSize',12,'LineWidth',2) 

    legend('Component 1', 'Component 2') 

end 
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Appendix E 

Tables of Five Eigenvalues and Corresponding Weighting Percentage 

 

 

 

Station-Name First Eigenvalues Weighting (Percentage) Second Eigenvalues Weighting (Percentage)
Agricultural Pavilion 0.0275 0.97% 0.0408 1.44%
Ancient Town 0.0326 1.24% 0.0471 1.80%
Badaling 0.0176 1.22% 0.0306 2.12%
Changping 0.0301 1.44% 0.0418 2.00%
Daxing 0.0329 0.92% 0.0499 1.40%
Dingling 0.023 1.09% 0.0345 1.63%
Dongsi 0.0271 0.97% 0.042 1.50%
Fangshan 0.0316 0.99% 0.0486 1.52%
Fengtai Garden 0.0317 1.00% 0.0495 1.57%
Front Gate 0.0408 1.35% 0.0625 2.07%
Guanyuan 0.025 0.99% 0.0432 1.71%
Huairou 0.0192 0.97% 0.0288 1.45%
Inside Yongding Gate 0.0398 1.30% 0.0525 1.71%
Longevity West Palace 0.0327 1.16% 0.0502 1.78%
Mentougou 0.0279 1.28% 0.0415 1.91%
Miyun 0.0166 0.84% 0.0267 1.35%
Olympic Sports Center 0.026 0.97% 0.0418 1.55%
Pinggu 0.0306 1.28% 0.0374 1.56%
Shunyi 0.0263 1.04% 0.0389 1.54%
South Third Ring Road 0.0428 1.34% 0.0658 2.06%
Temple of Heaven 0.0311 1.22% 0.0463 1.81%
Tongzhou 0.0288 0.90% 0.053 1.66%
Wanliu 0.0272 1.09% 0.04 1.59%
Xizhi Gate North 0.0293 1.09% 0.0465 1.73%
Yizhuang 0.0386 1.17% 0.0559 1.70%
Yongle Village 0.0403 1.07% 0.0652 1.73%
Yungang 0.0262 1.00% 0.0371 1.41%

Station-Name Third Eigenvalues Weighting (Percentage) Fourth Eigenvalues Weighting (Percentage)
Agricultural Pavilion 0.1534 5.43% 0.3366 11.90%
Ancient Town 0.1216 4.63% 0.3 11.44%
Badaling 0.0646 4.48% 0.17 11.78%
Changping 0.1042 4.98% 0.2493 11.92%
Daxing 0.2123 5.97% 0.3514 9.89%
Dingling 0.0818 3.86% 0.2317 10.93%
Dongsi 0.1537 5.49% 0.3257 11.63%
Fangshan 0.1885 5.90% 0.362 11.34%
Fengtai Garden 0.1558 4.94% 0.3464 10.97%
Front Gate 0.1679 5.56% 0.4042 13.40%
Guanyuan 0.1201 4.76% 0.2903 11.51%
Huairou 0.0842 4.24% 0.2568 12.92%
Inside Yongding Gate 0.1654 5.40% 0.3702 12.09%
Longevity West Palace 0.1483 5.25% 0.3245 11.50%
Mentougou 0.0972 4.48% 0.3027 13.94%
Miyun 0.0769 3.90% 0.2841 14.41%
Olympic Sports Center 0.1486 5.53% 0.3345 12.45%
Pinggu 0.1029 4.30% 0.3367 14.08%
Shunyi 0.1323 5.22% 0.3652 14.43%
South Third Ring Road 0.1844 5.79% 0.3762 11.80%
Temple of Heaven 0.1396 5.45% 0.2987 11.66%
Tongzhou 0.1752 5.48% 0.3989 12.49%
Wanliu 0.1209 4.82% 0.2987 11.91%
Xizhi Gate North 0.1368 5.09% 0.3235 12.03%
Yizhuang 0.1757 5.34% 0.3697 11.23%
Yongle Village 0.17 4.51% 0.4908 13.01%
Yungang 0.1165 4.44% 0.293 11.17%
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Station-Name Fifth Eigenvalues Weighting (Percentage)
Agricultural Pavilion 2.2697 80.26%
Ancient Town 2.1221 80.89%
Badaling 1.1609 80.41%
Changping 1.6661 79.66%
Daxing 2.908 81.82%
Dingling 1.7492 82.50%
Dongsi 2.2517 80.42%
Fangshan 2.5628 80.25%
Fengtai Garden 2.5742 81.52%
Front Gate 2.3422 77.62%
Guanyuan 2.0424 81.02%
Huairou 1.5981 80.43%
Inside Yongding Gate 2.4346 79.50%
Longevity West Palace 2.2665 80.31%
Mentougou 1.7022 78.39%
Miyun 1.5672 79.49%
Olympic Sports Center 2.1357 79.50%
Pinggu 1.8843 78.78%
Shunyi 1.9689 77.78%
South Third Ring Road 2.5177 79.00%
Temple of Heaven 2.0466 79.87%
Tongzhou 2.5387 79.47%
Wanliu 2.0215 80.59%
Xizhi Gate North 2.1528 80.06%
Yizhuang 2.6514 80.56%
Yongle Village 3.006 79.69%
Yungang 2.1508 81.98%
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Appendix F 

PCA Result Graphs of 27 Observation Sites 
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Appendix G 

Beijing PM2.5 Air Pollution Maps 
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