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The nation that will insist on drawing a broad
line of demarcation between the fighting man
and the thinking man is liable to find its fighting
done by fools and its thinking done by cowards.

- Sir William Francis Butler [1]

I. INTRODUCTION

In May of 2020 the Joint Chiefs of Staff published
guidance entitled Developing Today’s Joint Officers for
Tomorrow’s Ways of War. In it they state, “To achieve
intellectual overmatch against adversaries, we must produce
the most professionally competent, strategic-minded, and
critically thinking officers possible” [2]. What then is critical
thinking? These days many different definitions exist. The
word critical comes from the Greek word kritikos, which
pertains to judging or discerning. In the broadest sense,
critical thinking involves objective analysis of facts to form
a judgment [3]. More specifically, critical thinking can be
described as self-directed, self-disciplined, self-monitored,
and self-corrective thinking [4].

The origins of critical thinking can be traced back to
antiquity and the teachings of Socrates that were recorded
by his pupil Plato. Interestingly, both of these men were
not only philosophers but also warriors who fought in the
Peloponnesian War [5], [6]. Plato founded the first institution
of higher learning in the Western World, known as the
Academy [7]. He also championed the dialectic form of
discourse in which people with differing viewpoints seek
to establish truth through reasoning and argumentation free
from emotional and pejorative elements [8]. The famous
philosopher Aristotle, who studied at the Academy and also
tutored Alexander the Great, wrote a treatise entitled, The
Art of Rhetoric [9]. In it he explained that there are three
ways to persuade an audience: ethos (appeal to the speaker’s
character), pathos (appeal to emotion), and logos (appeal
to logic) [10]. However, there is a distinct, albeit subtle,
difference between that which is rhetorically persuasive and
that which is verifiably true. While we do not discount the
importance of teaching officers to recognize the role ethos
and pathos can play in their thinking, the nature of war
dictates that warfighters be well-versed in logic in order to
make sound decisions based upon the realities present on the
battlefield. In the words of Alfred Tarski, “There can be no

doubt that the knowledge of logic is of considerable practical
importance for everyone who desires to think and to infer
correctly” [11].

Reasoning is the way in which thinking moves from one
idea to another. Reasoning involves the recognition of rela-
tionships, the ability to create abstractions, and the ability
to draw parallels. We distinguish between deductive and
inductive reasoning. Deductive reasoning is inference carried
out from the general to the specific (specialization). Here
our information about the universe of discourse is complete
and our conclusions are guaranteed, provided that we have
applied the rules of inference correctly. Inductive reasoning
on the other hand, is an attempt to reason about the general
based upon the specific (generalization). In this case, our
information about the universe of discourse is incomplete, and
our conclusions are based upon evidentiary data from a sample
population. The conclusions we arrive at are therefore not
guaranteed, rather probable [12]. Observation and inductive
reasoning together form the basis for the scientific method.
While inductive reasoning is not part of formal logic, both
forms of reasoning are important in military operations.

II. DEDUCTIVE REASONING

Logic is the study of inference [13]. Logic includes syl-
logistic and symbolic logic. Syllogistic logic can be found
in Aristotle’s book Prior Analytics, which is the first study
of formal logic [14]. Modern symbolic logic consists of
propositional and predicate logic and expands upon this early
work. Predicate logic, also referred to as first-order logic, is
an extension of proposition logic.

A. Propositional Logic

When introducing students to deductive reasoning, propo-
sitional logic is a natural place to start. Propositional logic
consists of atoms and connectives. The atoms are simple
propositions that can either be true or false. Simple proposi-
tions can in turn be modified and combined to form more com-
plex, molecular, propositions. Common logical connectives are
listed in Table I.
Given truth assignments of two propositions p and q we
demonstrate the logic operations using the truth table found
in Table II.
Of these operations, students typically struggle most with the
implication and the principle of ex falso quodlibet, that is
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TABLE I
LOGICAL CONNECTIVES

Symbol Connective Explanation
¬ Negation It is false that
∧ Conjunction And
∨ Disjunction Or
⊕ Exclusive Disjunction Either, but not both
→ Implication If, then
↔ Biconditional If and only if

TABLE II
TRUTH TABLE EXAMPLE

p q ¬p p ∧ q p ∨ q p⊕ q p→ q p↔ q
T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

“from falsehood, anything” follows. It is worth mentioning
that ∧, ∨, ⊕, and ↔ are commutative binary operations. If
so inclined, one could discuss the material implication by
showing, p→ q, is equivalent to the disjunction ¬p∨ q. From
here one can add additional propositions and demonstrate how
more complicated compound statements can be captured and
analyzed. It is subsequently helpful to cover associativity and
distributivity. Students usually take to those concepts easily
due to their familiarity with analogous rules in arithmetic.
Once the distributive laws are covered, De Morgan’s laws
make for a nice follow-on.

The truth table, first introduced by Ludwig Wittgenstein
in 1921 in Tractatus Logico-Philosophicus, is an excellent
pedagogical tool for teaching logic [15]. It provides students
the means with which to systematically reason about
propositions, and is particularly helpful when trying to
establish logical equivalence between different molecular
propositions. Incidentally, Wittgenstein, who is considered
among the most influential figures in 20th century philosophy,
also had a military background, having served as a lieutenant
in the Austrian 7th Army during World War I [16]. When
introducing truth tables, it is helpful to mention that for n
propositions, the size of the input set is 2n. It is also important
to demonstrate a method of imposing a lexicographic or
reverse-lexicographic order on the truth assignments, so
students do not inadvertently omit or repeat rows in the table.

Given the fact that we live and fight in the information age,
we would be remiss in our duty if we at some point failed
to replace the traditional true and false truth assignments, T
and F , with 1 and 0, and demonstrate Boolean algebra and
the close connection propositional logic shares with digital
logic and computing. Possibilities abound; however, given
limited time and a primary goal of teaching reasoning skills
and not engineering, we recommend limiting this aspect of
one’s lecture to a few examples. One approach that works
well is to introduce the AND, OR, and NOT (inverter) gates,
and subsequently demonstrate how a simple circuit such as

an XOR gate can be implemented in different ways. This
invariably leads students to recognize the important role log-
ical equivalence can play in circuit optimization, and how
reductions in size, power consumption, heat, and cost can
be achieved in modern computers. These days, computer
programming skills are arguably as important to warfighters
as fluency in foreign languages, and we therefore recommend
reminding students that computer programs consist of three
main control structures, namely sequential, selection, and
iteration logic. Finally, it is also worth mentioning to students
that George Boole’s book, The Laws of Thought, published
in 1854, along with Claude Shannon’s 1937 thesis entitled,
A Symbolic Analysis of Relay and Switching Circuits, which
build upon Boole’s work, together laid the foundation for
digital computing and the information age [17], [18].

B. Rules of Inference

When teaching inference, we begin by mentioning the three
fundamental axiomatic rules of rational discourse [19]:

1) The law of identity. (What is, is. p = p.)
2) The law of non-contradiction. (Nothing can both be and

not be. ¬ (p ∧ ¬ p).)
3) The law of excluded middle. (Everything must either be

or not be. p ∨ ¬ p.)

An argument consists of a set of propositions, called premises,
followed by a conclusion. For example:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

We analyze arguments by abstracting away the specifics and
focus instead on the underlying structure of the argument.
Letting p represent the proposition, “is a man,” q represent the
proposition, “is mortal,” and p→ q represent the implication,
“if man, then mortal,” we can rewrite the above argument as:

p→ q
p
∴ q

This argument is part of a classical form of inference known as
a syllogism. Syllogisms consist of a major and a minor premise
followed by a conclusion. In this case, the implication p→ q is
the major premise, the proposition p is the minor premise, and
q is the conclusion. This particular syllogism is called Modus
Ponens; it was known to Aristotle and the ancient Greeks
[14]. An argument is valid if and only if, in every instance
where all the premises are true, the conclusion is also true
[13]. Otherwise, the argument is invalid. Using a truth table
one can quickly check the validity of an argument. We do
so by identifying so-called critical rows of the table where
all premises are true, and then verify that the corresponding
conclusion also is true. Arguments that are valid and contain
premises that are all true are called sound [13]. We compile,
in Table III, a list of ten basic rules of inference we believe
every critical thinker should know [20].
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TABLE III
TEN BASIC RULES OF INFERENCE

Name Inference Rule
Modus Ponens p→ q, p ` q
Modus Tollens p→ q,¬q ` ¬p
Disjunctive Syllogism p ∨ q,¬p ` q
Material Implication p→ q ` ¬p ∨ q
Hypothetical Syllogism (p→ q) ∧ (q → r) ` p→ r
Composition (p→ q) ∧ (p→ r) ` p→ (q ∧ r)
Resolution (p ∨ q) ∧ (¬p ∨ r) ` (q ∨ r)
Disjunction Elimination p ∨ q, p→ r, q → r ` r
Transposition p→ q ` ¬q → ¬p
Negation Introduction (p→ q) ∧ (p→ ¬q) ` ¬p

* The turnstile logic symbol ` represents ”proves”.

C. First-order Logic
Propositional logic can be extended to predicate logic. The logical

connectives remain the same, however, we formalize the concept of
propositions by introducing Boolean functions called predicates that
are evaluated with respect to variables drawn from sets. Returning to
our example of the mortality of man, the propositions p and q now
become predicates P and Q, and the universal implication p→ q is
represented by ∀x, P (x)→ Q(x). Predicate logic is a more nuanced
and expressive ontology than that of propositional logic. Whereas
we previously required separate symbols for each instance of a given
attribute, we now can instantiate a predicate for multiple objects.
Universal and existential quantification allow us to assert the truth
(or falsity) of a sentence for all or for at least one element of a set.
Used in concert, nested quantifiers allow us to create multi-variable
predicates that capture complex relationships between variables and
assert facts that propositional logic fails to adequately describe [21].
For example: ∀x ∈ Z+∃y ∈ Q, P (x, y), where P (x, y) asserts
x ·y = 1 and Z+ and Q represent the set of positive integers and
set of rational numbers respectively. The German philosopher and
mathematician Gottlob Frege first introduced quantified variables
in his 1879 book entitled Begriffsschrift [21], [22]. Although the
significance of his work was largely overlooked during his lifetime,
Frege is today credited with inventing axiomatic predicate logic
and is considered by many to be one of the greatest logicians since
Aristotle [21]. Once students have been exposed to propositional
logic, they typically take to predicate logic very easily. The idea of
using a Boolean function to evaluate an input and determine whether
it satisfies a particular attribute seems natural. To ease the transition
to first-order logic, it is helpful to begin by introducing existential
and universal quantification and set-builder notation. Subsequently,
it is important to ensure that students understand the concepts of
domain of discourse, the binding of variables, and the importance
of specifying the scope of nested quantifiers.

First order logic is both complete and sound. Kurt Godel’s 1929
completeness theorem shows that if a formula in first-order logic is
valid, then there exists a formal proof of it in the form of a finite
deduction. Conversely, soundness says that only valid formulas are
provable in this deductive system. Together the completeness theorem
tells us that a first-order formula is logically valid if and only if it is
the conclusion of a formal deduction [23].

D. Proof
The word proof comes from the Latin word probare, which means

to test. A proof is a rigorous and exhaustive argument that uses
deductive reasoning to establish, with logical certainty, the truth (or
falsity) of a statement. As such, the proof process represents the

epitome of critical thinking. The first known mathematical proof can
be found in the work of the sixth century BCE mathematician Thales
of Miletus [24]. The Greek mathematician Euclid of Alexandria later
introduced the axiomatic method in his treatise the Elements circa
300 BCE. This method involves using, without proof, self-evident
propositions called axioms as the starting point for logical derivations
of theorems [25]. The Elements is perhaps the most influential work
on logic and mathematical reasoning ever written. There are four
fundamental proof techniques with which we believe all critical
thinkers should be familiar:

1) Direct Proof.
2) Proof by Contrapositive.
3) Proof by Contradiction.
4) Proof by Induction.

When teaching proofs, we recommend proceeding in the above order
and, in each case, beginning by sketching the proof technique’s
logical structure. Relating the approaches back to the, now familiar,
rules of inference such as implication, disjunction elimination,
transposition, and negation introduction helps students understand
the techniques. We find that it is best to use theorems involving
elementary number-theoretic properties such as parity, primality,
divisibility, and closure when demonstrating proof techniques. While
it may be tempting to showcase theorems involving lemmas and
more advanced mathematics, we recommend against doing so. In
such cases, students tend to focus on the mathematics and lose sight
of the proof technique being demonstrated.

1) Direct Proof (p → q): When teaching direct proofs, we
suggest first showing students how to analyze the statement to
be proved. Begin by identifying the antecedent and conclusion,
and then define relevant sets and predicates so the claim can be
expressed using predicate logic. Once this has been accomplished,
emphasize the importance of using the applicable definitions to
start the mathematical journey from antecedent to the conclusion.
Students often make the mistake of arguing from examples when
attempting to prove a universal statement. It therefore is important to
teach them the method of generalizing from the generic particular.

It is recommended that students also be exposed to proof by
exhaustion. Notice that this proof technique in essence is disjunctive
elimination. It is perhaps worth mentioning that proving, for example,
the logical equivalence of two propositional statements using a truth
table is a form of proof by exhaustion. However, we also suggest
showing students another proof where the universe of discourse can
be divided into a manageable number of cases, each of which we in
turn demonstrate lead to the desired conclusion. One such example
that we find works well is using the quotient-remainder theorem and
proving that the product of any three consecutive integers is divisible
by three. When introducing existential proofs, it is instructive to
highlight the difference between constructive and non-constructive
proofs. There are plenty of examples of constructive proofs one can
choose. When it comes to non-constructive proofs, we suggest using
Dov Jarden’s proof that an irrational number raised to an irrational
exponent may be rational:

(
√
2 )
√
2 is either rational or irrational. If it is ratio-

nal, our statement is proved. If it is irrational, then
(
√
2
√
2
)
√
2 = (

√
2 )
√
2·
√
2 = (

√
2 )2 = 2. Thus, the

result is proven. [26]

2) Proof by Contrapositive (¬q → ¬p): Transposition was
among the ten rules of inference that we suggested every critical
thinker should know. While students at this point are aware that
the contrapositive is logically equivalent to the implication, many
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frequently wonder why one would resort to using the contrapositive
over a direct proof. To motivate this, we recommend selecting an
example that illustrates the fact that it sometimes is easier to prove
a result using the contrapositive than proceeding directly. One such
instructive example is proving that for all integers n, if n3 is odd,
then n is an odd integer. Proceeding directly, students frequently
suggest setting n3 = 2k + 1, for some integer k. Doing so, and
subsequently taking the cube root on both sides of the equation,
yields n = 3

√
2k + 1. From here, students typically struggle with

trying to reason about whether 3
√
2k + 1 is even or odd. Having

unscrupulously forced them into this predicament, we instead suggest
starting over using the contrapositive, which involves proving that
for all integers n, if n is even, then n3 is an even integer. Proceeding
in a similar fashion as before, we now set n = 2k, for some integer
k. Cubing both sides of the equation produces: n3 = 8k3 = 2(4k3).
In this case, 2(4k3) is clearly even and the desired result is easily
established.

3) Proof by Contradiction ((¬p→ q) ∧ (¬p→ ¬q) ` p):
Proof by contradiction, also referred to as reductio ad absurdum,
makes use of negation introduction, the last of our ten highlighted
rules of inference. Here we establish the truth of a proposition
by assuming the opposite, and then show that this leads to a
contradiction. Notice that this proof technique relies upon both
the law of non-contradiction and the law of excluded middle. In
keeping with our number-theoretic theme, we suggest demonstrating
Euclid’s classical proof of the irrationality of

√
2. Experience shows

that some students have a negative reaction to this proof. The
crux of their objections usually centers around the contradiction.
These students typically view the fact that the derived fraction is
not in its lowest form as a technicality rather than a legitimate
contradiction. This is unfortunate. To avoid students in these cases
forming the opinion that proof by contradiction is a sleight of hand,
we suggest backing up and asking them to reconsider the initial
set-up of the problem. Letting

√
2 = p/q , where p, q ∈ Z, q 6= 0,

means that 2q2 = p2. Observe that both p2 and q2 must necessarily
contain zero or an even number of 2’s. This in turn means that
the respective prime factorizations of the left and right side of
the equation, 2q2 = p2, contain unequal numbers of 2’s, thereby
violating the Fundamental Theorem of Arithmetic. Faculty often also
demonstrate the infinitude of primes using proof by contradiction.
Their proofs frequently use Euclid’s construction of a new primorial
prime, p = p1p2...pn + 1, involving the product of a purported
finite collection of all n primes. While this also serves as a suitable
example, it is worth mentioning that Euclid’s original proof was
not, in fact, a proof by contradiction. Like nonconstructive proofs,
proofs by contradiction provide little insight into the underlying
forces at work in a theorem. Consequently, while indirect proofs
are powerful tools, we recommend stressing to students that they
be used sparingly, and only in cases where direct approaches are
unavailable.

4) Proof by Induction ∀P [P (0) ∧ ∀k (P (k) → P (k +
1)) ` ∀nP (n)]: Unlike the three preceding proof techniques, all
of which appeared in antiquity, mathematical induction is a more
recent form of reasoning. The first rigorous use of mathematical
induction can be found in the work of the 14th century mathematician
and philosopher Gersonides [27]. The French mathematician Blaise
Pascal later explicitly described the technique in Traité du triangle
arithmétique in 1665 [28]. Mathematical induction is a form of
deductive reasoning and, despite its name, should not be confused
with inductive reasoning. It relies upon the Peano axioms. Notice
that, as formulated above, proof by induction belongs to second-
order logic since the first quantifier ranges over the predicates
rather than the predicate variables. It is, however, possible to reduce
mathematical induction to first-order logic via the introduction of
an axiom schema. When carrying out proof by induction, one must

prove that ∀k P (k)→ P (k + 1). Once this has been accomplished,
invoking the induction principle carries out n applications of this
step thereby allowing us to get from P (0) to P (n). It can be helpful
to use either the domino or ladder analogies when explaining this
process to students. When highlighting the difference between weak
and strong induction, we recommend proving a theorem involving
a sequence expressed as a multi-term recurrence relation such as
a Lucas sequence. In these cases, it becomes easy for students to
recognize that they will need the induction hypothesis to cover more
than just the kth term if they hope to prove P (k + 1). If teaching
a class that includes computer science students, we also recommend
including an example of mutual induction, which they will later use
when studying finite state machines.

III. INDUCTIVE REASONING

Information in war, as in many human endeavors, is incomplete. As
tempting as it may be to remain within the safe confines of deductive
reasoning, the pragmatist recognizes, despite its challenges, the need
for critical thinking to venture into the unknown. In the words of Carl
von Clausewitz, “War is the realm of uncertainty” [29]. Inductive
reasoning provides a means with which to cut through the fog of
war. It involves using evidence-based premises, synthesized from
experience and observation, to draw probable conclusions about the
larger world around us. Inductive reasoning was considered as far
back as antiquity. Aristotle used the Greek word epagoge to describe
the method. The Roman statesman and scholar Cicero later translated
this into the Latin word inductio [30]. In addition to Statistical
Syllogisms, there are three principal types of inductive reasoning:
Generalization, Analogy, and Causation. Inductive arguments make
use of enumerative or eliminative induction. A conclusion arrived at
using enumerative induction is based upon the number of instances
that support it, whereas a conclusion using eliminative induction is
based upon the variety of instances that support it.

A. Statistical Syllogism
When teaching students how to reason inductively, we suggest

beginning with the statistical syllogism. This form of inductive in-
ference most closely resembles deductive logic. Statistical syllogisms
use a generalization about a population to infer something about an
individual or group of individuals [13]. Let A be a reference class,
B be an attribute class, x ∈ R, and i be an element of A. Then the
general form of a statistical syllogism is as follows:

x % of A’s are B.
i is A.
Therefore, i is B.

It is worth pointing out to students that this argument is structurally
similar to Modus Ponens. The difference is that the major premise no
longer is a universally applicable implication, but rather a quantifiable
generalization. The conclusion therefore is not guaranteed. The
strength of the statistical syllogism depends upon the proportion
of the reference class that also are members of the attribute class.
Interestingly, Aristotle would likely have accepted such reasoning.
In his book Prior Analytics he wrote, “That which people know to
happen or not to happen, or to be or not to be, mostly in a particular
way, is likely” [14], [31].

B. Inductive Generalization
Inductive generalization works by creating premises from a sam-

ple, and subsequently attempts to apply these premises and draw
meaningful conclusions about a larger population. There are both
anecdotal and quantitative forms of inductive generalization. We
focus here on the latter, because they often lead to stronger con-
clusions. In a statistical generalization, the conclusion is inferred
using a statistical sample of the population. The success of this
form of inference hinges upon our ability to achieve a statistically-
representative sample of the target population. To do so one must
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first know something about general population characteristics such
as size and distribution. Provided that a randomly chosen sample of
sufficient size can be obtained, the conclusion will be reliable within
a quantifiable margin of error. When teaching statistical inference, it
is important to ensure that students understand hypothesis testing and
the proper construction of confidence intervals. Inferential statistics
is a complex topic, and critical thinkers must understand these
complexities if they hope to reason about the strength or weakness of
a given statistical generalization. As Admiral Hyman Rickover once
said, “The devil is in the details, but so is salvation” [32].

C. Analogical Inference
Analogical inference works by recognizing shared properties

among similar objects and infers that if an additional property is
present in one of the objects, then that property probably applies
to all of the objects [33], [34]. To highlight this form of reasoning,
consider the following: Let P,Q,R, and S be predicates related to
the existence of specified properties. Let x and y be elements from
a set of similar objects U , and let � be the unitary operator (similar
in usage to C.L. Hamblin’s semantics) that modifies a predicate
from true to probable [35], [36]. Then the following represents an
analogical argument:

P (x) ∧ P (y)
Q(x) ∧Q(y)
R(x) ∧R(y)
S(x)
∴�S(y)

The strength of this form of argument depends upon the degree
of similarity between the objects, as well as how relevant the
known similarities are to the inferred similarity in the conclusion.
After having been exposed to deductive logic, students may find
such reasoning dissatisfying. However, it is worth mentioning that
mathematics could not have developed were it not for our ability
to abstract and use analogies. Somewhere in the distant past our
ancestors must have recognized the shared property of quantity
among sets of different objects, thereby giving rise to the concept
of number. For example, two humans, two birds, and two deer, all
share the property of “twoness”.

D. Causal Inference
A commander’s ability to predict enemy actions on the battlefield

is critical to the outcomes in war. This complex and difficult
undertaking involves knowing the enemy’s force size, capabilities,
and location, as well as understanding their psychology, tactics, and
strategy. Inductive prediction attempts to draw conclusion about
future events based upon a sample of specific past instances. Sun
Tzu reminds us that, “The art of war is the art of deception,” so
in military matters such an endeavor must necessarily involve a
great deal of risk [37]. We typically mitigate risk associated with
inductive prediction by defining cones of uncertainty and using
post-facto observation to either confirm a prediction or update
our predictive model. On the battlefield, persistent Intelligence,
Surveillance, and Reconnaissance (ISR) is employed to test and, if
necessary, correct decisions based upon faulty inductive conclusions.
Human beings are predisposed from an early age to reasoning
based upon cause and effect. Causal inference works by building an
implication p→ q based upon an observed effect q, and an assumed
causal connection to a preceding event p. When teaching inferential
statistics, we often emphasize the fact that correlation does not
imply causation. When teaching causal inference, it is important to
impress upon students that the strength of the conclusion depends
in large part upon our understanding of the underlying mechanisms
governing the causal model about which we are trying to reason [34].

In his book, On War, Carl von Clausewitz wrote, “In the whole
range of human activities, war most closely resembles a game of

cards” [29]. The mathematical theory of probability was born out of
attempts to analyze games of chance. Initial contributions from the
16th and 17th century mathematicians Gerolamo Cardano, Pierre de
Fermat, Blaise Pascal, and Christiaan Huygens all stemmed from
a desire to understand games of chance [38]. The 19th century
mathematician Pierre Laplace, who incidentally taught at the French
École Militaire, later developed probability theory into what we
recognize today, including Bayesian inference [38], [39]. Bayesian
inference computes the probability of a consequent based upon two
antecedents, one in the form of a prior probability and the other
in the form of a likelihood function of a statistical model built
upon observational data. Ensuring that students have a good grasp
on conditional probability is important to their ability to reason
inductively. It is important that students understand that conditional
probability allows us to update the probability of an event occurring
based upon new information. One example we suggest using that
highlights this concept is the Monty Hall problem. Such results can
often be counter-intuitive. It is therefore important to give students
adequate time to explore and absorb these concepts.

IV. LOGICAL FALLACIES

Logic is the study of both sound and faulty reasoning. When
teaching critical thinking, it is important that we not only expose
students to valid forms of inference, but also demonstrate what can
go wrong with our thinking. We classify fallacies as either formal or
informal. Formal fallacies are structural in nature, whereas informal
fallacies are related to content [40]. Informal fallacies greatly out-
number formal fallacies. The use of fallacies in rhetoric is regrettably
common. Here the goal of using sound logic is often outweighed by
a desire to gain support for an issue. As previously mentioned, this
exposition is focused on logos over ethos and pathos. We therefore
forego a discussion on informal fallacies such as argumentum ad
hominem (personal attack), argumentum ad verecundiam (appeal
to authority) and argumentum ad misericordiam (appeal to pity)
and examine instead fallacies common in deductive and inductive
reasoning. Our treatment of such fallacies will not be complete, rather
highlight a few common mistakes students make. Among formal
fallacies, there are three that frequently occur in deductive reasoning.

A. Formal Fallacies
1) Affirming a disjunct: is a fallacy caused by students con-

fusing the OR and XOR operations. The fallacy takes the following
form:

p ∨ q
p
∴¬ q

In this case the offender treats the OR operator as an exclusive
disjunction and fails to recognize that p and q could simultaneously
both be true.

2) Affirming a consequent: sometimes also referred to as the
converse error, is perhaps one of the most frequently occurring
fallacies among students. Given an implication, the student fails to
recognize that a different antecedent could also lead to the conclusion.
The fallacious argument is as follows:

p→ q
q
∴ p

When given the implication p → q, it is relatively common for
students to mistakenly assume symmetry and attempt to invoke a
biconditional relationship p↔ q. To help students avoid this fallacy,
we suggest demonstrating that p → q is not logically equivalent to
q → p. This can be done directly using a truth table, or perhaps
more effectively by using the material implication and showing that
p → q ≡ ¬p ∨ q and q → p ≡ ¬q ∨ p. From here students can
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easily confirm that ¬p ∨ q 6≡ ¬q ∨ p.

3) Denying the antecedent: sometimes referred to as the
inverse error, is also a common student fallacy. The faulty argument
takes the form:

p→ q
¬ p
∴¬ q

Given the implication p → q, the misguided student tries to invoke
an inverse relationship. However, p → q is not logically equivalent
to ¬p → ¬q. In some instances, this error can be brought about
by students confusing ¬p → ¬q with the contrapositive statement
¬q → ¬p, which is logically equivalent to the original implication
p → q. It is worth pointing out to students that although neither
¬p → ¬q nor q → p are logically equivalent to p → q, they are
however equivalent to each other.

B. Informal Fallacies
Fallacies in inductive reasoning are typically related to the content

and not the structure of the argument [13], [40]. The problematic
content usually takes the form of a faulty generalization that is
either built upon a statistically flawed sample or the result of errors
in analysis of the available data. There are two common informal
fallacies that occur in statistical syllogisms. The accident takes place
when an exception to a general rule is ignored, whereas the converse
accident happens when a rule applicable in an exceptional case
is applied in general. When it comes to inductive generalizations,
several mistakes are common. In a hasty generalization, one or a
handful of examples are used to develop a generalization. In this
case, the generalization fails to apply to the larger population. The
unrepresentative samples fallacy occurs when a conclusion is drawn
using samples of a population that are unrepresentative or biased. In a
slothful induction, skeptics deny a correct conclusion despite strong
supporting evidence, and assume instead that it is a coincidence.
Conversely, in the fallacy of exclusion, proponents of an inductive
argument exclude important evidence that calls into question the
conclusion. Finally, in analogical inference, the false analogy is
a common mistake. In this case, the objects being compared are
altogether dissimilar or their similarity is not relevant with respect
to the conclusion being inferred.

V. CONTEXT, THEORY, PRAXIS, AND CRITIQUE

When teaching the art of solving problems, it is important to
prepare the pedagogical battlefield so to speak. Whenever possible,
we recommend adopting a systematic approach focused on context,
theory, praxis, and critique. First, set the stage by discussing why
we care about the problem. Secondly, present the relevant theory
related to how we solve the problem. Third, and perhaps most
importantly, give students time to practice and internalize the
techniques presented. Finally, demonstrate limitations to the methods
and errors that can occur when attempting to solve the problem.
Praxis informs critique. We argue that achieving basic proficiency in
the mechanics of problem solving is not the desired end-state, rather
the point from which students can begin to think critically about
the problem and evaluate their solutions. What is the acceptable
input domain? What is the solution codomain? Does the computed
solution make sense? What are limitations of the method? Are there
workarounds for situations where the algorithm fails? Perhaps some
of the most interesting and insight-producing mathematics occurs
in the latter situation. Take for example the use of least squares
approximations when trying to solve overdetermined systems of
linear equations. Inherent to the practice of critical thinking is the
act of asking questions. Using the Socratic method in the classroom
provides students with a critical-thinking exemplar. When it comes
to critical thinking, we are reminded of Paul Halmos’ famous quote:

Don’t just read it; fight it! Ask your own question, look
for your own examples, discover your own proofs. Is
the hypothesis necessary? Is the converse true? What
happens in the classical special case? What about
the degenerate cases? Where does the proof use the
hypothesis? [41]

It is important to not lose sight of the fact that our mission is
to educate officers, not train technicians. Avoid the temptation of
introducing technology for technology’s sake. Before giving students
a computational tool, we must first equip them with the means
with which to critically judge the tool’s output. For example, when
teaching trigonometry, students must first be taught the unit circle. Al-
lowing students the use of a calculator without first ensuring that they
can compute trigonometric function values by hand, undermines their
understanding and confidence, forces their reliance upon a machine,
and increases the likelihood of mistakes being made. Borrowing from
an old adage, it is important that educators act as angling coaches
and not charitable fishmongers. Technologies progress and systems
change. The tools of tomorrow will almost certainly differ from
those used in today’s classrooms. We must therefore avoid teaching
“buttonology” and mastery of specific tools, rather focus instead on
the underlying algorithms. Computational tools, like weapon systems,
have operating envelopes and performance parameters. Showing
students when and how computational tools fail, is part and parcel
of educating them on their use.

VI. IA VERSUS AI
Modern warfare is a marriage of man and machine. We believe

that what military commanders need on the battlefield is machine
augmented intelligence, sometimes referred to as Intelligence Am-
plification (IA), not merely Artificial Intelligence (AI). Perhaps the
closest analog we currently have to AI employed in battle, is that of
chess. Computer chess engines have been getting consistently better
since IBM’s Deep Blue computer first defeated the world chess cham-
pion, Garry Kasparov, in 1997 [42]. Today chess engines regularly
beat chess grandmasters [43]. However, players such as the reigning
world champion, Magnus Carlsen, frequently use chess engines to
aid in their analysis and game preparation [44]. In fact, following
his loss to Deep Blue, Kasparov subsequently invented advanced
chess. This form of the game, sometimes referred to as centaur
chess or cyborg chess, involves a human armed with a chess engine.
Here the hybrid human-machine player, called a centaur, leverages
computer computation and search capabilities, human creativity and
intuition, along with anti-AI tactics to defeat a hybrid or machine
adversary [45], [46], [47]. Much of the current focus within the
Department of Defense is on AI, while arguably less attention is
being given to how we should train the combined Human-Machine
Learning system. Inductive reasoning, as previously discussed, is far
more error-prone than deductive reasoning. Data science shows great
promise in helping us reason inductively, however, it also brings with
it great risk. Machine Learning systems can be vulnerable to enemy
Machine Learning countermeasures in the form of deceptive data that
is introduced in an effort to subvert or alter system behavior. It is
therefore paramount that we equip warfighters with the necessary
skills to reason critically about the solutions automated systems
provide, and in so doing “cognitively fine-tune” our military human-
machine reasoning systems.

VII. CONCLUSION

Teachers of critical thinking are in many respects like tour
guides. We take students on excursions through monuments of
some of man’s greatest intellectual achievements over the past
two and a half millennia. The routes we choose and time we
dwell on certain features effects how our students experience and
interact with their surroundings. We should strive to contextualize

6

Mathematica Militaris, Vol. 25, Iss. 1 [], Art. 2

https://digitalcommons.usmalibrary.org/mathematica_militaris/vol25/iss1/2



and connect the sites on the tour in such a way as to tell a
compelling story. In order for our pupils to become proficient
in the art of reasoning, we must allow them time to explore
and internalize the ideas, interceding only when necessary to point
out obstacles and pitfalls in their way. As Carl von Clausewitz wrote:

All thinking is indeed Art. Where the logician draws
the line, where the premises stop which are the result
of cognition - where judgment begins, there Art begins.
[29]

Our adversaries have steadily been closing the technological gap
we have long enjoyed. On the battlefields of tomorrow, we may no
longer be able to rely upon a technical advantage. We must therefore
create a 21st century “cognitive phalanx” capable of delivering a
warfighting advantage in spite of inferiority in numbers or technology
that is not superior to that of our enemies. Instructing officers in
critical thinking is important and must begin early. Exposing cadets,
midshipmen, and junior officers to logic and reasoning introduces
them to a systematic approach to problem solving and teaches rigor.
It helps them exercise intellectual curiosity and judgement, and it
reinforces confidence, discipline, and grit. This, in turn, makes them
better warfighters and leaders. It also creates a solid foundation upon
which they later can exercise more nuanced complex and strategic
thinking. Sun Tzu tells us in The Art of War that, “Every battle is
won before it’s ever fought” [37]. The critical thinking skills we
develop in our students today could quite possibly prove decisive in
the outcomes of battles of the future.
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