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Abstract

We calculate the full automorphism group of Cayley digraphs of Z
3
p, p an odd

prime, as well as determine the 2-closed subgroups of Sm ≀ Sp with the product

action.

1 Introduction

In the last several decades, there has been considerable interest in vertex-transitive di-
graphs, that is, digraphs whose automorphism group acts transitively on the vertex set of
the digraph. As vertex-transitive digraphs are studied for their symmetry, a natural and
fundamental question which immediately arises is that, given a vertex-transitive digraph
Γ, what are all symmetries of Γ? That is, what is Aut(Γ), the automorphism group of
Γ? This problem is also named as the König problem [16], and it is well-known to be a
quite difficult one (cf. [18]). As one would expect, only modest progress has been made
towards a solution. In this paper, we will give a description of the automorphism group
of a Cayley digraph of Z

3
p, p an odd prime. The automorphism groups of Cayley digraphs

have been determined for the groups Zp [1], Z
2
p [13], Zp2 [18] (see also [13] for a different,
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later proof), Zn (for arbitrary n see [23, Theorem 2.3] which summarizes results proven in
[14, 19, 20], and see [25] for a polynomial time algorithm to compute the automorphism
group; for the special case n = pq, p and q are distinct primes, see also [18] or [9] for a
different, later proof, and for the case n is square-free see [11] for an independent com-
putation of the automorphism group). See also [9] for the automorphism groups of every
vertex-transitive graph of order pq, where p and q are distinct primes.

A classical result of Sabadussi states that, a digraph is isomorphic to a Cayley digraph
of a group G if and only if its automorphism group contains a regular subgroup isomorphic
to G. A 2-closed permutation group is simply the automorphism group of a color digraph,
and the automorphism group of a Cayley digraph is a 2-closed group (see also Section 2).
Our main result below gives in fact all 2-closed groups which contain a regular elementary
abelian subgroup of order p3.

Theorem 1.1. Let G 6 Sp3 be a 2-closed group, p is an odd prime, such that G contains
a regular elementary abelian subgroup. Then one of the following is true:

(1) G is primitive, and permutation isomorphic to one of the following groups:

(a) Sp3;

(b) a primitive subgroup of AGL(3, p);

(c) S3 ≀ Sp with the product action.

(2) G is imprimitive, and permutation isomorphic to one of the following groups:

(a) an imprimitive subgroup of AGL(3, p);

(b) X ≀ Y , where X 6 Spi and Y 6 Spj are 2-closed groups, containing a regular
elementary abelian subgroup, and 1 6 i, j, i + j = 3;

(c) Sp × X or Sp2 × Y , where X 6 Sp2 and Y 6 Sp are 2-closed groups, containing
a regular elementary abelian subgroup;

(d) A((Sp×Sp)×Z) or A((X ≀Y )×Z), where Z < AGL(1, p), X, Y 6 Sp are 2-closed
groups, and A 6 Aut(Z3

p).

The rest of this paper is organized as follows. In the next section, we gather most
definitions and preliminary results needed later. In Section 3, we determine the primitive
2-closed groups that contain a regular subgroup isomorphic to Z

3
p. In Section 4, we

consider the 2-closed subgroups of Sm ≀ Sp with the product action. We remark that
results in Section 4 are not needed for the proof of Theorem 1.1. Imprimitive 2-closed
groups that contain a regular subgroup isomorphic to Z

3
p are computed in Section 5, where

the work is broken down according to various possibilities for a Sylow p-subgroup - the
various possibilities are listed in Theorem 5.4, and were determined explicitly in [28] and
implicitly in [7].
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2 Preliminaries

Notation is relatively standard. For permutation group theoretical terminology not de-
fined here the reader is referred to [6].

Let Ω be a set and G 6 SΩ be a transitive group. Let G act on Ω× Ω by g(ω1, ω2) =
(g(ω1), g(ω2)) for every g ∈ G and ω1, ω2 ∈ Ω. We define the 2-closure of G, denoted
G(2), to be the largest subgroup of SΩ whose orbits on Ω × Ω are the same as G’s. Let
O1, . . . ,Or be the orbits of G acting on Ω × Ω. Define digraphs Γ1, . . . , Γr by V (Γi) = Ω
and E(Γi) = Oi. Each Γi, 1 6 i 6 r, is an orbital digraph of G, and it is straightforward
to show that G(2) = ∩r

i=1Aut(Γi). Let {Φ1, . . . , Φs} be an arbitrary partition of Ω×Ω such
that Φ1 := {(ω, ω) : ω ∈ Ω}. The pair Φ := (Ω, {Φ1, . . . , Φs}) is called a color digraph,
and its automorphism group is Aut(Φ) := ∩s

i=1Aut((Ω, Φi)). To the sets Φi, 1 6 i 6 s,
we shall also refer as the color classes of Φ. Clearly, the automorphism group of a vertex-
transitive graph or digraph is 2-closed, and the 2-closed subgroups of SΩ coincide with
the automorphism groups of color digraphs with vertex set Ω.

Let S ⊆ G. We define the Cayley digraph of G with connection set S, denoted
Cay(G, S), to be the digraph with vertex set G and arc set {(g, gs) : g ∈ G, s ∈ S}.
By a Cayley color digraph of H we mean a color digraph with vertex set H , each color
class of which is an arc set of a Cayley digraph of H . For g ∈ G, define gL : G → G by
gL(h) = gh. It is easy to see that gL ∈ Aut(Cay(G, S)). We set GL := {gL : g ∈ G},
which is the left-regular representation of G, and thus GL 6 Aut(Cay(G, S)).

The following classical result of Burnside [3] is quite useful for analyzing transitive
groups of prime degree, especially now that, as a consequence of the Classification of
Finite Simple Groups, all doubly transitive groups are known [4].

Theorem 2.1. Let G be a transitive group of prime degree. Then either G is doubly
transitive, or G contains a normal Sylow p-subgroup.

Equivalently (see [6, Exercise 3.5.1]), we have

Theorem 2.2. Let G be a transitive group of prime degree p. Then we may relabel the
set upon which G acts so that G 6 AGL(1, p), or G is doubly transitive.

As essentially observed by Alspach [1], this yields the following result giving all 2-closed
groups of prime degree.

Theorem 2.3. Let G be a 2-closed group of prime degree p. Then either G is permutation
isomorphic to a proper subgroup of AGL(1, p), or G = Sp.

The 2-closed subgroups of Sp2 that contain a regular elementary abelian subgroup
were determined in [13, Theorem 14].

Theorem 2.4. Let G be a 2-closed subgroup of Sp2 such that G contains the left regular
representation of Z

2
p.

1. If G is doubly transitive, then G = Sp2.
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2. If G is simply primitive and solvable, then G 6 AGL(2, p).

3. If G is simply primitive and nonsolvable, then G 6 AGL(2, p) or G = S2 ≀ Sp in its
product action.

4. If G is imprimitive, solvable, and has an elementary abelian Sylow p-subgroup, then
either G < AGL(1, p) × AGL(1, p) or G = S3 × S3 (and p = 3).

5. If G is imprimitive, nonsolvable, and has an elementary abelian Sylow p-subgroup,
then either G = Sp × Sp or G = Sp × A, where A < AGL(1, p).

6. If G is imprimitive with Sylow p-subgroup of order at least p3, then G = G1 ≀ G2,
where G1 and G2 are 2-closed permutation groups of degree p.

We shall have need of the following result of Kalužnin and Klin [17] (this result is also
contained in the more easily accessible [5, Theorem 5.1]).

Lemma 2.5. Let G 6 SX and H 6 SY be transitive groups. Then in their coordinate-wise
action on X × Y , we have

(G × H)(2) = G(2) × H(2), and (G ≀ H)(2) = G(2) ≀ H(2).

Let A be a finite set of order n, and Rel(A) to be the set of all relations on A. We
define a combinatorial object X to be a subset of Rel(A) following Muzychuk [24] (see
this reference as well for various equivalent definitions of a combinatorial object). We
define a Cayley object of a group G to be a combinatorial object X (e. g. digraph, graph,
design, code) such that the left regular representation GL 6 Aut(X), where Aut(X) is the
automorphism group of X (note that this implies that the vertex set of X is in fact G).
If X is a Cayley object of G in some class K of combinatorial objects with the property
that whenever Y is another Cayley object of G in K, then X and Y are isomorphic if
and only if they are isomorphic by a group automorphism of G, then we say that X is a
CI-object of G in K. If every Cayley object of G in K is a CI-object of G in K, then we
say that G is a CI-group with respect to K. If G is a CI-group with respect to every class
of combinatorial objects, then G is a CI-group.

Babai [2] characterized the CI-property in the following manner.

Lemma 2.6. For a Cayley object X of G the following are equivalent:

1. X is a CI-object;

2. given a permutation ϕ ∈ SG such that ϕ−1GLϕ 6 Aut(X), GL and ϕ−1GLϕ are
conjugate in Aut(X).

The problem of determining which groups G are CI-groups with respect to digraphs
has attracted considerable attention over the last 30 or so years. The interested reader
is referred to [21]. The following result is due to the first author of this paper [7], and
independently, by M.-Y. Xu [28].
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Theorem 2.7. The group Z
3
p, p is a prime, is a CI-group with respect to color digraphs.

The above theorem is of interest here because of the following lemma. Recall that, for
a group G, and a subgroup H 6 G, the normal closure HG is the group 〈g−1Hg : g ∈ G〉.

Lemma 2.8. Let H be a group, and G 6 SH be a 2-closed group such that HL 6 G. If H
is a CI-group with respect to color digraphs, then G = A[(HL)G](2), where A = Aut(H)∩G.

Proof. Let g ∈ G. Then g−1HLg 6 (HL)G, and as H is a CI-group with respect to
color digraphs (see Theorem 2.7), by Lemma 2.6, there exists δg ∈ [(HL)G](2) such that
δ−1
g g−1HLgδg = HL. Then gδg normalizes HL, and so by [6, Corollary 4.2B], we have that

gδg ∈ Aut(H)HL. As HL 6 [(HL)G](2), by replacing δg with an appropriate δghL, we get
that gδg ∈ A = Aut(H) ∩ G, and the result follows.

Definition 2.9. Let G 6 Sn be a transitive permutation group, admitting complete block
systems A and B consisting of m blocks of size k and k blocks of size m, respectively,
where mk = n. If, whenever A ∈ A and B ∈ B, we have that |A ∩ B| = 1, then we say
that A and B are orthogonal, and write A ⊥ B.

The following result is [9, Lemma 2.2].

Lemma 2.10. Let A and B be orthogonal block systems of G. Then G is equivalent to a
subgroup of Sm × Sk with the natural coordinate-wise action.

Definition 2.11. Let G be a transitive permutation group admitting a complete block
system B. For B ∈ B, we define StabG(B) := {g ∈ G : g(B) = B}. Thus StabG(B)
is the set-wise stabilizer of the block B ∈ B. We define fixG(B) := {g ∈ G : g(B) =
B for all B ∈ B}. Thus fixG(B) is the subgroup of G which fixes every block of B set-
wise. For g ∈ G, we define g/B to be the permutation induced by g acting on the blocks
in B, and set G/B := {g/B : g ∈ G}.

Remark 2.12. While not in the statement of [9, Lemma 2.2], several useful facts can
be extracted from the proof of that result. Namely, G is in fact contained in G/A ×
G/B, (G/A) ∩ G = fixG(B), (G/B) ∩ G = fixG(A), and thus (G/A)/((G/A) ∩ G) ∼=
(G/B)/((G/B) ∩ G).

3 The primitive groups

In this section, we will compute the full automorphism group of every primitive 2-closed
group that contains a regular subgroup isomorphic to Z

3
p. Throughout this section, for

0 6 i 6 k, we let Ti be the subset of Z
k
m that consists of those elements of Z

k
m with exactly

i coordinates that are 0.

Lemma 3.1. Let K 6 Sk be a transitive group, and let G = K ≀ Sm with the product
action, so that G is primitive. Let Γ be an orbital digraph of G, so that Γ is a Cayley
digraph of Z

k
m with connection set T . Then there exists 0 6 i 6 k such that T ⊆ Ti; and

if i = 0, 1, or k − 1, then T = Ti.
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Proof. Let t = (a1, . . . , ak) ∈ T , i. e., the identity 0̄ := (0, . . . , 0) in Z
k
m is adjacent to t in

Γ. Let 0 6 i 6 k be such that t ∈ Ti. Let 1 6 j1, . . . , ji 6 k such that ajℓ
= 0, 1 6 ℓ 6 i.

As Sk
m 6 G, and acts coordinate-wise, after fixing 0̄ and letting StabSk

m
(0̄) act on t, we

see that (b1, . . . , bk) ∈ T , where bjℓ
= ajℓ

= 0, 1 6 ℓ 6 i, and if n 6= jℓ, 1 6 ℓ 6 i, then
bn ∈ (Zm \ {0}). Hence (b1, . . . , bk) ∈ Ti. As each Ti is invariant under permutation of
coordinates, and K ≀ 1Sm

permutes the coordinates, we have that T ⊆ Ti.
If, in addition, i = 0, then the action of StabSk

m
(0̄) on t produces every element of T0,

and so T = T0.
If i = 1, then the action of StabSk

m
(0̄) on t produces every element of T1 that is 0 is

some fixed coordinate (given by t), and as K ≀ 1Sm
permutes the coordinates transitively

and fixes 0̄ we obtain in T every element with 0 in exactly one fixed coordinate, and so
T = T1.

If i = k − 1, then the action of StabSk
m
(0̄) on t produces every element of Tk−1 that

is not 0 in some fixed coordinate (given by t), and as K ≀ 1Sm
permutes the coordinates

transitively and fixes 0̄, we have that T = Tk−1.

Proof. (part (1) of Theorem 1.1) As G is primitive, by [22, Theorem 1.1], G is
permutation isomorphic to a subgroup of AGL(3, p), or a subgroup of S3 ≀ U with the
product action, where U is a primitive group of degree p with nonabelian simple socle T ,
or Ap3 6 G 6 Sp3. As (Ap3)(2) = Sp3, we need consider only the case when G 6 S3 ≀ U .
Then G has socle soc(G) = T 3. By Theorem 2.1, T is doubly transitive, and so by Lemma
2.5, we have that (T 3)(2) = S3

p 6 G. Therefore, G = K ≀ Sp, where K 6 S3 is a transitive
group. By Lemma 3.1, the orbital digraphs of G are the Cayley digraphs of Z

3
p with

connections sets T0, T1, and T2 (using the notation of Lemma 3.1). It is easy to see that
S3 ≀ Sp is contained in the automorphism groups of all of these orbital digraphs, and as
the 2-closure is the intersection of the automorphism groups of all orbital digraphs, we
have that G(2) = S3 ≀ Sp. This completes the proof of part (1) of Theorem 1.1.

Recall that, a 2-closed simply primitive group G 6 Sp2 is permutation isomorphic to
either S2 ≀ Sp with product action, or a subgroup of AGL(2, p) (see Theorem 2.4). This
result in conjunction with the above proof may lead one to suspect that this may be the
case in a more general context. Our goal in the next section is to show that this is in
general far from being true.

4 Primitive 2-closed subgroups of Sm ≀ Sp

In this section, we digress from the main goal of this paper, and consider primitive 2-closed
subgroups of Sm ≀ Sp, with the product action. According to the O’Nan-Scott Theorem
[6, Theorem 4.1A], a primitive group of prime-power degree pm is either a subgroup of
AGL(m, p), has nonabelian simple socle, or is isomorphic to a subgroup of Sn ≀U with the
product action, where U is primitive of degree a power pd and nd = m. Guralnick [15]
has determined all primitive groups of prime-power degree with nonabelian simple socle,
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and with one exception of degree 27, all are doubly transitive. Ignoring this exception as
well as all primitive groups with the product action that can be constructed with it, we
see that every other primitive group of prime-power degree constructed using the product
action must have socle T r for some r, where T is a doubly transitive nonabelian simple
group. Then (T r)(2) = Sr

pi, where T has degree pi. Thus every 2-closed, simply primitive
group of prime-power degree not a power of 3 is either a subgroup of AGL(m, p) or of
Sn ≀ Spi with the product action. We remark that the results in this section are not used
in the proof of Theorem 1.1. We begin with a definition.

Definition 4.1. A k-uniform hypergraph X is an ordered pair (V, E), where V is a set,
and E is a subset of the set of all subsets of V of size k. An automorphism of X is a
bijection g : V → V such that g(e) ∈ E for every e ∈ E. We denote by Aut(X) the
automorphism group of X, which is the set (group) of all automorphisms of X. We say
X is vertex-transitive if Aut(X) acts transitively on V .

Theorem 4.2. Let G be the automorphism group of a vertex-transitive k-uniform hyper-
graph of order m. Then G ≀ Sp with the product action is a transitive, primitive, 2-closed
subgroup of Spm.

Proof. Let X be a vertex-transitive k-uniform hypergraph of order m with Aut(X) = G.
Let S = {(a1, . . . , ak) : ai 6= 0, 1 6 i 6 k}, and Γ = Cay(Zk

p, S). Note that Sk
p 6 Aut(Γ).

For each {a1, a2, . . . , ak} = T ∈ E(X), let ιT be the natural inclusion map from Z
k
p to Z

m
p

that maps the jth coordinate of Z
k
p to the ath

j -coordinate of Z
m
p as the identity, and is 0 in

every other coordinate of Z
m
p . Set S ′ = {ιT (S) : T ∈ E(X)}, and Γ′ = Cay(Zm

p , S ′). We
will show that Aut(Γ′) = G ≀ Sp with the product action.

We first show that G ≀ Sp 6 Aut(Γ′). By construction, Γ′ is a Cayley graph of Z
m
p .

Thus Aut(Γ′) contains the left-regular representation of Z
m
p as a transitive subgroup, as

does G ≀ Sp. Thus to settle G ≀ Sp 6 Aut(Γ′) it suffices to show that every element σ of
G ≀ Sp that fixes the identity 0̄ in Z

m
p satisfies σ(S ′) = S ′.

For h ∈ Sm, we denote by h̃ the element of Sm ≀ 1Sp
with the product action corre-

sponding to h. Let g ∈ G. Then g̃(0̄) = 0̄ and

g̃(S ′) = g̃{ιT (S) : T ∈ E(X)} = {ιg(T )(S) : T ∈ E(X)} = S ′,

as g ∈ G = Aut(X). Thus G ≀ 1Sp
6 Aut(Γ′).

Let t̄ ∈ S ′, and T be a set in E(X) such that t̄ ∈ ιT (S), and let h ∈ StabSm
p

(0̄). As

Aut(Γ) = Sk
p , ι−1

T h(ιT (S)) = S. Then

h(t̄) = ιT ι−1
T h(t̄) ∈ ιT ι−1

T h(ιT (S)) = ιT (S) ⊆ S ′,

and h ∈ Aut(Cay(Zm
p , S ′)). Thus Sm

p 6 Aut(Γ′). Thus G ≀ Sp with the product action is
contained in Aut(Γ′).

It now follows by [6, Lemma 2.7A] that G ≀ Sp with the product action is primitive so
that Aut(Γ′) is primitive. As Aut(Cay(Zm

p , S ′)) contains (Zm
p )L, by [22, Theorem 1.1] we

have that Aut(Γ′) 6 H ≀ Sp with the product action, for some H 6 Sm with G 6 H .

the electronic journal of combinatorics 16 (2009), #R149 7



In order to show that Aut(Γ′) 6 G ≀ Sp, it suffices to show that H 6 G. Let h ∈ H ,
T ∈ E(X), and s̄ = (s1, . . . , sk) ∈ S such that si 6= 0 for all 1 6 i 6 k, and t̄ = ιT (s̄). Then
h̃(0̄t̄) = h̃(0̄)h̃(t̄) = 0̄h̃(t̄). Thus h̃(t̄) ∈ S ′. Also h̃ maps the set of nonzero coordinates
T of t̄ to the set of nonzero coordinates h(T ) of h̃(t̄). As the set of nonzero coordinates
of t̄ are T , and the set of nonzero coordinates of h̃(t̄) form an edge of X, we have that
h(T ) ∈ E(X). Thus H 6 Aut(X) = G, so that Aut(Γ′) 6 G≀Sp and the result follows.

Remark 4.3. It is known that every 2-closed group is also k-closed [27, Theorem 5.10].
It is then apparent that the problem of determining all transitive 2-closed groups is “eas-
ier” than determining all transitive k-closed groups for a fixed k > 3. The above result
essentially says that this may not in fact be the case. The automorphism group of a
k-uniform hypergraph is k-closed (although we remark that there are certainly k-closed
groups which are not the automorphism group of a k-uniform hypergraph), and the previ-
ous result basically states that in order to determine the transitive 2-closed subgroups of
Spm, we must already know many (those that are the automorphism groups of k-uniform
hypergraphs) transitive k-closed groups of degree m.

Theorem 4.4. Let Γ be an orbital digraph of a 2-closed primitive subgroup G of Sm ≀ Sp,
p a prime, with the product action, where G has nonabelian socle. Let ā = (a1, . . . , am)
be a neighbor of (0, . . . , 0) in Γ, and U = {i : ai 6= 0}. Then

(1) G = H ≀ Sp with product action, where H 6 Sm is a transitive group.

(2) Aut(Γ) = Aut(X) ≀ Sp with the product action, where X is the k-uniform hypergraph
defined by V (X) := Zm, and E(X) := {h(U) : h ∈ H}, where k = |U |.

Proof. As Sm ≀ Sp with the product action has degree pm and G has nonabelian socle,
we have by [6, Theorem 4.1A] that soc(G) = T m for some nonabelian simple group T of
degree p. By Theorem 2.1, we have that T is doubly transitive. As the 2-closure of a
doubly transitive group is a symmetric group, by Lemma 2.5 we have that (T m)(2) = Sm

p ,

so that T = Ap. Then (Tm)(2) 6 G(2) 6 Aut(Γ). We conclude that G = H ≀ Sp with the
product action for some transitive group H 6 Sp, and Aut(Γ) = L ≀ Sp with the product
action for some H 6 L 6 Sm, in particular, (1) follows.

In part (2), as ā = (a1, . . . , am) is a neighbor of 0̄ = (0, . . . , 0) in Γ, we have that
0̄(b1, . . . , bm) ∈ E(Γ), where bi = ai if ai = 0 and bi ∈ Z

∗
p if ai 6= 0 as Sm

p 6 Aut(Γ). Then
(−a1, . . . ,−am) is a neighbor of 0̄, so that Γ is a graph.

Observe that Γ is a Cayley graph of Z
m
p , and as Γ is an orbital digraph, Γ is arc-

transitive. Let Γ = Cay(Zm
p , S). Thus StabAut(Γ)(0̄) is transitive on S. Note that any

element γ ∈ StabSm
p

(0̄) maps the nonzero coordinates of any element s of Z
m
p bijectively

to the nonzero coordinates of γ(s), as does any element γ ∈ L ≀ 1Sp
. As StabAut(Γ)(0̄) =

〈StabSm
p

(0̄), L ≀ 1Sp
〉, we have that every element of S contains exactly the same number

of nonzero coordinates, and an element γ ∈ StabAut(Γ)(0̄) maps the nonzero coordinates
of s̄ ∈ S to the nonzero coordinates of γ(s). We first show that Aut(X) ≀ Sp 6 Aut(Γ).

Let x ∈ Aut(X) and e ∈ E(Γ). Denote by x̃ the element of Aut(X) ≀1Sp
corresponding

to x. As 1Sm
≀ Sp = Sm

p 6 G(2) 6 Aut(Γ) and is transitive, there exists δ ∈ Sm
p such that
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one endpoint of δ(e) is 0̄. As x̃ ∈ Aut(Γ) if and only if x̃δ ∈ Aut(Γ), we can and do
assume that one endpoint of e is 0̄. Let c̄ = (c1, . . . , cm) denote the endpoint of e that is
not 0̄ so that c ∈ S, and let V = {i : ci 6= 0}. As G acts arc-transitively on Γ, there is
some g ∈ G that maps the arc from 0̄ to ā to the arc from 0̄ to c̄. Then g stabilizes 0̄ and
maps ā to c̄. Let g = h̃δ, where h ∈ H , δ ∈ Sm

p . As g maps the nonzero coordinates of ā
to the nonzero coordinates of c̄ bijectively, we have that h(U) = V , and so V ∈ E(X).

As x ∈ Aut(X), x(V ) ∈ E(X), there is some element of S that is 0 in every coordi-
nate not contained in x(V ) and is not 0 in every coordinate contained in x(V ). Hence
(d1, . . . , dm) ∈ S, where di = 0 if i 6∈ x(V ) and if i ∈ x(V ), then di ∈ Z

∗
p. Then

x̃(c1, . . . , cm) = (d1, . . . , dm) where di = 0 if i 6∈ x(V ) and di ∈ Z
∗
p if i ∈ x(V ). Thus

x̃(e) ∈ E(Γ) and x̃ ∈ Aut(Γ). Thus Aut(X) ≀ Sp 6 Aut(Γ).
Suppose now that f ∈ Aut(Γ). We write f = ℓ̃δ, where ℓ̃ ∈ L ≀ 1Sp

and δ ∈ Sm
p .

As Sm
p 6 Aut(X) ≀ Sp, it suffices to show that ℓ ∈ Aut(X) (using the same notation

as above backwards). Let W ∈ E(X), so that W = h(U) for some h ∈ H . As every
element of S contains exactly the same number of nonzero coordinates, there exists s̄ ∈ S
such that s̄ is nonzero precisely in the coordinates contained in W . As Γ is an orbital
digraph, there exists g ∈ StabG(0̄) such that g(s̄) = ℓ̃(s̄) (i.e. the image of the edge from
0̄ to s̄ under g and ℓ̃ are the same). Let h′ ∈ H such that g = h̃′δ′, δ′ ∈ Sm

p . Then
ℓ(W ) = h′(W ) = (h′h)(U) ∈ E(X) and so ℓ ∈ Aut(X). Thus Aut(Γ) 6 Aut(X) ≀ Sp and
so Aut(Γ) = Aut(X) ≀ Sp.

5 The imprimitive groups

Before starting to derive the groups in part (2) of Theorem 1.1, we prove some more
general results.

Definition 5.1. A complete block system B of a permutation group G is genuine if B is
formed by the orbits of a normal subgroup of G.

Lemma 5.2. Let A and B be genuine orthogonal complete block systems of a 2-closed
permutation group G, with A consisting of m blocks of size k. Then G contains a transitive
normal subgroup L = X×Y , where fixG(B) = X 6 Sm and fixG(A) = Y 6 Sk are 2-closed
groups.

Furthermore, if G contains a regular abelian CI-group H with respect to color digraphs,
then G = A(X × Y ), where A = Aut(H) ∩ G.

Proof. As both A and B are genuine, we have that X := fixG(A) 6= 1, and Y := fixG(B) 6=
1. As A ⊥ B, we have that X ∩Y = 1. Hence 〈X, Y 〉 ∼= X ×Y and 〈X, Y 〉⊳G as X, Y ⊳G.
Let G act on Ω, and let ω1, ω2 ∈ Ω. Then there exists A ∈ A such that ω1 ∈ A, and
B ∈ B such that ω2 ∈ B. As A ⊥ B, A∩B is a singleton, say {ω3}. Also, as A and B are
genuine, fixG(A) acts transitively on A and fixG(B) acts transitively on B. Then there
exists α ∈ fixG(A) such that α(ω1) = ω3 and β ∈ fixG(B) such that β(ω3) = ω2. Then
βα(ω1) = ω2 and 〈X, Y 〉 is transitive. By Lemma 2.5 we have that (X×Y )(2) = X(2)×Y (2)
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and X 6 X(2) 6 fix(X×Y )(2)(A) = X, so that X = X(2). A similar argument then shows

that Y (2) = Y .
Now suppose G contains a regular abelian subgroup H which is a CI-group with respect

to color digraphs. As a transitive abelian group is regular [26, Proposition 4.3], we must
have that fixH(A) 6= 1 6= fixH(B). As above, fixH(A)∩fixH(B) = 1 and 〈fixH(A), fixH(B)〉
is transitive, so that 〈fixH(A), fixH(B)〉 = H . Thus H 6 X × Y , and as (X × Y )⊳G, we
have that HG 6 (X × Y ). Hence [HG](2) 6 (X × Y )(2) = X × Y . By Lemma 2.8,
X × Y = A1[(H

G)(2)], A1 = Aut(H) ∩ (X × Y ), and G = A[(HG)(2)], A = Aut(H) ∩ G.
Then A1 6 A, and

G = A[(HG)(2)] = AA1[(H
G)(2)] = A[A1[(H

G)(2)]] = A(X × Y ).

Corollary 5.3. Let G 6 Sn be a transitive 2-closed group, such that G contains a regular
abelian CI-group H with respect to color digraphs. If (HG)(2) admits orthogonal complete
block systems A and B, with A consisting of m blocks of size k. Then there exist 2-closed
groups X 6 Sm and Y 6 Sk, such that G = A(X × Y ), where A = Aut(H) ∩ G.

Proof. By Lemma 5.2, there exist 2-closed groups X 6 Sm and Y 6 Sk such that
(HG)(2) = A1(X×Y ), where A1 = Aut(H)∩(HG)(2). By Lemma 2.8, G = A[A1(X×Y )] =
A(X × Y ), where A = Aut(H) ∩ G.

Let G 6 Sp3 be a 2-closed group, such that G contains a regular elementary abelian
subgroup, and let P be a Sylow p-subgroup of G. Then P (2) 6 G, and since P (2) is a
p-group (see [27, Exercise 5.28]), we have that P is 2-closed. Thus P is described by the
following result which is explicit in [28], and implicit in [7].

Theorem 5.4. Let P 6 Sp3 be a transitive 2-closed p-group, such that P contains a
regular elementary abelian subgroup, where p is an odd prime. Then P is permutation
isomorphic to one of the following groups:

1. Z
3
p,

2. Zp ≀ (Zp ≀ Zp),

3. Zp ≀ (Zp × Zp),

4. (Zp × Zp) ≀ Zp,

5. (Zp ≀ Zp) × Zp,

6. Z
3
p ⋊ 〈γ〉, where γ((i, j, k)) = (i, j + i, k + j), (i, j, k) ∈ Z

3
p.

Below we go through cases (1)-(6) separately. Part (2) of Theorem 1.1 will follow
directly from Proposition 5.7, Lemma 5.8, and Propositions 5.12 and 5.13.
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5.1 Case (1)

In this subsection, we deal with the most difficult case - when a Sylow p-subgroup P
is a regular elementary abelian subgroup. We begin with verifying a special case of a
conjecture of the first author [10, Conjecture 6.8].

Definition 5.5. Let A and B be two complete block systems of a permutation group G.
We write A � B if any block in B is a union of blocks in A (note that, A ≺ B is used in
the usual meaning, i. e., A � B but A 6= B).

Below we say that, a series B1 ≺ · · · ≺ Bℓ of complete block systems of G is maximal,
if there is no nontrivial complete block system B of G for which either B ≺ B1, Bi ≺ B ≺
Bi+1, or Bℓ ≺ B for some 1 6 i 6 ℓ − 1.

Theorem 5.6. Let G 6 Spk be a transitive group with an abelian Sylow p-subgroup P ,
and a maximal series B1 ≺ · · · ≺ Bℓ of genuine complete block systems Bi of G, where if
Bi ∈ Bi and Bi+1 ∈ Bi+1, then |Bi+1|/|Bi| 6 p2. Then P G is permutation isomorphic to
a direct product Πr

i=1Gi with the coordinate-wise action, and each Gi is either cyclic of
prime-power order, or a doubly transitive nonabelian simple group.

Proof. Note that P is transitive by [26, Theorm 3.4]. We proceed by induction on k. If
k = 1, then the result follows by Theorem 2.1. Let k > 2 and assume that the result
is true for all i < k and let G 6 Spk satisfy the hypothesis. Then G admits a genuine
complete block system B1 consisting of pk−m blocks of size pm, where m = 1 or m = 2. As
P is abelian, P is regular [26, Proposition 4.4], and so a Sylow p-subgroup of fixG(B1) is
of order pm and is abelian. Note that fixG(B1) must act faithfully on each B ∈ B1. This
follows as if fixG(B1) does not act faithfully on some B ∈ B1, then the kernel K of this
action is nontrivial on some block B′ ∈ B1 and normal, and so has orbits of order p or pm

on B′. Thus p divides the order of K. We can then conclude that a Sylow p-subgroup
of fixG(B1) does not have order pm. Thus fixG(B1) acts faithfully on each B ∈ B1. The
complete block system B1 is minimal, and so StabG(B) acts primitively on every block
B ∈ B1. Applying Theorems 2.1 and 2.4 to the normal subgroup fixG(B1)|B⊳StabG(B)|B,
results in the cases below.

(1) fixG(B1)|B is doubly transitive with nonabelian socle.

By [10, Lemma 4.3], we have that P G is permutation isomorphic to G1 × K, where
G1 6 Spm and K 6 Spk−m with the canonical action such that G1

∼= fixP G(B1) and
K ∼= P G/B1 (we observe that not all of this information is contained in the statement
of [10, Lemma 4.3], but can be extracted from the proof of that lemma). Then soc(G1)
is a doubly transitive nonabelian simple group, and as soc(G1) char G1, we obtain that
G1 = soc(G1) is a doubly transitive nonabelian simple group. By the induction hypothesis,
as P G/B1 = (P/B1)

G/B1 , we have that K is permutation isomorphic to Πr
i=2Gi with the

canonical action, where each Gi is cyclic, or a doubly transitive nonabelian simple group.
We conclude that P G is permutation isomorphic to Πr

i=1Gi with the canonical action
where each Gi is either cyclic, or a doubly transitive nonabelian simple group.
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(2) fixG(B1)|B is permutation isomorphic to a subgroup of AGL(m, p).

As fixG(B1) acts faithfully on B ∈ B1, we have that fixG(B1) contains a normal Sylow
p-subgroup. Then fixP G(B1) = fixP (B1) is semiregular of order pm by [10, Lemma 5.1] and
the fact that a Sylow p-subgroup of fixP (B1) is semiregular. By the induction hypothesis,
we have that P G/B1 = Πr

i=2Gi with the canonical action and each Gi is either cyclic, or
a doubly transitive nonabelian simple group. Then P G is permutation isomorphic to a
direct product of abelian groups of prime power order and nonabelian simple groups with
the canonical action by [10, Lemma 5.5].

(3) m = 2, and fixG(B1)|B is permutation isomorphic to a subgroup of S2 ≀ H, where
H is a doubly transitive group of degree p with nonabelian socle.

Thus p > 5, and a Sylow p-subgroup of fixG(B1) is elementary abelian, so P has at
least 2 elementary divisors. It then follows by [10, Lemma 3.6] that P G admits a complete
block system B whose blocks are strictly contained in blocks of B1. This case then reduces
to those considered above (replacing G with P G and observing that as P is a Sylow p-
subgroup, P G is generated by all Sylow p-subgroups of G, all of which are contained in
P G, and P P G

is generated by all Sylow p-subgroups of P G, all of which are contained in
P P G

, so that P G = P P G

), and the result follows by induction.

The groups appearing in case (1) are given by the following proposition.

Proposition 5.7. Let G 6 Sp3 be 2-closed and imprimitive with a Sylow p-subgroup
P ∼= Z

3
p. Then G is permutation isomorphic to one of the following groups:

(1) a subgroup of AGL(3, p);

(2) Sp × X, where X 6 Sp2 is a 2-closed group;

(3) A((Sp × Sp) × X), where X < AGL(1, p), and A 6 Aut(Z3
p).

Proof. By Theorem 5.6, we have that P G is permutation isomorphic to K1 ×H , or K1 ×
K2 ×K3 with the coordinate-wise action, where H 6 Sp2 is a primitive nonabelian simple
group, and Ki 6 Sp is a transitive simple group, and i = 1, 2, 3. As by Lemma 2.5
for transitive permutation groups M and N , (M × N)(2) = M (2) × N (2), we have that
(P G)(2) = H × K × L or H × Sp2, where H, K, L = Zp or Sp. Note, however, that a
Sylow p-subgroup of H × Sp2 is not elementary abelian, so the only possibility is that
(P G)(2) = H × K × L.

If H = K = L = Zp, then (P G)(2) = P G⊳G so that G 6 AGL(3, p) and (1) follows.
We may thus assume that p > 5. If H = K = L = Sp, then as P 6 Ap3 , it must be
the case that P G = A3

p. Notice that as p > 5, we have that Ap is simple. Also, we must
have that any nontrivial normal subgroup of A3

p is either Ap or A2
p (as factors). As G

is imprimitive, G admits a complete block system B consisting of pi blocks of size p3−i,
where i = 1 or i = 2. Then fixG(B) ∩ P G is a normal subgroup of G, and so of P G = A3

p,
and has Sylow p-subgroup of order p3−i. We conclude that fixG(B) ∩ P G = A3−i

p , and
so the centralizer of fixG(B) ∩ P G in G is Si

p. As the centralizer of a normal subgroup
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is normal, we have that Si
p⊳G, and so G admits a complete block system C consisting of

p3−i blocks of size pi. It is also not difficult to see that B ⊥ C, and so G 6 Sp × Sp2, see
Lemma 2.10. As S3

p 6 G, we conclude that G = Sp ×X, X 6 Sp2, and as by Lemma 2.5,

Sp × X = G(2) = S
(2)
p × X(2), we have that X is 2-closed, and so (2) follows.

The only remaining possibility is that exactly two of H, K, and L are Sp or Zp and
the remaining group is either Zp or Sp. Let k be the number of the groups H, K, and L
that are Sp and j the number that are Zp. Then k + j = 3, and P G = Ak

p × Z
j
p. Then

the center of P G, C(P G), is nontrivial and C(P G) = Z
j
p. As the center of a group is

characteristic, Z
j
p⊳G. Similarly, the commutator subgroup of P G, (P G)′, is also nontrivial

and (P G)′ = Ak
p. As the commutator subgroup of a group is also characteristic, we have

that Ak
p⊳G. We conclude that G admits orthogonal complete block systems formed by the

orbits of Z
j
p and Ak

p, respectively, and we may assume that B is formed by the orbits of Z
j
p.

We denote the orbits of Apk by C, so B ⊥ C. By Lemma 2.10, we have that G 6 Spk ×Spj .
Now if k = 1, then as (Sp × Zp × Zp) 6 G and (Sp × Zp × Zp)/B = Sp, we must have

that G = Sp×X, X 6 Sp2, and we conclude X is a 2-closed group by repeating the above
argument, and so (2) follows.

Thus let k = 2, and so Sp × Sp 6 G/B, and G/C < AGL(1, p). If G/B = Sp × Sp,
then G 6 Sp × Sp × Sp, and thus G admits a complete block system D consisting of p
blocks of size p2 such that G/D = Sp. Then (2) follows again by arguments at the end
of the preceding paragraph. Otherwise, G/B must be primitive by [13, Theorem 4], and
also by [13, Theorem 4], we have that G/B = S2 ≀ Sp with the product action. Then G is
a subgroup of (S2 ≀ Sp) × G/C. By Lemma 5.2, G = A(fixG(C) × fixG(B)). We know that
fixG(C) 6 S2 ≀ Sp and Sp × Sp 6 fixG(C). If fixG(C) = S2 ≀ Sp then the result follows with
X = fixG(B). Otherwise, fixG(C) = Sp × Sp and fixG(B) = X, where X has index two in
G/C, and G = A(Sp × Sp × X).

5.2 Cases (2)-(4)

In this subsection, we dispose of the cases where the Sylow p-subgroup P can be written
as a nontrivial wreath product. Specifically, we handle cases (2), (3) and (4) of Theorem
5.4. The required groups are the wreath products given in (2) (b) of Theorem 1.1. This
follows directly from the next lemma.

Lemma 5.8. Let G 6 Sn be a transitive group such that G contains a transitive subgroup
H of the form H = H1 ≀H2, where H1 6 Sm, H2 6 Sk, and mk = n. Then G(2) = G1 ≀G2,
where G1 6 Sm1 and G2 6 Sk1 are 2-closed groups, m1k1 = n.

Proof. Let Γ1, . . . , Γr be the orbital digraphs of G. Let B be the complete block system
of H1 ≀ H2 formed by the orbits of 1H1 ≀ H2. Then in Γi, if there is a directed edge from
B to B′, B, B′ ∈ B, then there is a directed edge from every vertex of B to every vertex
of B′. We conclude that Γi = Di,1 ≀ Di,2, where Di,1 is a digraph of order m and Di,2 is a
digraph of order k. Coloring the edges of Di,j, 1 6 i 6 r, 1 6 j 6 2, with color i, we have
that D1 = ∪r

i=1Di,1 and D2 = ∪r
i=1Di,2 are color digraphs of order m and k, respectively.
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Further, setting D = D1 ≀ D2, it is apparent that Aut(D) = G(2). The result then follows
by [12, Theorem 5.7].

For the rest of the paper we fix the following notation: let τ1, τ2, τ3 : Z
3
p → Z

3
p be given

by

τ1(i, j, k) := (i + 1, j, k), τ2(i, j, k) := (i, j + 1, k), τ3(i, j, k) := (i, j, k + 1).

Hence 〈τ1, τ2, τ3〉 is the left (and right) regular representation of Z
3
p. Further, for 1 6

i, j 6 3, we denote by Bi the partition of Z
3
p into the orbits of τi, and by Bi,j the partition

consisting of the orbits of 〈τi, τj〉.

5.3 Case (5)

In this subsection, we let G 6 SZ3
p

be a 2-closed imprimitive group, such that G has a
Sylow p-subgroup

P := 〈τ1, τ2, τ3|B : B ∈ B2,3〉,

where τ3|B((i, j, k)) := (i, j, k + 1) if (i, j, k) ∈ B, and τ3|B((i, j, k)) := (i, j, k) otherwise.
In the next three preparatory lemmas we show that G admits complete block systems
with block size both p and p2.

Lemma 5.9. G admits a complete block system of p2 blocks of size p.

Proof. To the contrary assume that G does not admit a complete block system consisting
of p2 blocks of size p. Then G admits a complete block system B consisting of p blocks
of size p2. Note that as a Sylow p-subgroup of G/B has order p, we must have that
〈τ3|B : B ∈ B2,3〉 6 fixG(B).

We claim that B 6= B2,3. To the contrary assume that B = B2,3, and pick an orbit
T of StabG(0̄), T 6⊂ 〈(0, 1, 0), (0, 0, 1)〉. Now the Cayley digraph Cay(Z3

p, T ) is an orbital
digraph of G. Let H 6 Z

3
p such that T + H = T , i. e., H is largest subgroup in Z

3
p such

that T is a union of cosets of H . Then |H| 6= 1, as 〈(0, 0, 1)〉 6 H . It can be proved using
[26, Proposition 23.5] and following the proof of [26, Theorem 24.12] that, the cosets of H
form a complete block system of G. It follows that |H| = p2, and we readily deduce that
H = 〈(0, 1, 0), (0, 0, 1)〉. As the orbit T was arbitrarily chosen not in 〈(0, 1, 0), (0, 0, 1)〉,
it is then not difficult to see that any orbital digraph of G is isomorphic to a wreath
product of a circulant digraph of order p and a vertex-transitive graph of order p2. As G
is 2-closed, we conclude that (Zp ≀Z

2
p) 6 G, and so p · (p2)p divides |G|. However, a Sylow

p-subgroup of G has order |P | = p2 · pp, we must have that p + 2 > 2p + 1 so that p 6 1,
a contradiction.

As B 6= B2,3, we find that fixP (B) is faithful on every block B ∈ B. From this we
deduce that fixG(B) is also faithful on every block B ∈ B. For otherwise, there exists
K⊳fixG(B) such that K|B is nontrivial while K|B′ is trivial, B, B′ ∈ B. By the previous
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observation p does not divide |K|. But, as K|B⊳fixG(B)|B, it has orbits of the same size
pm, m > 1, and hence |K| is divisible by p, a contradiction.

As fixG(B) acts faithfully on B ∈ B and a Sylow p-subgroup of fixG(B) has order pp+1

(as |P | = pp+2 and a Sylow p-subgroup of G/B has order p), and as a Sylow p-subgroup
of Sp2 has order pp+1 and is isomorphic to Zp ≀ Zp, we see that a Sylow p-subgroup of
fixG(B)|B is isomorphic to Zp ≀ Zp. Also observe that StabG(B)|B is primitive for every
B ∈ B by [6, Exercise 1.5.10]. By [13, Theorem 6] and [8, Lemma 17], the only primitive
groups with Sylow p-subgroup isomorphic to Zp ≀ Zp are Ap2 and Sp2 (if p = 2, then only
Sp2). Whence soc(StabG(B)|B) = Ap2, and as fixG(B)|B⊳StabG(B)|B, if p > 3, we have
that fixG(B)|B = Ap2 or Sp2. Furthermore, as p is prime, p2 6= 6, and so by [4, Table],
Ap2 has a unique representation of degree p2. Applying [10, Lemma 4.1], we have that
G is permutation isomorphic to a subgroup of Sp × Sp2 , and G admits a complete block
system consisting of p2 blocks of size p, a contradiction.

Lemma 5.10. Let A, B, C 6 Z
3
p, |A| = |B| = p, |C| = p2, 〈A, B〉 ∩ C = B, and let

Γ = Cay(Z3
p, S), where S = (A \ {0̄})∪ (C \B). Then the C-orbits form a complete block

system of Aut(Γ).

Proof. Let V and V ′ be two orbits of C. For the subgraph Γ[V ] of Γ induced by V ,
Γ[V ] ∼= Kp2 − pKp, the complete graph Kp2 minus p disjoint complete graphs Kp. Let
Γ[V, V ′] be the bipartite graph with bipartition sets V and V ′, and with E(Γ[V, V ′]) :=
(V × V ′) ∩ E(Γ). It can be seen that Γ[V, V ′] = p2K2. Let g ∈ Aut(Γ). Then Γ[V g] ∼=
Kp2 −pKp. If now V g is not an orbit of C, then |V g ∩V ′| 6 p for any orbit V ′ of C. Thus
a vertex in V g has at most 2p−2 neighbors in Γ[V g], implying that p2−p 6 2p−2, which
contradicts p > 2. We obtain that V g is also an orbit of C, and the lemma follows.

For a subgroup K 6 G, we write K̄L for the subgroup {kL : k ∈ K} of GL.

Lemma 5.11. G admits a complete block system of p blocks of size p2.

Proof. Observe that, the negative statement implies that G admits a unique nontrivial
complete block system B consisting of p2 blocks of size p. Then B consists of the orbits
of a group K̄L, where K 6 Z

3
p, |K| = p.

First, let K̄L = 〈τ3〉, i. e., B = B3. We claim that, for every orbit T of StabG(0̄),

(Zp2 ≀ Zp) 6 Aut(Cay(Z3
p, T )).

This is trivial if T ⊆ K, so let T 6⊆ K. Next T \ 〈(0, 1, 0), (0, 0, 1)〉 6= ∅. For oth-
erwise, 〈T 〉 6 〈(0, 1, 0), (0, 0, 1)〉, but 〈T 〉 6= K. We get another nontrivial complete
block system of G given by the 〈T 〉L-orbits, which is not the case. Thus there exists
x ∈ T \ 〈(0, 1, 0), (0, 0, 1)〉, and we see that the coset 〈(0, 0, 1)〉 + x ⊆ T . As the cosets of
〈(0, 0, 1)〉 form B, we conclude that T + 〈(0, 0, 1)〉 = T , and from this the above inequal-
ity follows. Let O be the set of StabG(0̄)-orbits. Since the Cayley digraphs Cay(Z3

p, T ),
T ∈ O, comprise the orbital digraphs of G, we find that

(Zp2 ≀ Zp) 6
⋂

T∈O

Aut(Cay(Z3
p, T )) = G(2) = G.
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Thus p2 · pp2
divides |G|, contradicting that |P | = pp+2.

Second, let K̄L 6= 〈τ3〉, i. e., B 6= B3. As |P ∩ fixG(B)| = p, we find that fixG(B) is
faithful on every block B ∈ B. It follows that fixG(B) = K̄L. Put N = CG(K̄L), the
centralizer of K̄L in G. Then N ⊳G, and the group G/B is primitive. As G/B has a Sylow
p-subgroup of order pp+1, we have by Theorem 2.4, that Ap2 6 G/B. Since N/B ⊳ G/B,
we see that N/B is doubly transitive. Let us consider the orbits of StabN(0̄). As N
centralizes K̄L, {x} is such an orbit for every x ∈ K. Let U be an orbit of StabN(0̄),
U 6⊆ K. Since N/B is doubly transitive,

|U ∩ (K + x)| = k > 0 for all x /∈ K.

Let y ∈ K. Then yLg = gyL for all g ∈ N , and we see that if U = {g(u) : g ∈ StabN(0̄)},
then

U + y = {gyL(u) : g ∈ StabN(0̄)} = {g(u + y) : g ∈ StabN(0̄)},

i. e., U + y is also an orbit of StabN (0̄). Note that if U + y = U , then U + 〈y〉 = U + K,
so U = Z

3
p \ K, a contradiction. Thus {U + y|y ∈ K} are all distinct orbits of StabN(0̄),

and ∪y∈K(U + y) = Z
3
p \ K. We conclude that each U + y contains p2 − 1 elements, and

so k = 1, and |U | = p2 − 1. Then, besides the sets {x}, x ∈ K, there are p orbits of
StabN(0̄).

As B is a complete block system of G, B is a complete block system of P ∼= (Zp≀Zp)×Zp,
so it cannot be the case that K̄L = 〈τ1γ〉, where γ ∈ 〈τ2, τ3〉, as P admits no complete block
system formed by the orbits of 〈τ1γ〉. Let Ū = U ∩ 〈K, (0, 0, 1)〉 = U ∩ 〈(0, 1, 0), (0, 0, 1)〉.
Then |Ū | = p− 1. Fix u ∈ Ū . Among the p + 1 subgroups J < 〈(0, 1, 0), (0, 0, 1)〉 of order
|J | = p, there must be at least 3 with Ū ∩ (J +u) = {u}. In particular, choose a subgroup
L < 〈(0, 1, 0), (0, 0, 1)〉, |L| = p, L 6= K, and |Ū ∩ (L+x)| = 1 for some x ∈ K. As we saw
above, the set U − x := {u − x : u ∈ U} is also an orbit of StabN(0̄), and furthermore,
|(U − x) ∩ L| = 1. Using the fact that the orbits of StabN(0̄) are the basic sets of a
Schur-ring over Z

3
p [26, Theorem 24.1], we can apply a result of Schur and Wielandt [26,

part (a) of Theorem 23.9] stating: if U ′ is any orbit of StabN (0̄), and α ∈ Z
∗
p, then the set

α · U ′ := {(αi, αj, αk) : (i, j, k) ∈ U ′}

is also an orbit of StabN(0̄). As |(U −x)∩L| = 1, we find that the sets α ·(U −x), α ∈ Z
∗
p,

form p − 1 distinct orbits of StabN (0̄). As there are p orbits of StabN(0̄) of size 1, and
p orbits of StabN(0̄) of size p2 − 1, there exists an orbit U0 of order p2 − 1 of StabN(0̄)
satisfying that α · U0 = U0 for all α ∈ Z

∗
p. Using the fact that U0 \ 〈(0, 1, 0), (0, 0, 1)〉 is a

union of 〈τ3〉-orbits, we obtain U0 in the form

U0 = (L′ \ {0̄}) ∪ (M \ 〈(0, 0, 1)〉),

where L′ < 〈(0, 1, 0), (0, 0, 1)〉, L′ 6= K, L, and M < Z
3
p, |M | = p2, M ∩〈(0, 1, 0)(0, 0, 1)〉 =

〈(0, 0, 1)〉. By Lemma 5.10, the M̄L-orbits form a complete block system of the group
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A := Aut(Cay(Z3
p, U

′)). Since N 6 A, we see that L′ = 〈(0, 0, 1)〉, so that U0 = M \ {0̄},
and the p orbits of StabN (0̄) not in K are the sets (M + x) \ K.

Let U be the orbit of StabG(0̄) for which U0 = (M \ {0̄}) ⊆ U . Then U 6= (M \ {0̄}),
since otherwise the cosets of M = 〈U〉 form a complete block system of G. Using that
α · U = U for all α ∈ Z

∗
p, we get U = Z

3
p \ K. This implies (Zp ≀ Zp ≀ Zp) 6 G. Thus

p · pp · pp2
divides |G|, a contradiction to |P | = pp+2.

Everything is prepared to determine G.

Proposition 5.12. G is permutation isomorphic to one of the following groups:

(1) Sp2 × X, X 6 Sp is a 2-closed group;

(2) Sp × (X ≀ Y ), X, Y 6 Sp are 2-closed groups;

(3) A((X ≀ Y ) × Z), where X, Y 6 Sp are 2-closed groups, Z < AGL(1, p), and A 6

Aut(Z3
p).

Proof. Let A be a complete block system of G consisting of p2 blocks of size p, and B be
a complete block system of G consisting of p blocks of size p2, which are guaranteed by
Lemmas 5.9 and 5.11, respectively. Note that, A � B2,3 holds.

First, we assume that B3 is not a complete block system of G. For the moment let
B = B2,3. Then 〈τ3|B〉

fixG(B), B ∈ B, must be transitive on B ∈ B, in which case a Sylow
p-subgroup of G contains Zp ≀ Z

2
p, a contradiction. Let B 6= B2,3. It is not hard to see

that then A ⊥ B. By Lemma 2.10, G 6 Sp × Sp2. Further, as B3 is not a complete block
system of G, we have that G/A is primitive with a Sylow p-subgroup Zp ≀ Zp, and thus
Ap2 6 (G/A)(2). From this we obtain that G = Sp2 × X, where X 6 Sp is a 2-closed
group, and so (1) follows.

Second, we assume that B3 is a complete block system of G. By [7, Lemma 2] B2,3

form a complete block system of G as well. Thus G/B3 is imprimitive. Using that G/B3

has a Sylow p-subgroup of order p2, we find G/B3 6 Sp × Sp, and hence we may assume
that the complete block system B 6= B2,3. Observe that the complete block system that
consists of the intersections of blocks in B2,3 with blocks in B is equal to B3. Also observe
that the group StabG(〈(0, 1, 0), (0, 0, 1)〉|〈(0,1,0),(0,0,1)〉 is imprimitive, and it has a Sylow
p-sugroup of order p2. Thus it admits a complete block system consisting of p blocks of
size p, which are distinct of the complete block system induced by B3. This extends to a
complete block system of G, and this allows us to assume that the complete block system
A 6= B3. We obtain that A ⊥ B. Then G is a subgroup of G/A×G/B = (X ≀ Y )×G/B.
If fixG(A) = Sp, then G is in fact a direct product, G = (X ≀ Y ) × Sp and (2) follows.
Otherwise, G = A(fixG(B) × Z = A((X1 ≀ Y1) × Z), and (3) follows.

5.4 Case (6)

The groups appearing in this case are given in the following proposition.
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Proposition 5.13. Let G 6 Sp3 be a 2-closed imprimitive group, with a Sylow p-subgroup
P permutation isomorphic to Z

3
p ⋊ 〈γ〉, where γ((i, j, k)) = (i, i + j, k + j). Then G is

permutation isomorphic to a subgroup of AGL(3, p).

Proof. We may assume that G 6 SZ3
p

such that 〈τ1, τ2, τ3〉 6 G, and P := 〈τ1, τ2, τ3, γ〉.

Let B be a complete block system of G. First, we assume that B consists of p2 blocks
of size p. As G contains P1 := 〈τ1, τ2, τ3〉, we have that B is genuine. Also note that as
fixP (B) 6= 1, we have that fixP (B) ∩ C(P ) 6= 1. A straightforward computation will then
show that C(P ) = 〈τ3〉, so that B is formed by the orbits of 〈τ3〉.

As a Sylow p-subgroup of fixG(B) has order p (as γ 6∈ fixG(B)), we have that fixG(B)
acts faithfully on B ∈ B. By [10, Lemma 4.2], we have that either fixG(B) ∼= Zp, or G is
permutation isomorphic to a subgroup of Sp2 × Sp with the coordinate-wise action. As
γ ∈ G, G is not permutation isomorphic to a subgroup of Sp2 × Sp with the coordinate-
wise action. Whence fixG(B) ∼= Zp. By [22, Theorem 1.1], we have that if G/B is
doubly transitive, then G/B 6 AGL(2, p) and so G 6 AGL(3, p) and the result follows.
We thus assume without loss of generality that G/B is imprimitive. Then a Sylow p-
subgroup of G/B has order p3, and so by [13, Theorem 4], either p = 3 or P/B⊳G/B.
If P/B⊳G/B, then it is straightforward to check, using [13, Lemma 6], and the fact that
a Sylow p-subgroup of G/B has order p3, that G/B 6 AGL(2, p). Thus G 6 AGL(3, p)
and the result follows as well. If p = 3, then by [13, Theorem 4 (5)], G/B = L(P/B),
where Z3 × Z3 6 L 6 S3 × AGL(1, 3) = AGL(1, 3) × AGL(1, 3) 6 AGL(2, 3). Thus
G/B 6 AGL(2, 3) and so G 6 AGL(3, 3).

Second, we assume that B consisting of p blocks of size p2. Then, as above, we
have that B is genuine, formed by the orbits of some subgroup of P1 of order p2. We
may assume without loss of generality that StabG(B)|B is primitive, as otherwise by [6,
Exercise 1.5.10], we have that G admits a complete block system with blocks of size p,
and the result follows by arguments above. As G/B 6 Sp, P/B has order p, and so
|fixP (B)| = p3. As γ has a fixed point, we conclude that γ ∈ fixG(B). By [22, Theorem
1.1], there is no doubly transitive group of degree p2 with nonabelian socle that contains
a regular elementary abelian subgroup and contains a Sylow p-subgroup of order p3, so
we have that StabG(B)|B is permutation isomorphic to a subgroup of AGL(2, p). By [10,
Lemma 5.1], we have that P G

1 , the normal closure of P1 in G, is contained in (P G
1 /B) ≀Z2

p.
As fixP (B) = 〈τ2, τ3, γ〉, we conclude that fixP G

1
(B) = 〈τ2, τ3〉. If G/B 6 AGL(1, p), then

P1 is a normal Sylow p-subgroup of P G
1 , and so is characteristic in P G

1 . Thus P1⊳G and
so G 6 AGL(3, p) as required. Note then that this implies that p > 5 as S3 = AGL(1, 3).
Otherwise, by Theorem 2.2, G/B is doubly transitive with nonabelian socle. Then by
Theorem 5.6, we have that P G

1 = Ap×Zp ×Zp. Then P G
1 admits a complete block system

B3 consisting of p2 blocks of size p formed by the orbits of 〈τ3〉, as does P . We conclude
that H := 〈P G

1 , P 〉 admits B3 as a complete block system. Then H/B3 is nonsolvable,
has a regular elementary abelian subgroup, and has Sylow p-subgroup of order p3. This,
however, contradicts [13, Theorem 4].
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D., Nowitz, L. A., Transitive permutation groups without semiregular subgroups, J.
London Math. Soc. 66 (2002), 325–333.

[6] Dixon, J. D., and Mortimer, B., “Permutation Groups”, Springer-Verlag New York,
Berlin, Heidelberg, Graduate Texts in Mathematics 163, 1996.

[7] Dobson, E., Isomorphism problem for Cayley graphs of Z
3
p, Discrete Math. 147

(1995), 87–94.

[8] Dobson, E., On groups of odd prime-power degree that contain a full cycle, Discrete
Math. 299 (2005), 65–78.

[9] Dobson, E., Automorphism groups of metacirculant graphs of order a product of two
distinct primes, Combin. Prob. Comput. 15 (2006), 105–130.

[10] Dobson, E., On overgroups of regular abelian p-groups, Ars Math. Contemp. 2 (2009),
59–76.

[11] Dobson, E., and Morris, J., On automorphism groups of circulant digraphs of square-
free order, Discrete Math., (299) 2005, 79-98.

[12] Dobson, E., and Morris, J., Automorphism groups of wreath product digraphs, Elec.
J. Combin., (16) 2009, #R17.

[13] Dobson, E., and Witte, D., Transitive permutation groups of prime-squared degree,
J. Algebraic Combin. 16 (2002), 43–69.

[14] Evdokimov, S. A., and Ponomarenko, I. N., Characterization of cyclotomic schemes
and normal Shcur rings over a cyclic group (Russian), Algebra i Analiz (2) 14 (2002),
11–55.

[15] Guralnick, R. M., Subgroups of prime power index in a simple group, J. Algebra 81
(1983), 304–311.

[16] Holton, D. A., The König question. Proceedings of the Fifth British Combinatorial
Conference (Univ. Aberdeen, Aberdeen, 1975), pp. 323–342. Congressus Numeran-
tium, No. XV, Utilitas Math., Winnipeg, Man., 1976.
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