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Abstract 
The temperature optimum for photosynthesis and growth of natural populations of 
Trebouxia erici isolated from an Antarctic lichen (Usnea antarctica) was determined 
using a long-term cultivation (26 days) at different temperatures. Several chlorophyll 
fluorescence parameters were used in T. erici cultivated in a liquid medium to assess the 
effect of cultivation temperature (0, 10, 20 and 30oC). Analysis of time courses of the 
capacity of photosynthetic processes in PS II (FV/FM), effective quantum yield of 
photosystem II (PSII), relative fluorescence decline ratio (RFd), and quenching of 
background chlorophyll fluorescence (qF0) revealed that optimum temperature is between 
10 to 20°C. Biomass production evaluated as a total chlorophyll production after 26 days 
of cultivation was maximal at 20°C. The results are discussed in relation to the data 
reported by other literature sources for Trebouxia sp. and other algae isolated from 
chlorolichens 
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Introduction     
 
     Temperature optima for photosynthesis 
and growth of Antarctic lichens, their algal 
symbionts in particular, have been  in the 
centre of interest of ecophysiologist since 
the majority of Antarctic lichens have a net 
photosynthetic temperature optimum below 
the temperature optima of their constituent 
algae and fungi (Friedman et Sun 2005). 
Similarly, lichen thalli sensitivity to dehy-

dration stress differ from that of their pho-
tosynthesizing photobionts (Kosugi et al. 
2009). Although the stress physiology of 
Antarctic lichen photosynthesis and related 
physiological processes have been studied 
extensively within the last few decades 
both in the field (e.g. Cao et al. 2015) and 
the laboratory, only fragmentary knowledge 
exists about the photobionts' physiological 
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potential. Photosynthetic performance of 
green unicellular alga Trebouxia sp., a dom-
inant lichen association-forming genus in 
chlorolichens has been studied mainly in 
relation to dehydration (Sadowsky et al. 
2016), osmotic (Váczi et Barták 2006), arti-
ficially-induced oxidative stress (del Hoyo 
et al. 2011), and heavy metal stress (Álva-
rez et al. 2012). 
     The dependence of growth rate of ter-
restrial microalgae from polar regions on 
cultivation temperature has been investi-
gated by many methods. Seaburg et al. 
(1981) reported optimum growth tempera-
ture for 35 species of Antarctic microalgae 
within the range of 7.7 to 18°C. Fogliano 
et al. (2010) reported that Koliella ant-
arctica, an unicellular extremophilic green 
alga from the Ross Sea, Antarctica, exhib-
ited higher growth rates and biomass 
production at 15°C of cultivation tempera-
ture than at 10°C.  

     Cultivation of algae in crossed gradient 
cultivator is a common method in experi-
mental algology used typically for the test-
ing of morphological variability, growth 
rates, adjustment of physiological processes, 
photosynthetic pigments content (for review 
see e.g. Kvíderová et Lukavský 2003). Re-
cently, the cross gradients cultivation ap-
proach is used for determination of tem-
perature optima of algae and cyanobacteria 
from polar region. In the last two decades, 
the approach was applied in filamentous 
algae of Raphidonema (Stibal et Elster 
2005). 
     In this study, we hypothesized that Tre-
bouxia strain EEL201 has a temperature 
optimum for growth at about 12 - 14°C. To 
support this hypothesis by experimental 
data, we applied chlorophyll fluorescence 
imaging method to evaluate photosynthetic 
parameters in Trebouxia  culture cultivated 
at different temperatures. 

 
 
Material and Methods 
 
Cultivation  
 
     Trebouxia sp. was originally isolated 
from an Antarctic lichen Usnea antarctica 
collected at the James Ross Island (63.81 S, 
57.83 W) and grown in a stock culture. 
The isolation was done by a gradient cen-
trifugation method according to Gasulla et 
al. (2010) using a Percoll®. After isola-
tion, the alga was cultivated on agar medi-
um at 10°C. When algal culture was suf-
ficiently developed, it was collected from 
the surface of agar medium and suspended 
in a liquid medium (nitrogen-enriched an-
organic Bold’s Basal Medium, 3N-BBM, 
Ahmadjian 1993). This medium is general-
ly used for unicellular algae cultivation.  
     The BBM composition was follows: 
CaCl2 (25 mg l-1), NaCl (25 mg l-1), 
NaNO3 (250 mg l-1), MgSO4 (75 mg l-1), 
KH2PO4 (105 mg l-1), K2HPO4 (75 mg l-1), 
and 3 ml of trace metal solution with the 

following concentration was added to the 
1000 ml of the above solution: FeCl3 
(0.194 g l-1), MnCl2 (0.082 g l-1), CoCl2 
(0.16 g l-1), Na2MoO4 * 2H2O (0.008 g l-1), 
and ZnCl2 (0.005 g l-1). 
     In order to find temperature demands 
for T. erici photosynthesis and growth, the 
method of crossed gradients of tempera-
ture and light (Labio cross gradients culti-
vator, Labio, Prague, Czech Republic) was 
used. The system construction was de-
scribed earlier by Kvíderová et Lukavský 
(2003). Therefore, here we report only the 
basic information about the system. The 
device consists of 2 independent systems. 
One controls temperature (the temperature 
system), and the second controls irradia-
tion (illumination system). In our study, 
however, a constant cultivation irradiance 
was used.  
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     The basis of the temperature system    
is an aluminium plate with dimensions 
80×60×4 cm having a hot and cooled side. 
Cooling and heating took place at the 
opposite sides of the plate. Cooling took 
place continuously allowing to achieve a  
stable temperature gradient. T. erici culti-
vation took place on this aluminum plate. 
We placed  cultivation Petri dishes with 
innoculated algae to a certain place over 

the aluminium plate to cultivate at 0, 10, 
20 and 30°C. In the text, the temperature 
treatments are abbreviated A = 0°C, B = 
10°C, C = 20°C and D = 30°C. The Petri 
dishes were covered with a plastic foil to 
prevent the medium (BBM, see above) to 
evaporate. During the cultivation, the Petri 
dishes with T. erici were exposed to 120 
mol m-2 s-1 of photosynthetically active 
radiation. 

 
 
Chlorophyll fluorescence 
 
     During cultivation of T. erici, the ac-
climation of primary photosynthetic proc-
esses was measured by chlorophyll fluores-
cence repeatedly, typically in 3 days inter-
val. The chlorophyll fluorescence was meas-
ured by a HFC-010 FluorCam (Photon Sys-
tems Instruments, Drásov, Czech Repub-
lic) using the approach of slow Kautsky 
kinetics supplemented with saturation 
pulses. The measurements started on pre-
dark-adapted samples. The microbiological 
plate with 4 holes filled with the T. erici 
culture were pre-darkened for 5 min. (i.e. 
sufficient time to allow full opening of 
reaction centres of PS II – tested before). 
Then, the algal culture was exposed to a 
weak light to induce background chloro-
phyll fluorescence to determine F0. Then, a 

saturation pulse was given in order to 
induce and record maximum chlorophyll 
fluorescence (FM). Following 10 s of dark 
adaptation, the algae were exposed to ac-
tinic light for 300 s and the kinetics data, 
particular chlorophyll fluorescence levels 
FP (peak chlorophyll fluorescence recorded 
after 2 s of actinic light on) and FS (steady 
state chlorophyll fluorescence) recorded. 
Then, a saturation pulse was given to in-
duce maximum of chlorophyll fluorescence 
in light-adapted state (FM´). Then, actinic 
light was switched off and background 
chlorophyll fluorescence (F0´) recorded. 
Finally, after 20 s, another saturation pulse 
was given and peak chlorophyll fluores-
cence level (FM´´) recorded.  

 

     From the recorded data, the following chlorophyll fluorescence parameters were 
calculated using the below equations: 
 

 FV/FM = (FM – F0) /FM            Eqn. 1 
 PSII = (FM´–  FS) / FM´          Eqn. 2 
 RFd = (FP – FS) / FS          Eqn. 3 
 qF0 = (F0 – F0´) / F0          Eqn. 4 
 

     Mean values (means of 4 replicates for each temperature) of the above-specified 
parameters were calculated and plotted against the time of cultivation.  
 
Pigment content  
 
     At the end of cultivation period, the al-
gal cultures of particular temperature treat-
ments were filtered on disks, re-diluted in 
DMSO and pigment content (chlorophyll a, 

chlorophyll b, total carotenoids) evaluated 
spectrophotometrically using the absorban-
ces at 480, 665 and 649 nm using the for-
mulae by Welburn (1994). 
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Statictical analysis 
 
     Treatment-dependent differences in the 
chlorophyll fluorescence parameters were 

evaluated by ANOVA, if not stated other-
wise.     

 
 
Results 
 
     Time courses of FV/FM reflected the ef-
fect of cultivation temperature. While a de-
crease from 0.60 to 0.40 was observed from 
day 0 to day 3 at the A treatment, followed 
by a gradual increase of more or less con-
stant rate with the time of cultivation, the 
D treatment led to a very different time 
curve. FV/FM remained as high as the pre-
experimental value (about 0.6) for the first 
5 days of exposition. Then, a dramatic de-
crease in FV/FM was apparent to a minimum 
found on day 12 (about 0.2). With the fur-
ther time of cultivation, FV/FM slightly in-
creased to 0.4 (day 19), however, a conse-
quent decrease to 0.32 (day 26) was seen. 
The B, and C temperature treatments had a 
similar effect to a time course of FV/FM. In 
the C treatment, however the FV/FM de-
crease was less steep than in the D treat-
ment within the first 10 days of cultivation. 
At the end of cultivation, the final FV/FM 
values were quite comparable for B and C 
treatment (about 0.47). At the low temper-
ature (treatment A), final FV/FM reached a 
much higher value (0.5) then at the highest 
temperature (treatment D, 0.35).  
     Except of the treatment D, effective 
quantum yield showed an increase within 
the period from day 0 to day 12, followed 
by a more or less constant value of about 
0.22 (A treatment), or slight decrease to 
about 0.20 in B, and C treatments. The 
highest temperature treatment led to an 
increase from 0.1 to the maximum value of 
0.32 (day 5) followed by a decrease to a 
minimum (0.19 – day 12) and consequent 
increase to a final value of 0.28 (day 26). 
Relative fluorescence decline ratio (RFd) 
had initial value within the range of 1.5-
2.0. Low-temperature treatment (A) led to 

a dramatic decrease to 0.5 on day 3 follow-
ed to a gradual increase with the time culti-
vation. In spite of the fact the final RFd 
value did not reach the initial value, it was 
the highest when compared to the B, C, 
and D treatments. In the highest tempera-
ture treatment (D), RFd showed a biphasic 
decline with the time of exposition, fast 
decline within the days 0-5, followed by 
much slower decline within the days 5-26. 
Quenching of background chlorophyll fluo-
rescence (qF0) exhibited slightly increas-
ing trend with cultivation time in A treat-
ment, however, no clear trend was apparent 
in the other treatments. Both qF0 increase 
followed by a decrease (B, C treatments), 
and more or less constant qF0 value was 
found (D treatments). 
     Biomass production evaluated at the end 
of the cultivation revealed that maximum 
Chl a, Chl b and total carotenoids were 
produced at 20°C followed by 10°C. This 
might be interpreted as optimal tempera-
tures for growth and photosynthetic pig-
ments synthesis. A remarkable decrease in 
Chl a, Chl b and total carotenoids content 
was found in the D treatment. This is in-
dicative for the high temperature effects on 
functioning of PS II and chloroplastic pho-
tosynthetic apparatus. Temperature effect, 
however was apparent in some ratios.    
Chl a / Chl b decreased with cultivation 
temperature: 4.63 (A), 3.82 (B), 6.64 (C), 
and 2.81 (D). Total chlorophyll to carote-
noids ratio, however, did not show temper-
ature effects: 3.00 (A), 3.30 (B), 3.37 (C), 
3.19 (D).  
     The effect of temperature on the four 
tested chlorophyll fluorescence parameters 
was statistically significant (P < 0.001). 
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Fig. 1. Time courses of capacity of photosynthetic processes in PS II (FV/FM) for low (A = 0°C), 
semi-low (B = 10°C), high (C = 20°C) and extremely high (D = 30°C) temperature. 

 

 
 
Fig. 2. Time courses of effective quantum yield of PS II (PSII) measured as a long-term effect of 
low (A = 0°C), semi-low (B = 10°C), high (C = 20°C) and extremely high (D = 30°C) temperature. 
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Fig. 3. Time courses of relative fluorescence decline ratio (RFd) measured as a long-term effect of 
low (A = 0°C), semi-low (B = 10°C), high (C = 20°C) and extremely high (D = 30°C) temperature. 

 

 
 
Fig. 4. Time courses of quenching of F0 (qF0) measured as a long-term effect of low (A = 0°C), 
semi-low (B = 10°C), high (C = 20°C) and extremely high (D = 30°C) temperature. 
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Fig. 5. Content of photosynthetic pigments evaluated at the end of cultivation (day 26) as 
dependent on cultivation temperature (A = 0°C, B = 10°C, C = 20°C, and D= 30°C).  
 
 
Discussion 
 
     FV/FM is a sensitive indicator of the tem-
perature effect on the primary photosynthe-
tic processes. From our data follows that 
the highest temperature (D treatment) had 
the most negative effects on the capacity 
of photosynthetic processes in PS II. There-
fore, we may suggest that a wide tempera-
ture span 10 - 20°C does not bring negative 
changes of FV/FM in T. erici when cultiva-
tion time is long enough to allow acclima-
tory changes (see FV/FM value, day 26 in 
Fig. 1). However, temperature responses of 
FV/FM for different Trebouxia strains may 

differ significantly as reported by del Hoyo 
et al. (2011). 
     Considering FV/FM and PSII time cour-
ses at different cultivation temperature, we 
may suggest that optimum temperature for 
the primary photochemical processes is 
within the range of 12-16°C for the studied 
T. erici. Such a conclusion, however, does 
not consider the whole photosynthetic path-
way because no biochemical processes were  
studied in this experiment. Some other as-
pects of cultivation procedure, such as e.g. 
the likely mixotrophy and unknown propor-
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tion of carbohydrates taken by the culti-
vated T. erici from medium may play a role. 
Therefore, combination of fluorometric and 
oxymetric methods estimating photosynthe-
sis in lichen algae  is a necessity for future 
studies. Existing data from previous stud-
ies using an oxymetric approach (see e.g. 
Domaschke et al. 2013) suggest that the 
photosynthetic and growth optima for Tre-
bouxia sp. isolated from lichens from polar 
regions is about 11oC. Similarly, Marečko-
vá et Barták (2016) reported 10 and 15°C 
as the optimum temperature of maximal 
FV/FM values in two Trebouxia-possessing 
lichens from the Antarctica. 
     Increase in qF0 is typically associated 
with pronounced involvement of non-
photochemical quenching mechanisms and 
well documented to day/night changes in 
available radiation. It is reported for higher 
plants, that qF0 increases during night (dark 
period) - Roháček (2002). On the other 
hand, high light stress leading to photoinhi-
bition of photosynthetic processes brings a 
decrease of qF0 towards negative values 
(Rosenqvist et van Kooten 2003) since F0´ 
is higher than F0 in such situations (c.f. 
Eqn. 4). Since temperature effects on qF0 
have been studied only marginally in algae 
and cyanobacteria, we may hypothesize 
that the response of T. erici followed the 
general rules found in higher plants. Our 
data suggest a low temperature-induced 
increase in non-photochemical quenching 
in LHC II. Such a qF0 increase localized in 
antennae contributed to overal non-photo-
chemical quenching which rised as well in 
A-treated T. erici (from 0.28 to 0.92, data 
not shown). 
     The chlorophyll fluorescence decrease 
ratio (vitality index) provides an useful in-

formation on the physiological state of 
photosynthesis (Lichtenthaler et Rinderle 
1998). RFd has been applied with great suc-
cess as stress detector in photosystem II. In 
algae, RFd was shown to be sensitive to 
nutrient supply by Fodorpataki et al. (2013) 
who reported decrease in RFd due to lim-
itation of nitrogen. Similarly, RFd was used 
to assess stress effects of heavy metals 
(Fodorpataki et al. 2010) and toxic com-
pounds in cyanobacterium (CeO2, Rodea-
Palomares et al. 2012). Biological stressors 
may also cause RFd decline in algae as dem-
onstrated for a parasite effects on brown 
alga (Gachon et al. 2006). For lichen-associ-
ated Trebouxia sp., Tuba et al. (1996) show-
ed a dramatic RFd decline in Cladonia ex-
posed to severe drought stress. For indica-
tion of low-temperature stress in lichen 
symbiotic alga Trebouxia sp., however, RFd 
is used only scarcely (see e.g. Sehnal et al. 
2014). Our data suggest that the lowest tem-
perature (treatment A) brings gradual RFd 
increase from 0.2 to about 0.3 which might 
be interpreted as a gradual acclimation    
of photosynthetic processes preformed at 
PS II towards optimal functioning at this 
temperature. At the D temperature, no such 
phenomen is seen since RFd remained 
constant throughout the cultivation time. 
In our experiment, Trebouxia showed about 
ten times lower RFd values than reported 
for a wide range of higher plants exposed 
to low temperature (e.g. Georgieva et Lich-
tenthaler 2006 for pea plants, Pererra-Castro 
et al. 2017 for alpine plants). Low RFd 
found in our study were, however, well 
comparable to the earlier Trebouxia sp. 
data reported by Sehnal et al. (2014) for 
cultivations on BBM agars. 

 
 
Concluding remarks 
 
     Photosynthetic processes in lichenized 
Trebouxia may sustain even at subzero 
temperature in lichen thalli (Barták et al. 
2007), however thermoresistance of iso-

lated algae may differ from that measured 
in  lichens. Typically, it is lower than in li-
chens. The optimum temperature for FV/FM 
and PSII found in our study is consistent 
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with earlier studies done on cryptoendo-
lithic lichen communities from Ross Desert, 
Antarctica. Ocampo-Friedman et al. (1988) 
found that two Trebouxia strains isolated 
from cryptoendolithic lichens had growth 
optima at around 17oC and maxima at 
around 20oC. Similar temperatures (15oC 
in the majority of cases) are reported by 
Schoefield et Ahmajian, (1972) for five of 
six Trebouxia strains isolated from thallose 
Antarctic lichens. For Hemichloris antarc-
tica strain from Antarctic cryptoendolithic 
community the range of -4 to 22°C is re-
ported with the optimum ranging between 

12 to 18oC (Tschermak-Woess et Fried-
mann 1984).  
     Our data on optimum cultivation tem-
perature are well comparable to the pre-
vious studies made in Trebouxia sp. For 
batch cultures of Trebouxia sp., Hájek et 
al. (2009, 2012, 2016) found fastest growth 
at 10°C. Similarly, Teoh et al. (2004) re-
ported the highest specific growth rates of 
several Antarctic microalgae for tempera-
ture ranging from 6°C to 14°C. Recent 
study on Trebouxia sp. (Balarinová et al. 
2013) reported a faster growth in 10°C 
than 15°C.  
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