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Two decades into the two thousands, intracerebral hemorrhagic stroke (ICH) continues to reap lives across the globe. In the US,
nearly 12,000 people suffer from ICH every year. Half of them survive, but many are left with permanent physical and cognitive
disabilities, the severity of which depends on the location and broadness of the brain region affected by the hemorrhage. The
ongoing efforts to identify risk factors for hemorrhagic stroke have been instrumental for the development of new medical
practices to prevent, aid the recovery and reduce the risk of recurring ICH. Recent efforts approach the study of ICH from a
different angle, providing information on how we can limit brain damage by manipulating astrocyte receptors. These results
provide a novel understanding of how astrocytes contribute to brain injury and recovery from small ICH. Here, we discuss
current knowledge on the risk factors and molecular pathology of ICH and the functional properties of astrocytes and their role
in ICH. Last, we discuss candidate astrocyte receptors that may prove to be valuable therapeutic targets to treat ICH. Together,
these findings provide basic and clinical scientists useful information for the future development of strategies to improve the
detection of small ICH, limit brain damage, and prevent the onset of more severe episodes of brain hemorrhage.

1. Introduction

Preserving the function of the brain throughout the course of
a lifetime is a challenging task that requires the coordinated
efforts of healthy neurons, glial cells, and blood vessels. The
physiological equilibrium created by these cells breaks during
brain injury, as in the case of ICH. Although glial reactivity
has been well documented in pathological studies of ICH,
the structural and functional changes associated with it were
initially interpreted as representing a downstream effect or a
“reactive” response to neuronal damage [1]. Recent evidence
challenges this interpretation suggesting that glial cells are
“active” contributors to brain damage, meaning that glial
pathology is part of the disease progression.

Blood extravasation during ICH damages neurons, glial
cells, and blood vessels. Therefore, recovering from ICH
requires restoring the function of all these cells and struc-
tures. Traditionally, pharmacological approaches to treat
ICH have targeted molecules implicated with the blood

coagulation cascades and/or molecules associated with
neurons, leaving out glial cells from the scene of potentially
valuable therapeutic targets. To date, there is no drug cur-
rently available on the market that specifically targets glial
cells to treat brain damage caused by ICH [1].

Astrocytes are glial cells with fine processes closely
associated with synapses, enriched with a high density of
neurotransmitter transporters [2, 3]. Through the activity
of these transporters, astrocytes shape the time course of
synaptic transmission among neurons. Through the activity
of K+ channels (e.g., Kir4.1), astrocytes maintain the extracel-
lular K+ concentration at levels that are compatible with life
[4, 5]. Through their aquaporin-rich endfeet at the cerebral
capillaries, astrocytes control the bidirectional movement of
water across the cell membrane [5]. Last, astrocytes secrete
proinflammatory (IL-6 and IL-1β) and anti-inflammatory
cytokines (IL-10) and chemokines (CCL2, CXCL1, CXCL10,
and CXCL12) through which they control microglia differen-
tiation and macrophage activation [6–10]. Because of their
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involvement in such a wide variety of molecular processes, it
is interesting to exploit the potential that astrocytes may have
as therapeutic targets to treat ICH.

In this review, we first describe ICH and the molecular
events that take place during blood extravasation from the
brain vasculature. We summarize the current knowledge on
the risk factors for ICH and discuss how astrocytes could
contribute to limit brain damage caused by ICH.

2. Intracerebral Hemorrhagic Stroke: What
Is It?

ICH is a medical emergency with potentially devastating
effects, caused by the sudden rupture of one or more blood
vessels in the brain. In most cases, the bursting blood vessels
are small-penetrating arteries or arterioles in the deep sub-
cortical regions, cerebellum, and brainstem. Blood leakage
triggers cell death in the surrounding neuropil, ultimately
leading to impaired cognitive abilities and dementia [11–15].

ICH induces primary and secondary damage to the brain.
The primary damage, known as the “mass effect,” is due to the
mechanical compression of the brain caused by local blood
accumulation. The secondary damage is due to (1) cytotoxic-
ity of the blood; (2) excitotoxicity, due to the release of excit-
atory amino acids like glutamate from injured neurons; (3)
spreading depression, a slow and short-lived depolarization
wave that propagates through the brain; (4) hypermetabo-
lism, a state of increased energy expenditure in response to
injury; and (5) oxidative stress and inflammation [16].

The infiltration of blood components in the brain is
important for triggering the release of inflammatory factors
that contribute to the activation of macrophages and
microglial cells [17]. The enhanced local production of pro-
inflammatory cytokines contributes to disrupt the blood-
brain barrier and leads to the development of perihematomal
edema, which in turn amplifies the mass effect. The activa-
tion of macrophages and microglial cells exerts also a
neuroprotective effect because it promotes the removal of
damaged tissues, which is an essential step towards recovery.
Through the activity of macrophages and microglial cells, the
brain reacts immediately to the smallest ICH and in many
cases succeeds in its attempts to preserve neuronal function.
Despite this, ICH remains a harmful event even when it is
small and confined, because primary and secondary damage
can disrupt the function of complex neural networks [18].
These effects are often long lasting and ultimately lead to
cognitive dysfunction, emotional lability, fatigue, depression,
and suicidality [19–22].

The disruptive and neuroprotective nature of many of the
molecular events associatedwith ICHhighlights the complex-
ity of this pathology and the need to understand ICH in its
finest molecular details, starting from the risk factors, in an
attempt to improve its detection, prevention, and treatment.

3. The Vulnerable Brain: Risk Factors for
Intracranial Hemorrhagic Stroke

A small proportion of ICHs is due to vascular malformations
or tumors, but the vast majority is due to various and only

partly known risk factors. Some are associated with an indi-
vidual’s lifestyle and are therefore modifiable. For example,
poorly controlled hypertension, smoking, and regular heavy
alcohol consumption are known, modifiable risk factors for
ICH in young and middle-aged people [23]. ICH can also
arise as a secondary effect of other pathologies including
cerebral amyloid angiopathy and Alzheimer’s disease. Risk
factors like aging are nonmodifiable. During aging, there is
an increased deposition of amyloid proteins in cortical arte-
rial blood vessels, which is a predisposing factor to ICH due
to its ability to degrade the elasticity of the blood vessels wall,
rendering them more susceptible to rupture [24].

Recent advances in high-throughput genotyping technol-
ogies, big data analysis, genome-wide association studies, and
the creation of large international consortia [25] have led to
the identification of genetic risk factors that vary depending
on the brain region affected by ICH [26, 27]. According to
these studies, the ε2 and ε 4 alleles of the apolipoprotein E
(APOE) are independent genetic risk factors for cortical
ICH [28]. APOE is essential for lipoprotein catabolism,
glucose use by neurons and glial cells, and synapse mainte-
nance and plasticity. The ε2 and ε4 alleles of APOE are impli-
cated with the pathogenesis of cerebral amyloid angiopathy
[29–39]. The larger is their allele copy number, the greater
the severity of the ICH (i.e., the hemorrhage size and growth
[40]). Risk factors for deep, subcortical ICH include variants
of the genes PMF1, SLC25A44, and SEMA4A which encode
the polyamine-modulated factor 1, a mitochondrial trans-
membrane transporter and a member of the semaphorin
family implicated with axon guidance and immune response,
respectively [39, 41].

These results highlight the heterogeneity in the risk
factors for different types of ICH and the need for a better
understanding of the molecular mechanisms underlying
ICH to generate new hypotheses for its treatment. Because
brain damage induced by ICH affects all cell types surround-
ing ruptured blood vessels and because astrocytes are
abundant cells in the brain, it is interesting to consider how
astrocytes function, respond to ICH, and contribute to the
recovery from brain injury.

4. Astrocytes: Bidirectional Control of Blood
Flow and Neuronal Function

Astrocytes are intriguing in the context of ICH because their
fine processes are in tight contact with both blood vessels and
synapses (Figure 1). This means that astrocytes are capable of
coupling changes in blood flow to changes in neuronal func-
tion and vice versa.

The astrocytes’ perivascular endfeet ensheathe blood
vessels tightly through transmembrane-anchoring proteins
including AQP4, the potassium channel Kir4.1, and their
adaptor proteins syntrophin, dystrophin, and dystrobrevin
[42–45]. Through these processes, astrocytes regulate the
transport of water and other molecules from the lumen of
blood vessels to the surrounding brain tissue [42, 46]. This
close interaction is important for the formation and mainte-
nance of the blood-brain barrier and forms the basis for cou-
pling vasodilation/constriction and neural activity [5, 47, 48].
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The astrocytes’ perisynaptic endfeet are enriched with
glutamate transporters, which are responsible for limiting
the lifetime of glutamate in the extracellular space and the
time course of glutamate receptor activation [2, 49]. Gluta-
mate transporters bind glutamate rapidly as it diffuses from
the synaptic cleft towards the extracellular space. The
glutamate binding rate of excitatory amino acid transporters
(EAATs Kon: 5× 106 M−1·s−1 [50]) is similar to the glutamate-
binding rate of GluA and GluN receptors (GluA Kon:
28.4× 106M−1·s−1 [51]; GluN Kon: 5× 106M−1·s−1 [50, 52]).
Once bound to EAATs, glutamate has a 50% chance of being
translocated to the cell cytosol because the translocation effi-
ciency of glutamate transporters, representing the proportion
of glutamate molecules initially bound to the transporter that
are eventually moved across the membrane, is only 50% [53].
The remaining 50% of glutamate molecules are released back
in the extracellular space, a phenomenon commonly referred
to as “buffering” [50, 53, 54]. What happens to the glutamate
buffered by EAATs and released back in the extracellular
space: does it bind to other EAATs or to GluA/N receptors?
If we consider glutamate binding to a substrate as a simple
first-order chemical reaction, the likelihood with which glu-
tamate unbinding from EAATs binds to one substrate or
another depends on the glutamate-binding rate and the
concentration of the substrate. Given the relatively similar
binding rate of glutamate to receptors and EAATs, whether
buffered glutamate binds to one or the other depends on
the local density of receptors and EAATs in the extra-
synaptic environment. The density of expression of extra-

synaptic glutamate receptors is 1000 times lower than that
of EAATs in astrocytes (GluA/N density: ~10μm−2 [55–57];
EAAT density: ~10,800μm−2 [49]). This means that it is
1000 times more likely for glutamate unbinding from EAATs
to bind to other EAATs instead of binding to glutamate
receptors. Therefore, glutamate buffering can prolong the
lifetime of glutamate in the extracellular space without neces-
sarily prolonging the time course of glutamate receptors
activation [58]. Once bound to EAATs for the second time,
glutamate has again a 50% chance of being removed from
the extracellular space and of being released back in the
extracellular space. This type of iterative process leads to a
progressive dilution of glutamate in the extracellular space,
until glutamate reaches its final, low nanomolar, steady-
state ambient concentration [59, 60].

Glutamate molecules taken up by astrocytes set off for a
complex journey (Figure 2). In the astrocyte cytoplasm, the
enzyme glutamine synthetase (GS) converts part of them into
glutamine. Glutamine is transferred back to neurons to be
used as a substrate for the enzyme glutaminase (GLS), which
removes an amide group from glutamine to produce gluta-
mate and ammonia [61] (Figure 2). The amount of glutamate
returned to neurons is not a fixed proportion of the amount
of glutamate taken up by astrocytes but depends on both
the amount of glutamate returned to neurons through trans-
porters and the amount synthesized de novo from glutamine
[62]. Glutamate molecules that do not enter the glutamate-
glutamine cycle are converted into α-ketoglutarate (αKG)
which is used as a substrate for the tricarboxylic acid (TCA)

(a)

Astrocyte
Presynaptic

terminal

Postsynaptic
terminal

(b)

Figure 1: Astrocytic interactions with blood vessels and synapses. (a) GFAP labeling of astrocytes (white) making contact with blood
capillaries, visualized using antibodies directed against the smooth muscle-specific α-actin (ASMA) (red). Modified with permissions from
[126]. (b) Transmitted electron micrograph of an excitatory synapse in the hippocampal area CA3, contacted by an astrocytic process.
Arrowheads show PAR1 localization along the astrocytic membrane. Modified with permissions from [80].
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cycle in astrocytes to cover, at least in part, the energy
demand of the glutamate uptake process [63] (Figure 2).
The rest of the energy costs of the glutamate uptake process
are covered by harnessing the electrochemical gradient for
Na+, K+, and H+ ions, which are moved across the membrane
by glutamate transporters in fixed ratio with glutamate
(3Na+, 1K+, 1H+, and 1Glut− [64, 65]; Figure 2). The energy
required to establish these ionic gradients comes mostly from
primary active transporters that establish the electrochemical
gradient for Na+ and K+ ions, like the Na+/K+-ATPase
(Figure 2). The production of ATP necessary to support the
Na+/K+-ATPase takes place in the mitochondria and
requires, in part, glucose consumption, which fuels energy
back to the neurons through the production of lactate [66]
(Figure 2). The source of glucose for astrocytes is the endo-
thelial cells around the blood vessels. Therefore, changes in
glucose metabolism in endothelial cells, which are affected
by changes in the O2/CO2 balance in the bloodstream, shape
the ability of astrocytes to take up glutamate from the extra-
cellular space. This regulation of glutamate uptake by the O2/
CO2 balance in the bloodstream carries important functional
implications because of its ability to control excitatory synap-
tic transmission.

In turn, changes in neuronal activity affect blood flow by
altering astrocytic function. Accordingly, increased synaptic

activity induces an increase in blood flow through signaling
mechanisms that couple glutamate release to activation of
group I metabotropic glutamate receptors (mGluRI) and
increased intracellular Ca2+ concentration in astrocytes. This
rise in intracellular Ca2+ concentration triggers the release of
signaling molecules like prostaglandins (PG), epoxyeicosa-
trienoic acids (EETs), and D-Ser that act on arterioles and
pericytes around the capillaries to induce vasodilation/con-
striction [67–70] (Figure 2). Through these mechanisms, glu-
tamate transporters communicate to the astrocytes the need
to adjust blood flow to the level of synaptic activity at a par-
ticular time, in a particular region of the brain [71].

Therefore, astrocytes are in a key position to mediate
neurovascular coupling as they can adjust the level of synap-
tic strength in response to changes in blood flow and they can
modify blood flow in response to ongoing synaptic activity.
The ability to exert this type of bidirectional control puts
astrocytes in a unique position in the context of brain injury
induced by ICH.

5. The Role of Astrocytes in ICH

During ICH, a number of molecules that typically reside in
the bloodstream quickly invade the surrounding brain tissue,
damaging not only neurons but also astrocytes and blood

Blood vessel Endothelial cell Astrocyte

Glucose
Lactate

ATP

TCA cycle
ATP

Gln

Neuron

2 K+

3 Na+

NH4
+

1 K+

1H+

Ca2+

1 Glut−

Glut−

Glut−

Glut−

ATP
3 Na+

Na+/K+-ATPase

EAAT

GS

aKG

mGluRI

GluA/N

D-Ser
EETs

(vasodilation)

PG
(vasodilation)

GluA/N

Lactate Pyr
TCA cycle

ATP

Gln GLS

Figure 2: Astrocytic molecular pathways mediating neurovascular coupling. The figure summarizes the molecular pathways that couple
neuronal activity at excitatory synapses with glutamate uptake in astrocytes and vasodilation in blood vessels. Conversely, glucose
metabolism in endothelial cells supports excitatory synaptic transmission in neurons by fueling energy production in astrocytes. αKG: α-
ketoglutarate; D-Ser: D-Serine; GS: glutamine synthase; EAAT: excitatory amino acid transporter; EETs: epoxyeicosatrienoic acids; Glut−:
glutamate; Gln: glutamine; GLS: glutaminase; mGluRI: group I metabotropic glutamate receptors; PG: prostaglandins; Pyr: pyruvate; TCA:
tricarboxylic acid cycle.
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vessels. Astrocytes occupy a substantial portion of the brain
tissue, and a complete impairment of their functions is
incompatible with life. In ICH, astrocytes undergo important
structural and functional modifications that can either be
neuroprotective or detrimental for neuronal function and
therefore need to be understood in further detail [72].

One of the consequences that blood extravasation has on
astrocytes pass through the activation of coagulation cas-
cades that cleave the precursor protein prothrombin to gen-
erate the serine protease thrombin [73]. Thrombin causes
brain damage because it induces perihematomal edema for-
mation [74–76] and leads to the activation of members of
the serine protease-activated G-protein-coupled receptor
(PAR) family [77–79]. One of these receptors, called PAR1,
is predominantly localized to the perisynaptic astrocytic end-
feet [80] and shows continued activation following ICH [81].
Thrombin cleaves the extracellular N-terminal domain of
PAR1. The newly exposed N-terminal domain acts as the
tethered ligand for PAR1, which in turn triggers activation
of Gi/o, Gq/11, and G12/13 signaling pathways [82–84]. The fact
that PAR1 activation contributes to brain damage during
ICH is supported by evidence that mice lacking PAR1 have
reduced brain infarct volume during focal ischemia [85,
86]. However, recent evidence indicates that PAR1 activation
also induces rapid remodeling of astrocytic processes adja-
cent to glutamatergic synapses [87]. This remodeling
includes (1) shrinkage and flattening [87, 88], (2) prolifera-
tion [87, 89], and (3) migration of astrocytic processes away
from excitatory glutamatergic synapses [87] (Figure 3). These
structural changes occur rapidly (within 20–30min) and
locally (within a radius of few hundreds of nanometers from
excitatory synapses). Despite its local nature, this remodeling
of the perisynaptic environment carries important functional
implications, because it leads to an increase in the local gluta-
mate uptake capacity. The experimental data suggests that
the postsynaptic response to sparse excitatory inputs is
weaker in response to PAR1 activation, as fewer GluA recep-
tors open in response to a single glutamate release event [87].
At the same time, fewer GluA receptors enter the desensi-
tized state. Therefore, postsynaptic responses to high-
frequency stimuli summate more efficiently during PAR1
activation. In other words, PAR1 activation converts excit-
atory synapses into high-pass filter devices, well tailored to
relay information associated with high-frequency—not spar-
se—neuronal activity [87]. For reasons that are not clear,
these findings differ from initial reports suggesting that
PAR1 activation does not change GluA-mediated synaptic
transmission in the rat hippocampus [90, 91].

The effect of PAR1 activation on GluN receptors is
important for the role that these receptors play in the induc-
tion of long-term plasticity [92, 93]. Long-term potentiation
(LTP) and depression (LTD) are widespread phenomena
across different brain regions, extensively studied at Schaffer
collateral synapses in the hippocampal area CA1, where they
are thought to be the substrates of memory formation [94].
At Schaffer collateral synapses, the Mg2+-block of GluN
receptors is incomplete at rest [95]. Because the driving force
for Ca2+ is large, a significant amount of Ca2+ enters postsyn-
aptic terminals via GluN receptors in response to presynaptic

stimulation and glutamate release. The magnitude, temporal
profile, and spatial spread of the evoked rise in intracellular
Ca2+ concentration determine the direction of the evoked
changes in synaptic strength. The reduced GluN activation
associated with PAR1-induced remodeling of astrocytic pro-
cesses leads to impairment of long-term plasticity [87]. This
suggests that AR1 activation may be implicated with cogni-
tive impairment caused by ICH, through mechanisms
involving structural plasticity of the extra-synaptic environ-
ment. Do these effects contribute to brain damage during
ICH or are they neuroprotective? The reduced activation of
GluA/N receptors may seem detrimental, as it weakens the
strength of excitatory synaptic transmission. The high-pass
filtering effect may also be disruptive as it promotes high-
frequency activity and seizure propagation in the brain. On
the other hand, speeding glutamate clearance could prevent
glutamate-induced excitotoxicity, which would serve a neu-
roprotective role. In this case, PAR1 receptors would act as
an imperfect safety mechanism through which the brain pre-
vents excitotoxicity at the expenses of weaker synaptic trans-
mission and higher risks of seizure propagation [87].

Other works have identified specific molecular mecha-
nisms by which PAR1 affects astrocytic function. For exam-
ple, PAR1 activates the p44/42 mitogen-activated protein
kinase ERK1/2 in cultured astrocytes [96, 97]. In addition,
the submicromolar increase in intracellular Ca2+ concentra-
tion evoked by PAR1 activation directly activates the
bestrophin-1 channels (Best1) [98]. In the rat hippocampus,
this has been suggested to cause increased [99–101], rather
than decreased [87], GluN activation. These findings are con-
sistent with data obtained in the nucleus of the solitary tract,
where PAR1 agonists also lead to increased GluN activation
[102]. They are also consistent with reduced GluN-
dependent LTP and learning and memory deficits in
PAR1−/− mice [103, 104], but they are odds with data
obtained in the mouse hippocampus [87] and therefore
require further investigation.

Whether PAR1 activation modulates GABAergic trans-
mission remains unclear. In the cerebellum, Best1 activation
induces GABA release from astrocytes, leading to increased
tonic inhibition [99]. However, the jury is still out on whether
plasmin-induced activation of PAR1 affects phasic GABAer-
gic transmission in the hippocampus, given that there is
experimental evidence in favor [91] and against it [90].

The existence of discrepancies among the experimental
findings of different labs inevitably calls for additional exper-
iments and further validation. It is likely that PAR1, being
coupled to multiple signaling pathways, might exert a pleth-
ora of effects that are better understood by interfering specif-
ically with one signaling pathway or another.

6. Can Astrocytes Be Valuable Targets to
Develop Future Treatments for Intracranial
Hemorrhagic Stroke?

If PAR1 activation somehow contributes to mediate the
unwanted consequences of blood extravasation on cognition,
it is tempting to think that its blockade may also contribute to
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limit brain damage caused by ICH. In humans, astrocyte pro-
liferation in the brain is detected adjacent to both ischemic
and hemorrhagic lesions [105]. A number of peptide-based
agents, small molecules, and proteases have been identified
over the years to block PAR1, and some of them have pro-
gressed to clinical trials [106]. One of the main challenges
when comparing the effects of these compounds in animal
models and in humans is that the cellular expression of
PAR1 varies across species and is not limited to the central
nervous system. For example, humans, monkeys, and guinea
pigs express PAR1 in platelets. Nonprimate species (e.g.,
rodents, dogs, and rabbits) do not express PAR1 in platelets
but do so in other peripheral tissues [107]. Among all
PAR1 antagonists, the one that has been studied most exten-
sively is vorapaxar (SCH50348, Zontivity™).

Vorapaxar is an irreversible PAR1 inhibitor that binds
to PAR1’s primary binding site. Vorapaxar was not devel-
oped to deliberately target PAR1 receptors in astrocytes
but to act on PAR1 receptors in platelets, in an attempt
to block platelet activation and decrease the risk of cardio-
vascular events. It was the first PAR1 antagonist approved
for use in clinical studies to reduce thrombotic events in
patients with a history of myocardial infarction and
peripheral arterial disease without history of stroke or
transient ischemic attack. Vorapaxar is not administered
to patients that already suffered a transient ischemic attack
or stroke, due to its effect on increasing bleeding risk. In
two large phase III clinical trials (TRACER [108] and
TRA 2°P-TIMI 50 [109]), vorapaxar administered as an
add-on therapy on top of aspirin and clopidrogel led to

Physiological conditions

GluN EPSC
Vh = +40 mV 

GluA EPSC
Vh = −70 mV

Schaffer collaterals

Blood vessel CA1 pyramidal cell
Astrocyte

(a)

ICH

GluN EPSC

GluA EPSC

Schaffer collaterals

Vh = +40 mV

Vh = −70 mV

(b)

Physiological conditions

Blood vessel
Postsynaptic terminal

Presynaptic terminal
Astrocyte

(c) (d)

Figure 3: The coupling of astrocytes with blood vessels and synapses changes during ICH. (a) Schematic representation of the organization of
blood vessels (pink), astrocytes (blue), and pyramidal cells in the hippocampal area CA1 (yellow) in physiological conditions. Astrocytes
closely interact with both blood vessels and neurons. CA1 pyramidal cells receive excitatory afferents from area CA3 via the Schaffer
collateral pathway (green). GluA and GluN receptors are expressed postsynaptically at Schaffer collateral synapses. Current responses
mediated by GluA and GluN receptors can be isolated using pharmacological approaches and whole-cell patch-clamp recordings in
voltage-clamp mode holding pyramidal cells at −70mV or +40mV, respectively (black). (b) Schematic representation of the structural
reorganization of astrocytes in response to ICH and PAR1 activation. Astrocytic processes shrink, proliferate, and migrate further away
from excitatory synapses. These changes cause faster glutamate clearance and weaken GluA- and GluN-mediated synaptic transmission
[87]. (c) Schematic representation of the synaptic and perisynaptic environment in physiological conditions. (d) Schematic representation
of the synaptic and perisynaptic environment in ICH. The remodeling of the neuropil induced by ICH is as described in (b).
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reduced incidence of ischemic events but an increased
incidence of intracranial hemorrhage. Because of all these
undesirable effects, there are concerns on the usefulness
of PAR1 blockade to prevent or treat brain damage in
ICH, further emphasizing the need for new studies on
the molecular properties of PAR1, function, and modula-
tion, in and out of the brain.

Besides PAR1, astrocytes possess a number of other
molecules that can serve as molecular targets during ICH.
For example connexin 43, a major connexin subtype in astro-
cytes, changes its expression in ischemia and stroke [110].
A2A adenosine receptors in astrocytes are involved in neu-
roinflammatory and neuromodulatory processes an in the
regulation of glutamate homeostasis, all implicated with
ischemic brain injury [111]. Meteorin, a 291 amino acid
peptide secreted by astrocytes, acts on endothelial cells and
regulates angiogenesis [112]. Another compound produced
by astrocytes, octadecaneuropeptide (ODN), prevents
oxidative stress-induced apoptosis. Its ability to reduce
neuronal damage makes it a particularly valuable candi-
date in ICH [113, 114].

The value of considering molecular targets in astro-
cytes comes from evidence that neurons are not viable
without astrocytes [115], and astrocyte viability is main-
tained for longer than neurons in animal models of stroke
[116–118]. For this reason, targeting surviving astrocytes
offers an invaluable opportunity to restore the function
of neurons and blood vessels in the damaged brain [72].
Accordingly, gene delivery studies show that promoting
astrocyte survival protects against stroke [119]. The path
to discovering new pharmacological tools to target mole-
cules in astrocytes requires, first and foremost, an appreci-
ation of the pivotal function of these cells to ensure
functioning of the healthy brain. It requires extensive
research and molecular screening, as it happens when
searching for any new target molecule in other cell types
[1]. Once the candidate target molecule is found, the
expectation is that it is druggable and that the drugs that
act on it are specific and safe [1]. Druggable means that
it has to be targeted by a chemical compound with high
affinity. Traditionally, G-protein-coupled receptors like
PAR1 are considered to be the best druggable targets
[120]. However, recent technical advances open new
opportunities that allow modulating protein-protein inter-
actions [121] and facilitating antibody penetration through
the blood-brain barrier [122–124]. Specificity, one of the
most desirable features of a drug, refers to its ability to
act only on a given target molecule. This can be challeng-
ing to accomplish because the predicted chemical and
actual biological specificity of a compound may differ sub-
stantially [125]. Safety, commonly assessed by testing a
compound on animals, poses further challenges because
some molecular targets like PAR1 are differently expressed
in animal models and humans, in tissues other than the
brain and across different brain regions. While the quest
for the best therapeutic strategy for ICH continues, it is
important for basic scientists to continue to broaden our
knowledge of the molecular pathways that allow astrocytes
to shape the functional properties of the brain.

7. Conclusions

Astrocytes are in a strategic position to shape neuronal func-
tion and blood flow. For this reason, they provide a broad
range of opportunities for therapeutic intervention aimed at
restoring neuronal function and blood flow in brain regions
affected by ICH. The potential of astrocytes as therapeutic
targets to prevent or treat ICH has not been fully exploited.
New experimental evidence indicates that small changes in
the structure of astrocytic processes at excitatory synapses
can change profoundly the strength of synaptic transmission
in the brain. This, in turn, can have profound implications
for regulating cognitive skills. Therefore, while searching
for newmolecular targets to treat ICH, it is important to keep
an open mind on molecular targets in nonneuronal cells.
Astrocytes, for once, may be in a privileged position to help.
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