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Article

A Proteomics Approach to Profiling
the Temporal Translational Response
to Stress and Growth
Daniel A. Rothenberg,1,2 J. Matthew Taliaferro,3,4,5 Sabrina M. Huber,1 Thomas J. Begley,6 Peter C. Dedon,1,7

and Forest M. White1,2,8,9,*

SUMMARY

To quantify dynamic protein synthesis rates, we developed MITNCAT, a method combining multi-

plexed isobaric mass tagging with pulsed SILAC (pSILAC) and bio-orthogonal non-canonical amino

acid tagging (BONCAT) to label newly synthesized proteins with azidohomoalanine (Aha), thus

enabling high temporal resolution across multiple conditions in a single analysis. MITNCAT quantifica-

tion of protein synthesis rates following induction of the unfolded protein response revealed global

down-regulation of protein synthesis, with stronger down-regulation of glycolytic and protein synthe-

sis machinery proteins, but up-regulation of several key chaperones. Waves of temporally distinct

protein synthesis were observed in response to epidermal growth factor, with altered synthesis

detectable in the first 15 min. Comparison of protein synthesis with mRNA sequencing and ribosome

footprinting distinguished protein synthesis driven by increased transcription versus increased trans-

lational efficiency. Temporal delays between ribosome occupancy and protein synthesis were

observed and found to correlate with altered codon usage in significantly delayed proteins.

INTRODUCTION

Cellular response to perturbation often leads to a change in cell state, accompanied by dynamic alterations

in protein synthesis and degradation that ultimately result in changes in protein expression levels (Golan-

Lavi et al., 2017). Measuring changes in mRNA abundance is commonly used to estimate changes in protein

expression; however, relative mRNA abundance has been shown to be an incomplete predictor of protein

synthesis and abundance (Schwanhäusser et al., 2011; Jovanovic et al., 2015) because translation is a highly

regulated process that can be modulated by signaling pathways (Rowlands et al., 1988; Feng et al., 1992;

Chen and London, 1995; Berlanga et al., 1999; Gingras et al., 2001; Novoa et al., 2003), RNA structural el-

ements (Filbin and Kieft, 2009), and tRNA isoacceptor availability (Chan et al., 2010, 2012; Chionh et al.,

2016).

Ribosome footprint (RFP) analysis, the identification of mRNA transcript fragments that are shielded by

ribosomes, presumes that ribosome-bound transcripts are being translated into proteins and is considered

the gold-standard RNA-based approach to estimate translation rates. RFP analysis involves the isolation

and sequencing of �30 nucleotide mRNA fragments shielded by the ribosome from nuclease degradation

(Ingolia et al., 2009; Ingolia, 2016). Since increased RFP abundance could result from increased ribosome

density or increased transcript expression with constant ribosome density, normalizing RFP with transcript

expression (typically measured bymRNA sequencing [mRNA-seq]) provides ametric known as translational

efficiency (TE), effectively reading out the ribosome occupancy per transcript. Although RFP and TE pro-

vide a fairly accurate estimate of potential protein synthesis rates, these measurements do not account

for stalled ribosomes and have been shown to be less representative of protein synthesis rates during

cell stress response (Iwasaki and Ingolia, 2017; Liu et al., 2017).

Proteomics approaches quantify the protein product rather than the RNA precursors of protein synthesis.

Two techniques, pulsed SILAC (pSILAC) (Schwanhäusser et al., 2009) and bio-orthogonal non-canonical

amino acid tagging (BONCAT) (Dieterich et al., 2006), enable direct measurement of newly translated pro-

teins. In pSILAC, heavy-isotope labeled amino acid analogs are added to cells in culture and are incorpo-

rated into newly synthesized proteins over a defined time period before mass spectrometry (MS)-based

analysis. This approach allows for an estimation of protein turnover by comparing the abundance of the
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heavy, newlymade peptides with the light, preexisting peptides (Doherty et al., 2005) and can be performed

on up to two conditions simultaneously (Schwanhäusser et al., 2009). Owing to dynamic range and sensitivity

limitations, it can be difficult to detect pSILAC-labeled, newly translated proteins against the large back-

ground of pre-existing proteins in the cell (Eichelbaum and Krijgsveld, 2014). These challenges effectively

limit minimum incorporation time and make it difficult to monitor low-abundance proteins. However, tar-

getedMS approaches such asmultiple reactionmonitoring have been usedwith pSILAC to quantify synthe-

sis rates for selected proteins (Liu et al., 2017). In BONCAT, azidohomoalanine (Aha) (Dieterich et al., 2006),

an azide-modifiedmethionine analog used naturally by the nativemethionyl tRNA synthetase (MetRS) (Kiick

et al., 2002), is added to cells and incorporated into newly synthesized proteins. The azide functional group

on Aha enables selective enrichment through click chemistry-mediated solid-phase capture of Aha-labeled

proteins. Combining BONCAT with pSILAC (e.g., BONLAC [Bowling et al., 2016]/QuanCAT [Howden et al.,

2013] and HILAQ [Ma et al., 2017]) improves the sensitivity and coverage of pSILAC and provides a quanti-

tative comparison of protein synthesis rates across two conditions (Eichelbaum et al., 2012). Using multiple

MS analysis, this combined approach has been used for temporal analysis of newly synthesized proteins

following macrophage activation (Eichelbaum and Krijgsveld, 2014). However, prolonged overlapping

metabolic labeling periods prevented analysis of rapid changes in protein synthesis, and the use of pSILAC

limited the number of time points assayed (Eichelbaum and Krijgsveld, 2014).

With the goal of developing a method that would allow for high sensitivity analysis of newly translated pro-

teins at multiple time points with high temporal resolution, we developed MITNCAT (multiplex isobaric

tagging/non-canonical amino acid tagging), combining BONCAT with pSILAC and using multiplexed

isobaric tandem mass tagging (TMT) (Thompson et al., 2003) to quantitatively compare translation rates

for thousands of proteins across ten different conditions in a single MS experiment. Here the combination

of BONCAT and pSILAC enables enrichment for newly translated proteins and post hoc removal of non-

specifically retained proteins from BONCAT enrichment, since newly translated proteins should all have

pSILAC labels. Multiplex isobaric tagging generates quantification of newly synthesized proteins for

discrete time bins within a single experiment. Previous studies have combined pSILAC and TMT to monitor

protein turnover (Welle et al., 2016), whereas here we combine BONCAT, TMT, and pSILAC to describe the

temporal dynamics of protein synthesis rates at discrete time points following stimulation. Application of

MITNCAT to the unfolded protein response enabled the temporal analysis of thousands of protein synthe-

sis rates and highlighted the differential translation regulation of a large number of metabolic and trans-

lational regulatory proteins.

We also applied MITNCAT to quantify protein synthesis rates following epidermal growth factor (EGF)

stimulation of HeLa cells, a systemwhose dynamic response has been well characterized across miRNA (Av-

raham et al., 2010), transcript (Amit et al., 2007), protein expression (Waters et al., 2012; Shi et al., 2016;

Golan-Lavi et al., 2017), and protein post-translational modification (Zhang et al., 2005; Reddy et al.,

2016). Although the temporal dynamics at each of these levels has been shown to affect the cellular

response to EGF, the effect on dynamic protein synthesis rates has yet to be characterized. Here we applied

MITNCAT with discretely timed pulses of Aha and pSILAC to quantify the temporal dynamics of protein

synthesis rates for thousands of proteins at multiple time points following EGF stimulation. These data

document the temporal control of protein synthesis, including increased synthesis rates of dozens of pro-

teins within the first 15 min, previously unprecedented temporal resolution. Comparison of proteomic syn-

thesis rate data to mRNA-seq and RFP data at each time point established the transcriptional versus trans-

lational efficiency-based control of protein synthesis. Furthermore, we compared the temporal dynamics of

protein synthesis and RFP, uncovering a potential role of codon bias in regulating temporal delays in pro-

tein synthesis.

RESULTS

IsobaricMass Tags Allow for RobustMultiplexedQuantitative Analysis of Newly Synthesized

Proteins

Several publications over the past decade have documented the dynamic regulation of miRNA, mRNA, and

protein expression following cell stimulation. Realizing that protein synthesis rates are likely similarly dy-

namic, we developedMITNCAT, a method to accurately quantify the temporal dynamics of protein synthe-

sis rates at a global scale. In MITNCAT, multiplex isobaric tags enable the simultaneous analysis of newly

synthesized proteins from multiple discrete time points following cellular stimulation. Briefly, Aha-based

BONCAT is used to label newly synthesized proteins with a bio-orthogonal chemical handle and

368 iScience 9, 367–381, November 30, 2018



heavy-isotope labeled arginine and lysine pSILAC amino acids are added to the media concurrently with

Aha. Proteins synthesized during the labeling period therefore incorporate Aha (for enrichment) and

pSILAC (as a marker for specificity). Aha-labeled proteins are solid-phase captured onto a dibenzocyclooc-

tyne (DBCO)-functionalized resin through a copper-free click chemistry reaction. After multiple rounds of

highly stringent washes, the bound proteins are digested, on bead, to liberate pSILAC-labeled peptides. In

the same tube, multiplex isobaric tandemmass tags are added to each sample to allow for quantitative MS

analysis. The samples are then combined, subjected to high pH reverse phase fractionation, and analyzed

via liquid chromatography-tandem mass spectrometry (LC)-MS/MS for discovery-mode, quantitative mea-

surement of temporal dynamics of protein synthesis rates.

To validate the accuracy of this quantitative approach to measure newly translated proteins, we chose a

model system, MCF10a cells, and incubated the cells with 3 mM Aha for increasing periods of time: 15,

30, 60, and 120 min. Assuming that proteins were being synthesized at a continuous rate over this exper-

iment, Aha-labeled newly synthesized proteins should increase linearly with time. Two negative controls

were included in this experiment: methionine (Met) was substituted for Aha to assess the level of back-

ground binding, and 300 mg/mL cycloheximide (CHX) was added to the media 30 min before labeling

with Aha for 120 min (Figure 1A, left) to determine if blocking translation could prevent Aha incorporation

into proteins. Peptides were labeled with one of six different tandemmass tags (Figure 1A, right) that allow

for relative quantitation of newly translated proteins among the different samples. The samples were then

combined, fractionated (see Methods), and analyzed via LC-MS/MS. During fragmentation in MS/MS

scans, low mass reporter ions are liberated for quantitation (Figure 1B). Peptides were identified to be

from a newly synthesized protein only if they contained either a SILAC-labeled residue or an Aha residue
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Figure 1. Analysis of Aha Labeling Time Course Demonstrates Reliable Quantitation of Newly Synthesized

Proteins across Large Dynamic Range

Newly synthesized proteins were labeled with Aha and pSILAC for variable amounts of time, enriched onto a DBCO-

functionalized resin, digested with trypsin, and eluted peptides were labeled with isobaric mass tags (A); TMT reporter

ions used for quantitation from exemplar spectra (B); a fitted line to the medians of all Aha-labeled samples demonstrates

accuracy of quantification over a broad dynamic range (C); western blot for biotinylated Aha residues of newly synthesized

proteins in inputs before click enrichment (left) and in the supernatant following click enrichment (right) (D). Data are

median G SEM.
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(proteins could be labeled with more than one Aha residue, and not all Aha residues were necessarily sub-

jected to the click reaction because of steric hindrance).

Since TMT-based quantification is relative and not absolute, the 15-min Aha-stimulated channel was used

for normalization. Taking the median of all proteins observed in each channel, a more than 2-fold

decrease was observed in the Met and CHX samples compared with the 15-min Aha-labeled sample,

whereas the 30-, 60-, and 120-min labeled Aha channels each featured an increase in intensity that corre-

sponded with the increase in duration of Aha labeling (Figure 1C). A line fitted to the four Aha-labeled

time points has a slope of 0.87, slightly below the expected value of 1. This slight compression in the

MS-based quantification was repeated in a subsequent replicate (Figure S1A). To determine the source

of this deviation, we used an orthogonal, fluorescence-based method to quantify Aha-labeled proteins

from each time point. An aliquot of the input and supernatant from each pull-down was analyzed by re-

acting each protein sample with DBCO-biotin to click on a biotin tag. Quantitative western blotting was

then performed using a fluorophore-conjugated streptavidin as a probe. This analysis revealed time-

dependent increases in Aha-labeling with a slope of 1 (Figure S1B) and robust depletion of Aha-labeled

proteins from the supernatant (Figure 1D), suggesting that the decreased slope of the MS-based quan-

tification is mostly likely not due to translation suppression associated with the decreased incorporation

of Aha in place of Met (Kiick et al., 2002) but may instead be due to suppression of dynamic range in

MS-based quantification (Savitski et al., 2013). Individual proteins, although showing increased variation,

still demonstrate a robust linear increase in protein synthesis in response to longer labeling periods (Fig-

ure S1C). Stratifying proteins based on total reporter ion intensity reveals that proteins with the top 10%

most abundant report ions have a slope of nearly 1, whereas the bottom 10% has a slope of 0.77 (Fig-

ure S1D), further suggesting compression due to isolation interference. Increasing the degree of sample

fractionation could potentially improve the dynamic range, but given that we were able to fairly accurately

quantify an 8-fold change in translation rate, we determined that the current approach should be suitable

for further applications. Stratifying proteins based on degradation kinetics (McShane et al., 2016) yielded

no differences (Figure S1E), suggesting that protein degradation kinetics do not play a major role in

quantification on the timescales tested.

Analysis of Protein Synthesis during the Unfolded Protein Response Shows an Up-regulation

of Stress Proteins in the Background of Global Translational Repression

To validate the robustness of this method in a biological context, we selected the unfolded protein

response (UPR), a stress response known to drive inhibition of protein synthesis to prevent further protein

misfolding while also up-regulating protein folding chaperones to aid in the repair of misfolded proteins.

To induce the UPR, 10 mg/mL tunicamycin was added to cells and newly synthesized proteins were labeled

with Aha, K8, and R10 for 30 min starting at either 0, 1, 2, 3 or 4 hr after treatment (Figure S2A). DMSO-

treated controls were collected at matched time points to account for differences in starvation length as

well as any artifacts that may arise owing to the presence of Aha (Figure S2A).

MITNCAT led to the quantification of a total of 3,178 unique proteins, with 2,007 unique proteins appearing

in at least two of the three replicates and therefore considered for subsequent analyses. When comparing

the median of log2-transformed time points, we observed a global decrease in protein synthesis starting

between 30 and 90 min following tunicamycin treatment compared with DMSO controls (Figures 2A and

S2B). This observation is consistent with previous reports showing that global translation decreases owing

to phosphorylation of eIF2a at approximately 30 min following endoplasmic reticulum (ER) stress (Novoa

et al., 2003).

All proteins were subjected to clustering using a self-organizing map. To identify the most robust clusters,

this process was repeated 1,000 times using random initial seeds to generate a co-clustering frequency

map (Figure 2B). This approach led to the identification of two distinct clusters: one characterized by pro-

tein synthesis down-regulated below the median (cluster 1, Figure S2C) and one characterized by protein

synthesis up-regulated above the median (cluster 2, Figure S2C).

Gene ontology (GO) term analysis revealed that the down-regulated cluster 1 is statistically significantly

enriched for the terms protein targeting to the ER (p = 2.87 3 10�20), translational initiation (p = 2.80 3

10�19), and ribosome biogenesis (p = 7.15 3 10�10). The down-regulation of proteins involved in
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translation, such as ribosomal proteins, translation initiation factors, and translation elongation factors,

(Figure 2C, left and center) may enhance the suppression of protein synthesis in cells undergoing the UPR.

The down-regulated cluster also contained proteins associated with glycolysis. The down-regulation of

proteins involved in glycolysis, including GAPDH (Figure 2C, right), ENO1, TPI1, PKM, and ALDOA (Fig-

ure S2D), suggests that metabolic flux through the glycolytic pathway may be reduced during the UPR.

It has been previously reported that tunicamycin treatment reduces glucose uptake, lactate production,

and ATP levels (Wang et al., 2011), consistent with the observed down-regulation of proteins associated

A B

C

D

Figure 2. Temporal Profiles of Protein Synthesis during the Unfolded Protein Response following Tunicamycin

Treatment

Temporal changes in protein synthesis over the first 5 hr following induction of the UPR by tunicamycin (A) were clustered

using self-organizing maps, revealing two distinct groups (B); cluster 1 is down-regulated below the median and contains

proteins associated with translational machinery and glycolysis (C); cluster 2 is up-regulated above the median and

contains proteins associated with an acute stress response (D). n = 3 biological replicates. Data are mean G SEM,

* = p < 0.05.
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with these pathways. Interestingly, proteins involved in the tricarboxylic acid cycle, such as citrate synthase,

SDHA, and IDH3, were not included in this down-regulated cluster (data not shown).

Cluster 2 contained proteins that were down-regulated to a lesser extent and also included proteins that

were up-regulated in the background of global translation repression. One of themost highly up-regulated

proteins in this cluster was BIP, which is the canonical ER stress response chaperone. Other proteins that

exhibited a large increase in translation rate following tunicamycin treatment were HERPUD1, which is

involved in targeting proteins for degradation via the ERAD pathway, and HYOU1, another member of

the heat shock family of proteins involved in protein folding and cell survival in response to stress (Fig-

ure 2D). Other stress-related proteins were also observed to be up-regulated (Figure S2E).

Since the inhibition of translation during the UPR is mediated by the phosphorylation of eIF2a by PERK, we

hypothesized that the observed overall repression of translation would not be seen bymeasuring RNA tran-

script abundance. Indeed, mRNA-Seq did not recapitulate this global down-regulation of protein synthesis

measured by MITNCAT (Figures S2F–S2H), as only selected transcripts were affected by tunicamycin treat-

ment. Altogether, these data demonstrate the reliability of MITNCAT for quantifying the time course of

protein synthesis changes at a global level in a complex biological system.

EGF Stimulation Results in Temporally Distinct Waves of Protein Synthesis

It has been shown that epidermal growth factor receptor (EGFR) activation leads to temporally distinct

waves of transcription, in which immediate-early genes (IEGs) are followed by delayed early genes

(DEGs) and finally late response genes (LRGs), which are up-regulated 2 to 4 hr after stimulation (Amit

et al., 2007; Avraham and Yarden, 2011; Feldman and Yarden, 2014). To determine whether temporally

distinct waves also occurred for protein synthesis, we appliedMITNCAT to quantify proteome-wide protein

synthesis rates temporally distinct time windows following EGF stimulation. HeLa cells were serum starved

for 24 hr and stimulated with 20 nM EGF, and Aha, K8, and R10 were concurrently applied in consecutive

30-min windows following EGF addition, resulting in time points collected at 30, 60, 90, 120, and 150 min

(Figure S3A). To account for the effects of the KRM-free media starvation and Aha labeling, matched PBS

controls were also collected at the same time points.

Following processing and analysis, 1,749 unique proteins were identified across four replicates, with

1,007 unique proteins observed in at least two replicates and retained for subsequent analysis. To

visualize the temporal dynamics of protein synthesis following EGF stimulation, proteins whose synthesis

was statistically significantly altered in at least one time point were subjected to hierarchical clustering.

The resulting heatmap highlights the temporal dynamics of synthesis of selected proteins, with some

proteins peaking at 60–90 min post-treatment, whereas others feature increased synthesis as early

as within the first 30 min of EGF stimulation (Figure 3A). Although there was a trend toward increased

global protein synthesis following EGF stimulation, this trend did not reach statistical significance

(Figure S3B).

To group proteins into temporally distinct clusters, k-means clustering analysis was performed using six

clusters and Pearson correlation as the distance metric. To identify the most robust clusters, this process

was repeated 10,000 times using a random initial seed; the results of this analysis were then plotted on

a co-clustering frequency map (Figure 3B). This analysis revealed four distinct clusters, each with a unique

temporal profile (Figure S3C).

Cluster 1 was characterized by increased protein synthesis as early as 30 min following EGF stimulation,

with maximum synthesis at 60 min before returning to baseline levels by 150 min. This cluster contained

many of the canonical IEGs, including EGR1 (Figure 3C), JUN, CYR61, and IER2 (Figure S3D), consistent

with a model of rapid up-regulation of these genes within the first hour following stimulus. Intriguingly,

this cluster also contained many of the canonical DEGs, such as DUSP1, ATF3, and ZFP36L1 (Figure S3D).

This rapid up-regulation of DEGs was in contrast to the established literature that shows most DEG tran-

scripts being up-regulated between 1 and 2 hr following EGF stimulation (Avraham and Yarden, 2011; Feld-

man and Yarden, 2014). One notable IEG absent from the dataset was MYC, which has previously been

shown to be up-regulated on the transcript level in response to EGF stimulation (Amit et al., 2007). MYC

was modestly up-regulated between 30 and 90 min, but not to an extent that was statistically significant

in this analysis. This observation suggests that previously observed increases in MYC protein levels could
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be due to a combination of increased stability (Sears et al., 2000) and a modest increase in protein

synthesis.

In response to EGF stimulation, synthesis of proteins in cluster 2 increased at 60min, wasmaximal at 90min,

and subsequently decreased back toward basal levels. Similar to cluster 1, cluster 2 contained IEGs such as

NR4A1 (Figure 3D) and NR4A3 and the DEG KLF10 (Figure S3E). Within clusters 1 and 2, synthesis of both

IEGs and DEGs were observed between 30 and 90 min following EGF stimulation. Rather than showing a

separate wave of IEGs followed by a wave of DEGs, as has been implicated by transcriptional analysis, IEGs

and DEGs appeared to be collectively expressed within the same time frame with maximal synthesis occur-

ring between 60 and 90 min following EGFR activation.

Cluster 3 was characterized by a delayed response to EGFR activation, with protein synthesis beginning at

around 90 min and increasing through the final time point, 150 min after stimulation. This cluster contained

several LRGs involved in cytoskeletal dynamics and cell motility, such as CTEN (Figure 3E), VASP, EZR, and

EPPK1 (Figure S3F).

Finally, cluster 4 was characterized by an increase in synthesis beginning around 30 min and remaining

elevated across all time points. This cluster almost exclusively contained proteins associated with the trans-

lational machinery, including ribosomal proteins, translation initiation factors such as eIF4B (Figure 3F), and

translation elongation factors (Figure S3G). These data suggest that, in response to pro-growth cues such

as EGF stimulation, cells increase their translational capacity by synthesizing more ribosomal proteins and

associated translation factors to further increase synthesis of new proteins. This observed increase in ribo-

somal protein synthesis is consistent with the observation that ribosomal RNAs (rRNAs) also show an in-

crease in transcription within 30 min following EGFR activation (Stefanovsky et al., 2001).

A B

C D E F

Figure 3. Changes in Protein Synthesis following EGF Stimulation Were Clustered into Four Groups Based on

Temporal Behavior

Temporal changes in protein synthesis over the first 150 min following EGF stimulation (A) were clustered by k-means

clustering, resulting in four groups that have distinct temporal profiles (B). Exemplar proteins demonstrate the unique

protein synthesis profiles of each group (C–F). n = 4 biological replicates. Data are mean G SEM, * = p < 0.05.
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Increasing Sampling Frequency Yields New Insights on Protein Synthesis Dynamics

To better characterize the temporal response to EGF, especially for proteins that displayed dynamic pro-

tein synthesis such as those in clusters 1 and 2, we tested whether we could increase the temporal resolu-

tion of MITNCAT. Aha/K8/R10 labeling times were reduced from 30 min to 15 min, with samples collected

at 15, 30, 45, 60, and 75 min following EGF treatment along with matched negative controls as described

previously. In this analysis, 1,857 proteins were identified in total, with 1,135 proteins identified in two or

more replicates. Somewhat to our surprise, decreasing labeling time to 15 min did not lead to a significant

decrease in the number of identified proteins relative to the 30-min labeling experiments, suggesting that

the dynamic range of the experiment (the difference between the most abundant and least abundant

detectable proteins), rather than the overall sensitivity, might be the limiting factor in number of identified

proteins. To visualize the dynamic profiles of protein synthesis, proteins with significantly altered synthesis

following EGF stimulation were clustered to generate a heatmap (Figure 4A). This heatmap demonstrates

that some proteins are rapidly synthesized within 15 min of EGF stimulation, whereas many additional pro-

teins feature a strong increase between 30 and 60min post-treatment. Analysis of this 15-min temporal res-

olution data by k-means clustering yielded similar clusters as compared with the 30-min resolution data.

However, because the time course ended at 75 min, before cluster 2 proteins and LRGs in cluster 3 reach

their maximum, LRGs and late IEG/DEGs previously found in clusters 2 and 3 were clustered together.

Additionally, although ribosomal proteins and translation factors from cluster 4 remained clustered, the

improved temporal resolution of the analysis enabled a bifurcation (clusters 4 and 4*) between those

A

B C

Figure 4. Decreasing the Duration of Aha Labeling Increased Temporal Resolution and Yielded New Insights into

Protein Synthesis Dynamics

Temporal changes in protein synthesis were sampled every 15 min over the first 75 min and clustered by k-means

clustering. Clusters 2 and 3 from Figure 3 are now grouped into a single cluster, and cluster 4 bifurcates into two clusters

based on changes within the first 15 min (A). Increasing temporal resolution allows for insights on protein changes within

the first 15 min following EGF stimulation (B and C, arrowheads). n = 3 biological replicates. Data are mean G SEM.
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proteins that demonstrated an increased synthesis by 15 min compared with those that increased synthesis

starting at 30 min (Figure S4A).

Despite the relatively small changes in overall temporal clusters, increasing temporal resolution provided

interesting insights at specific time points. For instance, 24 proteins, including DUSP1 (Figure 4B, arrow-

head), JUN, and several ribosomal proteins, demonstrated significantly increased protein synthesis as early

as 15 min following EGF stimulation. Of these proteins, DUSP1 was one of the fastest responders, with

expression increasing nearly 60% within the first 15 min. This rapid up-regulation of a DEG, even before

most IEGs, has not been previously observed and stands in contrast to the classical model of DEGs being

up-regulated following the expression of IEGs. The ATF3 transcription factor was also notable, as improved

temporal resolution highlighted an immediate-early decrease below basal levels in ATF3 synthesis rates at

15 min following EGF stimulation, followed by an increase in synthesis at 30 min that peaked between 45

and 60 min (Figure 4C, arrowhead). This immediate down-regulation of ATF3 is corroborated by RFP anal-

ysis (Figure S5B, Table S5) and has not been previously observed.

Comparison of Protein Synthesis to RNA Abundance and Ribosome Footprints Reveal

Transcriptionally and Translationally Controlled Groups of Proteins

Increased synthesis of a given protein could be due to many different factors, including an increase in the

abundance of the protein-coding transcript or an increase in translation efficiency due to increased number

of ribosomes binding to each transcript or the rate at which the ribosomes move along the transcript. To

determine the relationship between dynamic transcript expression, ribosome binding, and protein synthe-

sis rates, we performedmRNA-seq and RFP on identical samples corresponding to the 30-, 60-, and 90-min

time points following EGF stimulation. TE rates were calculated based on the mRNA-seq and RFP data and

represent ribosome occupancy normalized to transcript abundance (see Methods). These data were then

compared with the quantitative protein synthesis data at these same time points.

On comparison of protein synthesis with RNA abundance and TE measurements, two distinct groups of

genes emerged (Figures 5A and S5A). In the first group, changes in protein synthesis correlated strongly

with changes in RNA abundance (Figure 5A blue bar and Figure S5B), suggesting regulation predominantly

at the level of transcription. This group contains most of the IEGs and DEGs that are transiently expressed

at high levels, such as EGR1 (Figure 5B). This rapid up-regulation of EGR1 was also orthogonally confirmed

by western blot, with new EGR1 protein increasing 1.9-fold from 30 to 60 min after EGF treatment (Fig-

ure S5C), compared with a 2.2-fold increase as measured by MITNCAT over that time (Figure 5B). Further-

more, co-treatment with proteasome inhibitor MG132 yields no change in newly synthesized EGR1 (Fig-

ure S5C), demonstrating that the difference in magnitude between mRNA/RFP levels and protein

synthesis is not due to EGR1 protein degradation. In the second group, changes in protein synthesis corre-

lated with variations in TE, with minimal change in RNA abundance (Figure 5A, green bar and Figure S5D),

suggesting regulation on the level of translation. This cluster was highly enriched for ribosomal proteins

and several translation initiation and elongation factors such as eIF4B (Figure 5C). These proteins were

rapidly up-regulated and sustained throughout the duration of the analysis, albeit to a lesser magnitude

than the IEGs, DEGs, and LRGs.

One notable difference between the two clusters was the magnitude of the change in protein synthesis. In

the transcriptionally driven cluster, protein synthesis increased as high as 7-fold, whereas the most highly

up-regulated protein in the translationally driven cluster experienced a 2-fold change in synthesis. Up-

regulation solely through increased translation may be limited by the maximum rate at which ribosomes

can bind and translate a transcript. Larger changes in protein expression may require increasing the num-

ber of mRNA transcripts available to be translated. This observation highlights a potential trade-off

between fast but limited up-regulation through translational control and slower but more potent up-regu-

lation through transcriptional control.

Codon Bias Correlates with Temporal Delays between Ribosome Binding and Translation of

New Proteins

Generating time course data for ribosome binding and protein synthesis offered the unique opportunity to

characterize the temporal relationships between these processes. Because protein synthesis and ribosome

binding occur on scales of different magnitudes, the values were standardized to allow for a direct compar-

ison of the temporal profiles for each. To prevent the analysis of random fluctuations in proteins with
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unchanging RFP values or protein synthesis rates, only proteins with at least one statistically significant time

point (p < 0.05) in both the RFP and MITNCAT datasets were considered, and thus only proteins present in

at least two of the four MITNCAT replicates were included in the analysis of temporal delay. These restric-

tions limited the protein dataset to 90 and the RFP dataset to 400; the overlap between these datasets was

27 proteins. The TE data was compared with MITNCAT data for these 27 proteins. From this analysis, a sub-

set of 17 proteins exhibited a clear delay between ribosome binding and protein synthesis (Figures 6A and

S6A and Table S6). One potential cause for this delay is a difference between codon frequency usage in

these genes and the corresponding tRNA isoacceptor availability. To determine if these genes exhibit

codon usage frequencies that deviate from the genome averages, the average frequency for each codon

in each gene (Table S6) was averaged across all the genes in the group. Statistical significance was

A

B

C

Figure 5. Temporal Response to EGF Stimulation Compared between Transcript Expression, Ribosome Binding,

and Protein Synthesis

Network-wide temporal response to EGF stimulation was assessed at the transcript expression level by mRNA-seq (n = 2),

whereas translation rates were estimated by RFP (n = 2) and protein synthesis rates were measured by the MITNCAT

approach (n = 3) (A). Comparing these datasets revealed a set of proteins whose altered synthesis correlated with changes

in RNA abundance (blue bar), exemplified by EGR1 (B), suggesting regulation at transcription. Another group

demonstrates changes in synthesis rates correlating with changes in translational efficiency (green bar), exemplified by

eIF4B (C), suggesting regulation at translation. Data are mean G SEM.
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determined by generating randomized groups of the same size and comparing the codon usage frequency

with the genome average. This process was repeated 106 times, and a p value was generated by counting

howmany randomly generated groups showed a frequency deviation from the genome greater than that of

the queried group for each codon. Reported p values were statistically significant if they were less than the

A

B C D

E

Figure 6. Proteins Exhibiting a Delay between Ribosome Binding and Protein Synthesis Have a Significant Bias in Codon Usage

A comparison of RFP analysis and protein synthesis yielded a group of 17 proteins exhibiting a delay between ribosome binding (n = 2) and protein synthesis

(n = 3) (A). An analysis of codon usage reveals a statistically significant codon bias present in this set of proteins (B) not present in a randomly generated set of

proteins (C). After an analysis of 500 randomly generated protein sets, the extent of this codon bias appears to be unique to these proteins exhibiting

a delay between ribosome binding and protein synthesis (D). When considering 500 sets of 100 randomly selected genes, the codons enriched in the

set of 17 delayed proteins (Figure 6B, upper right quadrant) occupy the A-site of ribosomes with a higher frequency than other codons (E). Data are

mean G SEM.
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Bonferroni corrected a = 7.81 3 10�4 (accounting for 64 different codons). The cohort of 17 genes exhibit-

ing delayed translation showed a statistically significant codon bias in 14 different codons for 9 different

amino acids (Figure 6B). The other 10 genes that did not show delayed translation did not have codon

bias compared with the genome average (Figure S6B). To determine if this bias was unique to this group

of proteins, 17 random proteins were selected from the whole dataset and queried for codon bias, and this

process was repeated 500 times. Of the 500 sets of randomly selected proteins, 469 sets exhibited no sta-

tistically significant deviations from the genome average and no sets had a codon bias in more than three

amino acids (Figures 6C and 6D). It has been previously reported that longer proteins tend to exhibit a

codon bias (Duret and Mouchiroud, 1999), but the distribution of protein length in the set of proteins

with delayed translation is not statistically different from that of the entire dataset (Figure S6C).

A majority of the proteins in the delayed translation set share the GO annotation ‘‘response to growth fac-

tor.’’ To test whether this codon bias is common among proteins with this GO annotation, we changed the

background set from proteins in the MITNCAT dataset to all proteins that have the GO annotation

‘‘response to growth factor.’’ Even after making this change, the proteins exhibiting a delay in translation

have a codon bias in nine different amino acids (Figures S6D and S6G) compared with six in the most

extreme outlier set drawn from proteins annotated as ‘‘response to growth factor’’ (Figures S6F–S6G).

This analysis suggests codon bias is unique to these proteins exhibiting delayed translation and may pro-

vide a potential mechanism to explain the temporal discrepancy between ribosome binding and protein

synthesis.

If the delay in protein synthesis is indeed due to increased codon bias in these particular transcripts, then

ribosomes would be expected to wait longer for a charged tRNA at these codons, and therefore these co-

dons would occupy the A-site of the ribosome with a higher frequency than other codons. To investigate

this possibility, we analyzed the frequency of ribosome A-site occupancy for each codon across 500 subsets

of 100 randomly selected transcripts from our dataset. When codons were stratified based on whether they

were enriched in the 17 proteins with delayed synthesis (Figure 6B, upper right quadrant), we found that

these enriched codons occupied the A-site with a greater frequency than other codons across all genes

(Figure 6E). This suggests that these particular codons may take longer to get translated, and therefore

transcripts enriched for these codons may undergo slower translation, resulting in a delay between ribo-

some binding and protein synthesis.

DISCUSSION

Here, we combined BONCAT, pSILAC labeling, and isobaric mass tagging in a novel method,

MITNCAT, that enables highly multiplexed quantitative measurements of protein synthesis across mul-

tiple time points. Previous studies directly analyzing new protein synthesis have either relied on tar-

geted approaches with pSILAC (Liu et al., 2017) or BONCAT with a limited number of overlapping

time points across multiple MS analyses, resulting in poor temporal resolution (Eichelbaum and Krijgs-

veld, 2014).

One of the critical features of MITNCAT is the improved sensitivity associated with multiplex analysis of

pSILAC-labeled peptides from Aha tagged and enriched proteins. On-bead proteolytic digestion of

captured proteins and subsequent detection of released peptides eliminates the need to release and

detect the Aha-tagged peptide and provides multiple peptides per protein to improve quantification

accuracy. Critically, incorporation of pSILAC differentiates newly synthesized proteins from potential

non-specifically retained background proteins, improving the stringency of the analysis. Finally, labeling

peptides from each condition with isobaric tags enables the multiplexed analysis of many conditions while

simultaneously increasing the MS and MS/MS signal intensity by the summation of the isobarically tagged

peptides. Overall, combining these techniques into a coherent strategy improved the sensitivity of the

method, allowing for decreased labeling times and thus improved temporal resolution, as demonstrated

by the 15-min temporal resolution following EGF stimulation. Further improvements to the sensitivity, com-

bined with more stringent washing and increased sample loading, should allow for temporal resolution in

the minute time frame.

Application to the UPR demonstrated the reliability of this method to measure translationally controlled

changes in protein synthesis. Global down-regulation of translation was observed, a result that was not

captured via analysis of RNA abundance. Furthermore, one cluster of proteins was down-regulated to a
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greater extent than the global average. This cluster contained proteins associated with translational ma-

chinery and the glycolysis pathway. The mechanism behind the specific down-regulation of these proteins

is not known, but many of these proteins are classified as housekeeping genes that are expressed at high

levels across tissue types (Eisenberg and Levanon, 2013). Perhaps because these proteins were expressed

at such high levels, global inhibition of translation resulted in a greater degree of down-regulation of these

proteins compared with other proteins with lower basal translational rates. We also observed the up-regu-

lation of protein-folding chaperones and other proteins associated with protein degradation and survival

consistent with an acute stress response.

Application of MITNCAT to quantify protein synthesis following EGF stimulation enabled us to group pro-

teins based on temporal changes in synthesis. We quantified dynamic synthesis rates for over a thousand

proteins and observed IEGs and DEGs to be synthesized simultaneously, peaking between 60 and 90 min

post-treatment. LRGs began to be synthesized starting around 90 min and continued to increase in synthe-

sis through 150 min post-treatment. These increases in protein synthesis were matched by observed

changes in RNA abundance, suggesting control at the level of transcription. Interestingly, ribosomal pro-

teins and associated translation factors demonstrated increased synthesis as early as 15 min following EGF

stimulation, and many of these proteins maintained increased synthesis throughout the time course, yet

these changes were not matched by corresponding changes in RNA abundance. The disparity between

protein synthesis rates and transcript levels suggested regulation at the level of TE, which was further

confirmed by RFP. It is worth noting that the altered synthesis rates of this very large group of proteins

could not have been detected by mRNA-seq (transcript expression) alone. RFP would have suggested

this increase, but MITNCAT was easily able to detect these changes, including directly measuring

increased protein synthesis in the first 15 min following EGF stimulation. Therefore, MITNCAT could

also serve as an orthogonal method to validate RFP datasets.

Finally, the comparisonof temporal changes in RFP analysis andprotein synthesis revealed a class of proteins

that demonstrated a temporal delay between ribosome binding and protein synthesis. Analysis of the se-

quences coding for these proteins revealed a statistically significant bias in their codon usage frequencies

that was unique to this group. This correlation opens the possibility for regulation of protein expression

based on the availability of specific tRNA isoacceptors and presence of modified nucleosides in tRNAs.

Overall, MITNCAT is broadly applicable to a range of biological systems, provides synthesis rate informa-

tion for thousands of proteins in a high-throughput, discovery-based approach, and yet can also be

coupled to targeted MS-based approaches to quantify temporal dynamics of protein synthesis for a priori

selected proteins. The sensitivity of MITNCAT provides high temporal resolution, and application of this

approach led to the identification of many proteins whose synthesis was significantly altered as rapidly

as 15 min following stimulation. Future application of this approach to other biological systems will provide

novel insights into the regulation between transcription and translation.

Limitations of the Study

To efficiently label newly synthesized proteinswith SILAC andAha labels, cellsmust be subjected to a 30-min

starvation of arginine, lysine, andmethionine. This amino acid starvationmay trigger a stress response in the

cells. In the absence of proper controls, this may result in artificially high expression of stress proteins. In

this study, all data points are normalized to untreated controls to normalize out these effects. However,

when examining protein synthesis during the UPR using MITNCAT, increased stress response proteins in

the negative controls may normalize out a portion of the response that would have occurred in response

to the UPR. This limitation should be considered when using MITNCAT for studying stress responses.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY

All methods can be found in the accompanying Transparent Methods supplemental file. The accession

number for the ribosome footprint and transcript sequencing data reported in this paper is NCBI

BioProject: PRJNA478455. The accession number for the proteomics data reported in this paper is

ProteomeXchange Consortium (PRIDE): PXD009592.
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Figure S1. Analysis of Aha labeling time course shows reliable quantitation of newly-

synthesized proteins across replicates, related to Figure 1.  A replicate of the time course in 

HeLa cells demonstrates excellent quantitation independent of cell line (A).  Quantitation of the 

western blot from Figure 1D demonstrates a linear 1-to-1 relationship between labeling time and 

labeling intensity (B).  A selection of individual protein trajectories reveals a robust labeling time-

dependent increase in enrichment (C).  Proteins with increased reporter ion abundance have a 

stronger 1:1 correlation with Aha-labeling time, but even the bottom 10% of proteins by ion 

intensity have a correlation of over 75% (D).  The relationship between labeling time and protein 

abundance is not impacted by varying protein degradation kinetics characterized in [36] (E).   Data 

are medians +/- SEM. 

  



 

 

 

Figure S2. Temporal profiles of protein synthesis during the unfolded protein response 

following tunicamycin treatment, related to Figure 2.  Newly synthesized proteins were 

labeled with Aha and SILAC amino acids for 30 minutes every hour following tunicamycin 

treatment, with matched negative controls to account for changes due to starvation (A).  

Tunicamycin treatment results in a decrease in global protein synthesis (B), with one cluster of 

proteins showing a decrease below the median and one cluster showing an increase above the 

median (C).  Proteins associated with glycolysis are in cluster 1, demonstrating especially strong 

down-regulation (D), whereas other stress response proteins are up-regulated following 

tunicamycin treatment (E).  Measurement of RNA abundance by mRNA-Seq (F) does not capture 

the global decrease in protein synthesis as measured by BONCAT (G,H).  n=3 biological 

replicates for MS data, n=1 for mRNA-Seq.  Data are mean +/- SEM.  * = p < 0.05  



 

 

Figure S3. Changes in protein synthesis following EGF stimulation were clustered into 

four groups based on temporal behavior, related to Figure 3.  Newly synthesized proteins 

were labeled with Aha and SILAC amino acids in consecutive 30 minute windows following EGF 

treatment, with matched negative controls to account for changes due to starvation (A).  EGF 

treatment does not result in a statistically significant change in global translation (B).  Each protein 

cluster demonstrates a unique temporal profile in response to EGF treatment (C).  Clusters 1 and 

2 are transiently expressed proteins and contain IEGs (green) and DEGs (red) (D,E), whereas 

cluster 3 is up-regulated at a later time and consists of LRGs (blue) (F).  Cluster 4 contains 

primarily proteins associated with translational machinery, and is up-regulated across all time 

points sampled (G).  n=4 biological replicates.  Data are mean +/- SEM.  * = p < 0.05 

  



 

Figure S4. Decreasing the duration of Aha labeling increased temporal resolution and 

yielded new insights into protein synthesis dynamics, related to Figure 4.  Temporal 

changes in protein synthesis were sampled every 15 minutes over the first 75 minutes, and 

clustered by k-means clustering.  n=3 biological replicates.   

  



 

 



Figure S5. Temporal response to EGF stimulation compared between transcript 

expression, ribosome binding, and protein synthesis, related to Figure 5.  Statistical 

significance of the network-wide temporal response to EGF stimulation was assessed at the 

transcript expression level by mRNA-Seq (n=2), while translation rates were estimated by RFP 

(n=2), and protein synthesis rates measured by MITNCAT (n=3) (A). Comparing these datasets 

revealed a set of proteins whose altered synthesis correlated with changes in RNA abundance 

(blue bar) (B), suggesting regulation at transcription.  Another group demonstrated changes in 

synthesis correlating with changes in translational efficiency (green bar) (C), suggesting 

regulation at translation.  Measuring protein synthesis of Aha-labeled EGR1 by 

immunoprecipitation followed by click-labeling yielded relative protein synthesis changes in 

agreement with MITNCAT data.  Blocking protein degradation by co-treating with proteasome 

inhibitor MG132 did not alter the synthesis profile of EGR1 (D).   

  



  



Figure S6. Proteins exhibiting a delay between ribosome binding and protein synthesis 

have a significant bias in codon usage, related to Figure 6.  A comparison of RFP analysis 

(n=2) and protein synthesis (n=3) yielded a group of 17 proteins exhibiting a delay between 

ribosome binding and protein synthesis (A).  The other 10 proteins that in this dataset that did not 

exhibit a delay also did not demonstrate a codon bias (B).  Analysis of protein length reveals that 

the proteins exhibiting delayed translation (red lines) do not differ in length from the rest of the 

proteins in the dataset (C).  Changing the background from all proteins in our dataset to all 

proteins with the GO annotation “response to growth factor” (RTGF) did not affect the number of 

amino acids with codon bias in the delayed protein set (D) compared to randomly selected groups 

of 17 proteins from that background (E-G).  Data are mean +/- SEM. 

  



Transparent Methods 

 
Cell Culture 

For Aha time course and UPR experiments, MCF10a cells (courtesy of Joan Brugge, 

Harvard Medical School) were cultured in DMEM:F12 media supplemented with 5% horse serum, 

20 ng/mL EGF, 500 µg/mL hydrocortisone, 100 ng/mL cholera toxin, 10 µg/mL insulin, 1% 

penicillin/streptomycin, and 2 mM glutamine.  Cells were passaged every third day at a 1:4 ratio, 

and all experiments were performed on the third day following passaging.  For EGF stimulation 

experiments, HeLa cells (from ATCC) were cultured in DMEM supplemented with 10% fetal 

bovine serum (FBS), 1% penicillin/streptomycin, and 2 mM glutamine.  Cells were passaged every 

3 days and split between 1:4 and 1:6 ratio, and serum starvation was initiated on the second day 

following passaging. 

 

Western Blot Quantitation 

Protein concentration of lysates were measured via bicinchroninic acid (BCA) assays and 

normalized to 1 mg/mL.  For measurements of Aha incorporation, DBCO-biotin was added to the 

lysates for 1 hour at a concentration of 25 µM.  The reaction was quenched by adding sodium 

azide to roughly 100 mM.  LDS buffer was added to 1x, and beta-mercaptoethanol was added to 

1%.  Samples were loaded onto a NuPAGE Novex 4-12% Bis-Tris Midi Protein Gels (Invitrogen) 

and run at 160V for 1 hour.  Samples were transferred to a nitrocellulose membrane at 100V for 

1 hour.  Membranes were blocked with LICOR PBS blocking buffer for 30 minutes at room 

temperature.  Biotinylated proteins were probed with IRDye 680RD-conjugated streptavidin 

(LICOR #32230).  The following primary antibodies were used:  GAPDH 1:10,000 (Cell Signaling 

#5174).  The following secondary antibodies were used:  IRDye 800CW-conjugated goat-anti-

rabbit 1:10,000 (LICOR # 926-32211) and IRDye 680LT-conjugated goat-anti-mouse 1:10,000 

(LICOR #926-68031).  Western blots were imaged on a LICOR Odyssey instrument. 



Quantitation of the Western blot was performed using ImageJ software 

(https://imagej.nih.gov/ij).  The average signal intensity of each lane was measured starting at a 

molecular weight below endogenously biotinylated proteins [1], normalized to the methionine 

control lane, and log2 transformed. 

 

Metabolic Labeling and Cell Lysis 

For all EGF experiments, cells were changed to serum-free media 24 hours before 

stimulation.  In all experiments, growth media was removed and replaced with 

lysine/arginine/methionine (KRM)-free DMEM:F12 media 30 minutes prior to time course 

initiation.  For EGF experiments, EGF was added to the media to achieve a final concentration of 

20 ng/mL or an equivalent volume of PBS was added as a control.  For UPR experiments, 

tunicamycin was added to the media to achieve a final concentration of 10 µg/mL or an equal 

volume of DMSO was added as a control.  At the appropriate time points following treatment, Aha 

was added to the media to achieve a final concentration of 3 mM, and 15N4
13C6 arginine (R10) and 

15N2
13C6 lysine (K8) were added to 0.5 mM.  After 30 minutes of Aha/K8/R10 labeling, the media 

was aspirated, and the cells were washed in ice cold PBS supplemented with 300 µg/mL 

cycloheximide (CHX).  Cells were lysed in 1% SDS in PBS supplemented with 50 mM N-

ethylmaleimide (NEM) and 300 µg/mL CHX.  1.5 mL of -20°C acetone was added to each tube 

immediately following lysis to precipitate proteins.  Proteins were precipitated at -20°C for at least 

an hour and up to overnight. 

 

Sample Processing and Fractionation 

Following precipitation, the samples were centrifuged at maximum speed (~21,000 x g) 

for 15 minutes at room temperature to pellet the precipitated proteins.  The supernatant was 

aspirated off the pellet, and the pellet was allowed to air dry for 15 minutes to evaporate residual 

acetone.  250 µL of 1% SDS in PBS supplemented with 50 mM NEM was added to the pellet, 

https://imagej.nih.gov/ij


along with ~1/10th of a vial of 0.7 mm garnet homogenizing beads to aid in pellet disruption.  

Samples were alternately vortexed and centrifuged at maximum speed until the pellet was 

completely solubilized. 

Following resuspension, protein concentration was measured via BCA assay, and total 

protein was normalized to 100-300 µg in 500 µL of 1% SDS in PBS.  Each sample was diluted 2-

fold in 8 M urea + 850 mM NaCl.  12.5 µL of the lysate was aliquoted for biotin labeling of Aha-

labeled proteins and western blot analysis.  The remaining volume for each sample was applied 

to 30 µL of DBCO-agarose beads that had pre-equilibrated by washing 3x in 1 mL 0.8% SDS in 

PBS.  Click enrichment took place overnight at room temperature on a rotor.   

After overnight click incubation, the bead/supernatant mixture was transferred to an empty 

spin column and allowed to drain into Eppendorf tubes to collect the supernatant. 12.5 µL of 

supernatant was aliquoted for biotin labeling of Aha-labeled proteins and western blot analysis. 

The tubes were rinsed out with 1 mL MilliQ water and added to the spin column, allowing to drain 

into a waste container.  To reduce disulfide bridges, 1 mL 10 mM DTT in 0.8% SDS in PBS was 

added to the columns and the columns were capped and placed on a rotor at 50°C.  Following 

reduction, the column was drained, and 1 mL 50 mM NEM in 0.8% SDS in PBS was added to the 

column to alkylate the newly reduced cysteines.  The columns were placed on a rotor at room 

temperature for 30 minutes.  The column was once again drained, and the beads were washed 

8x with 1 mL 0.8% SDS in PBS, 8x with 1 mL 8 M urea, and 8x with 1 mL 20% acetonitrile (MeCN).  

After the second wash in each step, the column was capped and allowed to stand for 10 minutes. 

Following the final wash step, the beads were completely dried by spinning the excess 

wash buffer into an empty Eppendorf tube.  The beads were resuspended in 300 µL of digest 

buffer (200 mM triethyl ammonium bicarbonate (TEAB) + 10% MeCN) and transferred to a fresh 

tube.  The column was twice rinsed with 300 µL digest buffer, with the rinses being combined with 

the sample.  The beads were pelleted by centrifuging at 5000 x g for 5 minutes at room 



temperature.  The supernatant was carefully removed and replaced with 100 µL 1 ng/µL trypsin 

in digest buffer.  The on-bead digest proceeded overnight at room temperature on a rotor. 

Following the overnight digest, an aliquot of TMT dissolved in 30 µL anhydrous MeCN was 

added directly to the tube (beads included).  TMT labeling proceeded for 1 hour at room 

temperature, after which the reaction was quenched with the addition of 15 µL 1 M Tris pH 7.4.  

The volumes were reduced to about 50 µL in a vacuum centrifuge.  All samples (including beads) 

were combined into a single Eppendorf tube.  The individual tubes were rinsed 3x with 40 µL 50% 

MeCN + 0.1% AcOH, with the rinses being combined with the pooled sample.  The sample was 

completely dried in a vacuum centrifuge. 

Following drying, the sample (beads included) was resuspended in 500 µL 10 mM TEAB 

pH 8.  The fritted end of a 200 µm i.d. capillary was placed in the bead pack, and the sample was 

loaded onto a ZORBAX Extend 300 C18 column (Agilent #770995-902) at 750 psi.  The C18 

column was placed in line with an HPLC, and the following gradient was run at a flow rate of 

1mL/min. (A = 10mM TEAB pH 8, B = 99% MeCN, 10mM TEAB): 0-5 min, 0-5% B; 5-50 min, 5-

40% B; 50-59 min, 40-70% B; 59-64 min, 70% B; 64-65 min, 70 to 1% B.  Fractions were collected 

every minute between 5 min and 65 min.  Every 12th fraction was concatenated together to give 

12 total samples (5 fractions per sample).  Samples were placed into a vacuum centrifuge 

overnight or until the sample reached dryness. 

 

Mass Spectrometry Analysis 

Dried samples were resuspended in 50 µL 0.1% formic acid (FA).  The samples were 

placed in a ThermoFisher Easy nLC 1000 autosampler and analyzed on a ThermoFisher 

QExactive Plus mass spectrometer using 25 µL of the resuspended sample.  The sample was 

analyzed using the following gradient over a C18 column (A = 0.1% FA, B = 80% MeCN in 0.1% 

FA): 0-4 min, 0-14% B; 4-50 min, 13-42% B; 50-57 min, 42-60% B; 57-60 min, 60-100% B; 60-68 

min, 100% B; 68-69 min, 100-0% B; 69-75 min, 0% B.  The instrument was operated in data 



dependent acquisition mode, with the top 15 most abundant precursors with charge of +2 or 

greater selected for fragmentation and dynamic exclusion set to 15 s.  Precursors were isolated 

with a window of 0.4 m/z and fragmented via HCD at 33 NCE.  Precursor scan settings were set 

to AGC = 3e6, maximum IT = 50 ms, and resolution of 70,000.  MS2 scan settings were set to 

AGC = 1e5, maximum IT = 300 ms, and resolution of 35,000.  The total acquisition time was 75 

minutes per sample. 

MS data files were searched on MASCOT version 2.4 with fixed modifications for NEM 

alkylation on cysteines (+125.047 Da), addition of TMT 6-plex to N-termini and lysine residues 

(+229.163 Da).  Variable modifications were SILAC R10 on arginine residues (+10.008 Da), 

SILAC K8 on lysine residues (+8.014 Da), addition of TMT 6-plex to SILAC K8 lysine residues 

(+237.177 Da), Aha substitution for methionine residues (-4.986 Da), diaminobutyrate (reduced 

Aha) substitution for methionine residues (-30.976 Da), oxidation of methionine residues (+15.995 

Da) and phosphorylation on tyrosine, threonine, and serine residues (+79.966 Da).  Precursor 

tolerance was 10 ppm, fragment tolerance was 15 mmu, two missed cleavages were allowed, 

and the enzyme was set to trypsin.  Peptides were considered to be positively identified if they 

had a score of at least 25 and newly translated if they contained a SILAC or Aha residue.  Peptides 

with TMT reporter ion intensities less than 1000 in any one channel were discarded.  To control 

for technical variation between channels, in the absence of a statistically significant change in 

global protein synthesis rate across replicates, values were normalized to the median of each 

channel within each replicate.  Therefore, the EGF dataset was median normalized, but the 

tunicamycin dataset was not.  The mass spectrometry proteomics data have been deposited to 

the ProteomeXchange Consortium via the PRIDE [2] partner repository with the dataset identifier 

PXD009592. 

 

RNA Sequencing and Ribosome Footprint Analysis 

Cells were subjected to identical KRM-free media pretreatment, Aha/K/R labeling, and 



PBS+CHX washing conditions as described previously to account for any effects that may be 

caused by these treatments.  Cells were lysed and processed using the Illumina TruSeq Ribo 

Profile kit (lllumina #RPHMR12126) according to the manufacturer’s protocol.  RFP samples were 

sequenced on an Illumina NextSeq instrument with 50 nt single-end reads and 6 nt barcodes with 

6 samples per lane.   Adapter sequences were removed from the 3’ end using Cutadapt.  Reads 

were then mapped to hg38 rRNA sequences using STAR.  Reads that aligned to rRNA sequences 

were removed.  The remaining reads were then mapped to an hg38 annotation (Gencode release 

26).  Reads that uniquely map to this annotation were then quantified using Salmon and a FASTA 

file containing all hg38 cDNA sequences to generate transcripts per million (TPM) values and 

counts.  A library for total RNA was prepared using the Illumina NeoPrep System and sequenced 

on an Illumina NextSeq instrument with 40 nt paired-end reads and 6 nt barcodes with 12 samples 

per lane. For analyses requiring alignment, these reads were mapped to the same hg38 (Gencode 

release 26) annotation.  Quantification was done using Salmon and a FASTA file containing all 

hg38 cDNA sequences to generate TPM and count values.  Only ribosome footprints that mapped 

to coding regions were considered for quantification and subsequent analyses.  Ribosome 

profiling TE changes and associated p-values were calculated using the Salmon-derived count 

data and the Xtail package [3].  All ribosome footprint and transcript sequencing data have been 

deposited to NCBI’s BioProject database under accession number PRJNA478455 

(https://www.ncbi.nlm.nih.gov/bioproject/478455). 

 

Self-Organizing Map (SOM) Clustering Analysis 

A self-organizing map (SOM) was used to cluster proteins from UPR experiments that 

exhibited similar protein synthesis dynamics following tunicamycin treatment.  Clustering analysis 

was performed using the Self Organizing Map Toolbox MATLAB package 

(http://www.cis.hut.fi/projects/somtoolbox).  A 5-by-5 neural network was initiated with hexagonal 

lattice structure.  The input was the log-2 fold-change in protein synthesis following tunicamycin 



treatment relative to DMSO controls for each time point.  The network was randomly initiated and 

used Euclidean distance as the metric for classifying proteins to specific neurons.  The SOM 

algorithm was repeated 1,000 times, and a co-clustering map was generated indicating the 

frequency with which any two proteins clustered in the same neuron.  This co-clustering map was 

then subjected to hierarchical clustering using Euclidean distance as the metric for clustering 

proteins. 

 

K-Means Clustering Analysis 

K-means clustering was used to group proteins from EGF experiments into clusters with 

distinct temporal responses.  Data was filtered by removing proteins that appeared in less than 

two out of four replicates, as well as removing proteins that did not show a statistically significant 

change (according to Student’s t-test) in synthesis between EGF and PBS controls in at least one 

time point.  After plotting the within-cluster distance against number of clusters, six clusters were 

selected for analysis, as increasing the number of clusters above six only marginally decreased 

the within-cluster distance.  The input was log-2 fold-change in protein synthesis for all time points 

normalized to the 30 minute PBS control.  Cluster centroids were initialized randomly, and 

Pearson correlation was used as the distance metric.  K-means clustering was repeated 10,000 

times, and a co-clustering map was generated indicating the frequency with which any two 

proteins shared the same cluster.  This co-clustering map was then subjected to hierarchical 

clustering using Euclidean distance as the metric for clustering proteins. 

 

Analysis of Temporal Delay Between RFP and MITNCAT Datasets 

 To prevent the analysis of random fluctuations in proteins with unchanging RFP values or 

protein synthesis rates, only proteins with at least one statistically significant time point (p<0.05) 

in both the RFP and MITNCAT datasets were considered, and thus only proteins present in at 

least two of the four MITNCAT replicates were included in the analysis of temporal delay.  These 



restrictions limited the protein data set to 90 and the RFP data set to 400; the overlap between 

these data sets was 27.  Log2 PBS normalized values were centered around the mean and 

normalized to the standard deviation across time points.  Because RFP analysis considers only 

30, 60, and 90 minute time points whereas MITNCAT examines 30, 60, 90, 120, and 150 minute 

time points, MITNCAT values were standardized using the mean and standard deviation of the 

first three time points.  Proteins were manually classified as “delayed” based on the relationship 

between the RFP and protein synthesis rate curves. 

 

Codon Analytics 

 Human full-length open reading frames (ORFs) were obtained from the Mammalian Gene 

Collection (https://genecollections.nci.nih.gov/MGC/) [4].  Gene specific codon usage data was 

obtained for 32,751 human coding sequences using a described algorithm [5], which was 

previously used on yeast, rat and mouse genes and transcripts [6,7].  Briefly, human ORFS were 

computationally validated to ensure they contained start and stop codons and designated as gene 

sequences.  Next all gene sequences were individually read from start to stop codon. The number 

of times each of the 64 possible in frame codons was used in each gene was recorded and used 

to determine gene specific codon frequencies, with the frequencies for all codons for a specific 

amino acid in a gene adding up to 1.00.  Genome values for each codon frequency and standard 

deviation values were then obtained using data from the 32,751 analyzed genes.  Codon usage 

frequencies from the “delayed” translation set were centered around the genome average and 

then averaged to calculate an average deviation for the set.  The same calculation was performed 

for randomly generated sets when determining statistical significance (see Statistical Methods). 

To determine A-site enrichments for each codon, the codon in the A-site for each ribosome 

protected fragment (RPF) read was determined.  After considering all read lengths from 24 to 40 

nt, we found that the majority of our RPF reads were 30-35 nt long.  Further, only reads between 

30 and 35 nt long showed a strong enrichment for the triplet periodicity common in ribosome 

https://genecollections.nci.nih.gov/MGC/


profiling experiments.  For these reasons, only reads of these lengths were considered for all RPF 

analyses.  For these reads, the P site codon is at nucleotides 14, 15 and 16.  The A-site is 

therefore at nucleotides 17, 18 and 19.  We only considered reads where the A-site codon was in 

the reading frame of the coding sequence (approximately 60-65% of all reads).  For each codon, 

the frequency with which it was in the A-site was recorded.  The A-site frequency was then 

compared to the null expected frequency.  This expected frequency was the frequency of each 

codon in the longest open reading frame of each gene weighted by the abundance of the gene in 

the ribosome profiling dataset.  Enrichments were calculated as the observed frequency of a 

codon in A-sites compared to this expected background frequency.  These enrichments were then 

calculated for every codon on 500 random subsets of 100 genes each.  Based on their abundance 

in the 17 genes that displayed delayed increases in protein abundance (Figure 6B, upper right 

quadrant), codons were separated into “enriched” and “nonenriched” classes. The median A-site 

enrichment across codons in each class was calculated for each random subset. 

 

Statistical Methods 

For MITNCAT experiments, Student’s t-test was used to calculate p-values comparing 

treated and control samples at all time points in GraphPad Prism.  For RNA-Seq and RFP 

experiments, p-values were generated via the Wald Test using DESeq2.  Translational Efficiency 

(TE) p-values were calculated using the Xtail algorithm [3].  Statistical significance was assigned 

for p<0.05.  For codon bias analysis, empirical p-values were calculated using the random 

permutation test.  Briefly, 1e6 random sets of genes with the same size as the query set were 

generated, and the codon frequency usage was calculated for that set.  The p-value was 

calculated as the fraction of random sets with a more extreme codon frequency than the query 

set.  Significance was assigned if p was less than the Bonferroni corrected α=7.81e-4 

(corresponding to an expected FWER of 0.05 across the 64 unique codons).  GO term enrichment 

was performed using the PANTHER classification system version 12.0 [8].  Cluster members were 



queried against the background of all proteins included in the clustering analysis.  P-values were 

generated from PANTHER. 
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