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Abstract: Discrete distributions with bathtub shaped hazard rates have recently become of inter-
est in reliability modelling and analysis. In the present work, we address the problem of obtaining
distributions having such hazard rates when the lifetime is discrete. The methods considered here
include discretising continuous bathtub models, construction using the score function, construction
from decreasing hazard rate distributions and some other methods currently available in the contin-
uous case. We discuss properties and applications of the discretised quadratic hazard model which
has a bathtub shaped hazard rate.

1. Introduction
The origin of distributions with bathtub shaped hazard rates, or bathtub distributions in short, can be
traced back to the attempts to model data on bird populations (Deevey, 1947) and to bus motor failure
data in Davis (1952), where monotone hazard rate distributions failed to provide reasonable fits.
Since then there has been a continuous flow of literature on various types of bathtub distributions.
Such distributions are characterised by hazard rates that decrease initially, then remain constant
and finally increase rapidly. In most of the work on this topic, lifetime is treated as a continuous
random variable. For a review of the literature, discussion and references on bathtub models we
refer to Rajarshi and Rajarshi (1988), Lai and Xie (2006) and Nair, Sankaran and Balakrishnan
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(2013). Compared to the voluminous literature in the continuous case, only a limited number of
investigations have been carried out when the lifetime X is treated as a discrete random variable. In
the sequel, the probability mass function and the reliability function of X are denoted respectively
by f (x) = P[X = x] and S(x) = P[X ≥ x]. The reliability function S(x) is related to the distribution
function F(x) = P[X ≤ x] as

S(x) = 1−F(x−1).

Then the hazard rate of X is defined as,

h(x) = P[X = x|X ≥ x] =
f (x)
S(x)

, x = 0,1,2...

We say that h(x) is bathtub (BT) shaped, (or upside down bathtub (UBT) shaped) if there exist
positive integers 1 ≤ xn1 ≤ xn2 < ∞ such that x1 > x2 > ... > xn1−1 > xn1 = ... = xn2 < xn2+1 <

...(x1 < x2 < ... < xn1 = ... = xn2 > xn2+1 > ...), and n1 and n2 are called the change points. When
there is only one change point, h(x) is decreasing (increasing) on x = 0,1,2...x0−1 and increasing
(decreasing) on x = x0,x0 +1, ... The point x0 will be referred to as the change point of h(x). When
the functional form of h(x) is known, S(x) can be determined from,

S(x) =


x−1
∏

t=0
(1−h(x)) : x = 1,2, ...

1 : x = 0
(1)

Lai and Wang (1995) proposed a discrete power distribution with

f (x) =
xα

b
∑

x=0
xα

, x = 0,1,2, ...b; α ∈ R

for lifetime random variables and it was proved that h(x) is BT for α < 0. The rest of the BT models
are of recent origin. The discretised version of the inverse Weibull law was considered in Jazi, Lai
and Alamatsaz (2010),

S(x) = 1−q(x−1)β

, x = 1,2,3...; 0 < q < 1; β > 0

which is UBT. A special case when β = 2 is discussed in Hussain and Ahmad (2014) called inverse
Rayleigh, whose hazard rate can also be UBT with change point at x = 1 or 2 for 0 < q < 0.75 and
change point x0 = 2 as q→ 0. A competing risks model with hazard rate of the form,

h(x) = p+(1− p)r(x),

where r(x) is the hazard rate of an exponential Poisson law, was shown to have a BT shape in Jiang
(2010). The discretised version of the modified Weibull distribution with reliability function,

S1(x) = qxβ

cx, x = 0,1,2..., 0 < q < 1, β > 0, c≥ 1

discussed in Noughabi, Roknabadi and Borzadaran (2011) possess a BT hazard rate. Another
Weibull related distribution is the discrete additive Weibull with

S2(x) = qxα

1 qxβ

2 , x = 0,1,2...; α,β > 0,
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where q1 = e−λ1 , q2 = e−λ2 , λ1,λ2 > 0 presented by Bebbington, Lai and Zitikis (2012). They have
studied the shape of the hazard rate and found that if α < 1 < β , h(x) is BT with the minimum
achieved at one of the three points [tα,β ], 1+[tα,β ] and 2+[tα,β ], where [tα,β ] is the integer part of

tα,β =

(
α(1−α)λ1

β (β −1)λ2

) 1
β−α

.

A similar conclusion holds for β < 1 < α. Later, Noughabi, Roknabadi and Borzadaran (2013)
proposed the discrete modified Weibull extension,

S3(x) = qα

(
exp
{
( x

α )
β
}
−1
)
, x = 0,1,2..., 0 < q < 1, β ,α > 0,

as a BT distribution. Yet another Weibull extension is the reduced modified Weibull family discussed
in Almalki and Nadarajah (2014) with reliability function,

S4(x) = q
√

x(1+bcx), x = 0,1,2..., 0 < q < 1, b > 0, c≥ 1.

The hazard rate of this distribution is increasing if bc(c−
√

2) <
√

2− 1 and has BT shape other-
wise. The limited number of prevailing BT distributions reviewed above appears to be insufficient
to model a wide variety of data sets. If the stochastic mechanism that generates the data is known,
we need a model that is appropriate for it. Further, the observations may sometimes suggest a BT
shape through the empirical hazard rate with a known shape that would require a distribution sat-
isfying this particular shape. All these point to the need for developing some methods of arriving
at BT distributions, which do not appear to have been considered so far. This motivates the present
investigation. There is a vast amount of literature on the methods of such constructions in the con-
tinuous case which can be adopted for use for discrete lifetimes. While this is the case in some of
the methods we propose, there are some methods for which there is no counterpart in the continuous
case. In the following sections, we discuss the methods for generating bathtub models for discrete
data. In Section 2, we introduce a method of constructing bathtub models using the score function.
This is followed in Section 3, where we consider discretising continuous bathtub distributions. By
appropriately modifying decreasing hazard rates, one can obtain BT models. This is discussed in
Section 4. Some methods already available in the continuous case are used in the discrete case as
well in Section 5. The discretised quadratic hazard model is studied in detail in Section 6. Section
7 provides conclusions of the study. The data sets are given in Appendix A and the program code is
given in Appendix B.

2. Properties of the Score Function
The score function η(x) =

−g
′
(x)

g(x)
, where g(x) is the probability density function of the continuous

lifetime, has been discussed in Glaser (1980). Its discrete version is,

η(x) =
f (x)− f (x+1)

f (x)
, (2)

which will be used in this section to offer some methods by which BT and UBT distributions can be
constructed. Now we provide a simple result using η(x) to determine the shape of h(x).
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Theorem 1 The random variable X has BT(UBT) hazard rate if and only if η(x) = h(x+ 1) pos-
sesses a unique zero x0 > 0 such that h(x−1)≥ (≤)h(x) in [0,x0) and h(x−1)≤ (≥)h(x) in [x0,b).

Proof.

h(x+1)−h(x) =
f (x+1)
S(x+1)

− f (x)
S(x)

=
f (x+1)S(x)− f (x)S(x+1)

S(x)S(x+1)

=
f (x+1)[S(x+1)+ f (x)]− f (x)S(x+1)

S(x)S(x+1)

=
[ f (x+1)− f (x)]S(x+1)+ f (x) f (x+1)

S(x)S(x+1)

=−η(x)h(x)+h(x)h(x+1), from (2).

or

h(x+1)−h(x)
h(x)

= h(x+1)−η(x). (3)

�

The identity (3) shows that
∆h(x)
h(x)

and h(x+1)−η(x) have the same zero, where ∆h(x) = h(x+

1)−h(x). Apart from identifying BT and UBT distributions, the theorem may help in constructing
such distributions. Considering equations of the form,

h(x+1)−η(x) = a(x),

where a(x) has a zero x0 > 0 may lead to a BT(UBT) law. The method does not require h(x) or
η(x) but only some functional form a(x) that produces a hazard rate. We give some examples, using
simple forms for a(x).

Example 2.1 Let

h(x+1)−η(x) =
αx+β

h(x)
. (4)

With the aid of (3), this leads to the recurrence relation,

h(x+1) = αx+β +h(x)

and to the solution,

h(x) =
αx(x−1)

2
+β (x−1)+h(0). (5)

We can write (5) in the form,
h(x) = a1x2 +b1x+ c1,

which will be a hazard rate if a1 > 0, c1 > 0 and −2
√

a1(c1−1)< b1 < 0. Then h(x) has BT shape
with change point [x0], where

x0 =−
1
2

(
1+

b1

a1

)
.
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Table 1: χ2-test for Example 2.1.

Class 0−7 7−30 30−65 65−71 > 71
Obs. frequencies 11 8 11 4 16
Exp. frequencies 13 8 9 5 15

The reliability function of the distribution is obtained from (1) as

S(x) =


x−1
∏

t=0
(1−a1t2−b1t− c1) : x = 1,2, ...

1 : x = 0
(6)

and probability mass function,

f (x) = (a1x2 +b1x+ c1)
x−1

∏
t=0

(1−a1t2−b1t− c1).

Conversely from (2),

η(x) = 1− a1(x+1)2 +b1(x+1)+ c1

a1x2 +b1x+ c1
(1−a1x2−b1x− c1).

After some algebra, it can be verified that for the distribution in (6)

h(x+1)−η(x) =
a1(2x+1)+b1

a1x2 +b1x+ c
=

α +βx
h(x)

,

(i.e., the form initially assumed), meaning that the relationship (4) is a characteristic property of (6).
We call (6) the quadratic hazard rate distribution. In fact (6) represents a family consisting of the
geometric (a1 = b1 = 0) distribution and the linear hazard rate (a1 = 0, b1 > 0, c1 > 0) distribution
with bounded support on (0,1, ...,−c1

b
), where −c1

b
is a positive integer.

To examine whether the model is useful in practice, we have applied it to the data in Aarset
(1987) pertaining to 50 lifetimes of devices by taking the first two observations 0.1 and 0.2 as zeros
(the data set is given in Appendix A). The method of least squares is employed to estimate the
parameters by minimising

L(a1,b1,c1) = ∑
x

(
x

∑
i=0

a1i2 +b1i+ c1−
x

∑
i=0

Ŝ(i)− Ŝ(i+1)

Ŝ(i)

)2

,

where Ŝ(x) is the empirical survival function. The estimates obtained were,

â1 = 379×10−7, b̂1 =−259×10−5, ĉ1 = 443×10−4,

and the error in estimation is Lmin = 2.4989. The model adequacy is checked using χ2 goodness of
fit. The observed and expected frequencies are given in Table 1.
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Figure 1: Survival, hazard and cumulative hazard functions for the data in Example 2.1.

The value of the χ2 statistic is 1.01 with one degree of freedom and the corresponding p-value is
0.60. Thus the distribution is a good fit and provides a bathtub-shaped hazard function with change
point x0 = 33. The plots of the reliability function, hazard function and cumulative hazard function
are exhibited in Figures 1a–1c. From the graphs it is clear that the model fits the data well.

Example 2.2 Consider the identity,

h(x+1)−η(x) =

α− θβ

(1+βx)(1+β (x+1))
h(x)

 .

Now,

h(x+1)−h(x) = α +
θ

1+β (x+1)
− θ

1+βx
,

leaving the solution,

h(x) = αx+
θ

1+βx
, θ = h(0). (7)
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Figure 2: Survival and hazard functions for the model in Example 2.2.

In order for (7) to be a hazard rate, one should have α, β > 0, 0 < θ < 1. The reliability function is

S(x) =


x−1
∏

t=0

(
1−αt− θ

1+β t

)
: x = 1,2,3...

1 : x = 0.
(8)

Note that h(x) is BT when 0 < α <
θβ

1+β
. The form of the hazard rate is similar to the hazard

rate in the continuous case obtained by Hjorth (1980). However, the reliability function (8) is not the
discretised version of the Hjorth model. The expression (7) is the sum of the hazard rates of the linear
hazard rate distribution and the Waring distribution. It is known that by taking the sum of two hazard
rates, one of which is decreasing and the other increasing, we may obtain a BT hazard rate. This is
also suggested as a method for deriving a new BT model. The above example can also be seen in this
context. There are several continuous distributions based on hazard rates having such a structure;
see, for example, Murthy, Xie and Jiang (2004), Jaisingh, Kolarik and Dey (1987), Canfield and
Borgman (1975), Xie and Lai (1996), Jiang and Murthy (1997), Usgaonkar and Mariappan (2009)
and Wang (2000). The method discussed in this section can be considered in these cases as well by
appropriately choosing a(x). From (7) it is easy to see that the change point x0 is the solution of the
quadratic equation

βx2 +αx+θ ,

provided that 4βθ < α2 < 4βθ −β 2−β and x0 > 0. The parameters of the model are estimated by
minimising the discrepancy

∑

(
αx+

θ

1+βx
− Ŝ(x)− Ŝ(x+1)

Ŝ(x)

)2

between the model and the empirical hazard rates. Since θ = h(0), we take it as the observed value
of h(0). Thus the only parameters to be estimated are α and β . The hazard rate function and the
reliability function can be seen in Figures 2a–2b.



88 NAIR, SANKARAN & RAMESH

3. Discretising Continuous Bathtub Distribution

Let Y be a continuous lifetime random variable with reliability function F̄(x) = P[Y ≥ x]. If time
is recorded at unit intervals, the discrete random variable X = [Y ], the integer part of Y, has the
reliability function S(x) = F̄(x), x = 0,1,2... and probability mass function,

f (x) = S(x)−S(x+1).

When Y has a bathtub hazard rate, it may turn out that X also has a BT hazard rate. The reliability
functions S1(x) through S4(x) discussed earlier were obtained in this way. We shall further illustrate
this method with two examples, one of which renders BT and the other UBT.

Example 3.1 One of the earliest bathtub models introduced by Bain (1974) and Bain and Englehardt
(1991) was the quadratic hazard rate model with

F̄(x) = exp
[
−ax− bx2

2
− cx3

3

]
, x > 0, c > 0, b≥−(2ac)

1
2 .

The reliability function and probability mass function of the corresponding discrete model is given
by

S(x) = q
(

ax+ bx2
2 + cx3

3

)
, q = e−1 (9)

and

f (x) = q
(

ax+ bx2
2 + cx3

3

) [
1−qa+ b

2 (2x+1)+ c
3 (3x2+3x+1)

]
.

Subsequently, we have that
h(x) = 1−qa+ b

2 (2x+1)+ c
3 (3x2+3x+1).

The model introduced in (9) will be called a discretised quadratic hazard model and it will be denoted
by DQHM(a,b,c). We study the model in detail in Section 6, where we show that DQHM possesses
a BT shaped hazard rate for specified values of the parameters.

Example 3.2 The log logistic distribution (Gupta, Akman and Lvin, 1999) of a continuous random
variable Y is specified by the reliability function

F̄(x) = P[Y > x] =
1

1+ cxα
, x≥ 0, α > 0.

It is known that this distribution has a decreasing (UBT shaped) hazard function, when α ≤ (>)1.
In the UBT case, the change point is given by,

x0 =

(
α−1

c

) 1
α

.

The application of the distribution in analysing survival data has been pointed out by several authors.
We refer to Gupta et al. (1999) and their references for details. The integer part X of Y has reliability
function,

S(x) =
1

1+ cxα
, x = 0,1,2, ..., α > 0,

probability mass function

f (x) =
1

1+ cxα
− 1

1+ c(x+1)α
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Table 2: χ2-test for leukaemia data.

Class 0−100 100−150 151−200 201−250 251−300 301−400 > 400
Obs. frequencies 6 7 7 7 5 7 12
Exp. frequencies 10 5 6 5 8 6 11

and hazard function

h(x) = 1− 1+ cxα

1+ c(x+1)α
.

To ascertain the usefulness of the model, we apply it to the data on the times from remission to
relapse of 84 patients with acute non-lymphoblastic leukaemia reported in Glucksberg et al. (1981).
For the present analysis, the censored observations are omitted and the rest of the 51 observations
are only utilised (the data set is given in Appendix A). We minimise the squared distance between
S(x) and Ŝ(x) to estimate the parameters of the model. This gives the estimates

α̂ = 2.33009 and ĉ = 2.78614×10−6

----------------------------------------------------------
---------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Figure 3: Survival, hazard and cumulative hazard functions for the leukaemia data in Example 3.2.
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and the error between the fitted values and observed survival probabilities is 0.573 for the above α̂

and ĉ. The model adequacy is checked through the χ2-test. The observed and expected frequen-
cies are shown in Table 2 and the graphs of the reliability, hazard rate and cumulative hazard rate
functions are given as Figures 3a–3c.

The χ2 value of 5.97 at 4 degrees of freedom yields a p-value of 0.20.

4. Modifying Decreasing Hazard Rate Functions

A third method that may result in BT distributions is to consider

h∗(x) =
h(x)
S(x)

, h(x)≤ S(x), (10)

where h(x) is a decreasing hazard rate with reliability function S(x). Under the given conditions,
0≤ h∗(x)≤ 1 and

∞

∑
x=0

h∗(x) =
∞

∑
x=0

h(x)
S(x)

≥
∞

∑
x=0

h(x) = ∞,

so that h∗(x) is a hazard rate with reliability function S∗(x). Now consider

h∗(x+1)−h∗(x) =
h(x+1)S(x)−h(x)S(x+1)

S(x)S(x+1)

=
h(x+1)
S(x+1)

− h(x)
S(x)

.

For h∗(x) to be BT, the right of above expression must be zero for a unique x0 > 0. But,

h(x+1)
S(x+1)

=
h(x)
S(x)

implies
h(x+1)

h(x)
=

S(x+1)
S(x)

or
h(x+1)

h(x)
= 1−h(x).

Thus for h∗(x) to be BT or UBT,

h(x+1) = h(x)(1−h(x))

must have a unique solution x0 > 0. The idea behind the modification in (10) is that initially S(x)
has values close to unity to keep the decreasing nature of h(x) and hence that of h∗(x). But as x
increases, S(x) becomes closer to zero to increase the value of h(x) that may transform h∗(x) to an
increasing function, so that the overall shape of h∗(x) may be BT. If h∗(x) does not produce a BT,

then the process can be repeated with h∗∗(x) =
h∗(x)
S∗(x)

, provided h∗(x) ≤ S∗(x) and so on. We give

two examples that illustrate how the method works in practice.
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Example 4.1 Let X follow the Waring (Nair, Sankaran and Preeth, 2012) distribution,

S(x) =
(b)x

(a)x
, x = 0,1,2...; a > b,

where (a)x = a(a+1)...(a+ x−1) is the Pochammer’s symbol and (a)0 = 1. Then,

h(x) =
a−b
a+ x

,

which is clearly decreasing, and

h∗(x) =
(a−b)(a)x

(a+ x)(b)x
.

By virtue of the Waring expansion,

1
(x−a)

=
1
x
+

a
x(x+1)

+
a(a+1)

x(x+1)(x+2)
+ ...,

and we can write

S(x) =
(b)x

(a)x
= (a−b)

(b)x

(a)x

[
1

a+ x
+

b+ x
(a+ x)(a+ x+1)

+ ...

]
.

From this, it can be seen that h(x)≤ S(x). Also,

h(x+1)−h(x)(1−h(x)) = 0

leads to
a2 +ax−bx− x−ab−b = 0.

The unique solution to this equation is

x0 =
ab+b−a2

a−b−1
,

which will give a change point provided (a− 1) < b <
a2

a+1
. As an illustration, taking a = 1.32,

b = 0.46, we have x0 = 4.8. Some simple numerical calculations show that h∗(x) is increasing in
[0,b) and decreasing in [b,∞) confirming its UBT property. The reliability function S∗(x) is derived
from (1).

Example 4.2 A good share of continuous bathtub distributions are related to the Weibull distribution
as can be seen from Chapter 5 of Lai and Xie (2006). In this example, we apply the above method
to generate a BT model from the discretised Weibull distribution, i.e.,

S(x) = qxβ

, x = 0,1,2..., 0 < q < 1, β > 0

of Nakagawa and Osaki (1975). In this case,

h(x) = 1− q(x+1)β

qxβ
,

so that

h∗(x) =
qxβ −q(x+1)β

q2xβ

and h(x)≤ S(x). From Figure 4 representing the graph of h∗(x), it is seen that h∗(x) can be BT.
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Figure 4: Hazard function for the model in Example 4.2.

5. Other Methods

In this section, we discuss certain methods borrowed from the continuous case. The mixture of a
distribution with increasing hazard rate and a distribution with decreasing hazard rate may produce
a BT distribution. Let f1(x)(S1(x)) and f2(x)(S2(x)) be the probability mass(reliability) functions of
two discrete lifetimes X1 and X2. Then the two-component mixture of f1(x) and f2(x),

f (x) = α f1(x)+(1−α) f2(x), 0≤ α ≤ 1

has a hazard rate of the form

h(x) = p(x)h1(x)+(1− p(x))h2(x), (11)

where h1(x) and h2(x) are the hazard rate functions of X1 and X2 and

p(x) =
αS1(x)

αS1(x)+(1−α)S2(x)
.

Although the expression (11) looks compact, it is difficult to prove analytically that h(x) has a max-
imum or minimum.

A strictly convex function which satisfies 0≤ h(x)≤ 1 and
∞

∑
t=0

h(t) = ∞ for non-negative integer

values can be a candidate hazard rate function that is BT shaped.

Example 5.1 The function

h(x) = 1− e−(ax2+bx+c), b >−a, a > 0 (12)

satisfies the above conditions. The parameters are estimated by the regression of − log(1− ĥ(x)),

where ĥ(x) =
Ŝ(x)− Ŝ(x+1)

Ŝ(x)
is the empirical hazard rate, on a quadratic function. This method was

applied to the analysis of data in Aarset (1987) pertaining to 50 lifetimes of devices by taking the
first two observations 0.1 and 0.2 as zeros to obtain the estimates

â = 227.975×10−7, b̂ =−156.645×10−5, ĉ = 326.186×10−4
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Table 3: Observed and expected frequencies for Aarset data.

Class 0−4 5−18 19−50 51−67 68−84 > 84
Observed 9 9 8 8 9 7
Expected 7 10 7 8 10 8

The sum of squares of the errors between the model and empirical values is 0.041. Applying the
χ2-test, we have the observed and expected frequencies as in Table 3.

The χ2 value of 1.03 at 2 degrees of freedom gives a p-value of 0.59. The change point is

x0 =

[
− (b+a)

2a

]
= 33,

the integer part of x0. See Figures 5a–5c for the reliability, hazard rate and cumulative hazard rate
functions. From (1) and (12), we arrive at a nice form for the reliability function as

S(x) = q
ax3

3 + a−b
2 x2+

(a−3b−6c)
6 x.

The quadratic hazard rate family of Example 3.1 is another distribution that obeys the above
criterion.

Another useful method is to consider series systems in which the hazard rate of the system is the
sum of the hazard rates of the components. This method was already mentioned in connection with
Example 2.2.

6. Discretised Quadratic Hazard Model

The discretised quadratic hazard model (9), introduced in Section 3 deserves a separate study be-
cause of its interesting reliability properties. In this section, we study the reliability properties of
DQHM and propose a two stage procedure for estimating the parameters. A real data set has been
analysed using this estimation procedure and we can see that the model performs well.

The model,

h(x+1)−h(x) = qa+ b
2 (2x+1)+ c

3 (3x2+3x+1)
(

1−qb+2c(x+1)
)
,

has a unique zero

[x0] =

[
− b

2c
−1
]
, b < 0, c > 0,

where x0 > 0 and [x0] is the integer part of x0. For x0 to be non negative, we need −b > 2c.
Further,

h(x0 +1)−h(x0) = 1−q > 0,

and
h(x0)−h(x0−1) = 1−q−2c < 0,
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Figure 5: Survival, hazard and cumulative hazard functions for the model in Example 5.1.

showing that h(x) is decreasing in [0,x0) and increasing in [x0,∞) yielding a BT shape. Thus the
hazard rate function is BT when −b > 2c and is increasing for b > 0. The DQHM(a,b,c) has a
non-zero hazard rate at the point 0, which is not common.

The following particular cases are applicable for DQHM(a,b,c).

• When b = c = 0, the model reduces to the geometric distribution with parameter θ = qa.

• When c = 0 and b > 0, it has the hazard rate function

h(x) = 1−q−(a+
b
2+bx),

which is increasing.

• When a = c = 0, we have the discretised version of the Rayleigh distribution.

Theorem 2 Consider a series system consisting of n components. Let the component lifetimes be
independently distributed as DQHM(ai,bi,ci), i = 1,2, ...,n . Then the system lifetime is distributed
as DQHM(∑n

i=1 ai,∑
n
i=1 bi,∑

n
i=1 ci).

The proof is direct.
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6.1. Residual life

The concept of residual life plays an important role in reliability analysis. The residual life random
variable Xt is defined as

Xt = X− t|X ≥ t, t = 1, ...

The survival function corresponding to the residual life Xt is defined as

St(x) =
S(x+ t)

S(t)
, x = 1,2....

The following theorem gives the closure property of the residual life random variable of
DQHM(a,b,c).

Theorem 3 For DQHM(a,b,c), the residual life variable Xt is distributed as DQHM (a1,b1,c1) with
survival function

St(x) = qa1x+ b1
2 x2+

c1
3 x3

,

where a1 = a+bt + ct2, b1 = (b+2ct) and c1 = c.

The proof of the theorem follows directly from the definition of St(x).

6.2. Transformations

In this section, we study the behaviour of DQHM distribution under scale transformation. The
following theorem shows the closure of DQHM under change of scale; the proof is direct.

Theorem 4 Let X be a non-negative integer valued random variable and k > 0 be a constant. Then
Y = kX is distributed as DQHM(a1,b1,c1) if and only if X follows DQHM(a,b,c), where a1 =

a
k , b1 =

b
k2 and c1 =

c
k3 .

6.3. Estimation of parameters

Let X1,X2...Xn be a random sample from (9). We apply the maximum likelihood procedure for
estimating the parameters. In the present set up, the likelihood is very complicated and there is a
possibility of multiple roots for the score equation. The convergence of the estimates depends on the
initial value we give. So we consider a two stage estimation procedure, which consists of estimating
the initial values of the parameters by least square fit and then maximising the likelihood with these
estimates as starting points. Based on the random sample from the DQHM(a,b,c), the log likelihood
is given by

l[x,a,b,c] =
n

∑
i=1

log[e−axi−
bx2

i
2 −

cx3
i

3 (1− e−(a+
b
2+

c
3+(b+c)xi+cx2

i ))]

=
n

∑
i=1

(−axi−
bx2

i
2
−

cx3
i

3
)+ log(1− e−(a+

b
2+

c
3+(b+c)xi+cx2

i ))
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The score equations are

δ

δa
l[x,a,b,c] =

n

∑
i=1

xi

(
−ea+xi(b+c)+ b

2+cx2
i +

c
3

)
+ xi +1

ea+xi(b+c)+ b
2+cx2

i +
c
3 −1

= 0,

δ

δb
l[x,a,b,c] =

n

∑
i=1

x2
i

(
−
(

ea+xi(b+c)+ b
2+cx2

i +
c
3 −1

))
+2xi +1

2
(

ea+xi(b+c)+ b
2+cx2

i +
c
3 −1

) = 0,

δ

δc
l[x,a,b,c] =

n

∑
i=1

x3
i

(
−
(

ea+xi(b+c)+ b
2+cx2

i +
c
3 −1

))
+3x2

i +3xi +1

3
(

ea+xi(b+c)+ b
2+cx2

i +
c
3 −1

) = 0.

The second order derivatives are given by

δ 2

δa2 l[x,a,b,c] =
n

∑
i=1

1
2−2cosh

(
a+b

(
xi +

1
2

)
+ c
(
x2

i + xi +
1
3

)) , (13)

δ 2

δb2 l[x,a,b,c] =
n

∑
i=1
− (2xi +1)2

8
(
cosh

(
a+b

(
xi +

1
2

)
+ c
(
x2

i + xi +
1
3

))
−1
) , (14)

δ 2

δc2 l[x,a,b,c] =
n

∑
i=1
− (3xi(xi +1)+1)2

18
(
cosh

(
a+b

(
xi +

1
2

)
+ c
(
x2

i + xi +
1
3

))
−1
) , (15)

δ 2

δab
l[x,a,b,c] =

n

∑
i=1
− 2xi +1

4
(
cosh

(
a+b

(
xi +

1
2

)
+ c
(
x2

i + xi +
1
3

))
−1
) , (16)

δ 2

δac
l[x,a,b,c] =

n

∑
i=1
− 3xi(xi +1)+1

6
(
cosh

(
a+b

(
xi +

1
2

)
+ c
(
x2

i + xi +
1
3

))
−1
) , (17)

δ 2

δbc
l[x,a,b,c] =

n

∑
i=1
− (2xi +1)(3xi(xi +1)+1)

12
(
cosh

(
a+b

(
xi +

1
2

)
+ c
(
x2

i + xi +
1
3

))
−1
) . (18)

We can see that the score equations are non-linear in a,b and c. We need to use numerical methods
to solve them. As mentioned before, we need appropriate initial values to use numerical methods
effectively. To obtain these initial values, we proceed as follows. Let Ŝ(x) be the empirical survival
function calculated from the sample. We propose a linear regression model

− log(Ŝ(xi)) = axi +
bx2

i
2

+
cx3

i
3

+ εi, i = 1,2...n, (19)

where εi’s are independent and identically distributed random variables with mean 0 and variance
σ2.

The model in (19) can be rewritten in matrix form as

y = Mθ + ε,
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where y= [−log(Ŝ(xi))], i= 1, ...n, θ = [a,b,c], and ε = [ε1, ...,εn]. The design matrix corresponding
to the above model is given by

M =


x1

x2
1

2
x3

1
3

x2
x2

2
2

x3
2

3
... ... ...

xn
x2

n

2
x3

n

3


.

An estimate of θ is obtained by using the ordinary least square method. The solution is given by

θ̂ = [â, b̂, ĉ] = (M′M)−1M′y.

We use these estimates as initial values for the maximisation of the log likelihood. It is easy to see
that the probability mass function satisfies the regularity condition given by Cramér (1999). Thus
by Cramér-Huzurbazar theorem (see Lehmann and Casella, 1998), we can see that θ̂ is consistent

and
√

n(θ̂ − θ) is asymptotically normal with mean vector 0 and dispersion matrix
1√
n

I−1(θ),

where I(θ) is the Fisher information matrix. From (13)–(18) we can evaluate the observed Fisher
information matrix numerically, which gives an estimate of I(θ). We now illustrate the method with
a real data set. We compare the model performance with other existing models.

Example 6.1 We consider a dataset consisting of the lifetimes of 18 electronic components (the data
set is given in Appendix A), reported in Wang (2000), which was recently analysed by Almalki and
Nadarajah (2014) using the discretised reduced modified Weibull(DRMW) distribution. To obtain
the least square estimates, we form the design matrix as

M =


x1

x2
1

2
x3

1
3

x2
x2

2
2

x3
2

3
... ... ...

x18
x2

18
2

x3
18
3


and propose the model,

− log(Ŝ(xi)) = axi +
bx2

i
2

+
cx3

i
3

+ εi, i = 1,2...18,

where Ŝ(x) is the empirical survival function.
The least square estimates are

â = 532.272×10−5, b̂ =−303.786×10−7 and ĉ = 1.3723×10−7.

Using these as initial estimates, the log likelihood is numerically maximised. The maximum of
l is obtained as

lmax =−108.213
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Figure 6: Survival, hazard and cumulative hazard functions for the data in Example 6.1.

for the values

â = 695.067×10−5, b̂ =−585.678×10−7 and ĉ = 2.4217×10−7.

The survival function, hazard rate function and cumulative hazard rate function are plotted in Figures
6a–6c.

Now, to compare the performance of DQHM with the existing models, we calculate the Kol-
mogorov Smirnov distance, Akaike Information Criterion(AIC), Bayesian Information Criterion
(BIC) and Consistent Akaike Information Criterion (CAIC).

We have,
AIC = 2k−2l[θ̂ ,x],

where k is the dimension of the vector θ and l[θ̂ ,x] is the log likelihood at θ̂ .

Also,
BIC = k logn−2l[θ̂ ,x]

and

CAIC = AIC+
2k(k+1)
n− k−1

.

Table 4 provides the values of these measures of model adequacy. From Table 4, we see that
the DQHM model outperforms the other four models, namely the discrete reduced modified
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Table 4: Model adequacy of the data in Example 6.1.

Model AIC BIC CAIC K-S
DRMW 223.9 226.5 225.6 .084
DMW 225.6 228.3 227.3 .092

DAddW 227.9 231.4 230.9 .099
DW 226.1 227.9 226.9 .137

DQHM 222.426 225.097 224.14 0.0702

Weibull(DRMW) due to Almalki and Nadarajah (2014), the discrete modified Weibull(DMW) due
to Noughabi et al. (2011), the discrete additive Weibull (DAddW) due to Bebbington et al. (2012)
and the discrete Weibull (DW) due to Nakagawa and Osaki (1975).

7. Conclusion

In the present paper we have discussed various methods for the construction of discrete bathtub
distributions. We have provided examples in which the models were applied to real data and we
have studied the properties of the discretised quadratic hazard model in detail. These supplement
the existing list of BT models in literature. Only a few methods that are analogues of the continuous
case have been included in the discussion. Some interesting methods such as those based on total
time on test transforms, functions of random variables, additive hazard rate models, etc. could not be
considered here. The definitions, concepts and technical results needed to use them for BT models
have not yet been developed in the discrete case. Some attempts are being made in this direction and
will be reported elsewhere.

Acknowledgement

We would like to thank the referee and the Associate Editor for their constructive comments.

References
AARSET, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability,

36 (1), 106–108.
ALMALKI, S. J. AND NADARAJAH, S. (2014). A new discrete modified Weibull distribution. IEEE

Transactions on Reliability, 63, 68–80.
BAIN, L. AND ENGLEHARDT, M. (1991). Statistical Analysis of Reliability and Life-Testing Mod-

els: Theory and Methods, volume 115. Marcel Dekker, Inc.: New York.
BAIN, L. J. (1974). Analysis for the linear failure-rate life-testing distribution. Technometrics,

16 (4), 551–559.



100 NAIR, SANKARAN & RAMESH

BEBBINGTON, M., LAI, M., C. D.AND WELLINGTON, AND ZITIKIS, R. (2012). The discrete ad-
ditive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data. Reliability
Engineering and System Safety, 106, 37–44.

CANFIELD, R. V. AND BORGMAN, L. E. (1975). Some distributions of time to failure for reliability
applications. Technometrics, 17 (2), 263–268.

CRAMÉR, H. (1999). Mathematical Methods of Statistics, volume 9. Princeton University Press:
Princeton.

DAVIS, D. (1952). An analysis of some failure data. Journal of the American Statistical Association,
47 (258), 113–150.

DEEVEY, E. S. (1947). Life tables for natural populations of animals. The Quarterly Review of
Biology, 22 (4), 283–314.

GLASER, R. E. (1980). Bathtub and related failure rate characterizations. Journal of the American
Statistical Association, 75 (371), 667–672.

GLUCKSBERG, H., CHEEVER, M. A., FAREWELL, V. T., FEFER, A., SALE, G. E., AND

THOMAS, E. D. (1981). High-dose combination chemotherapy for acute nonlymphoblastic
leukemia in adults. Cancer, 48 (5), 1073–1081.

GUPTA, R. C., AKMAN, H. O., AND LVIN, S. (1999). A study of log-logistic model in survival
analysis. Biometrical Journal, 41 (4), 431–443.

HJORTH, U. (1980). A reliability distribution with increasing, decreasing, constant and bathtub-
shaped failure rates. Technometrics, 22 (1), 99–107.

HUSSAIN, T. AND AHMAD, M. (2014). Discrete inverse Rayleigh distribution. Pakistan Journal of
Statistics, 30 (2), 203–222.

JAISINGH, L. R., KOLARIK, W. J., AND DEY, D. K. (1987). A flexible bathtub hazard model for
non-repairable systems with uncensored data. Microelectronics Reliability, 27 (1), 87–103.

JAZI, M. A., LAI, C. D., AND ALAMATSAZ, M. H. (2010). A discrete inverse Weibull distribution
and estimation of its parameters. Statistical Methodology, 7, 121–132.

JIANG, R. (2010). Discrete competing risk model with application to modeling bus-motor failure
data. Reliability Engineering and System Safety, 95, 981–988.

JIANG, R. AND MURTHY, D. (1997). Parametric study of competing risk model involving two
Weibull distributions. International Journal of Reliability, Quality and Safety Engineering,
4 (01), 17–34.

LAI, C. AND WANG, D. (1995). A finite range discrete life distribution. International Journal of
Reliability, Quality and Safety Engineering, 2 (02), 147–160.

LAI, C. D. AND XIE, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer: New
York.

LEHMANN, E. L. AND CASELLA, G. (1998). Theory of Point Estimation, volume 31. Springer-
Verlag: New York.

MURTHY, D. P., XIE, M., AND JIANG, R. (2004). Weibull Models, volume 505. John Wiley &
Sons: New Jersey.

NAIR, N. U., SANKARAN, P. G., AND BALAKRISHNAN, N. (2013). Quantile-Based Reliability
Analysis. Birkhauser: Basel.

NAIR, N. U., SANKARAN, P. G., AND PREETH, M. (2012). Reliability aspects of discrete equilib-
rium distributions. Communications in Statistics – Theory and Methods, 41 (3), 500–515.



DISCRETE DISTRIBUTIONS WITH BATHTUB-SHAPED HAZARD RATES 101

NAKAGAWA, T. AND OSAKI, S. (1975). The discrete Weibull distribution. IEEE Transactions on
Reliability, 24 (5), 300–301.

NOUGHABI, M. S., ROKNABADI, A. H. R., AND BORZADARAN, G. R. M. (2011). Discrete
modified Weibull distribution. Metron, 69, 207–222.

NOUGHABI, M. S., ROKNABADI, A. H. R., AND BORZADARAN, G. R. M. (2013). Some discrete
lifetime distributions with bathtub-shaped hazard rate functions. Quality Engineering, 25, 225–
236.

RAJARSHI, S. AND RAJARSHI, M. B. (1988). Bathtub distributions: A review. Communications in
Statistics-Theory and Methods, 17, 2597–2621.

USGAONKAR, S. AND MARIAPPAN, V. (2009). Additive Weibull model for reliability analysis.
International Journal of Performability Engineering, 5 (3), 243.

WANG, F. (2000). A new model with bathtub-shaped failure rate using an additive Burr xii distribu-
tion. Reliability Engineering & System Safety, 70 (3), 305–312.

XIE, M. AND LAI, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-
shaped failure rate function. Reliability Engineering & System Safety, 52 (1), 87–93.



102 NAIR, SANKARAN & RAMESH

Appendix A

Table 5: Data in Aarset (1987) pertaining to 50 lifetimes of devices.

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18
18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67
72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

Table 6: Data in Glucksberg et al. (1981) on the times from remission to relapse of patients with
acute non-lymphoblastic leukaemia. Out of 84 observations, only 51 uncensored observations are
included here.

24 46 57 57 64 65 82 89 90 90 111 117 128
43 148 152 166 171 186 191 197 209 223 230 239 247
254 258 264 269 270 273 284 294 304 304 332 341 393
395 487 510 516 518 518 534 608 642 697 955 1160

Table 7: Dataset consisting of the lifetimes of 18 electronic components, reported in Wang (2000)

5 11 21 31 46 75 98 122 145
165 196 224 245 293 321 330 350 420

Appendix B

We used Wolfram Mathematica R© 10 program from Wolfram Research, Inc. for the mathematical
computations. For numerical maximisation, we used NMaximize function, which gives a global
maximum, and FindMaximum function, which gives a local maximum when initial values are
available. For computing the empirical survival function, we used SurvivalModelFit function for
non-censored data. The design matrix for the two stage estimation procedure was computed using
DesignMatrix function and the linear regression analysis was carried out using LinearModelFit
function. For more details of these functions, see the help at reference.wolfram.com/

Manuscript received, 2015-12-16, revised, 2016-06-26, accepted, 2016-07-20.


	Introduction
	Properties of the Score Function
	Discretising Continuous Bathtub Distribution
	Modifying Decreasing Hazard Rate Functions
	Other Methods
	Discretised Quadratic Hazard Model
	Residual life
	Transformations
	Estimation of parameters

	Conclusion

