
THE ABSENCE OF DIFFUSION IN THE
SOUTH AFRICAN SHORT RATE

G. L. Grobler
Unit for Business Mathematics and Informatics, North-West University,

Potchefstroom, South Africa
e-mail: gerrit.grobler@nwu.ac.za

In the field of Financial Mathematics, stochastic differential equations are used to describe
the dynamics of interest rates. An example is a model for the short rate, which is a
mathematically defined rate not directly observable in any market. However, observable rates
such as short dated Treasury rates or the Johannesburg Interbank Agreement Rate (JIBAR)
can be used as proxies for the short rate.

The short rate dynamics are traditionally modelled by one-factor diffusion processes. These
type of models remain popular due to the analytical tractability of the pricing formulae of
interest rate derivatives under these models. To capture the leptokurtic nature of interest rate
returns in the South African market, two types of models can be used: a pure jump model or
a jump diffusion model. In this paper we investigate whether jumps are present and whether a
diffusion component is evident. Our initial investigation showed that jumps were present in the
South African market, and that no diffusion component was evident at low interest rate levels.
This result was found using a Monte Carlo method to test for jumps. We therefore conclude
that a pure jump process is an appropriate model for the South African short rate.

Key words: JIBAR, Jump diffusion models, Pure jump models, Short rate models, T-bill,
Testing for jumps.

1. Introduction
A classical approach in interest rate modelling is to model the short rate rt . This rate can be defined
in terms of the price of a zero-coupon bond, given by

p(t,T) = E∗
[
e−

∫ T

t
rsds

]
,

where expectation is taken under a risk-neutral martingale measure P∗ (Björk, 2004). Various
models for the short rate exist, with basic models initially developed from the family of one-factor
pure diffusion models; see, for example, Vasicek (1977), Cox, Ingersoll and Ross (1985) and Hull
and White (1990). The dynamics of these models are described by

drt = µ(rt )dt + σ(rt )dWt, (1)

where Wt is a Brownian motion under P∗ and the functions µ and σ are the drift and diffusion
coefficients respectively.

MSC2010 subject classifications. 91G30, 62P05, 60J75.

South African Statistical Journal
2019, Vol. 53, No. 1, 15–30 15



Globally, economic events in markets lead to infrequent jumps in interest rates, which can be
modelled by adding a jump component to the diffusion process (Johannes, 2004). The dynamics of
the resulting jump diffusion process can, in general, be described by

drt = µ(rt )dt + σ(rt )dWt +

∫ ∞

−∞
J(t, y)N(dt,dy), (2)

where N(dt,dy) is a marked point process and J a real valued function on R (Protter, 2005, p. 26).
Initially, models of this type had N as a Poisson process with constant intensity λ and J representing
i.i.d. random variables. An advantage of this model is addressing the issue of leptokurtic interest
rate returns observed in markets.
In this paper, evidence will be presented that, at times, no diffusion component is evident in the

South African short dated interest rate market. This is especially evident at low interest rate levels.
We will show that the volatility in the market is fully described by the jump component of a jump
diffusion model, making the diffusion component redundant. Therefore, the model most appropriate
for the South African short rate is a pure jump model i.e. a model with no diffusion component.
As the short rate is non-observable, historical data on the level of the short rate do not exist. We

will analyse proxies of the short rate, in the form of the 3-month Johannesburg Interbank Agreement
Rate (JIBAR) as well as the 91-day Treasury bill (T-bill) rate. Both these rates are short dated,
risk-free rates, however these rates have differing characteristics. The 91-day T-bill is traded on a
weekly auction open to the public, and may therefore be an appropriate market rate to use. On the
other hand, using JIBAR data may be appropriate, for this study, due to the fact that JIBAR data
is available on a daily basis. The procedures used to test for the presence of jumps rely on the
availability of high-frequency data. To be transparent, we will present results for both sets of data.
The time period under investigation is 1 March 2000 until 25 July 2017 during which the monetary

policy in South Africa adopted an inflation targeting framework. Aling and Hassan (2012) found
market characteristics to differ in the period before and after the change in monetary policy, which
changed the diffusion model they found most appropriate for the South African short rate during this
time.
Results from an initial investigation of our data showed that jumps occur frequently and that no

diffusion component was evident at certain times. Figure 1 shows a time in history where both rates
remained fairly flat for long periods. For example, the JIBAR stayed at a level of 5.58% for 125
consecutive working days from 27 January 2011 to 1 August 2011, while the T-bill rate did not
change for 20 consecutive weeks from 20 July 2011 to 30 November 2011.
In Table 1 and Table 2 the summary statistics of both the 3-month JIBAR changes as well as the

91-day T-bill rate changes are shown. For comparison, the summary statistics of weekly 3-month
JIBAR changes are shown in Table 1, while in Table 2 the summary statistics of the daily 3-month
JIBAR changes are shown. We observe that the sample kurtosis for both rates are high, while the
number of zero rate changes from the sample has a relatively high frequency.
Johannes (2004) showed that a pure diffusion model does not have sample paths with leptokurtic

increments. In addition, a model with a diffusion component included will, almost certainly, have
sample paths with a relatively low frequency of zero rate increments. In this paper, we will fit models
of the forms in equations (1) and (2) to our data using conditional moment estimates. We will show
that, in contrast to a jump diffusion model, a pure diffusion model cannot replicate interest rate
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Figure 1. Historical values of the T-bill and JIBAR. A time period in which interest rates remained
relatively unchanged.

Table 1. Descriptive statistics of the week-on-week
JIBAR and T-bill rate changes (measured in basis
points).

Description JIBAR T-bill
mean −0.304 204 −0.259 669
standard deviation 11.082 663 12.032 036
skewness −2.969 210 −1.195 373
kurtosis 21.787 060 16.643 180
number of zeroes 392 150
zeroes as % of total 43.36% 16.57%

paths with a similarly high sample kurtosis of observed rate changes. Numerical errors occur when
fitting the jump diffusion model, which can be attributed to the volatility in the market mostly being
generated by jumps. We also fit a pure jump model to the data using conditional moment estimates.
We implement a method to test for jumps due to Lee and Mykland (2008) and discuss the dangers of
interpreting the results when the test is applied to low-frequency data.

2. Testing for jumps
In this section, we first test the adequacy of various short rate models by simulating the null
distributions of central sample moments. In Sections 2.1 and 2.2 the null distributions will be
simulated from various short rate models. In Section 2.1 this will be done informally based on the
following conditional moments: the sample mean, sample variance, normalised sample skewness
and normalised sample kurtosis. In Section 2.2 a formal test will be performed for each hypothesis
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Table 2. Summary statistics of the daily 3-month JIBAR rate
changes (measured in basis points).

JIBAR
Description 2000–2017 2000–2010 2010–2017
mean −0.07 −0.15 0.06
standard deviation 4.23 5.09 2.25
skewness −6.59 −6.03 −1.45
kurtosis 141.22 100.99 302.20
number of zeros 3122 1610 1512
zeros as % of total 70.99% 59.72% 88.89%

based on the unconditional sample kurtosis.
A second test, which can be used to determine whether a jump occurred between each sample

point, will be implemented in Section 2.3. We note that the method has a high misclassification error
in identifying small jumps from daily data.
The results indicate that jumps should be included in a model for the short rate. We also find that

estimates of the diffusion coefficients in a jump diffusion model are unreliable, which points to the
absence of a diffusion component in the observed data. Hence, we suggest that the South African
short rate should be modelled by a pure jump model.

2.1 Tests based on conditional moments
One-factor diffusion model
For the first test, we assume a pure diffusion model under the null hypothesis of the form

drt = µ(rt )dt + σ(rt )dWt . (3)

We assume no specific paramatrisation of the drift and diffusion coefficients. Therefore, the model
above can be seen as a nonparametric model. We now apply a method developed by Johannes (2004).
Denote the observed sample values by R1,R2, ...,RT . The drift and diffusion coefficients can be

approximated in terms of the conditional moments of rate increments, conditional on interest rate
level, by

µ(rt ) ≈ 1
4E {Rt+4 − Rt |Rt = r}

and
σ2(rt ) ≈ 1

4E
{(Rt+4 − Rt )2 |Rt = r

}
,

where 4 is the number of trading days between observations.
Therefore, to estimate µ and σ, the first two conditional moments of short rate increments need to

be estimated. Johannes (2004) defines smoothed estimators for 4−1E[(Rt+4 − Rt )j |Rt = r] by

mj(r) =
1
4
∑T−1

t=1 (Rt+1 − Rt )j K
(
Rt−r
h j

)
∑T−1

t=1 K
(
Rt−r
h j

) , (4)
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where the estimates are calculated for a discrete set of values of r . The function K is a normal kernel
with bandwidth hj .
Therefore, the drift and diffusion in equation (3) can be estimated by

µ̂(r) = m1(r) and σ̂(r) =
√

m2(r),
which will enable us to simulate interest rate paths under the null hypothesis, which states that the
South African short rate is driven by a one-factor diffusion model. From these simulated paths, the
null distribution of the conditional sample mean and variance is estimated. A diffusion model will
be able to replicate the first two sample moments.
To determine whether a fitted diffusion model can replicate leptokurtic historical interest rate

returns, we estimate the null distributions of the conditional normalised skewness and kurtosis, given
by

Σ̂(r) = m3(r)
m2(r)3/2

and κ̂(r) = m4(r)
m2(r) .

The starting point of the simulations is an interest rate level of r = 0.1, with 10 000 replications.
The numbers of time steps are equal to the size of our samples, which are 4 399 and 906 for the
JIBAR and T-bill samples respectively. From these simulated paths we calculate µ̂(r), σ̂(r), Σ̂(r) and
κ̂(r) for each path in order to obtain a distribution for each statistic via simulation. We then compare
the 10% and 90% quantiles of each simulated distribution with the numerical value of the statistic
calculated from the observed data. This method is called Monte Carlo hypothesis testing, as a null
distribution of a test statistic is simulated from a fitted process defined under the null hypothesis.
The results are shown in Figure 2. In the top two windows we observe the sample drift and sample

variance to be within the 10% and 90% bounds of the simulated null distributions at all interest rate
levels. This indicates a good fit of the diffusion model to our sample. However, in the second row of
windows we observe the sample skewness and kurtosis to be outside the 10% and 90% bounds at all
interest rate levels. This shows an inability of a pure diffusion model to replicate rate changes which
are skew and leptokurtic.

Jump diffusion model
We now test the statement that the South African short rate is driven by a jump diffusion model.
Therefore, we assume a semiparametric jump diffusion short rate model, which, under the null
hypothesis, has the form

drt = µ(rt )dt + σ(rt )dWt + d

(
Nt∑
n=1

rτn− {exp (Zn) − 1}
)
,

where Nt is a nonstationary Poisson process with rate dependent intensity λ(rt−) and Zn are
independent and identically distributed random normal variables with mean zero and variance σ2

z .
The model is semiparametric since the distribution of the jumps are specified, while the intensity of
the jumps, as well as the drift and diffusion coefficients, are functions of the underlying rate. The
form of the model is similar to that in equation (2), with the function J equal to rt− (ey − 1). However,
a model for the logarithmic short rate can be obtained by applying Itô’s lemma, resulting in

d log rt = µ(rt )dt + σ(rt )dWt +

∫ ∞

−∞
yN(dt,dy), (5)
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Pure diffusion fitted on JIBAR
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Pure diffusion fitted on T-bill
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Figure 2. The simulated null distributions of the conditional drift and variance in the two top
windows as well as the conditional normalised skewness and kurtosis in the twowindows below them,
compared with the matching test statistics. The null distributions were generated by nonparametric
pure diffusion models fitted on the historical 3-month JIBAR returns as well as 91-day T-bill returns.
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with redefined drift and diffusion coefficients µ and σ. From this formula the conditional moments
can be calculated, and are given by

1
4E [log(Rt+4/Rt )|Rt = r] ≈ µ(rt ),

1
4E

[
log(Rt+4/Rt )2 |Rt = r

] ≈ σ2(rt ) + λ(rt−)σ2
z ,

1
4E

[
log(Rt+4/Rt )4 |Rt = r

] ≈ 3λ(rt−)σ4
z ,

and
1
4E

[
log(Rt+4/Rt )6 |Rt = r

] ≈ 15λ(rt−)σ6
z .

Using the moment estimates mj, j = 1,2,4,6, defined in equation (4), the estimate for σ2
z , denoted

by σ̂2
z , can be calculated by first calculating a rate dependent estimate of σ2

z , given by

σ̂2
z (r) =

1
5

m6(r)
m4(r) ,

and then taking the mean over a grid of values for r . The estimate for λ(rt−) is then given by

λ̂(r) = m4(r)
3σ̂4

z

.

Therefore, an estimate for σ2(rt ) is given by
σ̂2(r) = m2(r) − λ̂(r)σ̂2

z .

Note that if m2(r) ≥ λ̂(r)σ̂2
z (r), the estimate for the variance driven by the diffusion part of the model

is negative, with the result of complex valued diffusion coefficients. This numerical error occurs in
both sets of sample data for some values of r when fitting a jump diffusion model. Thus, we estimate
σ(rt ) by

σ̂(r) =
√

max
(
0,m2(r) − λ̂(r)σ̂2

z (r)
)
.

However, this leads to the estimated conditional variance from our simulations overestimating the
true conditional variance, as seen in the top right window of Figure 3. Nevertheless, the second and
fourth row of windows from Figure 3 show that the observed level of skewness and excess kurtosis
can be replicated under this model.
The conclusion is that jumps should be included and the question becomes whether a diffusion

component should be included. It is shown in Figure 4 that the conditional sample variance of the log
returns for the T-bill rate is approximately equal to the conditional sample variance generated from
the jump component of the model. For the JIBAR, the variance generated from the jump component
far outweighs the variance generate by the diffusion component. Therefore, we make the conclusion
that there is an absence of a diffusion component in the South African short rate.
Including a diffusion component seems unnecessary, as the model contains more parameters than

needed to estimate the underlying variance. To confirm that a pure jump model is appropriate, we
need to investigate whether similar higher order conditional moments of interest rate returns are
replicated when assuming a model with no diffusion component.
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Jump diffusion fitted on JIBAR
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Jump diffusion fitted on T-bill
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Figure 3. The simulated null distributions of the conditional drift and variance in the two top
windows as well as the conditional normalised skewness and kurtosis in the twowindows below them,
compared with the matching test statistics. The null distributions were generated by semiparametric
jump diffusion models, fitted on the historical 3-month JIBAR log returns as well as 91-day T-bill
log returns.
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Figure 4. In these two graphs the estimated total conditional variance of a nonparametric pure
diffusion model with normally distributed jumps of the log returns is shown. In the left window
the result is shown from the model fitted to 3-month JIBAR returns, while in the right window the
model was fitted to the 91-day T-bill returns. The conditional variance generated from the diffusion
component as well as the conditional variance generated from the jump component are also shown.

Pure jump model
We now test the statement that the South African short rate is driven by a pure jumpmodel. To do this
we extend the method from Johannes (2004) to specify a pure jump model under the null hypothesis.
We therefore assume the diffusion coefficient σ(rt ) in (5) to be equal to zero, to get

d log rt = µ(rt )dt +
∫ ∞

−∞
yN(dt,dy).

The conditional moments and their relationship to the parameters of the pure jump model are

1
4E [log(Rt+4/Rt )|Rt = r] ≈ µ(rt ),

1
4E

[
log(Rt+4/Rt )2 |Rt = r

] ≈ λ(rt−)σ2
z ,

and
1
4E

[
log(Rt+4/Rt )4 |Rt = r

] ≈ 3λ(rt−)σ4
z .

In order to estimate the parameters µ, λ and σz , we use the moment estimates mj, j = 1,2,4,
defined in equation (4), to estimate the terms on the left side of the set of equations above. This
results in a system of equations, which is solved by first calculating an estimate for σ2

z by taking the
mean over a grid of values r of the estimate

σ̂2
z (r) =

1
3

m4(r)
m2(r) ,
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denoted by σ̂2
z . The estimate for λ(rt−) is then given by

λ̂(r) = m2(r)
σ̂2
z

.

In this case, we use only the conditional moment estimates of order one, two and four. As a result,
as seen in Figure 5, better estimates of the conditional variance and kurtosis are obtained, compared
to those in Figure 3.

2.2 Tests based on unconditional moments
In this section, we apply the formal hypothesis test from Johannes (2004) based on the unconditional
sample kurtosis defined by

k̂ =
κ4

κ2
2
, (6)

where
κ2 =

n
n − 1

m2

and

κ4 =
n2((n + 1)m4 − 3(n − 1)m2

2)
(n − 1)(n − 2)(n − 3) ,

with m2 the sample variance, m4 the fourth central sample moment and n the sample size. The
disadvantage of this method, compared to the informal tests from the previous section is that the
kurtosis seems to be rate dependent. Generally, the kurtosis is lower at higher interest rates. However,
the results from this section add to the set of evidence upon which we base our conclusions.
To apply the method, interest rate paths are again simulated from the model stipulated under

the null hypothesis to get a null distribution of the unconditional sample kurtosis calculated from
equation (6). Based on the percentiles of the simulated null distribution, we then decide whether it
is likely that the model under the null hypothesis could generate the observed sample kurtosis. This
decision is made at a significance level of α = 5%.
Tables 3 and 4 summarise the percentiles of the sample kurtosis under each null hypothesis as well

as the test statistics. Neither the pure jump, nor the jump diffusion model is rejected, while the pure
diffusion model is rejected at the given significance level. The conclusion from these tests are that
jumps should be included in a model for the short rate.

2.3 Other tests for jumps
Several tests for jumps exist, with some of them summarised by Hong and Zou (2015). A test for
jumps was first introduced by Aït-Sahalia (2002), after which many similar tests were developed.
Carr and Wu (2003) developed a test in which the dynamics of an asset can be identified as either
a diffusion, jump diffusion or pure jump model. This is done by analysing the behaviour of short-
maturity options. However, due to the nature of the South African interest rate option market,
data are not freely available to apply this test. It is advantageous to apply a number of tests to
high-frequency data of the underlying asset. For example, the nonparametric test to identify isolated
jumps by Lee and Mykland (2008) is an asymptotic test. This implies that if the data are available
at low frequencies, then the test may have a high misclassification error in identifying jumps. This
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Pure jump fitted on JIBAR
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Pure jump fitted on T-bill
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Figure 5. The simulated null distributions of the conditional drift and variance in the two top
windows as well as the conditional normalised skewness and kurtosis in the twowindows below them,
compared with the matching test statistics. The null distributions were generated by nonstationary
compound Poisson process with normally distributed jumps, fitted on the historical 3-month JIBAR
log returns as well as 91-day T-bill log returns.
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Table 3. Kurtosis percentiles JIBAR.
Pure jump Jump Diffusion Diffusion

Test statistic values 159.16∗ 159.16∗ 141.22∗∗

p-values 0.92 0.40 < 0.02

Percentiles Simulated Kurtosis

1 94.57 86.99 −0.04
5 106.21 96.57 0.05
10 114.98 101.41 0.13
25 131.82 110.92 0.33
40 147.38 121.46 0.50
50 155.34 128.92 0.62
60 165.45 136.96 0.74
75 184.08 151.09 0.97
90 218.02 174.58 1.28
95 242.40 201.11 1.51
99 309.51 247.41 1.87
∗ Calculated from log returns.
∗∗ Calculated from simple returns.

is also true for the nonparametric test for jumps by Aït-Sahalia and Jacod (2009) and its extension
by Aït-Sahalia, Jacod and Li (2012), as well as the test by Jiang and Oomen (2008). Unfortunately,
high-frequency data are not available for short term South African interest rates.
We test the hypothesis that the short rate follows a nonparametric diffusion process by applying a

nonparametric test described by Lee and Mykland (2008). Although the frequency of data available
is a concern due to possible high misclassification errors, Lee and Mykland (2008) specify how to
implement their method with daily as well as weekly data. A random variable, L, is defined as the
realised return of the 3-month JIBAR divided by its realised instantaneous volatility. The method is
based on whether L is within expected bounds if we assume the underlying process is a diffusion
process. Lee and Mykland (2008) define a short rate diffusion process by

drt = µ(t)dt + σ(t)dWt, (7)

and a jump diffusion process by

drt = µ(t)dt + σ(t)dWt + Y (t)N(dt), (8)

where N is a point process and Y is the jump size. This model differs slightly from the models
defined in the previous section as the drift, diffusion and intensity λ are functions of t and not of rt .
We apply the method to test whether rt has jumps. We will therefore only show the results for the
models defined in equations (7) and (8).
We again denote the observed sample values by R1,R2, ...,RT and form a statistic to test for a jump

from time ti−1 to ti by

Li =
Rti − Rti−1

σ̂ti

,
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Table 4. Kurtosis percentiles T-bill.

Pure jump Jump Diffusion Diffusion
Test statistic values 14.43∗ 14.43∗ 16.64∗∗

p-values 0.48 0.54 < 0.02

Percentile Simulated Kurtosis

1 10.25 9.70 −0.19
5 11.66 11.37 −0.01
10 12.56 12.24 0.11
25 14.54 14.26 0.39
40 16.24 15.90 0.61
50 17.29 17.03 0.77
60 18.82 18.63 0.93
75 22.08 21.27 1.21
90 28.79 25.67 1.77
95 32.97 29.45 2.14
99 47.42 40.41 2.96
∗ Calculated from log returns.
∗∗ Calculated from simple returns.

where Rti is the observed rate at time ti and the realised bipower variation

σ̂2
ti
=

1
K − 2

i−1∑
j=i−K+2

|Rtj − Rtj−1 | |Rtj−1 − Rtj−2 |,

is a consistent estimator for the instantaneous volatility σ2 (Barndorff-Nielsen and Shepard, 2004).
The rationale behind this method, as described by Lee and Mykland (2008), is to compare the
realised returns of the JIBAR with the local variation coming from the diffusion part of the process.
Importantly, jumps do not affect the consistency of the estimate of σ2(t). Therefore, the statistic Li

should be able to distinguish whether the realised return is greater (or less) than what one would
expect if the underlying process is a diffusion process.
Figure 6 shows which of the JIBAR changes in our dataset have been identified as jumps at a

significance level of α = 5%. In total 29% of all JIBAR return data had non-zero movements, with
27% of those identified as jumps. Importantly, on 79% of all the trading days either a jump or no
movement occurred. The conclusion is therefore made that the diffusion component has a small
effect on the underlying process.
In Figure 6 we also present the results for the T-bill data. In this case a greater percentage of return

data show nonzero movements (83%), with a smaller percentage being identified as jumps (9%). In
this case 24% of all return data points were either no movements or identified as jumps, which is
much lower than the corresponding percentage for the JIBAR data. However, the proportion of days
on which jumps are deemed to have occurred is still substantial.
In Figure 6, for the JIBARdata, we clearly see a difference in the range of values for rate changes that
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Figure 6. The historical JIBAR (top left graph) as well as the first difference (second from top left),
with isolated jumps identified with a nonparametric test for jumps. The top two windows on the right
split those movements identified as jumps, from those determined not to be jumps. The results for
the T-bill dataset are also shown.
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have been identified as jumps, compared to those not identified as jumps (second column of windows
in Figure 6). However, this phenomenon is not as clear when observing similar graphs, when the test
was applied to the T-bill data. This may be due to the high misclassification probability of jumps
for low-frequency data. Although Lee and Mykland (2008) specifies the preferred parameter values
of K for daily (K = 16) and weekly (K = 7) data, they report a high misclassification probability
for relatively small jumps when using daily data. No results are reported when using weekly data,
although we can only assume that the misclassification probability is much higher using weekly data.
The results from this section should therefore be interpreted with caution, especially for the T-bill
data.

3. Conclusion
In this paper we investigated whether jumps should be included in a South African short rate model.
We applied two methods to test for jumps, keeping in mind that we had only low-frequency data
available, due to the nature of the South African short dated interest rate market.
South African interest rate returns are leptokurtic. A pure diffusion model is not able to capture

this property of observed data. We confirmed this by applying a Monte Carlo hypothesis test, which
is the most appropriate test for low-frequency data. In addition to finding that jumps should be added
to capture the leptokurtic nature of interest rate returns, we found that no diffusion component is
evident at low interest rate levels. This result was found by adapting the Monte Carlo hypothesis test
by Johannes (2004) to specify a pure jump model under the null hypothesis. Therefore, our main
result is that a pure jump model is more appropriate for the South African short rate than a jump
diffusion model.
Our results are only applicable to short dated interest rates where the underlying asset is not traded

on an exchange. There are, however, other types of interest rate models where the underlying asset
may be more liquid. This liquidity may influence our results and is a topic for further research.
In this paper we found a model which replicates leptokurtic interest rate returns. However, we did

not address the question of how interest rate derivatives can be priced under the proposed model.
This is also a topic for further research.

Acknowledgements. Special thanks to the South African National Research Foundation (NRF) for
its part in funding this project as well as my Ph.D. supervisor, Prof. F. Lombard.

References
Aït-Sahalia, Y. (2002). Telling from discrete data whether the underlying continuous-time model
is a diffusion. Journal of Finance, 57, 2075–2112.

Aït-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. Annals
of Statistics, 37, 184–222.

Aït-Sahalia, Y., Jacod, J., and Li, J. (2012). Testing for jumps in noisy high-frequency data.
Journal of Econometrics, 168, 207–222.

Aling, P. and Hassan, S. (2012). No-arbitrage one-factor models of the South African term structure
of interest rates. South African Journal of Economics, 80, 301–318.

THE ABSENCE OF DIFFUSION IN THE SOUTH AFRICA SHORT RATE 29



Barndorff-Nielsen, O. and Shepard, N. (2004). Power and bipower variation with stochastic
volatility and jumps. Journal of Financial Econometrics, 2, 1–37.

Björk, T. (2004). Arbitrage Theory in Continuous Time. 2nd edition. Oxford University Press.
Carr, P. and Wu, L. (2003). What type of process underlies options? A simple robust test. Journal

of Finance, 58, 2581–2610.
Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates.

Econometrica, 53, 385–407.
Hong, L. and Zou, J. (2015). Jump tests for semimartingales. South African Actuarial Journal, 15,
93–108.

Hull, J. and White, A. (1990). Pricing interest-rate-derivative securities. Review of Financial
Studies, 3, 573–592.

Jiang, G. J. and Oomen, R. C. A. (2008). Testing for jumps when asset prices are observed with
noise – a swap variance approach. Journal of Econometrics, 144, 352–370.

Johannes, M. (2004). The statistical and economic role of jumps in continuous-time interest rate
models. Journal of Finance, 59, 227–260.

Lee, S. S. and Mykland, P. A. (2008). Jumps in financial markets: A new nonparametric test and
jump dynamics. Review of Financial Studies, 21, 2535–2563.

Protter, P. E. (2005). Stochastic differential equations. In Stochastic Integration and Differential
Equations. Springer, Berlin, 249–361.

Vasicek, O. (1977). An equilibrium characterisation of the term structure. Journal of Financial
Economics, 5, 177–188.

Manuscript received 2018-04-03, revised 2018-08-01, accepted 2018-10-12.

30 GROBLER




